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Compilers are difficult to write, and difficult to get right. Bahr and Hutton recently developed a new technique
for calculating compilers directly from specifications of their correctness, which ensures that the resulting
compilers are correct-by-construction. To date, however, this technique has only been applicable to source
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the resulting calculations easier to mechanically check using a proof assistant.
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1 INTRODUCTION
Bahr andHutton [2015] recently presented a new approach to developing compilers whose correct-
ness is guaranteed by the manner in which they are constructed. The basic approach is as follows.
We begin by defining the syntax of the source language, and a semantics for this language. Our
aim then is to define three further components: the syntax of the target language, a semantics for
this language, and a compiler that translates from the source to the target language.The desired re-
lationship between the components is captured by a compiler correctness theorem that formalises
the intuitive idea that compiling a source program does not change its semantics.

Given such a setting, one then attempts to calculate suitable definitions for the additional com-
ponents, in much the same way as one calculates solutions to equations in mathematics. Using
the approach developed by Bahr and Hutton [2015] we can use elementary reasoning techniques
to permit the calculation of compilers for a wide range of source language features and their
combination. The approach builds upon earlier work by Wand [1982], Meijer [1992] and Ager
et al. [2003] and was originally developed for stack-based target languages, but has also been ex-
tended to register-based languages [Bahr and Hutton 2020; Hutton and Bahr 2017].

Compiler calculations in the above approach are developed in the setting of Haskell [Marlow
2010], a statically-typed, purely-functional programming language. For simplicity the source lan-
guage for the compiler is assumed to be untyped. Specifically, the language is restricted to having
a single base type, the integers. This simplification played a key role in the development of the ap-
proach, but places limitations on the range of source languages that can be considered, and means
that the benefits of static typing are not available in the methodology.

Using an untyped source language also gives rise to partiality problems. For example, the se-
mantics of the untyped lambda calculus is partial as lambda terms may be badly formed or fail to
terminate. Even for a minimal source language comprising only integers and addition, in which
all source terms are well-formed, the semantics for the target language becomes partial as a stack
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2 Mitchell Pickard and Graham Hutton

may underflow or a register may be empty. Having to deal with such partiality issues complicates
the methodology, particularly if the calculations are to be mechanised in a proof assistant.

In this article, we show how Bahr and Hutton’s approach to calculating compilers can naturally
be adapted to well-typed source and target languages, by moving from the setting of Haskell to
the dependently-typed language Agda [Norell 2007]. In particular, the additional precision that is
afforded by using dependent types allows us to statically ensure that only valid source and target
terms can be constructed. As we shall see, this not only guarantees that all the components are
type-safe, but also makes the calculations easier to mechanically check.

We introduce our approach using the simple expression language used by McKinna and Wright
in their development of a type-correct, stack-safe, provably correct expression compiler [2006].We
show how our approach can be used to calculate their well-typed compiler, with the correctness
proof and all the required compilation machinery falling naturally out of the calculation process.
As a more sophisticated example, we then calculate a well-typed compiler for a language with
exceptions. In the past it proved difficult even towrite such a compiler, so it is pleasing that our new
methodology allowed us to calculate a compiler in a systematic manner. To further demonstrate
the generality of the technique, we have also calculated a well-typed compiler for the simply-typed
lambda calculus, which is included in the online supplementary material.

This paper is aimed at readers with experience of a functional language such as Haskell, but
does not assume specialist knowledge of Agda, dependent types or compiler calculation, and is
written in a tutorial style to make the ideas accessible to a broader audience. The supplementary
material includes verified versions of all the calculations in Agda.

2 EXPRESSION LANGUAGE
In this section we introduce our compiler calculation technique by means of a simple example, and
show how it benefits from the use of dependent types. We consider an expression language with
natural numbers and Boolean values as basic types that is not type-safe in a simply-typed setting,
but can be made type-safe using dependent types and inductive families as shown byMcKinna and
Wright [2006]. We begin by defining the language and its semantics, then specify what it means
for the compiler to be correct, and finally show how the compiler can be calculated.

For readers familiar with Haskell but not Agda, we remark on a few syntactic differences. First
of all, the symbols : and :: are interchanged, so that x : A means ‘x is of type A’, and x :: xs
means ‘the list with x as head and xs as tail’. Secondly, capitalisation has no syntactic meaning in
Agda; the convention is that types are capitalised while values are not, unlike in Haskell where
constructors must be capitalised. Thirdly, Agda allows arbitrary mixfix operators, but we only
define binary operators in this article. An operator _⊗_ can be used by inserting the arguments in
place of the underscores, as in a ⊗ b. Finally, Agda fully supports Unicode, so all Unicode symbols
that are used (such as the function arrow →) are valid Agda code.

2.1 Source Language
Consider a language of simple arithmetic expressions built up from natural numbers using an
addition operator. In Agda, the syntax of such a language can be captured by the following type
declaration, where N is the type of natural numbers:

data Exp : Set where
val : N → Exp
add : Exp → Exp → Exp
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Calculating Dependently-Typed Compilers 3

This defines a new type, Exp, with two new constructors, val and add. The type declaration
Exp : Set means that Exp is a type whose elements are not other types, which corresponds to
the familiar notion of defining a new datatype in Haskell.

Every expression in the above language is well-formed, because there is only one type: the nat-
ural numbers. However, we may encounter problems if the language contains more than one type.
For example, consider extending the language with Boolean values, and a conditional operator
that chooses between two expressions based on a Boolean value supplied as its first argument:

data Exp : Set where
val : N → Exp
add : Exp → Exp → Exp
bool : Bool → Exp
if : Exp → Exp → Exp → Exp

While this language allows us to construct expressions that contain both numbers and Boolean
values, it does not guarantee they are always valid. For example, add (bool true) (val 1) is
ill-formed, because the first argument to add is a Boolean value, not a natural number.

Using the additional expressive power provided by a dependently-typed language such as Agda,
these ill-formed expressions can be made unrepresentable. We achieve this by indexing Expwith a
type T, such that Exp T is only inhabited by expressions of type T. For simplicity we initially allow
T to be any Set, but this will be restricted to a smaller universe of types in later examples. To
avoid having to repeatedly state the type of such parameters throughout the paper, we use Agda’s
generalised variable feature to first declare that the variable T is always of type Set:

variable
T : Set

data Exp : Set → Set where
val : T → Exp T
add : Exp N → Exp N → Exp N
if : Exp Bool → Exp T → Exp T → Exp T

In this manner, Exp is now an inductive family [Dybjer 1994], indexed by the type of the expression.
The constructor val now lifts a value of type T into an expression of this type, which avoids the
need for separate constructors for natural numbers and Boolean values. In turn, the constructor
add takes two expressions of type N, and returns another expression of this type. Finally, if takes
a Boolean expression and two expressions of type T, and returns an expression of type T.

The new version of Exp guarantees that all expressions are well-formed by construction. For
example, the invalid expression add (val true) (val 1) can no longer be constructed, because
val true : Exp Bool, whereas add requires both its arguments to have type Exp N. We note
that Exp could also be defined using Haskell’s generalised algebraic datatypes (GADTs), as these
provide similar functionality to inductive families. However, Agda provides better facilities for
working with such types, including dependent pattern matching and a development environment
that allows for interactive development of programs based on their types.

