

 [image: First Edition]

 REST API Design Rulebook

Mark Masse

Editor
Simon St. Laurent

Copyright © 2011 Mark Masse

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. REST API
 Design Rulebook, the image of a crested shriketit, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Dedication

For my amazing dad, Robert P. Massé, who is the author of books on
 subjects ranging from the “Nature of
 Physical Fields and Forces” to a mysterious “Ghost Nose” that rides a big
 wheel.
Dad, thanks for giving me my very first O’Reilly book and for teaching
 me to never stop learning.

Preface

Greetings Program!

Representational State Transfer (REST) is a technical description of
 how the World Wide Web[1] works. Specifically, REST tells us how the Web achieves its
 great scale. If the Web can be said to have an “operating system,” its
 architectural style is REST.
A REST Application Programming Interface (REST API) is a type of web
 server that enables a client, either user-operated or automated, to access
 resources that model a system’s data and
 functions.
This book is a REST API designer’s style guide and reference. It
 proposes a set of rules that you can leverage to
 design and develop REST APIs.

[1] The “World Wide Web” is more commonly known as “the Web,” which
 is how this book refers to it.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “REST API Design Rulebook by Mark Massé (O’Reilly).
 Copyright 2012 Mark Massé, 978-1-449-31050-9.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/0636920021575

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I could not have written this book without the help of the folks
 mentioned here.
Tim Berners-Lee

As a member of the World Wide Web generation, I have spent my
 entire career as a software engineer working in, and adding to, the Web.
 I am eternally grateful to Tim Berners-Lee for his “WorldWideWeb”
 project. A triumph; huge success.

Roy Fielding

Roy Fielding’s pioneering Ph.D. dissertation was the primary
 inspiration for this book. If you want to learn all about REST from its
 original author, I highly recommend that you read Fielding’s
 dissertation.[2]

Leonard Richardson

In an effort to distinguish between RESTful
 and other Web API designs, Leonard Richardson proposed[3] what has come to be known as the “Richardson Maturity
 Model.” In his model, Richardson outlined three distinct levels of REST
 API maturity:
	URI

	HTTP

	Hypermedia

Each level corresponds with an aspect of the Web’s
 uniform interface that an API must embrace in order
 to be considered RESTful. The maturity model’s level-based
 classification system has helped me evaluate and concisely communicate
 the RESTfulness of many Web API designs.[4]

O’Reilly Media, Inc.

I have been a fan of O’Reilly’s books for as long as I’ve been
 programming. Working on this project with O’Reilly’s Simon St. Laurent
 has been an incredible experience and an honest to goodness dream come
 true for me. I am greatly honored to have been given this opportunity
 and I thank Simon and everyone at O’Reilly Media for their support and
 encouragement.
Additionally, this book would not exist without these foundational
 books, also published by O’Reilly:
	Richardson, Leonard, and Sam Ruby. RESTful Web
 Services. Sebastopol: O’Reilly Media, Inc.,
 2007.

	Allamaraju, Subbu. RESTful Web Services
 Cookbook. Sebastopol: O’Reilly Media, Inc.,
 2010.

	Webber, Jim, Savas Parastatidis, and Ian Robinson. REST
 in Practice: Hypermedia and Systems Architecture.
 Sebastopol: O’Reilly Media, Inc., 2010.

Technical Reviewers

I am indebted to this book’s technical reviewers. Each one took
 the time to read through rough drafts of this book and provided
 insightful feedback that improved the end result. Many thanks to: Mike
 Amundsen, Ryan Christianson, Jason Guenther, Brian Jackson, Greg Katz,
 Will Merydith, Leonard Richardson, Daniel Roop, Nigel Simpson, and
 Cameron Stevens.

Colleagues

Will Wiess, Scott Thompson, Kelley Faraone, Eric Freeman, and Nick
 Choat supported my learning and teaching efforts over the past few
 years. Thank you all.

The REST Community

From a career perspective, this is an exciting time to be both
 working with and using the Web! This book was
 influenced by anyone who has ever posted a scrap of information about
 REST on the Web; or at least to those that search engines could find.
 Over the years, I have pored over too many “REST API” articles and
 examples to count. I know that each one helped shape my mental model of
 the best practices of REST API design.

Stuart Rackham

Thanks also to Stuart Rackham for
 AsciiDoc.[5] It is an awesome tool that made formatting this book a
 breeze.

Personal

My brother Mike
 Massé is a Web-based rock star. His music provided the
 soundtrack for all my writing sessions. Mike’s talents and passions have
 been a lifelong inspiration to me.
Thanks to my family (daughter, mom, dad, and sisters) for their
 patience and support while I was off the grid working on this
 book.
Finally, I thank Shawna Stine, for being the book’s first reviewer
 and biggest fan.

[2] Fielding, Roy Thomas. Architectural Styles and the
 Design of Network-based Software Architectures, Doctoral
 dissertation, University of California, Irvine, 2000 (http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm).

[3] http://www.crummy.com/writing/speaking/2008-QCon/act3.html

[4] Leonard Richardson also co-authored the milestone book, RESTful Web
 Services (O’Reilly) which really helped move REST
 forward.

[5] http://www.methods.co.nz/asciidoc

Chapter 1. Introduction

Hello World Wide Web

The Web started in the “data acquisition and control” group at the
 European Organization for Nuclear Research (CERN), in Geneva, Switzerland.
 It began with a computer programmer who had a clever idea for a new
 software project.
In December of 1990, to facilitate the sharing of knowledge, Tim
 Berners-Lee started a non-profit software project that he called
 “WorldWideWeb.”[6] After working diligently on his project for about a year,
 Berners-Lee had invented and implemented:
	The Uniform Resource Identifier (URI), a syntax that assigns
 each web document a unique address

	The HyperText Transfer Protocol[7] (HTTP), a message-based language that computers could
 use to communicate over the Internet.

	The HyperText Mark-up Language (HTML), to represent informative
 documents that contain links to related documents.

	The first web server.[8]

	The first web browser, which Berners-Lee also named
 “WorldWideWeb” and later renamed “Nexus” to avoid confusion with the
 Web itself.

	The first WYSIWYG[9] HTML editor, which was built right into the
 browser.

On August 6, 1991, on the Web’s first page, Berners-Lee
 wrote,
The WorldWideWeb (W3) is a wide-area hypermedia information
 retrieval initiative aiming to give universal access to a large universe
 of documents.[10]

From that moment, the Web began to grow, at times exponentially.
 Within five years, the number of web users skyrocketed to 40 million. At
 one point, the number was doubling every two months. The “universe of
 documents” that Berners-Lee had described was indeed expanding.
In fact, the Web was growing too large, too fast, and it was heading
 toward collapse.
The Web’s traffic was outgrowing the capacity of the Internet
 infrastructure. Additionally, the Web’s core protocols were not uniformly
 implemented and they lacked support for caches and other stabilizing
 intermediaries. With such rapid expansion, it was unclear if the Web would
 scale to meet the increasing demand.

[6] The WorldWideWeb project was later renamed the “World Wide Web,”
 with added spaces.

[7] Berners-Lee, Tim. The Original HTTP as defined in
 1991, W3C, 1991 (http://www.w3.org/Protocols/HTTP/AsImplemented.html).

[8] The first web server is still up and running at http://info.cern.ch.

[9] WYSIWYG is an acronym for What You See Is What You
 Get.

[10] Berners-Lee, Tim. World Wide Web, W3C,
 1991 (http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html).

Web Architecture

In late 1993, Roy Fielding, co-founder of the Apache HTTP Server
 Project,[11] became concerned by the Web’s scalability problem.
Upon analysis, Fielding recognized that the Web’s scalability was
 governed by a set of key constraints. He and others
 set out to improve the Web’s implementation with a pragmatic approach:
 uniformly satisfy all of the constraints so that the Web could continue to
 expand.
The constraints, which Fielding grouped into six categories and
 collectively referred to as the Web’s architectural
 style, are:
	Client-server

	Uniform interface

	Layered system

	Cache

	Stateless

	Code-on-demand

Each constraint category is summarized in the following
 subsections.
Client–Server

The separation of concerns is the core theme of the Web’s
 client-server constraints. The Web is a client-server based system, in
 which clients and servers have distinct parts to play. They may be
 implemented and deployed independently, using any language or
 technology, so long as they conform to the Web’s uniform
 interface.

Uniform Interface

The interactions between the Web’s components—meaning its clients,
 servers, and network-based intermediaries—depend on the uniformity of
 their interfaces. If any of the components stray from the established
 standards, then the Web’s communication system breaks down.
Web components interoperate consistently within the uniform
 interface’s four constraints, which Fielding identified as:
	Identification of resources

	Manipulation of resources through representations

	Self-descriptive messages

	Hypermedia as the engine of application state (HATEOAS)

The four interface constraints are summarized in the following
 subsections.
Identification of resources

Each distinct Web-based concept is known as a
 resource and may be addressed by a unique
 identifier, such as a URI. For example, a particular home page URI,
 like http://www.oreilly.com, uniquely identifies
 the concept of a specific website’s root resource.

Manipulation of resources through representations

Clients manipulate representations of resources. The same exact
 resource can be represented to different clients in different ways.
 For example, a document might be represented as HTML to a web browser,
 and as JSON to an automated program. The key idea here is that the
 representation is a way to interact with the resource but it is not
 the resource itself. This conceptual distinction allows the resource
 to be represented in different ways and formats without ever changing
 its identifier.

Self-descriptive messages

A resource’s desired state can be
 represented within a client’s request message. A resource’s
 current state may be represented within the
 response message that comes back from a server. As an example, a wiki
 page editor client may use a request message to transfer a
 representation that suggests a page update (new
 state) for a server-managed web page (resource). It is up to the
 server to accept or deny the client’s request.
The self-descriptive messages may include
 metadata to convey additional details regarding
 the resource state, the representation format and size, and the
 message itself. An HTTP message provides headers
 to organize the various types of metadata into uniform fields.

Hypermedia as the engine of application state (HATEOAS)

A resource’s state representation includes links to related
 resources. Links are the threads that weave the Web together by
 allowing users to traverse information and applications in a
 meaningful and directed manner. The presence, or absence, of a link on
 a page is an important part of the resource’s current state.

Layered System

The layered system constraints enable network-based intermediaries
 such as proxies and gateways to be transparently
 deployed between a client and server using the Web’s uniform interface.
 Generally speaking, a network-based intermediary will intercept client-server communication for a specific
 purpose. Network-based intermediaries are commonly used for enforcement
 of security, response caching, and load balancing.

Cache

Caching is one of web architecture’s most important constraints.
 The cache constraints instruct a web server to declare the
 cacheability of each response’s data. Caching
 response data can help to reduce client-perceived latency, increase the
 overall availability and reliability of an application, and control a
 web server’s load. In a word, caching reduces the overall
 cost of the Web.
A cache may exist anywhere along the network path between the
 client and server. They can be in an organization’s web server network,
 within specialized content delivery networks (CDNs), or inside a client
 itself.

Stateless

The stateless constraint dictates that a web server is not
 required to memorize the state of its client applications. As a result,
 each client must include all of the contextual information that it
 considers relevant in each interaction with the web server. Web servers
 ask clients to manage the complexity of communicating their application
 state so that the web server can service a much larger number of
 clients. This trade-off is a key contributor to the scalability of the
 Web’s architectural style.

Code-On-Demand

The Web makes heavy use of code-on-demand, a constraint which
 enables web servers to temporarily transfer executable programs, such as
 scripts or plug-ins, to clients. Code-on-demand tends to establish a
 technology coupling between web servers and their clients, since the
 client must be able to understand and execute the code that it downloads
 on-demand from the server. For this reason, code-on-demand is the only
 constraint of the Web’s architectural style that is considered optional.
 Web browser-hosted technologies like Java applets, JavaScript, and Flash
 exemplify the code-on-demand constraint.

[11] http://httpd.apache.org.

Web Standards

Fielding worked alongside Tim Berners-Lee and others to increase the
 Web’s scalability. To standardize their designs, they
 wrote a specification for the new version of the Hypertext Transfer
 Protocol, HTTP/1.1.[12] They also formalized the syntax of Uniform Resource
 Identifiers (URI) in RFC 3986.[13]
Adoption of these standards quickly spread across the Web and paved
 the way for its continued growth.

[12] Fielding, Roy T., Tim Berners-Lee, et al.
 HTTP/1.1, RFC 2616, RFC Editor, 1999 (http://www.rfc-editor.org/rfc/rfc2616.txt).

[13] Berners-Lee, Tim, Roy T. Fielding, et al. Uniform
 Resource Identifier (URI): Generic Syntax, RFC 3986, RFC
 Editor, 2005 (http://www.rfc-editor.org/rfc/rfc3986.txt).

REST

In the year 2000, after the Web’s scalability crisis was averted,
 Fielding named and described the Web’s architectural style in his Ph.D.
 dissertation.[14] “Representational State Transfer” (REST) is the name that
 Fielding gave to his description[15] of the Web’s architectural style, which is composed of the
 constraints outlined above.

[14] Fielding, Roy Thomas. Architectural Styles and the
 Design of Network-based Software Architectures, Doctoral
 dissertation, University of California, Irvine, 2000 (http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm).

[15] “REST” is the name of the description, or derivation, of the
 Web’s architectural style.

REST APIs

Web services are purpose-built web servers that support the needs of
 a site or any other application. Client programs use application
 programming interfaces (APIs) to communicate with web services. Generally
 speaking, an API exposes a set of data and functions to facilitate
 interactions between computer programs and allow them to exchange
 information. As depicted in Figure 1-1, a
 Web API is the face of a web service, directly
 listening and responding to client requests.
[image: Web API]

Figure 1-1. Web API

The REST architectural style is commonly applied to the design of
 APIs for modern web services. A Web API conforming to the REST
 architectural style is a REST API. Having a REST API
 makes a web service “RESTful.” A REST API consists of an assembly of
 interlinked resources. This set of resources is known as the REST API’s
 resource model.
Well-designed REST APIs can attract client developers to use web
 services. In today’s open market where rival web services are competing
 for attention, an aesthetically pleasing REST API design is a must-have
 feature.

REST API Design

For many of us, designing a REST API can sometimes feel more like an
 art than a science. Some best practices for REST API design are implicit
 in the HTTP standard, while other pseudo-standard approaches have emerged
 over the past few years. Yet today, we must continue to seek out answers
 to a slew of questions, such as:
	When should URI path segments be named with plural nouns?

	Which request method should be used to update resource
 state?

	How do I map non-CRUD operations to my
 URIs?

	What is the appropriate HTTP response status code for a given
 scenario?

	How can I manage the versions of a resource’s state
 representations?

	How should I structure a hyperlink in JSON?

Rules

This book presents a set of REST API design
 rules that aim to provide clear and concise answers
 to the nagging questions listed above. The rules are here to help you
 design REST APIs with consistency that can be leveraged by the clients
 that use them. These rules can be followed as a complete set or
 a la carte. You may contest the rules, but I
 believe that each one warrants careful consideration.
Many of this book’s design rules are drawn from the best practices
 that have become de facto standards. If you have
 some experience with the design of REST APIs, then you are likely to be
 familiar with the rules related to URI design in Chapter 2 and the use of HTTP in
 Chapter 3. In contrast, most of the rules
 presented in Chapter 4 and Chapter 5 (particularly those that
 deal with media types and representational forms) are my solutions in
 the absence of consensus.
Note
When used in the context of rules, the key
 words: “must,” “must not,” “required,” “shall,” “shall
 not,” “should,” “should not,” “recommended,” “may,” and “optional” are
 to be interpreted as described in RFC 2119.[16]

WRML

I’ve invented a conceptual framework called the Web Resource
 Modeling Language (WRML) to assist with the design and implementation of
 REST APIs. WRML, pronounced like “wormle,” originated as a resource
 model diagramming technique that uses a set of basic shapes to represent
 each of the resource archetypes discussed in Resource Archetypes. The scope of WRML
 increased with the creation of the application/wrml
 media type,[17] which has pluggable format and
 schema components, as described in Media Type Design. In many of the book’s later
 rules, I’ll use ideas from WRML to fill in the gaps in current best
 practices with rational advice for common situations.
In Chapters 5 and 6
 you’ll notice that many of the rules include examples that use the
 JavaScript Object Notation (JSON) to format representations.[18] JSON is an important format that has many advantages, such
 as native JavaScript support, near-ubiquitous adoption, and familiar
 syntax. However, by itself the JSON format does not provide uniform
 structures for some of the most important REST API concepts,
 specifically links, link relations, and schemas. The rules in Hypermedia Representation and Schema Representation, use WRML to
 demonstrate JSON-formatted representational forms for each of these core
 constructs.
Finally, Chapter 7 asserts that uniformity
 of API design is not merely an academic pursuit. On
 the contrary it holds the promise of improving the lives of programmers
 by empowering us with a rich set of development tools and frameworks
 that we can leverage to design and develop REST APIs.

[16] Bradner, Scott. Key words for use in RFCs to
 Indicate Requirement Levels, RFC 2119, RFC Editor, 1997
 (http://www.rfc-editor.org/rfc/rfc2119.txt).

[17] The application/wrml media type’s IANA
 registration is pending—see http://www.wrml.org for the most up-to-date
 information.

[18] http://www.json.org

Recap

This chapter presented a synopsis of the Web’s invention and
 stabilization. It motivated the book’s rule-oriented presentation and
 introduced WRML, a conceptual framework whose ideas promote a uniform REST
 API design methodology. Subsequent chapters will build on this foundation
 to help us leverage REST in API designs. Table 1-1 summarizes the vocabulary
 terms that were introduced in this chapter.
Table 1-1. Vocabulary review
	Term	Description
	Application Programming Interface
 (API)
	Exposes a set of data and functions to facilitate
 interactions between computer programs.

	Architectural constraint
	Limits the behavior of a system’s components to
 enforce uniformity and achieve some desired
 property.

	Architectural style
	In his Ph.D. dissertation, Roy Fielding used this
 term to describe a set of constraints that restrict the behavior
 of a system’s interconnected components.

	Cache
	REST constraints that enable network-based
 intermediaries to hold on to resource state representations, which
 helps web servers meet the demands of their
 clients.

	Client–server
	REST constraints that separate the concerns of its
 two primary components, which allows their implementations to
 evolve independently.

	Code-on-demand
	A REST constraint that optionally allows a web server
 to transfer executable programs to its clients on an as-needed
 basis.

	Entity body
	Section of an HTTP message that is designated to hold
 the (optional) content, which may be a resource
 representation.

	Entity headers
	Section of an HTTP message that can communicate meta
 information regarding a resource and its
 representation.

	HATEOAS
	Acronym that stands for REST’s “Hypermedia as the
 Engine of Application State” uniform interface constraint, which
 refers to the practice of providing a state-aware list of links to
 convey a resource’s available “actions.”

	Hypermedia
	An extension of hypertext that enables multiple
 formats to be combined and tethered together with links to design
 a multi-media information network.

	Hypertext
	Text-based documents containing embedded links to
 related documents, which creates a navigable mesh of
 information.

	HyperText Mark-up Language (HTML)
	Created by Tim Berners-Lee to represent the state of
 a web resource’s information and relationships.

	HyperText Transfer Protocol (HTTP)
	Originally developed by Tim Berners-Lee, this is a
 message-based language that computers could use to communicate
 over the Internet.

	Hypertext Transfer Protocol version 1.1
 (HTTP/1.1)
	Roy Fielding, Tim Berners-Lee, and others contributed
 to the standardization of this most recent version of the
 communication protocol.

	JavaScript
	A powerful scripting language that is commonly used
 by web developers.

	JavaScript Object Notation (JSON)
	A standardized text format that was derived from
 JavaScript and is used for structured data
 exchange.

	Layered system
	REST constraints that enable network-based
 intermediaries to sit between a client and server without
 compromising the uniform interface constraints.

