

[image: cover.eps]

Xcode® 4

Table of Contents

Part I: Getting Started

	Chapter 1: Introducing Xcode 4

Understanding the History of Mac Development Tools

Looking back at early IDEs

Developing Xcode

Understanding Xcode 4's Key Features

Moving to Xcode 4

Moving from the Xcode 3 to the Xcode 4 editor

Working with Interface Builder

Exploring code and file management

Exploring the debugger

Comparing iOS and OS X Development

Developing for OS X

Developing for iOS

OS X and iOS cross-development

Summary

	Chapter 2: Getting and Installing Xcode

Selecting a Mac for Xcode

Choosing a processor

Selecting memory

Choosing a monitor

Working with disk storage

Choosing peripherals

Choosing supporting software

Signing Up for Development

Registering as a developer

Choosing a program

Accessing developer resources

Getting Started with Xcode

Installing Xcode

Creating and organizing project folders

Working with multiple versions of Xcode

Uninstalling Xcode

Summary

	Chapter 3: Building Applications from Templates

Getting Started with Templates

Building a project from an application template

Looking inside the Application templates

Using the OS X Application templates

Understanding the iOS Application templates

Introducing the Framework and Library templates

Introducing Plug-in templates

Changing the Standard Templates

Finding the template files

Customizing the template files

Summary

	Chapter 4: Navigating the Xcode Interface

Understanding the New Interface

Using the Navigation Area

The Project Navigator

The Symbol Navigator

The Search Navigator

The Issue Navigator and the Log Navigator

The Breakpoint Navigator and the Debug Navigator

Loading the navigators from menus and keyboard shortcuts

Using the Utility Area

Displaying file information

Using Quick Help

Using the library area

Working with the Editor Area

Getting started with code editing

Introducing build configurations

Summary

	Chapter 5: Working with Files, Frameworks, and Classes

Working with Files and Classes

Adding new files to a project

Adding a new class

Adding new resources

Adding miscellaneous other files from the templates

Deleting and renaming files

Importing existing files

Reimporting missing files

Working with Groups

Moving groups and files

Creating a new group

Organizing groups

Working with Frameworks

Using frameworks

Adding existing frameworks

Summary

	Chapter 6: Using Documentation

Understanding the Apple Documentation

Comparing iOS and OS X and their different versions

Understanding resource types

Using topics

Using frameworks and layers

Searching the online documentation

Using the Xcode Documentation Viewer

Browsing the documentation

Searching the documentation

Using class references

Accessing documentation from code

Using Other Documentation

Summary

	Chapter 7: Getting Started with Interface Builder

Understanding IB

Understanding nib files

Using nib files

Getting Started with IB

Introducing key features of the editor

Viewing the template nib files

Introducing the utility area

Creating a Simple iOS Project with IB

Adding objects to a view

Setting object contents

Linking objects to code

Understanding the IB object hierarchy

Comparing IB in Xcode 4 with Xcode 3

Summary

	Chapter 8: Creating More Advanced Effects with Interface Builder

Using File's Owner and First Responder

Using File's Owner

Using First Responder

Subclassing Views and Other Objects

Adding a new subclass in Xcode

Adding code to the subclass

Assigning the subclass in IB

Working with more advanced subclassing techniques

Creating Custom Objects

Creating Views with Static Images

Creating a colored background

Importing an image file

Assigning an image file

Supporting Non-English Languages

Working with Advanced IB Techniques

Using tags

Sending messages between nibs

Converting iPhone projects to the iPad

Summary

Part II: Going Deeper

	Chapter 9: Saving Time in Xcode

Using Code Folding

Editing Structure

Refactoring Code

Using the Refactor menu

Using the Edit All In Scope feature

Using Code Snippets

Inserting a snippet

Creating a new snippet

Jumping to a Definition

Summary

	Chapter 10: Using the Organizer

Working with Devices

Reviewing and managing profiles

Working with software images

Finding and installing iOS updates

Using device logs

Working with screenshots

Managing individual devices

Working with Projects and Archives

Managing Projects

Creating Archives

Summary

	Chapter 11: Managing Certificates and Provisioning

Understanding Provisioning

Creating and Installing User Certificates

Creating a CSR

Uploading the CSR to the Provisioning Portal

Creating and downloading a development certificate

Creating and downloading a distribution certificate

Installing the certificates

Provisioning Devices Manually

Creating an App ID

Registering devices manually

Creating a Development Provisioning Profile

Creating a Distribution Provisioning Profile

Automatic Provisioning

Creating an automatic device profile

Refreshing a profile

Moving between Macs

Provisioning for OS X Distribution

Understanding OS X provisioning

Provisioning in practice

Summary

	Chapter 12: Working with Builds, Schemes, and Workspaces

Getting Started with the Xcode Build System

Creating and organizing a workspace

Working with projects and targets

Understanding settings and options

Working with Schemes and Build Configurations

Getting started with build configurations

Understanding schemes

Editing schemes

Managing schemes, build actions, and targets

Summary

	Chapter 13: Customizing Builds for Distribution and Advanced Development

Introducing Common Basic Customizations

Creating a build for testing and debugging

Selecting the Base SDK

Setting the minimum supported OS version

Including a framework or library in a build

Selecting a compiler

Controlling warnings

Disabling iOS PNG compression

Changing an app's name before shipping

Creating App Store and Ad Hoc Builds

Building and packaging an iOS project for the App Store

Creating and distributing an iOS Ad Hoc build

Creating a Mac App Store submission

Working with Advanced Build Techniques

Understanding the build process

Introducing conditional compilation

Using conditional compilation

Understanding build phases and build rules

Working with build phases

Creating build rules

Summary

	Chapter 14: Using Version Control

Using Manual Version Control

Using Snapshots

Working with Source Control

Understanding Git

Using Git locally

Using Xcode with GitHub

Summary

Part III: Creating Fast and Reliable Code

	Chapter 15: Getting Started with Code Analysis and Debugging

Checking and Analyzing Code

Checking code as you enter it

Using Fix-It code tips

Using the Static Code Analyzer

Getting Started with Debugging

Using the Console

Creating custom messages

Using custom messages

Understanding crashes

Viewing multiple logs

Working with Breakpoints

Working with simple breakpoints

Using the Variables View

Using advanced breakpoint features

Working with Command-Line Debugging

Summary

	Chapter 16: Testing Code with Instruments

Beginning with Instruments

Understanding Instruments

Exploring the Instruments UI

Getting Started with Instruments

Creating a leaky test app

Profiling an app with Instruments

Exploring the detail pane

Modifying instrument settings

Comparing different runs

Saving and loading runs

Working with Instruments and Templates

Understanding templates

Creating a template

Creating custom instruments

Working with UIAutomation

Setting up objects to support automation

Creating a test script

Getting started with Automation scripting

Summary

	Chapter 17: Creating Unit Tests

Introducing Unit Testing

Understanding Unit Testing in Xcode

Creating a Simple Unit Test Project

Creating a new project that supports unit testing

Creating a class for testing

Creating a test case

Running tests

Summary

Part IV: Appendixes

	Appendix A: Using Xcode's Tools and Utilities

Introducing Dashcode

Getting started with Quartz Composer

Using Quartz Composer with Xcode

Introducing the audio tools

Introducing the graphics tools

Introducing the performance tools

Device and hardware support utilities

Application and OS support utilities

Language support utilities

Accessibility utilities

	Appendix B: Working with Other Editors

Understanding plists

Getting started with plist editing

Editing info.plist project settings in Xcode

Creating new plists

Using the general Xcode plist editor

Understanding Core Data

Introducing the data model editor

Creating a simple data model

	Appendix C: Understanding Compiler Technology

		
			
				Xcode® 4

				Richard Wentk

			

			
				[image: wileytitlepagelogo.eps]
			

			
				Xcode® 4

				Published by
Wiley Publishing, Inc.

				10475 Crosspoint Boulevard

				Indianapolis, IN 46256
www.wiley.com

				Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

				Published by Wiley Publishing, Inc., Indianapolis, Indiana

				Published simultaneously in Canada

				ISBN: 978-1-118-00759-4

				Manufactured in the United States of America

				10 9 8 7 6 5 4 3 2 1

				No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permissions.

				[image: wileytitlepagelogo.eps]

				Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

				For general information on our other products and services or to obtain technical support, please contact our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

				Library of Congress Control Number: 2011929798

				Trademarks: Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Xcode is a registered trademark of Apple, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

				Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

				Dedication

				To Zofia

				About the Author

				Richard Wentk is one of the U.K.'s most reliable technology writers, with more than ten years of experience as a developer and more than fifteen years in publishing. He covers Apple products and developments for Macworld and MacFormat magazines and writes about technology, creativity, and business strategy for titles such as Computer Arts and Future Music. As a trainer and former professional Apple developer returning now to development on the iPhone and OS X, he is uniquely able to clarify the key points of the development process, explain how to avoid pitfalls and bear traps, and emphasize key benefits and creative possibilities. He lives online but also has a home in Wiltshire, England. For details of apps and other book projects visit www.zettaboom.com.

				Credits

				Acquisitions Editor

				Aaron Black

				Project Editor

				Martin V. Minner

				Technical Editor

				Brad Miller

				Copy Editor

				Gwenette Gaddis

				Editorial Director

				Robyn Siesky

				Editorial Manager

				Rosemarie Graham

				Business Manager

				Amy Knies

				Senior Marketing Manager

				Sandy Smith

				Vice President and Executive Group Publisher

				Richard Swadley

				Vice President and Executive Publisher

				Barry Pruett

				Project Coordinator

				Katie Crocker

				Graphics and Production Specialist

				Carrie A. Cesavice

				Quality Control Technician

				Rebecca Denoncour

				Proofreading and Indexing

				Christine Sabooni
BIM Indexing & Proofreading Services

				Media Development Project Manager

				Laura Moss

				Media Development Assistant Project Manager

				Jenny Swisher

				Media Development Associate Producers

				Josh Frank
Shawn Patrick
Doug Kuhn
Marilyn Hummel

			

		

	
		
			
				Preface

				After a few years with Xcode 3, my first impressions of Xcode 4 were mixed. At first, I thought the redesign was unnecessarily rigid and proscriptive. I missed Interface Builder's floating windows and object palettes, and I couldn't find a convincing reason for the enforced three-way window split in the editor.

				Over time, I realized my first impressions were wrong. Software tools for developers, like software tools for users, should work hard to make life easier. The venerable old GCC compiler toolchain that ran under the hood of Xcode 3 was developed at a time when the command line was the only available UI. Although some developers still love the command line, it's an unforgiving environment that penalizes simple mistakes. It can be powerful, but it's also literal-minded and not at all transparent.

				Many development environments, including Xcode 3, have taken this same approach but applied it in a visual environment. The test of a good tool is that it anticipates your needs to the point where it disappears, leaving you with a clear canvas for your imagination.

				Xcode 4's designers have taken a step toward this by asking how to simplify or eliminate some of the tedious and repetitive work that was necessary in the past. Xcode 4 doesn't accomplish this aim completely—some promising early ideas were removed in the final release—but many of the features are simpler and more responsive than their equivalents in Xcode 3. As a result, the development process is faster, simpler, and more productive.

				The first goal of this book is to introduce the new features to users who were used to older ways of working and to bring new users up to speed with the essential features of Xcode. Newcomers should start at the front of the book and work their way through it in order. The sequence of the earlier chapters is designed to be a practical primer for Xcode development, not just a list of features and changes.

				A second goal is to introduce some of the more complex features in more detail. Many newcomers use Xcode in a simple click-bang way, missing out on the power and flexibility hidden under the surface. The less-obvious features are easy to skip, but exploring them can open up new possibilities for testing, debugging, project management, and build control. Some tools, such as Instruments, have further hidden layers of their own that would require a further book the size of this one to explore fully.

				Because space is limited, this book doesn't dig into every feature to the deepest possible level. But new Xcode 4 users and experienced Xcode 3 users should find creative inspiration here, as well as a good store of tips and techniques that can push them through the essentials of basic development and into the deeper possibilities of managed testing and build design.

				Every author works hard to make his or her books as helpful as possible. Comments and feedback are welcome at xcodedr@zettaboom.com.

				Acknowledgments

				Although book publishing has become digital, book writing hasn't. A book continues to be a team effort.

				My thanks go to acquisitions editor Aaron Black for suggesting the project when Xcode 4 was barely a gleam in Apple's eye and to project editor Martin V. Minner for his continuing support and extended patience. Sincere thanks are also due to the rest of the team at Wiley for their hard work behind the scenes.

				Alexa, Rachel, Hilary, Michael, and the Eurotribe (sans pareil) all helped with support, entertainment, and occasional suggestions, some of which were helpful.

				Software development has become a communal activity, and particular appreciation is due to the countless bloggers, experimenters, developers, and problem-solvers on the Web whose generosity and creativity have made so much possible in so many ways.

				Finally, love as always to Team HGA. I couldn't have written it without you.

				Introduction

				This book is about developing iOS and Mac projects using the Xcode 4 development toolchain. You'll find this book useful if you have experience with Cocoa or Cocoa Touch and have used Xcode 3 in the past or if you have worked with other development environments and are curious about how to work productively with Xcode 4.

				This isn't a book about languages or frameworks, and the only loose prerequisite is some basic experience with a C-family language. However, this isn't a book about theory. You'll get the most from it if you download and install Xcode 4 for yourself, work through the examples, and experiment with it as you read.

				If you're new to Apple development, you also may want to read the Objective-C, iOS, and Cocoa Developer Reference titles. A few framework features are mentioned in the text, but you don't need to be familiar with them to use this book successfully, although you need to be familiar with them to develop iOS and Mac apps that can be sold through the App Store.

				Chapter 1 looks back briefly at previous Mac development tools and introduces some of the core differences between Xcode 3 and Xcode 4. It introduces the essential elements of the Xcode UI and explains how it's possible to create iOS and OS X projects.

				Chapter 2 explains how to choose a Mac for development, how to sign up as a paid developer, and how to install and customize Xcode. It's a feature of Xcode development that while the installation process is simple, it has hidden options that are easy to miss. Also, there are important differences between installing a single version of Xcode and using multiple versions across multiple platforms to develop production projects while also experimenting with beta OS code.

				Chapter 3 introduces the Xcode templates. It demonstrates how you can use the templates to get started with app development, but also explores some of the more specialized templates available for both iOS and OS X projects, and it explains where to find the templates so you can make simple modifications to them.

				Chapter 4 looks in more detail at the new editor features, including the new navigators that collect project information in a single switchable pane. This chapter explores the many new project navigation features and support tools, and it introduces time-saving features in the new enhanced code editor.

				Chapter 5 explains how to organize and manage files and projects. It examines groups in the project navigator, demonstrates how to add and remove files from a project, and explains how Xcode 3's tools for managing supporting frameworks have been moved to the Xcode 4 build settings.

				Chapter 6 is a guide to the Apple Documentation built into Xcode. Apple has structured the Documentation in specific ways, and you'll progress more quickly and with less effort if you understand what this means in practice. Understanding and using the Documentation and searching it in Xcode are key skills. Don't skip this chapter, even if you already have experience in other environments.

				Chapter 7 introduces the key features of Interface Builder and explains how you can use IB to build complete applications, because IB isn't just for interfaces. It explains the purpose of the File's Owner and First Responder objects, and it builds a simple iOS app that responds to a button tap.

				Chapter 8 explores IB in more detail. It shows you how to manage media and other resources and how to control OS compatibility. It also explains how to localize your project so it can support foreign languages.

				Chapter 9 takes a closer look at the new time-saving features in Xcode, including the structure management tools that can help you move sections of code to their most appropriate location, manage indentation intelligently, and add or remove comment blocks. This chapter also introduces code completion and explains how you can customize the code snippet and code completion macros with your own most-used blocks of code.

				Chapter 10 introduces the Xcode Organizer, a multi-purpose tool for managing supporting files and other project information that doesn't belong in the code editor. It introduces device provisioning and profiles and explains how you can manage your test devices.

				Chapter 11 takes a comprehensive and detailed look at the Xcode provisioning process, which is necessary for device testing, beta distribution, and App Store distribution for both iOS and OS X projects. It takes you step by step through the provisioning process and explains the principles of provisioning so you can understand what certificates, identities, and profiles do and why they're necessary.

				Chapter 12 introduces the Xcode build system. It introduces project and target build settings and explains the relationship between them. It also looks in detail at build setting management, explaining how you can use build configurations and the new schemes feature to create flexible, multi-target builds for more complex projects.

				Chapter 13 goes deeper into the build system. It introduces a list of common and useful build customizations, takes you step by step through the different build processes needed for iOS App Store, iOS Ad Hoc, and OS X App Store builds. It also explains how you can use Xcode to submit projects to the App Store. Finally, it introduces the internals of the build system and explains how you can use custom scripting in the build phases and build rules to satisfy almost any build requirement.

				Chapter 14 explores the new version control features. It introduces the different ways in which you can manage project versions in Xcode and illustrates their strengths and weaknesses. It ends with a practical example of using Xcode with the GitHub collaborative online code repository and explains how GitHub can be used for solo and group projects.

				Chapter 15 introduces the Xcode debugger. It explores the different ways in which you can view and use console, and it demonstrates how you can add, remove, and manage breakpoints; view variables; and monitor them as they change. It also introduces command-line debugging for low-level control.

				Chapter 16 explores Instruments and demonstrates how you can use them to profile almost any aspect of your code, including memory use, performance, and impact on the surrounding system. It includes a profiling example that demonstrates how you can use Instruments to check for memory leaks.

				Chapter 17 introduces the Unit Test features and explains how you can use them to create and check automated test cases in your code, to help you guarantee that when you make changes to existing code, it continues to function as it should.

				Appendix A lists the many extra tools and utilities included in the Xcode toolchain, including powerful supporting editors such as Quartz Composer and Dashcode.

				Appendix B introduces plist editing and explores the new Core Data editor.

				Appendix C explains the differences between the old GCC and new LLVM compiler technologies, both of which are included in Xcode.

				Code appears in a monospaced font. Items you type appear in bold.

				Projects and examples were developed with various versions of Xcode 4, from the first developer release to the final GM seed, on OS X 10.6.6. Current graphics and features may differ slightly from the illustrations and feature descriptions in this book.

				Supporting code is available on the book's Web site at www.wiley.com/go/xcode4devref. See the readme there for the most recent system and software requirements. Code is supplied as-is with no warranty and can be used in both commercial and private Cocoa projects, but may not be sold or repackaged as tutorial material.

				Please note that some special symbols used in this eBook may not display properly on all eReader devices. If you have trouble determining any symbol, please call Wiley Product Technical Support at 800-762-2974. Outside of the United States, please call 317-572-3993. You can also contact Wiley Product Technical Support at www.wiley.com/techsupport.

			

		

	
		
			
				Part I: Getting Started

				
				In This Part

				

				Chapter 1

				Introducing Xcode 4

				Chapter 2

				Getting and Installing Xcode

				Chapter 3

				Building Applications from Templates

				Chapter 4

				Navigating the Xcode Interface

				Chapter 5

				Working with Files, Frameworks, and Classes

				Chapter 6

				Using Documentation

				Chapter 7

				Getting Started with Interface Builder

				Chapter 8

				Creating More Advanced Effects with Interface Builder

			

		

	
		
			
				Chapter 1: Introducing Xcode 4

				
				In This Chapter

				

				Understanding the history of Mac development tools

				Developing Xcode

				Moving to Xcode 4

				Comparing iOS and OS X development

				Xcode is Apple's free suite of developer tools; it is used to create applications for iOS mobile devices and for Mac OS X. Xcode 4, shown in Figure 1.1, is the most recent version and is a radical update with many new features.

				Developer tools are complex, and Xcode has always tried to hide much of that complexity from novice developers. You can use Xcode in a very simple click-to-build way, but this simplicity can be misleading. Many developers never explore Xcode's more advanced features and never discover how they can use them to save time, solve problems, or extend their projects with original and creative features.

				Xcode also includes an unexpectedly enormous selection of helper applications and developer tools. A complete guide to every element in Xcode would require a shelf of books. This book concentrates on beginner- and intermediate-level features, but also includes hints and pointers for advanced developers.

				Figure 1.1

				Xcode 4's simplified interface hides familiar old features and some unexpected new ones.

				[image: 9781118007594-fg0101.tif]

				Understanding the History of Mac Development Tools

				Before OS X, Apple's IDE (Integrated Development Environment) was MPW (Macintosh Programmer's Workshop). As shown in Figure 1.2, MPW, which is still available today, was in competition with a commercial product called CodeWarrior. Both CodeWarrior and MPW were expensive, and many would-be developers were put off by the initial start-up costs.

				Looking back at early IDEs

				CodeWarrior was based on the Metrowerks C compiler and environment. It smoothed the transition from the 68k processors to the PowerPC and helped make the new PowerPC Macs a success. As an IDE, CodeWarrior provided complete support for the PowerPC architecture; MPW took longer to catch up with Apple's own new hardware. CodeWarrior also compiled code more quickly than MPW and created faster and more efficient binaries.

				Figure 1.2

				The MPW IDE is available on Apple's FTP site, and users of antique Macs can download and use it.

				[image: 9781118007594-fg0102.tif]

				[image: mac_note.eps] NOTE

				Early versions of MPW were famous for their error messages, which included “We already did this function,” “This array has no size, and that's bad,” and “Call me paranoid, but finding ‘/*' inside this comment makes me suspicious.” Later Apple IDEs reverted to more traditional messages.

				Developing Xcode

				With the move to OS X, Apple decided to retain control over the developer environment. An IDE called Project Builder had been developed as part of the NeXTStep project. A free copy of Project Builder was bundled with every copy of OS X. In fall 2003, an updated and enhanced version was shipped and named Xcode 1.0.

				Xcode has been updated with every major new release of OS X. Xcode 2.0 shipped with OS X 10.4 “Tiger.” It included improved documentation, better support for Java, and the Quartz Composer visual programming tool, which is described in more detail in Appendix A.

				Xcode 3 shipped with OS X 10.5 “Leopard” and introduced improved debugging tools. Xcode 3.1 added support for early versions of iOS.

				Xcode 3.2 is shown in Figure 1.3 and was released with OS X 10.6 “Snow Leopard.” Prior to this release, Apple supplied separate builds of Xcode for iOS and OS X development. With version 3.2, Xcode became a unified development environment that could target both platforms. This widened the developer base, but also made Xcode more difficult to download. The Mac version was around 800GB. The combined version is typically around 3GB.

				Figure 1.3

				The Xcode 3 IDE was productive but limited by obvious UI inefficiencies, such as poor support for editing multiple files simultaneously.

				[image: 9781118007594-fg0103.tif]

				[image: mac_caution.eps] CAUTION

				Strong Java support was a feature of earlier Xcode versions, but that has been downgraded in recent releases. Apple has moved Xcode toward supporting C-family development, including C, Objective-C, C++, and Objective-C++. These are now the officially supported languages for iOS and OS X development.

				Alternatives to Xcode

				Xcode is optimized for visual development of Objective-C and Cocoa projects. In practice this means the Cocoa and Cocoa Touch libraries and documentation are tightly integrated into Xcode. Xcode 4 has moved toward improving support for C++, but there are still limits to how easily it's possible to mix Objective-C, Objective-C++, and C++ code, Apple's own libraries and example source code are a combination of traditional C and Objective-C. C++ and Objective-C++ aren't widely used.

				If you are used to developing in a different environment, you may feel that Xcode works in ways that don't match your requirements. If you plan to create windowed applications with official Apple UI elements, building Objective-C and Cocoa code in Xcode is likely to be your most efficient choice. If you prefer to create UNIX applications with command line or X11 features, you may prefer an alternative. Although OS X is based on Darwin/POSIX rather than Linux, it's relatively easy to create a cross-platform application core that can be extended with platform-specific features.

				It's possible to use Xcode from the command line in Terminal with your own make files (build management and configuration files). If you're used to GCC and GDB on other platforms, you can run them directly from the command line, bypassing most of Xcode's features.

				Java and C/C++ developers may prefer the free Eclipse IDE available at www.eclipse.org. Eclipse can be extended with a C/C++ IDE. Cocoa isn't supported, but Java and mixed development are.

				For multi-platform support, Mono remains a popular choice. Mono compiles C# rather than Objective-C or C++, but is designed to support cross-platform output, running similar code on Windows, OS X, iPhone, Android, and Linux platforms. Mono also supports ASP.NET web projects.

				MonoMac and MonoTouch versions include bindings to key OS X and iOS APIs. A version for Android is also available. The main IDE is called MonoDevelop and is available at monodevelop.com. Although Mono has obvious advantages, Apple's support for the competing platform isn't reliably enthusiastic. At times, Apple has barred from the App Store apps developed in languages other than C, Objective-C, and C++. But some MonoTouch applications have been approved for sale. Mono may be a better choice for developers coming from a C# and Windows background who don't want to learn a completely new language.

				On the iPhone, Flash developers can package Flash projects as iPhone applications with Adobe's Packager for iPhone. Originally included in various versions of Adobe CS5, Packager was withdrawn when Apple restricted iPhone applications to native Objective-C and C++ code. Apple subsequently lifted the restrictions later in 2010 and at the time of writing Packager is available as a free beta project from the Adobe Labs site at labs.adobe.com. Future production versions are likely to have their own URL and product pages.

				iPhone game developers may also want to consider Ansca's Corona, which is a simplified scripted development environment for iOS and Android available from anscamobile.com/corona. Corona currently costs $349 per year, but claims faster development times than are possible with Xcode and native Objective-C.

				Understanding Xcode 4's Key Features

				For developers who are beginning Xcode, Xcode 4 includes the following features:

				[image: bl.eps] A project navigator that lists and groups related project files.

				[image: bl.eps] File and project templates for both OS X and iOS projects.

				[image: bl.eps] A code editor that includes static code checking, code completion, and dynamic hints and tips.

				[image: bl.eps] A visual UI design tool called Interface Builder, also known as IB, which can prototype visual interfaces, but can also be used to manage and preload other application objects.

				[image: bl.eps] Further integrated editors for class management and for Apple's Core Data database framework.

				[image: bl.eps] A debugger that supports expressions and conditional breakpoints.

				[image: bl.eps] Support for direct access to various online code repositories.

				[image: bl.eps] A minimal but useful iPhone Simulator that runs iOS applications on a Mac.

				[image: bl.eps] A collection of Instruments—tools that can profile speeds, monitor memory allocations, and report other key features of code as it runs.

				[image: bl.eps] Support for both visual development and low-level command-line compilation.

				[image: bl.eps] An impressive selection of further helper applications that aren't built into the main Xcode interface but are installed with Xcode and can be run independently, as needed. The tools include a packager for building installable OS X applications, hardware monitoring and testing, an animation design tool, a tool for building JavaScript widgets that can be distributed commercially, and others.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For a list of helper tools and applications, see Appendix A.

				Xcode doesn't support or include the following:

				[image: bl.eps] Editors for graphics, sounds, fonts, 3D objects, or other media types: External editors must be used.

				[image: bl.eps] Built-in support for languages other than C, C++, and Objective-C: You can extend Xcode to work with other languages, but Xcode is optimized for C-family development. (This does not include C#.)

				[image: bl.eps] Development tools for other operating systems: OS X is similar enough to BSD UNIX to allow for some code sharing. But Xcode cannot be used to develop applications for Windows, Android, or Linux, or for web languages such as Perl and PHP.

				[image: bl.eps] Unlocked open development for iOS: Applications for iOS hardware must be code signed and linked to a time-limited certificate. In practice, this means that even if you use Xcode, own an iPhone, and are a registered developer, your own applications will cease to run after the time-limited certificate expires.

				[image: bl.eps] Development on non-Apple platforms: Currently, Xcode requires a Mac running a recent copy of OS X.

				[image: mac_note.eps] NOTE

				Rumors surface regularly of a merger, or at least a relationship, between Xcode and Microsoft's Visual Studio series of development tools. There would be obvious commercial benefits to allowing Windows developers access to iOS and the App Store, but Apple's culture tends to be closed and proprietary. A formal link is possible, but at the time of writing it seems very unlikely.

				Moving to Xcode 4

				Xcode 4 marks a significant change, because the aim is no longer to produce code, but to simplify the developer experience. Many developer tasks are repetitive chores that have become embedded in the development process for historical reasons. Developer tools typically assume a workflow and mindset that date back to the very earliest days of computing, more than half a century ago.

				The designers of Xcode 4 have begun to rethink some of these assumptions, adding features that can streamline and simplify the workflow. Some of these features are specific to Cocoa and Objective-C development, while others are more general improvements in code management and debugging. Compiler technology has also improved, and Xcode 4 is moving toward the latest and fastest compiler tools.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For details of the compiler technologies available in Xcode 4, see Appendix C.

				Compared to Xcode 3, Xcode 4 has a completely redesigned interface and a selection of extra features:

				[image: bl.eps] A unified interface in a single window

				[image: bl.eps] Integrated editors for all main code and data file types

				[image: bl.eps] Integration of Interface Builder, the Xcode visual UI design tool

				[image: bl.eps] Simpler and faster navigation between files

				[image: bl.eps] Integrated code management with version control, repository access, and a code library to simplify reuse of code snippets

				[image: bl.eps] Improved debugging and code testing with more informative error messages, static code testing, support for multiple log files, and better Code Completion (formerly Code Sense) hinting

				[image: bl.eps] New code analysis features, which offer hints about basic coding errors

				[image: bl.eps] Improved and simplified code and symbol searches

				[image: bl.eps] Simplified management of build targets and products

				[image: bl.eps] Support for Schemes, which offer fine control over how projects build, and support different build options for different applications (for example, testing, debugging, packaging for distribution, and so on)

				[image: bl.eps] Support for Workspaces, which make it easy to manage and work on multiple related projects

				[image: bl.eps] Backward compatibility with Xcode 3.x project files

				[image: bl.eps] Improved compiler technology

				[image: bl.eps] Various other time-saving features, such as automatic unprompted file saves before a build

				Moving from the Xcode 3 to the Xcode 4 editor

				The new features of the editor are described in more detail in Chapter 3, but this chapter includes a simple orientation for impatient developers who are already familiar with Xcode 3. In outline, almost all the familiar features have been retained, and there are some new arrivals. But the UI has been reorganized, and features may be in unfamiliar locations.

				[image: mac_note.eps] NOTE

				Xcode 4 is backward compatible with Xcode 3. You can load Xcode 3.x projects and save them again, and Xcode 3 should still be able to open them. Naturally, you can't open Xcode 4 projects in Xcode 3.

				In Xcode 3, floating windows could proliferate uncontrollably, making them difficult to work with. Xcode 4 gathers every feature into a single window with multiple work areas and panes. The active areas can be shown, hidden, split, or resized as needed. Every Xcode feature, including Interface Builder (IB) and the debugger, can appear in this window. Features can be hidden when you're not using them. Hiding and revealing features adds a small overhead, but is much more efficient and productive than a chaotic mess of windows. You can also create your own workspaces to save and restore complete window layouts.

				[image: mac_tip.eps] TIP

				Compared to Xcode 3, Xcode 4 becomes more efficient with a larger monitor. Xcode 3 often wasted screen real estate; for example, the right side of a code window was usually empty. With Xcode 4, you can have a console/debugger, editor, file list, and IB open simultaneously in tiled panes. With a large monitor, these panes become large enough to be truly useful without scrolling, resizing, or switching.

				At the top of window, the toolbar area includes a new summary panel that displays project status. This gives progress updates as a project builds and displays a count of warnings and errors after each build. The toolbar has been simplified. Only build/run and stop buttons are available. In the first release of Xcode 4, it's no longer possible to customize this area with your own selection of build/run/stop/clean options, as it was in Xcode 3.

				Working with tabs

				Xcode 4 introduces tabs—editor sub-windows that work like the tabs in a browser, allowing single-click switching between selected files, as shown in Figure 1.4. Tabs replace the file list that appeared above the editor pane in Xcode 3. The file list was an inefficient way to select files for editing. With tabs, you can add your choice of files to the tab bar as you work and then save the tab bar with the project. You can also delete files from the tab bar when you are no longer working on them.

				Figure 1.4

				The new tab bar replaces the project file list and appears under the main toolbar near the top of the Xcode 4 window.

				[image: 9781118007594-fg0104.tif]

				[image: mac_tip.eps] TIP

				Tabs save the current cursor position, so you can use them to switch quickly between different sections of the same file. It's often useful to open multiple tabs that show the most significant methods or functions in a file.

				Working with multiple windows

				Not every developer is enthusiastic about single-window development. Fortunately, you can open multiple windows into a single project and select a different collection of editors and features in each window. A key goal is flexibility; you can arrange your workspace how you want it, with the features you want to see. As shown in Figure 1.5, you can still create a separate floating window to edit a single file by double-clicking the file.

				Figure 1.5

				In Xcode 4, you can still float individual files from a project in separate windows. But there are usually more efficient ways to work.

				[image: 9781118007594-fg0105.tif]

				Selecting and navigating files

				Xcode 3 included a pair of file and symbol navigation menus above the main editing pane. Xcode 4 extends this idea and displays a hierarchical navigation bar that generates a menu tree from your project files, listing the files and symbols. As shown in Figure 1.6, you can select any file almost instantly.

				Figure 1.6

				The navigation bar drastically speeds up access to any file in your project, by presenting them all in a single unified menu tree.

				[image: 9781118007594-fg0106.tif]

				[image: mac_note.eps] NOTE

				In beta versions of Xcode 4 you could use the menu tree to navigate to the methods in each file. This feature was removed in the final release. It was a very useful feature, so it may return in future updates. Symbols still appear in the navigation bar in a separate menu, much as they did in Xcode 3.

				You also can select files in the traditional way using Xcode 4's version of the Groups & Files pane, which is now called the Project navigator. But the navigation bar is very much faster. As shown in Figure 1.7, it includes a separate menu that lists other relevant items including header files, includes, related classes, and categories. Click the boxes icon to the left of the left-pointing arrow to view this menu.

				Figure 1.7

				At the left of the navigation bar, a separate menu shows files and items that are more loosely related to the currently selected file.

				[image: 9781118007594-fg0107.tif]

				Using the Assistant

				Xcode 3 included a counterpart file selector that switched an editor window between a class header and its corresponding implementation file. Xcode 4 introduces Assistant, which is designed to work with a new vertically split double-pane view. When you select a file for editing, Assistant makes an informed guess about a useful counterpart and displays it automatically, as shown in Figure 1.8. By default, this means that selecting a header displays the implementation file in the second pane, and vice versa.

				Figure 1.8

				The button for selecting the Assistant option is in the grouping at the top right and looks like a light bulb. It splits the editor into two panes and automatically displays a counterpart file whenever a file is selected.

				[image: 9781118007594-fg0108.tif]

				With the vertical split view and Assistant, you no longer need to manually switch between counterparts or to work with the less efficient horizontal split view available in Xcode 3. This feature is one of the most useful timesavers in Xcode 4. You also can manually a select a counterpart or other file using a new contextual right-click menu, as shown in Figure 1.9.

				Figure 1.9

				You can change the behavior of Assistant to select a specific type of counterpart file, which can include an object's superclass as well as its headers and includes. This is useful for newcomers who may not be aware that Cocoa and other OS X headers are available in Xcode and can be used as a reference.

				[image: 9781118007594-fg0109.tif]

				Working with Interface Builder

				IB is now built into Xcode 4. It launches at the same time as Xcode, and you can edit a nib file simply by selecting it. IB in Xcode 3 had the same poor window management as the main editor. IB's windows would often hide behind other windows for no reason.

				In Xcode 4, you can use tabs, the navigation bar, and other new editor features to work with multiple files more efficiently. Linking and symbol editing have also been drastically simplified. You can drag links directly from a control or object in IB to a code window, as shown in Figure 1.10. Xcode inserts appropriate code for you in both the header file and the implementation. It also synthesizes outlet variables automatically. For detailed examples of creating links among outlets, actions, and IB objects, see Chapters 7 and 8.

				Figure 1.10

				Creating outlet code automatically in Xcode 4. This is a very powerful time-saving feature.

				[image: 9781118007594-fg0110.tif]

				Exploring code and file management

				Xcode 4 includes two new panes at the left and the right that can be revealed or hidden as needed, using a pair of buttons near the top right of the toolbar. As shown in Figure 1.11, the left pane, known as the navigation pane, includes a simplified but familiar version of the Groups & Files pane from Xcode 3. This pane also includes symbol lists, search options, and log listings.