We conclude this section by defining an evaluation semantics for expressions. Because Exp is
indexed by the expression type T, the evaluation function can simply return a value of this type.
This approach automatically ensures that the function is type-safe and total, because there is never
a need to check that the returned value has the expected type. For example, in the case for add x y
in the eval function below, we know statically that eval x : N, which allows this term to be used
directly as an argument to the + function on natural numbers.

eval : Exp T → T
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eval (val x) = x
eval (add x y) = eval x + eval y
eval (if b x y) = if eval b then eval x else eval y

In this manner, using dependent types not only makes the code type-safe, but also makes it more
concise by eliminating the need to check for type errors at run-time.

2.2 Compiler Specification
We now seek to calculate a compiler for our well-typed expression language, using the approach
developed by Bahr and Hutton [2015]. In that setting, the target language for the compiler is a
stack-based virtual machine in which a stack is represented simply as a list of numbers. In our
setting, however, we can take advantage of the power of dependent types and use a more refined
stack type that is indexed by the types of the elements it contains [Poulsen et al. 2018]:

variable
S S' S'' : List Set

data Stack : List Set → Set where
ϵ : Stack []
_▷_ : T → Stack S → Stack (T :: S)

The variable declaration allows us to assume that certain variables are always of type List Set,
i.e. a list of types. A stack is then either empty, written as ϵ , or is formed by pushing a value a of
type T onto an existing stack s of type S to give a new stack of type T :: S, written as a ▷ s. For
example, the stack 5 ▷ True ▷ ϵ has type Stack (N :: Bool :: []), which makes precise the
fact that it contains just a natural number and a Boolean value.

Our aim now is to define three further components: a code type that represents the syntax of
the target language, a compilation function that translates an expression into code, and an execu-
tion function that runs code. In Bahr and Hutton’s setting [2015], code is an algebraic datatype
(rather than an inductive family), the compiler is a function from expressions to code, and the
execution function runs code using an initial stack of numbers to give a final stack of numbers. In
our dependently-typed setting, we can be more precise about all of these types.

First of all, as demonstrated in McKinna and Wright [2006] we can index code by the types of
the input and output stacks that it operates on, by means of the following declaration for the Code
type:

data Code : List Set → List Set → Set1

The idea is that Code S S' represents code that takes an input stack of type S and produces an
output stack of type S'.The result type is Set1 (where Set : Set1) to prevent inconsistencies from
arising, but this does not affect the rest of the calculation. We don’t yet define any constructors
for this type, as these will be derived during the calculation process.

Using the code type, we can now specify the type of the execution function in a manner that
makes the types of the input and output stacks precise:

exec : Code S S' → Stack S → Stack S'

Again, we don’t yet define this function, as the definition will also be calculated.
The type of the compilation function can now make explicit that the compiled code for an ex-

pression of type T pushes a value of type T onto the top of the input stack:

compile : Exp T → Code S (T :: S)
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Finally, the desired relationship between the source semantics (eval), the compilation function
(compile), and the target semantics (exec) is captured by the following simple equation:

exec (compile e) s = eval e ▷ s (1)
That is, compiling an expression and then executing the resulting code on a given stack gives the
same result as pushing the value of the expression onto the stack. This is the same correctness
condition used by Bahr and Hutton [2015], except that by using Agda rather than Haskell we
are able to be more precise about the underlying types of the components. As we shall see, this
additional precision also brings a number of benefits during the calculation process.

2.3 Compiler Calculation
To calculate the compiler, we proceed from equation (1) by structural induction on the the form
of the source expression e. In each case, we start with the right-hand side eval e ▷ s of the
equation and seek to transform it by a process of equational reasoning into the form exec c s
for some code c, such that we can take compile e = c as a defining equation for the compile
function. In order to do this we will find that we need to introduce new constructors into the Code
type, along with their interpretation by the execution function exec.

Case: e = val x.

We begin with the right-hand side of equation (1), and apply the definition of eval:
eval (val x) ▷ s

= { definition of eval }
x ▷ s

To reach the required form, wemust now rewrite the resulting term x ▷ s into the form exec c s
for some code c. That is, we need to solve the following equation:

exec c s = x ▷ s

Note that we can’t simply use this equation as a definition for the function exec, because the
value x would be unbound in the body of the definition as it does not appear on the left-hand
side. The solution is to package this variable up in the code argument c — which can freely be
instantiated as it is existentially quantified — by introducing a new code constructor PUSH that
takes this variable as an argument, and defining a new equation for exec as follows:

exec (PUSH x) s = x ▷ s

That is, executing code of the form PUSH x simply pushes the value x onto the stack, hence the
choice of the name for the new code constructor. Using the above ideas, it is now straightforward
to complete the calculation using the new definition for exec:

x ▷ s
= { define: exec (PUSH x) s = x ▷ s }

exec (PUSH x) s

The final term now has the form exec c s, where c = PUSH x. For this to fit the form of our
compiler specification, we must define the following case for compile:

compile (val x) = PUSH x

Compiling a value x results in code that pushes this value onto the stack. From this definition and
the type Exp T → Code S (T :: S) for the function compile, we can infer that:

PUSH : T → Code S (T :: S)

That is, the constructor PUSH transforms a value of type T into code that returns a value of this
type on top of the stack, which is the expected behaviour.
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Case: e = if b x y.

We begin again by applying the evaluation function:
eval (if b x y) ▷ s

= { definition of eval }
(if eval b then eval x else eval y) ▷ s

No further definitions can be applied at this point. However, as we are performing an inductive
calculation, we can make use of the induction hypotheses for the three argument expressions b, x
and y, which have the following form for some stack s':

exec (compile b) s' = eval b ▷ s'

exec (compile x) s' = eval x ▷ s'

exec (compile y) s' = eval y ▷ s'
In order to use these hypotheses, we first exploit the fact that function application distributes over
conditional expressions, which is captured by the following equation:

f (if b then x else y) = if b then f x else f y

This property is always valid in a total, terminating language such as Agda. In our case, it allows
us to promote the function (▷ s) into both branches of the conditional expression, and hence to
apply the induction hypotheses for the arguments x and y:

(if eval b then eval x else eval y) ▷ s
= { distributivity }

if eval b then eval x ▷ s else eval y ▷ s
= { induction hypotheses for x and y }

if eval b then exec (compile x) s else exec (compile y) s

Now we are stuck again. In order to reach the required form, we must transform the term we are
manipulating into the form exec c s for some code c. That is, we need to solve the equation:

exec c s = if eval b then exec (compile x) s else exec (compile y) s

First of all, we generalise this equation from the specific Boolean value eval b, code compile x
and code compile y, to give the following simpler equation:

exec c s = if b then exec c1 s else exec c2 s

Once again, we can’t use this equation as a definition for exec, this time because b, c1 and c2
would be unbound. We must bind them on the left-hand side of the equation, but we have a choice
of whether to store them in the stack argument s or the code argument c. All values on the stack
will be evaluated at runtime, but code may be conditionally evaluated depending on the rest of
the program. In this case, we package c1 and c2 up in the code argument c, as we want to choose
which one to evaluate, and we store b on the stack because it should always be evaluated. This is
achieved by introducing a new code constructor IF, such that:

exec (IF c1 c2) (b ▷ s) = if b then exec c1 s else exec c2 s

That is, executing code of the form IF c1 c2 given a stack with a Boolean value b on top proceeds
by executing one of the two pieces of code in the remaining stack, depending on the value of b.
We can now continue the calculation and apply the induction hypothesis for the argument b:

if eval b then exec (compile x) s else exec (compile y) s
= { define: exec (IF c1 c2) (b ▷ s) = if b then exec c1 s else exec c2 s }

exec (IF (compile x) (compile y)) (eval b ▷ s)
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= { induction hypothesis for b }
exec (IF (compile x) (compile y)) (exec (compile b) s)