	Media type
	A syntax that describes the form of
 content.

	Message
	Self-descriptive envelope that is often used to carry
 a representation of a resource’s state.

	Representation
	The formatted state of a resource, which may be
 transferred via messages that are passed between
 components.

	Representational State Transfer (REST)
	Roy Fielding’s derivation of the Web’s architectural
 style.

	Request message
	Sent from clients to interact with a URI-indicated
 web resource. May contain a representation that suggests a
 resource state.

	Resource
	Any Web-based concept that can be referenced by a
 unique identifier and manipulated via the uniform
 interface.

	Resource identifier
	A universally unique ID of a specific Web-based
 concept.

	Resource model
	An assembly of interlinked Web-based
 concepts.

	Resource state representation
	The rendered state of a web server-owned resource;
 transferred between an application’s client and
 server.

	Response message
	Returned from servers to indicate the results of a
 client’s request. May contain a representation to convey a
 resource state.

	REST API
	A web service interface that conforms to the Web’s
 architectural style.

	Scalability
	The ability to gracefully handle an increasing
 workload.

	Stateless
	A REST constraint that restricts a web server from
 holding on to any client-specific state information, which helps
 it support more clients.

	Uniform interface
	A set of four REST constraints that standardize the
 communication between Web-based components.

	Uniform Resource Identifier (URI)
	A syntax invented by Tim Berners-Lee to assign each
 web resource a unique ID.

	Web API
	Used by clients to interact with a web
 service.

	Web browser (browser)
	Common type of web client. Tim Berners-Lee developed
 the first one, which was able to view and edit HTML
 documents.

	Web client (client)
	A computer program that follows REST’s uniform
 interface in order to accept and transfer resource state
 representations to servers.

	Web component (component)
	A client, network-based intermediary, or server that
 complies with REST’s uniform interface.

	Web Resource Modeling Language (WRML)
	A conceptual framework whose ideas can be leveraged
 to design and implement uniform REST APIs.

	Web server (server)
	A computer program that follows REST’s uniform
 interface constraints in order to accept and transfer resource
 state representations to clients.

	Web service
	A web server programmed with specific, often
 reusable, logic.

Chapter 2. Identifier Design with URIs

URIs

REST APIs use Uniform Resource Identifiers (URIs) to address
 resources. On today’s Web, URI designs range from
 masterpieces that clearly communicate the API’s
 resource model like:
http://api.example.restapi.org/france/paris/louvre/leonardo-da-vinci/mona-lisa
to those that are much harder for people to
 understand, such as:
http://api.example.restapi.org/68dd0-a9d3-11e0-9f1c-0800200c9a66
Tim Berners-Lee included a note about the opacity of URIs in his
 “Axioms of Web Architecture” list:
	 	The only thing you can use an identifier for is to refer to an
 object. When you are not
 dereferencing, you should not look at the contents of the URI
 string to gain other information.
	
	 	--Tim Berners-Lee http://www.w3.org/DesignIssues/Axioms.html

As discussed in Chapter 5,
 clients must follow the linking paradigm of the Web and treat URIs as
 opaque identifiers. That said, REST API designers should create URIs that
 convey a REST API’s resource model to its potential client
 developers.
This chapter introduces a set of design rules for REST API
 URIs.

URI Format

The rules presented in this section pertain to the
 format of a URI. RFC 3986[19] defines the generic URI syntax as shown below:
URI = scheme "://" authority "/" path ["?" query] ["#" fragment]
Rule: Forward slash separator (/) must be used to indicate a
 hierarchical relationship

The forward slash (/) character is used in the path portion of the
 URI to indicate a hierarchical relationship between resources. For
 example:
http://api.canvas.restapi.org/shapes/polygons/quadrilaterals/squares

Rule: A trailing forward slash (/) should not be included in
 URIs

As the last character within a URI’s path, a forward slash (/)
 adds no semantic value and may cause confusion. REST APIs should not
 expect a trailing slash and should not include them in the links that
 they provide to clients.
Many web components and frameworks will treat the following two
 URIs equally:
http://api.canvas.restapi.org/shapes/
http://api.canvas.restapi.org/shapes
However, every character within a URI counts
 toward a resource’s unique identity. Two different URIs map to two
 different resources. If the URIs differ, then so do the resources, and
 vice versa. Therefore, a REST API must generate and communicate clean
 URIs and should be intolerant of any client’s attempts to identify a
 resource imprecisely. More forgiving APIs may redirect clients to URIs
 without a trailing forward slash (as described in Rule: 301 (“Moved Permanently”) should be used to relocate
 resources).

Rule: Hyphens (-) should be used to improve the readability of
 URIs

To make your URIs easy for people to scan and interpret, use the
 hyphen (-) character to improve the readability of names in long path
 segments. Anywhere you would use a space or hyphen in English, you
 should use a hyphen in a URI. For example:
http://api.example.restapi.org/blogs/mark-masse/entries/this-is-my-first-post

Rule: Underscores (_) should not be used in URIs

Text viewer applications (browsers, editors, etc.) often underline
 URIs to provide a visual cue that they are
 clickable. Depending on the application’s font, the
 underscore (_) character can either get partially obscured or completely
 hidden by this underlining. To avoid this confusion, use hyphens (-)
 instead of underscores (as described in Rule: Hyphens (-) should be used to improve the readability of
 URIs).

Rule: Lowercase letters should be preferred in URI paths

When convenient, lowercase letters are preferred in URI paths
 since capital letters can sometimes cause problems. RFC 3986 defines
 URIs as case-sensitive except for the scheme and host components. For
 example:
http://api.example.restapi.org/my-folder/my-doc [image: 1]
HTTP://API.EXAMPLE.RESTAPI.ORG/my-folder/my-doc [image: 2]
http://api.example.restapi.org/My-Folder/my-doc [image: 3]
	[image: 1]
	This URI is fine.

	[image: 2]
	The URI format specification (RFC 3986) considers this URI to
 be identical to URI #1.

	[image: 3]
	This URI is not the same as URIs 1 and 2,
 which may cause unnecessary confusion.

Rule: File extensions should not be included in URIs

On the Web, the period (.) character is commonly used to separate
 the file name and extension portions of a URI. A REST API should not
 include artificial file extensions in URIs to
 indicate the format of a message’s entity body. Instead, they should
 rely on the media type, as communicated through the Content-Type header, to determine how to
 process the body’s content. For more about media types, see the section
 Media Types.
http://api.college.restapi.org/students/3248234/transcripts/2005/fall.json [image: 1]
http://api.college.restapi.org/students/3248234/transcripts/2005/fall [image: 2]
	[image: 1]
	File extensions should not be used to
 indicate format preference.

	[image: 2]
	REST API clients should be encouraged to utilize HTTP’s
 provided format selection mechanism, the Accept request header, as discussed in the
 section Rule: Media type negotiation should be supported when multiple
 representations are available.

Note
To enable simple links and easy debugging, a REST API may
 support media type selection via a query parameter as discussed in the
 section Rule: Media type selection using a query parameter may be
 supported.

[19] Berners-Lee, Tim, Roy T. Fielding, et al. Uniform
 Resource Identifier (URI): Generic Syntax, RFC 3986, RFC
 Editor, 1998 (http://www.rfc-editor.org/rfc/rfc3986.txt).

URI Authority Design

This section covers the naming conventions that should be used for
 the authority portion of a REST API.
Rule: Consistent subdomain names should be used for your
 APIs

The top-level domain and first subdomain names (e.g.,
 soccer.restapi.org) of an API should identify its service owner. The
 full domain name of an API should add a subdomain named
 api. For example:
http://api.soccer.restapi.org

Rule: Consistent subdomain names should be used for your client
 developer portal

Many REST APIs have an associated website, known as a
 developer portal, to help on-board new clients with
 documentation, forums, and self-service provisioning of secure API
 access keys. If an API provides a developer portal, by convention it
 should have a subdomain labeled developer. For
 example:
http://developer.soccer.restapi.org

Resource Modeling

The URI path conveys a REST API’s resource model, with each forward
 slash separated path segment corresponding to a unique resource within the
 model’s hierarchy. For example, this URI design:
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet
indicates that each of these URIs should also identify an
 addressable resource:
http://api.soccer.restapi.org/leagues/seattle/teams
http://api.soccer.restapi.org/leagues/seattle
http://api.soccer.restapi.org/leagues
http://api.soccer.restapi.org
Resource modeling is an exercise that establishes your API’s key
 concepts. This process is similar to the data modeling for a relational
 database schema or the classical modeling of an object-oriented
 system.
Before diving directly into the design of URI paths, it may be
 helpful to first think about the REST API’s resource model.

Resource Archetypes

When modeling an API’s resources, we can start with the some basic
 resource archetypes. Like design patterns, the
 resource archetypes help us consistently communicate the structures and
 behaviors that are commonly found in REST API designs. A REST API is
 composed of four distinct resource archetypes:
 document, collection,
 store, and controller.
Warning
In order to communicate a clear and clean resource model to its
 clients, a REST API should align each resource with only one of these
 archetypes. For uniformity’s sake, resist the temptation to design
 resources that are hybrids of more than one
 archetype. Instead, consider designing separate resources that are
 related hierarchically and/or through links, as discussed in Chapter 5.

Each of these resource archetypes is described in the subsections
 that follow.
Document

A document resource is a singular concept that is akin to an
 object instance or database record. A document’s state representation
 typically includes both fields with values and
 links to other related resources. With its
 fundamental field and link-based structure, the document type is the
 conceptual base archetype of the other resource
 archetypes. In other words, the three other resource archetypes can be
 viewed as specializations of the document archetype.
Each URI below identifies a document resource:
http://api.soccer.restapi.org/leagues/seattle
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players/mike
A document may have child resources that represent its specific
 subordinate concepts. With its ability to bring many different resource
 types together under a single parent, a document is a logical candidate
 for a REST API’s root resource, which is also known as the
 docroot. The example URI below identifies the
 docroot, which is the Soccer REST
 API’s advertised entry point:
http://api.soccer.restapi.org

Collection

A collection resource is a server-managed
 directory of resources. Clients may propose new
 resources to be added to a collection. However, it is up to the
 collection to choose to create a new resource, or not. A collection
 resource chooses what it wants to contain and also decides the URIs of
 each contained resource.
Each URI below identifies a collection resource:
http://api.soccer.restapi.org/leagues
http://api.soccer.restapi.org/leagues/seattle/teams
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players

Store

A store is a client-managed resource repository. A store resource
 lets an API client put resources in, get them back out, and decide when
 to delete them. On their own, stores do not create new resources;
 therefore a store never generates new URIs. Instead, each stored
 resource has a URI that was chosen by a client when it was initially put
 into the store.
The example interaction below shows a user (with ID
 1234) of a client program using a fictional Soccer
 REST API to insert a document resource named alonso
 in his or her store of favorites:
PUT /users/1234/favorites/alonso

Controller

A controller resource models a procedural concept. Controller
 resources are like executable functions, with parameters and return
 values; inputs and outputs.
Like a traditional web application’s use of HTML forms, a REST API
 relies on controller resources to perform application-specific actions
 that cannot be logically mapped to one of the standard methods (create,
 retrieve, update, and delete, also known as CRUD).
Controller names typically appear as the last segment in a URI
 path, with no child resources to follow them in the
 hierarchy. The example below shows a controller resource that allows a
 client to resend an alert to a user:
POST /alerts/245743/resend

URI Path Design

Each URI path segment, separated by forward slashes (/), represents
 a design opportunity. Assigning meaningful values to each path segment
 helps to clearly communicate the hierarchical structure of a REST API’s
 resource model design.
Figure 2-1 uses WRML
 notation[20] to exemplify the correlation of a URI path’s design with the
 resource model that it conveys.
[image: WRML diagram of a URI’s associated resource model]

Figure 2-1. WRML diagram of a URI’s associated resource model

This section provides rules relating to the design of meaningful URI
 paths.
Rule: A singular noun should be used for document names

A URI representing a document resource should be named with a
 singular noun or noun phrase path segment.
For example, the URI for a single player document would have the
 singular form:
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players/claudio

Rule: A plural noun should be used for collection names

A URI identifying a collection should be named with a plural noun,
 or noun phrase, path segment. A collection’s name should be chosen to
 reflect what it uniformly contains.
For example, the URI for a collection of player documents uses the
 plural noun form of its contained resources:
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players

Rule: A plural noun should be used for store names

A URI identifying a store of resources should be named with a
 plural noun, or noun phrase, as its path segment. The URI for a store of
 music playlists may use the plural noun form as follows:
http://api.music.restapi.org/artists/mikemassedotcom/playlists

Rule: A verb or verb phrase should be used for controller
 names

Like a computer program’s function, a URI identifying a controller
 resource should be named to indicate its action. For example:
http://api.college.restapi.org/students/morgan/register
http://api.example.restapi.org/lists/4324/dedupe
http://api.ognom.restapi.org/dbs/reindex
http://api.build.restapi.org/qa/nightly/runTestSuite

Rule: Variable path segments may be substituted with
 identity-based values

Some URI path segments are static; meaning
 they have fixed names that may be chosen by the REST API’s designer.
 Other URI path segments are variable, which means
 that they are automatically filled in with some identifier that may help
 provide the URI with its uniqueness. The URI
 Template syntax[21] allows designers to clearly name both the static and
 variable segments. A URI template includes variables that must be
 substituted before resolution. The URI template example below has three
 variables (leagueId,
 teamId, and
 playerId):
http://api.soccer.restapi.org/leagues/{leagueId}/teams/{teamId}/players/{playerId}
The substitution of a URI template’s variables may be done by a
 REST API or its clients. Each substitution may use a numeric or
 alphanumeric identifier, as shown in the examples below:
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players/21 [image: 1]
http://api.soccer.restapi.org/games/3fd65a60-cb8b-11e0-9572-0800200c9a66 [image: 2]
	[image: 1]
	Conceptually, the value 21 occupies a
 variable path segment slot named
 playerId.

	[image: 2]
	The UUID value fills in the gameId
 variable.

Note
A REST API’s clients must consider URIs to be the
 only meaningful resource identifiers. Although
 other backend system identifiers (such as database IDs) may appear in
 a URI’s path, they are meaningless to client code. By establishing
 URIs as the only IDs, a REST API’s backend implementation may evolve
 over time without impacting its existing clients.

Rule: CRUD function names should not be used in URIs

URIs should not be used to indicate that a CRUD[22] function is performed. URIs should be used to uniquely
 identify resources, and they should be named as described in the rules
 above. As discussed in Request Methods, HTTP
 request methods should be used to indicate which CRUD function is
 performed.
For example, this API interaction design is preferred:
DELETE /users/1234
The following anti-patterns exemplify what
 not to do:
GET /deleteUser?id=1234
GET /deleteUser/1234
DELETE /deleteUser/1234
POST /users/1234/delete

[20] Web Resource Modeling Language (WRML) was introduced in WRML

[21] http://tools.ietf.org/html/draft-gregorio-uritemplate.

[22] CRUD is an acronym that stands for create, read, update,
 delete—the four standard, storage-oriented functions.

URI Query Design

This section provides rules relating to the design of URI queries.
 Recall from RFC 3986 that a URI’s optional query comes after the path and
 before the optional fragment:
URI = scheme "://" authority "/" path ["?" query] ["#" fragment]
As a component of a URI, the query contributes to the unique
 identification of a resource. Consider the following example:
http://api.college.restapi.org/students/morgan/send-sms [image: 1]
http://api.college.restapi.org/students/morgan/send-sms?text=hello [image: 2]
	[image: 1]
	The URI of a controller resource that sends an sms
 message.

	[image: 2]
	The URI of a controller resource that sends an sms message with
 a text value of hello.

The query component of a URI contains a set of parameters to be
 interpreted as a variation or derivative of the resource that is
 hierarchically identified by the path component. So, while these two
 resources are not the same, they are very closely related.
The query component can provide clients with additional interaction
 capabilities such as ad hoc searching and filtering. Therefore, unlike the
 other elements of a URI, the query part may be transparent to a REST API’s
 client.
The entirety of a resource’s URI should be
 treated opaquely by basic network-based intermediaries such as HTTP
 caches. Caches must not vary their behavior based on the presence or
 absence of a query in a given URI. Specifically, response messages must
 not be excluded from caches based solely upon the presence of a query in
 the requested URI. As discussed later in Chapter 4, HTTP headers, not
 queries, must be used to direct a cache intermediary’s behavior.
Rule: The query component of a URI may be used to filter
 collections or stores

A URI’s query component is a natural fit for supplying search
 criteria to a collection or store. Let’s take a look at an
 example:
GET /users [image: 1]
GET /users?role=admin [image: 2]
	[image: 1]
	The response message’s state representation contains a listing
 of all the users in the collection.

	[image: 2]
	The response message’s state representation contains a
 filtered list of all the users in the collection with a “role” value
 of admin.

Rule: The query component of a URI should be used to paginate
 collection or store results

A REST API client should use the query component to paginate
 collection and store results with the pageSize and
 pageStartIndex parameters. The
 pageSize parameter specifies the maximum number of
 contained elements to return in the response. The
 pageStartIndex parameter specifies the zero-based
 index of the first element to return in the response. For
 example:
GET /users?pageSize=25&pageStartIndex=50
When the complexity of a client’s pagination (or filtering)
 requirements exceeds the simple formatting capabilities of the query
 part, consider designing a special controller resource that
 partners with a collection or store. For example,
 the following controller may accept more complex inputs via a request’s
 entity body instead of the URI’s query part:
POST /users/search
This design allows for custom range types and special sort orders
 to be easily specified in the client request message body. However, as
 detailed in Chapter 4, care must be taken
 to ensure that the controller’s cacheable results are marked
 accordingly.

Recap

This chapter offered a set of design rules for REST API URIs. Table 2-1 summarizes the terms that were used in
 this chapter.
Table 2-1. Vocabulary review
	Term	Description
	Authority
	A URI component that identifies the party with
 jurisdiction over the namespace defined by the remainder of the
 URI.

	Collection
	A resource archetype used to model a server-managed
 directory of resources.

	Controller
	A resource archetype used to model a procedural
 concept.

	CRUD
	An acronym that stands for the four classic
 storage-oriented functions: create, retrieve, update, and
 delete.

	Developer portal
	A Web-based graphical user interface that helps a
 REST API acquire new clients.

	Docroot
	A resource that is the hierarchical ancestor of all
 other resources within a REST API’s model. This resource’s URI
 should be the REST API’s advertised entry point.

	Document
	A resource archetype used to model a singular
 concept.

	Forward slash separator (/)
	Used within the URI path component to separate
 hierarchically related resources.

	Opacity of URIs
	An axiom, originally described by Tim Berners-Lee,
 that governs the visibility of a resource identifier’s
 composition.

	Parent resource
	The document, collection, or store that governs a
 given subordinate concept by preceding it within a URI’s
 hierarchical path.

	Query
	A URI component that comes after the path and before
 the optional fragment.

	Resource archetypes
	A set of four intrinsic concepts (document,
 collection, store, and controller) that may be used to help
 describe a REST API’s model.

	Store
	A resource archetype used to model a client-managed
 resource repository.

	URI path segment
	Part of a resource identifier that represents a
 single node within a larger, hierarchical resource model.

	URI template
	A resource identifier syntax that includes variables
 that must be substituted before resolution.

Chapter 3. Interaction Design with HTTP

HTTP/1.1

REST APIs embrace all aspects of the HyperText Transfer Protocol,
 version 1.1[23] (HTTP/1.1) including its request methods, response codes,
 and message headers.
This book divides its coverage of HTTP between two chapters, with
 this chapter discussing request methods and response status codes.
 Incorporating metadata in a REST API design, with HTTP’s request and
 response headers, is the subject of Chapter 4.
Note
A few of this chapter’s examples use curl, the command-line, open-source web client that
 is available for most modern development platforms. For some common REST
 API-related development tasks, curl has some advantages over the
 browser. Specifically, curl allows easy access to HTTP’s full feature
 set and it is scriptable, meaning that programmers
 can write simple shell scripts or batch files containing curl commands
 to test or use a REST API.