				The Get Info feature in Xcode 3 has been replaced by an info view in Xcode 4. As shown in Figure 1.11, you can display the filename, type, and location in a right pane, which is known as the utilities pane. This pane gathers miscellaneous information that previously appeared in various floating windows. For example, IB's inspector panes appear here. It also shows build target and localization information. When you select a file, the contents of this pane are updated automatically. This saves time over Xcode 3's Get Info pop-up menu feature, which presented this information in a less accessible way.

				Figure 1.11

				New left and right panes in Xcode 4 display ancillary information and manage optional features that may not be needed while editing.

				[image: 9781118007594-fg0111.tif]

				The utilities pane is also shown in Figure 1.11. It includes a new Library sub-pane that can display file templates, standard code snippets, standard system objects that include both UI and data classes, and project media files.

				The Code Snippet feature in the Library is shown in Figure 1.12. It's often useful to reuse the same code between projects, and the Code Snippet makes it easy to do this. To add code to a project, drag it from the library and drop it in the editor window. You also can view previews of each snippet by selecting it before dragging. By default, this pane includes a small selection of standard snippets, but you can extend it indefinitely by adding your own. For more details, see Chapter 9.

				Figure 1.12

				The new Code Snippets feature makes it easy to reuse code and is a partial replacement for Xcode 3's Code Sense macros.

				[image: 9781118007594-fg0112.tif]

				Exploring the debugger

				As shown in Figure 1.13, the debugger now appears in a new pane at the bottom of the editor window. To reveal it, select View⇒Show Debugger Area. Both console output and debugger output appear in this area. You can choose to view either or both by clicking the new buttons that appear at the top right of the area. The debugger now supports multi-threaded debugging. You can set breakpoints by clicking in the gutter area to the left of the editor.

				Figure 1.13

				The new debugger area no longer appears in a separate window, although for convenience you may decide to launch it in one. On a smaller monitor, the debugging and console area can feel cramped.

				[image: 9781118007594-fg0113.tif]

				Comparing iOS and OS X Development

				Although Xcode supports OS X and iOS development equally and it can be used to develop apps for both the iOS and Mac App Stores, there are significant differences between the two platforms.

				Developing for OS X

				OS X development in Xcode 4 is build-and-go. There are no restrictions on development, testing, or distribution. You can create applications that run in a debugging environment on your own Mac and package them as applications that you can run independently, sell from a website, or prepare for network distribution. You can also create Mac apps for the App Store—but this is one development option, and not an obligation. Figure 1.14 shows a simple OS X application using a template as a starting point.

				[image: mac_note.eps] NOTE

				Xcode doesn't include network deployment features. But it does create application binaries that can be handed to network deployment tools.

				Earlier versions of Xcode supported universal binary development, which was backward-compatible with PowerPC hardware. Although OS X 10.6 Snow Leopard was the first Intel-only version of OS X, Xcode supports universal binaries for Mac development and can still be used to develop applications for PowerPC targets. It continues to support AltiVec hardware acceleration. The commercial market for PowerPC applications is tiny, but PowerPC applications remain interesting in specialized media and scientific computing.

				Figure 1.14

				Create a very simple OS X application using a template as a starting point and adding a text label in IB. The application runs in its own window and replaces the OS X menu bar (not shown here). Although it appears to run independently, it is in fact controlled by Xcode and can be debugged while it's running.

				[image: 9781118007594-fg0114.tif]

				Developing for iOS

				iOS development is more complicated than OS X development. Development is controlled by provisioning, an Apple-generated security control, which is built into Xcode and manages access to hardware testing and App Store distribution.

				iPhone, iPod touch, and iPad platforms all use iOS, but these platforms are significantly different and may not always run the same version of iOS. Even when they do run the same version, not all hardware features and UI options are available on very device.

				In extreme cases, conditional code is required to check which device an app is running on and which version of iOS it supports. Code paths may need to be selected accordingly with manual checks at runtime.

				Apple is unlikely to simplify this process in future releases of Xcode. It's more likely that the iOS device range will expand, and apps will need to manage an ever-increasing selection of screen sizes, hardware features, and operating systems.

				The Xcode Simulator, shown in Figure 1.15, includes separate iPhone and iPad testing options, but it is suitable only for apps that don't use any of the iOS hardware features, such as the GPS and the accelerometer. All but the very simplest commercial apps should be tested on real hardware.

				The extra requirements of provisioning and multi-platform support can make iOS development feel challenging and complex. A further complication is the need to produce high-quality supporting graphics and screen designs for maximum buyer impact in the App Store.

				To date, Apple's beta cycle for iOS has been more aggressive than for OS X, and it's usual to have a new beta preview of iOS available almost as soon as the most recent version has been made public. Beta development requires a parallel version of Xcode and beta firmware for every test device. It may also require an updated version of iTunes and OS X.

				So although the iPhone and iPad are simpler than a Mac, and app code can be very much simpler, you should allow extra time to work for projects to support all the different possible targets, versions, and security options.

				Xcode supports these extra possibilities, but it doesn't simplify them. Developing and testing a universal iOS app—a single app that can run on an iPhone, an iPod, and an iPad—remains a challenge.

				Figure 1.15

				Create a very simple iOS app, and test it in the Simulator. The Simulator is best considered an educational rather than a production environment. It's adequate for apps with simple text and graphics, but it doesn't fully implement the GPS, accelerometer, gyroscope, or other hardware options in iOS devices.

				[image: 9781118007594-fg0115.tif]

				OS X and iOS cross-development

				In theory, you can migrate projects between platforms. In practice, Cocoa on OS X and Cocoa Touch on iOS have so many differences that dual-platform development of a non-trivial application is either challenging or unrealistic.

				Currently iOS and OS X applications have distinct markets and partially distinct distribution models. Although a few applications have appeared on both—social networking tools and games are the most popular choices—Xcode does little to simplify the development of multi-platform projects.

				The development workflow is almost completely distinct. The two platforms have these features:

				[image: bl.eps] A separate collection of classes for UI design and for data management: Many of the more creative and sophisticated classes in OS X are either absent or only partially implemented in iOS.

				[image: bl.eps] A separate testing and debugging environment: iOS applications can run in a Simulator or on a hardware device. OS X applications run in a debugging sandbox.

				[image: bl.eps] A different core programming model: iOS supports task switching with very limited multi-tasking, and limited access to the device file system. OS X supports a wider range of multi-tasking options, and less restricted access to files.

				[image: bl.eps] Separate documentation suites: iOS and OS X have separate collections of documentation and distinct source code examples.

				[image: bl.eps] Different accelerated graphics frameworks: OS X implements OpenGL in full, iOS implements the simpler OpenGL ES framework.

				[image: bl.eps] Different project templates for separate bare-bones starter application sketches: iOS includes a set of sketches for simple UI-driven handset apps. OS X includes a more complex collection of templates that support the development of plug-ins, screen-savers, and other libraries.

				[image: bl.eps] A partially distinct set of supported instruments for testing: Limited overlap exists, but some instruments remain unique to each platform.

				Apple's Model-View-Controller design pattern implies that applications should keep UI designs, UI management code, and underlying data collections distinct. OS X includes controller classes that make it easier to manage data and create UIs to work with it. Most of these classes are absent in iOS. This makes it difficult to use MVC effectively when attempting dual-platform development.

				If you plan to develop across platforms, try to package the underlying data model into its own collection of classes. You may be able to reuse these classes without major changes. Keep UI and UI management code elsewhere.

				Generally, combined iOS and OS X remain possible but difficult. It's more realistic to think of Xcode 4 as two separate development environments with a common frontend than as a single unified environment designed to produce code for either platform.

				Summary

				This chapter explained how previous Mac development tools led to Xcode, listed the key design goals of Xcode 4, and summarized the key differences between Xcode 4 and Xcode 3. It introduced some of the practical differences in more detail and looked at some of the new features. Finally, it explored the fundamental differences between iOS and OS X development and briefly discussed how those differences affect the development workflow.

			

		

	
		
			
				Chapter 2: Getting and Installing Xcode

				
				In This Chapter

				

				Selecting a Mac for Xcode

				Signing up for development

				Getting started with Xcode

				Xcode is free and runs on any Intel Mac. However, hobby developers and professionals have different hardware and software requirements. A system tuned for maximum productivity may be very different from one used for experimentation or hobby coding.

				Selecting a Mac for Xcode

				If you own an Intel Mac, you can run Xcode on it. But understanding the differences between a streamlined and productive working environment and a slow and informal one is useful.

				Choosing a processor

				Surprisingly, processors have less influence on productivity than other factors. A faster processor can speed up compilation times, but unless you're working on industrial projects with hundreds or thousands of source files, you'll find little obvious benefit to running Xcode on a high-speed multi-core Mac Pro.

				Xcode compiles incrementally, which means that only updated files and their dependencies are recompiled after an edit. Compared to Xcode 3, Xcode 4's improved compiler technology cuts compile times even further. iPhone projects compile relatively quickly, even on a Mac mini, shown in Figure 2.1

				However, other Xcode features such as code completion and source control can be noticeably faster on a faster Mac. Xcode 4 does more behind the scenes while you edit. It checks code for errors as you type it, and it can also display live help. The faster your Mac, and especially the faster your Mac's disk system, the more speedily these features work for you. On a slow Mac it can take a few seconds to check a file for errors, so there are obvious benefits to working on a faster Mac.

				Figure 2.1

				You do not need the latest, fastest, and largest Mac to use Xcode. You can create professional iPhone apps on a MacBook or Mac mini.

				[image: 9781118007594-fg0201.tif]

				Selecting memory

				Xcode 4 uses memory more efficiently than Xcode 3. Even on larger builds, it's unlikely that 2GB will feel restrictive on a Mac that's used exclusively for development. If you create artwork as well as code, you're likely to have some of the applications in Adobe's Creative Suite running at the same time as you use Xcode. Previewing graphics in Bridge, editing them in Photoshop and Illustrator, and importing them into an Xcode project is a standard workflow. Creative Suite and Xcode can work together in 2GB, but 4GB is a more realistic minimum to prevent disk thrashing and delays.

				Choosing a monitor

				A monitor, or monitor bank, can be the biggest influence on overall productivity. The less time you spend rearranging screen content, the more quickly you can create code. Although you can develop projects successfully on a monitor with a resolution of 1024x768, a minimum resolution of 1680x1050 is very much more productive. At this resolution, you can see the entire Xcode 4 workspace at once and use it as it was designed to be used. Larger monitors are even easier to work with, and a dual monitor system provides a significant speed boost because you can work on multiple projects or multiple files simultaneously.

				After you've mastered the essentials of iOS, Xcode, and OS X, you'll spend significant time reviewing class references in the various frameworks and exploring message boards looking for code samples and developer tips. The most efficient way to view the references is to create a set of bookmarks with the most useful class references and view simultaneously in tabs in a web browser. You can then switch between them instantly as needed.

				[image: mac_tip.eps] TIP

				You can use Spaces to create a separate developer Space that's dedicated to Xcode and its supporting windows. Day-to-day apps such as Mail can be kept in a different Space, minimizing clutter.

				Exposé can be another timesaver. When you have many Xcode windows open at once, Exposé is by far the easiest way to switch between them. You can set up Exposé and Spaces in the System Preferences.

				The most luxurious and productive development environment has at least two monitors for code and at least one further monitor for online browsing. The extra monitor may be on another machine, but it's more efficient to use a three- or four-monitor Mac; it's often useful to copy and paste code directly into your project from the documentation or other online sources.

				Working with disk storage

				Disk space and disk features can make a big difference to Xcode performance. Ideally, you should install Xcode on your main Mac hard drive, allowing at least 20GB for a full install of two separate versions (active and beta) with all documentation and your own project code.

				Although it's not immediately obvious from the install options, Xcode can be installed and run on an external drive. However, OS X support for external USB drives is temperamental, and external drives are likely to be slower than internal disks. You should use a tool called SpindownHD in a tool collection called CHUD (Computer Hardware Understanding Developer Tools) to control disk idle and sleep modes. SpindownHD isn't a complete solution, but you can use it to extend spin-down times. Without it, Xcode sometimes crashes when it accesses a disk that is sleeping or when a Mac wakes up after hibernating. CHUD and Spindown are installed with Xcode. You can find Spindown in <Macintosh Hard Disk>/Developer/Applications/CHUD/Hardware Tools.

				[image: mac_caution.eps] CAUTION

				The spin-down problem makes it difficult to keep folder and application shortcuts in the Finder window, where they're most useful to you. For example, if you drag Xcode to Places so you can run it quickly and the disk it is installed on hibernates or sleeps, the link may disappear. If you have enough free space, installing on your Mac's boot drive avoids this problem.

				A Mac with an SSD (Solid State Drive) for OS X and Xcode can be a significant timesaver. Xcode 4 loads projects quickly but takes much longer to boot than Xcode 3. You can speed up the initial boot by running Xcode from a faster-than-average conventional disk, a RAID 0 system (Redundant Array of Independent Disks), or an SSD. This is a luxury option but is well worth considering for professional development.

				Choosing peripherals

				Peripherals can make a significant difference to your productivity. It's good practice to choose extras that feel comfortable to work with and don't have quirks, design features, or extras that distract you.

				Selecting a printer

				A printer isn't essential and is discouraged for environmental reasons, but may be useful for occasional debugging. It can be easier to trace execution through a paper listing than to view it in sections on a monitor. There are no special requirements for printing from Xcode. Any standard inkjet or laser printer works.

				Choosing a pointing device

				There's no lack of choice in the mouse market, and if you intend to develop professionally, getting a professional mouse with extra features can be well worth the extra money. You'll use it every day, and it's important that you're comfortable with it, that its shape doesn't leave you with RSI (Repetitive Strain Injury), and that it doesn't have extra or missing features that break your concentration. Extremely expensive mice with extra buttons may not be more productive than cheaper models. A good cordless mouse with a smooth scroll wheel can save significant time, particularly if it includes inertia for faster scrolling.

				Opinions are mixed on Apple's own Magic Trackpad and mouse models. Some developers feel very comfortable with them, but others don't like them at all. Because pointing devices are a matter of taste, be sure to spend time trying out the various alternatives as thoroughly as you can. You can literally save hours or even days over a year with a cheap upgrade to a pointing device that you feel comfortable with.

				Choosing your Mac keyboard

				Keyboard action is a matter of personal taste. Some developers love the Apple wireless keyboards, but others find them impossible to work with. Be sure to visit a computer store to try some alternatives. Logitech PC keyboards offer a much wider range of actions and feels, and can easily be customized to create Mac mappings. Although some Apple enthusiasts may be horrified by the idea of using non-Apple peripherals, keyboard feel has a measurable influence on typing accuracy and comfort, so you must pick a feel that works for you.

				Depending on your location, your Mac keyboard may have unhelpful character mappings. For example, in the UK, the critical # (hash) character isn't available, and you can type #import only by copying and pasting it from an existing import directive. It's a good idea to consider a free character mapping tool such as Ukelele (scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=ukelele), which sacrifices nonessential characters to create a custom layout that includes all the essential characters used in C-family programming.

				[image: mac_tip.eps] TIP

				You may want to consider using a U.S. keyboard for development. This can be a practical choice if you have a Mac dedicated to development, but is less practical if you also use for Mac for browsing and e-mail. You can buy a U.S. keyboard from the United States using a site such as amazon.com or newegg.com. Beware of import duties and VAT—the final cost may up to 25 percent higher than the order price.

				Choosing supporting software

				Although Xcode seems self-contained, in practice you're likely to use it with other software. For example, if you choose to view documentation online, your choice of web browser becomes a significant limiting factor. Safari and Google Chrome are reasonably well behaved, but Firefox 3.x is notorious for memory leaks and lock-ups, and for running Flash and Java plug-ins with 100 percent processor utilization. Both can slow Xcode to a crawl. In extreme cases, it's impossible to edit code without a noticeable delay. This may change in future versions of Firefox, but currently Firefox 3.x can't be recommended. Debatably, Chrome provides the best overall browsing experience. It supports Flash and ad blocking, loads pages quickly, and can handle many open tabs—a useful feature when you may have many class references open simultaneously.

				Xcode typically requires the most recent version of OS X. If you are a member of the Mac Developer Program, this is included in the program cost. Minor upgrades are free, but iPhone developers may need to buy a major update when it becomes available.

				Other tools can be added as needed. Unless you outsource graphic design, you need an editing suite to create start-up graphics, icons, buttons, and other images, as shown in Figure 2.2. This is an essential requirement for the iOS projects, where graphic design is extremely important, and a very useful extra for OS X development. Adobe's Creative Suite is the de facto standard, but it's expensive. Free or cheap alternatives include Gimp for OS X (www.gimp.org/macintosh) and Pixelmator (www.pixelmator.com).

				A small number of helper apps are available for developers. Xcode 3 supported various plug-ins, but these are no longer compatible with Xcode 4. The Mac App Store includes a selection of other apps that have been updated. For example, Accessorizer (www.kevincallahan.org) adds boilerplate setter and getter code. More apps are likely to appear in the App Store as Xcode 4 matures.

				Figure 2.2

				Although it isn't integrated directly into Xcode, Adobe Photoshop works well as an external editor for graphics.

				[image: 9781118007594-fg0202.tif]

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more information about selecting editors and helper applications for various file types, see Chapter 8.

				Signing Up for Development

				Xcode 3 was free. It was supplied on every Mac's OS X installation disk in the Optional Installs folder. You can also download the latest version by registering as a developer for free.

				Apple has changed this policy for Xcode 4. You can buy Xcode 4 from the Mac App Store for $4.99 without registering as a developer, as shown in Figure 2.3. This allows you to experiment with Xcode 4. It doesn't allow you to create apps you can sell through the store, but currently you can use this option to create Mac apps you can sell from your own website.

				You can also register as a developer. This gives you a “free” copy of Xcode 4 and also gives you access to the extra features you need to create apps you can sell, and upload them to the stores.

				Figure 2.3

				You can buy Xcode 4 from the Mac App Store.

				[image: 9781118007594-fg0203.tif]

				Registering as a developer

				To register as a developer, visit the Apple developer home page, which is currently at developer.apple.com, shown in Figure 2.4. The design of this page changes regularly, but recent designs have included a selection of sign-up links for the various developer programs.

				Figure 2.4

				Begin the sign-up process at Apple's developer portal. This image shows the bottom of the page, with a list of programs. Selecting a link takes you to the sign-up page for each program.

				[image: 9781118007594-fg0204.tif]

				Choosing a program

				Table 2.1 lists the current developer programs.

				Sign-up is straightforward. You must supply an e-mail address for the free program, and you must provide personal details including an address and contact phone number for the paid programs. If you do not already have an Apple ID, you need to create one. If you already have an Apple ID for personal use, creating a separate company ID is useful if you are incorporated; this can simplify taxes and accounting.

				[image: /Table 2.1]

				The iOS developer programs

				The chief benefits of the iOS developer program, whose portal is shown in Figure 2.5, are access to the App Store retail program and the ability to test apps on real hardware. Testing requires the generation and installation of certificates and profiles—files that allow you to develop and test apps but don't allow you to copy them freely—on a special area of the developer site. This is a complex process and is described in Chapter 11.

				[image: mac_caution.eps] CAUTION

				Keep in mind that although the iOS program seems cheap, you need at least an iPod touch to test apps, and an iPhone is strongly preferred. Adding an iPad to your hardware collection can push the total initial cost of app development during the first year to over $1,000. Many developers do not earn this back from sales.

				Business sign-up requires proof of incorporation. Documents must be faxed, not sent, to Apple's HQ in Cupertino. If you are a solo developer with an incorporated business, signing up as a company can take an extra week or so, but it simplifies foreign tax accounting for App Store sales. Without a company, a portion of foreign earnings can be withheld for tax reasons until local tax authorities receive paperwork that proves country of residence. With multiple territories (sales regions) in the App Store, this can create a small mountain of paperwork for individual developers and may also hold up payments.

				Figure 2.5

				Beginning enrollment in the iOS Developer Program can take up to three weeks for companies. Enrollment for individuals is sometimes processed within 24 hours, but may take a couple of weeks.

				[image: 9781118007594-fg0205.tif]

				Enrolling for the iOS Developer Program also provides potential access to the Apple's add-on services for iOS, including the iAD network, the GameCenter network, the in-app purchase scheme, and the push notification service. To use these services, you must enable them individually after enrollment. You also may need to authorize or sign further legal contracts.

				The Mac developer programs

				The Mac developer programs shown in Figure 2.6 give developers access to the App Store and the opportunity to install and develop for versions of OS X before they're made available to the public. OS X develops more slowly than iOS, but beta updates are made available regularly. These updates may not be completely stable, so it's a good idea—although an expensive one—to install them on a separate development machine.

				Because it's possible to sell Mac applications independently from a website without using the App Store, and because anyone can buy and install Xcode for a nominal fee, the incentive to sign up as a full Mac developer may not be completely compelling. It can be worth buying Xcode 4 first to experiment with it, and then signing up as a full developer when you have developed a commercial app.

				Figure 2.6

				The supplied tools and developer resources for those enrolling in the Mac Developer Program are almost identical to those available to iOS developers, with the difference that Mac developers get access to beta versions of OS X.

				[image: 9781118007594-fg0206.tif]

				[image: mac_note.eps] NOTE

				Having a combined program for both OS X and iOS development would be useful. Unfortunately, Apple doesn't offer one. In practice, either program gives you access to a full version of Xcode with both iOS and OS X development tools and supporting documentation. The programs differ in access to beta versions for their respective platforms, and to the two App Stores.

				Accessing developer resources

				Developer resources include the online reference libraries, a selection of developer videos, and the developer message boards.

				Using the online documentation and references

				The iOS and OS X reference libraries, which include documentation described in Chapter 6, are freely available and do not require registration. The URLs change regularly, but currently you can find the iOS library at http://developer.apple.com/library/ios/navigation/ and the OS X library at http://developer.apple.com/library/mac/navigation/. If these URLs no longer work, search for “OS X Reference Library” and “iOS Reference Library.”

				Viewing developer videos

				The developer videos, an example of which is shown in Figure 2.7, include keynotes and background talks, often taken from Apple's WWDC (World Wide Developer Conference) series. In the past, Apple charged $500 for access to these videos. Now they are available via iTunes to anyone who registers for a paid program. The keynote speeches from each year's WWDC remain free and can be downloaded by anyone.

				Some developers find that the hands-on examples in the videos offer a more successful introduction to key technologies and essential development techniques than the slightly chaotic explanations in the documentation.

				The Mac and iOS Developer Programs allow access to different video collections. Only Mac developers are given access to the Mac Development Foundation Videos. Similarly, only iOS developers are allowed to download the iOS Development Videos.

				[image: mac_caution.eps] Caution

				Video sizes can up to 400MB, and the complete video collection is around 10GB. You can watch them online, but if you have slow- or medium-speed broadband, downloading them may be your best choice. As of version 10.1 of iTunes, batch downloading isn't available. You can mark any number of videos for download, but iTunes unmarks them after it completes two downloads. The remaining videos must be reselected manually.

				Figure 2.7

				If you download developer videos from iTunes, you can back them up to an alternative location and play them in alternative players, which may be on other machines.

				[image: 9781118007594-fg0207.tif]

				Using the Apple developer discussion boards

				The Apple Developer boards are perhaps the least useful developer resource. Alternative developer boards such as stackoverflow (www.stackoverflow.com) have built up a larger collection of questions and answers, discussed in more depth. They're also indexed by Google, which simplifies topic and keyword searches.

				The chief advantage of the official developer boards is that Apple employees sometimes read and comment. Otherwise, you can typically get more detailed and more helpful comments from elsewhere, from developers who may have worked through a problem and posted the code for a full solution.

				Asking for technical support

				Both the iOS and OS X Developer Programs offer developers up to two code-level support incidents per year. You can use these to discuss your code with an Apple technical support engineer. The engineers won't be able to understand a huge project instantly, so technical support incidents are best used for mysterious but localized issues that resist conventional debugging and are beyond the insight of other developers.

				Many of the internal features of iOS and OS X are undocumented, and code doesn't always work as you expect it to. For example, UI code may create extra ancillary views while managing transitions, or UI objects may have complex features that can't be accessed externally. Apple engineers are more likely to be aware of these quirks than external developers. But Apple doesn't guarantee that engineers will solve a problem, only that they will look at it. Developers who find the service useful can buy two extra incidents for $99 or five for $249.

				[image: mac_caution.eps] CAUTION

				Only public non-beta versions of iOS and OS X are supported. You won't be able to ask questions about bugs or features in beta releases.

				Getting Started with Xcode

				When you enroll in a program, you are allowed to access a page like the one shown in Figure 2.8. The design may differ, but the page includes a download link to the latest SDK (Software Development Kit).

				Xcode is packaged as a standard Mac .dmg file, which is typically around 2 to 3GB. You must download the complete SDK with each new update; there's no incremental install or upgrade option.

				A complete upgrade cycle may require extra downloads. A new version of iTunes is often released around the same time as Xcode is updated. OS X also may go through an incremental update.

				iOS developers need to update the firmware in all their devices—or at least, in all the devices that need to run the current version of iOS. Documentation may need to be downloaded separately.

				[image: mac_tip.eps] TIP

				If you have a spare older device, it can be useful to keep an older version of iOS on it and use it for compatibility testing. Conversely, if you have a single device such as an iPhone, you may be reluctant to upgrade it to beta firmware for testing. Older apps typically work on newer firmware. However, apps developed for new beta firmware don't work on devices with older versions of iOS, unless you deliberately make them compatible.

				A full update can easily require 5 to 8GB of files, including Xcode, firmware, documentation, iTunes, and OS X. This is impractical over dial-up and can be difficult with slow broadband. If you don't have 10MB/s or faster broadband, it's useful to plan updates so you can leave the download running overnight.

				Mac developers have a more straightforward experience. OS X is updated less frequently and doesn't usually require extra downloads. Individual OS X beta releases are released approximately monthly, but are much smaller downloads than a full iOS beta. The differences between minor versions—for example, OS X 10.7.1 and 10.7.2—are often so small that you can develop apps without keeping up to date with them.

				Figure 2.8

				In this example, the download link appears at the bottom left. This location often changes.

				[image: 9781118007594-fg0208.tif]

				[image: mac_caution.eps] CAUTION

				If you're limited to dial-up, Xcode may not be a practical solution for you. At best, you can try to find someone with faster broadband willing to download updates and burn them to a DVD or copy them to a memory stick. Unfortunately, the Xcode documentation is tightly integrated within the SDK, so this is only a partial solution.

				Installing Xcode

				After downloading, double-clicking the .dmg file mounts it in the usual way. The opened mounted image is shown in Figure 2.9. Double-clicking the .mpkg file starts the installer. If a PDF file is included, it lists the latest release notes.

				After displaying the legal agreements, the installer tries to force you to install Xcode on your main system disk, as shown in Figure 2.10.

				Figure 2.9

				The Xcode dmg package is completely conventional. You can mount it and run the installer in the usual way.

				[image: 9781118007594-fg0209.eps]

				Figure 2.10

				The installer doesn't appear to give you a choice of destination. What if you want to install to a different drive?

				[image: 9781118007594-fg0210.eps]

				If you click Continue and then click the folder under the Location tab, you can select Other as the location. This opens a drop-down dialog box that allows you to select a drive and folder anywhere in your Mac, as shown in Figure 2.11. You also can create a new folder, if you choose to. Traditionally, Xcode is installed in a root-level folder named /Developer.

				Figure 2.11

				A hidden option makes it possible to choose Other and then select or create your own destination folder.

				[image: 9781118007594-fg0211.eps]

				Installing to a different folder or disk creates a split installation. Around 900MB of key features, including some of the system tools, are always installed to the /Developer directory on the main system disk. The rest of Xcode can be installed in any folder you specify.

				Typically, you see a list of optional features in the main install dialog box. The UNIX Development tools are of interest only to developers who want a separate set of compiler tools that can be accessed from Terminal using the command line. If you're not interested in UNIX development, you can leave this option uninstalled.

				In the past, the documentation was downloaded and installed with Xcode. Now it's downloaded separately after you run Xcode. You can ignore the internal documentation and use Apple's web documentation exclusively, but there are good reasons to use both if you can. For more details about installing and using the documentation, see Chapter 6.

				Depending on the current version of iOS or OS X, you may see more than one SDK listed here. In Xcode, an SDK is a collection of code libraries that build code for a specific version of either OS X or iOS. For example, Xcode uses different two iOS SDK libraries to build apps for the Simulator and for hardware devices.

				In Xcode 4, Apple typically bundles all legacy versions into a single combined SDK for a given platform. You're no longer given a choice about which versions are installed, and all supported legacy versions are made available. This may change with future updates.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For information about creating applications that can run on legacy versions of iOS and OS X, see Chapter 10.

				After you have selected a destination folder, the rest of the installation process is automatic. It can take from half an hour to two hours to install Xcode, depending on the speed of your Mac and its hard disks. You can leave your Mac unattended or continue working on something else. If you have to install Xcode, update iTunes, and change the firmware in one or more devices, the complete process can take up to half a day. If you also need to update OS X, it takes even longer.

				[image: mac_caution.eps] CAUTION

				Close Xcode and iTunes before you install a new version. The installer pauses if Xcode or iTunes are running.

				Creating and organizing project folders

				After installing Xcode, you can create supporting folders for your projects. Do not save your projects inside a /Developer folder. This is critically important. When you update Xcode, the contents of /Developer can be overwritten without notice. For similar reasons, don't install extra helper applications inside /Developer.

				If you have installed Xcode into a separate partition, you can keep a project folder elsewhere on the partition. The exact location or name of your projects folder is arbitrary, but it's useful to choose a location that is only a few navigation clicks away from /Developer.

				Figure 2.12 shows one possible folder workspace for Xcode and associated project folders. It's useful to have a scratch folder for quick trials and experiments, and a production folder for commercial projects. You may also want to have further separate folders for Apple sample code, template examples, downloaded code, shared or collaborative projects, and so on. Try to keep the main production folder dedicated solely to production code, which includes your own applications and any spin-off frameworks you create. The /Provisioning folder shown here stores certificates and downloaded provisioning profiles used in iOS development. It's good practice to store these in a separate folder to make them easy to find and to avoid misplacing them.

				[image: mac_tip.eps] TIP

				Prefixing project folders with a plus sign (+) lists them alphabetically in a separate order from the tool and support folders.

				Figure 2.12

				One possible /Developer folder layout is shown here. +Projects hold test and experiments and +Store hold code used in App Store projects.

				[image: 9781118007594-fg0212.eps]

				Figure 2.13 shows one possible project folder structure. You often reuse graphics and fonts between projects, and it's helpful to keep them in a single shared folder. Similarly, even if some projects are abandoned, it's useful to keep them out of the way in a graveyard folder in case you need to refer to them again.

				Figure 2.13

				This is one possible projects folder layout. You may want to spend some time organizing your project workspaces before you begin coding. Your ideal layout may look very different, but it's important that it works smoothly for you.

				[image: 9781118007594-fg0213.eps]

				Working with multiple versions of Xcode

				SDKs are updated regularly, and you often need to have more than one version installed and available simultaneously. For example, you may have:

				[image: bl.eps] A production version of Xcode for production code

				[image: bl.eps] A newer beta version, used to explore the features in a forthcoming OS update

				[image: bl.eps] An optional alternative or preview SDK with broader changes

				Apple doesn't force you to install beta SDKs, but it's commercially useful to offer updated or new apps with new features as soon as the latest version of iOS is released to the public. Apple typically asks for new apps up to two weeks ahead of the release, to allow for review time.

				Xcode is modular, and it isn't difficult to work with multiple versions. The core tools change very slowly. The biggest changes happen in the SDK folders and their supporting headers and binaries.

				In practice, this means you can install multiple versions in separate folders. Use the /Developer folder for your production version. Other folder names are arbitrary. In theory, you should reinstall your production version of Xcode after installing a beta, but in practice, the order of installation rarely matters.

				One caveat is that Xcode projects always run the most recently installed version of Xcode when you double-click them. It's often easier to start the production version of Xcode manually and select a project for editing than to load projects with a double-click in Finder. Xcode maintains a recent files list, so this isn't usually a hardship—and it may be more convenient.

				Uninstalling Xcode

				In theory, you should uninstall Xcode using an Apple-specified script. Open Terminal, and type the following:

				$ sudo /Developer/Library/uninstall-devtools --mode=all

				This removes most Xcode files and the /Developer folder. If you have Xcode installed in a different folder, you can find the script in the corresponding /Library folder.

				[image: mac_caution.eps] CAUTION

				There's no undo for this operation, and the files aren't moved to the Trash. Once Xcode is removed, it is gone, and everything in /Developer goes with it.

				In practice, you can often drag the /Developer/Applications folder to the trash, and then install a new version of Xcode on top of the remains of the current one. This method isn't foolproof; it can sometimes lead to duplicated or misplaced frameworks, but it is lazy, quick, and simple. If you haven't customized the other contents of /Developer, you can drag the entire folder to the trash.

				Summary

				This chapter explored the hardware options you should consider to use Xcode productively, and it introduced the various Apple Developer Programs for iOS and OS X. It explained how to register as a developer, how to download Xcode, and how to create both a default install in the standard locations and a custom install in a selected folder or disk partition.

				It also examined multi-version installations with simultaneous production and beta development systems, and it explained how you can remove Xcode from your system if you no longer need it.

			

		

	
		
			
				Chapter 3: Building Applications from Templates

				
				In This Chapter

				

				Using the OS X Application templates

				Using the iOS Application templates

				Customizing the standard templates

				Assembling the ingredients of an application by hand in Xcode isn't a trivial process. It's faster and more convenient to start from a ready-made template, extending it as needed.

				Xcode includes templates for different types of iOS and OS X applications, including plug-ins and other special projects for OS X developers. Getting started with a template is easy. All templates include a bare skeleton of essential code and are guaranteed to build and run successfully.

				You can make development more efficient by adding your own templates to Xcode's collection. The standard templates are very simple and limited. Some include features that you may not need, and most leave out useful features that can simplify development.

				You can use the template system to create complex skeleton apps with almost any amount of code. For example, you could create a game template for iOS that includes a custom framework for graphics management, collision detection, and user input. This template could be reused as the starting point for a series of game projects.

				Getting Started with Templates

				You can access Xcode's template screen in two ways. Figure 3.1 shows Xcode's startup window. By default, this window appears when you launch Xcode. To show the templates, select the Create a new Xcode project option from the list at the left.

				[image: mac_tip.eps] TIP

				You can stop Xcode from showing this window by unchecking the Show this window when Xcode launches option near the bottom of the window. The Recents pane at the right is useful, so typically you'll want to see this screen.

				Figure 3.1

				Xcode's initial boot screen shows recent files, access to Open Other for not so recent files, and the Create a new Xcode project option that gives access to the templates.

				[image: 9781118007594-fg0301.eps]

				You also can select File⇒New⇒New Project at any time, as shown in Figure 3.2.

				Either option displays the drop-down panel shown in Figure 3.3. This is the unified list of templates for both iOS and OS X. The list of categories at the top left separates the two target operating systems and groups templates for each into categories. The Application category is the most useful, but many developers also use items from the Framework & Library collection. Application and System Plug-ins are more specialized, and the Other category includes a complete blank project for iOS and OS X, and an External Build System template for OS X only that can work with an external makefile and command-line compiler. Table 3.1 summarizes the categories.

				[image: mac_tip.eps] TIP

				You can ignore the categories and show every template for an OS by clicking the iOS or Mac OS X headers.

				Figure 3.2

				To show the templates after you've started working and the boot window is no longer visible, select the New Project option from the Xcode menu tree.

				[image: 9781118007594-fg0302.tif]

				Figure 3.3

				The list of standard templates is long, but typically you start with an Application template. The other templates are for more specialized projects.

				[image: 9781118007594-fg0303.eps]

				[image: /Table 3.1]

				Building a project from an application template

				Application templates are guaranteed to build successfully. For example, to build a simple iOS application for the iPhone or iPad, start by selecting the iOS application page in the templates pane, and select the View Based Application template. Click Next, and select a target device using the Device Family pop-up menu in the bottom third of the panel, as shown in Figure 3.4.