We are now stuck, but are guided again by our aim to obtain a term of the form exec c s for some
code c. That is, we now need to solve the equation:

exec c s = exec (IF (compile x) (compile y)) (exec (compile b) s)

In a similar manner to previously, we first generalise over the specific code arguments that are
supplied to the function exec on the right-hand side, to give:

exec c s = exec c2 (exec c1 s)

This equation can then be solved by packaging c1 and c2 up in the code argument c using a new
code constructor +++ that takes these pieces of code as arguments. This represents concatenation
of two pieces of code to be executed one after another:

exec (c1 +++ c2) s = exec c2 (exec c1 s)

It is now straightforward to complete the calculation:
exec (IF (compile x) (compile y)) (exec (compile b) s)

= { define: exec (c1 +++ c2) s = exec c2 (exec c1 s) }
exec (compile b +++ IF (compile x) (compile y)) s

The final term now has the required form exec c s, from which we conclude that equation (1) is
satisfied in the case of conditional expressions by defining:

compile (if b x y) = compile b +++ IF (compile x) (compile y)

That is, a conditional expression is compiled by compiling the condition and using the resulting
value to make a choice between the compiled code for the two branches. The two new code con-
structors used in this definition have the following types:

_+++_ : Code S S' → Code S' S'' → Code S S''

IF : Code S S' → Code S S' → Code (Bool :: S) S'

We can see from the type of the +++ constructor that it allows two pieces of code to be concatenated,
as long as the output stack of the first piece of code matches the input stack of the second. In turn,
the IF constructor transforms two pieces of code of the same type into a single piece of code that
uses a Boolean value on the stack to choose between them.

Case: e = add x y.

We begin in the usual manner, by starting with the right-hand side of the specification, and apply-
ing the evaluation function:

eval (add x y) ▷ s
= { definition of eval }

(eval x + eval y) ▷ s

In order to rewrite the resulting term above into the form exec c s for some code c, we need
to solve the equation exec c s = (eval x + eval y) ▷ s. First of all, we generalise over the
specific natural numbers eval x and eval y to give the equation exec c s = (n + m) ▷ s. The
numbers m and n in this new equation are unbound, but can be packaged up in the stack argument s
by means of a new code constructor ADD and the definition:

exec ADD (m ▷ n ▷ s) = (n + m) ▷ s
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That is, executing an ADD proceeds by adding the two natural numbers on the top of the stack. It
is now straightforward to complete the calculation, during which we use +++ from the previous
case to bring the term being manipulated into the required form:

(eval x + eval y) ▷ s
= { define: exec ADD (m ▷ n ▷ s) = (n + m) ▷ s }

exec ADD (eval y ▷ eval x ▷ s)
= { induction hypothesis for x }

exec ADD (eval y ▷ exec (compile x) s)
= { induction hypothesis for y }

exec ADD (exec (compile y) (exec (compile x) s))
= { definition of +++ }

exec ADD (exec (compile x +++ compile y) s)
= { definition of +++ }

exec ((compile x +++ compile y) +++ ADD) s

The final term now has the form exec c s, from which we conclude that the following definition
satisfies equation (1) in the case of adding two numeric expressions:

compile (add x y) = (compile x +++ compile y) +++ ADD

That is, an addition is compiled by compiling the two argument expressions and adding the result-
ing two numbers on the stack. The type of the ADD constructor makes explicit that it transforms a
stack with two numbers on top into a stack with a single number on top, as expected:

ADD : Code (N :: N :: S) (N :: S)

In summary, we have calculated the following definitions:
data Code : List Set → List Set → Set1 where
PUSH : T → Code S (T :: S)
_+++_ : Code S S' → Code S' S'' → Code S S''
IF : Code S S' → Code S S' → Code (Bool :: S) S'
ADD : Code (N :: N :: S) (N :: S)

compile : Exp T → Code S (T :: S)
compile (val x) = PUSH x
compile (if b x y) = compile b +++ IF (compile x) (compile y)
compile (add x y) = (compile x +++ compile y) +++ ADD

exec : Code S S' → Stack S → Stack S'
exec (PUSH x) s = x ▷ s
exec (IF c1 c2) (b ▷ s) = if b then exec c1 s else exec c2 s
exec (c1 +++ c2) s = exec c2 (exec c1 s)
exec ADD (m ▷ n ▷ s) = (n + m) ▷ s

2.4 Reflection
The above definitions are essentially the same as those developed by McKinna and Wright [2006],
except that we calculated the definitions in a manner that ensures they are correct by construction.
In contrast, McKinna and Wright gave the definitions and then separately proved correctness. As
we have seen, using our methodology each of the definitions arose in a systematic way, with all
of the required compilation machinery falling naturally out of the calculation.
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Calculating Dependently-Typed Compilers 9

The use of dependent types did not complicate the calculation, but ensures that the stack and
code types are completely type-safe. As a result, the exec function is total, because the types
guarantee that the stack can never underflow, and that stack elements are always of the expected
types. In contrast, in Bahr and Hutton’s original setting [2015], the exec function is partial, which
causes difficulties when mechanising the calculations, because proof assistants often require all
functions to be total. For example, the partial exec function had to be reformulated as a small-step
execution relation prior to mechanisation in Coq, to avoid such totality issues.

In our total setting, however, themechanisation inAgda proceeds in essentially the samemanner
as the pen-and-paper version. For example, the case for addition is illustrated below:

correct : (e : Exp T) → (s : Stack S) → eval e ▷ s ≡ exec (compile e) s
correct (val x) s = ...
correct (if b x y) s = ...
correct (add x y) s = begin

eval (add x y) ▷ s
-- definition of eval
≡⟨ refl ⟩
(eval x + eval y) ▷ s

-- define: exec ADD (m ▷ n ▷ s) = (n + m) ▷ s
≡⟨ refl ⟩
exec ADD (eval y ▷ eval x ▷ s)

-- induction hypothesis for x
≡⟨ cong (λz → exec ADD (eval y ▷ z)) (correct x s) ⟩
exec ADD (eval y ▷ exec (compile x) s)

-- induction hypothesis for y
≡⟨ cong (exec ADD) (correct y (exec (compile x) s)) ⟩
exec ADD (exec (compile y) (exec (compile x) s))

-- definition of +++
≡⟨ refl ⟩
exec ADD (exec (compile x +++ compile y) s)

-- definition of +++
≡⟨ refl ⟩
exec ((compile x +++ compile y) +++ ADD) s
□

The above calculation is written using Agda’s equational reasoning facility, which is provided in
the standard library. Note that some steps are reduced to reflexivity because Agda automatically
applies definitions, and we sometimes need to make explicit where transformations are applied,
using functions such as cong to apply an equality in a particular context. All of the calculations in
the article have been mechanised in Agda, and are available online as supplementary material.

Finally, we remark that the compiler we have calculated produces tree-structured rather than
linear code, due to the use of the +++ constructor for combining pieces of code. We could add a
post-processing phase to rearrange the code from a tree into a list. However, in the next section
we will see how the use of code continuations achieves the same result in a more direct manner.