[23] Fielding, Roy T., Tim Berners-Lee, et al.
 HTTP/1.1, RFC 2616, RFC Editor, 1999 (http://www.rfc-editor.org/rfc/rfc2616.txt).

Request Methods

Clients specify the desired interaction method in the Request-Line part of an HTTP request message.
 RFC 2616 defines the Request-Line
 syntax as shown below:
Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Each HTTP method has specific, well-defined semantics within the
 context of a REST API’s resource model. The purpose of GET is to retrieve a representation of a
 resource’s state. HEAD is used to
 retrieve the metadata associated with the resource’s state. PUT should be used to add a new resource to a
 store or update a resource. DELETE
 removes a resource from its parent. POST should be used to create a new resource
 within a collection and execute controllers.
Rule: GET and POST must not be used to tunnel other request
 methods

Tunneling refers to any abuse of HTTP that
 masks or misrepresents a message’s intent and undermines the protocol’s
 transparency. A REST API must not compromise its design by misusing
 HTTP’s request methods in an effort to accommodate clients with limited
 HTTP vocabulary. Always make proper use of the HTTP methods as specified
 by the rules in this section.

Rule: GET must be used to retrieve a representation of a
 resource

A REST API client uses the GET
 method in a request message to retrieve the state of a resource, in some
 representational form. A client’s GET
 request message may contain headers but no body.
The architecture of the Web relies heavily on the nature of the
 GET method. Clients count on being
 able to repeat GET requests without
 causing side effects. Caches depend on the ability to serve cached
 representations without contacting the origin server.
In the example below, we can see how a client developer might use
 curl from a command shell to GET a representation of a “greeting”
 resource’s current state:
$ curl -v http://api.example.restapi.org/greeting [image: 1]

> GET /greeting HTTP/1.1 [image: 2]
> User-Agent: curl/7.20.1 [image: 3]
> Host: api.example.restapi.org
> Accept: */*

< HTTP/1.1 200 OK [image: 4]
< Date: Sat, 20 Aug 2011 16:02:40 GMT [image: 5]
< Server: Apache
< Expires: Sat, 20 Aug 2011 16:03:40 GMT
< Cache-Control: max-age=60, must-revalidate
< ETag: text/html:hello world
< Content-Length: 130
< Last-Modified: Sat, 20 Aug 2011 16:02:17 GMT
< Vary: Accept-Encoding
< Content-Type: text/html

<!doctype html><head><meta charset="utf-8"><title>Greeting</title></head> [image: 6]
<body><div id="greeting">Hello World!</div></body></html>
	[image: 1]
	A command prompt showing the curl command. GET is curl’s default method, so it
 doesn’t need to be specified explicitly. The -v
 option makes the curl command’s output more
 verbose.

	[image: 2]
	The request message’s Request-Line indicates that the GET method was used on the greeting resource.

	[image: 3]
	The request message’s list of headers starts here. HTTP’s
 request and response headers are discussed in Chapter 4.

	[image: 4]
	The response message starts here, with the Status-Line discussed in Response Status Codes. The 200 OK status code tells curl that its
 request was successful.

	[image: 5]
	The response message’s list of headers starts here.

	[image: 6]
	The response message’s body starts here. In this example the
 body contains an HTML-formatted representation of a greeting
 message.

Rule: HEAD should be used to retrieve response headers

Clients use HEAD to retrieve
 the headers without a body. In other words, HEAD returns the same response as GET, except that the API returns an empty
 body. Clients can use this method to check whether a resource exists or
 to read its metadata.
The example below shows the curl command for retrieving headers
 with the HEAD method:
$ curl --head http://api.example.restapi.org/greeting

HTTP/1.1 200 OK [image: 1]
Date: Sat, 20 Aug 2011 16:02:40 GMT [image: 2]
Server: Apache
Expires: Sat, 20 Aug 2011 16:03:40 GMT
Cache-Control: max-age=60, must-revalidate
ETag: text/html:hello world
Content-Length: 130
Last-Modified: Sat, 20 Aug 2011 16:02:17 GMT
Vary: Accept-Encoding
Content-Type: text/html
	[image: 1]
	The response message starts here, with the Status-Line discussed in Response Status Codes. The 200 OK status code tells curl that its
 request was successful.

	[image: 2]
	The response message’s list of headers starts here.

Like GET, a HEAD request message may contain headers but
 no body.

Rule: PUT must be used to both insert and update a stored
 resource

PUT must be used to add a new
 resource to a store, with a URI specified by the client. PUT must also be used to update or replace an
 already stored resource.
The example below demonstrates how a service-oriented REST API can
 provide a store resource that allows its client application’s to persist
 their data as objects:
PUT /accounts/4ef2d5d0-cb7e-11e0-9572-0800200c9a66/buckets/objects/4321
The PUT request message must
 include a representation of a resource that the client wants to store.
 However, the body of the request may or may not be
 exactly the same as a client would receive from a
 subsequent GET request. For example,
 a REST API’s store resource may allow clients to include only the
 mutable portions of the resource state in the request message’s
 representation.
The section Rule: Stores must support conditional PUT requests
 describes how a REST API should use HTTP headers to handle
 overloading the PUT method to both insert and update
 resources.

Rule: PUT must be used to update mutable resources

Clients must use the PUT
 request method to make changes to resources. The PUT request message may include a body that
 reflects the desired changes.

Rule: POST must be used to create a new resource in a
 collection

Clients use POST when
 attempting to create a new resource within a collection. The POST request’s body contains the
 suggested state representation of the new resource
 to be added to the server-owned collection.
The example below demonstrates how a client uses POST to request a new addition to a
 collection:
POST /leagues/seattle/teams/trebuchet/players

Note the request message may contain a representation that suggests the initial state of the player to be created.
This is the first of two uses of the POST method within the context of REST API
 design. Metaphorically, this use of POST is analogous to “posting” a new message
 on a bulletin board.

Rule: POST must be used to execute controllers

Clients use the POST method to
 invoke the function-oriented controller resources.
 A POST request message may include
 both headers and a body as inputs to a controller resource’s
 function.
HTTP designates POST as
 semantically open-ended. It allows the method to take any action,
 regardless of its repeatability or side effects. This makes POST the clear choice to be paired with the
 equally unrestricted controller resources.
Our REST API designs use POST,
 along with a targeted controller resource, to trigger all operations
 that cannot be intuitively mapped to one of the other core HTTP methods.
 In other words, the POST method
 should not be used to get, store, or delete resources—HTTP already
 provides specific methods for each of those functions.
HTTP calls the POST request
 method unsafe and
 non-idempotent, which means that its outcome is
 unpredictable and not guaranteed to be repeatable without potentially
 undesirable side effects. For example, a resubmitted web form that uses
 POST might run the risk of double
 billing a user’s credit card. Controller resources trade a degree of
 transparency and robustness for the sake of flexibility.
The example below demonstrates how a controller can be executed
 using the POST request method:
POST /alerts/245743/resend
This is the second use of POST
 in the design of REST APIs. This use case resembles the fairly common
 concept of a runtime system’s “PostMessage” mechanism, which allows
 functions to be invoked across some sort of boundary.

Rule: DELETE must be used to remove a resource from its
 parent

A client uses DELETE to request
 that a resource be completely removed from its parent, which is often a
 collection or store. Once a DELETE
 request has been processed for a given resource, the resource can no
 longer be found by clients. Therefore, any future attempt to retrieve
 the resource’s state representation, using either GET or HEAD, must result in a 404 (“Not Found”) status returned by the
 API.
The example below shows how a client might remove a document from
 a store:
DELETE /accounts/4ef2d5d0-cb7e-11e0-9572-0800200c9a66/buckets/objects/4321
The DELETE method has very
 specific semantics in HTTP, which must not be overloaded or stretched by
 a REST API’s design. Specifically, an API should not distort the
 intended meaning of DELETE by mapping
 it to a lesser action that leaves the resource, and its URI, available
 to clients. For example, if an API wishes to provide a “soft” delete or
 some other state-changing interaction, it should employ a special
 controller resource and direct its clients to use POST instead of DELETE to interact.

Rule: OPTIONS should be used to retrieve metadata that describes
 a resource’s available interactions

Clients may use the OPTIONS
 request method to retrieve resource metadata that includes an Allow header value. For example:
Allow: GET, PUT, DELETE
In response to an OPTIONS
 request, a REST API may include a body that includes further details
 about each interaction option. For example, the response body could
 contain a list of link relation forms, which are discussed in the
 section Rule: A consistent form should be used to represent link
 relations.

Response Status Codes

REST APIs use the Status-Line
 part of an HTTP response message to inform clients of their request’s
 overarching result. RFC 2616 defines the Status-Line syntax as shown below:
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
HTTP defines forty standard status codes that can be used to convey
 the results of a client’s request. The status codes are divided into the
 five categories presented in Table 3-1.
Table 3-1. Response status code categories
	Category	Description
	1xx: Informational
	Communicates transfer protocol-level
 information.

	2xx: Success
	Indicates that the client’s request was accepted
 successfully.

	3xx: Redirection
	Indicates that the client must take some additional
 action in order to complete their request.

	4xx: Client Error
	This category of error status codes points the finger
 at clients.

	5xx: Server Error
	The server takes responsibility for these error
 status codes.

This section concisely describes how and when to use the subset of
 codes that apply to the design of a REST API.
Rule: 200 (“OK”) should be used to indicate nonspecific
 success

In most cases, 200 is the code
 the client hopes to see. It indicates that the REST API successfully
 carried out whatever action the client requested, and that no more
 specific code in the 2xx series is
 appropriate. Unlike the 204 status
 code, a 200 response should include a
 response body.

Rule: 200 (“OK”) must not be used to communicate errors in the
 response body

Always make proper use of the HTTP response status codes as
 specified by the rules in this section. In particular, a REST API must
 not be compromised in an effort to accommodate less sophisticated HTTP
 clients.

Rule: 201 (“Created”) must be used to indicate successful
 resource creation

A REST API responds with the 201 status code whenever a collection creates,
 or a store adds, a new resource at the client’s request. There may also
 be times when a new resource is created as a result of some controller
 action, in which case 201 would also
 be an appropriate response.

Rule: 202 (“Accepted”) must be used to indicate successful start
 of an asynchronous action

A 202 response indicates that
 the client’s request will be handled asynchronously. This response
 status code tells the client that the request appears valid, but it
 still may have problems once it’s finally processed. A 202 response is typically used for actions
 that take a long while to process.
Controller resources may send 202 responses, but other resource types should
 not.

Rule: 204 (“No Content”) should be used when the response body is
 intentionally empty

The 204 status code is usually
 sent out in response to a PUT,
 POST, or DELETE request, when the REST API declines to
 send back any status message or representation in the response message’s
 body. An API may also send 204 in
 conjunction with a GET request to
 indicate that the requested resource exists, but has no state
 representation to include in the body.

Rule: 301 (“Moved Permanently”) should be used to relocate
 resources

The 301 status code indicates
 that the REST API’s resource model has been significantly redesigned and
 a new permanent URI has been assigned to the
 client’s requested resource. The REST API should specify the new URI in
 the response’s Location
 header.

Rule: 302 (“Found”) should not be used

The intended semantics of the 302 response code have been misunderstood by
 programmers and incorrectly implemented in programs since version 1.0 of
 the HTTP protocol.[24] The confusion centers on whether it is appropriate for a
 client to always automatically issue a follow-up GET request to the URI in response’s Location header, regardless of the original
 request’s method. For the record, the intent of 302 is that this automatic redirect behavior
 only applies if the client’s original request used either the GET or HEAD
 method.
To clear things up, HTTP 1.1 introduced status codes 303 (“See Other”) and 307 (“Temporary Redirect”), either of which
 should be used instead of 302.

Rule: 303 (“See Other”) should be used to refer the client to a
 different URI

A 303 response indicates that a
 controller resource has finished its work, but instead of sending a
 potentially unwanted response body, it sends the client the URI of a
 response resource. This can be the URI of a temporary status message, or
 the URI to some already existing, more permanent, resource.
Generally speaking, the 303
 status code allows a REST API to send a reference to a resource without
 forcing the client to download its state. Instead, the client may send a
 GET request to the value of the
 Location header.

Rule: 304 (“Not Modified”) should be used to preserve
 bandwidth

This status code is similar to 204 (“No Content”) in that the response body
 must be empty. The key distinction is that 204 is used when there is nothing to send in
 the body, whereas 304 is used when
 there is state information associated with a
 resource but the client already has the most recent version of the
 representation.
This status code is used in conjunction with conditional HTTP
 requests, discussed in Chapter 4.

Rule: 307 (“Temporary Redirect”) should be used to tell clients
 to resubmit the request to another URI

HTTP/1.1 introduced the 307
 status code to reiterate the originally intended semantics of the
 302 (“Found”) status code. A 307 response indicates that the REST API is
 not going to process the client’s request. Instead, the client should
 resubmit the request to the URI specified by the response message’s
 Location header.
A REST API can use this status code to assign a
 temporary URI to the client’s requested resource.
 For example, a 307 response can be
 used to shift a client request over to another host.

Rule: 400 (“Bad Request”) may be used to indicate nonspecific
 failure

400 is the generic client-side
 error status, used when no other 4xx
 error code is appropriate.
Note
For errors in the 4xx
 category, the response body may contain a document describing the
 client’s error (unless the request method was HEAD). See Error Representation for error response body
 design.

Rule: 401 (“Unauthorized”) must be used when there is a problem
 with the client’s credentials

A 401 error response indicates
 that the client tried to operate on a protected resource without
 providing the proper authorization. It may have provided the wrong
 credentials or none at all.

Rule: 403 (“Forbidden”) should be used to forbid access
 regardless of authorization state

A 403 error response indicates
 that the client’s request is formed correctly, but the REST API refuses
 to honor it. A 403 response is
 not a case of insufficient client credentials; that
 would be 401 (“Unauthorized”).
REST APIs use 403 to enforce
 application-level permissions. For example, a client may be authorized
 to interact with some, but not all of a REST API’s resources. If the
 client attempts a resource interaction that is outside of its permitted
 scope, the REST API should respond with 403.

Rule: 404 (“Not Found”) must be used when a client’s URI cannot
 be mapped to a resource

The 404 error status code
 indicates that the REST API can’t map the client’s URI to a
 resource.

Rule: 405 (“Method Not Allowed”) must be used when the HTTP
 method is not supported

The API responds with a 405
 error to indicate that the client tried to use an HTTP method that the
 resource does not allow. For instance, a read-only resource could
 support only GET and HEAD, while a controller resource might allow
 GET and POST, but not PUT or DELETE.
A 405 response must include the
 Allow header, which lists the HTTP
 methods that the resource supports. For example:
Allow: GET, POST

Rule: 406 (“Not Acceptable”) must be used when the requested
 media type cannot be served

The 406 error response
 indicates that the API is not able to generate any of the client’s
 preferred media types, as indicated by the Accept request header. For example, a client
 request for data formatted as application/xml will
 receive a 406 response if the API is
 only willing to format data as
 application/json.

Rule: 409 (“Conflict”) should be used to indicate a violation of
 resource state

The 409 error response tells
 the client that they tried to put the REST API’s resources into an
 impossible or inconsistent state. For example, a REST API may return
 this response code when a client tries to delete a non-empty store
 resource.

Rule: 412 (“Precondition Failed”) should be used to support
 conditional operations

The 412 error response
 indicates that the client specified one or more preconditions in its
 request headers, effectively telling the REST API to carry out its
 request only if certain conditions were met. A 412 response indicates that those conditions
 were not met, so instead of carrying out the request, the API sends this
 status code.
See Rule: Stores must support conditional PUT requests for
 an example use of the 412 status
 code.

Rule: 415 (“Unsupported Media Type”) must be used when the media
 type of a request’s payload cannot be processed

The 415 error response
 indicates that the API is not able to process the client’s supplied
 media type, as indicated by the Content-Type request header. For example, a
 client request including data formatted as
 application/xml will receive a 415 response if the API is only willing to
 process data formatted as application/json.

Rule: 500 (“Internal Server Error”) should be used to indicate
 API malfunction

500 is the generic REST API
 error response. Most web frameworks automatically respond with this
 response status code whenever they execute some request handler code
 that raises an exception.
A 500 error is never the
 client’s fault and therefore it is reasonable for the client to retry
 the exact same request that triggered this response, and hope to get a
 different response.

[24] In HTTP/1.0, the 302 status
 code’s reason phrase was “Moved Temporarily.”

Recap

This chapter presented the design principles for HTTP’s request
 methods and response status codes. Table 3-2 summarizes the vocabulary terms that
 were introduced.
Table 3-2. Vocabulary review
	Term	Description
	 DELETE

	HTTP request method used to remove its
 parent.

	 GET

	HTTP request method used to retrieve a representation
 of a resource’s state.

	 HEAD

	HTTP request method used to retrieve the metadata
 associated with the resource’s state.

	 OPTIONS

	HTTP request method used to retrieve metadata that
 describes a resource’s available interactions.

	 POST

	HTTP request method used to create a new resource
 within a collection or execute a controller.

	 PUT

	HTTP request method used to insert a new resource
 into a store or update a mutable resource.

	 Request-Line

	RFC 2616 defines its syntax as Method SP Request-URI SP HTTP-Version
 CRLF

	Request method
	Indicates the desired action to be performed on the
 request message’s identified resource.

	Response status code
	A three-digit numeric value that is communicated by a
 server to indicate the result of a client’s
 request.

	 Status-Line

	RFC 2616 defines its syntax as: HTTP-Version SP Status-Code SP Reason-Phrase
 CRLF

	Tunneling
	An abuse of HTTP that masks or misrepresents a
 message’s intent and undermines the protocol’s
 transparency.

Table 3-3 recaps
 the standard usage HTTP’s POST method
 for each of the four resource archetypes.
Table 3-3. POST request method summary
	 	Document	Collection	Store	Controller
	 POST

	 error
	Create a new, contained resource
	 error
	Execute the
 function

Table 3-4 summarizes the standard
 usage HTTP’s other request methods for all resource types.
Table 3-4. HTTP request method summary
	Method	Semantics
	 GET

	Retrieve the complete state of a resource, in some
 representational form

	 HEAD

	Retrieve the metadata state of a
 resource

	 PUT

	Insert a new resource into a store or update an
 existing, mutable resource

	 DELETE

	Remove the resource from its parent

	 OPTIONS

	Retrieve metadata that describes a resource’s
 available interactions

Tables 3-5 and 3-6
 summarize the success and error status codes, respectively.
Table 3-5. HTTP response success code summary
	Code	Name	Meaning
	 200

	OK
	Indicates a nonspecific success

	 201

	Created
	Sent primarily by collections and stores but
 sometimes also by controllers, to indicate that a new resource has
 been created

	 202

	Accepted
	Sent by controllers to indicate the start of an
 asynchronous action

	 204

	No Content
	Indicates that the body has been intentionally left
 blank

	 301

	Moved Permanently
	Indicates that a new permanent
 URI has been assigned to the client’s requested
 resource

	 303

	See Other
	Sent by controllers to return results that it
 considers optional

	 304

	Not Modified
	Sent to preserve bandwidth (with conditional
 GET)

	 307

	Temporary Redirect
	Indicates that a temporary URI
 has been assigned to the client’s requested
 resource

Table 3-6. HTTP response error code summary
	Code	Name	Meaning
	 400

	Bad Request
	Indicates a nonspecific client error

	 401

	Unauthorized
	Sent when the client either provided invalid
 credentials or forgot to send them

	 402

	Forbidden
	Sent to deny access to a protected
 resource

	 404

	Not Found
	Sent when the client tried to interact with a URI
 that the REST API could not map to a resource

	 405

	Method Not Allowed
	Sent when the client tried to interact using an
 unsupported HTTP method

	 406

	Not Acceptable
	Sent when the client tried to request data in an
 unsupported media type format

	 409

	Conflict
	Indicates that the client attempted to violate
 resource state

	 412

	Precondition Failed
	Tells the client that one of its preconditions was
 not met

	 415

	Unsupported Media Type
	Sent when the client submitted data in an unsupported
 media type format

	 500

	Internal Server Error
	Tells the client that the API is having problems of
 its own

Chapter 4. Metadata Design

HTTP Headers

Various forms of metadata may be conveyed through the
 entity headers contained within HTTP’s request and
 response messages. HTTP defines a set of standard headers, some of which
 provide information about a requested resource. Other headers indicate
 something about the representation carried by the message. Finally, a few
 headers serve as directives to control intermediary caches.
This brief chapter suggests a set of rules to help REST API
 designers work with HTTP’s standard headers.
Rule: Content-Type must be used

The Content-Type header names
 the type of data found within a request or response
 message’s body. The value of this header is a specially formatted text
 string known as a media type, which is the subject
 of Media Types. Clients and servers rely on
 this header’s value to tell them how to process the sequence of bytes in
 a message’s body.