				Type a name for the App into the Product Name box. This name is used as a prefix for the main source files in the project, and it also defines the name that appears under the app when it's installed in Springboard This is called the product name. You can change it later using the build settings described in Chapters 12 and 13. You can also rename the files, but this is a more complex process, and isn't usually helpful or necessary.

				[image: mac_caution.eps] CAUTION

				Although most of the iOS templates include options that can create either an iPhone or an iPad app, only the Window-based template includes complete support for a truly universal app that can run on either platform without further changes. The other templates require extra manual effort, which includes a conversion stage that is discussed in Chapter 8. It's unfortunate that the templates don't support universal apps more consistently.

				[image: mac_note.eps] NOTE

				Leave the Include Unit Tests option unchecked. This option adds features you can use to add automatic tests to your code. It's described in Chapter 17.

				Figure 3.4

				Most iOS templates include iPad and iPhone variants, but they're not presented in a consistent way, partly because the two device families support different UI features.

				[image: 9781118007594-fg0304.eps]

				When you create an app from a template, a name and a copyright field that matches the company name are added to the top of every code file in the project. The easy but unexpected way to set the defaults for this content is to create a card with personal details in Address Book and choose Make This My Card from the Card menu. Xcode reads the information from Address Book when it creates a new project. You also can enter the following in Terminal on a single line:

				defaults write com.apple.Xcode PBXCustomTemplateMacroDefinitions ‘{“ORGANIZATIONNAME”=”<OrgNameHere>”;}'

				The bundle identifier is used as a file access tag by iOS and OS X and by code in your project. It's calculated automatically by Xcode. You can ignore this field for now. It's used when submitting apps to the App Store, and is described in later chapters.

				[image: mac_tip.eps] TIP

				Keep iOS app names short: Eight characters or less is ideal. Longer names are truncated with ellipses (…), which look bad and don't help the user. The app name isn't fixed, so you can change it later.

				Select Next again, and click Create as shown in Figure 3.5. By default, Xcode automatically creates a new project folder, with the name you gave your app. Select the New Folder option at the bottom left only when you want to create a new enclosing folder for a number of related projects.

				[image: mac_crossref.eps] CROSS-REFERENCE

				The Source Control at the bottom of the dialog box is described in Chapter 14. This is another feature you ignore for now.

				Figure 3.6 shows the initial new project page. There's a list of items that look like folders at the top left and various project options, including the supported versions of either iOS or OS X, at the right. The folders are called groups, it's important to understand that they do not exist on disk. They're for Xcode's internal use and to help you keep project files organized efficiently.

				Figure 3.5

				Create a new project folder. The New Folder option is used only when you need to create a new folder one level up from the project folder. The project folder itself is created automatically.

				[image: 9781118007594-fg0305.eps]

				Figure 3.7 shows the files and directories that have been added and how they're arranged on disk. The folder structure is completely different. This seems confusing—and sometimes it is confusing.

				Figure 3.6

				The new project appears in Xcode. The virtual folders have been opened so you can see the files inside them.

				[image: 9781118007594-fg0306.eps]

				The pane with the folder-like icons at the left of Xcode is known as the Project navigator. It does not show a standard directory listing.

				In earlier versions of Xcode 3, the items listed in this pane were similar to web links; they looked like a directory and folder listing, but in fact they were loose symbolic links to items on disk. They were so loose you could rename them without changing the files on disk.

				This created almost limitless confusion, especially when the links became broken—which they often did. So in later versions of Xcode 3 the relationship was simplified. If you renamed an item in this pane, it was also renamed on disk. If you deleted an item, you could choose to move it to the trash or to remove it from the project but leave the file on disk. Xcode 4 uses the same system.

				The folder-like icons remain entirely abstract. They're included to help you keep related files together in the Project navigator, but they don't exist on disk.

				Figure 3.7

				The new files as they appear on disk. Although the arrangement of files and folders is different, you don't usually need to access this folder directly; typically, you can use the more abstract view available in Xcode without worrying about the differences.

				[image: 9781118007594-fg0307.eps]

				The symbolic link system may seem counterintuitive, but it makes it possible to add files to a project without copying them. For example, you can create a library or framework in a folder on disk, and import it into various projects as a collection of symbolic links that access the original files in their original source folder. Similarly, you can keep image files or fonts in a single folder and import them via links into multiple projects without having to create multiple copies.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more information about using the Project navigator and the other new navigators in Xcode 4, see Chapter 4.

				The other key element to notice in Figure 3.6 is the Scheme/Destination menu near the top left. The Destination sets the platform—for example, the Simulator, or a hardware device for iOS, and either a 32-bit or 64-bit environment for OS X. Schemes manage the internal features of the build process. They're introduced in Chapters 12 and 13.

				You can't test apps on a hardware device until you follow the provisioning steps described in Chapter 11. So for now, use this menu to select the Simulator, as shown in Figure 3.6.

				You can now click the Run button at the top left of Xcode to build and run your skeleton app. Xcode takes a while to pre-compile the project's headers, build the app, and load it into the Simulator. The first time you build an app or an application for a new target, the build and install process takes some time because Xcode must perform various one-time operations to complete the build. Subsequent builds happen more quickly, because Xcode has much less work to do. Builds also take time to install, so the first time you run an app in the Simulator you see a black screen. The screen usually persists for 10 seconds or so, but occasionally it can last for up to a minute.

				Eventually the app loads and runs, as shown in Figure 3.8. The empty gray window isn't very exciting. It does nothing at all, but internally it is a complete skeleton app. You can now go back and begin editing the source files shown in Figure 3.6 to create the UI for the app.

				Figure 3.8

				Run the template application in the Simulator. As a skeleton application, it does nothing except paint the window gray.

				[image: 9781118007594-fg0308.eps]

				[image: mac_caution.eps] CAUTION

				The Simulator is a separate application. Xcode launches it and disappears into the background. The Simulator menu replaces the Xcode menu while the former is foregrounded. Typically you float the Simulator window on top of Xcode, so you can re-foreground Xcode by clicking anywhere around the Simulator. You can also use the Dock to switch between Xcode and the Simulator.

				Although this example creates an iOS application, the steps for an OS X application are almost identical, with the difference that an OS X application runs in a new window—not in the Simulator. The features of the different OS X and iOS templates are listed in more detail below.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more about editing, see Chapter 4. For an introduction to UI design, see Chapter 7.

				Looking inside the Application templates

				Most applications are built using Cocoa or Cocoa Touch. You can start with a minimal windowed application, or you can select a more complex template that includes one or more supporting views. The Cocoa and Cocoa Touch templates always include the following:

				[image: bl.eps] Class implementation files that define the basic elements of the application: For Cocoa and Cocoa Touch applications, the elements always include an application delegate that receives and processes application management messages from the OS—for example, one message is sent when the application finishes loading, another when the application is about to quit, and so on. Depending on the template, the default classes may also include at least one UI view controller, which receives and processes user actions generated by the UI.

				[image: bl.eps] Class header files to support the implementation files: The headers include #import directives for the essential UI framework on each platform. In templates with more than one class, the headers are imported correctly complete throughout.

				[image: bl.eps] One or more nib files with a .xib extension: Nib files are OS X and iOS resource files that define the basic properties of a window, and optionally of a UI view. These files have a dual purpose. They define the look and feel of the application UI. You can edit them to add UI objects such as images, buttons, sliders, and other controls. OS X applications include the menu tree in their nib files. Internally, nib files are treated as a general purpose inventory of objects to be loaded and initialized when the application runs. It's one of the open secrets of Cocoa development that you can add any object or class to a nib file.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more information about creating, editing, and using nib files, see Chapters 7 and 8.

				[image: bl.eps] Links between the nib files and the class files: In Apple development, code can control and respond to UI objects only when these links are defined. They appear in two places: in the nib file, and in special directives within the class headers and the implementation code.

				[image: bl.eps] A prefix header file with #import directives for the essential application frameworks: When you build an application, the headers added to this file are pre-compiled only once.

				[image: bl.eps] A plist (property list) file that includes a dictionary of application settings: You can edit this dictionary to implement standard user preferences for the application. For details, see Appendix B.

				[image: bl.eps] An English localization folder. This includes a strings file that is used to localize the application so it supports other languages in addition to English: The strings file includes pairs of strings. One string is used as a key in the application. The other string defines the text that appears when that string is used. Each language you support has its own strings file, with different output strings for each key. The templates contain English localization only.

				[image: bl.eps] A main.m file: This is a short block of boilerplate startup code that loads the application and creates a memory pool for it. You can usually ignore this file.

				[image: mac_note.eps] NOTE

				OS X projects can also link code to the UI using bindings—indirect links between properties and UI elements. The standard OS X templates don't include any bindings; if you want to use them, you have to add your own. Bindings aren't available in iOS.

				Using the OS X Application templates

				Although there are only three OS X Application templates, all include extra options.

				Using the Cocoa Application template

				The Cocoa Application template includes the ingredients listed earlier. The two options are shown in Figure 3.9.

				You can create a Document-Based Application, which is designed for multi-document applications. Each document loads and creates an instance of the same nib file. The template uses Cocoa's NSDocument class to implement the document's features. It includes extra set-up and tear-down features that aren't needed in an application that uses a single window, but it isn't a full implementation of a complete document-based application. You need to add file save/load features, recent file support, and undo code.

				The Use Core Data option creates an application with support for Core Data storage. The code implements automatic archiving and loading of the data, but it doesn't implement specific editing features. It also doesn't define a data model. For a brief introduction to Core Data, see Appendix B.

				Figure 3.9

				Select a Cocoa Application template, and set the two options. The grayed-out Spotlight Importer option isn't available, and you can ignore it.

				[image: 9781118007594-fg0309.eps]

				[image: mac_note.eps] NOTE

				Core Data isn't a full relational database. Its features are more limited, but it can still be a useful way to manage data objects that can include multiple attributes.

				Using the Cocoa-AppleScript Application template

				The Cocoa-AppleScript Application template, shown in Figure 3.10, creates a minimal AppleScript application. It's effectively a drastically simplified version of the standard Cocoa Application template, rewritten in AppleScript instead of Objective-C. Only two methods appear here: applicationWillFinishLaunching and applicationShouldTerminate. Real applications are likely to need more in the way of set-up, so this template is a prime candidate for replacement with a more advanced template of your own design.

			
				Understanding Views in Apple Development

				The word view has more than one meaning in Apple development. It can mean a complete UI design that defines all the elements in the UI: the buttons, images, and other features. But it also can mean individual UI elements within that configuration. For example, a button may include a text view that defines the text. A label may be called a label view. And so on. This seems inconsistent, but in general if an object is visible on the screen, it can be called a view. Individual UI items can also be called controls.

				There's no doubt that the terminology could be simpler and clearer, especially for newcomers. It becomes easier to understand when you look at the classes used in Cocoa and Cocoa Touch. UIView and NSView are generic containers for on-screen content. Controls are usually subclasses of these top-level elements. The class relationships are easier to understand from the code level than from the top-down design level.

				Apple is somewhat evangelical about a design pattern known as Model View Controller (MVC). This aims to split on-screen content from underlying data models, bridging the gap with controller objects that can abstract the underlying data from the UI. Done properly MVC can create applications that are efficient and easy to maintain, because the UI only needs to load and display a small subset of the underlying data, without having to make a separate working copy.

				But confusion can occur because some classes that work as controllers also implement a complete view. For example, iOS has a class called UIImagePickerController, which not only accesses an iPhone's photo library and controls the camera, but it also displays its own complete UIs for both. Technically this still fits the pattern—the controller abstracts the data and manages the UI—but it blurs developer expectations about what a controller class is likely to do.

				It's best not to get hung up on these apparent inconsistencies. MVC is an influence, not a religion, and as long as you understand how to use the classes and what a view is in approximate terms, you have all the information you need to work with views successfully.

				In iOS, navigation is managed by view switching. Typically, a top-level window object is associated with a navigation or view controller. When the user requests a new page, the controller loads the next view and displays it. Usually, it also deletes the previous view after it's no longer visible, to save memory—a process known as lazy loading.

				Practical UI design is a combination of object and control layout and view switching code. Usually, you create subclasses of views and view controllers to run your own UI-specific code, and you design the view layout in Interface Builder (IB). But you also can add and remove objects from a view under code control, and some developers prefer not to use IB at all.

				OS X design is simpler, because views are more static. They may change as the user works with them, but view swapping is an optional refinement and not a key navigation feature.

			

				[image: mac_tip.eps] TIP

				For a guide to developing AppleScript applications, see the companion AppleScript in Wiley's Developer Reference series.

				Figure 3.10

				The Cocoa-AppleScript template creates a very simple AppleScript application, which launches and…does nothing.

				[image: 9781118007594-fg0310.eps]

				Using the Command Line Tool template

				In a Cocoa application, main.c loads and runs the application, and you can ignore it. In a command-line application, main.c is the application. As you might expect, the Command Line Tool template creates a C or C++ file designed to run from the command line. Parameters are passed in argc and argv[] in the usual way. After building, the tool runs in the Console window, which is introduced in Chapter 4. You also can run the tool from Terminal.

				As shown in Figure 3.11, you can select one of six templates for the tool. This is less flexible than it sounds. The different variations link against the named OS X libraries. In practice, this means they differ only in the #include directive at the top of the file. For example, if you select the Core Foundation option, the template's code looks like this:

				#include <CoreFoundation/CoreFoundation.h>

				int main (int argc, const char * argv[]) {

				 // insert code here...

				 CFShow(CFSTR(“Hello, World!\n”));

				 return 0;

				}

				Figure 3.11

				Create a Command Line tool, a text-based application that doesn't use a GUI (Graphical User Interface). The menu simply preselects different headers in a #include directive.

				[image: 9781118007594-fg0311.eps]

				Understanding the iOS Application templates

				The default iOS templates include bare-bones examples of various possible iOS UI configurations. Understand that these outlines are a starting point, not a definitive guide to UI design. Real iOS applications rarely have much in common with the templates. As you become more experienced, the limitations of the templates become more obvious and more restrictive, and you'll almost certainly want to modify them or create new templates of your own.

				[image: mac_tip.eps] TIP

				You'll find it useful to build and run each of the templates in turn. Be sure to save a version of each template to a special templates folder so you can explore each template again later without having to re-create it.

				Using the Navigation-based template

				The Navigation-based template, shown in Figure 3.12, includes a window that displays a single instance of the UITableView class. iOS doesn't support drop-down menus. Instead, you build menu-like navigation trees by combining a Navigation Controller object with one or more of these table views. Selecting a cell—an item in the table—is similar to selecting a menu item. Your code can respond by displaying the next table in the tree, or it can perform some other action.

				Figure 3.12

				Run the Navigation-based template. The navigation controller creates the gray bar at the top of the UI, and the table view generates the table cells under it. You need to add code to set the title, fill in the contents of the cells, and respond when the user taps a cell.

				[image: 9781118007594-fg0312.eps]

				Navigation is managed by an instance of UINavigationController, which handles movement through the tree and displays a title and back/forward buttons. As a top-level item, the navigation controller is included in the main window nib. Although it's not entirely obvious from the code, you typically modify the code in this template so it loads another table view when the user taps a cell.

				The Navigation-based template is iPhone only. For iPad projects, use the SplitView-based template—it has similar features but supports the iPad's more complex navigation options.

				Using the OpenGL ES template

				The OpenGL ES template, shown in Figure 3.13, includes set-up and tear-down for an application that uses the OpenGL ES graphics subsystem. OpenGL ES is used for games and for complex custom UIs. It's a specialized high-performance graphics environment, and you can ignore it unless you need to create complex 3D or 2D animations.

				The graphics are wrapped inside a class called EAGLView, which selects and runs one of the two rendering classes—ESRenderer1 and ESRenderer2—which support OpenGL ES 1.5 and OpenGL ES 2.2 code, respectively.

				Figure 3.13

				The code of the OpenGL ES template animates a moving shaded square. Significant set-up and tear-down code is needed to make this animation possible.

				[image: 9781118007594-fg0313.eps]

				Older models of the iPhone—the 2.x, 3G, and the iPod Touch second generation support OpenGL ES 1.5 code only. In practice, you add your backward-compatible code to ESRenderer1.m and current code to ESRenderer2.m. Alternatively, you can comment out the renderer selection and force your project to run the older code, which is supported on all hardware but lacks some of the powerful features in the OpenGL ES 2.2 specification.

				The default code in both renderer files draws a colored square and also maintains an animation counter. The wrapper view includes an animation timer that calls each renderer repeatedly. Your rendering code is responsible for calculating the updated view at each animation frame.

				Using the SplitView-based template

				The SplitView-based template illustrated in Figure 3.14 is the iPad equivalent of the Navigation-based template. The iPad's larger screen makes it possible to view a list of menu items in a split view, which is next to a detail view that can display relevant information for each item or for the application as a whole. Navigation code is similar to that used in the Navigation-based template. When the iPad is vertical or in portrait mode, the split view appears when the user taps the navigation button at the top left, floats above the detail view, and disappears when the user taps outside it. When the iPad is horizontal landscape mode, the split view always appears at the left.

				[image: mac_tip.eps] TIP

				You can change the rotation in the Simulator by selecting Hardware⇒Rotate Right or Rotate Left. You can also scale the iPad simulator by selecting Window⇒Scale 50% or 100%. The 100% view requires a monitor with a width or height of at least 1200 pixels.

				Using the Tab Bar Application template

				The Tab Bar Application template shown in Figure 3.15 can create an iPhone or iPad application. You can choose the hardware target using the menu in the Options bar above the template description. The user taps the buttons on the Tab Bar to select different views.

				Figure 3.14

				This illustration shows the iPad Simulator window with 50 percent scaling in portrait mode using the SplitView-based template.

				[image: 9781118007594-fg0314.eps]

				Figure 3.15

				The Tab Bar Application template displays and switches views automatically, using the UITabBarController class to manage the switching and UITabBar class to display the buttons and respond to user taps.

				[image: 9781118007594-fg0315.eps]

				This is one of the more confusing templates, because the code doesn't appear to do anything. In fact, the Tab Bar Controller manages view switching for you automatically. The template includes two view controllers and their associated nib files and code. You can use Interface Builder to add further views—pages—to the template by adding further view controllers to the list inside the Tab Bar Controller in the MainWindow.xib file. There isn't space in this chapter to include a full step-by-step guide to this process, but once you've explored IB in the next few chapters, you can return to this template and experiment with copying view controllers in the MainWindow.xib file, creating new view controller classes, and assigning them to the duplicated view controllers.

				Using the Utility Application template

				The Utility Application template shown in Figure 3.16 creates an iPhone application with an info button at the bottom right. Tapping the button reveals a flip-side view with a navigation bar and a Done button. The two views have separate controllers. The flip view is typically used for preferences and other application features that don't need to be permanently visible. There is no iPad option for this template.

				Figure 3.16

				Think of the Utility Application template as a design example than a practical application starting point. Many apps use the main/flip view design idiom, but it's often implemented in simpler and more flexible ways.

				[image: 9781118007594-fg0316.eps]

				Although you can use this template as is, it has some nonessential features. The navigation bar on the flip-side wastes space. Note that it's simply a navigation bar—a holder for a button, and not a navigation controller. Often, you'll replace the bar and the button with a single return button at the bottom of the screen, perhaps with a custom graphic.

				[image: mac_tip.eps] TIP

				For Cocoa experts, the flip code triggered by the Done button uses a protocol method call to the superview. Replacing this with a simpler call to dismissModalView: animated: in the flip view works just as well. You can use self as the modal view parameter. The call automatically finds the superview, so you don't need to specify it.

				Using the View-based Application template

				You can create either an iPad or an iPhone view-based application with this template, which is shown in Figure 3.17. This is the standard vanilla template used by most developers. It includes a window, a view controller, and a view. The view controller is already subclassed, so you can start adding code to it immediately. The view isn't subclassed, so you can't add code to it. But typically you only need to subclass it if you plan to add custom drawing code for animations or unusual graphics. Otherwise, use the view controller to manage user interactions and to control updates. Add items to the view controller nib to lay out your interface.

				Note that this template produces iPad or iPhone applications. If you want to create a universal iPhone and iPad application, use the Window-based template.

				As a lazy shortcut, all iPhone applications run automatically on the iPad using the built-in emulation mode, which displays them in a half-sized sub-window. The sub-window can be zoomed to fill the screen, but this doesn't increase the resolution—it simply makes iPhone apps look large, but fuzzy.

				There's no iPad emulator for the iPhone; iPad apps don't run on an iPhone at all.

				Using the Window-based Application template

				The Window-based application template is a minimal template with just a window that contains a single label, as shown in Figure 3.18. This is the only iOS template that includes a full universal option and can create a single app that runs on both the iPhone and iPad.

				Figure 3.17

				The View-Based Application template is the most useful starting point for app design.

				[image: 9781118007594-fg0317.eps]

				In fact this template simply creates two separate apps, with two separate nibs, and two app delegates The iOS app loader automatically selects the appropriate nib for each platform at run time.

				The template doesn't create any view controllers. So to create a true universal app you typically add two separate view controllers, each with a nib that defines a unique UI, and perhaps some shared data classes. You have to add links between each view controller and its window in IB.

				Introducing the Framework and Library templates

				iOS supports only static libraries. You can't create or add a framework to an iOS project. As shown in Figure 3.19, OS X is less limited. You can create a Cocoa framework, a Cocoa library, a BSD C library, or a Standard Template Library (STL) C++ project add-on. The Bundle option groups together a collection of Objective-C files into a format that can be used to create extensions for languages such as Ruby. It can reference the Cocoa or Core Foundation (Carbon) frameworks.

				Figure 3.18

				Although the Window-based template includes a universal option, in practice, it simply creates two separate nibs with supporting code classes. There's some overlap between the platforms, but creating a dual platform app from this template requires lots of time, thought, and effort.

				[image: 9781118007594-fg0318.eps]

				Figure 3.19

				You can used the Framework & Library option in the OS X templates to create a range of supporting frameworks and libraries for your projects—and potentially, for the projects of other developers.

				[image: 9781118007594-fg0319.eps]

				[image: mac_note.eps] NOTE

				A library is usually just a collection of code, with source files. A framework typically builds a single binary and supplies a list of headers for a #import directive. Frameworks can include media content, property lists, and other information as well as code. The framework's folder structure is fixed. In theory, frameworks include a complete class architecture, with implied usage patterns and relationships, while libraries are more likely to contain isolated discrete components. In practice, the distinction is sometimes less clear-cut.

				Introducing Plug-in templates

				The plug-in templates are specialized, and the details of plug-in design are outside the scope of this book.

				In outline, the Application Plug-in templates are designed to add custom features to existing Apple applications, such as Address Book, Automator, and so on. These applications are designed with a standard interface, and the plug-in templates generate code and resource files that match their specific requirements. Experienced developers can use them to add new features to these applications. For example, you can use the Interface Builder plug-in to define your own collection of UI objects and add it to the standard list already built into IB.

				The System plug-ins are more low level and can work with more than one application. For example, the Quick Look Plug-in can implement a preview of a custom data type used in your applications. Some of the plug-in templates are minimally complex. The IOKit driver plug-in creates a complete empty C++ file and links it against the Kernel framework. If you're a newcomer to Apple development, you can ignore these more advanced options.

				[image: mac_note.eps] NOTE

				The plug-in templates support only Apple-standard APIs. If you want to develop a plug-in for some other application, such as an Adobe Photoshop 8BX plug-in or a VST (Virtual Studio Technology) music synthesizer or sound processor, you typically need to download a suitable SDK or framework and add it to Xcode by hand.

				Changing the Standard Templates

				It's important to understand that no template is complete. Templates include a bare minimum of features and are designed to eliminate repetitive set-up chores. They're not tutorials, and they're certainly not examples of best practice.

				Many useful methods from these classes are missing from the templates, and you should review the class reference documentation, described in Chapter 6, to learn more about them. Typically, your applications rely on methods and properties that don't appear in the standard templates. The most productive templates are likely to be the ones you create yourself. Custom template creation is an advanced topic and is introduced in Chapter 12. But editing the existing templates is relatively easy and can save you time even on simple projects.

				Finding the template files

				Currently, you can find the iOS template files in /<Xcode Folder>/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Project Templates

				The OS X templates are in /<Xcode Folder>/Library/Xcode/Project Templates

				For both platforms, the application templates are in /Application, and the others are in correspondingly named folders.

				[image: mac_caution.eps] CAUTION

				If you are developing with multiple versions of Xcode, by default they all load their templates from these directories—usually. These locations may change without notice in future versions of Xcode.

				Figure 3.20 shows a view of the template file structure, with a list of files. The contents of each template are a standard Xcode project. You can open the project in Xcode by double-clicking the .xcodeproj file.

				Figure 3.20

				Locating the iOS template files

				[image: 9781118007594-fg0320.eps]

				Note that some of the templates have multiple versions; for example, the Cocoa Application template is really a group of six different templates with optional Core Data, Document, and Spotlight features. You can ignore the templates you never use. But understand that if you change one template, the others aren't updated automatically. To create a complete set of modified templates, you must add the changes to every template you plan to use.

				[image: mac_note.eps] NOTE

				Each group of templates, such as Cocoa Application, includes a TemplateChooser.plist file. If you're comfortable with plists and Cocoa dictionaries, you can open this file to explore how the different options are organized and selected, and how the plist controls the options that appear in Xcode's templates pane.

				Customizing the template files

				When Xcode uses the files to build a template, the filenames with their underscores are interpreted as macros and replaced with the Save-As name you choose. But if you open the project directly, as shown in Figure 3.21, you can edit the files as if they were a standard project. You also can build and run them. This means you can modify any template as if it were a standard project and save it in the usual way. The next time you use that template, it loads with all your changes.

				Figure 3.21

				Modifying an OS X template. This trivial change adds a comment, but you have complete freedom to change each file in a template to suit your needs.

				[image: 9781118007594-fg0321.eps]

				Because the templates are limited, customization is highly recommended. After your first few projects, you can review your code, see which features are reused regularly, and add them to the equivalent template.

				[image: mac_caution.eps] CAUTION

				Whenever you update Xcode, the standard template directories are overwritten. Whether you're using edited templates or a collection of custom templates, you must keep copies in a folder outside the /Developer directory and copy them back by hand after every update. If you don't, your edits are destroyed. (In theory you should be able to keep custom templates in ~/Library/Application Support/Developer/ Shared/Xcode/Project Templates, but this feature isn't working the first release of Xcode 4.)

				Summary

				This chapter looked at the Xcode templates and introduced a simple template-based build sequence. It examined the features of the different template types and explored the application templates for both iOS and OS X in some detail. It also explained how to modify the templates to improve them and create useful and full-featured starting points for further development.

			

		

	
		
			
				Chapter 4: Navigating the Xcode Interface

				
				In This Chapter

				

				Using the navigation area

				Using the utility area

				Working with the editor area

				Getting started with code editing

				Introducing build settings

				Earlier versions of Xcode made liberal use of floating windows. Xcode 4 gathers together all its features into a single window that is split into working areas. You can choose to hide and reveal different features as you work. Understanding which features are available is one of the keys to maximizing productivity.

				Understanding the New Interface

				Figure 4.1 shows one view of the new interface. From left to right, the UI is split into navigation, editor, and utility areas. This mirrors Apple's official UI guidelines; all Apple applications follow a similar layout. However, it's a good idea not to take the area names too literally.

				For example, the navigation area includes debugging features that are only very distantly related to code navigation. A more accurate description for the left area might be “finding and building.” It not only lists files and objects but also reports build issues, supports searches, and simplifies error checking and debugging.

				[image: mac_note.eps] NOTE

				Xcode includes a separate console and debugger, which is described in detail in Chapter 15.

				The right area is most often used as a code and object library, but it includes extra features that reveal key information about selected items, such as file paths and other miscellaneous settings. This area also includes a built-in help feature.

				The editor area is more tightly focused and is used for editing almost exclusively. But you also use it to define critical project-wide build settings and to add frameworks to your project. For example, during iPhone development, you can use this area to select the app icons and launch images for an app.

				The editor area is always visible, but you can hide and reveal the navigation and utility areas. Click the buttons near the top right of the Xcode 4 window, as shown in Figure 4.2. Each button toggles when you click it, hiding or revealing its corresponding area.

				Figure 4.1

				Look again at the Xcode interface and its three-way split.

				[image: 9781118007594-fg0401.tif]

				Figure 4.2

				The show/hide buttons for the navigator and utility areas

				[image: 9781118007594-fg0402.tif]

				Using the Navigation Area

				At the top left of the navigation area is a toolbar with seven icons, as shown in Figure 4.3. Selecting an icon changes the content that appears in the pane under the toolbar.

				Figure 4.3

				The selection icons for the navigation area

				[image: 9781118007594-fg0403.tif]

				From left to right, the icons select these toolbars:

				1. The Project Navigator

				2. The Symbol Navigator

				3. The Search Navigator

				4. The Issue Navigator

				5. The Debug Navigator

				6. The Breakpoint Navigator

				7. The Log Navigator

				[image: mac_caution.eps] CAUTION

				With a couple of exceptions, the images on these icons are perhaps best described as “abstract”; they're not a good guide to the features they select. The best way to learn what they do is to experiment with them.

				The Project Navigator

				If you have experience of Xcode 3, you'll recognize this as the old Groups & Files pane. It lists the files and other resources used in a project. When you select a file that Xcode can edit, its contents are automatically loaded into the editor area. If Xcode can't edit it—for example, if it's an image file, or a font—the editor area shows a preview.

				The file list in this navigator looks like a Finder directory listing. But this is misleading. The “folders” that appear here are called groups. They don't exist on disk. You can use groups to collect related items together. The default list of groups for a project includes Class, Other Sources, Resources, and Frameworks, but you can create new groups of your own and organize the files in your project using any system that works well for you.

				To add a new group, right-click in the navigator area and select New Group from the menu that appears, as shown in Figure 4.4. You also can rearrange the order of both groups and files by dragging them to a different position in the list.

				Figure 4.4

				When you create a new group, it is always added to the next highest level in the group tree.

				[image: 9781118007594-fg0404.tif]

				Earlier versions of Xcode 3 maintained a distant connection between the filenames shown in Groups & Files and the files on disk. The filenames were more like bookmarks, aliases, or symbolic links. Renaming a file in the Groups & Files pane didn't modify the name of the file on disk. When you deleted a file from a project, it remained on disk. Newcomers typically found this baffling.

				In later version of Xcode 3 and in Xcode 4, the connection between files and links is stronger and more intuitive. When you rename a file in this navigator, the name on disk is updated for you. But it's critically important to understand that the filenames that appear here are still symbolic links to real files. The navigator displays a list of files in the project. It doesn't display the files and folders in the project directory. If you open the project directory with Finder, you'll see a different file structure. This makes it possible for the navigator to display project files wherever they're located on disk. To delete a file, you can either use the right-click menu shown in Figure 4.4, the Backspace key, or the Delete key. Deleting a file displays the dialog box shown in Figure 4.5. You can choose to move the file to the trash, which deletes it from the project and from disk. Or you can remove the reference, which leaves the source file on disk but deletes it from the project.

				Figure 4.5

				When deleting a file, you can leave it on disk or move it to the trash. Leaving a file on disk can be useful if you want to keep an older version or move it to another project.

				[image: 9781118007594-fg0405.tif]

				[image: mac_tip.eps] TIP

				If the Utility area is visible when you select a file, you can view the file's disk path. Real projects may gather files from many different directories, so this can be a useful memory jogger. You also can use this feature to find framework header files.

				The Symbol Navigator

				The Symbol Navigator, shown at the left of Figure 4.6, performs two tasks. You can use it to browse the symbols—classes, methods, and other code features—in your project. Selecting a symbol from the lists that appear in this navigator locates and loads the corresponding code into the editor. You also can use it to list and access the internal features of OS X and to view the relevant headers.

				Figure 4.6

				Selecting a symbol in the Symbol Navigator displays it in the editor window and highlights it.

				[image: 9781118007594-fg0406.tif]

				Selecting symbol views

				The mini-toolbar at the top of this navigator is the key to understanding it and using it effectively. It has four buttons: All, System, Members, and Flat. You can use these buttons to filter the list of symbols so only the symbols in your code appear. You also can choose to view all the symbols in every framework included in the project. Here's what these buttons do:

				[image: bl.eps] All toggles between two views. When All is deselected, only classes are listed. When selected, all other entities appear: classes, protocols, functions, structs, unions, enums, types, and globals. The display shows a useful count of items in the project (“workspace”) and items in associated linked frameworks.

				[image: bl.eps] System hides and reveals the system symbols. When deselected, only the symbols in your project are listed. When selected, the full set of symbols in all linked frameworks appears. This can be a very long list.

				[image: bl.eps] Members hides and reveals internal symbols. When deselected, only classes are listed. When selected, the classes can be opened with a reveal triangle to show methods, functions, and all other code features.

				[image: bl.eps] Flat controls whether symbols are organized into a hierarchy. When selected, symbols are listed alphabetically. When deselected, class relationships are shown. For example, when Flat is selected, NSObject appears in strict alphabetical sequence near the middle of the class list. When Flat is deselected, NSObject appears at the top of the list, because it's a root Cocoa class and contains an entire hierarchy of subclasses.

				Using the symbol views

				You can use the symbol lists in various ways. Three suggestions follow, but other applications are possible:

				[image: bl.eps] To find a specific method or code feature in your own code, select All and Members and deselect System and Flat. You see a list of the classes in your code. Clicking the reveal triangle next to each class shows the list of methods and other features in that class.

				[image: bl.eps] To remind yourself of the list of methods in a Cocoa class, select all four buttons and scroll down the list to find the class. Select it to view the list of methods and other features in its interface. This literally shows you the original headers from the Cocoa source code, as shown in Figure 4.7. Copy method signatures from the headers into your code, or review the method list to remind yourself of the features supported by the class.

				Figure 4.7

				Use the Cocoa headers to remind yourself of class features and to check or copy method signatures. It's also a useful starting point for “I've never seen that class; what does it do?” explorations.

				[image: 9781118007594-fg0407.tif]

				[image: bl.eps] To select a class for editing from a list ordered alphabetically, deselect all buttons. Optionally, use Flat to show and reveal hierarchies. You see a list of project classes, without groups or any of the supporting files that appear in the Project Navigator.

				[image: mac_caution.eps] CAUTION

				For simple projects, it's usually easier and quicker to navigate to specific classes and methods using the navigator bar introduced in Chapter 1. Symbol navigation can be quicker when the list of classes is very long and your monitor is large enough to display the complete list without scrolling.

				The Search Navigator

				The Search Navigator is a simple string search tool. To use it, type a full or partial search string into the search field, as shown in Figure 4.8. You can search your project files only or the full list of linked framework headers. You also can select string matching for the start of a symbol name or for any position inside the symbol name.

				Figure 4.8

				Preparing to search a project for a matching string

				[image: 9781118007594-fg0408.tif]

				As shown in Figure 4.9, the search isn't aware of context or meaning. It simply searches the source files for a string match. Comments, code, headers, and implementation files all count as hits and are given equal weighting. If you don't specify your search string with care, the result can be a jumbled list of possible hits arranged by file order. It's not helpful to search for a class name, because the search returns every #import directive that matches the class name in every class, as well as every other occurrence of the name.

				Figure 4.9

				Because the results of a search lack context awareness, they can contain unwanted matches.

				[image: 9781118007594-fg0409.tif]

				To the left of the search area is the Find/Replace toggle. Select Replace when you want to replace the target string with an alternate string throughout the text. The Replace All button is dangerous and lacks intelligence. But the Preview option can display a list of hits similar to the one shown in Figure 4.10. The area in the middle of the list displays toggle switches that enable and disable replacement for each hit. In a large project, it can take a while to scan through every hit, but this option does allow you to use Replace selectively.

				[image: mac_tip.eps] TIP

				If you click the magnifying class icon, you see further advanced search options that control case matching and make it possible to use regular expressions in searches.

				Figure 4.10

				Using the selective replace feature, you can toggle each switch to enable or disable replacing that hit.

				[image: 9781118007594-fg0410.tif]

				The Issue Navigator and the Log Navigator

				The Issue Navigator, shown in Figure 4.11, lists fatal errors and warning messages after a build. Selecting an issue shows it in the editor window, with an adjacent red highlight and description. An icon also appears in the gutter to the left of the code editor. After a build, you can use this navigator to jump directly to problem code; if there are issues, this navigator appears automatically, even when the navigator pane is closed before the build. (This isn't always the behavior you want, but currently there's no way to disable it.)