3 CODE CONTINUATIONS
One of the key ideas in Bahr andHutton’s methodology [2015; 2020] is the use of code continuations
to streamline the resulting compiler calculations. In our well-typed setting, this can be achieved
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10 Mitchell Pickard and Graham Hutton

by generalising the function compile : Exp T → Code S (T :: S) to a function comp that takes
code to be executed after the compiled code as an additional argument:

comp : Exp T → Code (T :: S) S' → Code S S'
The additional argument of type Code (T :: S) S' can be viewed as a code continuation that
will be run after the argument expression is run. The continuation takes as its input a stack with
the evaluated argument expression on top, and returns the final stack to be output. Later we will
calculate the function compile that does not require a code continuation, in terms of comp.The cor-
rectness equation exec (compile e) s = eval e ▷ s for the compiler must now be modified
to use the comp function with the code continuation as an extra argument:

exec (comp e c) s = exec c (eval e ▷ s) (2)
That is, compiling an expression and executing the resulting code gives the same result as executing
the additional code with the value of the expression on the top of the stack. This is the same
generalised correctness condition used by Bahr and Hutton [2015], except that once again the use
of Agda allows us to be more precise about the types of the component functions.

To calculate the compiler we proceed from equation (2) by structural induction on the expres-
sion e. In each case, we aim to transform the right-hand side exec c (eval e ▷ s) into the form
exec c' s for some code c', such that we can then take comp e c = c' as a defining equation for
comp in this case. The calculation itself proceeds in a similar manner to the previous section, with
new Code constructors and their interpretation by exec being introduced along the way. As be-
fore, the driving force for introducing these new components is the desire to rewrite the term being
manipulated into the required form, or to facilitate applying an induction hypothesis.

Case: e = val x.

exec c (eval (val x) ▷ s)
= { definition of eval }

exec c (x ▷ s)
= { define: exec (PUSH x c) s = exec c (x ▷ s) }

exec (PUSH x c) s

Case: e = if b x y.

exec c (eval (if b x y)) ▷ s
= { definition of eval }

exec c ((if eval b then eval x else eval y) ▷ s)
= { distributivity }

exec c (if eval b then eval x ▷ s else eval y ▷ s)
= { distributivity }

if eval b then exec c (eval x ▷ s) else exec c (eval y ▷ s)
= { induction hypotheses for x and y }

if eval b then exec (comp x c) s else exec (comp y c) s
= { define: exec (IF c1 c2) (b ▷ s) = if b then exec c1 s else exec c2 s }

exec (IF (comp x c) (comp y c)) (eval b ▷ s)
= { induction hypothesis for b }

exec (comp b (IF (comp x c) (comp y c))) s

Case: e = add x y.

exec c (eval (add x y) ▷ s)
= { definition of eval }
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Calculating Dependently-Typed Compilers 11

exec c ((eval x + eval y) ▷ s)
= { define: exec (ADD c) (m ▷ n ▷ s) = exec c ((n + m) ▷ s) }

exec (ADD c) (eval y ▷ eval x ▷ s)
= { induction hypothesis for y }

exec (comp y (ADD c)) (eval x ▷ s)
= { induction hypothesis for x }

exec (comp x (comp y (ADD c))) s

The base case calculation above is similar to the previous version, but the two inductive cases are
simpler because the use of code continuations means that the +++ constructor for composing two
pieces of code is no longer required. This is an example of the well-known idea of ‘making append
vanish’ [Wadler 1989] by rewriting a recursive definition using an accumulating parameter, here
taking the form of a code continuation that is applied within a dependently-type setting.

We conclude the calculation by returning to the top-level compilation function compile, whose
correctness was captured by the equation exec (compile e) s = eval e ▷ s. As previously,
we aim to rewrite the right-hand side of this equation into the form exec c s for some code c,
such that we can then define compile e = c. In this case there is no need to use induction as
simple calculation suffices, during which we introduce a new code constructor HALT to transform
the term being manipulated into a form that allows equation (2) to be applied:

eval e ▷ s
= { define: exec HALT s = s }

exec HALT (eval e ▷ s)
= { equation (2) }

exec (comp e HALT) s

In summary, we have calculated the following definitions:

data Code : List Set → List Set → Set1 where
PUSH : T → Code (T :: S) S' → Code S S'
ADD : Code (N :: S) S' → Code (N :: N :: S) S'
IF : Code S S' → Code S S' → Code (Bool :: S) S'
HALT : Code S S

comp : Exp T → Code (T :: S) S' → Code S S'
comp (val x) c = PUSH x c
comp (if b x y) c = comp b (IF (comp x c) (comp y c))
comp (add x y) c = comp x (comp y (ADD c))

compile : Exp T → Code S (T :: S)
compile e = comp e HALT

exec : Code S S' → Stack S → Stack S'
exec (PUSH x c) s = exec c (x ▷ s)
exec (IF c1 c2) (b ▷ s) = if b then exec c1 s else exec c2 s
exec (ADD c) (m ▷ n ▷ s) = exec c ((n + m) ▷ s)
exec HALT s = s
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12 Mitchell Pickard and Graham Hutton

3.1 Reflection
Once again the above definitions do not require separate proofs of correctness, as they are correct
by construction. As well as eliminating the need for the +++ constructor, the use of code contin-
uations streamlines the resulting calculation by reducing the number of steps that are required.
Moreover, the use of dependent types to specify the stack behaviour of code statically guaran-
tees that the code continuation supplied to the compiler will be able to operate on its input stack
without underflowing or assuming the wrong type for an element. This additional level of safety
ensures that the execution function is total, independent of the code that is supplied to it or the
compiler, which is not the case in the original, untyped methodology [Bahr and Hutton 2015].

Note that the code produced by the above compiler is still not fully linear, because the IF con-
structor takes two pieces of code as arguments.This branching structure corresponds to the under-
lying branching in control flow in the semantics of conditional expressions. If desired, however,
we can transform the compiler to produce linear code by modifying IF to take a code pointer as
its first argument rather than code itself [Bahr and Hutton 2015; Rouvoet et al. 2021].

4 ADDING EXCEPTIONS
We now consider a source language that provides support for throwing and catching exceptions.
The addition of such features makes compilation more challenging, as they disrupt the normal flow
of control, and it may not be known at compile-time where control will resume after an exception
is thrown. In our setting, however, we can use the additional power provided by dependent types
to ensure that source expressions and target code are always well-formed. For example, we can
ensure that evaluation of an expression never results in an uncaught exception, and that execution
of an exception handler always returns the stack to the expected form.

4.1 Source Language
We consider a simple expression language similar to that used by Bahr and Hutton [2015], with
the addition of a Boolean index that specifies if an expression can throw an exception or not:

variable
a b : Bool

data Exp : Bool → Set where
val : N → Exp false
add : Exp a → Exp b → Exp (a ∨ b)
throw : Exp true
catch : Exp a → Exp b → Exp (a ∧ b)

As previously, the constructors val and add allow expressions to be built up from natural num-
bers using an addition operator. Informally, the new constructor throw results in an exception
being thrown, while the expression catch x h behaves as the expression x unless that throws an
exception, in which case the catch behaves as the handler expression h.

The Bool indices in the Exp declaration express that a numeric value cannot throw an exception
whereas throw can, while an addition throws an exception if either argument does, and a catch
throws an exception if both arguments do [Spivey 1990]. In this manner, Exp false is the type
of well-formed expressions that never result in an uncaught exception, and Exp true is the type
of exceptions which are permitted (but not guaranteed) to throw an exception. Within such ex-
pressions, exceptions may be freely thrown as long as they are always caught. For example, the
expression catch throw (val 1) has type Exp false, as the exception is caught by the handler.
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Calculating Dependently-Typed Compilers 13

To simplify the presentation of this example, an expression that does not result in an uncaught
exception returns a natural number. This assumption allows us to focus on the essential aspects of
compiling exceptions in a dependently-typed setting. However, it is straightforward to index the
expression type over the return type as in the previous example, to allow a range of types to be
used in the language.