Rule: Content-Length should be used

The Content-Length header gives
 the size of the entity-body in bytes. In responses, this header is
 important for two reasons. First, a client can know whether it has read
 the correct number of bytes from the connection. Second, a client can
 make a HEAD request to find out how
 large the entity-body is, without downloading it.

Rule: Last-Modified should be used in responses

The Last-Modified header
 applies to response messages only. The value of this response header is
 a timestamp that indicates the last time that something happened to
 alter the representational state of the resource. Clients and cache
 intermediaries may rely on this header to determine the freshness of
 their local copies of a resource’s state representation. This header
 should always be supplied in response to GET requests.

Rule: ETag should be used in responses

The value of ETag is an opaque
 string that identifies a specific “version” of the representational
 state contained in the response’s entity. The
 entity is the HTTP message’s payload, which is composed of a message’s
 headers and body. The entity tag may be any string value, so long as it
 changes along with the resource’s representation. This header should
 always be sent in response to GET
 requests.
Clients may choose to save an ETag header’s value for use in future GET requests, as the value of the conditional
 If-None-Match request header. If the
 REST API concludes that the entity tag hasn’t changed, then it can save
 time and bandwidth by not sending the representation again.
Warning
Generating an ETag from a
 machine-specific value is a bad idea.
 Specifically don’t generate ETag
 values from an inconsistent source, like a host-specific notion of a
 file’s last modified time. It may result in different ETag values being attributed to the same
 representation, which is likely to confuse the API’s clients and
 intermediaries.

Rule: Stores must support conditional PUT requests

A store resource uses the PUT
 method for both insert and update, which means it is difficult for a
 REST API to know the true intent of a client’s
 PUT request. Through headers, HTTP
 provides the necessary support to help an API resolve any potential
 ambiguity. A REST API must rely on the client to include the If-Unmodified-Since and/or If-Match request headers to express their
 intent. The If-Unmodified-Since
 request header asks the API to proceed with the operation if, and only
 if, the resource’s state representation hasn’t changed since the time
 indicated by the header’s supplied timestamp value. The If-Match header’s value is an entity tag,
 which the client remembers from an earlier response’s ETag header value. The If-Match header makes the request conditional,
 based upon an exact match of the header’s supplied entity tag value and
 the representational state’s current entity tag value, as stored or
 computed by the REST API.
The following example illustrates how a REST API can support
 conditional PUT
 requests using these two headers.
Two client programs, client#1 and client#2, use a REST API’s
 /objects store resource to share some information
 between them. Client#1 sends a PUT
 request in order to store some new data that it identifies with a URI
 path of /objects/2113. This is a new URI that the
 REST API has never seen before, meaning that it does not map to any
 previously stored resource. Therefore, the REST API interprets the
 request as an insert and creates a new resource
 based on the client’s provided state representation and then it returns
 a 201 (“Created”) response.
Some time later, client#2 decides to share some data and it
 requests the exact same storage URI
 (/objects/2113). Now the REST API
 is able to map this URI to an existing resource,
 which makes it unclear about the client request’s intent. The REST API
 has not been given enough information to decide whether or not it should
 overwrite client#1’s stored
 resource state with the new data from client#2. In this scenario, the
 API is forced to return a 409
 (“Conflict”) response to client#2’s request. The API should also provide
 some additional information about the error in the response’s
 body.
If client#2 decides to update the stored data, it may retry its
 request to include the If-Match
 header. However, if the supplied header value does not match the
 current entity tag value, the REST API must return
 error code 412 (“Precondition
 Failed”). If the supplied condition does match, the REST API must update
 the stored resource’s state, and return a 200 (“OK”) or 204 (“No Content”) response. If the response
 does include an updated representation of the resource’s state, the API
 must include values for the Last-Modified and ETag headers that reflect the update.
Note
HTTP supports conditional requests with the GET, POST, and DELETE methods in the same fashion that is
 illustrated by the example above. This pattern is the key that allows
 writable REST APIs to support collaboration
 between their clients.

Rule: Location must be used to specify the URI of a newly created
 resource

The Location response header’s
 value is a URI that identifies a resource that may be of interest to the
 client. In response to the successful creation of a resource within a
 collection or store, a REST API must include the Location header to designate the URI of the
 newly created resource.
In a 202 (“Accepted”) response,
 this header may be used to direct clients to the operational status of
 an asynchronous controller resource.

Rule: Cache-Control, Expires, and Date response headers should be
 used to encourage caching

Caching is one of the most useful features built on top of HTTP.
 You can take advantage of caching to reduce client-perceived latency, to
 increase reliability, and to reduce the load on an API’s servers. Caches
 can be anywhere. They can be in the API’s server network, content
 delivery networks (CDNs), or the client’s network.
When serving a representation, include a Cache-Control header with a max-age value (in
 seconds) equal to the freshness lifetime. For example:
Cache-Control: max-age=60, must-revalidate
To support legacy HTTP 1.0 caches, a REST API should include an
 Expires header with the expiration
 date-time. The value is a time at which the API generated the
 representation plus the freshness lifetime. REST APIs should also
 include a Date header with a
 date-time of the time at which the API returned the response. Including
 this header helps clients compute the freshness lifetime as the
 difference between the values of the Expires and Date headers. For example:
Date: Tue, 15 Nov 1994 08:12:31 GMT
Expires: Thu, 01 Dec 1994 16:00:00 GMT

Rule: Cache-Control, Expires, and Pragma response headers may be
 used to discourage caching

If a REST API’s response must not cached, add Cache-Control headers with the value no-cache and no-store. In this case, also add the Pragma: no-cache and Expires: 0 header values to interoperate with
 legacy HTTP 1.0 caches.

Rule: Caching should be encouraged

The no-cache directive will
 prevent any cache from serving cached responses. REST APIs should not do
 this unless absolutely necessary. Using a small value of max-age as opposed to adding no-cache directive helps clients fetch cached
 copies for at least a short while without significantly impacting
 freshness.

Rule: Expiration caching headers should be used with 200 (“OK”)
 responses

Set expiration caching headers in responses to successful GET and HEAD requests. Although POST is cacheable, most caches treat this
 method as non-cacheable. You need not set expiration headers on other
 methods.

Rule: Expiration caching headers may optionally be used with 3xx
 and 4xx responses

In addition to successful responses with the 200 (“OK”) response code, consider adding
 caching headers to 3xx and 4xx responses. Known as negative
 caching, this helps reduce the amount of redirecting and
 error-triggering load on a REST API.

Rule: Custom HTTP headers must not be used to change the behavior
 of HTTP methods

You can optionally use custom headers for informational purposes
 only. Implement clients and servers such that they do not fail when they
 do not find expected custom headers.
If the information you are conveying through a custom HTTP header
 is important for the correct interpretation of the request or response,
 include that information in the body of the request or response or the
 URI used for the request. Avoid custom headers for such usages.

Media Types

To identify the form of the data contained within a request or
 response message body, the Content-Type
 header’s value references a media type.[25]
Media Type Syntax

Media types have the following syntax:
type "/" subtype *(";" parameter)
The type value may be one of: application, audio, image, message, model, multipart, text, or video. A typical REST API will most often work
 with media types that fall under the application type. In a hierarchical fashion,
 the media type’s subtype value is subordinate to
 its type.
Note that parameters may follow the
 type/subtype in the form of attribute=value pairs that are separated by a
 leading semi-colon (;) character. A media type’s specification may
 designate parameters as either required or optional. Parameter names are
 case-insensitive. Parameter values are normally case-sensitive and may
 be enclosed in double quote (“ ”) characters. When more than one
 parameter is specified, their ordering is insignificant.
The two examples below demonstrate a Content-Type header value that references a
 media type with a single charset parameter:
Content-type: text/html; charset=ISO-8859-4
Content-type: text/plain; charset="us-ascii"

Registered Media Types

The Internet Assigned Numbers Authority[26] (IANA) governs the set of registered
 media types and provides links to each type’s published specification
 (RFC). The IANA allows anyone to propose a new media type by filling out
 the “Application for Media Type” form found at http://www.iana.org/cgi-bin/mediatypes.pl.
Some commonly used registered media types are listed below:
	text/plain
	A plain text format with no specific content structure or
 markup.[27]

	text/html
	Content that is formatted using the HyperText Markup
 Language (HTML).[28]

	image/jpeg
	An image compression method that was standardized by the
 Joint Photographic Experts Group (JPEG).[29]

	application/xml
	Content that is structured using the Extensible Markup
 Language (XML).[30]

	application/atom+xml
	Content that uses the Atom Syndication Format (Atom), which
 is an XML-based format that structures data into lists known as
 feeds.[31]

	application/javascript
	Source code written in the JavaScript programming
 language.[32]

	application/json
	The JavaScript Object Notation (JSON) text-based format that
 is often used by programs to exchange structured data.[33]

Vendor-Specific Media Types

Media types use the subtype prefix “vnd” to indicate that they are
 owned or controlled by a “vendor.” Vendor-specific media types convey a
 clear description of a message’s content to the programs that understand
 their meaning. Unlike their more common counterparts, vendor-specific
 media types impart application-specific metadata that makes a message
 more meaningful to the web component that receives it.
Vendor-specific media types may also be registered with the IANA.
 For example, the following vendor-specific types are among the many
 listed in the IANA’s registry (http://www.iana.org/assignments/media-types):
application/vnd.ms-excel
application/vnd.lotus-notes
text/vnd.sun.j2me.app-descriptor

[25] Media types were originally known as “MIME types,” which stood
 for Multipurpose Internet Mail Extensions.

[26] http://www.iana.org/assignments/media-types

[27] text/plain

[28] text/html

[29] image/jpeg

[30] application/xml

[31] application/atom+xml

[32] application/javascript

[33] application/json

Media Type Design

Client developers are encouraged to rely on the
 self-descriptive features of a REST API. In other
 words, client programs should hardcode as few API-specific details as
 possible. This goal influences many aspects of a REST API’s design,
 including opaque URIs, hypermedia-based actions with resource state
 awareness, and descriptive media types.
Rule: Application-specific media types should be used

REST APIs treat the body of an HTTP request or response as part of
 an application-specific interaction. While the body may be formatted
 using languages such as JSON or XML, it usually has semantics that
 require special processing beyond simply parsing the language’s
 syntax.
As an example, consider a REST API URI such as
 http://api.soccer.restapi.org/players/2113 that
 responds to GET requests with a
 representation of a player resource that is formatted using JSON. If the
 Content-Type header field value
 declares that the response’s media type is
 application/json, it has accurately conveyed the
 body content’s syntax but has disregarded the semantics and structure of
 the player representation. The response’s Content-Type header simply tells a client that
 it should expect some JSON-formatted text.
Alternatively, the response’s Content-Type header field should communicate
 that the body contains a representation of a player document that is
 formatted with JSON. To help achieve this goal, the WRML framework,
 which was introduced in the section WRML, uses a
 descriptive media type: application/wrml. The
 example below shows WRML’s media type used to describe a player form
 that is formatted using JSON:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json"; [image: 2]
 schema="http://api.schemas.wrml.org/soccer/Player" [image: 3]
	[image: 1]
	The WRML media type.[34]

	[image: 2]
	The required format parameter’s value
 identifies a document resource that describes the JSON format
 itself.

	[image: 3]
	The required schema parameter’s value
 identifies a separate document that details the Player resource type’s form, which is
 independent of the media type’s format
 parameter’s value.

This media type may appear excessive when compared to simpler ones
 like application/json. However, this is a
 worthwhile trade-off since this media type
 communicates—directly to clients—distinct and
 complementary bits of information regarding the content of a message.
 The application/wrml media type’s self-descriptive
 and pluggable design reduces the need for information to be communicated
 out-of-band and then hardcoded by client developers.
Note
See Media Type Representation, which
 describes how this media type’s format and schema documents should be
 represented.

Media Type Format Design

Most media types identify a format using a simple string, like
 application/json. Instead, by using a
 format parameter with a URI value, the WRML media
 type directs client programs to a cacheable
 document that provides links to other documents related to the format.
 In the example above, the representation of the document referenced by
 the format parameter
 (http://api.formats.wrml.org/application/json)
 contains links to related web resources, such as
 http://www.json.org and
 http://www.rfc-editor.org/rfc/rfc4627.txt.
More importantly, by leveraging REST’s code-on-demand
 constraint, the format document’s representation can provide links to
 formatting and parsing code, which clients can
 download and execute to serialize and deserialize an HTTP message
 body’s content. By providing this code, available for various
 programming languages and runtime environments, an API can
 programmatically teach its clients how to interoperate with its
 representation formats. The future-proof nature
 of this design may prove especially useful when a REST API wishes to
 adopt a new format that is not yet widely supported by its
 clients.
The section Rule: A consistent form should be used to represent media type
 formats, outlines
 the structure of a format document’s representation.

Media Type Schema Design

As discussed next in Chapter 5, a resource’s state
 representation consists of fields and links. For a given “class” of
 resource, the set of expected fields and context-sensitive links can
 be described by a schema document. The WRML media
 type’s schema parameter references a
 cacheable schema document, which describes a
 resource type’s fields and links; independent of any specific
 representational format. This separation of concerns allows multiple
 representation formats to be negotiated by clients and supported by
 REST APIs with relative ease. With a set of standard
 primitive types, outlined in Field Representation, a schema
 document can describe a resource representation’s fields in a
 format-independent manner.
The section Rule: A consistent form should be used to represent media type
 schemas, details
 the structure of a schema document’s representation.

Media Type Schema Versioning

The different versions of a given schema
 should be organized as different schema documents, with distinct URIs.
 This design is borrowed from the approach traditionally used by the
 W3C[35] and IETF[36] for versioning the URIs of
 Internet Drafts on their way to becoming approved
 standards. The example below shows the URI of a schema document that
 details the fields and links of a soccer Player resource type:
http://api.schemas.wrml.org/soccer/Player-2
The -2 suffix designates the
 version number of the Player
 resource type’s schema. As a rule, the current version of the resource
 type’s schema should always be made available through a separate
 resource identifier, without a numeric suffix. The example below
 demonstrates the design of the Player resource type’s current schema
 URI:
http://api.schemas.wrml.org/soccer/Player
The URI of a resource type’s current schema version
 always identifies the concept of the most recent
 version. A schema document URI that ends with a number permanently
 identifies a specific version of the schema. Therefore the latest
 version of a schema is always modeled by two separate resources which
 conceptually overlap while the numbered version
 is also the current one. This overlap results in the two distinct
 resources, with two separate URIs, consistently having the same state
 representation.

Rule: Media type negotiation should be supported when multiple
 representations are available

Allow clients to negotiate for a given format and schema by
 submitting an Accept header with the
 desired media type. For example:
NOTE: the line breaks below are for the sake of visual clarity.

Accept: application/wrml;
 format="http://api.formats.wrml.org/text/html"; [image: 1]
 schema="http://api.schemas.wrml.org/soccer/Team" [image: 2]
	[image: 1]
	Using media type negotiation clients can
 select a format.

	[image: 2]
	Using media type negotiation clients can
 select the schema version that will work best for them.

Additionally, to facilitate browser-based viewing and debugging of
 a REST API’s responses, consider supporting raw
 media types as shown in the example below:
Accept: application/json
This will allow web browser add-ons such as JSONView to render a REST
 API’s responses as JSON.

Rule: Media type selection using a query parameter may be
 supported

To enable simple links and easy debugging, REST APIs may support
 media type selection via a query parameter named
 accept with a value format that mirrors that of the
 Accept HTTP request header. For
 example:
GET /bookmarks/mikemassedotcom?accept=application/xml
This is a more precise and generic approach to media type
 identification that should be preferred over the common alternative of
 appending a virtual file extension like .xml to the
 URI’s path. The virtual file extension approach
 binds the resource and its representation together, implying that they
 are one and the same.
Warning
Media type selection (or negotiation) via a query parameter is a
 form of tunneling that conveys metadata in the
 URI rather than in HTTP’s intended slot: the Accept header. Therefore it should be used
 with careful consideration.

[34] The application/wrml media type’s
 IANA registration is pending, see http://www.wrml.org for the most up-to-date
 information.

[35] World Wide Web Consortium (W3C), http://www.w3.org.

[36] The Internet Engineering Task Force (IETF), http://www.ietf.org.

Recap

This chapter covered the design rules for a REST API’s metadata
 conveyed through HTTP headers and media types. Table 4-1 summarizes the vocabulary
 terms that were used in this chapter.
Table 4-1. Vocabulary review
	Term	Description
	Atom Syndication Format (Atom)
	An XML-based format that structures data into lists
 known as “feeds.”

	Conditional request
	A client-initiated interaction with a precondition
 that the server is expected to honor.

	Entity
	An HTTP request or response payload, which is
 metadata in header fields and content in a body.

	Entity tag
	An opaque string value that designates the “version”
 of a given HTTP response message’s headers and
 body.

	Extensible Markup Language (XML)
	A standardized application profile of SGML that is
 used by many applications to exchange data.

	Internet Assigned Numbers Authority
 (IANA)
	The entity with many governance-related duties, which
 include overseeing global IP address allocation and media type
 registration.

	Media type negotiation
	A client-initiated process that selects the form of a
 response message’s representation.

	Media type schema
	A Web-oriented description of a form that is composed
 of fields and links.

	Negative caching
	Directing intermediaries to serve copies of responses
 that did not result in a 2xx status code.

	Vendor-specific media type
	A form descriptor that is owned and controlled by a
 specific organization.

Table 4-2 recaps a REST API’s
 use of the HTTP headers.
Table 4-2. HTTP response header summary
	Code	Purpose
	 Content-Type

	Identifies the entity body’s media
 type

	 Content-Length

	The size (in bytes) of the entity body

	 Last-Modified

	The date-time of last resource representation’s
 change

	 ETag

	Indicates the version of the response message’s
 entity

	 Cache-Control

	A TTL-based caching value (in seconds)

	 Location

	Provides the URI of a resource

Chapter 5. Representation Design

Message Body Format

A REST API commonly uses a response message’s entity body to help
 convey the state of a request message’s identified resource. REST APIs
 often employ a text-based format to represent a resource state as a set of
 meaningful fields. Today, the most commonly used text formats are XML and
 JSON.
XML, like HTML, organizes a document’s information by nesting
 angle-bracketed[37] tag pairs. Well-formed XML must have tag pairs that
 match perfectly. This “buddy system” of tag pairs is
 XML’s way of holding a document’s structure together.
JSON uses curly brackets[38] to hierarchically structure a document’s information. Most
 programmers are accustomed to this style of scope expression, which makes
 the JSON format feel natural to folks that are oriented to think in terms
 of object-based structures.
Warning
This chapter’s examples favor the JSON format. However, JSON does
 not support invisible comments or wrapping long
 string values, which made it difficult to keep some of the examples
 well-formed. The malformed examples are noted as such inline.