				Although this seems like a simple feature, there are hidden complexities. First, the gcc and llvm compilers produce different error messages. If you've used previous versions of Xcode, you're used to the quirks and limitations of gcc. The llvm compiler option takes a different approach to error reporting, and you see unfamiliar error messages, sometimes in unfamiliar locations.

				Figure 4.11

				Clicking any warning or error in the build results list displays related code in the editor window.

				[image: 9781118007594-fg0411.tif]

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more information about selecting and using different compilers, see Appendix C and Chapters 12 and 13.

				Second, if you're new to development, it's important to understand that errors don't always appear on the correct line of code. For example, if you remove or comment out the closing curly bracket from a method definition, you create a cascade of errors in the rest of the file, but the missing bracket isn't flagged correctly. Some errors require experience and guesswork. Problems in code can often create multiple errors at the same location.

				Finally, there are many different possible warning messages, and you can select the ones you want to see. In the Project Navigator, select the project, and then select Build Settings. Select All under it, and scroll down to show the Warnings panel, as shown in Figure 4.12. Many of these options assume intermediate or expert level experience, so it's best to leave them unchanged unless you know what they're for. As you gain experience, you can start to use this feature to choose the warnings you want to see.

				Figure 4.12

				You can enable or disable each warning message generated by the compiler. You also can disable all warnings, which is usually a bad thing to do.

				[image: 9781118007594-fg0412.tif]

				The Log Navigator, shown in Figure 4.13, is an alternate way to display build issues. It's similar to the Build Results window in Xcode 3, with the difference that it can show a list of build results for the project. You can refer to previous builds to compare errors. Double-clicking an issue in the editor window takes you to the code that caused it.

				Figure 4.13

				Where the Issues Navigator shows issues for the current build, the Log Navigator shows issues for previous builds too.

				[image: 9781118007594-fg0413.tif]

				The issue listings here can give you more information than is available in the Issue Navigator. For a full untruncated view of each message, click the more link at the right of each message string. You also can select the message icon that appears next to the message/error count to view the raw compiler output, as shown in Figure 4.14. This isn't usually necessary, but it can be helpful when checking file paths and library locations on disk.

				Figure 4.14

				Viewing raw compiler output

				[image: 9781118007594-fg0414.tif]

				The Breakpoint Navigator and the Debug Navigator

				You can add a debugging breakpoint—a feature that stops code execution at a certain line for testing and review—in the main code editor. Breakpoints remain in the code but are only active when breakpoint mode is enabled. Click in the breakpoint gutter to the left of any line of code. A blue arrow appears when the breakpoint is active. To disable a breakpoint, click its arrow again.

				The Breakpoint Navigator, shown in Figure 4.15, lists all the breakpoints in a project. You can move to any breakpoint by clicking the list at the left. You also can set up conditional breakpoints that are triggered only after a certain number of repeats. Breakpoints are a powerful debugging aid, with many features and options. For details, see Chapter 15.

				[image: mac_note.eps] NOTE

				When you add a breakpoint, Xcode switches to breakpoint mode automatically. You can toggle breakpoint mode manually by selecting the arrow icon to the right of the active scheme selector.

				Figure 4.15

				Setting and listing breakpoints

				[image: 9781118007594-fg0415.tif]

				The Debug Navigator, shown in Figure 4.16, lists active threads after a breakpoint is triggered. A separate debug area at the bottom of the screen appears automatically and displays relevant values and objects. For a detailed example of debugging with breakpoints, see Chapter 15.

				Loading the navigators from menus and keyboard shortcuts

				You can access all the navigators from Xcode's menu tree or via keyboard shortcuts. The Navigators are listed under View⇒Navigators. To select them from the keyboard, use Ô+1-7. Ô+0 shows/hides the navigator area.

				Figure 4.16

				Viewing breakpoint and thread information in debug mode, with the Debug Navigator

				[image: 9781118007594-fg0416.tif]

				Using the Utility Area

				The utility area at the right of the UI has two sub-panes. The top sub-pane displays file information and quick help. The lower sub-pane is a code and object library. You can hide the lower sub-pane by dragging its divider down until only the four icons on its top toolbar are visible.

				Displaying file information

				When viewing code files, the top sub-pane displays two icons. The icon on the left displays file information, as shown in Figure 4.17. To rename a file, type the new name into the File Name text field. To change the file type, select a new type from the File Type menu.

				[image: mac_note.eps] NOTE

				Nib files are treated as a special case. When you select a nib, the top sub-pane shows a more extensive collection of icons that can be used to set the size, properties, and other key features of nib objects. For details, see Chapters 7 and 8.

				Figure 4.17

				This option displays file path details and extra settings such as the text format.

				[image: 9781118007594-fg0417.tif]

				The Location menu sets the root file path reference. The default Relative to Group option is the most useful. It creates a file path relative to the main project directory. You can copy the project directory to a different disk location without breaking this reference.

				You also can change the file path to an absolute reference or to a path relative to some other disk folder, such as the /Developer directory. Use this option with care. If you copy or move a file with an absolute reference, Xcode can't find it again. If you do this by accident and lose a file from a project, you can use this pane to reset the path so the link works correctly. Click the tiny folder-window icon to the right of the area under the Location window to select a directory.

				[image: mac_tip.eps] TIP

				You can use the arrow icon next to the Full Path listing to reveal a file in Finder.

				This sub-pane also displays supporting information about the file:

				[image: bl.eps] Localization displays foreign language support. Some files can be localized, or created in different versions that support non-English languages. For more details, see Chapter 8.

				[image: bl.eps] Target Membership sets the build target for the file. Simple projects have a single build target, and you can ignore this option. For more complex projects, see Chapter 12.

				[image: bl.eps] Text Settings defines the text encoding for the file. The default is UTF-8 (Unicode Text Format - 8 bit), which supports non-English characters. By default, Xcode creates indents with spaces. If you need code indented with tabs, select that option with the Indent Using menu. You also can set the number of spaces for each indent.

				[image: bl.eps] Source Control is used for collaborative development, or development that uses a code repository. For information about repositories, see Chapter 14.

				Using Quick Help

				The second icon at the top of the sub-pane displays a Quick Help window. In Xcode 3, you could link directly to documentation by highlighting an item, right-clicking it, and selecting a link to the documentation. Quick Help, shown in Figure 4.18, is the Xcode 4 equivalent. Highlighting an OS X object or method displays a list of relevant help information: You can also option-click an item to view help information when the Utilities pane is hidden.

				[image: bl.eps] Name is the item name.

				[image: bl.eps] If the symbol is a method, Declaration shows the method signature.

				[image: bl.eps] Availability lists the OS X or iOS versions that first supported the symbol.

				[image: bl.eps] Abstract describes the symbol's purpose.

				[image: bl.eps] Declared links directly to the header file in which the symbol appears.

				[image: bl.eps] Reference links directly to reference documentation; for more details, see Chapter 6.

				[image: bl.eps] Related API shows related methods and objects, where relevant.

				[image: bl.eps] Related Documents shows the related programming guides, where available.

				[image: bl.eps] Sample Code lists a selection of sample projects that use the symbol or illustrate how it works.

				Quick Help can be sluggish on a slow Mac, so even though it's supposed to display useful information as you type, it doesn't always keep up. Because it runs continuously when this pane is open, it can slow down other “live” Xcode features, such as the error checking.

				But it also provides quick access to key help documentation. If your Mac is fast enough, it's worth leaving it enabled.

				[image: mac_note.eps] NOTE

				Custom objects—objects you have created yourself—display only a link to the class in which they're declared. You can use this feature to move straight to the relevant declaration. Full Quick Help definitions aren't available, and the Quick Help system isn't set up to allow custom additions.

				Figure 4.18

				There's a surprisingly large amount of useful information in the small Quick Help window.

				[image: 9781118007594-fg0418.tif]

				Using the library area

				The library area, shown in Figure 4.19, displays four types of files and objects. You can select them with the icons that appear in the toolbar at the top of the sub-pane:

				[image: bl.eps] The File Template Library is a list of file types that you can add to a project. There's some overlap with the file templates introduced in Chapter 3, but the list that appears here is longer and includes files that are used with Interface Builder (IB) and the Core Data editor. To add a file to your project, open the Project Navigator, drag a file from the list in this library, and drop it into a group.

				[image: bl.eps] The Code Snippet Library was introduced in Chapter 1. You can use it to add boilerplate code to your project. For details, see Chapter 9.

				[image: bl.eps] The Object Library is used with Interface Builder. Use it to select a standard OS X or iOS UI or data object and add it to your project. For details, see Chapter 7.

				[image: bl.eps] The Media Library manages media files you add to the project. For details, see Chapter 8.

				Most library use is drag and drop: You can drag objects from the library and drop them into the project's file list or in a suitable editor. iOS and OS X support different object and class libraries.

				[image: mac_caution.eps] CAUTION

				This library area allows you to drop OS X objects into an iOS project, and vice versa. This isn't usually a useful thing to do.

				Figure 4.19

				Explore the File Templates in the library area to learn how to add files to your project by dragging them from this area and dropping them into the Project Navigator.

				[image: 9781118007594-fg0419.tif]

				Working with the Editor Area

				The key features of the editor area, including basic class and file navigation and the new Assistant feature, were outlined in Chapter 1. In this area, you can do the following:

				[image: bl.eps] Edit code. In addition to simple typing, the code editor includes hidden features such as code completion, which automatically suggests code as you type.

				[image: bl.eps] View two associated files simultaneously—typically an implementation file and its associated header, or a nib file and its related source code.

				[image: bl.eps] Create a visual UI layout for your application.

				[image: bl.eps] Design the schema of a Core Data database.

				[image: bl.eps] Compare previous and current versions of a file side by side.

				[image: bl.eps] Define build settings, or the list of switches, options, files, and other elements that define how source files are converted into one or more binaries.

				[image: mac_tip.eps] TIP

				The forward and back arrows at the top left of the editor are easy to miss, but they're an essential timesaver. They work like the forward and back buttons on a browser. For example, if you are currently viewing code but you were previously viewing a UI layout in Interface Builder, the back button switches the editor back to IB for you automatically.

				Getting started with code editing

				Although code editing seems simple—start typing and stop when you're done—it can take time to get accustomed to the hidden features in Xcode, which include the following:

				[image: bl.eps] Code completion: This is a fairly sophisticated feature that makes educated guesses about possible code as you type. You can insert the suggested code with the Tab key or select a different educated guess from a floating menu.

				[image: bl.eps] Auto-indentation: This indents the cursor position automatically, taking into account preceding code.

				[image: bl.eps] Bracket matching: When you type a closing bracket or move the cursor over it with the right arrow key, the matching open bracket flashes yellow. If there is no matching bracket, Xcode plays a short warning sound.

				[image: bl.eps] Bracket generation: Type a new a method signature and an opening curly bracket, then type Return. Xcode adds a closing curly bracket and positions the cursor on the first blank line of the method.

				[image: bl.eps] Square bracket balancing: For square brackets only, Xcode adds an opening square bracket when you type a closing square bracket. While this feature can be useful, it lacks intelligence, and sometimes you need to remove the brackets it creates.

				The easiest way to master these features is to experiment with them. They're often very helpful, but occasionally you may need to use them in a lateral way. For example, the simplest way to insert a new line of code is to click with the mouse at the end of the previous line and type Return. Xcode inserts a blank line and indents the cursor as needed. Placing the cursor before the insertion position doesn't do what you want.

				Using code completion

				If you've used Code Sense in Xcode 3, Xcode 4's code completion works slightly differently. The easiest way to illustrate it is with an example.

				Create a new project using the iOS View-based application template. Save it with any name; in this example, I use myCleverApp. Open the Project Navigator, and select the myCleverAppAppDelegate.m file so the code appears in the editor.

				Click with the mouse at the end of a line of code in any method. In this example, I use the application didFinishLaunchingWithOptions: method. But code completion isn't limited to any one method or class; it works throughout a project.

				Type [UIVi, as shown in Figure 4.20. Code completion pops up the menu shown in the figure. UIView is highlighted to indicate that this is code completion's best guess. To accept the guess, type the Tab key or the Return key. Either inserts UIView in full.

				Figure 4.20

				Xcode 4's Code Sense feature has been redesigned. But if you're used to Xcode 3, you'll find much of it remains familiar.

				[image: 9781118007594-fg0420.tif]

				What if I meant to type UIViewController? To select a different guess, you can scroll down the menu with the mouse or the cursor keys. UIViewController appears at the bottom of the list, and you can insert it with Tab or Return, as before. Similarly, you can select any of the other options.

				Code completion is a fast symbol listing tool. It has some very basic intelligence and context awareness, but it can't read your mind, and it can't tell whether you want to add a class, a function, or an enumerated constant, so it shows you all the options that fit your clue string. To use code completion efficiently, type enough characters to allow it to find an unambiguous match. The full extended list of pop-up guesses is less useful, although it can be a good memory jogger—for example, when you can't remember a list of constants.

				If you add a method that takes parameters, code completion highlights the parameters for you and allows you to tab between them. In the example shown in Figure 4.21, you would fill in the first NSString parameter by typing over it, tabbing to the NSKeyValueSetMutationKind parameter, typing over it, and tabbing again to the final NSSet parameter.

				Figure 4.21

				Use tabs to skip between parameter fields. The tab key skips the cursor from one field to the next, jumping over the intervening code. The current type-over area appears highlighted in blue.

				[image: 9781118007594-fg0421.tif]

				If you're getting started with Xcode, it's a good idea to spend enough time practicing with this feature to make it second nature. Although you can use the arrow keys to move between parameters, this tab-type-skip feature is a significant timesaver.

				Using auto-indentation

				Auto-indentation works as you'd expect, moving the cursor to the correct horizontal location in the code. It's smart enough to keep track of nest brackets and other features. If you auto-indent a line and the cursor doesn't appear where you expect it to, it's likely there's a missing bracket on a preceding line. This is a useful feature, not a bug. You can indent with spaces or tab characters and select the number of indentation spaces using the File Information area introduced earlier in this chapter.

				Using the Structure pop-up menu

				Select a few of lines of code inside a method, right-click, and select Structure from the menu that appears, as shown in Figure 4.22. This menu has some extremely useful features. You can move the code left or right as a single block manually, re-indent it automatically to its ideal indentation level, or convert it into a comment.

				Figure 4.22

				Use the Structure pop-up menu; it's a powerful timesaver.

				[image: 9781118007594-fg0422.tif]

				The Balance Delimiter feature highlights the code between matching brackets. Use it to confirm that your brackets are balanced correctly. Move Line Up and Move Line Down swap the code block with the line above it or below it.

				This menu is another essential timesaver. Getting into the habit of using it without thinking about it can save significant development effort.

				Introducing build configurations

				Build settings define build sequences and compiler options for a project. In Xcode, build settings are grouped into configurations. Table 4.1 summarizes the differences between the default configurations included in every new project.

				[image: /Table 4.1]

				Understanding project build settings

				Xcode makes a distinction between project and target build settings. In Xcode, a target is a set of instructions for building a single binary. A project is a file container that supplies build defaults and also holds the files that can be compiled into binaries. For example, a universal iPad/iPhone project has two targets—one for each platform. A Mac OS X project might create an app and a framework as separate targets.

				Project settings are useful defaults for every possible target. Figure 4.23 shows an example of project build settings. You can view this editor by selecting a project in the Project Navigator and clicking the PROJECT icon in the gutter area.

				Looking at target build settings

				Target settings can override the project defaults. They also define extra runtime details for the target, including icon files, plists (property lists), and other specialized features used to create one particular binary. These settings also define some of the possible interfaces between applications. For example, on the iPhone, you can use them to define a URL scheme—an inter-application interface—that allows other apps to launch and run your app and to pass it data. Figure 4.24 shows some of the target settings.

				As with the project build settings, you can leave most of the target build settings unchanged. A handful are critical and are described below and in Chapters 12 and 13. Most can be left as defaults.

				Figure 4.23

				Look again at project build settings; there's so much to see here, but you can leave most of it unchanged.

				[image: 9781118007594-fg0423.tif]

				[image: mac_caution.eps] CAUTION

				Although you can ignore most of the build system for simple app development, you must know how to make standard changes to the settings before you can sell apps through the App Stores. The full build system is complex and includes projects, targets, schemes, configurations, actions, phases, rules—and more. Chapters 12 and 13 introduce it in detail, and also explain how to avoid most of the complexity when you need to make simple changes.

				Figure 4.24

				Look at target build settings, which define how all the elements in a project are combined into one or more binaries.

				[image: 9781118007594-fg0424.tif]

				Adding frameworks

				One of the critical settings in the Build Settings section is the framework list.

				The framework management system in Xcode 4 is completely different from that in Xcode 3. It's no longer related to the Add files… menu option. Instead, it's buried in the Build Phases page of the target build settings, as shown in Figure 4.25.

				To add a framework, select your project in the Project Navigator, select the TARGETS icon in the gutter, and select Build Phases. Click the Link Binary With Libraries reveal triangle, and then select the plus (+) icon at the lower left.

				You can now select a framework from the list that appears, as shown in the figure. Note that the framework is added to the project root, and not to the Frameworks group. Although the location doesn't affect compilation, you may want to move it for clarity.

				To delete a framework from the project, select it in the Link Binary With Libraries table and click the minus (-) icon.

				Figure 4.25

				Framework management in Xcode 4 has nothing in common with the menu options used in Xcode 3.

				[image: 9781118007594-fg0425.tif]

				[image: mac_tip.eps] TIP

				While you can't use the Add Files option to add system frameworks, you can use it to add third-party frameworks. When you use this feature to add a third-party framework to a project, it's automatically added to the link list.

				Summary

				This chapter looked at the key features of the new Xcode 4 interface. It detailed the new navigator area and listed the various navigator panes used to move through the code and other resources in a project. It explored the utility area and outlined the file information and quick help features. It also introduced the editor area and explored some of the essential shortcuts used to simplify code editing. Finally, it introduced build settings, listed the differences between project and target build options, and explained how to add frameworks to a project.

			

		

	
		
			
				Chapter 5: Working with Files, Frameworks, and Classes

				
				In This Chapter

				

				Adding new files to a project

				Working with groups

				Working with frameworks

				Xcode projects include a list of constituent files. When you build a project, Xcode processes each file in turn. Source code files are compiled into binaries and linked together. Resource files are copied to the project's output folder, also known as its bundle.

				Each step in the process is known as a build phase. If your project has special requirements, you can customize the build phases or create custom build phases—for example, to compile source code in a specific sequence, allowing for dependencies. More typically, you can use the default build phases as they are.

				You can define the files included in a project in two ways. The simple way is to use the file management features built into the Project navigator. For more advanced management, you can use the features introduced in Chapter 13 to customize Xcode's default build phases. For simple apps, you can usually ignore this option, because the build phases “just work.”

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more information about custom builds and build phases, see Chapter 12.

				Working with Files and Classes

				The Project Navigator includes all the features you need for basic file and class management. The Navigator is easy to work with, but it's worth emphasizing again that there is an indirect relationship between the files and folders (or groups) that appear in the Navigator, and the contents of the project folder on disk.

				When you create a new Xcode project, the new files are added to a single folder. But this is a convenience, not a necessity.

				You can create a working project where the “official” project folder is empty, and every file is in a different physical folder. Project files don't have to be local; they can be anywhere on disk or on a network. This makes it easy to reuse source code and create libraries. The same library code can be referenced from multiple projects without copying.

				This applies equally to C/C++ source code, Objective-C class definitions, and resources such as graphics files. If you use a library of custom icons or button graphics, you can keep the image files in a single folder and import them into multiple projects as needed.

				There are advantages and disadvantages to keeping files in multiple locations. The advantage is that you can keep single copies and reuse them in multiple projects. The disadvantage is that it becomes harder to keep safety copies of the files in a project. It also becomes harder to use the source control management (SCM) features introduced in Chapter 14.

				[image: mac_caution.eps] CAUTION

				Typically after you build a project, Xcode copies graphics files into the application bundle. OS X allows your applications to create and access a common resource folder outside of the bundle. iOS doesn't. Be careful about adding files to an iOS project. To minimize the size of the finished app, add only files that are used. Don't add complete folders or resource collections.

				Adding new files to a project

				To save time, Xcode includes a selection of file templates that add prewritten content, including classes with headers and implementation files that include minimal but useful boilerplate set-up and tear-down code.

				The templates are similar to the application templates introduced in Chapter 3. Instead of creating a complete application, they add a useful building block to an existing application. The templates for iOS and OS X are slightly different, but they overlap significantly—much more than for the equivalent application templates.

				You can add new files to a project in two ways: using Xcode's New File menu option or by dragging and dropping the file from a template in Xcode's Utility area.

				Using the New File menu option

				You can select the New File menu option from the main Xcode menu via File⇒New⇒New File. You can also right-click in or on a group and select New File from the contextual menu that appears when you right-click on a group, as shown in Figure 5.1.

				Figure 5.1

				Adding a file using the New File option

				[image: 9781118007594-fg0501.tif]

				Selecting New File displays the file template list, shown in Figure 5.2. You can select OS X or iOS templates from the list and then choose sub-types from the two panes at the left.

				Figure 5.2

				Selecting the file template from the iOS and OS X panes

				[image: 9781118007594-fg0502.tif]

				Use the Save dialog to name the file, as shown in Figure 5.3. By default the file is added to the project folder. Optionally, you can choose to save it to a different location. After this dialog box disappears, the file is added to the Project Navigator inside the group that you right-clicked.

				[image: mac_note.eps] NOTE

				To emphasize again, the file always appears in the Project Navigator, no matter where you save it on disk. For practical reasons, it's a good idea to save project files to the project folder. You don't have to do this, but if you don't, you may have to keep track of file locations by hand. If you move the project folder to a different location, Xcode may not be able to adjust its file references, and the project may not build.

				Figure 5.3

				Naming the new file before saving it

				[image: 9781118007594-fg0503.tif]

				[image: mac_note.eps] NOTE

				You can use the Add to targets option to define which targets the file will be added to. Simple apps typically have a single target, so you can ignore this feature. For more information about targets, see Chapters 12 and 13.

				Using drag-and-drop from the Utility area

				To use the drag-and-drop feature, select the File Template Library icon if it isn't already selected. Optionally, you can select the iOS or OS X sub-libraries, as shown in Figure 5.4. This is a recommended step. If you don't select a sub-library, the menu lists the iOS templates, followed by the templates for OS X. Although the templates for both platforms appear similar, most are incompatible, and you should filter them to ensure that you're making a selection from the correct list.

				Figure 5.4

				Selecting iOS or OS X file templates

				[image: 9781118007594-fg0504.tif]

				With the drag-and-drop option, you can select a template and drop it directly into any group, as shown in Figure 5.5. The naming/saving step is identical to that shown in Figure 5.3.

				Figure 5.5

				Adding a file with template drag-and-drop

				[image: 9781118007594-fg0505.eps]

				Comparing the New File and drag-and-drop options

				The drag-and-drop option is quicker and simpler than using New File, because it skips the two steps shown in Figures 5.1 and 5.2. However, for certain file types, the New File option reveals extra features that aren't available with drag-and-drop.

				For example, Figure 5.6 shows the extra check boxes that appear if you use New File to add a view controller to an iOS project. In this example you can use these check boxes to create an iPad-compatible class, with an associated nib file. If you use drag-and-drop, these options don't appear.

				Figure 5.6

				These extra features available when using the New File option don't appear when using drag-and-drop.

				[image: 9781118007594-fg0506.tif]

				Naming new files

				Xcode doesn't enforce a naming convention for new files, so it's up to you to name files using a scheme that works for you. By default, the class files are named class.m and class.h, which is unhelpful, especially if you use more than one class.

				It's good practice to include both the project and functional class name in every new class; for example, a new view controller for the flip view in an iOS project might be called FlipsideViewController. Terse and obscure names such as AClass or MyClass will confuse you later and are best avoided.

				Adding a new class

				When you add a new Objective-C class, Xcode automatically adds a header file to the project. Where needed, it also adds a matching implementation file to the project. There are five templates for iOS classes and four templates for OS X classes, with significant overlap, as shown in Table 5.1.

				[image: /Table 5.1]

				[image: mac_caution.eps] CAUTION

				You can add iOS templates to OS X projects, and vice versa. For example, Xcode 4 allows you to add an OS X menu to an iOS application. The menu doesn't do anything because it isn't referenced by the code, but it's included—as a waste of space—in the app bundle. When you add new items, be careful to have the correct OS selected.

				Adding new resources

				Although it's often useful to add new windows and views to a project, the templates make this unnecessarily complex. It would be useful to add nibs and supporting source code in a single step, but the templates don't support this. Instead, you must add a suitable nib from a list of resource files and then add supporting classes manually.

				The one exception to this is the UIViewController subclass template for iOS, which creates source code files and an associated nib. For other tasks, you must add and edit the nib files by hand, add supporting class files separately, and then reclass the nibs so they're linked to the source code. For more details, see Chapters 7 and 8. Table 5.2 lists the nib files that are available.

				[image: /Table 5.2]

				Adding miscellaneous other files from the templates

				The templates include a selection of other files. You can add them to a project in the usual ways.

				[image: bl.eps] The C/C++ templates add a standard C or C++ pair of header and code files. You can import these into Objective-C code in the usual way. For more about working with these languages, see Chapter 12.

				[image: bl.eps] The Shell Script and Assembly File templates support shell scripts and assembly code, respectively. You can run a shell script as part of a custom build. Assembly code is used for very specialized hardware-level coding.

				[image: bl.eps] The Core Data templates include a Data Model file and a Mapping Model file. You can add these to projects that support Core Data. If your project doesn't use Core Data, you can ignore them. For details, see Chapter 13.

				[image: bl.eps] Use the Rich Text File (RTF) and Strings File templates to add text-based data. The Strings file is used for localization—non-English language support. For details, see Chapter 12. The RTF file is a standard text file. You can use it to hold any string- or text-based data. For OS X applications, you can use an RTF file to define the information that appears in an application's About box.

				[image: bl.eps] Settings and Property Lists (plists) include an empty XML plist file for general property preferences and settings. Both iOS and OS X applications already include an info.plist file with basic application details. The iOS templates include a separate Settings Bundle, which uses an iOS-specific format to define an app's settings and preferences.

				[image: bl.eps] Resource Rules and Entitlements are signed certificates that can be used to lock your application to specific hardware or software environments. For example, on iOS you can use these features to create an ad hoc build that runs on specific handsets for beta testing, bypassing the app store. Entitlements and code-signing are complex topics. For practical details, see Chapter 11.

				[image: bl.eps] You can use a Configuration Settings File to create your own list of build settings for a project—for example, to create your own build setting defaults. For information about custom builds, see Chapter 12.

				Deleting and renaming files

				You can delete a file with the Delete key, or by right-clicking a file and selecting the Delete option from the contextual menu, as shown in Figure 5.7. When you delete a file, a dialog box appears asking you if you want to remove it from the project and leave it on disk (“Remove Reference”) or move it to the trash. If you leave it on disk, you can re-import it later if you change your mind about the deletion. This can be a good safety net for small projects, but on large projects, it's likely to clutter up the project folder with unnecessary files.

				To rename a file, click once to select it in the Project Navigator and type in the new name. You also can enter the name in the File pane of the Utility area. Figure 5.8 is a composite that shows both options. Renaming a file changes its name in the project and also renames it on disk.

				[image: mac_caution.eps] CAUTION

				File extensions are significant, but changing the extension isn't enough to change how Xcode processes the file during a build. If you need to change the type of a file and modify how it contributes to a build, select a new type from the list in the File Type drop-down menu in the File pane of the Utility area.

				Figure 5.7

				Deleting a file using the right-click contextual menu

				[image: 9781118007594-fg0507.tif]

				Figure 5.8

				The two ways to rename a file

				[image: 9781118007594-fg0508.tif]

				Note that there's no way to rename an entire project. The project name is embedded in the project folder, the class names, the header files, the project nib files, and may also be embedded in various security options including the code-signing features.

				You can work on projects with identical names in Xcode, as long as the main Xcode project files are in different folders and you don't try to edit shared files (if there are any) simultaneously in two different windows. If the files are independent, it doesn't matter what the project is called.

				Generally, the project name is for your convenience. It has no effect on the final application name, and duplicated project names don't cause problems.

				Importing existing files

				Because Xcode's file templates aren't exhaustive, you often need to import into a project files created with other editors, such as graphics, sound files, HTML web pages, PDF documents, and so on. During a build, these non-standard file types are copied to the application folder without processing. Xcode includes preview features for a small selection of file types, most obviously for graphics. But you must edit and prepare these files using other tools.

				To import a file or folder, right-click a group and select the Add Files to… menu option. You'll see the dialog box in Figure 5.9. Navigate to the folder with the files, and then select the import options using the check box and radio button.

				Figure 5.9

				Adding an image file to a project from the Pictures folder

				[image: 9781118007594-fg0509.tif]

				Optionally, you can copy files from the source folder into the project folder. If you leave the Destination box unchecked, files are left in their original location and accessed via a reference. Generally, it's good practice to copy files that are unique to the project, but to use references for files that are reused by many projects.

				You can also create groups or folder references for added folders. Although I've emphasized that groups aren't necessarily mirrored in a project's folder structure, you can use this option and the group management features introduced in the next section to create folders on disk that match the groups in the Project Navigator. This step isn't essential, but it can make a project easier to navigate if you're reusing its classes and resources.

				Reimporting missing files

				As long as you leave a file's Location option set to Relative to Group in the File pane of the Utility Area, you can move a project folder to a different location on disk without breaking the file references.

				However, Xcode does occasionally glitch and lose files from a project. If you move items that are referenced indirectly in a different folder, Xcode may not be able to find them. And if you import a project created by an older version of Xcode, the Location option may not have been set correctly.

				Broken references appear in the Project Navigator in red. As long as you can find the original file on disk, you can fix a broken reference by hand. Click the window-like icon to the right of the text box above the Full Path string in the File pane. You'll see the folder selector shown in Figure 5.10. Use it to navigate to the folder that holds the missing file, and select it when done. Xcode repairs the reference.

				[image: mac_caution.eps] CAUTION

				In Xcode 3, you fixed a broken reference by selecting the file on disk. In Xcode 4, you fix it by selecting the folder that holds the file.

				Figure 5.10

				You can change the path of a file to fix a missing reference or to substitute one version of a file in one folder with a different version in another, although there are better ways to manage version control in Xcode.

				[image: 9781118007594-fg0510.tif]

				Working with Groups

				Groups are cosmetic, for your convenience. You can use any group structure, nested as deeply as you like. The default structure with separate class and resource folders is only one of many possible arrangements. You also may create a separate group for each class or (less usefully) a single group for every file in the project.

				Moving groups and files

				Files are compiled more or less in descending order through the Navigator. Circular class references are handled automatically, so there's no significant speed advantage to reordering the groups. But it's sometimes useful to modify the group order for clarity.

				You can drag and drop groups in the Project Navigator, but dropping a group on another group nests it, which may not be what you want.

				To move a group to the top of the list, drop it on the Project item at the top of the Navigator. To rearrange all groups into a new order, you need to do this repeatedly. This can be a tedious process, especially if you have many groups.

				Moving files is much easier. You can simply drag a file from one group and drop it in another. Any file can be moved to any group.

				Creating a new group

				To add a new group, right-click the Project item and select New Group from the menu, as shown in Figure 5.11. You also can select multiple items in the Navigator using any of the standard Mac multi-select options and collect them into a single new group by selecting New Group from Selection.

				Figure 5.11

				You can add a new group from the floating menu or use File⇒New⇒New Group in the main Xcode menu.

				[image: 9781118007594-fg0511.tif]

				[image: mac_tip.eps] TIP

				To create a new group inside an existing group, right-click the existing group instead of the Project item. You can nest groups almost indefinitely.

				Organizing groups

				Because groups are completely free-form, you can organize your project however you like. There's no need to use the default organization, with separate class and resource groups. For example:

				[image: bl.eps] For an iOS project, collect each view controller and its associated nib into a separate group. This is usually easier to navigate than keeping classes and nibs separated.

				[image: bl.eps] If your project uses many supporting graphics files, group them into a separate Graphics folder to keep them distinct from other resources. This simplifies graphic previews and makes it easier to find the project nib files.

				[image: bl.eps] Similarly, you can keep other project resources such as plists and code-signing files in a separate group to keep them out of your way.

				[image: bl.eps] Source code for frameworks and libraries should have its own separate groups, especially if the files are imported from a standard location on disk. It's a good idea to keep these items separated from project source code.

				Working with Frameworks

				Apple's frameworks are prewritten libraries that can be imported into any project to add specific features, such as support for video, sound, data management, or various hardware features.

				When you build an OS X or iOS project, you may need to add one or more of Apple's frameworks to your project before you can use them. A selection of default frameworks is included in every application template; for example, OS X projects always include the Cocoa and AppKit frameworks, and iOS projects always include Cocoa Touch, UIKit, and CoreGraphics. All projects include the Foundation framework.

				Other frameworks are optional, and you must add them manually. For example, you must add the GameKit framework to use the classes and methods built into GameKit. If you don't, the compiler can't find the symbols included in the framework, and your build fails, sometimes spectacularly, with hundreds of errors.

				[image: mac_tip.eps] TIP

				If you do get hundreds of errors while building, it usually means you've forgotten to import a framework. Typically, most of the errors disappear after you add the framework correctly. Don't forget that you also need to import the framework's header file into every file that references it in your project.

				Using frameworks

				Although you could add every framework to every project, this would slow build times to a crawl. Depending on the build options, including every framework might also create huge binaries. So it's standard practice to add only the frameworks that are referenced by your code.

				[image: mac_tip.eps] TIP

				You'll often use at least one of the standard graphics frameworks and perhaps also one of the animation frameworks. It's easy to forget to add frameworks, and adding the headers by hand is a chore. You can save time by creating a default project that already includes a more realistic and useful selection of frameworks than are included in the standard Apple templates.

				Apple frameworks include a binary with associated header files, as shown in Figure 5.12. When you add a framework, Xcode adds both the header and the binary to its build list. The header is referenced during compilation, and references to the binary are added while linking.

				Figure 5.12

				The framework header files include useful comments that often add extra detail and insight that isn't available in the more formal class reference documentation.

				[image: 9781118007594-fg0512.tif]

				You also can add third-party frameworks. Some frameworks are supplied with full source code. You can add these by importing all files into your project, as described earlier in this chapter. Other frameworks are supplied in a binary/header format. To add these to a project, see the section below.

				Adding existing frameworks

				The framework management system in Xcode 4 is completely different to that in Xcode 3. It's no longer related to the Add files… menu option. Instead, it's buried in the Build Phases page of the target build settings, as shown in Figure 5.13.

				Figure 5.13

				Adding an Apple framework to a project in Xcode 4 has nothing in common with the menu options used in Xcode 3.

				[image: 9781118007594-fg0513.tif]

				To add a framework, select your project in the Project Navigator, select the TARGETS icon in the gutter, and select Build Phases. Click the Link Binary With Libraries reveal triangle, and then select the plus (+) icon at the lower left.

				You can now select a framework from the pop-up list that appears (refer to Figure 5.13). To delete a framework from the project, select it in the Link Binary with Libraries table and click the minus (-) icon.

				To add a precompiled third-party framework, select Add Other… and navigate to the framework folder on your disk.

				Summary

				This chapter introduced file and group management. It explained how to add new files to a project using the standard templates and sketched the key features and applications of each file type, including classes, nib files, and other resources.

				It listed the different ways in which files can be deleted, renamed, and re-imported, explored how files can be organized within groups, and outlined some of the ways in which groups can simplify project management.

				Finally, it introduced frameworks, explained how frameworks are added to Xcode 4 projects, and contrasted this with the different framework management options used in previous versions of Xcode.

			

		

	
		
			
				Chapter 6: Using Documentation

				
				In This Chapter

				

				Understanding the Apple documentation

				Understanding resource types

				Using the Xcode documentation viewer

				Using other documentation

				The iOS and OS X development tools are supported by Reference Libraries, documentation that provides orientation information for new developers and describes specific features in detail.

				Newcomers often assume it's trivially easy to use the documentation. In fact, the organization and content are complex, and using the files effectively is a key developer skill.