4.2 Semantics
We define two evaluation semantics for expressions: eval? for the case when the result may be an
uncaught exception, and eval for the case when evaluation is guaranteed to succeed. In the former
case, we utilise the built-in type Maybe a, with values of the form just x representing successful
evaluation, and nothing representing failure due to an uncaught exception:

eval? : Exp b → Maybe N
eval? (val n) = just n
eval? (add x y) = case eval? x of

just n → case eval? y of
just m → just (n + m)
nothing → nothing

nothing → nothing
eval? throw = nothing
eval? (catch x h) = case eval? x of

just n → just n
nothing → eval? h

Note that Agda does not support case expressions as in Haskell, but we use them here to simplify
the presentation — the actual code uses the standard ‘fold’ operator for the Maybe type instead.
The above definition states that numeric values evaluate to themselves, addition evaluates both
of its argument expressions and only succeeds if both results are successful, throw will always
throw an exception, and catch returns the result of evaluating its first argument expression if it
is successful, and otherwise handles the resulting exception by evaluating its second argument.

Whereas eval? can take any expression as its argument, eval only takes expressions that cannot
result in an uncaught exception, witnessed by the proof b ≡ false. Because evaluation cannot
fail in this case, the return type of eval is simply N rather than Maybe N:

eval : b ≡ false → Exp b → N
eval p (val n) = n
eval p (add {false} {false} x y) = eval refl x + eval refl y
eval p (catch {false} {a} x h) = eval refl x
eval p (catch {true} {false} x h) = case eval? x of

just n → n
nothing → eval refl h

There are a few further points to note about this definition. First of all, for technical reasons we
cannot simply write Exp false → N as the type for the eval function. Rather, we need to provide
an additional argument p : b ≡ false as a proof that the index is false, which in recursive calls
is given simply by a proof of reflexivity, refl : false ≡ false.

Secondly, the patterns in curly brackets, such as {false}, match implicit arguments; in this
case, the Bool indices for the argument expressions. For example, in the add case both indices
must be false, because if an addition cannot throw an exception, neither can its two arguments.
The implicit argument patterns occur in the same order as the expression arguments, so the first
implicit pattern corresponds to the first expression argument, and likewise for the second.
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14 Mitchell Pickard and Graham Hutton

Note that the eval function does not need to check for the possibility of failure in recursive calls
to eval. Instead, the proof arguments passed in statically ensure that the recursive calls cannot
result in uncaught exceptions. Similarly, no cases are required for throw or for addition where
sub-expressions can throw an exception, as the type checker can statically verify that these cases
are not possible. In this way, the use of dependent types reduces the need for redundant failure
checking, and makes it clear where failure does need to be considered.

Finally, eval is defined in terms of eval? because in the catch case the expression x may still
throw an exception, which is then caught by the handler. If eval was used here, type checking
would fail as no proof can be provided that x cannot throw an exception.

4.3 Compiler Specification
We now seek to calculate a compiler for our well-typed exceptional language, which produces
code for a stack-based virtual machine. In our previous examples, we utilised a stack type that was
indexed by the types of the elements that it contains, namely Stack : List Set → Set. For our
exceptional language, however, we use an alternative representation for the element type in the
form of a custom universe of types, which we denote by Ty:

Stack : List Ty → Set

The reason for this change is that during the calculation the idea of putting code onto the stack will
arise, which causes problems with universe levels and positivity checking if Set is the index type.
Using a custom type universe avoids this problem. We could also start with the original Stack
type and observe during the calculation that we need to change the definition because of typing
issues. Indeed, this is precisely what happened when we did this calculation for the first time.

We begin with a universe Ty with a single constructor nat that represents the natural numbers,
whose meaning is given by a function El — the standard name for this function in type theory,
abbreviating ‘element’ — that converts the constructor nat into the type N:

data Ty : Set where
nat : Ty

El : Ty → Set
El nat = N

During the calculation we will extend Ty with a new constructor, together with its interpretation
by El. Using the above ideas, our original stack type can now be refined as follows:

variable
T : Ty
S S' S'' : List Ty

data Stack : List Ty → Set where
ϵ : Stack []
_▷_ : El T → Stack S → Stack (T :: S)

That is, a stack is indexed by a list of types, and is either empty or formed by pushing a value of
type T onto a stack of type S to give a stack of type T :: S. For example, the stack 1 ▷ 2 ▷ ϵ has
type Stack (nat :: nat :: []). In turn, the types for Code and the exec function are the same
as previously, except that in the former case we now use List Ty rather than List Set, and Code
is now in Set rather than Set1 because of our use of a custom universe:

data Code : List Ty → List Ty → Set

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: March 2021.



Calculating Dependently-Typed Compilers 15

exec : Code S S' → Stack S → Stack S'
However, we will calculate a new set of operations for the virtual machine for our exceptional
language, so we don’t yet define any constructors for the Code type.

Just as we defined two evaluation semantics for expressions, eval? and eval, so we seek to de-
fine two compilation functions: comp? for the case when the expression may result in an uncaught
exception, and comp for the case when success is guaranteed. We begin with the latter case, for
which the type comp : Exp T → Code (T :: S) S' → Code S S' from section 3 is adapted to
our exceptional language in the following straightforward manner:

comp : b ≡ false → Exp b → Code (nat :: S) S' → Code S S'
That is, the compiler now requires a proof that the expression argument cannot throw an exception,
and the code continuation takes the resulting natural number on top of the stack. In turn, the
correctness equation exec (comp e c) s = exec c (eval e ▷ s) just requires adding a proof
p : b ≡ false that the expression cannot throw an exception:

exec (comp p e c) s = exec c (eval p e ▷ s) (3)
We will return to the type and correctness equation for comp? later on.

4.4 Compiler Calculation
As previously, we calculate the compiler from equation (3) by induction on the expression e. In
each case, we aim to transform exec c (eval p e ▷ s) into the form exec c' s for some code
c', and then take comp p e c = c' as a defining equation for comp.

Case: e = throw.

The use of dependent types in our source language allows us to eliminate this case, as throw has
type Exp true, but from the type of the compilation function compwe have a proof that the index
of expression argument is false, and hence this case cannot arise.

Case: e = val n.

The calculation for values proceeds in the same way as previously,
exec c (eval p (val n) ▷ s)

= { definition of eval }
exec c (n ▷ s)

= { define: exec (PUSH n c) s = exec c (n ▷ s) }
exec (PUSH n c) s

giving us the definition of the first case for the compiler:
comp p (val n) c = PUSH n c

Case: e = add x y.

As well as taking expression arguments x and y, addition takes implicit arguments specifying if
these arguments can throw an exception or not. Because of the proof passed to the comp function,
we know that add x y cannot throw an exception, so neither of the argument expressions can.This
allows us to pattern match on the implicit arguments in the pattern add {false} {false} x y,
and safely eliminate the impossible cases where x or y throw an exception:

exec c (eval p (add {false} {false} x y) ▷ s)
= { definition of eval }

exec c (eval refl x + eval refl y ▷ s)
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As in previous sections, we can introduce a new code constructor ADD to add two natural numbers
on the top of the stack, which allows us to apply the induction hypotheses,

exec c (eval refl x + eval refl y ▷ s)
= { define: exec (ADD c) (m ▷ n ▷ s) = exec c ((n + m) ▷ s) }

exec (ADD c) (eval refl y ▷ eval refl x ▷ s)
= { induction hypothesis for y }

exec (comp refl y (ADD c)) (eval refl x ▷ s)
= { induction hypothesis for x }

exec (comp refl x (comp refl y (ADD c))) s

giving us the second case for the compiler:

comp p (add {false} {false} x y) c = comp refl x (comp refl y (ADD c))

Case: e = catch x h.