Rule: JSON should be supported for resource
 representation

As a format for data exchange, JSON supports lightweight and
 simple interoperation: it does its job. Today, JSON is a popular format
 that is commonly used in REST API design, much like bell-bottomed jeans
 were fashionable in the 1970s. JSON borrows some of JavaScript’s good
 parts and benefits from seamless integration with the browser’s native
 runtime environment. If there is not already a standard format for a
 given resource type (e.g., image/jpeg for
 JPEG-compressed image resources), a REST API should use the JSON format
 to structure its information.
This rule is in regard to the JSON data format only and does not
 necessarily imply that the application/json media
 type should be used as the value of an HTTP message’s Content-Type header (see the section Rule: Application-specific media types should be used).

Rule: JSON must be well-formed

A JSON object is an unordered set of name-value pairs. The JSON
 object syntax defines names as strings which are always surrounded by
 double quotes. Note that this is a less lenient formatting rule than
 that of object literals in JavaScript, and this difference often leads
 to malformed JSON.
The following example shows well-formed JSON with all names
 enclosed in double quotes.
{
 "firstName" : "Osvaldo",
 "lastName" : "Alonso",
 "firstNamePronunciation" : "ahs-VAHL-doe",
 "number" : 6, [image: 1]
 "birthDate" : "1985-11-11" [image: 2]
}
	[image: 1]
	JSON supports number values directly, so they do not need to
 be treated as strings.

	[image: 2]
	JSON does not support date-time values, so they are typically
 formatted as strings.

Warning
Some browsers may display a JSON pair’s
 name without the quotes, even though the REST API’s response correctly
 included them.

JSON names should use mixed lower case and should avoid special
 characters whenever possible. In JavaScript, JSON names like
 fooBar are preferred since they allow the use of
 the cleaner dot notation for property access. For
 example:
var.fooBar
Names like foo-bar require the use of
 JavaScript’s less elegant bracket notation to access the property, such
 as:
var["foo-bar"]

Rule: XML and other formats may optionally be used for resource
 representation

The section Rule: JSON should be supported for resource
 representation, established that JSON
 should be a supported representation format for clients. REST APIs may
 optionally support XML, HTML, and other languages as alternative formats
 for resource representation. Clients should express their desired
 representation using media type negotiation as described in Rule: Media type negotiation should be supported when multiple
 representations are available.
The format-neutral nature of WRML’s schemas, introduced in Media Type Schema Design, enable the same
 consistently structured form to be presented using a variety of markup
 and formatting languages. For example, a document might be formatted
 using JSON or XML so that it can be easily inspected by a client or
 server program. The same document could be rendered using HTML and CSS
 when viewed in a browser, so that schemas may also take on the job of
 documenting a REST API’s structures for client developers. Furthermore,
 using JavaScript, a browser-rendered document can offer an HTML form
 that allows interactive editing of the document’s form fields.

Rule: Additional envelopes must not be created

A REST API must leverage the message “envelope” provided by HTTP.
 In other words, the body should contain a representation of the resource
 state, without any additional, transport-oriented wrappers.

[37] Angle brackets: <
 and >

[38] Curly brackets: { and
 }

Hypermedia Representation

Much like the Web’s HTML-based hyperlinks (links) and forms, REST
 APIs employ hypermedia within representations. A REST API response
 message’s body includes links to indicate the associations and actions
 that are available for a given resource, in a given state. Included along
 with other fields of a resource’s state representation, links convey the
 relationships between resources and offer clients a menu of
 resource-related actions, which are context-sensitive.
On the Web, users click on links to navigate a universe of
 interconnected resources. Despite the Web’s ever-increasing number of
 diverse resources, a few simple and uniformly structured HTML elements
 convey everything the browser needs to know in order to facilitate
 navigation. Similarly, REST API clients can programmatically navigate
 using a uniform link structure.
The following rules present WRML’s solution for representing the
 link and link relation structures.
Rule: A consistent form should be used to represent links

The structure detailed in this rule represents a single link.
 Links should be included, along with fields, within resource state
 representations. A single link does not typically stand alone as a
 request or response message body’s content. However for completeness
 sake, the media type for the link structure is defined below:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Link" [image: 2]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the current version of the Link schema.

When formatted with JSON, a Link representation has the following
 consistent form:
{
 "href" : Text <constrained by URI or URI Template syntax>, [image: 1]
 "rel" : Text <constrained by URI syntax>, [image: 2]
 "requestTypes" : Array <constrained to contain media type text elements>, [image: 3]
 "responseTypes" : Array <constrained to contain media type text elements>, [image: 4]
 "title" : Text [image: 5]
}
	[image: 1]
	The required href value identifies the
 link’s target resource. The value may be either a URI or a URI
 template. A URI template with path-based variables should only be
 used with links that use PUT to
 insert a resource into a store. URI templates
 with query-based variables may be used more generally.

	[image: 2]
	The required rel value identifies a
 document that describes the link’s relation (see Rule: A consistent form should be used to represent link
 relations).

	[image: 3]
	The optional requestTypes value is an array
 that lists the linked resource’s allowed request body media types.
 This field tells clients what types of inputs are allowed by the
 link. Clients are encouraged to consult this list before issuing
 PUT or POST requests to the linked resource. If
 present, this value takes precedence over the field with the same
 name that is defined by the link’s relation document.

	[image: 4]
	The optional responseTypes value is an
 array that lists the linked resource’s available response body media
 types. This field tells clients what types of outputs may be
 returned by the link. Clients are encouraged to consult this list to
 help prioritize media types in the Accept header of requests to the linked
 resource. If present, this value takes precedence over the field
 with the same name that is defined by the link’s relation
 document.

	[image: 5]
	The optional title value provides a plain
 text title for the specific link.

Below is an example of a link with the minimum required set of
 fields:
{
 "href" : "http://api.soccer.restapi.org/players/2113", [image: 1]
 "rel" : "http://api.relations.wrml.org/common/self" [image: 2]
}
	[image: 1]
	The link’s href value identifies the
 target resource.

	[image: 2]
	The link’s rel value identifies a
 document that describes the commonly used self
 link relation. The self relation signifies that the
 href identifies a resource equivalent to the
 containing resource.

The example below shows the same link with some optional fields
 included. This example also illustrates a use of the media types
 discussed in Media Type Design:
NOTE: the line breaks in the responseTypes array's string values are
not allowed, but they are necessary for the book's formatting. JSON does
not provide support for line continuation.

{
 "href" : "http://api.soccer.restapi.org/players/2113",
 "rel" : "http://api.relations.wrml.org/common/self",
 "responseTypes" : [[image: 1]
 "application/wrml;
 format=\"http://api.formats.wrml.org/application/json\"; [image: 2]
 schema=\"http://api.schemas.wrml.org/soccer/Player\"", [image: 3]

 "application/wrml;
 format=\"http://api.formats.wrml.org/application/xml\";
 schema=\"http://api.schemas.wrml.org/soccer/Player\"",

 "application/wrml;
 format=\"http://api.formats.wrml.org/text/html\";
 schema=\"http://api.schemas.wrml.org/soccer/Player\"",

 "application/json", [image: 4]
 "application/xml",
 "text/html"
],
 "title" : "Osvaldo Alonso"
}
	[image: 1]
	The link’s responseTypes value lists the
 linked resource’s available response body media types. Note that
 although the WRML media type includes URIs in its
 format and schema parameters,
 they are not intended to be used as hypermedia links in this
 context.

	[image: 2]
	The media type’s format parameter
 identifies a document that describes the JSON format. See Media Type Format Design for more
 information.

	[image: 3]
	The media type’s schema parameter
 identifies the current version of the Player schema.

	[image: 4]
	The common media types are supported for viewers that don’t
 care about the data’s semantics.

Rule: A consistent form should be used to represent link
 relations

Every link has a rel value to identify a
 document that describes the link’s relation. A link’s
 rel value describes the relationship from the
 current resource to the resource specified by the link’s
 href attribute. Link relations tell clients how to
 interact with links. The IANA provides a registry (http://www.iana.org/assignments/link-relations/link-relations.xml)
 for common link relations.
When formatted with JSON, a LinkRelation has the following media
 type:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/LinkRelation" [image: 2]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the current version of the LinkRelation resource type’s
 schema.

When represented using JSON, a LinkRelation has the following consistent
 structure:
{
 "name" : Text, [image: 1]
 "method" : Text <constrained to be choice of HTTP method>, [image: 2]
 "requestTypes" : Array <constrained to contain media type text elements>, [image: 3]
 "responseTypes" : Array <constrained to contain media type text elements>, [image: 4]
 "description" : Text, [image: 5]
 "title" : Text [image: 6]
}
	[image: 1]
	The required name value conveys the link
 relation’s name. Link relations should be name using mixed lower
 case.

	[image: 2]
	The optional method value designates the
 HTTP method that is associated with the link relation. If this field
 is omitted, the GET HTTP method
 must be assumed.

	[image: 3]
	The optional requestTypes value is an array
 that lists the link relation’s allowed request body media types.
 Clients are encouraged to consult this list before issuing PUT or POST requests to a linked resource. This
 value should be specified whenever the list of allowed media types
 are known to always be associated with a link
 relation.

	[image: 4]
	The optional responseTypes value is an
 array that lists the link relation’s available response body media
 types. Clients are encouraged to consult this list to help
 prioritize media types in the Accept header of requests to a linked
 resource. This value should be specified whenever the list of
 available media types are known to always be
 associated with a link relation.

	[image: 5]
	The required description value provides a
 plain text description of the link relation. Link relation document
 representations may also contain links to other resources, such as
 human-readable documentation (see Rule: A consistent form should be used to advertise links).

	[image: 6]
	The optional title value provides a plain
 text title for the link relation.

Below is an example of an HTTP request and response for a link
 relation document:
Request
GET /common/self HTTP/1.1
Host: api.relations.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/LinkRelation"

NOTE: The description's line breaks must be omitted in well-formed JSON.
{
 "name" : "self",
 "method" : "GET", [image: 1]
 "description" : "Signifies that the URI in the value of the href [image: 2]
 property identifies a resource equivalent to the
 containing resource."
}
	[image: 1]
	The self link relation tells clients how
 to retrieve a resource.

	[image: 2]
	This text is wrapped due to the book’s format only. JSON does
 not allow line continuation, which means this string is
 malformed.

Note
Link relation document representations are designed to be
 cacheable, thus the response headers should
 encourage clients to do so (see Rule: Cache-Control, Expires, and Date response headers should be
 used to encourage caching).

Rule: A consistent form should be used to advertise links

On its own, the uniform link structure is insufficient to enable
 clients to programmatically find and process a representation’s
 hypermedia. A REST API must also offer clients a consistent way to
 easily discover the available links within a representation. To enable
 this, representations should include a structure, named
 links, to contain all of the links that are available
 in the resource’s current state. The links structure
 is a predictable place for clients to easily look up known links, by
 their simple relation names, as well as discover new links.
The following example shows how the consistent
 links structure appears when formatted using
 JSON:
{
 "firstName" : "Osvaldo",
 "lastName" : "Alonso",
 "links" : { [image: 1]
 "self" : {
 "href" : "http://api.soccer.restapi.org/players/2113",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "parent" : {
 "href" : "http://api.soccer.restapi.org/players",
 "rel" : "http://api.relations.wrml.org/common/parent"
 },
 "team" : { [image: 2]
 "href" : "http://api.soccer.restapi.org/teams/seattle",
 "rel" : "http://api.relations.wrml.org/soccer/team"
 },
 "addToFavorites" : {
 "href" : "http://api.soccer.restapi.org/users/42/favorites/{name}", [image: 3]
 "rel" : "http://api.relations.wrml.org/common/addToFavorites"
 }
 }
}
	[image: 1]
	The links field is a
 top-level name-value pair in each JSON object.
 Each of the links object’s fields must conform to
 the uniform link structure.

	[image: 2]
	Link relation names like team can be
 efficiently looked up by clients using JSON libraries that
 deserialize objects into map or associative array data structures.
 These link relations are an important part of a REST API’s
 “vocabulary.” Client developers may treat the names of a REST API’s
 link relations as application-specific keywords
 that may be hardcoded in clients. In contrast, client developers
 should not hardcode the URIs of the link
 relation documents.

	[image: 3]
	To support a client’s ability to add a resource to a store, a
 REST API may use a URI template that contains path-based variables
 as the value of a link’s href. In this simple
 example, the client must supply a name for the
 “favorite” to add, possibly by prompting a user for it.

Rule: A self link should be included in response message body
 representations

A response message body that contains a representation of an
 identifiable resource should include a link named
 self. The self link relation signifies that the
 href value identifies a resource equivalent to the
 containing resource. See Rule: A consistent form should be used to advertise links for an example.

Rule: Minimize the number of advertised “entry point” API
 URIs

When looking at the Web for REST API design direction, we should
 consider the ubiquity of the home page concept and its associated site
 navigation. The REST API equivalent is to provide human-readable
 documentation that advertises the URI of the API’s docroot. The
 docroot’s representation should provide links to make every other
 resource programmatically available.
API documentation that advertises the service’s individual
 resource URIs, or URI templates, can lead client developers to code
 tightly coupled clients that do not treat the API’s URIs as opaque
 identifiers. Instead, client developers should be instructed to make use
 of the API’s hypermedia.

Rule: Links should be used to advertise a resource’s available
 actions in a state-sensitive manner

Web APIs commonly rely on accompanying human-readable
 documentation to advertise the actions that can be performed on its
 various resources. Typically, this documentation simply lists each URI
 template and describes the expected outcome associated with each client
 interaction. This approach to conveying the application-specific
 protocol falls down in three key ways:
	It is insensitive to the state of resources, leaving it up to
 the client developers to determine which resource interactions are
 appropriate for a given application state.

	It is out-of-band information that is available to the client
 developer rather than the client program itself.

	It leads to hardcoded and tightly coupled clients, which may
 limit the API’s ability to evolve over time without breaking its
 existing clients.

REST’s HATEOAS[39] constraint specifies that an API must answer all client
 requests with resource representations that contain
 state-sensitive links. The following example shows
 hypermedia used to model the state of an application’s “Edit” menu’s
 actions:
{
 # Fields...

 "links" : {
 "self" : {
 "href" : "http://api.editor.restapi.org/docs/48679",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "cut" : {
 "href" : "http://api.editor.restapi.org/docs/48679/edit/cut",
 "rel" : "http://api.relations.wrml.org/editor/edit/cut"
 },
 "copy" : {
 "href" : "http://api.editor.restapi.org/docs/48679/edit/copy",
 "rel" : "http://api.relations.wrml.org/editor/edit/copy"
 }
 }
}
Continuing with this example, imagine that the application has a
 server-side “Clipboard” resource that enables clients to share data. If,
 at some point, the Clipboard’s state allows the client to retrieve its
 data, the REST API will make a paste link
 available. The example below shows that the client’s “Paste” menu item
 and toolbar button widgets should now be enabled; however, the
 server-managed “selection” state of the edited resource is now empty so
 there is currently nothing to cut or
 copy.
{
 # Fields...

 "links" : {
 "self" : {
 "href" : "http://api.editor.restapi.org/docs/48679",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "paste" : {
 "href" : "http://api.editor.restapi.org/docs/48679/edit/paste",
 "rel" : "http://api.relations.wrml.org/editor/edit/paste"
 }
 }
}

[39] HATEOAS is an acronym for “Hypermedia as the Engine of
 Application State.”

Media Type Representation

The application/wrml media type, introduced in
 Media Type Design, has two parameters:
 format and schema. These
 parameters have URI values that reference separate documents, each of
 which can enhance the semantics of the metadata attached to the Content-Type and Accept HTTP headers. This section’s rules
 describe the representations of these two document types.
Rule: A consistent form should be used to represent media type
 formats

Unlike traditional media types like
 application/json and
 application/xml, the
 application/wrml media type stipulates a
 format parameter with a URI value to address a
 document that describes the format of some content.
When formatted with JSON, a Format has the following media type:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json"; [image: 2]
 schema="http://api.schemas.wrml.org/common/Format" [image: 3]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the format of the format document, which in this
 JSON-based example would be equivalent to the format’s
 self link’s value (see Rule: A self link should be included in response message body
 representations).

	[image: 3]
	Identifies the current version of the Format resource type’s schema.

When represented using JSON, a Format has the following consistent
 structure:
{
 "mediaType" : Text <constrained by media type syntax>, [image: 1]
 "links" : {
 "home" : Link <form constrained by the Link schema>, [image: 2]
 "rfc" : Link <form constrained by the Link schema> [image: 3]
 },
 "serialize" : { [image: 4]
 "links" : {
 <Set of Link schema-constrained forms>
 }
 },
 "deserialize" : { [image: 5]
 "links" : {
 <Set of Link schema-constrained forms>
 }
 }
}
	[image: 1]
	The required mediaType value uniquely
 identifies the format.

	[image: 2]
	The optional home link’s
 href identifies the format’s home page
 resource.

	[image: 3]
	The optional rfc link’s
 href identifies the format’s RFC resource.

	[image: 4]
	The optional serialize section categorizes
 links into platform-specific code that clients may download and
 execute to marshall a runtime’s structures into the format.

	[image: 5]
	The optional deserialize structure groups
 links into platform-specific code that clients may download and execute to
 unmarshall formatted content into runtime structures.

Below is an example of an HTTP request and response for the JSON
 format document’s representation:
Request
GET /application/json HTTP/1.1
Host: api.formats.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Format"

{
 "mediaType" : "application/json", [image: 1]
 "links" : {
 "self" : {
 "href" : "http://api.formats.wrml.org/application/json",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "home" : {
 "href" : "http://www.json.org",
 "rel" : "http://api.relations.wrml.org/common/home"
 },
 "rfc" : {
 "href" : "http://www.rfc-editor.org/rfc/rfc4627.txt",
 "rel" : "http://api.relations.wrml.org/format/rfc"
 }
 },
 "serialize" : {
 "links" : {
 "java" : { [image: 2]
 "href" : "http://api.formats.wrml.org/application/json/serializers/java",
 "rel" : "http://api.relations.wrml.org/format/serialize/java"
 },
 "php" : { [image: 3]
 "href" : "http://api.formats.wrml.org/application/json/serializers/php",
 "rel" : "http://api.relations.wrml.org/format/serialize/php"
 }
 }
 },
 "deserialize" : {
 "links" : {
 "java" : { [image: 4]
 "href" : "http://api.formats.wrml.org/application/json/deserializers/java",
 "rel" : "http://api.relations.wrml.org/format/deserialize/java"
 },
 "perl" : { [image: 5]
 "href" : "http://api.formats.wrml.org/application/json/deserializers/perl",
 "rel" : "http://api.relations.wrml.org/format/deserialize/perl"
 }
 }
 }
}
	[image: 1]
	The mediaType value identifies the JSON
 format.

	[image: 2]
	The java link references a Java Archive
 (JAR) containing compiled code that conforms to a standard
 serializer interface.

	[image: 3]
	The php link references executable PHP code
 that conforms to a standard serializer interface.

	[image: 4]
	The java link references a JAR containing
 compiled code that conforms to a standard deserializer
 interface.

	[image: 5]
	The perl link references executable Perl
 code that conforms to a standard deserializer interface.

Note
Format document representations are designed to be
 cacheable, thus the response headers should
 encourage clients to do so (see Rule: Cache-Control, Expires, and Date response headers should be
 used to encourage caching).