				The contents are vast. In paper form, they would require many feet of shelf space. To simplify access and to guarantee that the details are always up to date, the documentation is now stored online. You can access it using a conventional web browser, as shown in Figure 6.1, which illustrates the main iOS Reference Library access page.

				[image: mac_caution.eps] CAUTION

				The URLs for Apple's online documentation change regularly. Use a Google search to find the current location.

				You can also access it via the streamlined and expanded documentation tools built into Xcode 4, which are described in the rest of this chapter.

				[image: mac_tip.eps] TIP

				When you begin with iOS or OS X, you often return to the same documentation pages over and over. The Xcode documentation viewer includes a bookmark feature to help with this. But it also can be useful to load your favorite pages into a separate tabbed browser and keep them open while you work. You can use the OS X Spaces feature to give the browser its own desktop.

				In earlier versions of Xcode, the documentation files were downloaded as a single .docset file for each library. Xcode 4 continues to use docset files, as shown in Figure 6.2. When you first install Xcode 4, none of the docsets are available. You must open the Documentation tab in Xcode⇒Preferences and select each GET button to download them. Allow between 2GB and 5GB of disk space for a full download.

				Figure 6.1

				You can access the Reference Library using any browser, but Xcode 4 offers more streamlined and efficient access to key information with Safari.

				[image: 9781118007594-fg0601.tif]

				Figure 6.2

				You can use the reveal arrow at the left above the documentation details pane to view or hide information about the base documentation.

				[image: 9781118007594-fg0602.eps]

				Understanding the Apple Documentation

				Accessing the documentation from the web for the first time can feel overwhelming. The organization seems haphazard, and it's not clear which elements are essential, which are useful, and which are irrelevant. The contents are organized by OS and also by resource types—different kinds of information. Confusingly, there's significant overlap between the OS X and iOS documentation and also between different versions of each OS.

				Comparing iOS and OS X and their different versions

				If you access the documentation from the web, the organization online doesn't distinguish between different versions of iOS and OS X. The iOS and OS X portals always show the most up-to-date content. This can be a beta version of the OS, which may not be what you want.

				Xcode's own documentation viewer, shown in Figure 6.3, makes the differences between OS versions explicit. Each OS has a separate library header, so you can find the information you need without ambiguity.

				Figure 6.3

				Using Xcode's documentation viewer is built into the Organizer section of Xcode, but it can be accessed directly from the main menu.

				[image: 9781118007594-fg0603.tif]

				[image: mac_note.eps] NOTE

				You can access the viewer using Help⇒Developer Documentation in the main menu or with the (option)+Ô+? keyboard shortcut.

				Some elements of Cocoa appear to be in both iOS and OS X. For example, iOS and OS X both include a class called NSArray. Most classes with identical names are genuinely identical on both platforms, but some have significant differences. You should always read the version for the correct OS.

				In a beta version of an OS, the documentation may not be finished. You may find yourself reading about an OS X class even though you have followed a search trail looking for iOS classes. This doesn't often happen, but when it does, assume that the OS X details are also correct for iOS.

				Understanding resource types

				If you explore the web version of the documentation, you'll soon discover that topics are grouped in different ways and that there's significant redundancy and irrelevance in the libraries. Some elements in the documentation are more than 15 years old, and they describe features and techniques that are no longer in use.

				To use the documentation effectively, you must understand these limitations and know how to find what you need without being distracted by irrelevant information. You also must understand the different resource types, which are listed at the top left of Figure 6.4. Whenever you view a collection of documents about a broad topic, you can sort them alphabetically or group them by resource type.

				The resource types are less prominent when you view the documentation in Xcode. The content has been filtered so only the most relevant details appear. This makes the Xcode viewer easier to work with, especially when you're looking for specific information about a named class. But it does mean that some of the supporting details available on the web don't appear in the viewer.

				Figure 6.4

				The resource types are listed at the top left of the Developer Library web pages. You're more likely to search for specific topics and references than for resource types.

				[image: 9781118007594-fg0604.tif]

				Articles

				Articles, shown in Figure 6.5, are a grab bag of essays and features. Many are highly specialized and of little interest. A few are more useful. For example, Maximizing Mac OS X Application Performance is a good guide to performance optimization. Generally, articles are more useful to developers who have some understanding of the essentials of Apple development and are looking for slightly more advanced information.

				Figure 6.5

				Articles can provide useful extra information for more experienced developers. Beginners can avoid them, unless they're looking for information about a specific topic that is covered in an article.

				[image: 9781118007594-fg0605.tif]

				How-To's

				How-To's, shown in Figure 6.6, attempt to answer “How do I…?” questions for new developers. The information is of variable quality and often leaves out key facts. For example, the Graphics & Animation Coding How-To document explains how to obtain a graphics context for 2D drawing, but doesn't include full sample code and doesn't explain what a graphics context is or why you might need one. Experienced developers can use how-to's as memory joggers. New developers are likely to find they need extra help to understand the jargon and concepts described in these documents.

				Figure 6.6

				It's a good idea to be slightly skeptical of the information in the how-to's. For example, you quickly discover that there are easier ways to find out which version of SDK is installed than are described here.

				[image: 9781118007594-fg0606.tif]

				Getting Sarted

				The Getting Started guides aren't an ideal place to get started. In spite of the name, most guides are collections of links to the more detailed programming guides, surrounded by sparse extra information. These guides are factually accurate, but they gloss over many of the details and techniques used in actual programming practice. You can use them as orientation material that introduces key concepts and mentions useful classes, but you usually need to dig deeper and wider to fill in the gaps while coding. Figure 6.7 shows the Getting Started with Graphics and Animation document.

				Figure 6.7

				Don't think of the Getting Started guides as introductions to practical coding. But you can use

				them as outline orientations, and as very brief and abstract introductions to key OS features.

				[image: 9781118007594-fg0607.tif]

				Guides

				The Guides include detailed information about development and coding topics. These are the key orientation documents. Some guides, especially the human interface guidelines for iOS, iPad, and OS X, are essential reading. Part of the iPad Human Interface Guidelines document is shown in Figure 6.8. However, the guide contents are often terse, and important practical points may be glossed over or missing. In practice, you sometimes need to look for successful working code in independent developer forums or in the code samples included with the documentation.

				Figure 6.8

				You should certainly read the Human Interface Guidelines for your target platforms before you begin developing. But you'll find it equally useful to look at the interfaces of popular and successful applications for a more practical view of application design.

				[image: 9781118007594-fg0608.tif]

				References

				The references are the most useful documents, and you'll spend most of your time reading them. The key references are listed below, and there's more detail about the structure of the references later in this chapter:

				[image: bl.eps] Class references detail the properties, methods, and constants used in a class. This is key information: You won't be able to code without it.

				[image: bl.eps] Protocol references are similar to class references, but list useful methods that you can build into your own subclasses using the Objective-C protocol mechanism. (For detailed information about protocols, see the companion Cocoa Developer Reference.)

				[image: bl.eps] Framework references list the classes, functions, and protocols used in each framework. You should view the framework reference page for every framework you use in a project before you begin coding. Figure 6.9 shows the Foundation Framework, which is one of the most critical frameworks for Apple development. If you don't review the frameworks, you may miss useful functions, data types, and constants that aren't listed elsewhere. Don't consider this optional: You'll save lots of time if you review the features of each framework before you use it.

				[image: bl.eps] Services references list extra OS interfaces that typically use C rather than Objective-C, and they work at a lower level than the main Cocoa libraries. These references are useful for specialized audio and graphics programming, but beginners can usually ignore them.

				Figure 6.9

				Because the frameworks aren't prioritized, it's not obvious that some frameworks are more important than others. The Foundation framework, AppKit on the Mac, and UIKIt on iOS are key, and you should review their reference documentation before you start working with them.

				[image: 9781118007594-fg0609.tif]

				Release notes and API diffs

				Release notes are short summaries of the new features and changes in an OS update. API diffs are a more formal list of changes that detail new classes added, old classes removed, and changed features within each class. API diffs are more useful, but it's worth reviewing both before you begin working with an OS update. Figure 6.10 shows part of a typical API diff file.

				[image: mac_tip.eps] TIP

				Note that each entry in the API diff file is a clickable link that takes you to the reference file for the class or method that has changed.

				Figure 6.10

				This API diff file lists the differences between iOS 4.0 and 4.1.

				[image: 9781118007594-fg0610.tif]

				Sample code

				The sample code section of the documentation is a library of sample projects that demonstrate key features and techniques. Many code samples are fairly complex and can be difficult to follow. Some are overly complex; they use advanced techniques and solutions when simpler code would work almost as effectively. Try reviewing the sample code for specific solutions and reverse-engineering it or using it with minor modifications. You can also find alternative solutions from other sources online, and they often illustrate useful techniques in a simpler and more accessible way.

				If you view the sample code in a browser, you list each file in a browser window and you have the option to click a Download Sample Code button at the top left of the window to download a complete zipped project file. For example, Figure 6.11 shows a project called CryptoExercise that implements a selection of cryptographic features.

				If you view the sample code in Xcode itself, you can click an Open Project button that loads the sample project with all of the source code.

				Figure 6.11

				With sample code, you can view the files individually or download the complete project, unzip it, and build it.

				[image: 9781118007594-fg0611.tif]

				[image: mac_caution.eps] CAUTION

				Sample projects almost always build successfully, but if you load a project for an older version of OS X or iOS, some elements of the code may occasionally be deprecated or no longer available. If you find this, try to find a more recent version. You can also work through the errors by hand. (This is likely to be educational, but time-consuming.)

				Technical notes and Technical Q&As

				Technical notes expand on topics that aren't typically based on specific frameworks or code features. Technical Q&As deal with specific reported issues and common error messages; they also answer frequently asked questions. Both may include small samples of useful code and discuss solutions to common problems.

				In practice, notes and Q&As are a grab bag of assorted unrelated programming and development topics. They could be included elsewhere in the documentation, but for somewhat arbitrary reasons each has been given a unique reference number. For example, Figure 6.12 shows Technical Q&A QA1620, which explains how to animate a CALayer object.

				The notes and Q&As are far from comprehensive. You'll find a wider selection of useful—even essential—examples, FAQs, and background information on independent developer message boards.

				Figure 6.12

				A technical Q&A document, from a collection of at least 1,620

				[image: 9781118007594-fg0612.tif]

				Videos

				Videos are now included in the documentation. Figure 6.13 shows an example. The initial selection is sparse, but it may grow in future. Videos can be a helpful resource, but the most useful videos are available separately on the home pages of the OS X and iOS developer portals. Even though video is a slow and lightweight medium compared to text, take time to view the walkthrough videos that demonstrate key techniques and skills; they're more practically focused than the abstract text documentation.

				[image: mac_tip.eps] TIP

				Registered developers can download and view a further selection of useful demonstration and orientation videos from the latest WWDC pages. For example, the 2010 WWDC (World Wide Developer Conference) videos are available at developer.apple.com/videos/wwdc/2010. The videos and slideshows are designed to play in iTunes. They're not listed in the main iTunes content listings, and you can only access them via special WWDC-specific URLs. Search for “WWDC video” for the latest updates.

				Figure 6.13

				This is one of the small selection of videos that are included in the current documentation. Future updates of the documentation will include more video content.

				[image: 9781118007594-fg0613.tif]

				Using topics

				The list of topics organizes the documentation by subject. From one point of view, the topics are self-explanatory. As you'd expect, the Audio & Video topic lists resources relevant to audio and video applications.

				What's less obvious is that each of the headers in the Documents list can rearrange the data to emphasize different elements. For example, clicking Title lists all elements alphabetically. The result is an arbitrary jumble of different resource types, as shown in Figure 6.14.

				Figure 6.14

				Sorting a topic alphabetically by title creates a jumbled list of content that doesn't prioritize the documents in any way.

				[image: 9781118007594-fg0614.tif]

				Because titles are somewhat arbitrary, it's often more useful to sort by resource types. Clicking the Resource Type header creates the list shown in Figure 6.15. This helps prioritize the documents and organize them in a more useful way. Note that each resource type list is alphabetized separately.

				You also can sort by Framework, which is described below, and by Date. Sorting by date is a useful way to eliminate out-of-date information. Some of the help documents are historical and no longer relevant. Sorting by date can tell you which documents are out of date.

				Figure 6.15

				Sorting by resource types gives you a more useful view of the content, grouping orientation information, class references, and technical notes into separate lists.

				[image: 9781118007594-fg0615.tif]

				Using frameworks and layers

				Although iOS and OS X have different frameworks and layers, the principle is similar for both. A framework is a code library with an API that implements one or more useful features. A layer is a broad group of frameworks collected together.

				The layer groupings are rather arbitrary and can be misleading. For example, in OS X, the Foundation framework includes functions such as NSMakePoint and NSEqualPoints that are critical for graphics programming. But the Foundation framework is a grab bag of utility features and appears in the Core Services Layer; these critical functions aren't listed in the Media layer, even though it appears to be a complete reference to OS X graphics.

				Here as elsewhere, the documentation doesn't distinguish between critical, optional, and barely relevant information. To save confusion, ignore the full list of frameworks and concentrate on the three frameworks used in the default application templates: AppKit, Foundation for OS X; UIKit, Foundation, and CoreGraphics for iOS. In addition, you often need to use the Quartz frameworks and CoreAnimation framework on both platforms, and you may need to use Core Data.

				Other frameworks add optional features. You can ignore them unless you want to add specific features to a project.

				[image: mac_note.eps] NOTE

				The Cocoa framework that appears in OS X projects is a simple header file that imports the AppKit, Foundation and Core Data frameworks. There is no stand-alone Cocoa framework, and the documentation describes Cocoa as a layer.

				Searching the online documentation

				A search field is available at the top left of the main Reference Library pages. You can use this to run a simple word-match search. The results show each match, grouped by resource type. For example Figure 6.16 shows the results of searching for the NSMakePoint function.

				Figure 6.16

				Search for a specific function name. Searching for a vague topic such as “video” doesn't produce useful results. The search feature is best used for specific named features, such as classes, constants, functions, and so on.

				[image: 9781118007594-fg0616.tif]

				The word-match search isn't intelligent, and it doesn't attempt to group results by relevance. For best results, search for a specific function or class. The results will then show you the guides and related classes which use or mention the item. If sample code appears, it's well worth taking the time to explore it, because it can use related functions and classes that don't show up in a direct search.

				Using the Xcode Documentation Viewer

				The documentation browser is built into the Xcode Organizer. You can access it in four ways:

				[image: bl.eps] Open the Organizer window from the main menu with Window⇒Organizer, and select the Documentation icon in the top toolbar.

				[image: bl.eps] Select Help⇒Developer Documentation.

				[image: bl.eps] Use the Quick Help feature to highlight and search for a symbol in a code listing.

				[image: bl.eps] Use option/alt clicks on symbols to load it directly from your code.

				[image: mac_caution.eps] CAUTION

				The Search feature in the Help menu doesn't search the documentation. In fact, it only provides help for Xcode features. You can't use it to search the rest of the developer library.

				Confusingly, the Xcode browser shows two different documentation sets in the same window. The view at the right is a standard web view showing the information that appears when you access the documentation using a web browser. The view at the left is an independent set of quick access links. There are three icons above the list:

				[image: bl.eps] Explore: Use this to browse the document hierarchy.

				[image: bl.eps] Search: Perform a word-match search.

				[image: bl.eps] Bookmark: Create your own list of bookmarks.

				There's some overlap between the documents listed in the web view, and in the hierarchical list. For example, both include links to the same class references.

				But the two collections aren't identical, even though they're both grouped into similar topics. As shown in Figure 6.17, there are significant differences between the topic list at the left and the web view at the right.

				Although this design seems counterintuitive, it eliminates some of the redundancy and irrelevance of the web help, and it creates a more focused environment for searching and browsing. These are the key differences:

				[image: bl.eps] Different versions of each OS have separate documentation files.

				[image: bl.eps] There are fewer optional and tangential elements such as Technical Q&As. When these elements are included, they're more likely to be relevant and useful for a specific topic.

				[image: bl.eps] Class references, functions, and constants are listed alphabetically under section headers. This makes it easier to review and browse the class references.

				[image: bl.eps] The documentation includes code snippets, short code examples that illustrate classes and features but aren't part of a complete project.

				[image: bl.eps] The search features display a wider selection of sample code and are generally more likely to produce useful hits.

				Figure 6.17

				Both of these lists show the documentation for the Audio & Video topic. But the list of items in the left pane differs substantially from the list in the web view on the right.

				[image: 9781118007594-fg0617.tif]

				Browsing the documentation

				Figure 6.18 shows a typical topic list. To view the documents for each topic, click the reveal triangles at the left. The list shows all items alphabetically: class references, code snippets, and other resource types. There's no way to group the resource types together. Topics may include subtopics; for example, the Audio & Video topic lists common classes and other features, and includes further separate Audio and Video subtopics with documentation that's unique to each.

				Figure 6.18

				This is the topics list in one version of iOS; these lists are relatively static.

				[image: 9781118007594-fg0618.tif]

				[image: mac_caution.eps] CAUTION

				Some items appear under more than one heading. For example the MapKit Constants Reference appears under the MapKit subtopic in the Cocoa Touch layer and also in the User Experience topic. The duplication seems arbitrary.

				Generally, topic browsing is most useful if you already have a basic understanding of a topic and need quick access to reference material about specific features. The topics include the same introductory guides that are available online, with the same limitations: They can be useful reminders, but they're heavy going if you're looking for a good, practical hands-on introduction to entry-level coding techniques. Otherwise, the organization is slightly haphazard. You can use browsing to discover and explore OS features that may be lost online, but you need to explore the code samples, code snippets, and independent developer discussions to develop a good working knowledge in practice.

				[image: mac_tip.eps] TIP

				The viewer includes a hierarchical menu navigation tree in the space above the document window. It's very similar to the hierarchical project view in the main Xcode editor. In theory, you can navigate to any document directly. In practice, some menu levels include hundreds of documents, and the extra scrolling needed to reach them makes this feature less useful than it might be.

				Searching the documentation

				To perform a word search, click the search icon and type the target word. The viewer lists all documents and resource types featuring that word. Class references typically appear at the top of the list.

				The word search is very literal and doesn't attempt to find matches based on content or context. For example, if you search for a specific function or class, as shown in Figure 6.19, the search returns every Sample Code project that uses that symbol, irrespective of prominence or relevance. This can be useful because it gives you many different examples to review and understand.

				If the symbol is used in more than one version of the OS—which is usually the case—you see duplicate listings in the search results. For example, you find three documents called “A Tour of Xcode.” This looks like unnecessary duplication, but each document is included in a different docset: one for iPhone OS 4.0, one for iOS 4.1, and one for iOS 4.2. Depending on the differences among the OS versions, these duplicated documents may or may not be identical. To avoid inconsistencies, always read the document for your project's target OS.

				Figure 6.19

				This figure shows a search for a function. All these matches are correct because they contain the function, but some are more useful and relevant than others.

				[image: 9781118007594-fg0619.tif]

				[image: mac_tip.eps] TIP

				When searching for code symbols, each symbol has a different icon: C for class, F for function, K for constant, G for a global constant, T for a typedef, and E for an enum. The search feature finds the containing class reference. To display the specific sub-symbol—a function, a constant, and so on—click the reveal triangle next to the class, and then click the sub-symbol. The documentation window shows the correct item in the class.

				For more accurate searches, you can select the target docset, the relevant language, and the match type, as shown in Figure 6.20. When you begin typing a search word, a pop-up menu appears under the search bar. To view the options shown in the figure, select the Show Search Options… menu item. By default, searches look for features in all programming languages. It can be useful to limit results to Objective-C, C, Java, or C++, or some combination of these languages.

				Figure 6.20

				Limiting the search by OS version. This is a useful way to minimize search clutter.

				[image: 9781118007594-fg0620.tif]

				[image: mac_caution.eps] CAUTION

				Both OS X and iOS are built from two layers of code: one written largely in Objective-C and another low-level layer that uses C. If you ignore the C layer, you miss some of the more useful features of both versions of the OS. For non-specialized application development, it's usually best to ignore the language filtering and view all results.

				Using class references

				The Reference section takes up the bulk of the documentation. Most are code references, with formal lists of properties/variables and code interfaces. This group includes Objective-C object references, and C function and struct references for all layers of OS X and iOS. Code references are grouped into the layers introduced earlier. The class references follow a fixed format, part of which is shown in Figure 6.21. A small number of class references include an extra Class at a Glance overview summary:

				Figure 6.21

				The Class References are long documents; use internal links to drill down through the references.

				[image: 9781118007594-fg0621.tif]

				1. The Overview is a short text article that sketches the function of the class and how it should be used.

				2. The Tasks section provides a plain list of methods grouped by function. Each method is a link; you can click it to display more information.

				3. The optional Properties section lists the class properties and briefly sketches their features. Not all classes include a Properties section.

				4. The Class Methods section lists class methods in more detail, with a sketch of their features and function.

				5. The Instance Methods section lists the instance methods, using the same format.

				6. A final optional section lists other information that may include constants, further optional methods, or information about notification messages generated by the class.

				Items in blue are clickable links. For example, the sendEvent: method in UIApplication includes a link to the UIEvent class. To view the reference for UIEvent, click the link.

				[image: mac_tip.eps] TIP

				In previous versions of Xcode, the forward and back link features didn't always work correctly. Xcode 4 handles forward and back linking much more successfully. The buttons in the bar at the top left of the documentation viewer not only navigate between pages correctly, they also navigate between different items on the same page. You can save time by using these buttons regularly.

				[image: mac_tip.eps] TIP

				The browser versions of the class references include a useful Table of Contents with direct links to each section—Tasks, Properties, and so on—at the left of the window. The Xcode viewer doesn't display these links in the document area, but you see them if you click the reveal triangle next to a class reference while browsing. They don't appear in search results.

				Accessing documentation from code

				The documentation browser is ideal for general background searches and for browsing support documents. While coding, you typically want to find the documentation for classes, methods, and other symbols as quickly as possible.

				The search feature in the browser is an inefficient way to do this. Xcode includes three faster options:

				[image: bl.eps] Quick Help

				[image: bl.eps] Command-click

				[image: bl.eps] Option-click

				Using Quick Help

				When the Utilities pane is open at the right, you can display a Quick Help tip for any symbol by clicking it. When the symbol is part of the OS, the tip includes live links to the documentation. For example, if you select a class and click to the right of the Reference item, Xcode opens the documentation browser—if it isn't already open—and displays the class reference.

				This feature is Xcode's version of contextual help. In addition to reference and definition links, it also lists related APIs, related documents, and useful sample code. You can use it for a bottom-up, in-depth exploration of any symbol. This is almost always more efficient and productive than top-down browsing. It's also a quick way to check method parameters.

				[image: mac_tip.eps] TIP

				Quick Help works as you type. As soon as Xcode recognizes a class, the Quick Help window displays the relevant links. This feature is more obvious and more useful on faster Macs, because the help content appears almost instantly.

				Using command-click

				If you command-click a symbol, Xcode jumps directly to the symbol definition. If the symbol is defined in a framework, Xcode displays the corresponding item in the framework header file. This feature is identical to the Jump to Definition feature described in Chapter 9—but quicker and more intuitive.

				Using option-click

				If you option-click a symbol, Xcode displays a pop-up that duplicates the quick-help information, as shown in Figure 6.22. This can be a slightly quicker way to access the same information. It's always available, even when the Utilities pane is hidden. The two icons at the top right link to the symbol definition in the documentation, and to the header or code definition.

				Figure 6.22

				Using option-click to view Quick Help. This pop-up appears even when the Utilities pane is hidden.

				[image: 9781118007594-fg0622.tif]

				Using Other Documentation

				The Internet is a vast resource, and you can find useful tips and code samples by searching for specific classes. But some of the classes use names that are used in other contexts. For example, searching for UIView returns hits that aren't relevant to iOS. You can narrow searches by adding extra keywords such as “iOS,” “OS X,” and “iPhone.” Figure 6.23 shows the results of a combined search. All the hits are relevant, and the results include a good selection of tutorials, discussions, and examples.

				Figure 6.23

				The web is invaluable for general searches that fill in the gaps in the official documentation. A simple web search returns a jumble of potentially relevant information, but you usually find something of value.

				[image: 9781118007594-fg0623.tif]

				Developer forums offer a tighter focus with more obviously relevant examples. Apple's own developer forums are at devforums.apple.com. The conversations are grouped by topic and are often lively. By default, topics are listed chronologically, but you can search for keywords.

				Alternative forums include those at stackoverflow.com and iphonedevforums.com. The former is a useful resource, with a vast community of developers and regular discussions at all levels of expertise. Figure 6.24 shows an example topic search.

				Figure 6.24

				The equivalent search on stackoverflow.com returns a good selection of useful beginner-level hits, mixed with more advanced discussions.

				[image: 9781118007594-fg0624.tif]

				Summary

				This chapter explored both official and unofficial sources of documentation. It introduced Apple's online documentation and explained how to view it in a web browser. It also introduced the documentation viewer built into Xcode and explained the differences between the two sources of information.

				Resource types and class references were reviewed in more detail, and search strategies were suggested. Finally, the chapter discussed web forums and explained how they can provide useful supporting information that can fill in some of the gaps in the official help files.

			

		

	
		
			
				Chapter 7: Getting Started with Interface Builder

				
				In This Chapter

				

				Understanding nib files

				Getting started with IB

				Creating a simple iOS project with IB

				Comparing IB in Xcode 4 with Xcode 3

				Although Interface Builder (IB) can be used as a UI editor, you must understand that it's a more general object management tool.

				Understanding IB

				In Xcode, IB has five functions:

				[image: bl.eps] You can use IB to design your application's UI. The UI design includes one or more windows and views, with associated controls—objects such as buttons, sliders, text boxes, and so on. The design process presets the properties of these objects. For example, you can set the default position of an OS X window and control whether it has a drop shadow. Similarly, when you add a button to a UI, you use IB to set its position in the window or view, set its color, and so on. Optionally, you can define custom graphics and other more specialized features.

				[image: bl.eps] You can use IB to pre-instantiate objects in your application. Any object you add to a nib file is created in memory when the file is loaded. This option is completely general: Objects do not have to be visible on screen or be part of a UI. The standard application templates for both iOS and OS X rely on this feature to load the core application classes.

				[image: bl.eps] You can use IB to create your own kit of UI objects. Very advanced developers can create a complete external library of custom UI objects, with associated code. This is a major project and outside the scope of this book. But simple customization is relatively easy. For example, the layout of a standard table cell can be designed in IB as a stand-alone object, and then loaded and repeated as needed in one or more tables. In this mode, you use IB to create useful nib files with collections of objects that can be loaded as needed. These objects can be fragments of a UI, or they can be data collections.

				[image: bl.eps] You can use IB to link code features to UI objects. User actions and events are sent to your code using actions—methods that are triggered in the code when the user interacts with a view or a control. UI object properties such as size, position, color, state, text, and so on are set with outlets. Outlets link Objective-C properties to corresponding properties in UI objects. Objects that have custom features are subclassed, which tells IB that a UI object has been modified with extra code that you define.

				[image: bl.eps] In OS X only, IB objects can include bindings. Bindings link objects and properties indirectly, with semi-automated format translation. In outline, when your code sets a bound property, the UI is updated automatically. Similarly, user interactions are copied to a bound property automatically. Bindings are an alternative to outlets, with extra features that make them ideal for use with data collection objects such as arrays. Bindings are not available in iOS.

				Understanding nib files

				The files created by IB are called nib files. Both iOS and OS X applications load a single default nib file when they launch. This file is specified in the application's plist. But nib files are often linked and nested, so this nib file may (and usually does) load another nib file, which may load yet another nib file, and so on.

				[image: mac_caution.eps] CAUTION

				An important feature missing from IB is an overall view of the hierarchy, showing how nib files are nested and chained. IB tells you that an object will load another nib, but it doesn't try to show you a complete load tree.

				As the nib files load, the objects defined inside them are created automatically. If they're part of the UI, they appear on screen. If they're not, they're loaded into memory. It's important to understand that you can use IB to instantiate objects in this way.

				Objects created by the IB loading system are identical to objects created using the standard Objective-C alloc and init methods. There are two critical differences. The first is that nib files include preset default properties, such as size, color, and position. The other is that the object's init method isn't called, so you must add extra code to allow for this.

				In practice, you can create a complete UI without using IB at all, by calling alloc and init to create a list of objects in your code as the application starts, setting up useful defaults, and linking the objects into the application's view hierarchy.

				Some developers prefer to use this approach, and it's a valid option for UIs with unusual features. For example, if you want to add custom pop-up menus with unique animations and other special features, it's easier to create them in code.

				IB is ideal for simpler interfaces that use Apple's standard kit of UI objects. Beginners typically create simple interfaces that use these objects as is, using IB as a layout and preview tool that controls the aesthetic elements of the interface—object justification and alignment, centering, and so on.

				More advanced developers use IB to customize objects. Some objects are easy to customize; for example, it's fairly easy in iOS to replace the standard button graphics with custom button art. Other objects are more challenging. But it's a key feature of the nib system that it has two possible applications. In addition to the default nib files loaded at launch, you can also use it to create independent nib files that can be loaded on demand by any object that needs them. For example you can load UIs on demand as you swap views, or load different object collections at different stages in a game.

				[image: mac_note.eps] NOTE

				The extension of nib files is .xib. Historically, .nib was an acronym of NeXT Interface Builder. From IB 3.0 on, nib files were implemented with XML. The extension was changed, but the old name remained.

				Using nib files

				Manual nib loading is similar to automatic nib loading, with the difference that objects defined in a nib can be loaded and flushed from memory as needed, using a variety of standard loading methods. This is called lazy loading and is a standard Apple technique used to minimize an application's memory footprint.

				It's especially critical for iOS apps, which have to work with very limited memory. View swapping is a related iOS technique that relies on lazy loading. When the user selects a new view by swiping a finger or selecting it from a navigation control (a tab bar, navigation controller, or button), the code loads a new view from a nib file, displays it, and deletes the old view from memory.

				The swap can be animated as a special effect. The UIViewController and UIView classes include methods that create simple animations and delete the old view automatically. For more advanced effects, you can create more complex animations with custom code and delete the view manually.

				The view-based application template is a good starting point for view swapping, but it has some quirks and subtleties that can make it difficult to understand. In outline, it works like this:

				[image: bl.eps] Every application has an instance of UIWindow, which is the main app window. This is loaded when the application boots and isn't usually modified. This window object is included in the MainWindow.xib file.

				[image: bl.eps] A UIViewController object is included in the same nib file, together with the UIWindow object.

				[image: bl.eps] The UIViewController includes a placeholder for a separate UIView nib file, which also is loaded automatically when the application starts. This placeholder points to a separate nib file, which is called <appName>ViewController.xib.

				[image: bl.eps] The UIViewController is subclassed to include code features that manage the UI. The UIView object also may be subclassed to create specialized graphics.

				[image: bl.eps] When the user requests a view swap by tapping a navigation object such as a toolbar or navigation bar item, a new view controller is loaded from a nib file. The UIView linked to the new controller is swapped into the view property of the original view controller. The old view is released from memory. The swap may be animated.

				[image: bl.eps] There are now two view controllers and one view loaded in memory. The new view controller manages UI interaction for the new view, which draws the contents of the window. The old view controller remains in place and is used to manage further swap events.

				[image: bl.eps] The last two steps are repeated whenever a new view is requested.

				Figure 7.1 shows the initial nib hierarchy. Bafflingly, the appViewController.xib doesn't include a view controller object. Instead, it includes a view object that is loaded by the view controller. In IB-speak, the view controller owns its nib file. It isn't created by it.

				But the mainWindow.xib file does include a window object. This isn't a logical arrangement, but it's how view-based iOS apps are constructed. It's difficult to use IB effectively unless you take the time to understand it.

				Figure 7.1

				The initial nib hierarchy of an iOS view-based application

				[image: 9781118007594-fg0701.eps]

				Figure 7.2 shows the hierarchy after a view swap. The window remains in place, as does the original view controller. A new controller object is created in code and initialized with a nib file. A separate swap operation in code swaps out the old view, releases it from memory, and plugs in the newly loaded view. The new controller handles user events for the new view. The old controller manages further view swaps, if there are any. Optionally, it can run further code in the background in a separate thread.

				It's important to understand these relationships because IB doesn't make the nib hierarchy explicit. There's no automated feature that tells IB to create the classes and features needed for a view swap. Instead, you must add view and view controller classes manually and organize them correctly.

				Figure 7.2

				This shows the new hierarchy during and after a view swap operation. Creating a new view controller object loads its nib file. The swap operation has to be done manually, using further code.

				[image: 9781118007594-fg0702.eps]

				In general, you can use the iOS application templates to get started with app design, but the templates provide a small sample of many possible alternative app architectures. You can create simple applications by working with them as is, but to create more complex apps, you need to understand how to modify, customize, and extend the default nib files.

				So it's important to think of IB as an object manager and not just as a UI design tool. You use IB to define an object hierarchy, with optional elements that can be loaded when needed. If you think of IB as the equivalent of a desktop publishing package for UI design, you'll miss this key feature, and app design will remain more challenging than it needs to be.

				[image: mac_tip.eps] TIP

				A good rule of thumb for a custom hierarchy is to put the main navigation controller object in the MainWindow.xib file with the UIWindow and create separate nibs for other views and view controllers as needed. Remember to set subclasses correctly in IB and create links, and the application should work as expected. Subclassing is explained in Chapter 8.

				Getting Started with IB

				To begin exploring IB, create a new project using an OS X or iOS application template, as described in Chapter 3. In this example, I use the iOS view-based application as a starting point. Save the application as “IB.” Open the Resources group, and select MainWindow.xib, as shown in Figure 7.3. IB loads and displays the file as a graphic preview of the UI.

				Figure 7.3

				Unlike the text editor used for code, the IB editor works graphically.

				[image: 9781118007594-fg0703.tif]

				Introducing key features of the editor

				Note these key elements of the IB editor:

				[image: bl.eps] The cryptic column of icons to the left of the main editor area represents objects in the nib file. These objects are described in more detail in Chapter 8.

				[image: bl.eps] A reveal triangle at the bottom of this column displays a more detailed list of the objects with text descriptions, as shown in Figure 7.4. You can use this feature to show or hide the detailed view as you work, making space for other IB features.

				[image: bl.eps] The hierarchical navigation menu above the editor area gives you quick access to the objects in the nib and to other nib files.

				Figure 7.4

				Using the reveal triangle to display an extended view of the objects in a nib, with their names

				[image: 9781118007594-fg0704.tif]

				[image: bl.eps] The navigation menu includes another cryptic item, labeled “en,” which is short for English. You can support non-English languages by creating separate nib files with non-English content. This must be done manually. By default, the templates create English-only nibs. Projects created in older versions of Xcode may have no localization features at all.

				[image: bl.eps] In the editor area, the default UI—the placeholder view inside the navigation controller object—is surrounded by a transparent border. You can click this border to close the preview or to drag the object to a different position. For an iOS project, moving the object doesn't change how it appears in the iPhone/iPad display; it's purely a convenience while editing.

				[image: bl.eps] If an object loads another nib—for example, when a view controller loads a view—the editor displays a plain placeholder message that says “the contents of another nib go here.” It doesn't attempt to display those contents.

				[image: mac_caution.eps] CAUTION

				The graph paper background suggests that you can use it as a precise layout grid. You can't; it isn't calibrated accurately in pixels.

				Viewing the template nib files

				If you click the Window object in MainWindow.xib, you see two items in the editor, as shown in Figure 7.5. One is the UIWindow object; the other is the IBViewController. They may appear layered, as shown in the figure. You can hide either or both by clicking the window close crosses at the top left. You also can drag them apart to make them easier to work with.

				If you select IBViewController.xib, you see another object—an empty view. The template uses the application architecture that was introduced earlier in this chapter, and these examples illustrate how it appears in IB in practice.

				Objects appear ready for editing when you select them. If a nib file contains more than one object, the editor may show more than one object at the same time. Selecting an object in the left column brings it to the top of the editor and draws a highlight box around it in the column. In single-column mode, tool tips show each object's name.

				Figure 7.5

				Objects appear ready for editing when you select them.

				[image: 9781118007594-fg0705.tif]

				Figure 7.6 shows how you can view both objects at the same time if your monitor is large enough. For an iOS app, the relative position of the objects doesn't affect the appearance of the application when it runs. The default layered orientation is confusing and unhelpful, so it's often useful to move objects apart like this. However you arrange the objects, it's important to leave room for the Utility pane at the right because it's a critical element in IB.