Because of the proof passed to comp, catch x h cannot throw an exception, and hence there are
only two cases to consider. The first is when x cannot throw an exception, regardless of whether h
can, as the handler will never be called.The second is when x can throw an exception, but h cannot,
as h must handle a possible exception and be guaranteed not to throw another. As with the case
for add, we can pattern match on the implicit arguments to catch to distinguish these cases. In
the first case, where the expression x cannot throw an exception, the handler is ignored,

exec c (eval p (catch {false} {_} x h) ▷ s)
= { definition of eval }

exec c (eval refl x ▷ s)
= { induction hypothesis for x }

exec (comp refl x c) s

giving us another case for the compiler:

comp p (catch {false} {_} x h) c = comp refl x c

In the second case, where x may throw an exception, we are left with a case expression to deter-
mine whether x successfully returned a value or threw an exception:

exec c (eval p (catch {true} {false} x h) ▷ s)
= { definition of eval }

exec c ((case eval? x of
just n → n
nothing → eval refl h) ▷ s)

At this point, we seem to be stuck. In particular, the resulting term refers to eval?, the evaluation
function that may throw an exception, but equation (3) for comp does not provide us with any
means of manipulating this. The solution is to consider the correctness equation for comp?, the
compilation function for expressions that may throw an exception.

We do not yet know the type of comp?, because we have not yet calculated how exceptions will
be treated by our compilers, but we can formulate a specification for its behaviour. In the case
that x does not throw an exception, the specification should be equivalent to equation (3). When x
does throw an exception, it not clear how comp? should behave. Following the lead of Bahr and
Hutton [2015], we make this explicit by introducing a new, but as yet undefined, function fail to
handle this case, which takes the stack s as its argument. In summary, we now have the following
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partial specification for the function comp? in terms of an as yet undefined function fail:
exec (comp? e c) s = case eval? e of

just n → exec c (n ▷ s)

nothing → fail s

(4)

To continue the calculation, we must transform the term that we are manipulating into a form that
matches equation (4). Our term already performs case analysis on eval? x, so the natural strategy
is to attempt to transform it to match the right-hand side of the equation. First of all, we can use
the fact that function application distributes over case to push the exec function into each branch,
which then allows the induction hypothesis for h to be applied:

exec c ((case eval? x of
just n → n
nothing → eval refl h) ▷ s)

= { distributivity }
case eval? x of
just n → exec c (n ▷ s)
nothing → exec c (eval refl h ▷ s)

= { induction hypothesis for h }
case eval? x of
just n → exec c (n ▷ s)
nothing → exec (comp refl h c) s

Now we are stuck again. However, in order to match equation (4), the nothing branch must have
the form fail s' for some stack s'. That is, we need to solve the equation:

fail s' = exec (comp refl h c) s

First of all, we generalise from comp refl h c to give the following simpler equation:
fail s' = exec h' s

However, we can’t use this as a defining equation for fail, because h' and swould be unbound in
the body of the definition.The solution is to package these two variables up in the stack argument s'
by means of the following defining equation for fail:

fail (h' ▷ s) = exec h' s

That is, if fail is invoked with handler code on top of the stack, this code is executed using the
remaining stack. Using this idea, we can now rewrite the nothing branch:

case eval? x of
just n → exec c (n ▷ s)
nothing → exec (comp refl h c) s

= { define: fail (h' ▷ s) = exec h' s }
case eval? x of
just n → exec c (n ▷ s)
nothing → fail (comp refl h c ▷ s)

The resulting term is close to matching the right-hand side of equation (4), except that the stacks in
the two branches don’t match up. In particular, the stack under the numeric result in the success
branch, s, should match the stack in the failure branch, comp refl h c ▷ s. To achieve this
match, we introduce a new code constructor, UNMARK, to modify the stack in the success branch to
remove the unused handler from the stack, thereby allowing (4) to be applied:

case eval? x of
just n → exec c (n ▷ s)
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nothing → fail (comp refl h c ▷ s)
= { define: exec (UNMARK c) (x ▷ h ▷ s) = exec c (x ▷ s) }

case eval? x of
just n → exec (UNMARK c) (n ▷ comp refl h c ▷ s)
nothing → fail (comp refl h c ▷ s)

= { equation (4) for x }
exec (comp? x (UNMARK c)) (comp refl h c ▷ s)

The final step is to bring the stack into the correct form to match the left-hand side of equation (3).
This can be done by introducing another code constructor, MARK, that pushes the compiled handler
code onto the stack, similarly to the PUSH constructor for numeric values,

exec (comp? x (UNMARK c)) (comp refl h c ▷ s)
= { define: exec (MARK h c) s = exec c (h ▷ s) }

exec (MARK (comp refl h c) (comp? x (UNMARK c))) s

resulting in our final defining equation for comp:
comp p (catch {true} {false} x h) = MARK (comp refl h c) (comp? x (UNMARK c))

4.5 Compiler Specification II
We now turn our attention to the second compilation function, comp?, for expressions that may
result in an uncaught exception.We begin by recalling the partial specification (4) for its behaviour
that we developed during the calculation for comp in the previous section:

exec (comp? e c) s = case eval? e of
just n → exec c (n ▷ s)
nothing → fail s

Now that we have calculated that exceptions will be compiled by putting handler code onto the
stack, we can infer that comp? will have a type of the following form,

comp? : Exp b → Code (nat :: ??? :: S) S' → Code (??? :: S) S'
where ??? is a placeholder for the type of the handler code. The input stack type of the handler
should be the same as the underlying stack type S, to ensure it can be used in this setting. Similarly,
its output stack type should be S', to ensure it results in the same form of stack as the case when
an exception has not been thrown. To realise these ideas, we define a new constructor han in our
universe Ty that represents handler code with given input and output stack types,

han : List Ty → List Ty → Ty

whose meaning is given by simply converting the constructor han into Code:
El (han S S') = Code S S'

In summary, the function comp? has the following type:
comp? : Exp b → Code (nat :: han S S' :: S) S' → Code (han S S' :: S) S'

That is, in order to compile an expression that may throw an exception, there must be a handler
of the appropriate type on top of the stack. However, for the purposes of calculating the definition
of comp? by induction on the expression argument, requiring the handler to be the top element
turns out to be too restrictive, so we generalise to allow any number of stack elements prior to the
handler.This can be achieved by supplying comp?with an extra implicit argument, S'' : List Ty,
which is appended to the stack using append operator for lists, denoted by ++:

comp? : Exp b → Code (nat :: (S'' ++ han S S' :: S)) S'
→ Code (S'' ++ han S S' :: S) S'
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4.6 Compiler Calculation II
We proceed from equation (4) by induction on the expression e.

Case: e = val n.

The calculation for values is simple as it can never fail, and concludes by utilising the PUSH con-
structor that was introduced during the calculation for the comp function,

case eval? (val n) of
just n' → exec c (n' ▷ s)
nothing → fail s

= { definition of eval? }
exec c (n ▷ s)

= { definition of exec }
exec (PUSH n c) s

which gives our first case for the definition of comp?:
comp? (val n) c = PUSH n c

Case: e = throw.

This time around we need to consider the case for throw, as the expression is permitted to throw
an exception. We begin by applying the evaluation function, after which we introduce a new code
constructor, THROW, to transform the term into the required form,

case eval? throw of
just n → exec c (n ▷ s)
nothing → fail s

= { definition of eval? }
fail s

= { define: exec THROW s = fail s }
exec THROW s

which gives our second case for the compiler:
comp? throw c = THROW

Note that this case discards the code continuation c, indicating that execution will continue else-
where, in this case from the handler code that must already be present on the stack.