Rule: A consistent form should be used to represent media type
 schemas

Programmers working with the Web are familiar with modeling
 informational in multiple domains and formats. For example, it is common
 to model a data structure’s fields as: database
 columns, class properties, and web page template variables. A REST API
 uses resource-oriented schemas to describe the
 structure of its representations independent of their format. By
 exposing to clients a separate, format-agnostic schema resource for each
 of its distinct resource types, a REST API can present a dynamic and
 discoverable interface. Schemas provide contractual resource type
 definitions, which are a crucial component of the interface that binds a
 REST API and its clients together.
In object-oriented terms, a structured representational
 form, which is carried by an individual HTTP request or
 response message body, is analogous to an instance
 of a schema class. A representational form, or just
 form for short, consists of the fields and links as
 detailed by the “blueprints” of its associated schema document.
This rule presents the representation of schemas, and their
 related components, which a REST API may use to describe its various
 forms.
Schema Representation

When formatted with JSON, a Schema has the following media type:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Schema" [image: 2]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the current version of the Schema resource type’s schema.

When represented using JSON, a Schema has the following consistent
 form:
{
 "name" : Text <constrained to be mixed uppercase>, [image: 1]
 "version" : Integer, [image: 2]
 "extends" : Array <constrained to contain (schema) URI text elements>, [image: 3]
 "fields" : { [image: 4]
 <Set of Field schema-constrained forms>
 },
 "stateFacts" : Array <constrained to contain mixed uppercase text elements>, [image: 5]
 "linkFormulas" : { [image: 6]
 <Set of LinkFormula schema-constrained forms>
 },
 "description" : Text [image: 7]
}
	[image: 1]
	The required name value declares the
 schema’s mixed uppercase name, which includes no whitespace and
 capitalizes the first character of each word.

	[image: 2]
	The required version value is a one-based
 integer that indicates the schema’s revision number.

	[image: 3]
	The optional extends value lists the URIs
 that identify the schema’s base schemas. Schema extension allows a
 schema’s forms to inherit the fields and links of its base
 schemas. Schema extension is analogous to the interface
 inheritance model offered by classical object-oriented programming
 languages like Java and C#.

	[image: 4]
	The optional fields structure contains
 the schema’s field definitions (see Field Representation).

	[image: 5]
	The optional stateFacts value lists each
 discrete condition that contributes to a form’s potential state.
 Each state fact is a text-based identifier, which by convention is
 named using mixed uppercase. A schema’s state fact values are used
 as Boolean variable-based operands within its link
 formulas.

	[image: 6]
	The optional linkFormulas structure
 contains the schema’s link formulas (see Link Formula Representation).

	[image: 7]
	An optional plain text description of the schema.

Field Representation

A schema field is a named slot with some
 associated information that is stored in its value. Each field’s value
 may be one of the following types:
	Boolean
	A Boolean field’s value
 is either true or
 false. Formats lacking support for Boolean values must use the text-based
 literal values: “true” and “false.”

	Choice
	A Choice is a special
 text-based value that is selected from a static menu of possible
 text literals. This type is similar to an enumeration
 (enum) in languages like Java and C#. The
 Choice field’s available
 selections is determined by the required Menu constraint, as described in Constraint Representation.

	DateTime
	Used for date and time-related data. Formats lacking
 support for DateTime values
 must use the text-based ISO 8601 format enclosed in double
 quotes.

	Double
	A 64-bit IEEE 754 floating point number. Formats lacking
 support for Double values
 should enclose the value in double quotes (e.g.,
 “3.14159265”).

	Integer
	A 32-bit signed two’s complement integer, like Java’s
 int, except that the octal and hexadecimal
 formats are not used. Formats lacking support for Integer values should enclose the
 integer value in double quotes (e.g., “42”).

	List
	An linearly ordered group of homogeneous elements with
 zero-based indices. The homogeneity of a List field is determined by an
 ElementType constraint, as
 described in Constraint Representation.

	Schema
	A special text-based value that contains a schema’s URI
 (e.g., “http://api.schemas.wrml.org/soccer/Player”).
 Schema-typed fields are used to indicate that the
 representational form’s field will contain a structure that
 complies with the specified schema. For example, in JSON, the
 field’s named value should be an object that conforms to the
 structure of the field’s referenced schema.

	Text
	A sequence of zero or more Unicode characters, enclosed in
 double quotes, using backslash escapes.

	null
	The literal null is not
 a field type but rather it acts as a blank value for any field
 type. Formats lacking support for null (or NULL) values must use the text-based
 literal value “null” instead.

An individual field is not typically transferred within a
 request or response message body. However, when formatted with JSON, a
 Field has the following media
 type:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Field" [image: 2]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the current version of the Field resource type’s schema.

When represented using JSON, a Field has the following consistent
 form:
{
 "type" : Text <constrained to be one of the primitive field types>, [image: 1]
 "defaultValue" : <a type-specific value>, [image: 2]
 "readOnly" : Boolean, [image: 3]
 "required" : Boolean, [image: 4]
 "hidden" : Boolean, [image: 5]
 "constraints" : Array <constrained to contain (constraint) URI text elements>, [image: 6]
 "description" : Text [image: 7]
}
	[image: 1]
	The required type value is constrained to
 be one of these options: “Boolean,” “Choice,” “DateTime,”
 “Double,” “Integer,” “List,” “Schema,” or “Text.”

	[image: 2]
	The optional defaultValue is a
 type-specific value that varies according to the field’s type. If
 no default value is specified, each form’s corresponding field
 value will default to null.

	[image: 3]
	The optional readOnly Boolean flag value
 indicates whether clients are allowed to specify a value for the
 field within a representation carried by a request message’s
 body.

	[image: 4]
	The optional required Boolean flag value
 indicates whether a value for this field is required when a client
 submits its containing form to a REST API.

	[image: 5]
	The optional hidden Boolean flag value
 indicates whether a REST API should include the field within forms
 carried by its response messages.

	[image: 6]
	The optional constraints value lists the
 field’s constraint references (see Constraint Representation).

	[image: 7]
	An optional plain text description of the field.

Schema extension may be used to alter the metadata associated
 with an inherited field. For example, a subschema
 can override a base schema’s field by defining
 one with its exact same name. The subschema may then set the field’s
 hidden flag value to true,
 which effectively defines a form type without the field. Using
 extension to introduce such slight schema variations may be worthwhile
 in cases where a certain class of clients (e.g., mobile applications)
 consistently desire a “trimmed” representation of a resource’s
 state.

Constraint Representation

A schema field’s constraints value lists
 the URIs of the constraints that are applied to a form’s associated
 field value. A constraint restricts a field’s
 possible values. Common constraints include:
	A range constraint that restricts the value of a field to
 fall between some specific minimum and maximum values.

	A Choice field’s Menu constraint, which limits the
 value’s options to a predefined set of text literals.

	A List field’s ElementType constraint, which enforces
 the homogeneous nature of its elements.

	A Text field constraint
 used to ensure that its value adheres to a specific syntax (e.g.,
 URI, URI template, regex pattern, etc.)

When formatted with JSON, a Constraint has the following media
 type:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Constraint" [image: 2]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the current version of the Constraint resource type’s
 schema.

When represented using JSON, a Constraint has the following consistent
 structure:
{
 "name" : Text, [image: 1]
 "validate" : { [image: 2]
 "links" : {
 <Set of Link schema-constrained forms>
 }
 }
}
	[image: 1]
	The required name value declares the
 constraint’s mixed uppercase name, which includes no whitespace
 and capitalizes the first character of each word.

	[image: 2]
	A constraint may be enforced by both a REST API and its
 clients by downloading and executing the referenced code that
 conforms to a per-platform validation interface.

Link Formula Representation

A schema link formula equates the
 availability of a state-sensitive link in a response message body’s
 form with a Boolean expression that uses the schema’s state facts as
 operands. For example, a soccer Game form might include a link to its
 associated Recap resource only
 after the game is over and its final score is known. This state could
 be indicated with a state fact named Final, which
 would only be true once the game is over. Link
 formulas enable REST APIs to utilize a simple HATEOAS-oriented
 calculator that executes the formula’s Boolean expression to determine
 if a form should include a particular link.
The following link formulas exemplify how state facts can act as
 reusable operands:
self = Identifiable [image: 1]
parent = Identifiable and not Docroot [image: 2]
update = Identifiable and not ReadOnly [image: 3]
recap = Final [image: 4]
scoreboard = InProgress or Final [image: 5]
	[image: 1]
	The self link should be included in any
 form that is associated with an identifiable resource.

	[image: 2]
	The parent link should be included in
 every identifiable resource representation; except the REST API’s
 docroot, which by definition has no parent resource.

	[image: 3]
	The update link should be included in all
 representations of identifiable and mutable resources.

	[image: 4]
	The recap link should be included in a
 Game form once the game is
 final.

	[image: 5]
	The scoreboard link should be included in
 a Game form if the game is
 currently in progress or has already ended.

Link formulas are contained by schema structures. Therefore,
 they are not typically singled out within a request or response
 message’s body. However, for uniformity’s sake, when formatted with
 JSON, a LinkFormula has the
 following media type:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/LinkFormula" [image: 2]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the current version of the LinkFormula resource type’s
 schema.

When represented using JSON, a LinkFormula has the following consistent
 form:
{
 "rel" : Text <constrained by URI syntax>, [image: 1]
 "condition" : Text <constrained to be a state fact-based Boolean expression> [image: 2]
}
	[image: 1]
	The required rel value identifies a
 document that describes a link relation (see Rule: A consistent form should be used to represent link
 relations).

	[image: 2]
	The required condition value is a Boolean
 expression that uses the schema’s state facts as operands.

Automating a REST API implementation’s HATEOAS using link
 formulas is discussed further in Chapter 7.

Document Schema Representation

As mentioned earlier in Document, Document is the base form for all resource
 types. Below is an example of an HTTP request and response for the
 Document schema resource’s
 representation:
Request
GET /common/Document HTTP/1.1
Host: api.schemas.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Document"

{
 "name" : "Document",
 "version" : 1,
 "stateFacts" : ["Docroot", "Identifiable", "ReadOnly"], [image: 1]
 "linkFormulas" : { [image: 2]
 "self" : {
 "rel" : "http://api.relations.wrml.org/common/self",
 "condition" : "Identifiable" [image: 3]
 },
 "metadata" : {
 "rel" : "http://api.relations.wrml.org/common/metadata", [image: 4]
 "condition" : "Identifiable"
 },
 "parent" : {
 "rel" : "http://api.relations.wrml.org/common/parent",
 "condition" : "Identifiable and not Docroot"
 },
 "update" : {
 "rel" : "http://api.relations.wrml.org/common/update",
 "condition" : "Identifiable and not ReadOnly"
 },
 "delete" : {
 "rel" : "http://api.relations.wrml.org/common/delete",
 "condition" : "Identifiable and not Docroot"
 }
 },
 "description" : "A resource archetype used to model a singular concept.",
 "links" : { [image: 5]
 "self" : {
 "href" : "http://api.schemas.wrml.org/common/Document",
 "rel" : "http://api.relations.wrml.org/common/self"
 }

 # Other common schema links...
 }
}
	[image: 1]
	Defines the stateFacts that apply
 “universally” to all REST API resource types.

	[image: 2]
	Defines the linkFormulas that determine
 the availability of the common links.

	[image: 3]
	The self link is available for all
 identifiable forms, which includes all resource representations.
 Temporary forms such as errors and some controller execution
 results may not necessarily be identifiable: they have no
 associated URI.

	[image: 4]
	The metadata link relation describes the
 use of the HEAD request method
 to retrieve a resource representation’s header values.

	[image: 5]
	Note that, like all other forms, schema representations may
 contain links that allow them to be manipulated by clients.

Container Schema Representation

As mentioned in Resource Archetypes, a Collection models a server-managed
 directory of resources and a Store is a client-managed resource
 repository. Below is an example of an HTTP request and response for
 their common base Container schema
 resource’s representation:
Request
GET /common/Container HTTP/1.1
Host: api.schemas.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Container"

{
 "name" : "Container",
 "version" : 1,
 "extends" : ["http://api.schemas.wrml.org/common/Document"], [image: 1]
 "fields" : {
 "elements" : { [image: 2]
 "type" : "List",
 "description" : "The paginated list of contained elements."
 },
 "size" : {
 "type" : "Integer",
 "description" : "The total number of elements currently contained."
 },
 "pageSize" : {
 "type" : "Integer",
 "description" : "The maximum number of elements returned per page."
 },
 "pageStartIndex" : {
 "type" : "Integer",
 "description" : "The zero-based index of the page's first element."
 },
 },
 "stateFacts" : [
 "Empty", [image: 3]
 "FirstPage",
 "LastPage",
 "Paginated"
],
 "linkFormulas" : {
 "delete" : { [image: 4]
 "rel" : "http://api.relations.wrml.org/common/delete",
 "condition" : "Identifiable and not Docroot and Empty"
 },
 "next" : { [image: 5]
 "rel" : "http://api.relations.wrml.org/common/next",
 "condition" : "(Identifiable and not Empty) and (Paginated and not LastPage)"
 },
 "previous" : { [image: 6]
 "rel" : "http://api.relations.wrml.org/common/previous",
 "condition" : "(Identifiable and not Empty) and (Paginated and not FirstPage)"
 }
 },
 "description" : "A base container of elements."
}
	[image: 1]
	The Container schema
 extends the base Document
 schema. Note that if no extends value is
 specified, inheriting from Document is automatically implied, but
 it may be explicitly declared as shown here.

	[image: 2]
	The elements field is common to both
 collection and store representational forms.

	[image: 3]
	The Container schema
 introduces the Empty state fact, which is used
 to indicate the state of containing zero elements. Note that this
 schema inherits the Document
 schema’s common state facts.

	[image: 4]
	Resources with schemas derived from Container may be deleted only when
 empty.

	[image: 5]
	Link formula to advance to the next page.

	[image: 6]
	Link formula to revert to the previous page.

Collection Schema Representation

Below is an example of an HTTP request and response for the
 Collection schema resource’s
 representation:
Request
GET /common/Collection HTTP/1.1
Host: api.schemas.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Collection"

NOTE: The description's line break must be omitted in well-formed JSON.

{
 "name" : "Collection",
 "version" : 1,
 "extends" : ["http://api.schemas.wrml.org/common/Container"],
 "linkFormulas" : {
 "create" : {
 "rel" : "http://api.relations.wrml.org/common/create",
 "condition" : "Identifiable and not ReadOnly"
 }
 },
 "description" : "A resource archetype used to model a server-managed
 directory of resources."
}
A collection’s create link enables new
 elements to be created and contained, as discussed earlier in Rule: POST must be used to create a new resource in a
 collection.

Store Schema Representation

Below is an example of an HTTP request and response for the
 Store schema resource’s
 representation:
Request
GET /common/Store HTTP/1.1
Host: api.schemas.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Store"

NOTE: The description's line break must be omitted in well-formed JSON.

{
 "name" : "Store",
 "version" : 1,
 "extends" : ["http://api.schemas.wrml.org/common/Container"],
 "linkFormulas" : {
 "insert" : {
 "rel" : "http://api.relations.wrml.org/common/insert",
 "condition" : "Identifiable and not ReadOnly"
 }
 },
 "description" : "A resource archetype used to model a client-managed
 resource repository."
}
A store’s insert link may be used to add a
 new resource, with a URI specified by the client. To assist clients, a
 store’s representational form should provide a URI template in the
 link’s href value. The URI template fully
 identifies the store itself, while leaving the newly stored resource’s
 name as a variable path segment. For example:
"insert" : {
 "href" : "http://api.soccer.restapi.org/users/42/favorites/{name}",
 "rel" : "http://api.relations.wrml.org/common/insert",
}
For further explanation, refer back to the section Rule: PUT must be used to both insert and update a stored
 resource.

Error Representation

As mentioned in Chapter 3, HTTP’s 4xx and 5xx
 error status codes should be augmented with client-readable information in
 the response message’s entity body. This section’s rules present
 consistent forms pertaining to errors and error responses.
Rule: A consistent form should be used to represent
 errors

This rule describes the form of a single error that may be
 included within a REST API’s error response message. For completeness
 sake, the media type is defined below but would not be used in the
 response’s Content-Type header (see
 Rule: A consistent form should be used to represent error
 responses
 instead):
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Error"
When formatted with JSON, an Error has the following consistent
 form:
{
 "id" : Text, [image: 1]
 "description" : Text [image: 2]
}
	[image: 1]
	The unique ID/code of the error type. Clients should use this
 ID to understand what sort of error has occurred and act/message
 accordingly.

	[image: 2]
	A optional plain text description of the error.

Rule: A consistent form should be used to represent error
 responses

A REST API returns the error response representation in the
 message body when a request results in one or more errors. When using
 this structure, the response should also have the status code set to
 something in the 4xx or 5xx range.
When formatted with JSON, an error response has the following
 media type:
NOTE: the line breaks below are for the sake of visual clarity.

application/wrml; [image: 1]
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/ErrorContainer" [image: 2]
	[image: 1]
	The WRML media type.

	[image: 2]
	Identifies the current version of the ErrorContainer schema.

When represented using JSON, an ErrorContainer has the following consistent
 form:
{
 "elements" : [[image: 1]
 { [image: 2]
 "id" : "Update Failed",
 "description" : "Failed to update /users/1234"
 }
]
}
	[image: 1]
	Extends the Container
 schema, which means its forms have a List field (array in JSON) named
 elements.

	[image: 2]
	The ErrorContainer adds an
 ElementType constraint that
 ensures the elements list homogeneously contains
 only Error forms.

Rule: Consistent error types should be used for common error
 conditions

Generic error types may be leveraged by a variety of APIs. These
 error types should be defined once and then shared across all APIs via a
 service hosting the error schema documents. By leveraging schema
 extension, as discussed in Media Type Schema Design, APIs may define new error
 types that extend base types with additional fields.

Recap

This chapter offered design rules for resource representations.
 Table 5-1 summarizes
 the vocabulary terms that were used in this chapter.
Table 5-1. Vocabulary review
	Term	Description
	Field
	A named slot with some associated information that is
 stored in its value.

	Form
	A structured representation that consists of the
 fields and links, which are defined by an associated
 schema.

	Format
	Describes a form’s presentation apart from its
 schematic.

	Link
	An actionable reference to a resource.

	Link formula
	A boolean expression that may serve as HATEOAS
 calculator’s input in order to determine the availability of
 state-sensitive hypermedia within a form.

	Link relation
	Describes a connection between two
 resources.

	Schema
	Describes a representational form’s structure
 independent of its format.

	State fact
	A Boolean variable that communicates a condition that
 is relevant to some state-sensitive hypermedia.

Chapter 6. Client Concerns

Introduction

Any computer program can be a REST API’s client, but some examples
 include scripts loaded in web pages, handheld games, and business-critical
 applications running on server farms. REST APIs are designed to suit the
 needs of their client programs, whatever those needs may be.
This chapter provides a set of REST API design principles to address
 common client concerns. It concludes with a few rules to address the
 special needs of browser-based JavaScript clients.

Versioning

A REST API is composed of an assembly of interlinked resources: its
 resource model. The version of each resource is conveyed through its
 representational form and state.
Rule: New URIs should be used to introduce new concepts

A resource is a semantic model, like a
 thought about a thing. A
 resource’s representational form and state may change over time but the
 identifier must consistently address the same
 thought, which no other URI can identify.
 Furthermore, every character in a resource’s URI contributes to its
 identity. Therefore the version of a REST API, or
 any of its resources, typically should not be signified in a URI. For
 example, including a version indicator, like v2, in
 a URI conveys that the concept itself has multiple
 versions, which is usually not the intent.
A URI identifies a resource, independent of the version of its
 representational form and state. REST APIs should maintain a consistent
 mapping of its URIs to its conceptually constant resources. A REST API
 should introduce a new URI only if it intends to expose a new
 concept.