				[image: mac_note.eps] NOTE

				Mac app windows ignore the grid too. You can set the initial launch position of a Mac window in IB using a feature called the Size Inspector, which is introduced later in this chapter.

				Figure 7.6

				Move objects apart to simplify editing.

				[image: 9781118007594-fg0706.tif]

				It's worth taking some time to explore these different options. Although you typically use custom views to define separate pages in a UI, you may need to edit the background window as well—for example, to change the color so it doesn't flash white when you swap views with a flip transition.

				Introducing the utility area

				When the IB editor is in use, the utility area displays extra icons and features that support nib editing. Figure 7.7 shows a typical display. The IBViewController.xib file has been selected, and the Utility area lists some of its attributes. There are six icons in an iOS nib file and eight in an OS X nib, as listed here:

				[image: bl.eps] The File and Quick Help panes are identical to those for the code editor. For details, see Chapter 3.

				[image: bl.eps] The Identity Inspector lists the object's class, includes an optional text label, and features accessibility information. When you subclass an object—for example, when you create a customized copy of a UIView or an NSWindow—you must select the new class name in the drop-down menu. Otherwise, IB won't know that the UIView or NSWindow in the nib file is supposed to run the code in your modified version.

				[image: bl.eps] The Attributes Inspector is a list of default properties. This pane has different contents for every object in IB. For example, the UIView shown in Figure 7.8 includes background color, drawing mode, and interaction properties, which enable single- or multi-touch control. The Simulated Metrics options preview navigation features (areas at the top and bottom of the view) so you can design the rest of the view with the correct dimensions. For iOS apps, you can use this Inspector to preview different UI orientations: landscape and portrait. You also can set the default orientation for the app.

				Figure 7.7

				In IB, the Utility area lists a selected object's properties and options, and displays them for editing. Use the icons at the top of the area to access different sets of properties.

				[image: 9781118007594-fg0707.tif]

				[image: mac_tip.eps] TIP

				Almost every property that appears in both lists can also be set in code. But it's easier to preview the results in IB.

				[image: bl.eps] The Size Inspector, shown in Figure 7.9, sets the dimensions and alignment of an object. It also controls autosizing: an object's ability to follow a window or view's size and position after rotation or a manual resize. Autosizing is off by default.

				[image: bl.eps] The Connections Inspector, shown in Figure 7.10, lists an object's outlets and actions. When properties and methods are linked to code, you can review and change them here.

				Figure 7.8

				The Attributes Inspector sets an object's default properties.

				[image: 9781118007594-fg0708.tif]

				Figure 7.9

				The Size Inspector defines an object's position, size, and alignment options.

				[image: 9781118007594-fg0709.tif]

				Figure 7.10

				The Connections Inspector defines the links between an object's outlets and actions and supporting code. You also can define a delegate object, where relevant.

				[image: 9781118007594-fg0710.tif]

				Two more icons appear in OS X projects, as shown in Figures 7.11 and 7.12.

				Figure 7.11

				View the Bindings Inspector in an OS X project. Bindings are optional and are best left forintermediate and advanced projects.

				[image: 9781118007594-fg0711.tif]

				[image: bl.eps] The Bindings Inspector displays an object's bindings—properties that can be linked using the Key Value Observing (KVO) system built into OS X.

				[image: bl.eps] The View Effects Inspector defines the filters and transitions that are applied to a visible object. You can use this inspector to add blur and sharpen effects, color adjustments, tilings, and so on. This is an easy way to apply one or more standard filters to a view, similar to those available in Adobe Photoshop or GIMP. Filter effects can be animated with custom code.

				Both of these icons add optional features that aren't critical to basic app design. For a detailed explanation, see the companion Cocoa in Wiley's Developer Reference series.

				Figure 7.12

				Explore the View Effects Inspector in an OS X project. To view a list of filters, click the Add (+) icon under the Content Filters tab and select the Filter menu.

				[image: 9781118007594-fg0712.tif]

				Creating a Simple iOS Project with IB

				In Xcode 3, adding objects and linking them to code was a repetitive chore. With IB in Xcode 4, the process has been simplified. This section demonstrates how to use IB to create a very simple app, with a text label and a button. Tapping the button triggers code that reads the text from the label and changes it. The code uses one action, which is triggered by the button, and one outlet, which connects the label in the UI to a corresponding instance of UILabel in the code.

				When you create a UI, you drag objects from the Object library and drop them onto a view. The Object library appears in the area at the bottom right of the Utility pane. By default it's partially hidden, but you can drag a divider above the icon bar upward to show more of it. The larger your monitor, the more of the library you can see without scrolling.

				[image: mac_caution.eps] CAUTION

				If you have a small monitor, this feature can be difficult to work with because you continually have to scroll through it, and move the divider to show object properties so you can edit them. You can save time by creating one tab in which the Object library fills the right hand area, and another in which only the properties are visible.

				The Object library shares this lower area with other libraries, including a File Template library, a Code Snippet library, and a Media library. To select the Object library, click the cube icon, which is third from the left. Objects in the library are pre-filtered by the project OS; you can't add iOS objects to a Mac project, and vice versa.

				[image: mac_note.eps] NOTE

				Because this isn't a primer on Cocoa Touch, the code is very simple. For more information about app design, see the companion Cocoa Touch in Wiley's Developer Reference series.

				These are the basic rules for UI design:

				[image: bl.eps] When you want to read or write an object's properties from the UI, you must add the corresponding class to your code. For example, if the UI includes a label, you must use IB to add a UILabel object to your code.

				[image: bl.eps] The code is usually placed inside a view controller object, and the object that appears in the display is included in the corresponding view nib file. This isn't an absolute rule—other arrangements are possible—but it's a typical starting point.

				[image: bl.eps] After you have code for a UI object you can define an outlet that links them together. When your code changes an object's properties (its size, position, text label, or some other attribute), the link copies the change to the UI manager and the visible representation of the object is updated on the display.

				[image: bl.eps] If you want your app to respond to user events, you must define an action for each event. An action is a special method added to the code to handle user events.

				[image: bl.eps] UI objects can support outlets and actions at the same time.

				[image: bl.eps] You can create “dumb” objects that support neither outlets nor actions. Use dumb objects to decorate the UI—for example, to add a fixed graphic as a background to a view. A dumb object doesn't respond to the user, and it can't be changed from your code.

				[image: mac_note.eps] NOTE

				Technically, actions rely on the Target-Action model in Cocoa and Cocoa Touch. You can define actions in IB, but you can also define them in code, and for advanced effects, you can redefine them dynamically. A full discussion of Target-Action is outside the scope of this book. For details, see the Cocoa companion title in Wiley's Developer Reference series.

				In previous versions of Xcode, objects, outlets, and actions were added manually. In Xcode 4, the process is semi-automated, and it's much simpler, faster, and more productive than it used to be. It's also more reliable, because the automation eliminates many common errors.

				Adding objects to a view

				Using the IB project from earlier in this chapter, arrange the Xcode interface as shown in Figure 7.13. Select the IBViewController.xib object for editing, and click the Assistant editor to split the window as shown in the figure. The editor shows the default view, which is the default UI that appears when the app runs.

				The Assistant should show the IBViewController.h header file. If it doesn't, select it manually. In the bottom right of the Utility area, select the Object library by clicking the box icon. If the icons are at the bottom of the area, drag the divider up to show the contents of the library.

				Figure 7.13

				When setting up IB for editing, it's useful to have at least one of the code files open at the same time. The Utility area at the right is essential.

				[image: 9781118007594-fg0713.tif]

				[image: mac_note.eps] NOTE

				If your monitor is wide enough to show the Project Navigator at the left without hiding the other areas, you can leave it in place. It's not critical for this project.

				Drag and drop a Round Rect Button object from the Object Library onto the view, as shown. Xcode does two things as you do this:

				[image: bl.eps] When you select any item in the Library, a large tool tip appears to the left with a description of the object. You can dismiss the tool tip by clicking the Done button or by clicking elsewhere in the editor area.

				[image: bl.eps] When you drag an item onto a view, guidelines appear, as shown in Figure 7.14. You can use the lines to center an object in the view or to align it with other objects. In the figure, the button is centered in the view.

				Figure 7.14

				Add a button using IB's automatic guidelines to center it in the view.

				[image: 9781118007594-fg0714.tif]

				Add a Label object in the same way, as shown in Figure 7.15. The guidelines indicate when the label is centered. If you move the label around the view before releasing it, you see that you can also left- and right-justify the label with respect to the button. Similarly, if you drag to one side of the button, you can align it with the top, bottom, or vertical center of the button.

				Figure 7.15

				Add a label. The guidelines automatically show top, bottom, left, right, and both vertical and horizontal center lines for other objects in the view.

				[image: 9781118007594-fg0715.tif]

				Setting object contents

				Setting the contents of UI objects remains a chore. Although both labels and buttons are simple, you typically need to follow these steps:

				1. Set the text label.

				2. Optionally, change the font, text size, and color.

				3. Change the text justification and line breaks.

				4. Optionally, add a drop shadow.

				5. Resize the object to make sure the text displays correctly.

				6. Realign the object after your changes.

				Similar steps are needed to set the contents of other objects, such as image views. See the example later in this chapter.

				To change the label text, double-click it. The label edge and interior are highlighted. Type “This is off,” as shown in Figure 7.16. When you press Return, you see that the label is no longer centered.

				Figure 7.16

				When setting text in a label, the label doesn't remain centered after editing.

				[image: 9781118007594-fg0716.tif]

				Setting font attributes

				Select the Attributes Inspector if it isn't already selected, and click in the Font box. You see the Fonts window, as shown in Figure 7.17, a separate floating window used to set fonts and text styles. Set the font size to 24. Click the center Alignment selector above the font box to set center justification.

				Figure 7.17

				When setting font sizes, fonts, and other text attributes, the font manager appears in a separate floating window.

				[image: 9781118007594-fg0717.tif]

				Setting fonts

				You can change an object's font, but only to a very limited selection of default fonts. The universal iPhone/iPad project in Figure 7.18 shows a default list that is known to work in IB and on devices. (The project is available for download at http://www.wiley.com/xcodedevref.) Your Mac has a wider selection of fonts installed, but you can't use them in an iOS project, and Xcode 4 doesn't allow you to preview them in IB.

				[image: mac_note.eps] NOTE

				The supported font list is updated regularly, and other fonts may be available in later versions of iOS. You may also find that IB doesn't preview some fonts correctly even though they're supported on a device. For a more optimistic list of supported fonts, see http://iOSFonts.com. Note you can add any third-party font to an iOS or Mac project, but this requires some build customization. Chapter 13 includes an example.

				Figure 7.18

				These fonts are supported in iOS 4.2. The selection may change in future updates.

				[image: 9781118007594-fg0718.tif]

				[image: mac_caution.eps] CAUTION

				Don't be confused by the fact you can set other fonts temporarily while editing a text field. When you confirm an edit, Xcode 4 replaces any non-standard font with one of the defaults.

				[image: mac_tip.eps] TIP

				You can use non-standard fonts in an iOS project, but you must import them into the project bundle and load them with special code. Non-standard font support isn't an IB feature, and the code can become complex, so it's outside the scope of this book.

				Adding drop shadows and other text effects

				The drop shadow effect in iOS is unimpressive. Because Core Image filters aren't supported, the drop shadow isn't blurred, which makes the effect useless. However, you can use the Shadow feature to add a deboss (chiseled) effect. Select the Shadow color picker, and use the default white color with 100 percent opacity, as shown. Set the Shadow Offset settings as shown in Figure 7.19. This creates the extreme effect shown in the figure. For a more subtle effect, set both offsets closer to zero. To eliminate the effect, set the Opacity to 0 percent.

				Figure 7.19

				Creating a chiseled (deboss) effect with the Shadow color and Shadow Offset settings

				[image: 9781118007594-fg0719.tif]

				Resizing objects with the mouse

				To resize an object, select it. Drag handles (small blue circles) appear at each corner and at the centers of each edge. Drag a handle to resize the object, as shown in Figure 7.20. While you're changing the size, you see a pop-up window with the object's dimensions. Guidelines also appear, as shown in the figure.

				Labels, buttons, and editable text fields can be set to shrink text so it fits into the available area, with the Adjust to Fit check box in the Attributes. But this is usually less useful than making an object wide enough to accommodate the largest possible label or message.

				For a simple UI, you often drag the left edge of a text area object until the left guideline appears, and you drag the right edge to the right guideline. This sets the width to the maximum available.

				For a more complex UI, you have to trade off the dimensions and positions of the various items for maximum clarity, keeping in mind that the UI may need to rotate to a different orientation. In extreme cases, you may need to design separate UIs for different orientations or use code to move objects when the orientation changes.

				[image: mac_note.eps] NOTE

				The left, right, top, and bottom guidelines indicate the edge of the usable area in the UI, as defined in Apple's Human Interface Guideline documents. While Apple likes to emphasize these documents, in practice they're suggestions and not absolutes. As long as your UI is clear, intuitive, and aesthetically appealing, you can usually bend the rules.

				Figure 7.20

				Setting object dimensions by dragging with the mouse

				[image: 9781118007594-fg0720.tif]

				Resizing and aligning objects numerically

				The top sub-pane of the Size Inspector includes an Origin box and four number fields. You can use these to set the size and position of an object with pixel precision.

				The Origin box selects the reference point used to determine the object's position. The dots in the box correspond to the drag handles around the object. If the origin reference point is set to the top left of the grid in the box, as shown in Figure 7.21, the number fields refer to the object's top-left corner. If the origin is at the center, the numbers refer to the object's center, and so on. If you click the dots in the box, the X and Y coordinates are updated to show the new reference.

				The Width and Height boxes set the width and height, as you'd expect. You can use the up/down arrows next to each box to increment and decrement each field. As you do this, the object moves and its dimensions change. You also can type numbers into each box to set it directly.

				[image: mac_tip.eps] TIP

				When this Inspector is visible, the numbers update automatically when you move or resize an object with the mouse. You can use this feature to create very precise edits. The 0,0 point is at the top left. Numbers can be negative when an object is outside the top or left of the object that contains it. (For more information about containers, see the section about the IB Object Hierarchy later in this chapter.)

				[image: mac_tip.eps] TIP

				You can move selected objects by single pixels with the arrow keys. You can also view display absolute pixel offsets by option-clicking an object. These can be very useful options.

				Figure 7.21

				Set a top-left origin reference for the label. The X and Y numbers show the coordinates of the top-left point.

				[image: 9781118007594-fg0721.tif]

				Resizing and aligning objects and object groups

				Figure 7.22 shows the contents of the Arrange menu. You can use this menu to align an object with another. The most useful options are Center Vertically in Container and Center Horizontally in Container, which do what you'd expect; they move an object's center to the center of its containing object. In this example, if you select the label object and select Center Horizontally…, the label appears center-justified in the view.

				[image: mac_caution.eps] CAUTION

				If you set the left and right edges to the left and right guides, centering does nothing. Try changing the width of the object and centering it again. You can also center it vertically, but this moves the label so it covers the button.

				Figure 7.22

				Selecting options from the Alignment menu

				[image: 9781118007594-fg0722.tif]

				You can select multiple objects by dragging a rubber band box around them or by shift-clicking in the usual OS X way. When you click the reveal triangle at the bottom of the vertical icon bar, you can group objects by name in the list that appears.

				Centering multiple objects moves the group to the common geometric center. The best way to understand the other alignment options in the menu is to experiment with them. For example, you can align a group of objects along their top, bottom, or center edges. You also can expand an object so it fills its container, which can be useful when you're using an image view as a background.

				[image: mac_note.eps] NOTE

				In Xcode 3, the Alignment options appeared as a group of cryptic geometric icons. This was useful for quick single-click access to the centering function. In Xcode 4, the icons have gone and you have to select the alignment functions from the menu.

				Controlling autosizing

				By default, autosizing is enabled. If your app supports multiple orientations, you'll find that autosizing breaks the layout after a rotation.

				Full support for multiple orientations can become complex in a busy UI and may require custom code. But you can create a simple autorotating UI by disabling autosizing. Click all the anchor tags and the arrows in the Autosizing box to toggle them. They should appear dashed. This disables all autosizing features for that object, and it's likely (but not guaranteed) that the object will now support a different UI orientation.

				The four anchor tags around the outside of the autosizing box fix the pixel distance of each edge of an object from its container. The two autosizing arrows inside the box control whether the object's dimensions change. For some applications, you may need to set these to create more complex behaviors—for example, to lock an item to the bottom-right corner of a window so it stays in position when the window is resized.

				[image: mac_tip.eps] TIP

				In Xcode 3, IB had a useful orientation preview feature. You could rotate a view in IB to check for correct alignment. This option has gone from Xcode 4. However, you can simulate by using the Editor⇒Simulate Document menu option in Xcode. This loads the nib into an iPhone or iPad Simulator window, without compiling the code. You can check rotation with the Simulator's Hardware⇒Rotate Right/Left menu options.

				To finish the UI, double-click the button and set the text to CHANGE IT. Optionally, you can experiment further with the alignment features. The button's attributes are more complex than a label's and there are more options to experiment with. For example, you can replace the default graphic with a custom image by importing an image file into the project and selecting it in the Background drop-down menu. For a full guide, see the UIButton Class Reference in the documentation. This example uses the button as is.

				The finished UI is shown in Figure 7.23. The layout is complete, but it isn't yet linked to active code.

				Note that although the design process can seem complex when you encounter it for the first time, it soon becomes more straightforward. With practice, you'll find that it becomes automatic. After you master the features of the different Inspector panes in the Utility Area, you've made a good start with IB.

				Figure 7.23

				The finished UI, before it's linked to active code

				[image: 9781118007594-fg0723.tif]

				Linking objects to code

				Creating actions and outlets is a relatively simple process. Unlike previous versions of Xcode, Xcode 4 adds the correct code automatically. It creates suitable properties, synthesizes them, and adds method code stubs. Of course, you must fill out the method stubs with your own event handler code, but the essential elements that support your code are added for you.

				Adding an action

				The button should do something useful when it's tapped. In iOS, this means adding code to create an action method that handles button events.

				The IBViewController class manages the UI. So the code is added to this class.

				In theory, all controls in iOS can send any of the event messages that are predefined in iOS. Whenever you create an action for a control, the list of events shown in the Connections Inspector in Figure 7.24 appears.

				In practice, not all controls implement all events. For example, a button isn't editable, so it makes no sense for it to send an Editing Did Begin message.

				The Touch Down message does make sense; it's sent when the user taps a button. To add code that can handle a Touch Down message, drag a line from the circle next to Touch Down in the Connections Inspector, and release it in the area under the curly brackets in the header code.

				As shown in the figure, you see a floating location line that marks the insertion point and a tool tip labeled Insert Action.

				[image: mac_caution.eps] CAUTION

				Don't create the action inside the curly brackets or above them. Add it to the area beneath them, but above the @end directive. Although you can add an action to an implementation file, it's easier to add it to a header file, because the header holds a simple and clear list of every action, without supporting code.

				Figure 7.24

				When adding an action, the line between the Connections Inspector and the code appears automatically.

				[image: 9781118007594-fg0724.tif]

				Naming and initializing the action

				When you release the mouse, the pop-up dialog box shown in Figure 7.25 appears. To finish adding the action, you must give it a name. Optionally, you can define the parameters that are passed to the method.

				The Name field sets the name. It's best to give each method a clear and descriptive title. Otherwise, the name is arbitrary, but it must be unique to the class it appears in. This example uses buttonWasTapped.

				[image: mac_note.eps] NOTE

				Class and property names use camel code. The first letter is lowercase. For clarity, subsequent words begin with a capital letter.

				The Type option selects id, or the class of the object sending the message—UIButton, in this example. Use id when you use the same method to handle messages from multiple different objects. You can then add extra code that determines the class of the object that sent the message. You also can use id if you don't need to read the object's properties. Use a specific class when you need to read information from the button or change one of its properties.

				In this example, we need to know that the button was tapped, but we don't need to know its color, position, or anything else about it; the default id setting is fine.

				[image: mac_note.eps] NOTE

				In Objective-C, id is a catch-all class label. It means “this object is some class, but we either don't know or don't care which one.”

				The Event option duplicates the standard list of possible events. If you change your mind about the event that should trigger the action, you can select a different option here. Usually, you won't.

				The Arguments option selects one of the following: None, Sender, or Sender and Event. Choose None when you don't need to know anything about the sender object. Choose Sender when you want to read the sender object's properties. Choose Sender and Event when you also want to read information from an optional UIEvent object that arrives with the message—for example, if you want to find the event timestamp.

				[image: mac_tip.eps] TIP

				To save time, you can leave the default options in this dialog box as they are. You'll get an action method that includes an (id) sender parameter. Your code can ignore this parameter if it doesn't need it.

				[image: mac_crossref.eps] CROSS-REFERENCE

				The File's Owner icon in the dialog box is explained in Chapter 8.

				Figure 7.25

				When adding an action, add a name and ignore the rest, unless your code demands the extra features.

				[image: 9781118007594-fg0725.tif]

				To finish creating the action, select Connect. Figure 7.26 shows the result. An action signature is added to the header file. If you look at the end of the implementation file, you see that a corresponding stub has been added. If you build and run the app now, the action method is triggered if you click or tap the button. It doesn't do anything because there's no code inside the stub, but a button handler is now part of the app.

				Figure 7.26

				To help you complete the action, Xcode adds suitable code to both the header and the implementation file.

				[image: 9781118007594-fg0726.tif]

				Adding an outlet

				The handler should have a visible effect. In this example, it changes the label text. To do this, we need to connect the label to an outlet so we can read and set its properties with code.

				Select the label, as shown in Figure 7.27. The Connections Inspector changes to show a Referencing Outlet subpane and a Referencing Outlet Collections subpane. Ignore the Collections option, and drag a line from the circle next to New Referencing Outlet. Add the outlet below the curly brackets.

				[image: mac_caution.eps] CAUTION

				You can also add an outlet between the curly brackets, but this has a different and less useful effect, as described below.

				Figure 7.27

				When you add an outlet, a floating location line and a tool tip appear to confirm the operation. Always add an outlet below the curly brackets.

				[image: 9781118007594-fg0727.tif]

				Naming and initializing the outlet

				When you release the mouse button, you see the dialog box in Figure 7.28. Type a useful and descriptive name. In a simple app, you can leave the other options set to their defaults.

				[image: mac_note.eps] NOTE

				Technically, the Storage option sets how the object's memory is managed. Occasionally, you may need to assign (make a pointer copy of) an object. Usually, it's better to retain it. A full description of iOS memory management is outside the scope of this book. The Type option is simply the class of the UI object. Occasionally, you may want to select a subclass here.

				Figure 7.28

				For the second step in adding an outlet, the options other than Name can be left with their defaults.

				[image: 9781118007594-fg0728.tif]

				The result is shown in Figure 7.29. Note that IB adds the outlet in two places. A property prefixed appears inside the curly brackets, and a separate @property declaration with an IBOutlet directive appears below them.

				Figure 7.29

				The complete header file, with the added outlet and action code

				[image: 9781118007594-fg0729.tif]

				Figure 7.30 shows the bottom of the implementation file. You can see that Xcode has generated supporting code in four places. (For clarity, the new code is marked in the figure with breakpoint arrows. The arrows don't appear in a real project—they've been added by hand as illustrations, so you can see which lines have been modified.)

				[image: bl.eps] A new @synthesize directive has appeared. It synthesizes access to the labelproperty.

				[image: bl.eps] The label object has been included in the dealloc method. This ensures that the memory used by the label object is released when the controller class is released from memory.

				[image: bl.eps] The label has been added to the viewDidUnload method. Code is included to set the label to nil.

				[image: bl.eps] The buttonWasTapped: method has been added as a separate stub.

				[image: mac_note.eps] NOTE

				If you drop an outlet between curly brackets, the @synthesize and @property directives aren't added. This is usually a bad thing, but you can use this option when you want to add your own custom setter/getter code.

				Figure 7.30

				This is the complete implementation file. IB makes changes to this file at the same time as it updates the header file.

				[image: 9781118007594-fg0730.tif]

				Filling out an action stub

				The app is nearly finished. The missing feature is custom code in the action stub that updates the label when the button is tapped.

				In the implementation file, add this code between the curly brackets in the IBAction stub, as shown in Figure 7.31:

				if ([theLabel.text isEqualToString: “@This is off”])

				 theLabel.text = @”This is on”;

				else

				 theLabel.text = @”This is off”;

				This code reads the current label text and updates the text to an alternate message when the button is tapped. The key point is that the outlet allows the label text to be read and written.

				You can read and write any property. For example, you could change the label's position or the size or color of the text. This example makes a trivial change to the label text, but more complex objects work in the same way. For example, you can read a block of text entered by a user from a more complex text field object. You also can read or write image data to an image view.

				Testing the app

				Select the iPhone Simulator, and click the Build & Run arrow at the top left of the Xcode toolbar. The app should build and run in the Simulator window. Clicking the button in the UI toggles the label text between “This is off” and “This is on.”

				[image: mac_tip.eps] TIP

				There's more than one way to create a link in IB. You can hold down the control key, and drag links directly from objects in the UI or the object list, to the Connections Inspector, or to the code. You can even type your own outlet code and make connections to it. IB doesn't allow you to make links that are meaningless. Dragging links from the Connections Inspector to the code is usually the fastest, simplest, and clearest option.

				Figure 7.31

				The finished app, running in the Simulator

				[image: 9781118007594-fg0731.tif]

				[image: mac_note.eps] NOTE

				As of iOS 3.2 you can create an outlet collection—a group of outlets held in a standard NSArray. Use this option when you want to collect a single object—often a controller—to multiple UI elements. To create a collection, drag a link from the New Referencing Outlet Collection item to your controller. Collections are optional, but they can be useful when you need to update multiple objects. For example, you can use NSArray's makeObjectsPerformSelector: method to update every object in a collection with a single line of code.

				Understanding the IB object hierarchy

				Select the label in the UI, and use the Arrange menu in the Size Inspector to center it vertically. Do the same with the button. The two objects overlap, as shown in Figure 7.32.

				Objects are drawn top down, which means that objects lower down the list in the IB object side panel at the left cover objects higher up as they appear on the screen.

				Use the reveal triangle at the bottom left to show the items in the view, and swap the position of the label and the button. You'll see that the label covers the button in the UI editor.

				Figure 7.32

				Changing the order and position of the label and the button demonstrates what happens when one object covers another in the hierarchy.

				[image: 9781118007594-fg0732.tif]

				The objects in a nib file are arranged in a tree. Some objects, such as UIViews, can contain other objects. In the example, the label and the button are both inside the main UIView. The structure is rather like a folder in Finder. You can use reveal triangles to open and close objects, showing and hiding the objects inside them. An object inside another appears indented in the list. When you change the physical position of an object in the hierarchy, all the objects inside it move with it.

				You could in theory add a separate UIView to the UI, resizing both to create a split UI with two panes. Some commercial apps use this split format to create designs with multiple active areas that respond to the user in different ways. For example, a game might have a control panel with fixed buttons and a display area with animated scrolling graphics.

				In complex apps, the hierarchy can become deep, with many objects. For example, Figure 7.33 shows the hierarchy of a minimal OS X app. The nib includes a window, a view, and a deep hierarchy of menu items. You can rearrange the menu headers and menu items by dragging them. For example, you can swap the position of the File and Edit headers. This isn't a useful thing to do, but it demonstrates how the hierarchy is organized and how you can modify it to create your own menu and UI designs.

				Figure 7.33

				The default OS X application nib is more complex than the iOS equivalent, and it illustrates how objects can be arranged in a tree structure.

				[image: 9781118007594-fg0733.tif]

				[image: mac_tip.eps] TIP

				Note that the minimal OS X app includes a Font Manager object. This object doesn't appear immediately in the app's UI, but it handles font changes for applications that use text. It's another example of an object that's pre-instantiated in a nib file so it doesn't have to be created in code. For information about the other objects in this nib, see Chapter 8.

				Comparing IB in Xcode 4 with Xcode 3

				If you're used to the version of IB in Xcode 3, this section contains a summary of the changes in Xcode 4.

				Xcode 4 can feel very different. In fact, it's recognizably similar, but the features have moved to different locations. Here are the key differences:

				[image: bl.eps] Integration within Xcode means that IB no longer runs as a separate application. This simplifies window management—you no longer need to keep IB and Xcode windows organized on the same desktop—but it means that the IB editor takes time to load when you use it for the first time.

				[image: bl.eps] Links now create supporting code features automatically, and you can drag links directly to a code window. This is a major improvement over Xcode 3, where creating outlets and actions was unnecessarily complex, repetitive, and error-prone.

				[image: bl.eps] The Document window now appears as the icon column to the left of the editor area. You can expand this column to show text labels, or you can leave it unexpanded to save space. You can drag links to objects in either mode.

				[image: bl.eps] The Inspector panes are now embedded in the Utility area.

				[image: bl.eps] You no longer need to remember to save a nib file manually before building. Edited nib files are included in the save dialog box. This is another major improvement.

				If you prefer to keep code and nib files in separate floating windows, you can use the tab tear-off feature to float the IB editor in one window while leaving the code editor in another. You can drag links between the two windows in the usual way. But if you have a larger monitor, it's usually more productive to keep the IB editor and the code editor in two split panes. With a very large monitor, you can have a three-way split with an IB file, a class implementation, and a class header visible at the same time, creating links between them as needed. It's a very productive option that was impossible in Xcode 3.

				Summary

				This chapter looked at Interface Builder in detail. It outlined the key features of nib files and explained how to get started with the Inspectors and the object lists in IB.

				It worked through a sample iOS project and explained how to add objects to a UI, how to set their external and internal attributes and contents, and how to align them manually and automatically.

				It introduced outlets and actions and demonstrated how to add them to a project and how to link them with active code.

				Finally, it sketched some of the features of the IB object hierarchy and summarized the key differences between IB in Xcode 3 and Xcode 4.

			

		

	
		
			
				Chapter 8: Creating More Advanced Effects with Interface Builder

				
				In This Chapter

				

				Using File's Owner and First Responder

				Subclassing views and other objects

				Creating custom IB objects

				Creating views with static images

				Supporting non-English languages

				Creating outlets and actions is a key step in application design with Interface Builder (IB). More complex applications require more advanced skills, which are discussed in this chapter.

				Using File's Owner and First Responder

				The top two objects in the list at the left of the IB interface are placeholders. They make it possible to link to objects that are outside the nib file.

				Using File's Owner

				File's Owner is a placeholder for the object that loaded the nib. It represents a different object in every nib. For example, in MainWindow.xib in the sample project in Chapter 7, File's Owner is a placeholder for the UIApplication object. In IBViewController.xib, File's Owner stands in for the IBViewController object.

				This may seem complex the first time you encounter this feature, and it's certainly not an intuitive feature, because the true class/object name isn't displayed next to the icon.

				However, if you select the File's Owner icon, you can check the class name in the Identity Inspector. It appears in the Class field at the top of the Utility Area.

				[image: mac_caution.eps] Caution

				These placeholders can seem confusing, but it's critical that you take time to experiment with them until you understand them. It's very difficult to use IB correctly if you don't.

				In practice, you use File's Owner as a source and destination for links and actions. If you follow the instructions in Chapter 7, IB is intelligent enough to link to File's Owner automatically. In a more complex application, you may need to create links to a wider selection of objects.

				You can use the File's Owner placeholder in two ways:

				[image: bl.eps] To create links to the object that loads the nib file

				[image: bl.eps] To review a complete list of existing links

				When you link item by item, it's easy to forget which links have been made. Opening the Connections Inspector and selecting the File's Owner icon shows every link placeholder object in a single display, as shown in Figure 8.1.

				[image: mac_tip.eps] TIP

				It's often useful to view this list and create links to it rather than linking object by object, because the File's Owner pseudo-object displays all its outlets at the same time. This can be a significant timesaver.

				Figure 8.1

				Viewing the links to File's Owner with the Connections Inspector

				[image: 9781118007594-fg0801.tif]

				[image: mac_note.eps] NOTE

				The view property is pre-linked for you in the view-based application template. Most of the other templates include pre-linked outlets. It's useful to review them; they can give you insight into how the nib hierarchy is organized and how the templates have been engineered.

				Using First Responder

				At first sight, the First Responder placeholder can seem even more abstract than File's Owner. But the principle is simple.

				All iOS and OS X applications include a responder chain—an implied hierarchy of objects that dispatches user events. Here's what to expect:

				[image: bl.eps] Windows, views, and certain other objects are subclasses of an abstract event management class (UIResponder in iOS and NSResponder in OS X).

				[image: bl.eps] This class includes a prewritten selection of methods that can handle standard user events such as copy, paste, undo, and so on.

				[image: bl.eps] You can add your own custom events to this list.

				[image: bl.eps] Unlike a standard action, these messages are passed from object to object until a matching event handler method is found. A common test sequence is view⇒view controller⇒window⇒application, but this may vary, because it depends on the design of the application.

				[image: bl.eps] The First Responder icon is the connection point for this chain. It lists all the valid handler methods, in all objects that are part of the responder chain. It's the central event handler for an application, and provides a convenient single access point for responder methods that may be scattered across multiple objects.

				[image: bl.eps] Events without a handler are ignored.

				In practice, you link objects that generate messages to the responder chain in the usual way. For example, in the sample IB application, shown in Figure 8.2, you can drag a link between one of the button events, such as a Touch Up Inside, to a responder handler, such as Copy.

				A critical difference is that this doesn't generate code for you. IB doesn't know which object you want to add the handler code to, so it doesn't try to guess. Instead, you must add the code by hand to whichever responder object suits your needs.

				Typically, this means copying a method signature from the UIResponder or NSResponder class—for example, for the copy: method—and creating your own full implementation.

				[image: mac_caution.eps] CAUTION

				The methods you need to implement aren't mentioned in the UIResponder Class Reference. They're defined in the UIResponderStandardEditActions Protocol Reference, which is part of the UIKit Framework Reference. You won't find them unless you know this document exists. It's worth repeating again that you should review all the references used in a framework; otherwise, you may miss critical features. To add custom methods to the responder chain, define them as an IBAction and add them to a nib object. They appear in the responder list automatically, and you can link to them in the usual way.

				Figure 8.2

				Viewing the First Responder actions in an iOS application

				[image: 9781118007594-fg0802.tif]

				[image: mac_caution.eps] CAUTION

				Before this works correctly, you need to let IB know that you're using a subclassed version of the window object. This assignment process is described later in this chapter.

				For comparison, Figure 8.3 shows the First Responder list created by the standard OS X application template. iOS includes a handful of standard responder methods. OS X supports nearly 200.

				In the application template, many are pre-linked to menu items. None of the methods are implemented, not even with stubs. But you can easily add code to your own subclasses to make them “live.”

				[image: mac_note.eps] NOTE

				An OS X application includes an extra placeholder object called Application, which stands in for the main application object. It includes a selection of predefined actions, most of which aren't implemented. For information about handling these and other related application events, see the companion Cocoa Developer Reference title.

				Figure 8.3

				OS X supports many more First Responder actions than iOS.

				[image: 9781118007594-fg0803.tif]

				[image: mac_caution.eps] CAUTION

				Some very important events don't appear in IB. For example, iOS and OS X touch messages—touchesBegan:, among others—aren't listed anywhere in IB. They're hardwired into the responder chain, and you can't redirect them in IB. You can only respond to them with code. If you want to copy and redirect them to multiple objects, you must add code to implement this.

				Subclassing Views and Other Objects

				A key feature of object-oriented development is subclassing—the ability to copy an existing object and extend it with custom code and new features. IB supports subclassing, but the steps required to replace a standard Cocoa/Cocoa Touch class object with a subclassed version of the same object aren't immediately obvious.

				To subclass an object, follow these steps:

				1. Add a new subclass to the project in the main Xcode editor, and add custom code to implement new features.

				2. Assign the subclass to an existing object in IB.

				After you have completed Step 2, you can continue to develop and debug your custom code and the new code will be active in your UI.

				Any IB object can be subclassed; you can create completely new or substantially modified buttons, sliders, map views, Web views, and so on.