Case: e = add x y.

Unlike the addition case for comp, either argument expression could throw an exception. Never-
theless, we begin in the usual way by applying the evaluation function:

case eval? (add x y) of
just n → exec c (n ▷ s)
nothing → fail s

= { definition of eval? }
case eval? x of

just n → case eval? y of
just m → exec c ((n + m) ▷ s)
nothing → fail s

nothing → fail s
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To proceed, we need to transform the nested case expressions into the form of equation (4). We
transform the inner just branch by rewriting it using the ADD constructor introduced previously:

case eval? x of
just n → case eval? y of

just m → exec c ((n + m) ▷ s)
nothing → fail s

nothing → fail s
= { definition of exec }

case eval? x of
just n → case eval? y of

just m → exec (ADD c) (m ▷ n ▷ s)
nothing → fail s

nothing → fail s

The inner case is nearly in the correct form, but the stack following m in the success case, n ▷ s,
needs to match the stack in the failure case, s. That is, we need to solve the following equation:

fail (n ▷ s) = fail s

Although this equation appears to be in the correct form to be taken as a defining equation for
fail, the left-hand side fail (n ▷ s) has the same form as that for our previous definition of
fail for executing a handler, namely fail (h' ▷ s). To allow these two definitions type-check
and avoid overlapping patterns, we give fail the following type,

fail : Stack (S'' ++ han S S' :: S) → Stack S'
which states that it takes a stack containing a handler and any number of elements prior to the
handler, and returns the stack that is returned by the handler. The two cases for fail can then be
distinguished by pattern matching on the implicit argument S'', the list of types of elements prior
to the handler, to determine whether the handler is on the top of the stack or not:

fail : Stack (S'' ++ han S S' :: S) → Stack S'
fail {[]} (h' ▷ s) = exec h' s
fail {_ :: _} (n ▷ s) = fail s

We can now apply this second definition of fail to continue the calculation,
case eval? x of

just n → case eval? y of
just m → exec (ADD c) (m ▷ n ▷ s)
nothing → fail s

nothing → fail s
= { define: fail {_ :: _} (n ▷ s) = fail s }

case eval? x of
just n → case eval? y of

just m → exec (ADD c) (m ▷ n ▷ s)
nothing → fail (n ▷ s)

nothing → fail s
= { induction hypothesis for y }

case eval? x of
just n → exec (comp? y (ADD c)) (n ▷ s)
nothing → fail s

= { induction hypothesis for x }
exec (comp? x (comp? y (ADD c))) s
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which gives our third case for the compiler:
comp? (add x y) c = comp? x (comp? y (ADD c))

Note that, despite the possibility of the argument expressions x and y throwing exceptions, the case
for add ends up having the same structure as the definition calculated in section 3. In particular,
because the type of comp? requires a handler to already be present on the stack, we don’t have to
explicitly worry about handling exceptions in this definition.

Case: e = catch x h.

Finally, we consider the case for catch, for which both the expression and the handler could throw
an exception. Although the solution to the case where the handler throws an exception is not
immediately obvious, it falls naturally out of the calculation. We begin by applying eval?:

case eval? (catch x h) of
just n → exec c (n ▷ s)
nothing → fail s

= { definition of eval? }
case eval? x of

just n → exec c (n ▷ s)
nothing → case eval? h of

just n → exec c (n ▷ s)
nothing → fail s

This time around, the nested case expression occurs on the failure branch, which is already in the
correct form for the induction hypothesis to be applied:

case eval? x of
just n → exec c (n ▷ s)
nothing → case eval? h of

just n → exec c (n ▷ s)
nothing → fail s

= { induction hypothesis for h }
case eval? x of

just n → exec c (n ▷ s)
nothing → exec (comp? h c) s

To match the form of our specification, we need to turn exec (comp? h c) s into a call to the
function fail. This can be done by rewriting it using the definition for fail invoked with handler
code on top of the stack that we introduced previously:

case eval? x of
just n → exec c (n ▷ s)
nothing → exec (comp? h c) s

= { definition of fail }
case eval? x of

just n → exec c (n ▷ s)
nothing → fail (comp? h c ▷ s)

Now the stack for the failure branch, comp? h c ▷ s, has the handler on top, so we cannot ap-
ply the induction hypothesis yet. However, we can rewrite the success branch using the UNMARK
constructor, which allows the induction hypothesis to be applied:

case eval? x of
just n → exec c (n ▷ s)
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nothing → fail (comp? h c ▷ s)
= { definition of exec }

case eval? x of
just n → exec (UNMARK c) (n ▷ comp? h c ▷ s)
nothing → fail (comp? h c ▷ s)

= { induction hypothesis for x }
exec (comp? x (UNMARK c)) (comp? h c ▷ s)

Finally, we can then use the MARK constructor to transform the term being manipulated into the
same form as the left-hand side of our specification,

exec (comp? x (UNMARK c)) (comp? h c ▷ s)
= { definition of exec }

exec (MARK (comp? h c) (comp? x (UNMARK c))) s

which gives our final case for the definition of comp?:
comp? (catch x h) c = MARK (comp? h c) (comp? x (UNMARK c))

We now see that the case where the handler throws an exception is handled by the recursive call
to comp?, which requires a handler to already be on the stack to handle the exception. This means
there can be multiple handlers on the stack at the same time: any handler which can itself throw
an exception requires another handler to be present to catch the resulting exception.

The top-level compilation function compile can be calculated in a similar manner to section 3,
which gives rise to a new code constructor HALT as previously.

compile : b ≡ false → Exp b → Code S (nat :: S)
compile p e = comp p e HALT

4.7 Summary
In conclusion, we have now calculated the target language, compiler, and virtual machine for our
expression language with exceptions, as summarised below.

Target language:
data Ty : Set where

nat : Ty
han : List Ty → List Ty → Ty

El : Ty → Set
El nat = N
El (han S S') = Code S S'

data Code : List Ty → List Ty → Set where
PUSH : N → Code (nat :: S) S' → Code S S'
ADD : Code (nat :: S) S' → Code (nat :: nat :: S) S'
THROW : Code (S'' ++ han S S' :: S) S'
MARK : (h : Code S S') → (c : Code (han S S' :: S) S') → Code S S'
UNMARK : Code (T :: S) S' → Code (T :: han S S' :: S) S'
HALT : Code S S

Compiler:
comp? : Exp b → Code (nat :: (S'' ++ han S S' :: S)) S'

→ Code (S'' ++ han S S' :: S) S'
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comp? (val n) c = PUSH n c
comp? (add x y) c = comp? x (comp? {S'' = nat :: _} y (ADD c))
comp? throw c = THROW
comp? (catch x h) c = MARK (comp? h c) (comp? {S'' = []} x (UNMARK c))

comp : b ≡ false → Exp b → Code (nat :: S) S' → Code S S'
comp p (val x) c = PUSH x c
comp p (add {false} {false} x y) c = comp refl x (comp refl y (ADD c))
comp p (catch {false} {a} x h) c = comp refl x c
comp p (catch {true} {false} x h) c

= MARK (comp refl h c) (comp? {S'' = []} x (UNMARK c))

compile : b ≡ false → Exp b → Code S (nat :: S)
compile p e = comp p e HALT

Virtual machine:
data Stack : List Ty → Set where

ϵ : Stack []
_▷_ : El T → Stack S → Stack (T :: S)

exec : Code S S' → Stack S → Stack S'
exec (PUSH x c) s = exec c (x ▷ s)
exec (ADD c) (m ▷ n ▷ s) = exec c ((n + m) ▷ s)
exec THROW s = fail s
exec (MARK h c) s = exec c (h ▷ s)
exec (UNMARK c) (x ▷ _ ▷ s) = exec c (x ▷ s)
exec HALT s = s

fail : Stack (S'' ++ han S S' :: S) → Stack S'
fail {[]} (h' ▷ s) = exec h' s
fail {_ :: _} (n ▷ s) = fail s

Note that in order for Agda to be able to type check these definitions, some extra type annotations
are sometimes added tomake the form of the stack explicit. For example, the annotation {S'' = []}
in comp states that in this call to comp? there are no additional elements on the stack on top of the
handler code pushed by MARK. In each case these additional annotations are straightforward to
infer using Agda’s automatic proof search mechanism.