Rule: Schemas should be used to manage representational form
 versions

As discussed earlier in Media Type Schema Versioning, the version of the
 form of a REST API’s resource representations is managed through
 versioned schema documents. Clients use media type negotiation to bind
 to the representational forms that best suit their needs.
Adding fields and links to new schema versions is a great way to
 introduce new features to a REST API without impacting backward
 compatibility.

Rule: Entity tags should be used to manage representational state
 versions

The section Rule: ETag should be used in responses covered the use of
 ETag HTTP header to convey the
 version of a resource’s representational state. The entity tag values
 associated with each individual resource are a REST API’s most
 fine-grained versioning system.

Security

Many REST APIs expose resources that are associated with a specific
 client and/or user. For example, a REST API’s documents may contain
 private information and its controllers may expose operations intended to
 be executed by a restricted audience.
The rules in this section address the protection of a REST API’s
 sensitive resources.
Rule: OAuth may be used to protect resources

OAuth (Open Authorization) is an open standard that provides
 secure authorization using a consistent approach for all clients. It is
 best known for its role in allowing users to share their private
 resources, such as photos or contact lists, stored on one web site with
 another site without having to disclose their confidential username or
 password.
OAuth is described as an “open standard” because the protocol
 specification is not owned or controlled by any corporation, but rather,
 is managed by the OAuth Working Group within the IETF. The WG is
 comprised of individuals from Google, Microsoft, Facebook, Twitter,
 Yahoo, and other leading Internet companies.
OAuth is an HTTP-based authorization protocol that enables the
 protection of resources. The OAuth protocol’s flow is summarized in the
 steps below:
	A client obtains the artifacts needed to
 interact with a REST API’s protected resources. Note that with
 respect to the character of these artifacts and how they are
 obtained, there are some significant differences between versions of
 the OAuth protocol specification.

	Using the artifacts that it obtained in Step 1, the client
 requests an interaction with a REST API’s protected resource.

	The REST API, or an intermediary acting on its behalf,
 validates the client request’s OAuth-based authorization
 information. Note that there are some significant differences in the validation process
 as detailed by the OAuth 1.0[40] and 2.0[41] specifications.

	If the validation check succeeds, the REST API allows the
 client’s interaction with the protected resource to proceed.

Architecturally, the OAuth protocol helps a REST API address
 security concerns in a manner that is complementary to the
 resource-centric and stateless nature of its interactions with
 clients.

Rule: API management solutions may be used to protect
 resources

An API reverse proxy is a relatively new type of network-based
 intermediary that may be used to secure a REST API’s resources. API
 management solution vendors, such as Apigee[42] and Mashery,[43] offer reverse proxy-based services to address many of the
 cross-cutting concerns related to producing, and consuming, high-quality
 REST APIs. These vendor solutions offer support for OAuth and other
 security protocols right out of the box.

[40] The OAuth 1.0 Protocol, http://tools.ietf.org/html/rfc5849

[41] The OAuth 2.0 Authorization Protocol, http://tools.ietf.org/html/draft-ietf-oauth-v2

[42] http://www.apigee.com

[43] http://www.mashery.com

Response Representation Composition

The needs of a REST API’s clients can evolve over time. As new
 features are added, a client may require new resources from its supporting
 REST API. At times, the client’s changes may be less drastic, requiring an
 API’s existing resources be modeled in a slightly different way. Many REST
 APIs support multiple client types, with varying
 needs that must be accommodated.
A REST API can show respect for its clients by offering them a
 measure of control over the composition of its response representations.
 Following the rules presented in this section will enable clients to
 tune responses to meet their needs, while allowing
 the REST API to maintain a consistent resource model design.
Rule: The query component of a URI should be used to support
 partial responses

A resource’s current state is represented by a set of fields and
 links, as detailed in Chapter 5. There may be times when a
 REST API offers a resource state model that includes a bit more data
 than the client wishes to receive. In order to save on bandwidth, and
 possibly accelerate the overall interaction, a REST API’s client can use
 the query component to trim response data with the
 fields parameter.
The fields query parameter allows clients to
 request only the resource state information that it deems relevant for
 its particular use case. The REST API must parse the request’s query
 parameter’s inclusion list and return a partial
 response. The following example request uses the
 fields query parameter to request that a specific
 subset of data be returned for the identified
 student document:
Request
GET /students/morgan?fields=(firstName, birthDate) HTTP/1.1 [image: 1]
Host: api.college.restapi.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/college/Student";
 fields="(birthDate, firstName)" [image: 2]

{
 "firstName" : "Morgan", [image: 3]
 "birthDate" : "1992-07-31"
}
	[image: 1]
	The request includes the fields parameter,
 which specifies the list of fields that should be included in the
 response’s representation.

	[image: 2]
	When the fields query parameter is used to
 define an inclusion list, the media type must specify a parameter,
 also named fields, which canonicalizes the
 response’s field list in case-insensitive, alphabetical
 order.

	[image: 3]
	The partial response contains only the
 firstName and birthDate
 fields.

In the example above, the fields query
 parameter syntax indicated that the client wished to obtain the current
 state of two specific fields. However, sometimes it may be more
 convenient for the client to designate the resource state fields that it
 does not want to receive. For example, a client may
 ask an API to exclude an indicated set of fields whose values are known
 to be sizable and unused.
The example request below demonstrates how the
 fields query parameter can be used to specify a set
 of fields that are unwanted:
Request
GET /students/morgan?fields=!(address,schedule!(wednesday, friday)) HTTP/1.1 [image: 1]
Host: api.college.restapi.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/college/Student";
 fields="!(address, schedule!(friday, wednesday))" [image: 2]

{
 "firstName" : "Morgan", [image: 3]
 "birthDate" : "1992-07-31",
 "schedule" : {
 "monday" : {
 "links" : {
 "firstClass" : {
 "href" : "http://api.college.restapi.org/classes/math-202",
 "rel" : "http://api.relations.wrml.org/college/firstClass"
 },

 # Daily schedule's other links...
 }
 },

 # Schedule's other fields (except friday and wednesday)...
 },

 # Student's other fields (except address)...

 "links" : {
 # Student's links...
 }
}
	[image: 1]
	The exclamation point character (!), which precedes the
 parenthetically enclosed and comma-separated names, declares a field
 exclusion list.

	[image: 2]
	When the fields query parameter is used to
 define an exclusion list, it alters the structure of the form away
 from its schema’s definition; thus it needs to equivalently alter
 the Content-Type header’s value.
 The media type must specify a fields parameter
 that lists the response’s excluded fields in case-insensitive,
 alphabetical order.

	[image: 3]
	The REST API’s partial response should then include all of the
 state representation’s fields, except those indicated in the
 exclusion list.

In this example, the schedule field’s value is
 an object with its own set of fields. The schedule
 field, which is named within the outer exclusion list, includes a nested
 exclusion list that omits the wednesday and
 friday fields.
Note
Clients should be encouraged to programmatically consult the
 resource’s media type’s schema to validate their field selections. See
 Media Type Schema Design for more
 detail.

Rule: The query component of a URI should be used to embed linked
 resources

In his “Commentary on Web Architecture,” Tim Berners-Lee pointed
 out that there are two types of links:
	 	Basic HTML has three ways of linking to other material on the
 web: the hypertext link from an anchor (HTML “A” element), the general
 link with no specific source anchor within the document (HTML “LINK”
 element), and embedded objects and images (IMG and OBJECT). Let’s call
 A and LINK “normal” links, as they are visible to the user as a
 traversal between two documents. We’ll call the thing between a
 document and an embedded image or object or subdocument “embedding”
 links.
	
	 	--Tim Berners-Lee http://www.w3.org/DesignIssues/LinkLaw

REST API’s should allow individual client requests to control
 which linked resources should remain “normal” and which ones should
 become “embedded.” This request-time composition approach allows a REST
 API to present a consistent, fine-grained resource model while
 empowering its clients to create facades that better match their
 individual use cases.
Consider the representation below:
{
 "firstName" : "Morgan",
 "birthDate" : "1992-07-31",

 # Other fields...

 "links" : {
 "self" : {
 "href" : "http://api.college.restapi.org/students/morgan",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "favoriteClass" : {
 "href" : "http://api.college.restapi.org/classes/japn-301",
 "rel" : "http://api.relations.wrml.org/college/favoriteClass"
 },

 # Other links...
 }
}
Clients use the embed query parameter to
 identify the link relations that they wish to have included, as
 fields, directly in the response’s representation.
 The following example request uses the embed query
 parameter to include the favoriteClass link as a
 field:
Request
GET /students/morgan?embed=(favoriteClass) HTTP/1.1 [image: 1]
Host: api.college.restapi.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/college/Student";
 embed="(favoriteClass)" [image: 2]

{
 "firstName" : "Morgan",
 "birthDate" : "1992-07-31",
 "favoriteClass" : { [image: 3]
 "id" : "japn-301",
 "name" : "Third-Year Japanese",
 "links" : {
 "self" : {
 "href" : "http://api.college.restapi.org/classes/japn-301",
 "rel" : "http://api.relations.wrml.org/common/self"
 }
 }
 }

 # Other fields...

 "links" : {
 "self" : {
 "href" : "http://api.college.restapi.org/students/morgan",
 "rel" : "http://api.relations.wrml.org/common/self"
 },

 [image: 4]

 # Other links...
 }
}
	[image: 1]
	In this example the embed query parameter
 specifies a single link, favoriteClass, but it
 can be used to specify a list of links (like the
 fields parameter discussed in Rule: The query component of a URI should be used to support
 partial responses).

	[image: 2]
	When the embed query parameter is used, it
 alters the structure of the form away from its schema’s definition,
 thus it needs to equivalently alter the Content-Type header’s value. The media
 type must specify an embed parameter that lists
 the embedded links in case-insensitive, alphabetical order.

	[image: 3]
	The REST API has retrieved a representation of the linked
 favoriteClass resource and has embedded it as a
 field.

	[image: 4]
	The favoriteClass link is now gone,
 replaced by the embedded field.

Note
Note that embedding only works for link relations that use the
 GET method and support the exact
 same media type format as the referencing
 representation.

Processing Hypermedia

Chapter 5 introduced two
 hypermedia structures, link and link
 relation. These structures are designed to be easy for clients
 to process using a consistent algorithm. The flowchart in Figure 6-1 illustrates how a client should
 interact with a particular REST API response representation’s link.
[image: Hypermedia processing flowchart]

Figure 6-1. Hypermedia processing flowchart

As shown in the flowchart, the client’s hypermedia processing
 routine starts by simply looking up the link using its relation’s name.
 Then, in order to interact with the link using the appropriate HTTP
 request method, the client’s code inspects the method
 field of the link’s relation document resource. If the link’s interaction
 allows or requires content to be submitted in the request message’s body,
 then the link relation document would indicate the possible media type
 options via its requestTypes field.

JavaScript Clients

The modern web browser, with its ubiquity and ever-increasing power,
 is a natural platform for client applications. The JavaScript programming
 language facilitates the development of applications that are instantly
 available everywhere. JavaScript programs provide the
 interactive parts of web experiences. They make: applications dynamic,
 games playable, and advertisements noticeable.
The rules presented in this section apply to REST APIs that wish to
 support the growing number of JavaScript-based clients which are
 “sandboxed” by the web browser’s same origin
 policy.[44] The same origin policy, which is also known as the
 same domain policy, restricts a browser-based
 JavaScript client from accessing resources from any web servers other than
 its code’s own source. Web browsers enforce the same origin policy to
 prevent leaking of confidential user data. A resource’s
 origin is defined[45] by its URI’s scheme, host, and port components.
The following resources have the same origin:
http://restapi.org
http://restapi.org:80 [image: 1]
http://restapi.org/js/my-mashup.js [image: 2]
	[image: 1]
	This URI is the same as the first one because 80 is HTTP’s default port.

	[image: 2]
	This is the same as the others because the URI’s path is not
 part of a resource’s origin.

In contrast, each the following resources has a different
 origin.
http://restapi.org
https://restapi.org [image: 1]
http://www.restapi.org [image: 2]
http://restapi.org:8080 [image: 3]
https://restapi.org:80
http://restapi.com
http://wrml.org
	[image: 1]
	The use of the https scheme makes this a
 different origin.

	[image: 2]
	The www subdomain identifies a different
 host, which is part of the resource’s origin.

	[image: 3]
	8080 and 80 are two different ports.

Many JavaScript web applications dynamically integrate a variety of
 content and services from several APIs; each one with a different scheme,
 host, or port. With their tendency to cleverly combine data from more than
 one origin, these clients are commonly known as
 mashups. Today, there are a few different ways that
 REST APIs can provide multi-origin access, namely
 JSONP and CORS, which are
 described by the rules of this section.
Rule: JSONP should be supported to provide multi-origin read
 access from JavaScript

The JSONP (JSON with Padding) request technique is a very useful
 hack. With a little bit of extra work done by both
 the client and the REST API, JSONP enables multi-origin read-only access
 from JavaScript.
The browser’s built-in XMLHttpRequest component provides its
 JavaScript clients with HTTP client functionality.[46] The browser quirk that opens the door for JSONP is that,
 although XMLHttpRequest is blocked
 from making requests to third-party hosts, there is
 not a similar restriction on HTML
 script elements. Leveraging this, the JSONP request
 technique adds a <script src=“…”> element to
 the browser’s Document Object Model (DOM), with a REST API’s URI as the
 src target. Therefore, for each new JSONP request,
 the client must dynamically add a new script tag into
 the HTML DOM, with the desired URI as the src
 attribute’s value.
JavaScript clients indicate to the REST API that they desire a
 JSONP “wrapped” response by adding a callback query
 parameter to the src attribute’s URI value. Once
 the script element is injected into the DOM, it is
 evaluated and the src URI is retrieved, via HTTP
 GET, from the API.
Seeing the added callback query parameter, the
 REST API should return the JSON response data wrapped in the requested
 callback function. The calling of the JavaScript client’s callback
 function is the “padding” wrapped around the API’s normal JSON formatted
 response representation. Finally, the browser’s JavaScript engine will
 execute the response, which results in the specified callback function
 being invoked with the response’s JSON data passed in as a
 parameter.
JSONP works on both modern and legacy browsers, but due to its
 script element injection nature, it is limited to
 making GET requests.
Below is an example of the JSONP request technique. The example
 starts with the JavaScript client code, which uses the popular
 jQuery[47] library to call a REST API that supports JSONP:
var getPlayer = function(uri, successCallback) { [image: 1]
 $.ajax({ [image: 2]
 url: uri,
 success: successCallback,
 dataType: 'jsonp'
 });
};

var showPlayerFullName = function(player) { [image: 3]
 alert(player.firstName + " " + player.lastName);
};

getPlayer("http://api.soccer.restapi.org/players/1421", showPlayerFullName); [image: 4]
	[image: 1]
	JavaScript declaration of a getPlayer
 function that expects two parameters: a URI string and the name of a
 callback function.

	[image: 2]
	Calls the jQuery library’s ajax function;
 passing the URI and callback function name, along with a flag that
 tells the function to use the JSONP pattern.

	[image: 3]
	JavaScript declaration of a
 showPlayerFullName function that expects a
 Player object and pops up a
 simple message box with text that displays the player’s full name.
 This is the example’s callback function.

	[image: 4]
	Calls the getPlayer function; passing a URI
 that identifies a REST API’s player resource (which has been
 hardcoded to simplify this illustration). The function’s second
 parameter names the showPlayerFullName callback
 function.

In this example, the getPlayer function uses
 the jQuery AJAX[48] library’s JSONP support to handle the
 script element injection and the addition of the
 callback query parameter to the end of the
 URI.
This example’s associated HTTP request and response details are
 shown below:
For brevity's sake, some headers, fields, and links have been
omitted from this example.

Request
GET /players/1421?callback=showPlayerFullName HTTP/1.1 [image: 1]
Host: api.soccer.restapi.org

Response
HTTP/1.1 200 OK
Content-Type: application/javascript [image: 2]

showPlayerFullName([image: 3]
 {
 "firstName" : "Kasey",
 "lastName" : "Keller",
 "number" : 18,
 "birthDate" : "1969-11-29",

 "links" : {
 "self" : {
 "href" : "http://api.soccer.restapi.org/players/1421",
 "rel" : "http://api.relations.wrml.org/common/self"
 }
 }
 }
);
	[image: 1]
	Note that the jQuery library has added the
 callback query parameter to the specified
 URI.

	[image: 2]
	The REST API should set the Content-Type header of JSONP responses to
 application/javascript to indicate that the body
 format is now JavaScript rather than
 application/json (or some other
 application-specific media type).

	[image: 3]
	The REST API’s response message body has wrapped the standard
 player resource’s JSON structure with a call to
 the client’s showPlayerFullName JavaScript
 function.

Finally, when the browser receives the response from the GET
 request it used to fetch the injected script tag’s
 src URI, it executes the
 client’s showPlayerFullName JavaScript function call.
 The end result of this example is that the browser shows an alert
 message box with the text “Kasey Keller”.
In summary, REST APIs enable JSONP client requests by supporting
 an optional callback query parameter. If the
 parameter is present in a request, the API should wrap its normal JSON
 response body’s data in a JavaScript function call with the
 callback query parameter’s value as the function’s
 name.

Rule: CORS should be supported to provide multi-origin read/write
 access from JavaScript

Cross-Origin Resource Sharing[49] (CORS) is the W3C’s proposed approach to standardize
 cross-origin requests from the browser. CORS is an alternative to JSONP
 (see Rule: JSONP should be supported to provide multi-origin read
 access from JavaScript) that
 supports all request methods. The CORS approach enhances XMLHttpRequest, the browser’s built-in HTTP
 client, to natively support cross-origin requests.
For request methods other than: GET, HEAD,
 and POST; CORS defines a
 preflight request interaction. The preflight
 request occurs “behind-the-scenes” between a CORS-compliant browser and server, in advance
 of the JavaScript client’s actual request to access
 a cross-origin resource. REST APIs may use the CORS-proposed Access-Control-Allow-Origin HTTP header to
 list the set of origins that are permitted cross-origin access to its
 resources. Most modern browsers support CORS by sending special HTTP
 request headers such as Origin and
 Access-Control-Request-Method. The
 Origin header value identifies the
 requesting JavaScript client’s scheme/host/port source location. The
 Access-Control-Request-Method header
 value is sent in the CORS preflight request to indicate which HTTP
 method will be used in the client’s actual request.
The following JavaScript function presents the typical approach to
 dealing with the various browsers’ nonstandard implementations of the
 proposed CORS standard:
function createCORSRequest(method, url) {
 var xhr = new XMLHttpRequest();
 if ("withCredentials" in xhr) { [image: 1]
 xhr.open(method, url, true);
 }
 else if (typeof XDomainRequest != "undefined") { [image: 2]
 xhr = new XDomainRequest();
 xhr.open(method, url);
 }
 else {
 xhr = null; [image: 3]
 }
 return xhr;
}
	[image: 1]
	Idiomatic code that tests the browser’s CORS support.

	[image: 2]
	Microsoft’s Internet Explorer 8 browser requires JavaScript
 clients to use the special XDomainRequest object for cross-domain
 requests.[50]

	[image: 3]
	Returns null if the browser does not
 support CORS.

[44] http://www.w3.org/Security/wiki/Same_Origin_Policy

[45] The Web origin concept, http://tools.ietf.org/html/draft-ietf-websec-origin

[46] http://www.w3.org/TR/XMLHttpRequest

[47] http://www.jquery.com

[48] AJAX is a popular acronym that stands for “Asynchronous
 JavaScript and XML.”