				In practice, the UIView class in iOS and the NSView class in OS X are subclassed regularly, because it's often useful to add custom graphics or event management code to a view. Other controls and views are subclassed less frequently.

				[image: mac_tip.eps] TIP

				You can subclass any object in a nib. It doesn't have to be visible or part of the UI.

				[image: mac_caution.eps] CAUTION

				Customizing Apple's own subclasses of UIView and NSView—map views, Web views, image views, and so on—can be a frustrating experience. The more complex subclasses include undocumented features and properties, and it's often impossible to add new features without tricks and workarounds. For example, in some situations, animated view swaps are handled by “invisible” views that aren't part of the officially documented view system. Always check unofficial online developer forums to see if other developers have experienced problems—and if they may have already solved them.

				Adding a new subclass in Xcode

				In this example, we add a new subclass of UIView to the IB project from Chapter 7 and assign the subclass to the background view of the project.

				Begin by copying and pasting the project folder in Finder. Rename the folder. The new name is arbitrary, but it must be unique. In the sample code for this project, the new name is IB Custom View. Open the folder, and double-click the .xcodeproj file to load it into Xcode 4.

				[image: mac_caution.eps] CAUTION

				The project file is still called IB.xcodeproj. This doesn't matter. As explained in Chapter 2, it's very difficult to rename the working files used in an Xcode project, and it isn't usually necessary to do so.

				When the project loads, right-click the Classes group and select New File… Select the Cocoa Touch templates, and then select the Objective-C Class template. Select UIView in the Subclass menu, as shown in Figure 8.4. Save the file as IBView.

				Figure 8.4

				Adding a new subclass of UIView to an iOS project

				[image: 9781118007594-fg0804.tif]

				You see two new files: IBView.m and IBView.h. IBView.m includes a sparse selection of extra code that provides a minimal starting point for further customization. It also includes a method called drawRect:, which draws custom graphics in the view. By default, this method is commented out. Before we add code to it, we need to take a closer look at the iOS UI.

				Figure 8.5 shows the dimensions of the background view as they appear in the Size Inspector. At the top right, you can see that the view is 320x460 pixels. The iPhone screen is 320x480 pixels. Why are 20 pixels missing?

				In fact, the default view allows for the status bar at the top of the UI, which is exactly 20 pixels high. The y coordinate of the view is offset by 20, and the view is 20 pixels smaller to compensate.

				When you use a background view of any kind in an iOS UI, you must adjust the dimensions to allow for other visible objects. This can affect the calculations used to create custom graphics.

				In this example, the view's internal top-left coordinates remain at 0,0. The bottom-right coordinates are adjusted to 320,460 to allow for the smaller view size.

				If the UI included other items such as a navigation bar, toolbar, or tab bar, the view's dimensions and coordinates would have to be changed accordingly.

				Figure 8.5

				Checking the size of the view with the Size Inspector

				[image: 9781118007594-fg0805.tif]

				[image: mac_tip.eps] TIP

				It's not always easy to remember the dimensions of the various possible navigation and status features. Fortunately, you don't have to, because IB snaps a background view to the correct size when you create a new project from a template. If you add and resize further custom sub-views, IB's snap feature helps you resize them correctly. Note that you can extend a custom sub-view outside the screen area or hide parts of it under navigation objects. This isn't usually a useful thing to do, but the option is there if you need it.

				[image: mac_tip.eps] TIP

				View management for iPad UIs includes similar features. OS X UIs include related view snapping features, but the design is more open-ended. You don't typically need to shrink a view by a fixed size, unless your application always runs full screen and you need to compensate for the menu bar, in which case you should read the screen dimensions dynamically without assuming a set size. In theory, iOS apps should also make no assumptions about screen dimensions, but this makes UI design very difficult. It's easier to assume the standard screen sizes are valid—for now.

				Adding code to the subclass

				The drawRect: method in a UIView is called whenever the screen is refreshed. A refresh happens automatically on launch, so adding code to drawRect: is a good way to create a custom background.

				[image: mac_note.eps] NOTE

				While it's possible to load an image from a file in drawRect: and use the contents as wallpaper, there are easier ways to achieve this result; more details are provided later in this chapter. Similarly, there are easier ways to create a single color static background. drawRect: is ideal for more complex effects.

				In this example, drawRect: code creates a static three-color gradient fill, using C functions from the Core Graphics framework. The code illustrates how a subclass of UIView can be customized to create a specific effect. In practice, you can add extra features to any of the existing methods defined for UIView, or you can add your own custom properties and methods, as needed.

				The code does the following:

				[image: bl.eps] It creates and clears a context, an area of memory used for graphics.

				[image: bl.eps] It creates a color space object, which holds information about colors.

				[image: bl.eps] It creates an array of three colors from RGB components.

				[image: bl.eps] It creates a color-gradient object using the array.

				[image: bl.eps] It draws a rectangle in the view, allowing for the 20-pixel status bar.

				[image: bl.eps] It draws a gradient fill from the top left to the bottom right of the view.

				[image: bl.eps] It cleans up by restoring the original graphics state and releasing used memory.

				- (void)drawRect:(CGRect)rect {

				 CGPoint startFill, endFill;

				 CGContextRef aContext = UIGraphicsGetCurrentContext();

				 CGContextClearRect(aContext, rect);

				 CGContextSetShouldAntialias(aContext, YES);

				 CGColorSpaceRef myRGB = CGColorSpaceCreateDeviceRGB();

				 size_t num_locations = 3;

				 CGFloat locations [3] = {0.0, 0.5, 1.0};

				 CGFloat components [12] =

				 {1.0, 0.0, 0.0, 1.0,

				 0.0, 1.0, 0.0, 1.0,

				 0.0, 0.0, 1.0, 1.0};

				 CGGradientRef myGradient =

				 CGGradientCreateWithColorComponents(myRGB,

				 components,

				 locations,

				 num_locations);

				 CGContextSaveGState(aContext);

				 CGContextAddRect(aContext, CGRectMake(0, 0, 320, 460));

				 CGContextClip(aContext);

				 startFill = CGPointMake(0, 0);

				 endFill = CGPointMake(320, 460);

				 CGContextDrawLinearGradient(aContext,

				 myGradient,

				 startFill,

				 endFill,

				 kCGGradientDrawsBeforeStartLocation+

				 kCGGradientDrawsAfterEndLocation);

				 CGContextRestoreGState(aContext);

				 CGGradientRelease(myGradient);

				 CGColorSpaceRelease(myRGB);

				}

				[image: mac_note.eps] NOTE

				This is lots of code for a simple effect; the Core Graphics library in iOS isn't outstandingly easy to work with. This chapter isn't a primer on Core Graphics, so don't try to remember the details. The key point is that UIView can be customized to suit your application's requirements. Subclassing isn't limited to graphics. For example, you also can customize how UIView responds to touch events or other user actions. In a more complex application, you might copy touch events, process them in your subclass, and resend them to other objects for further processing. In practice, subclassing is almost infinitely flexible.

				Assigning the subclass in IB

				If you build and run the application now, you get the result shown in Figure 8.6. The code has been added. But it doesn't run.

				Figure 8.6

				In subclassing UIView, the first step is to create subclass files and edit their code, but this step on its own isn't enough.

				[image: 9781118007594-fg0806.tif]

				Figure 8.7 shows why. If you select the view in the nib file and look at the entry in the Class menu in the top pane of the Identity Inspector, you see it's set to UIView. When the application launches, it ignores the new code because the nib file still creates an instance of the original unmodified version of UIView.

				Figure 8.7

				In subclassing UIView, the final step tells IB that the view is now an instance of the new IBView subclass. This runs the code in the subclass and enables your new customized features.

				[image: 9781118007594-fg0807.tif]

				To fix this, we tell IB to create an instance of the new subclass, also known as assigning the subclass. Click the top-right menu as shown in the figure, and scroll down until you find IBView in the list. Click it to assign it. Now the nib file is set up correctly, and it loads the new subclass on launch.

				Figure 8.8 shows the result. The UIView draws a colored gradient behind the other items.

				[image: mac_tip.eps] TIP

				Whenever you select an object in the IB editor, the class identity list is updated to show all its valid subclasses. This listing is indiscriminate, and you can do nonsensical things such as assigning UIWindow as the designated subclass of your new UIView. In most applications, you can ignore most of the items in the list and simply look for your newly added subclass.

				Figure 8.8

				Running the subclassed view. The code added to the subclass creates a gradient fill.

				[image: 9781118007594-fg0808.tif]

				Working with more advanced subclassing techniques

				The following techniques are more specialized. You may not need to use them at all, but it's useful to know they're available.

				Adding User Defined Attributes to a subclass

				If you subclass an object in the IB library, it automatically inherits that object's attributes. For example, a subclass of UIViewController includes options to set a default orientation and a status bar, a top bar, and a bottom bar. You can't change these attributes, and you can't add further attributes of your own.

				But not all Cocoa and Cocoa Touch objects have IB attributes—in fact most objects don't. How can you set initial values for these objects?

				One option is to use code. But IB includes a User Defined Runtime Attributes feature, illustrated in Figure 8.9. Objects without “official” attributes include a general purpose keypath, value, and type editor in the Identity inspector. You can add initial values/types here, and they're loaded and set when the nib loads.

				Each item is equivalent to running the setValue: forKeyPath: method on an object. In the figure, the example has the same effect as adding

				[self setValue: @”Initial string” forKeyPath: @”myKeyPath”];

				to an init method in the application delegate. Supported types include strings, localized strings, Booleans, numbers, and nil.

				Figure 8.9

				Adding custom attributes to an object

				[image: 9781118007594-fg0809.tif]

				[image: mac_caution.eps] CAUTION

				In the first release of Xcode 4, this feature wasn't working correctly. In Xcode 3 it was available for OS X only. It's likely to be fixed in a future release—but check it before you use it.

				Subclassing File's Owner

				Note that you can follow the steps given above to subclass File's Owner. Typically, you don't need to do this unless you want to add features to the NSApplication/UIApplication classes, or you have a complex nib hierarchy and you need to add code to an element buried in the view hierarchy. For simpler apps, you can leave the default File's Owner class assignments unchanged. But it's useful to remember that even though File's Owner is a placeholder, you can still set its class using the Identity Inspector.

				Creating Custom Objects

				Sometimes you want to reuse custom objects in other projects. To simplify this, you can add your own objects to the Object Library in IB. But it isn't usually necessary to do this. Even if you reuse objects, it's often simpler to import them again and subclass them again than it is to create a stand-alone plug-in.

				A plug-in has two advantages: The object can be added quickly with drag and drop, and it can include a custom Inspector pane for properties. You should consider a plug-in if the following conditions exist:

				[image: bl.eps] You plan to sell or distribute it as part of a library of custom objects.

				[image: bl.eps] You are working with a development team and need to prepare one or more objects independently, but you aren't responsible for their use in applications.

				[image: bl.eps] The objects require significant initialization, which is more easily done with a custom Inspector pane than in code.

				[image: bl.eps] The objects will be reused over and over in many applications.

				Creating custom objects is a project for intermediate and advanced developers and is outside the scope of this book. If you have experience with custom frameworks you can find the official documentation by searching online for Interface Builder Plug-In Programming Guide.

				Creating Views with Static Images

				Subclassing is a very powerful technique, and you can use it to customize any of the standard views and controls. For example, by subclassing UIButton and adding custom drawing code controlled by a timer, you can create buttons with pulsing dynamic color animations. As mentioned earlier in this chapter, some classes are easier to modify and extend than others. But as a rule, subclassing is more likely to be limited by your ability to imagine creative effects than by the limitations of iOS or OS X.

				However, subclassing takes time. It's often useful to create simpler results such as a UI with a static fixed background. IB includes features to help you design and preview these less complex effects.

				To create a static background to an iOS project, use a UIImageView object. Drag and drop it on the UI as shown in Figure 8.10. Then drag its position in the object list so it's behind the other objects and higher up the list. If you don't do this, the image view hides the other objects, which usually isn't what you want.

				By default, the image view doesn't fill the UI. You can resize it manually by dragging the edges and corners, or you can use the Fill Container Horizontally and Fill Container Vertically options in the Arrange menu in the Size Inspector to expand the image to cover the available background space in the view.

				Figure 8.10

				Adding an image view to a UI is ideal for wallpaper and for static colored backgrounds.

				[image: 9781118007594-fg0810.tif]

				Creating a colored background

				The image view doesn't have to contain an image; you can use it to create a static colored background. To select a preset color, click the blue up and down arrows at the right of the Background menu. You see the list shown in Figure 8.11, which displays standard system colors.

				While black, white, and gray appear as you'd expect, some of the background colors are more or less obviously textured. For example, the Group Table View Background Color includes vertical stripes, and the Simulator may not always display this accurately.

				To set a custom color, click in the area to the left of the menu's up and down arrows to reveal a standard OS X Color Picker. Use the controls to select a color for the image view in the usual way. You can change the opacity for special effects.

				[image: mac_caution.eps] CAUTION

				Some of the textures look good, but textures may be OS dependent, and they may not appear correctly in the Simulator. If you build an app that supports an older version of iOS, users may not see what you expect them to. To test this, keep one or more hardware test units running older versions of iOS. Differences aren't usually critical, but it's useful to be aware of this issue.

				Figure 8.11

				Setting a static background color

				[image: 9781118007594-fg0811.tif]

				[image: mac_tip.eps] TIP

				To make the image view transparent, select the Clear Color from the default list or set the Opacity to 0 in the Color Picker. Occasionally, you may want to include a dummy view that collects and processes events before passing them on to other objects. To do this, use a transparent view managed by its own subclass code.

				Importing an image file

				For more complex static effects, you can import an image file. This example demonstrates how to import a file for a full-sized background view that creates a wallpaper effect. The procedure for customizing button graphics is very similar.

				You also can extend the procedure to create custom objects such as radio buttons or game tokens. Active features require extra code.

				To add a media file, right-click the Resources group in the Project Navigator and select Add Files to <Project Name>… When the dialog box shown in Figure 8.12 appears, navigate to a suitable file. In this example, the project uses a PNG file prepared in Adobe Photoshop and pre-trimmed to 320x460 pixels.

				[image: mac_tip.eps] TIP

				You can use a file with almost any reasonable dimensions and rescale it manually in IB by dragging the edges and corners. For best results, create a file with the correct dimensions. You can even align the image view outside the boundaries of the UI to show one corner or side.

				You can add the contents of one or more complete folders from this dialog box and optionally create a group for each folder. You also can choose to copy the file into the project or to create an indirect reference. For this project, select the Copy option.

				Figure 8.12

				Use this procedure to import any media file, including graphics, sounds, HTML content, text, and so on.

				[image: 9781118007594-fg0812.tif]

				After import, you see the file in two places, as shown in Figure 8.13. It's added to the Resources group in the Project Navigator. It also appears in the Media Library, which is selected by the icon at the top right of the Library area. If you add further files, they appear in both locations.

				In a complex project with many media files, it can be useful to create new groups to collect related media files into one location. You also can create a group for each class and include any associated media files, perhaps in a sub-group to simplify navigation.

				Figure 8.13

				After import, the new file appears as a Resource and is added to the Media Library.

				[image: 9781118007594-fg0813.tif]

				[image: mac_tip.eps] TIP

				Although Xcode doesn't include an image editor, it does include a raw hex file editor. Select the Open As⇒Hex option to view any file's raw hex data.

				If you click the file in the Resource group, you see the preview shown in Figure 8.14. Xcode doesn't support internal editing of media files, but you can right-click any file and select Open with External Editor to load an editor that isn't built into Xcode. If you save the file afterward, Xcode reloads the new content automatically.

				Figure 8.14

				Previewing a media file, and selecting an external editor for changes

				[image: 9781118007594-fg0814.tif]

				Assigning an image file

				Figure 8.15 shows how to assign the image file to the image view. In the Attributes Inspector, select the image from the Image drop-down menu. All compatible images loaded into the project appear here.

				Figure 8.15

				Assigning an image file to the image view

				[image: 9781118007594-fg0815.tif]

				Once assigned, the image view loads the file automatically when the app runs. No further code is needed. You also can preview the image in place in the UI, although certain features such as PNG transparency may not work reliably. Figure 8.16 shows the result.

				[image: mac_tip.eps] TIP

				To assign a custom image to a button, set the button type to Custom in the Attributes Inspector and assign the image file to the Background property—not the Image property. This is enough to implement basic highlighting, and the button darkens when tapped. Buttons have four potential states, but you can ignore the other states unless you're creating complex effects. The Background property defines the button's default look. You can layer the Image property on top of the button for more complex effects.

				[image: mac_note.eps] NOTE

				Although OS X supports an NSImageView class that is similar to UIImageView in iOS, OS X applications are less likely to use background wallpaper. Images are usually used as decorative icons. The iOS Media Library is empty by default. The OS X Media Library includes a selection of standard icons and sounds that you can drag into your application without having to import them. Use the Image Well object with no border to duplicate the effect of an iOS image view.

				Figure 8.16

				The modified UI with background wallpaper, which Xcode correctly previews in the IB editor

				[image: 9781118007594-fg0816.tif]

				Supporting Non-English Languages

				Translating labels and messages into languages other than English is known as localizing an application. Localization improves an application's sales prospects, but it can be time-consuming and should be done selectively. Dialects of French and Spanish cover much of the non-English world and should be considered essential. Chinese is becoming an important market. Germany, Japan, and Korea have enthusiastic technology markets and are worth considering. Other languages can be supported as needed for specific applications and locations.

				IB supports localization in two ways:

				[image: bl.eps] Each supported language has a separate nib file, with custom labeling.

				[image: bl.eps] Each language also includes a .strings file with a dictionary of text strings, each of which has an associated key.

				Creating these extra files is easy in IB. In the Project Navigator, select the main project tab at the top of the pane. Select Project in the adjacent pane, and select the Info tab in the main settings panel.

				To add a language, open the Localizations sub-pane and click the Add (+) icon, as shown in Figure 8.17. Scroll down the long list to select the new language.

				Adding a new language duplicates the current collection of nibs. It doesn't translate the contents. You must update the labels and other features of each nib manually. This may require expert input.

				The new nib files are bundled with the application, and the nib loader reads a user's localization settings to select and load the correct nib for each country automatically.

				Figure 8.17

				Adding support for a non-English language

				[image: 9781118007594-fg0817.tif]

				[image: mac_tip.eps] TIP

				Adding too many languages bloats the project with many almost identical nib files. Although Apple promotes multi-language support, realism suggests it's more practical to support the smallest possible selection of languages. As a workaround, you can use a single nib file and set the labels on launch with text loaded from the .strings file. This option takes longer to code, but is easier to expand and creates a much smaller final bundle.

				IB doesn't support non-English text unless you're already using a non-English keyboard. Use the Character Viewer utility shown in Figure 8.18 to add accents, special symbols, and letters from non-English alphabets. To open the Character Viewer, select the Keyboard item in System Preferences and enable the Show Keyboard & Character Viewer in menu bar option. Click the flag icon that appears in the menu bar, and select Show Character Viewer from the menu. Select special characters as needed, and use the Insert button to add them while editing text.

				Figure 8.18

				Using the Character Viewer utility to add non-English characters to a nib

				[image: 9781118007594-fg0818.tif]

				[image: mac_caution.eps] Caution

				Not all fonts support all characters. You may need to use special non-English fonts for languages such as Chinese, Japanese, and Korean.

				[image: mac_tip.eps] TIP

				Managing localization strings can be painfully time-consuming. Xcode includes two command-line tools to simplify the process. ibtool can read through a nib and create a list of visible strings. You can then send the strings to a translator. When done, ibtool can fold the translated strings back into another “translated” nib. genstrings is a similar tool, but it works on source code files. For details see the man pages or search for examples online.

				Working with Advanced IB Techniques

				IB is a deep application with many hidden features. There isn't room to explore them all—in fact, hardly anyone uses IB to its fullest possible extent. But it's worth becoming familiar with some of the more accessible advanced techniques.

				Using tags

				Many IB objects include a Tag field, as shown in Figure 8.19. You can use this field to search a nib—or more usually, a view in a nib—to find a matching object. For example, to find the button in the figure you might add the following code to the view controller:

				UIButton* theButtonImLookingFor

				= (UIButton *)[self.view viewWithTag: 101010];

				Typically you wouldn't do this for simple object updates—outlets are a better option. But tags can be very useful when you work with table views. You can create cells dynamically and use tags to define how they're displayed—for example, to create cells with alternating colors. Tags can also be a good way to manage UI elements when you generate them in code without using IB at all.

				Figure 8.19

				Defining a tag for a UI button

				[image: 9781118007594-fg0819.tif]

				Sending messages between nibs

				It's often useful to send messages between objects in different nibs. It isn't trivially easy to do this—some setting up is always required. But it's not a difficult problem.

				One common solution is to pass messages through First Responder. Optionally, you can add custom methods to First Responder by clicking it, selecting the Attributes inspector, and adding an action as shown in Figure 8.20. Add the action code to one of the classes in the responder chain. You can then link the custom action to buttons, menus, and other IB message-generating objects in the usual way.

				This can be a useful way to leapfrog across objects in the responder hierarchy. For example, if you want to create a button that sends a message to a window rather than a view controller, subclass the window and add a responder method to it.

				[image: mac_note.eps] NOTE

				There's only one First Responder item in an application. Although it appears in every nib, it's the same item. (File's Owner is different for every nib.)

				[image: mac_caution.eps] CAUTION

				Objects with custom methods must be plugged into the responder chain correctly—otherwise messages disappear and are ignored. It can take longer to add the code that ensures an object supports first responder status correctly than to create the responder methods.

				Figure 8.20

				Adding a custom action to First Responder

				[image: 9781118007594-fg0820.tif]

				Converting iPhone projects to the iPad

				Because there are so many differences between the two platforms, there's no simple automatic way to convert an iPhone project into an iPad app. However, Xcode includes a minimal transitioning feature that can help you begin the conversion process.

				The converter relies on the fact that iPad and iPhone apps load different nib files at launch. It takes an existing iPhone launch nib and creates a new launch nib from it for the iPad. This is enough to create a basic universal app that runs on both platforms.

				[image: mac_note.eps] NOTE

				The Window-based template creates two separate app delegate files and two starting nibs. Converted iPhone apps also have two nibs, but the main window is controlled by a single shared app delegate which remains unaltered. This is usually easier to work with; app management code is shared, not duplicated. Similarly, it's possible to create a single shared controller that's aware of which platform it's running on. This is more efficient than creating two controllers with similar code.

				The best time to convert an app is when it's finished. Figure 8.21 shows a dummy iPhone app UI that stands in for a finished app for this demonstration. You can start with an existing app of your own, or you can load any of the templates. The exact contents of the app don't matter.

				In this example there are two nib files. One defines the main window, and the other defines the UI and also instantiates the view controller.

				Figure 8.21

				Getting ready to convert an iPhone app to the iPad

				[image: 9781118007594-fg0821.tif]

				To convert an app, click the project name at the top left of the Project navigator. Select the app under the Targets icon. Select Universal from the menu, as shown in Figure 8.22. (You can also select iPad, which creates an iPad-only version.)

				Note that this feature isn't prominent. In Xcode 3, you could select a conversion option from the Project menu. In Xcode 4, you have to know that this feature exists, and where to find it.

				Figure 8.22

				Selecting the new format

				[image: 9781118007594-fg0822.tif]

				Select Yes in the confirmation dialog. Xcode creates a new group called iPad and adds a new file called MainWindow-iPad.xib to it. This nib is formatted and tagged as an iPad launch nib. You can now run the app in the iPad Simulator, as shown in Figure 8.23.

				[image: mac_caution.eps] CAUTION

				There's more to an iPad nib than larger dimensions. Nibs contain device information, so you can't simply resize an existing iPhone nib by hand. The converter handles the hidden details for you.

				Figure 8.23

				Running the converted app in the iPad Simulator

				[image: 9781118007594-fg0823.tif]

				You can see from the illustration that formatting is haphazard. Given the extra space, it's usual for iPad apps to have more features than their iPhone equivalents. A minimal UI that works well on the iPhone can look comical on the iPad, unless you redesign it.

				Note that if you run in the iPhone Simulator, the original app loads as before. Only the main window has changed. The view controller remains the same, but you can now extend it with iPad-specific features.

				Summary

				This chapter introduced the File's Owner and First Responder placeholder objects and explained their role in UI design and event management. It demonstrated how to customize objects by subclassing them and how to assign subclasses to visible objects in IB. It showed how to create simple static background images in IB with flat colors or image files and introduced IB's localization features, with support for non-English nib files. Finally it explored some more advanced applications of IB, including universal iPhone/iPad development.

			

		

	
		
			
				Part II: Going Deeper

				
				In This Part

				

				Chapter 9

				Saving Time in Xcode

				Chapter 10

				Using the Organizer

				Chapter 11

				Managing Certificates and Provisioning

				Chapter 12

				Working with Builds, Schemes, and Workspaces

				Chapter 13

				Customizing Builds for Distribution and Advanced Development

				Chapter 14

				Using Version Control

			

		

	
		
			
				Chapter 9: Saving Time in Xcode

				
				In This Chapter

				

				Using code folding

				Editing structure

				Refactoring code

				Using code snippets

				Many editing operations are repetitive, while others can help you organize your code more effectively to simplify development and maintenance. Xcode 4 includes features that can automate many of these operations, saving you time and effort. The key features include the following:

				[image: bl.eps] Code folding

				[image: bl.eps] Structure editing

				[image: bl.eps] Refactoring

				[image: bl.eps] Code snippets

				[image: bl.eps] Jumping to a definition

				Using Code Folding

				Code folding is a simple feature that can hide code while it isn't being edited. It's a display-only feature that makes it easier for you to concentrate on one section of code without being distracted by surrounding elements.

				[image: mac_caution.eps] CAUTION

				It's easy to activate code folding by accident. If you're not familiar with this feature, you'll wonder why most of your code has disappeared and whether you deleted it by accident. It's important to understand how code folding works, even if you never use it. The code folding gutter described below is very thin, and it's adjacent to the gutter used for debugging. It's easy to select one when you're trying to select the other.

				To fold a section of code, hover the mouse cursor in the gutter at the left of the editor, as shown in Figure 9.1. The selected code is highlighted with a white background, and the surrounding code is grayed out, as shown.

				Figure 9.1

				Selecting a block of code to hide. Code within the nearest matching curly brackets is highlighted and selected automatically.

				[image: 9781118007594-fg0901.tif]

				Click on the disclosure triangle in the gutter. Xcode hides the selected code and replaces it with a placeholder {…} graphic, as shown in Figure 9.2. To unhide the code, double-click the placeholder or click once on the disclosure triangle.

				Code hiding selects paired curly brackets, so you can hide entire methods or specific code segments. If you hide a complete method the signature remains. If you hide a smaller segment, such as the contents of an if statement, the first line of the statement remains as a guide and the contents are hidden.

				For convenience, you can also fold all of the code in a file. Select Editor⇒Code Folding and choose one of the following options:

				[image: bl.eps] All: Folds/unfolds everything between two matching delimeters.

				[image: bl.eps] Methods & functions: Folds/unfolds methods and functions only.

				[image: bl.eps] Comment blocks: Folds/unfolds comment blocks only.

				You can use this feature to hide the large comment block that Apple always includes at the start of sample code.

				Figure 9.2

				You can unhide code by clicking in the gutter or clicking the placeholder graphic.

				[image: 9781118007594-fg0902.tif]

				[image: mac_caution.eps] CAUTION

				Xcode's code folding is simple and limited compared to the equivalent feature on other platforms. It's delimiter-based and has no syntactic intelligence. You can't do useful things such as hiding long property lists.

				Editing Structure

				It's often useful to comment or uncomment blocks of code, clean up indentation, check delimiters, move lines up or down within a method, and so on. Xcode's editor includes a contextual right-click menu that implements these features, as shown in Figure 9.3.

				[image: mac_tip.eps] TIP

				Newcomers to Xcode sometimes miss this menu or ignore it because there's so much else to learn. But it's one of the keys to improving productivity in Xcode, and it's the best way to avoid wasting time on manual code tidying chores.

				Figure 9.3

				Viewing the Structure editing menu, an unglamorous but very useful timesaver

				[image: 9781118007594-fg0903.tif]

				To display the menu, right-click anywhere in the editor area. Some options in this menu require you to select a block of code. The following features are available:

				[image: bl.eps] Balance delimiter: This is a display-only feature that helps you fix delimiter mismatches. When you select it, Xcode highlights the matching delimiters nearest to the edit point. Select it again, and it highlights the next matching pair. And so on. You also can double-click any delimiter to find its partner and highlight the code between them.

				[image: bl.eps] Reindent: This corrects the indentation within a selected block of code. Code features within matching delimiters are indented by the same number of spaces. This is a good way to clean up a messy edit.

				[image: bl.eps] Shift Right/Left: These options move a selected block of code by the number of spaces used for an indentation step. You can use this feature to correct indentation after a major change to a method, but it's often easier and quicker to use the Reindent option after editing.

				[image: bl.eps] Move Line Up/Down: In spite of the name, these options can move a single line or a selected block up and down. The line above or below the selection changes position.

				[image: bl.eps] Comment Selection: If the selection is uncommented, this option inserts two slashes before each line. If it's commented with two slashes on each line, the slashes are removed. This feature isn't intelligent enough to recognize /*…*/ comment blocks and doesn't uncomment them correctly.

				[image: mac_tip.eps] TIP

				To make code structures easier to follow, you can change the fonts and colors used by Xcode. Although the changes are cosmetic, they can have a significant impact on productivity, because a good color scheme can make structures stand out clearly. Select Xcode⇒Preferences, and choose the Fonts & Colors tab. You can change the font globally by selecting every item that appears in the list and choosing a new font or font size in the Font box.

				Refactoring Code

				The Structure menu is used for relatively simple edits, but the Refactor menu, shown in Figure 9.4, can create more complex changes. Some changes affect every file in a project.

				Figure 9.4

				In the Refactor menu, some or all of the options typically are grayed out.

				[image: 9781118007594-fg0904.tif]

				Refactoring is a powerful but sometimes tricky feature that changes or renames structural features in your project. The aim of refactoring is to create clearer organized code that is easier to extend and maintain. Edits shouldn't change basic behavior or introduce bugs. You can refactor code with the options shown in the Refactor menu. You also can use a feature called Edit All In Scope to rename symbols within a file.

				Using the Refactor menu

				In Xcode, you can use the Refactor menu to do the following:

				[image: bl.eps] Rename classes, methods, and other symbols within a class

				[image: bl.eps] Rename classes, methods, and symbols across a project

				[image: bl.eps] Create new superclasses

				[image: bl.eps] Move code into a superclass

				[image: bl.eps] Move code into a subclass

				[image: bl.eps] Create new setters and getters for a symbol

				Refactoring can seem mysterious because the options that appear in the Refactor menu are context- and selection-dependent. Xcode displays only the options that make sense; for example, you can't create a superclass for a property.

				[image: mac_note.eps] NOTE

				Xcode's refactoring features are based on ideas introduced by developer Martin Fowler. For more information, see http://martinfowler.com. Refactoring has been hotly debated, but you don't need to be familiar with the debate to use the Refactor menu to work with your code.

				[image: mac_caution.eps] CAUTION

				 Refactoring can make drastic, wide-ranging changes to a project. It's a good idea to back up a project using one of the options introduced in Chapter 14 before you use this feature. Note that some refactoring options, such as rename, can be very slow.

				Refactoring typically works in two stages. First you select an operation and type a parameter, such as a new name, into a dialog. Next, Xcode displays the preview and confirmation dialog shown in Figure 9.5. The preview shows a list of proposed changes in various files at the left, and before/after views of the code at the right.

				Clicking Save actions the changes. You can also deselect one or more of the check boxes at the left to leave those items unchanged. For some operations, the proposed changes can be complex and may be spread across multiple sections in multiple files.

				The following options are available:

				[image: bl.eps] Rename: This works on classes, properties, and method. Select a feature and the Rename option from the menu. Type a new name into the dialog box. Xcode searches every file in the project—this can take a while—and shows the preview/confirmation dialog.

				[image: bl.eps] Extract: This works on methods or code sections. You can move a section of code into a separate method or function. Xcode automatically creates a new signature for you. You can edit this before you confirm the change.

				[image: bl.eps] Create Superclass: This works on class names. It creates a new superclass. The definition code can be written to a new file, which is the most useful option, or it can be added to the current file, which can be confusing and isn't usually useful. You typically need to fix included/imported headers manually in the superclass definition.

				[image: bl.eps] Move Up/Down: This works on methods and properties. Move Up moves the item to the superclass; in other words, it removes the code from the current file and moves it to the superclass definition file. Move Down moves it from the superclass to a subclass.

				[image: bl.eps] Encapsulate: This works on properties. It creates code for a getter and/or a setter. You don't need to use this feature if you're already using @synthesize for your properties.

				Figure 9.5

				Using the preview/confirmation dialog while renaming a class. Xcode searches every file in the project and lists the possible edits here.

				[image: 9781118007594-fg0905.tif]

				[image: mac_note.eps] NOTE

				Some of the refactoring options modify project nib files. You can confirm or cancel edits using the same split before/after view used to display code files, but the panes show the XML (eXtended Markup Language) data inside a nib. This may appear unfamiliar if you've never looked inside a nib with a text editor. There's no way to view the changes graphically; typically, it wouldn't make sense to show them in this way.

				Using the Edit All In Scope feature

				It's sometimes useful to rename symbols used in a file. You can use the global find/replace feature in the main menu to rename a symbol in a project, but sometimes you need to limit the changes to a single class, method, or function.

				With the Edit All In Scope feature, you can rename one instance of a symbol, and your edit is copied to all matching symbols within the selected scope. Typically you use this within a method or function, but you can also use it to change local variables in a class.

				It can be easy to miss Edit All in Scope. To use it, select any object and hover over it with the mouse cursor. Xcode displays a floating selection triangle to the right of the property. Click the triangle, and Xcode displays a right-click contextual menu with the Edit All in Scope entry (and nothing else), as shown in Figure 9.6.

				Figure 9.6

				Using Edit All in Scope is an easy way to rename a group of objects, but it's easy to miss this feature!

				[image: 9781118007594-fg0906.tif]

				Select this entry, and Xcode highlights all instances of that object in the file. You can now type a new name, and all instances of the name are changed at the same time. Press Return to make the change permanent or Escape to cancel.

				[image: mac_caution.eps] CAUTION

				Don't use Edit All in Scope to change properties/ivars. If a symbol is accessed from outside a class, use one of the refactor options to rename it.

				Using Code Snippets

				With earlier versions of Xcode, many developers realized that it was useful to create a dummy file with boilerplate code that could be copied into an active project. Xcode 4 replaces this ad hoc file with a code snippets feature, creating a simple but productive new feature. Code snippets add complete sections of code to a project. Xcode includes a small selection of default snippets, but you can expand the library with your own code.

				A code snippet can be a line or two of code such as an alert generator or timer initializer, a more complex section of code that implements a standard feature such as animation, or a complete method. Potentially, you can create snippets that implement an entire class with complex default code.

				[image: mac_tip.eps] TIP

				Code snippets are built into Code Sense, making a very powerful feature. When you create a new snippet, you can define a custom auto-completion string. When you type that string in the editor and press Return, Code Sense copies the snippet code from the library and inserts it. You can add your own placeholder tokens.

				Inserting a snippet

				To insert a snippet, select the Code Snippet ({}) icon in the Library area of the Utility Pane. Optionally, select an OS or your custom snippets from the pop-up menu, as shown in Figure 9.7. Select a snippet from the list, and drag and drop it into the code editor.

				The code is copied and added as shown at the top of the figure. Placeholder variables appear in gray. To complete the edit, select and rename them. You can skip between them with the Tab key.

				A preview window with the code appears to the left of the snippets. You can use this window to edit snippets in the library.

				[image: mac_caution.eps] CAUTION

				By default, the library shows snippets for all platforms. The OS platforms include snippets with different code for each, but some snippets have common names. Always select the platform before using snippets. Xcode allows you to add an iOS snippet to an OS X project, and vice versa.

				Figure 9.7

				In this example of adding a code snippet, the tableView: method has been copied from the snippet library and added to the top of the editor. The floating preview window displays the snippet so you can review it before you add it.

				[image: 9781118007594-fg0907.tif]

				Creating a new snippet

				Creating a new snippet is easy after you understand how to do it, but until you do, the process is unintuitive.