4.8 Reflection
Our compiler for expressions that may throw an uncaught exception, comp?, is essentially the
same as that developed by Bahr and Hutton [2015]. However, its type here is much more precise,
requiring an appropriate handler on the stack to catch the exception.This ensures that the resulting
code will never cause a stack underflow by looking for a missing handler. The type of the handler
is the key to this example, as it allows the compilation and execution functions to be total even
with expressions which may throw exceptions. In the past it proved difficult even to write a total,
dependently-typed compiler for an exception language, let prove it correct or calculate it.

Although the exec function is total, the Agda system cannot verify this automatically, because
handler code taken from the stack is executed in a manner that is not structurally recursive. We
therefore need to prove that the execution function is total. One approach [Bahr and Hutton 2015]
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is to convert the execution function into a relation encoded as an inductive family. However, this
approach has the drawback that the mechanised version of the calculation is then quite different
to the pen-and-paper version. Another approach is to augment the execution function to make it
structurally recursive, so that Agda can verify totality automatically. We adopted this approach,
by providing two additional parameters to exec: a natural number representing an upper bound
of the total size of the code and stack, and a proof of this bound. The execution function can then
recurse on this natural number, establishing that the function is total.

Finally, we note that our Agda verification of the compiler calculation for exceptions requires the
axiom of function extensionality — that two functions should be considered equal if they output
the same value for every input — which is not present in the base type theory used by Agda. We
added this property as an axiom, but an alternative method would have been to use a type theory
which includes function extensionality, such as homotopy type theory.

5 RELATEDWORK
A review of the main historical developments in the area of compiler calculation is provided by
Bahr and Hutton [2015]. In this section we survey some of the main related work in the use of
dependent types for compiler verification and calculation.

The compiler we developed in section 2.3 is essentially the same as that presented by McKinna
and Wright [2006]. However, we have shown how each case can be calculated from the correct-
ness specification, rather than having to write the compiler and separately prove its correctness.
Bahr andHutton [2015] calculated several compilers for untyped languages, including simple arith-
metic expressions and a language with exceptions as we have in this article. However, our use of
dependent types allows us to be more precise about these languages, such as by using a type index
to specify whether a given expression can throw an exception or not. Alongside a compiler for
expressions which may throw an exception, we also calculated a compiler for expressions which
are statically known to not throw an (uncaught) exception, allowing them to be treated as pure.

McBride [2011] extended a language of arithmetic expressions with ornaments, representing
the types and semantics of expressions. These ornaments are then used to automatically derive a
correctness proof for a compiler. However, he notes that a more complicated language with extra
control flow, such as conditional expressions, would require extra manual proofs to be added.

Pardo et al. [2018] apply a similar methodology to McBride to derive compilers for more com-
plicated source languages, including an imperative language with loops and mutable assignment.
They perform verification by internalising the evaluation semantics into an index of the expression
type, so much of the correctness proof is automatically derived by the type-checker. However, as
with McBride’s work, this is a verification of a compiler, not a calculation.

Chlipala [2007] developed a certified compiler from the lambda calculus to assembly language,
using a series of compilers between intermediate languages. The representation of each of the
intermediate languages is dependently-typed, just as the languages in this article are, ensuring
that at each stage only well-formed and well-typed programs can be represented. More recently,
[Rouvoet et al. 2021] showed how dependent types can be used to ensure that jump labels are
always used in an appropriate manner in a well-typed compiler.

Brady and Hammond [2006] show another use of dependent types for compiler verification.
Rather than building a compiler by treating an interpreter as a semantics, they directly modify
this interpreter, by adding staging annotations to determine which parts of the code are run at
compile-time and which at run-time, to generate a compiler directly from the interpreter. As the
interpreter is verified with the use of dependent types, the resulting compiler is also verified.

Elliott [2017] shows how category theory can be used as an intermediate stage of compilation for
functional languages based on the simply-typed lambda calculus, such as Haskell. The compilation
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target can then be defined simply by implementing a categorical interface for this target, ensuring
that the laws corresponding to the chosen categorical interface (such as cartesian closed categories)
are satisfied. Elliott [2018] then shows how these categorical laws can be used as the specification
for a compiler, allowing the compiler to be calculated in a similarway to the compilers in this article.
He shows how to calculate a compiler targeting a stack machine supporting primitive functions
and simple stack operations using the laws of cartesian categories.

There also exist several formally-verified compilers targeting real-world languages. CompCert
[Leroy 2009] compiles a subset of C, and is verified in the Coq proof assistant, using Coq’s code
extraction feature to produce the compiler binary. CakeML [Kiam Tan et al. 2019] is a compiler
for a language of the same name, based on a subset of Standard ML. The CakeML language is spec-
ified in HOL, the compiler is written in HOL, and the compiler code can compile itself, allowing
for a formally-verified compiler bootstrapping. Both of these compilers use multiple intermedi-
ate languages and contain many passes, including optimisations. The DeepSpec project [Appel
et al. 2015] aims to develop a fully-verified computing toolchain, spanning the full spectrum from
programming language compilers through to operating systems and processors.

6 CONCLUSION AND FURTHERWORK
We have shown how Bahr and Hutton’s [2015] compiler calculation technique for stack-based
machines can consider a wider range of source languages when it is extended to a dependently-
typed setting. Moreover, the addition of dependent types ensures that the execution functions for
the resulting machines are stack-safe, and can therefore be made total. This is beneficial to the
mechanisation of the compiler calculations, allowing the mechanical proofs to follow an almost
identical format to the equational reasoning presented in this article.

To date, our new technique has been applied to idealised source and target languages. This
approach has allowed us to develop the technique and demonstrate its utility, including being able
to calculate awell-typed compiler for a languagewith support for exceptions, an example forwhich
it had previously proved difficult to even write a well-typed compiler. A logical next step now is to
apply the technique to more realistic languages, such as the core language of the Glasgow Haskell
Compiler. As a first step in this direction, we have calculated a dependently-typed compiler for the
simply-typed lambda calculus, which is available in the online supplementary material. Dually, the
technique could also be used to target real hardware or virtual machines. However, considering
realistic source and target languages also raises issues concerning totality, as many such languages
are either not total, or would require non-trivial effort to verify totality within a proof assistant.

Currently our technique is a manual process that is applied by hand, or with the help of a proof
assistant such as Agda or Coq. However, it is possible that much of the process could be automated
to derive compilers ‘for free’ from specifications of their correctness.This process would likely still
involve some human interaction, to make decisions that affect the compilation, such as whether
certain expressions should be evaluated at run-time or compile-time.

Finally, another possible topic of further research is whether the same concepts can be applied
in other areas, such as type systems. For example, is it possible to calculate a type-checker, along
with its correctness proof, starting from a set of typing rules? Can properties such as preservation
and progress of types be automatically proven during the compilation process?
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