[49] http://www.w3.org/TR/cors

[50] http://msdn.microsoft.com/en-us/library/cc288060(v=vs.85).aspx

Recap

This chapter presented REST API design tips that help address client
 concerns. Table 6-1 summarizes the terms that
 were introduced.
Table 6-1. Vocabulary review
	Term	Description
	API reverse proxy
	A network-based intermediary that addresses many of
 the cross-cutting concerns associated with REST
 APIs.

	Cross-Origin Resource Sharing (CORS)
	The W3C’s proposed approach to standardize
 cross-origin requests from the browser.

	Document Object Model (DOM)
	A browser-based, client-side API that allows
 JavaScript code to interact with the elemental structure loaded in
 the browser’s memory.

	Embedded link
	A related resource that is retrieved and integrated
 into a referencing resource as a field.

	Exclusion list
	A set of fields to be omitted from a message body
 that contains a representation.

	Inclusion list
	The complete set of fields that a client expects to
 find within a message body that contains a
 representation.

	JSONP
	Uses DOM scripting to support cross-origin GET requests from
 JavaScript.

	Mashup
	A client that intertwines information and features
 that originate from a variety of unrelated
 resources.

	OAuth
	An open standard authorization protocol that may be
 used to protect a REST API’s resources.

	Partial response
	The result of a client-controlled winnowing of a
 message body that contains a representation.

	Same origin policy
	Restricts a browser-based JavaScript client from
 accessing resources from any web servers other than its code’s own
 source.

Chapter 7. Final Thoughts

State of the Art

Today, implementing our REST API designs is harder than it ought to
 be. The tools and frameworks that aim to support REST API developers have
 room for improvement. Many of the programming language-centric REST API
 development frameworks were originally created to help build web
 applications. These frameworks seem to suggest that REST APIs are similar
 enough to web applications that they should be cast from the same
 mold.
By repurposing the web application’s controller
 paradigm, many of today’s frameworks provide support for using URI
 templates to route inbound client requests to
 handler-style methods or functions. In recognition of
 the fact that developers don’t want to code web page templates to format
 their REST API’s data, most of the frameworks offer built-in XML and
 JSON-based serialization and deserialization of the server’s objects to
 and from an HTTP message’s body.
Today, there is no unanimous winner among the
 various REST API development framework candidates. The selection amounts
 to personal (or organizational) preference of programming language and
 platform.
Unfortunately, most of the current REST API development frameworks
 lack direct support for:
	Natural separation of the resource model from the server’s
 implementation model

	Uniform, cross-format hypermedia structures

	Automated HATEOAS; based on current state, determining which
 links should be provided in a response

	Media type schema validation and versioning

	Both partial and dynamically
 composed response bodies

	Integration with client identification and entitlement
 authority

	Multi-origin resource sharing with JSONP and CORS

The lack of framework support for many core features has left REST
 API developers with a difficult choice: either omit features or code them
 yourself. Unsatisfied with these options, many developers have turned to
 API management solutions, as discussed in Rule: API management solutions may be used to protect
 resources, to
 provide some of these expected features. These solutions are helpful, but
 they can quickly become too helpful. Reliance on API
 management solutions to provide important (yet nonstandard) REST API
 features may lead an organization to become locked into a specific
 vendor’s implementation. The Web’s network-based intermediaries must be
 transparent to clients and servers, which also means they should be easily
 swappable.
Migrating from one vendor’s API management solution to another’s, or
 switching development frameworks, requires a degree of REST API design
 standardization that has yet to be achieved.

Uniform Implementation

Coding a REST API has never felt right to me. I believe that REST
 APIs should be designed and configured, but not
 coded. To that end, I’ve conceived of an alternative
 approach to REST API implementation that is founded on the WRML conceptual
 framework’s architectural principles. These principles, summarized below,
 align with the REST API design methodology presented as this book’s
 rules.
Principle: REST API designs differ more than necessary

REST APIs, while becoming ubiquitous, are far from uniformly
 designed. The RESTfulness of APIs continues to be
 debated by those that create and consume them. In the absence of
 standards, REST API designers are free to innovate and explore new
 concepts, which is a good thing. However, when REST API designs
 eventually converge on a set of common patterns that address each one of
 the cross-cutting concerns, developers will benefit from the
 uniformity.
If history is any indication, this uniformity will most likely be
 driven by a pragmatic and detailed standard for
 REST API design. This book’s rule-based expression of a REST API’s
 expected behavior is a good indication that a more detailed
 specification can eventually be written to standardize a common
 approach. Then, this standard can be leveraged to develop reusable
 frameworks and libraries for clients, servers, and network-based intermediaries.
For interoperability’s sake, a REST API design standard must be
 neutral with respect to programming languages and
 representation formats. As highlighted in the design of WRML’s media
 type, the schema can universally describe a
 program’s data structure without binding it to any specific expression
 format. The abstract nature of schemas allow them to be consumed by
 clients and servers written in different programming languages.
 Furthermore, the WRML-based schemas and their associated link relations
 are designed to be shared and leveraged by a variety of REST APIs,
 which, along with decentralized Web-based hosting, can further their
 reusabilty across organizational boundaries.
Of equal importance is the governance of such a standardized
 approach to REST API design. In its lively 20 year history, the Web has
 withstood a few notable attempts to own or control one of its important
 parts. The Web has weathered the years of ad-hoc standardization by
 browser vendors. More recently, the Web rebelled against various vendor
 attempts to own its image, animation, and video formats. Similarly,
 attempts to standardize the design and implementation of REST APIs,
 either in part or as a whole, will succeed or fail based on the open and
 nonproprietary governance of their ideas and source code.

Principle: A REST API should be designed, not coded

Coding a REST API typically means programming an interface that
 exposes a backend system’s resources to Web-aware clients. In practice,
 this task varies slightly, depending on the chosen programming language
 and framework. However, the core job remains the same: write code that
 handles HTTP-level details and translates a backend system’s data model
 into a Web-oriented resource model. Some of this code most certainly
 needs to be written on a per-API basis, specifically the portion that
 directly communicates with the backend system or data store. However, a
 uniform REST API layer can be developed to replace the boilerplate and
 bookkeeping code found in many current implementations.
In WRML’s conceptual architecture, the uniform REST API layer is a
 configuration-driven engine that resides within a web resource
 server. As shown in Figure 7-1, the web
 resource server accepts client requests and delegates them to its core
 engine. The engine’s design may ultimately be standardized so that it
 can be consistently implemented for each web server-based programming
 framework that wishes to embrace its architectural style.
[image: WRML application framework—delivery system architecture]

Figure 7-1. WRML application framework—delivery system architecture

The engine takes a step-oriented approach to request handling,
 with each step and the order of all steps specified through
 configuration. Common steps are used to handle resource template
 routing, media type negotiation, client authorization, error handling,
 multi-origin support, and other core REST API features. When each step
 is executed, it is passed the context of the
 request, which is a thread-local associative array that accumulates
 request processing information as each step is executed. Ultimately, the
 engine’s algorithm reaches a point where it
 connects to the backend system to resolve the
 requested resource.
Through a minimalistic interface, the engine asks the backend
 system to fill in a generic form-oriented structure
 that is an instance of the client-negotiated media
 type’s schema. In other words, the backend system is handed a form-like
 “data template” that it must fill in with the current state information.
 In addition to filling in the schema-specific form field’s current
 values, the backend system must also provide a list of zero or more
 state facts that are currently true about the
 requested resource. From here, the engine’s HATEOAS calculator evaluates
 the selected schema’s link formulas using the
 backend system’s provided state facts as operands. Once the form is
 completely filled in, with both fields and links, the engine adds it to
 the request’s context and executes the remaining response-oriented
 steps.

Principle: Programmers and their organizations benefit from
 consistency

Web developers have benefited from the uniformity, or at least
 near-uniformity, of the browser’s implementation of HTML’s element-based
 structure, CSS’s presentation rules, and the DOM-oriented JavaScript
 API. Historically, HTML pages, with their fields and links, have been
 the Web’s primary type system. Servers generate web
 pages and clients submit their forms. Without this consistency, there
 would be no singular and open Web as we know it today.
On today’s server-side, in the realm of REST APIs, its a bit like
 the pioneering days of America’s Wild West: not
 completely lawless, but nearly so. The
 inconsistency of REST API designs hinders the transition of web
 applications to their next logical architecture, where web servers
 provide structured data and leave the presentation responsibilities to
 their enriched clients. In this architecture, web applications use
 JavaScript to render screens in the browser and
 interact with REST APIs that provide consistently formed
 representations. This approach reduces a server’s workload by shifting
 some of the processing duty to its users’ client devices, which have
 fast and powerful CPUs. In short, this architecture requires less
 server-side computational capacity, which reduces the total cost of
 operation.
The WRML architectural approach to REST API implementation moves
 the traditional idea of web page templates toward the back of the
 system, as close as possible to its data source. A benefit of this
 methodology is that it reuses the exact same schema structures as
 templates for the backend to fill in and as
 contracts for clients to consume and introspect. In
 a world of multi-device clients with different formatting needs, this
 architecture frees up server developers to focus on advancing the web
 application’s business logic in their backend systems, instead of
 worrying about all of the REST API design rules presented in this
 book.
With a baseline level of server interface uniformity, new
 client-side frameworks can be developed to abstract away the mundane
 code related to HTTP-based communication and data marshalling. Of
 course, underneath the covers, these client-server interactions are
 REST-based, so we can be sure that the Web will continue to function as
 intended.

Principle: A REST API should be created using a GUI tool

With widespread acceptance of a common set of rules, I believe
 that we can advance a shared REST API design methodology and begin to
 fashion a uniformly programmable Web. However, uniform REST API design
 is not the ultimate goal—it is only a means to an end. The greatest
 benefit of a standardized design and implementation methodology is the
 availability of helpful frameworks and tools that increase developer
 productivity. For example, the WRML conceptual architecture can be
 leveraged to develop tools that allow users to graphically design REST
 APIs. See Figure 7-2 for a set of
 mockups that depict a conceptual REST API design tool’s graphical user
 interface.
[image: Mockup showing a REST API design tool]

Figure 7-2. Mockup showing a REST API design tool

Behind the scenes, the tool can generate the structures that
 WRML’s web resource server engine reads as configuration data whenever
 it loads a running REST API instance. In fact, this REST API
 configuration data may be loaded and dynamically reloaded, without
 restarting the web resource server. This nimble approach to REST API
 design and development is shown in Figure 7-3.
[image: WRML REST API configuration architecture]

Figure 7-3. WRML REST API configuration architecture

The web resource server engine’s configuration data consists of a
 small set of core constructs, which are summarized below:
	API template
	A named REST API containing a list of resource templates, a
 list of schemas, and a list of “global” API-level state
 facts.

	Resource template
	A resource template is a path segment within a REST API’s
 hierarchical resource model. It has an associated URI template and
 set of possible schemas that client’s may bind to, at request
 time, by using media type negotiation. The schemas that are
 assigned to a resource template must extend one of the four base
 schemas associated with the resource archetypes: Document, Collection, Store, and Controller.

	Schema
	Schemas are like classes or tables: they are a web
 application’s structured types. They allow forms
 (instances consisting of fields and links) to
 be molded in their image and used to carry the state of a
 resource.

	Format
	Formats, like HTML, XML, and JSON, are often used on their
 own to declare the type associated with the content of a message’s
 body. WRML elevates formats to first-class structures that can
 provide links to downloadable code to help programs exchange their
 encoded data.

	Link relation
	A link relation is a concept borrowed from HTML that adds
 semantics to links. WRML expands on the idea by also documenting a
 link’s acceptable input media types and possible output media
 types.

Recap

The modern tools and frameworks supporting REST API development are,
 in a word, underwhelming. However, by adopting a
 common REST API design methodology, we can advance the state of the art.
 Then, we will be able to spend less time coding
 programmatic interfaces and focus our efforts on writing web application
 code: the stuff that really matters.

Appendix A. My First REST API

I designed my first REST API shortly after joining Starwave in June of
 1997.
While working as a programmer in the Sports Engineering group, I was
 tasked with developing a new Java applet for a web page on the
 NASCAR Online website. The Race
 Tracker applet was designed to display the status of the lead
 cars during a live race event. Once loaded in the user’s web browser, the
 applet needed to continually fetch the current race status data from a
 server hosted by Starwave. At that time, Java applets could use either a raw
 socket or HTTP to access data on remote servers. However, if the applet’s
 requests needed to cross over the Internet, or even just pass through
 firewalls, HTTP was the only real option.[51] In other words, the Java applet needed to talk to a Web
 API.
By the time I joined the company, the foundations for delivering this
 type of data over the Web had already been established by Starwave’s team of
 talented software engineers. Leveraging a proprietary, Java 1.1-based,
 automated, real-time wire feed processing and publishing system known as
 “Bulldog,” the server side of my task was to create a new web page template
 that would access and format the race data to be displayed by the applet.
 For a given live race event, Bulldog pulled in the data from a wire feed,
 created Java objects based on the data, then published
 the objects through my new template to constantly update a plain text file
 hosted on a standard web server.
These text files, each one containing the current state of a given
 live race event, were the Web API’s resources. And, as
 a result of the Bulldog Web publishing process, each resource was uniquely
 identified with its own URI. The applet periodically requested a
 representation of a resource, via HTTP GET, to download and display the current state of
 a given race. I designed the race status resource representation by
 formatting each data element as a row on its own line
 and used the pipe (|) character to delimit each attribute (or
 column). For example:
1|1234|Ricky Bobby|26|http://hostname:port/images/drivers/1234.jpg|...
Along with the other data, the representation also included
 hyperlinks, which occupied consistent attribute cells
 (i.e., the slot between the fourth and fifth pipe character). The links
 enabled the applet to download and display images of the race car’s sponsor
 logo and the driver’s face.
The design of the Race Tracker applet’s Web API certainly did not
 abide by all of the rules outlined in this book. However, it did make use of
 URIs, HTTP, and representations with hypermedia. And this is the point: REST
 describes the way the Web already works. REST isn’t an
 invention; it is a prescription. By applying the hallmarks of the Web to the
 design of APIs, it can be quite natural to employ the REST architectural
 style.

[51] This constraint placed on applet-to-server communication was the
 “original browser sandbox.”

About the Author
Mark Masse resides in Seattle, where he is a Senior Director of Engineering at ESPN.

Mark has fourteen years of engineering, management, and architecture experience with The Walt Disney Company. He began his career with Starwave creating rich, interactive Java applets for ESPN Sportszone, NFL.com, and NASCAR Online. Mark architected and developed the content management system (CMS) that powers all of the Disney web sites including ESPN.com, ABC.com and Disney.com. In 2008, he received a "Disney Inventor Award" for creating a "System and Method for Determining the Data Model Used to Create a Web Page."

OEBPS/callouts/1.png

OEBPS/callouts/2.png

OEBPS/callouts/3.png

OEBPS/callouts/4.png

OEBPS/callouts/5.png

OEBPS/callouts/6.png

OEBPS/callouts/7.png

OEBPS/callouts/8.png

OEBPS/httpatomoreillycomsourceoreillyimages926289.png
Client.

Request

Response

Web 1 Web Service
APl Backend

OEBPS/httpatomoreillycomsourceoreillyimages926300.png
WRMLs REST

s WRMLs Web
Application LS We
Framework | cien famework Server Engine
Library | reads and caches.
onfiguation data
WebResource Servr
eudsandcaches
Qiguaton data Gontrols Web Resure
Servers tellngthem wher
toreload onfquraton
Oy B AP APl Web Resource Server
REST API RESTAPI Relations Templates. Cluster Control
RESTAPI RESTAPI RESTAPI
Tooeads and ool e 075
wites congurationdota eladof anfquraton

RESTAPI
Design Tool

REST API
Designer

witha “publs”

OEBPS/httpatomoreillycomsourceoreillyimages926292.png
{collection-c}/{store-s}/{document-d}
elistorisk |
.
i
.
O¢
Contains s I_,g s/
Stores al_,ljn

OEBPS/httpatomoreillycomsourceoreillyimages926284.jpg
R R RRRRRRERRRRRRRRRRRDREDDEERDw
Designing Consistent RESTful Web Service Interfaces

Design Rulebook

O'REILLY® Mark Massé

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages926298.png
REST API Designer) API Template) Soccer

[] New Document

vl =] Edit v| @ save

_+ NewSchema

v| E et V| @ save

Name: | Soccer

Name: | Soccer

08 Resource Templates.

.+ Schemas. |) State Facts

73 Resource Templates | .+ Schemas | () State Facts

[ooty A
El O matches
[imatch)
[recap
[scoreboard
B O players
O wlavert
O teams v

Path: /games/{game}

.+ Import.. | [Show Imported Schemas

Name Version | Base Name Base Version | A
.+ SoccerMatch 1| Game 4
¢ SoccerPlayer 3 SoccerPlayer 2
.+ SoccerPlayer 2/ SoccerPlayer 1
. SoccerPlayer 1| Player 6
.+ SoccerPlayer 1| Recap 5
* SoccerScoreboard 1| Scoreboard 3
* SoccerTeam 3| soccerTeam 2
& SaccarTaam. 2 | GaccarTaam 1 \d

) New Field V| E] Edit V| @) save

REST APl Designer » Schema) SoccerMatct
fie) New Link Formula V| 5 Edit V| ®) save

Name: | startDateTime

Name: | SoccerMatch Version: | 1

Type: [Date-Time

Base: | .+ Game V| Version: | 4 W

Boolean

— Choice

Date-Time

@ Double

" Fields fi#) Link Formulas

& Show Base Link Formulas

I Integer
Fed st

¢ Schema

“55 String

State Condition
true A

Link Relation

fi#)awayTeam

fi#)homeTeam (Final)

fi@yrecap true

fi)referee true

fi#)scoreboard (InProgress or Final)

fie)venue true v

OEBPS/httpatomoreillycomsourceoreillyimages926296.png
Gient Process Server Process
N REST
ents || WRMLSBEST | requests, | wRwLsweb | | WRMLS Wb
Application- || tPPication Resource Resource
Specificcode || Famework Server | [Server Engine
Library REST g
Tesponses
Client-side 'WRMLS uniform REST Responsible for the | Sequenced step-
appltionlogic. | communication framewiork. HTTP/L. transfer | based and
ofresourcestate | configuration
Handles HTTP-based representations. driven.
mmunication and data
marshallng. Delegates ncoming | Dynamically
requests to the loads WRMLS
Engine. AP Templates
and allows
reloading of the
APImodel at.

runtime.

Inside or Outside

Server Process
B Backend
eng | 00| Sy
¢ specific | Application-
Comecion 2t ocor | peie
eface peh
Interface repsonsible for Server-side

resolution ofresource state felds
and facts.

Implementations commonly
delegatetoan existing server-
side codebaseto maps URls and
Schemasto appliction-specfic
1Ds.and data structures.

application ogic.

Responsible for
the maintenance
oftateforaset

ofexposed Web

resource.

OEBPS/httpatomoreillycomsourceoreillyimages926294.png
Start

Process response’s
Tepresentation

Isolate the uniform
links structure

Other fields
“Links” : {

“cut” :

“href” :

“rel”

T

Other Links...

Isolate the ink vith
particular elation name

~ Determine the
Imevac;':vdume ks relation’s TP
interaction method

s the link relation
document alreadly
downloaded?

End

://api.editor.restapi.org/docs/48679/edit/cut”,

Representation

api.editor.restapi.org/realtions/edit/cut”

Relation
ut”,
pOST”

“name”
“method”

Other fields...

Using the link’s rel URI,
GET (and cache) the
relation document

|

OEBPS/callouts/15.png

OEBPS/callouts/14.png

OEBPS/callouts/11.png

OEBPS/callouts/10.png

OEBPS/callouts/13.png

OEBPS/callouts/12.png

OEBPS/oreilly_large.gif
O’REILLY