				Creating a snippet with drag and drop

				It's unexpectedly easy to miss this feature, and it has some hidden subtleties. To create a snippet, drag-highlight the code you want to include, click the highlighted area, and hold down the mouse button until the cursor changes to a pointer. If you don't hold down the mouse button, Xcode assumes you're attempting to highlight a different section of code.

				Drag the snippet to the Code Snippet Library and release it anywhere. The snippet is added as the last item in the User library with a default name—My Code Snippet.

				In the first release of Xcode 4, you can only add a snippet when the Code Snippet Library or User items are selected. This means that when the snippet list is filtered to show iOS or OS X snippets, adding a snippet seems to have no effect. In fact, the snippet is added to the User list—which is invisible.

				Similarly, you also can't see or insert user snippets when viewing iOS or OS X items. You can only use them when you select the User list or the unfiltered Code Snippet Library list.

				This may change in future releases—the current implementation is inconvenient for developers who want to create and use snippets on either or both platforms.

				Once you have created a snippet, you can edit the name and add optional symbol placeholders, as described below.

				Editing a snippet

				To edit a snippet, click anywhere on it in the Library to view the code, and click the Edit button at the lower right. You'll see the dialog shown in Figure 9.8.

				Figure 9.8

				Editing a snippet

				[image: 9781118007594-fg0908.tif]

				[image: mac_note.eps] NOTE

				Currently, you can only edit User snippets. To create your own version of one of the existing snippets, copy and paste the code into a User snippet and save it with a new name.

				You can now edit the following settings:

				[image: bl.eps] Title: This defines the name that appears in the Library list.

				[image: bl.eps] Summary: This defines the short description that appears in the Library list.

				[image: bl.eps] Platform: Select iOS, OS X, or All. Currently this feature does nothing—all snippets are user snippets—but it may be more useful in future versions of Xcode.

				[image: bl.eps] Language: This defaults to Objective-C. You can select a different language manually.

				[image: bl.eps] Completion shortcut: You can leave this empty or fill it with any unique string to provide a quick-access keyboard shortcut for Code Completion.

				[image: bl.eps] Completion scope. You can control how widely Xcode searches when looking for completion matches. The default is Function or Method.

				Snippets often need placeholder tokens, which can be filled in later when you use the snippet. For example when creating an alert, you can use a placeholder for the message text.

				To create placeholder tokens, type the following:

				<#placeholderName#>

				The placeHolder name string is arbitrary and doesn't have to be unique. It appears in the snippet code as a highlighted placeholder, and you can edit it and tab over it in the usual Code Completion way.

				In the figure, the snippet includes two placeholders: <#title#> and <#message#>. The choice of the number and placing of the placeholders is up to you. Optionally, you can create different versions of the same snippet with different placeholders; for example, you can create one for an alert that uses standard text and another in which the labels are placeholders and can be filled in as needed.

				[image: mac_note.eps] NOTE

				The snippet feature in Xcode doesn't support open development; there's no way to share snippets across a team or make them available online. Public alternatives are available, such as snipt at http://snipt.net and Willow at http://wingsforpigs.com/Willow/Willow.html. Public snippet sharing may not be ideal for your project, but it can be a useful option to explore, especially for scripted languages such as Python and Ruby.

				Jumping to a Definition

				It's often useful to jump to a method signature or symbol definition. You can find definitions by searching for them, but it's much quicker to use the Jump to Definition feature.

				To use it, highlight a symbol, right-click to show the contextual menu, and select the Jump to Definition option.

				If there's a single definition, Xcode displays it in the main code window. Note that the definition may be in one of the Cocoa or Cocoa Touch header files, and not in your code—in which case you'll see a method signature, and perhaps some supporting comments from Apple.

				If there are multiple definitions—for example, when there are multiple classes with dealloc methods—Xcode displays a new menu with a list of definitions. You can select one to view it.

				Note that definitions don't appear in the Assistant window when it's open—they take you away from your original editing location into a different file, or a different part of the same file. To move back to the original location, use the back arrow at the top left of the edit window.

				Summary

				This chapter explored some of Xcode's time-saving features. It introduced code folding and explained how you can use it to hide distracting code while you're not working on it. It described the editing utilities available in the Structure menu and listed the ways in which they implement common code clean-up chores.

				Next, it introduced the Refactor menu and explained how refactoring can create code that is easier to update and maintain. Finally, it described Code Snippets and demonstrated how this powerful new feature can be used to create a custom library of code that can be inserted into a project by hand or integrated into Xcode's Code Sense system.

			

		

	
		
			
				Chapter 10: Using the Organizer

				
				In This Chapter

				

				Working with devices

				Using device logs

				Managing individual devices

				Working with projects and archives

				The Xcode Organizer, shown in Figure 10.1, appears in a separate window and contains an “and the rest…” collection of miscellaneous features. The Organizer is used for project and device management, and it includes a browser for the Xcode documentation library.

				To display the Organizer, click the file-cabinet icon, at the right of the icon bar at the top of the Xcode editor window. The Organizer appears in a separate window that isn't integrated with the main editor.

				You can use the Organizer's features to manage:

				[image: bl.eps] Provisioning certificates

				[image: bl.eps] Development devices

				[image: bl.eps] Code repositories

				[image: bl.eps] Active projects

				The window uses the standard OS X layout. To select the main features, click the icons at the top. Sub-features appear in groups at the left. The active area fills the rest of the screen. Some features include a separate toolbar at the bottom of the screen, with icons for specific options. Because the Organizer is a grab bag of miscellaneous unrelated options, the UI of each page is different.

				[image: mac_crossref.eps] CROSS-REFERENCE

				The Organizer includes the Documentation Browser, which is described in Chapter 6. The Repository and Snapshot features are described in Chapter 14. Provisioning is described in more detail in Chapter 11. This chapter introduces the remaining features that aren't discussed elsewhere.

				Working with Devices

				You can—and usually should—test iOS apps on a number of devices. You don't often need to set up devices manually. When you plug in a new device, Xcode downloads the relevant details and makes it available for testing. This can take a few seconds but isn't a complex process.

				Figure 10.1

				The Xcode Organizer

				[image: 9781118007594-fg1001.tif]

				The Device Manager, shown in Figure 10.2, includes useful but optional features that make device testing more productive. The Library subpane at the top left is a menu of general device-related features. The Devices subpane is a list of devices. Each displays a similar list of options.

				[image: mac_caution.eps] CAUTION

				Some options are available only when a device is connected. For example, you can always see stored screenshots and device logs. But the Console, Provisioning Profiles, and Applications options are visible only for the currently attached device, if there is one.

				You can use the Manager to perform these tasks:

				[image: bl.eps] Review and manage provisioning profiles and developer certificates. Use this feature to check the status of profiles and certificates. It includes an option to copy a complete set of profiles and certificates to another Mac.

				[image: bl.eps] Review and manage OS updates. You can check the current installed OS on each device, and update or restore to other versions.

				[image: bl.eps] View device logs. Logs include stack dumps collected during crashes, and process listings that can help diagnose memory errors.

				[image: bl.eps] Create and manage app screenshots. Screenshots can be saved for reference or collected for use in a new App Store listing.

				Figure 10.2

				A view of the Device Manager, showing the list of devices at the left, device management options at the top left, and an active display and management area in the rest of the screen

				[image: 9781118007594-fg1002.tif]

				Reviewing and managing profiles

				The top half of the Developer Profile window (refer to Figure 10.2) displays developer certificates. The bottom half displays provisioning profiles. Certificates and profiles can't be opened or edited, so this list is purely for review.

				However, they can be copied to another Mac. Before Xcode 4, provisioning multiple Macs required manual copying and installation of individual certificates and profiles. In Xcode 4, you can use the Import and Export feature at the bottom of this page to duplicate these files and install them on another Mac with a single operation.

				Figure 10.3 shows the Export dialog box. To use this feature, you must specify and confirm a password. Use the same password when you Import the profiles on a different machine.

				The Export dialog box creates a file you can copy to other Macs. To recreate the provisioning, run the Import option on the other Mac. You need to specify the same password again.

				Figure 10.3

				When exporting provisioning information, forgetting the password isn't an option.

				[image: 9781118007594-fg1003.tif]

				Figure 10.4 shows the Provisioning Profiles listing, which displays all available profiles.

				The listing shows profile creation and expiry dates, and it highlights profiles that have expired or are about to expire. The device list at the bottom of the window indicates the device or devices on which the profile is installed.

				You can right-click a profile and select options to delete it or to open a Finder window with the corresponding file. It's good practice to delete expired profiles to keep the list clean and up to date.

				[image: mac_caution.eps] CAUTION

				Distribution profiles can't be installed on devices. If you select a distribution profile in this window, the device list always displays a warning message.

				Figure 10.4

				Reviewing installed profiles with the Provisioning Profiles option

				[image: 9781118007594-fg1004.tif]

				The most useful feature on this page is the Automatic Device Provisioning check box (and with it the Refresh button in the toolbar). You can use this to request an updated profile from Apple without having to manually create it in iTunes Connect, download it, and install it. For practical details, see Chapter 11.

				[image: mac_caution.eps] CAUTION

				The Import and Export options at the bottom of the window look identical to the ones in the Developer Profile page, but they are completely unrelated. You can use them to import and export individual profile files by hand.

				Working with software images

				As shown in Figure 10.5, the Software Images page shows the available versions of iOS for each device. When users update their devices with a new version, iTunes manages the process for them. But as a developer, you must test and run beta versions of iOS and manage updates manually.

				The update process happens in three stages. First, you must locate the update file, download it, and import it into Xcode. You can then use the software version option on the device pages, described later, to install it on the device. To complete the process, sync the device in iTunes to restore your files and apps.

				[image: mac_caution.eps] CAUTION

				The update process usually works. Successful developers keep separate devices and use them exclusively for development. Less successful developers use one device and sync regularly. You often can restore to an older version and resync. If this doesn't work, you need to wipe the device, reinstall an older version of iOS, and try to resync again. It's not unusual to lose data when you update, so always sync beforehand.

				Figure 10.5

				Reviewing the available software images. Behind the scenes, this page is really just a list of firmware files. You can access it in Finder from a contextual right-click menu.

				[image: 9781118007594-fg1005.tif]

				Finding and installing iOS updates

				Public updates can be installed via iTunes in the usual way. But beta updates are reserved for developers, and you must download and install the files manually. You typically update device firmware whenever you download a new beta release of the SDK.

				When update files are available, they're listed on the iOS Dev Center page. You must select the correct file for each type of device; for example, iPhone 4 firmware isn't compatible with an iPhone 3G, any iPad, or any iPod. To download a file, right-click it and select the Save As… (or equivalent) option in your browser. Firmware files have the .ipsw extension.

				To import the file into Xcode, select the Add button at the bottom left of the main window. Navigate to the file, and select it to load it. This adds it to the list in this window but doesn't install it. Installation is a device-based process and is described below.

				To remove the file from the list, use the Remove option. This deletes the file from Xcode's firmware folders and can't be undone. However, if you have a backup copy of the firmware file elsewhere on disk, you can always import it again.

				[image: mac_tip.eps] TIP

				Firmware files are big—from 300MB to 500MB. When you add a file, Xcode copies the original to a folder called /Software Images. This duplication wastes disk space. It's a good idea to move the original file to a backup server, if you have one, and delete it after Xcode imports it.

				[image: mac_tip.eps] TIP

				Beta files don't stay on the main developer pages for long. Apple keeps an archive of all previous iOS versions, including betas, GM (gold master) seeds, and finished releases. Unfortunately, there's no reliable static URL for these files. But you can find links to them by searching for “iOS x.y (beta) download”, where x.y is the version number.

				Using device logs

				Device logs provide crash reports and information about memory errors. The list can also include user force-quit events, where the user kills an app deliberately, and watch-dog timeout events, where the OS kills an unresponsive app. The most recent logs are copied to Xcode whenever a device is connected.

				Reading crash reports

				A crash report (also known as a backtrace) is a context summary and a stack dump. The context includes information about the hardware and OS, and the stack dump is very similar to the real-time dumps available in Xcode's debugger.

				Crash reports make it possible to collect crash information from apps that are being run and tested “live.” Reports are recorded for every crash, anywhere. The device doesn't have to be connected to a Mac running the Xcode debugger.

				[image: mac_crossref.eps] CROSS-REFERENCE

				Debugging is introduced in Chapter 15.

				Figure 10.6 shows a typical example. The panel at the left is a list of crashes on the selected device. The panel at the right shows the details of each crash. In this example, the stack dump shows that the uSha application has crashed at the [UIView setText:] method. The stack dump doesn't include information about properties and variables, but if you scroll down the list, you can find a similar stack dump for each active thread. You can use these details to make educated guesses about useful breakpoint locations when you test the app with Xcode's debugger.

				At the bottom of the report is a list of Binary Images, which includes the apps and libraries running at the time. This feature is a holdover from OS X debugging; you can use it to get information about crashes in plug-ins and libraries. It's less relevant to iOS debugging because the item at the top of the list is usually your app.

				Figure 10.6

				To make sense of a crash report stack dump, you should understand that events appear in reverse chronological order. The most recent event caused the crash, but earlier events may have prepared it.

				[image: 9781118007594-fg1006.tif]

				[image: mac_caution.eps] CAUTION

				Crash dumps often list internal runtime system calls and undocumented internal Cocoa/Cocoa Touch methods. For example, you may know that objc_msgSend is part of the Objective-C runtime. But the [UIPeripheralHost…] calls internal methods to UIKit, and you won't find them in the documentation. This doesn't often matter, because the backtrace usually shows in your code the method that created a problem. But occasionally with beta code, the dump tells you that you've run into an internal bug, and you'll have to find a workaround until it's fixed.

				Understanding low memory reports

				Figure 10.7 shows a low memory report. Instead of a stack dump, the panel at the right shows processes and their memory usage. The report lists the application with the biggest memory footprint and includes a table of all loaded processes with a page count for each. A separate status field shows which apps were running and which were unloaded (“jettisoned”).

				Figure 10.7

				Making sense of a low memory report, which is effectively just a process list

				[image: 9781118007594-fg1007.tif]

				[image: mac_note.eps] NOTE

				Each app and process has a hex UUID, which is simply a long, random number. It doesn't contain useful debugging information.

				Although the list doesn't appear very detailed, you can use it to check whether your apps have memory leaks. For example, the ZettaClock app (refer to Figure 10.7), a simple clock app, is using 16,636 memory pages.

				Although Mobile Safari tripped the memory error and is using than 20,000 pages, ZettaClock contributed to the low memory and is likely to be leaking. With this information, you can use Xcode's other diagnostic tools to find and eliminate the leak.

				Unfortunately, Apple's own apps may hog or leak memory, so memory errors aren't uncommon. But it's easy to use a report to see whether a native app is creating a problem or whether it's one of your apps.

				Note that the dump shows only RAM—internal working memory separate from the main flash memory. The available RAM for each device is shown in Table 10.1.

				[image: mac_note.eps] NOTE

				iOS supports limited paging. Read-only executables can be paged, but there's no swap file. The available RAM is the system maximum. In practice, as little as 20MB or so may be available to an app. To test memory effectively, use an older device with limited RAM.

				[image: /Table 10.1]

				Importing and exporting device logs

				The import and export arrows at the bottom of the window make it possible to pass debugging information back to developers. This isn't a useful feature for solo developers. But team developers can export a crash event from Xcode to a file and share it by e-mail, upload it to a server, and so on. Importing a crash report from a file adds it to the list of current device logs.

				Working with screenshots

				The Screenshots feature is a convenient way to create, review, and export screenshots of active apps. It bypasses the image download features in iPhoto and iTunes and displays screenshots directly. It offers alternative functionality that overlaps with the standard iOS screenshot options. There's no “killer app” advantage; it does some of the same things in a slightly different way. Typically, you'll use both.

				The Organizer's Screenshots feature appears in two locations, with a subtle difference. The main Screenshots option, shown in Figure 10.8, displays saved screenshots for all devices.

				Each device has a separate Screenshots option, which includes a green New Screenshot button at the lower right of the page. Click this button to take a screenshot and add it to the display list. This feature is independent of the device's photo library; it doesn't display screenshots created with the standard iOS two-button click operation.

				Figure 10.8

				Use the Screenshots option to view the screenshot collection.

				[image: 9781118007594-fg1008.tif]

				[image: mac_note.eps] NOTE

				If you're new to iOS, note that you can capture a screenshot manually by pressing and holding down a device's power button and then clicking the Home Button. When you trigger this feature, the screen flashes white and the speaker plays a photo shutter sound. Screenshots are added to the current photo roll, and they can be exported and viewed in iPhoto or in the iTunes image loader.

				You can do the following in Screenshots using the icons along the bottom of the page:

				[image: bl.eps] Remove a screenshot from the list: This deletes it from the display list and from disk.

				[image: bl.eps] Export a screenshot: This saves it to a file location of your choice as an uncompressed PNG file.

				[image: bl.eps] Nominate the screenshot as an app's launch image: The launch image appears after the application begins to load but before it runs. This is a simplified and less useful version of the equivalent feature in the Target Build Settings, which are discussed in more detail in Chapter 12.

				[image: bl.eps] Compare two screenshots to reveal differences: The comparison applies a difference filter, with a variable tolerance. Color information is ignored, and differences appear white or gray. To select two shots for comparison, hold down the Option (%) key and select them with the mouse. Click the Compare check box to see a single combined view.

				[image: bl.eps] Make a new screenshot, as described above.

				You can access further features using a contextual right-click context menu, including the following (refer to Figure 10.8):

				[image: bl.eps] Save as Default Image: This is identical to the Save as Launch Image feature.

				[image: bl.eps] Open Image with Finder: This shows the image in Preview. If you have the PNG file type assigned to an editor, it runs the editor and loads the image.

				[image: bl.eps] Reveal Image in Finder: This opens the Finder and displays the folder containing the image.

				[image: bl.eps] Delete Screenshot: This deletes the image from the display list and from disk.

				[image: mac_note.eps] NOTE

				A feature that's missing from the Screenshots page is the ability to upload images to iTunes Connect. (It would also be useful to view screenshots taken with the device itself, but you can't.) To use Screenshots in iTunes Connect, export them to a folder. It can be convenient to keep all PR material for iTunes Connect and supporting web pages in a single location.

				Managing individual devices

				Whenever you connect an iOS device, the Organizer automatically adds it to the device list shown in Figure 10.9. It also downloads the most recent logs from the device. Connected devices support a wide selection of options, including these:

				[image: bl.eps] A device summary page

				[image: bl.eps] A list of installed provisioning profiles

				[image: bl.eps] A list of installed applications

				[image: bl.eps] A Console dump

				[image: bl.eps] A list of device logs

				[image: bl.eps] A list of screenshots for the device

				Figure 10.9

				Use the Organizer to view key information about a connected device. You can view a simplified version of this page for disconnected devices, but most of the details in the full view aren't shown.

				[image: 9781118007594-fg1009.tif]

				Using the device summary

				The device summary displays a selection of useful information about a connected device, including the following:

				[image: bl.eps] Device type: iPhone, iPod, or iPad.

				[image: bl.eps] Device model.

				[image: bl.eps] ECID (Exclusive Chip Identification Number): This is a unique serial number embedded in each device. Apple added ECIDs to iOS devices from the iPhone 3GS onward. The ECID is passed back to Apple's servers when you attempt a firmware restore or update. (The technology is supposed to prevent jailbreaking, but it was circumvented almost immediately.)

				[image: bl.eps] Identifier: This is a long hex string and is another unique device identifier. This identifier is embedded in provisioning profiles and in apps downloaded from the app store and is used in the App Store DRM (Digital Rights Management) technology.

				[image: bl.eps] Software version: The menu shows the version of iOS installed on the device. You can select other versions and install them by selecting the Restore iPhone button.

				[image: bl.eps] Provisioning: This displays a summary of the installed provisioning profiles. A small red cross appears when profiles are out of date. Select the small gray arrow to view the separate Provisioning Profiles page, described later.

				[image: bl.eps] Applications: This item lists your test apps. Use the small gray arrow to select the separate Applications page. The app icons appear under the list. The “FairPlay-encrypted applications” text tells you how many apps are installed in total, including test apps and other apps.

				[image: mac_note.eps] NOTE

				FairPlay is the name of the DRM technology used to lock apps to a specific device. In theory, it prevents copying. In practice, it's easy to strip it, but apps will then only run on a device with an unlocked DRM and a customized open OS.

				[image: bl.eps] Device Logs: This item displays a count of the available logs. To view them in the Device Logs, select the small gray arrow.

				[image: bl.eps] Screenshots: This displays a count of the screenshots, with a small preview of each. To view the main device Screenshots page, select the small gray arrow.

				Updating the software version

				This option is linked to the Software Image feature described earlier. The menu shows the available software images. To add more, you must download the image files and add them using the Add option in Software Image. You also can select the Other Version option from the menu on this page and select a firmware file from disk. Importing the file here adds it to the list that appears on the Software Image page.

				Select the Restore iPhone/iPod/iPad button to install the selected firmware. Although this option is labeled Restore, you can use this feature to install recent new firmware.

				[image: mac_caution.eps] CAUTION

				Always sync your device before changing the firmware. This doesn't guarantee that your contacts, installed apps, and other data will remain safe, but it does make it less likely that you'll lose data.

				Using the Add to Portal feature

				The two toolbar buttons on this page—Add to Portal and Remove—add and remove a device from the list stored in your account on the Provisioning Portal in iTunes Connect.

				In previous versions of Xcode, you could add a device only by copying its identifier string and adding it by hand. Now you can use the Add to Portal feature to automate this process. When you select Add to Portal, Xcode sends the identifier to the portal, and the portal server adds it to your online device list. The server also generates and downloads the certificates and profiles used to provision the device. See Chapter 11 for more details.

				[image: mac_note.eps] NOTE

				Ad Hoc—beta test—provisioning is usually done remotely, so you still need to know how to get a device identifier remotely and how to add it to the online device list by hand. For details, see Chapter 11.

				Checking provisioning profiles

				The device Provisioning Profiles page, shown in Figure 10.10, displays the profiles installed on the device. This list may not match the profiles shown in the more general Provisioning Profiles page in the Library.

				Figure 10.10

				Check the profiles installed on a device. You can remove expired profiles and install new profiles here.

				[image: 9781118007594-fg1010.tif]

				The device list shows the profiles in the device's file system. The general list shows the profiles installed in Xcode. Xcode generates and installs certain device profiles automatically, which is why the two lists are different.

				On this page, you can install a profile created and downloaded from the Provisioning Portal. The Add button opens a file selector. Navigate to the file, and select it. It's copied to the device and added to the list.

				The Remove button deletes the profile from the device. It's equivalent to the profile deletion feature in the device Settings, but it's easier to access because you can view all installed profiles at the same time.

				Profiles aren't large files, but it's useful to delete expired profiles to avoid list clutter on the provisioning pages.

				[image: mac_crossref.eps] CROSS-REFERENCE

				Provisioning is a very complex topic and is described in full in Chapter 11.

				Managing applications

				The Applications page, shown in Figure 10.11, displays the apps installed on the device. This list includes your own test apps and Apple/third-party apps. Each entry includes the following:

				[image: bl.eps] The name

				[image: bl.eps] The Bundle ID

				[image: bl.eps] The version number

				[image: bl.eps] The minimum OS version

				[image: bl.eps] The icon (if there is one)

				For your test apps, you set these details in the build settings, which are described in Chapter 12. You can use this page to check that you have set them correctly.

				You have three options for app management:

				[image: bl.eps] Download: This copies the files in an app's support directories—/Documents, /Library, and /tmp—to a location on your Mac's disk. You can use this option for debugging to check that files are being created and removed correctly, and to retrieve useful data created by the app.

				[image: bl.eps] Add: This copies and installs a precompiled app. Xcode can install an app automatically after a build, so you don't need to use this option while testing. But you can use it to install app files created by other developers for testing, as long as they are supplied with a compatible provisioning profile. You also can use this option to reinstall prebuilt apps after a deletion without rebuilding them.

				[image: bl.eps] Remove: This deletes the app from the device.

				Figure 10.11

				This is where you manage installed applications. This page isn't quite a key feature of Xcode—you can develop apps without it—but it does include useful options.

				[image: 9781118007594-fg1011.tif]

				Viewing the Device Console

				The Console page, shown in Figure 10.12, is a simplified iOS version of the OS X Console application. It collects and displays general system logs.

				[image: mac_caution.eps] CAUTION

				This console is not the same as the debugging console described in Chapter 15. The debugging console shows messages from one app. The Device Console shows messages from all apps and from iOS.

				There isn't usually much of interest in the console log. Most of the device chatter is hardware-related and includes information about WiFi, battery, USB, and sleep events. You may find the details useful if you are developing hardware accessories, or if you are testing an app with NSLog calls outside the debugger. But aside from the curiosity value, there's little that helps with app debugging and isn't covered in more detail in the Device Logs.

				Figure 10.12

				Viewing the Device Console, which is just a copy of the main iOS log file

				[image: 9781118007594-fg1012.tif]

				Using Device Logs and Screenshots

				These features are identical to the Device Logs and Screenshots in the main Library window, with the minor differences that were described earlier in this chapter.

				Working with Projects and Archives

				The Organizer's Projects and Archives features include project management and archiving features that aren't available elsewhere in Xcode.

				Managing Projects

				The Projects window, shown in Figure 10.13, is a long list of recently opened projects with a number of extra features that include snapshot management and cleanup. This feature is a useful extra and can save you time and disk space. It's not a critical part of Xcode, but it can save time and make you more productive.

				Figure 10.13

				In the Project page, the list at the left is similar to but longer than the recent files list in Xcode's File menu.

				[image: 9781118007594-fg1013.tif]

				For example, it's often useful to open an older project in Xcode. The main recent files list includes 20 entries. The list on the Projects page grows indefinitely, which makes it a useful shortcut when you want to access older files without looking for them in Finder.

				Each entry includes the following features:

				[image: bl.eps] Double-click to open: Double-clicking any project in the list loads it into Xcode.

				[image: bl.eps] Derived Data review: When you build a project, Xcode creates a collection of temporary files, which are called Derived Data and can take up significant disk space. The gray arrow to the right of Derived Data field for each project opens Xcode's temporary files folder and highlights the project.

				[image: mac_tip.eps] TIP

				You don't usually need to look inside the build folders. You do need to know where to find the built application, but you can reveal it by clicking the file in the Products group in the Symbol Navigator and using the Show in Finder… option.

				[image: bl.eps] Derived Data cleanup: Temporary build files take up unnecessary space. When you complete a project, you can use the Delete option to remove them. This is not equivalent to the Product⇒Clean option in the main Xcode menu. Clean removes build-related files. Delete removes all other supporting files created by Xcode, including logs and indexes.

				[image: bl.eps] Snapshot management: Project snapshots, if any, are listed in the lower part of the main area. You can restore a project to a snapshot (an older state) with the Restore Snapshot button at the lower left of the main area. You also can delete unneeded snapshots to save disk space. You cannot create snapshots here.

				[image: mac_note.eps] NOTE

				Xcode 3 created derived data, including build files, in the project folder. Xcode 4 creates derived data in an independent folder. Before you delete a project from disk, use the Delete option in the Organizer to delete this data—otherwise it's never removed. Note that you can click the arrow next to the Derived Data path to open the relevant folder in Finder.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For information about creating and comparing snapshots, see Chapter 14.

				Creating Archives

				In spite of the name, the Archives feature, shown in Figure 10.14, has nothing to do with archiving or backups in the sense of keeping old copies of source code. In Xcode, an archive is a packaged, provisioned, and code-signed application build that can be sent to beta testers or uploaded to the App Store.

				To create an archive, use the Product⇒Archive option in the main Xcode menu. Creating an archive adds the app to the list that appears at the left of this page. You can build an archive as often as you want. Each build adds a new entry to the list in the bottom half of the main area.

				The buttons at the top left implement three archive-related features:

				[image: bl.eps] Validate: This runs basic checks on an archive to confirm that it's suitable for the App Store, and it verifies that the contents have been code-signed correctly.

				[image: bl.eps] Share: Use this option to create an Ad Hoc build that can be shared online or attached to an e-mail.

				[image: bl.eps] Submit: This uploads the app to the App Store. You need to prepare a marketing description with supporting images and text before the App Store accepts an upload.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more information about these features, see Chapters 12 and 13.

				Figure 10.14

				The Archive page, which has nothing to do with backups

				[image: 9781118007594-fg1014.tif]

				Summary

				This chapter introduced the Organizer and described features that aren't covered elsewhere in this book. It explained how to add and manage hardware devices for testing, and how to receive debugging and support information from active devices. It sketched the key features used to implement automatic device provisioning and explained how to copy certificates and provisioning profiles between Macs. It also explored in more detail complex features such as device logs.

				Finally, it introduced the Project and Archives pages, explored how to manage projects and their associated support files and snapshots, and explained how to use the Archive features to validate and share apps for deployment and testing.

			

		

	
		
			
				Chapter 11: Managing Certificates and Provisioning

				
				In This Chapter

				

				Understanding provisioning

				Creating and installing certificates/identities for iOS development

				Provisioning iOS devices

				Provisioning for OS X development

				Parts of the development process require secure access to Apple services, so Xcode includes built-in features that manage these. Security management is known as provisioning. Provisioning has been simplified in Xcode 4, but it remains a complex process. It can take a few hours to a day to create the initial files, certificates, settings, and permissions that allow app store development. After it's working, you can forget about provisioning for at least three months, because the system doesn't need further attention. After that time, some permissions must be updated regularly. But the update process is much simpler and quicker than the initial setup.

				Understanding Provisioning

				Provisioning is a set of permissions that allows you to do three things. When provisioning is working, you can do the following:

				[image: bl.eps] Test apps on iOS hardware: This requires a Developer Certificate and a Development Provisioning Profile for each test device.

				[image: bl.eps] Upload apps to the App Store: This requires a Distribution Certificate and a Distribution Provisioning Profile.

				[image: bl.eps] Distribute apps to beta testers by e-mail or through website downloads: This requires both a Distribution Certificate and a separate Ad Hoc Distribution Provisioning Profile.

				If provisioning isn't installed properly or your permissions have expired, some or all of the following will happen:

				[image: bl.eps] Xcode won't build your app at all.

				[image: bl.eps] Xcode won't allow you to install an app on an iOS device for testing.

				[image: bl.eps] If the app is installed, it won't run.

				[image: bl.eps] Existing test apps stop working when their permissions expire.

				[image: bl.eps] iOS devices owned by beta testers won't run your test build.

				Each profile and certificate is a file. In outline, provisioning has two components:

				[image: bl.eps] Personal developer details: These files are called certificates or identities. They match an identity in your Mac's keychain, allowing Xcode to confirm that you are who you claim to be, and that you have the privileges needed to test apps on devices or upload them to the App Store.

				[image: bl.eps] Device details: These files are called profiles. They allow a device to run test apps signed by a given developer.

				Both certificates and profiles are files with embedded digital keys. The provisioning process would be much simpler if the files were created and installed in a standard way. Unfortunately, they aren't. Certificates are installed in your personal login keychain. Profiles are managed in Xcode. Both are created on the Provisioning Portal, but they need different and unrelated user input.

				You can work through the provisioning process in two ways:

				[image: bl.eps] Manually: The Apple developer website includes a profile manager area called the iOS Provisioning Portal, shown in Figure 11.1. To create provisioning files, you must upload information—such as a unique user key and various device identifier codes—to the portal. The portal generates the required files. You can then download them from the portal and install them in Xcode or in your keychain, as needed.

				[image: bl.eps] Automatically: The device provisioning process has been automated in Xcode 4. Personal setup is still manual, but the part that manages test devices has been simplified. It can be as simple as a one-click operation.

				This chapter introduces manual provisioning in detail, so you can work through the initial setup process and understand the requirements and options. Automated provisioning is described toward the end of the chapter.

				You can develop apps for the iOS Simulator and for OS X without provisioning. You can also (for the time being) sell OS X apps independently of the App Store. But if you don't set up provisioning, you can't test apps on your own iOS hardware.

				Note that even with provisioning, permissions are time-limited. After permissions expire, apps built for hardware testing stop working. You can renew their permissions only with a valid developer subscription. This means that any apps you create stop working after a time, unless you're a registered developer. To use your own apps indefinitely, you must upload them to the app store, have them accepted, give yourself a free gift certificate, and then “buy” the app with the certificate.

				[image: mac_crossref.eps] CROSS-REFERENCE

				This chapter explains how to generate, download, and install the files used by the provisioning process. You need to make some changes to a project's build settings before you use these files to distribute projects, and this process is described in detail in Chapter 12. Don't try to submit your projects to the App Store until you've worked through that chapter.

				Figure 11.1

				A first look at the iOS Provisioning Portal

				[image: 9781118007594-fg1101.tif]

				Introducing provisioning requirements

				Before you can get started with provisioning, you need three items:

				[image: bl.eps] A digital identity: This is a digital key file generated on your Mac and uploaded to the Provisioning Portal.

				[image: bl.eps] One or more device Uniform Device Identifiers (UDIDs): These are long hex codes that uniquely define an iOS device. You can obtain them from beta testers, who can read them in iTunes, as described later in this chapter. Xcode also can display the UDID of your own local test devices.

				[image: bl.eps] An Application ID: The App ID is an arbitrary string. You can use the same string for multiple applications, and you can use a generic star character as a wildcard. However, Apple services, such as Push Notification and In-App purchase, require apps with a unique ID.

				Avoiding provisioning confusion

				One source of confusion is Apple's imprecise jargon. You'll see certificates referred to as identities, and it's not clear how they differ from each other or from provisioning profiles.

				For simplicity, treat certificates and identities as if they're interchangeable. Technically, there are minor differences, but in practice you can ignore them. Both are associated with your personal identity.

				Provisioning profiles manage device and app identity.

				The key principle is code signing. When you build a project, Xcode includes a digital signature file. iOS hardware and the App Store both check that this signature is valid.

				You might think this means that Xcode attaches a public key to your builds, but the process is much more complex, and it involves the interaction of your key, a master Apple key, software permissions, hardware access permissions, and app-specific permissions, included in a selection of different files.

				You begin by generating a digital key, with public and private elements. You use the public key to create development and distribution certificates that include your key and add a further layer of permissions. Then you install the development and distribution certificates in your keychain. This also installs them in Xcode.

				Xcode uses the two generated certificates as signing identities. This is because team development can support many separate identities for testing—one for each developer—but only a single identity for distribution.

				Team management adds an extra level of complication to code signing. Apple's team management features allow lead developers to control which team members are allowed to test on hardware. They also limit distribution privileges to the team leader—also known as the team agent.

				If you're a solo developer, the team management features are irrelevant because you're leader, agent, and contributing developer. Unfortunately, there's no way to bypass these extra features. So for solo developers, the provisioning process includes significant extra overhead you can't ignore.

				To download the developer and distribution profiles, you upload your unique digital key as part of a Certificate Signing Request (CSR). The Provisioning Portal then asks the team manager (or you) to accept or decline the request.

				If the request is accepted, the Portal generates the requested certificate, and you can download and install it. If the request is declined, nothing happens.

				By default, debug builds are already set up to include the development profile. Release builds aren't, and you must modify the Xcode build settings to include your distribution profile before you can upload an app to the App Store.

				[image: mac_caution.eps] CAUTION

				The two profiles are mutually exclusive. You can sign a build with one or the other, but not both. This means you can't run a final distribution build on your own hardware or in the Simulator. Xcode is deliberately set up to make this impossible. This means there's no final preflight test for App Store app loads. You must debug and test your app, create an App Store build, and hope it works—because you can't run it to be sure.

				One further source of confusion is an extra certificate, known as the WWDR (World Wide Developer Relations) intermediate certificate. You must download and install this certificate to guarantee that your developer and distribution certificates are valid. This isn't a difficult step, but it adds one more possible source of error.

				Certificates are only part of the process. You also must create separate provisioning profiles to manage device and application permissions. Development provisioning profiles enable hardware testing in Xcode. When Xcode has a valid development certificate and a valid device provisioning profile for a device, you run and debug your code on that device.

				Distribution provisioning profiles are used to control access to distribution channels. An App Store distribution profile gives you permission to upload an app to the store.

				Ad Hoc distribution profiles enable beta distribution that bypasses the App Store and allows testers to load your beta builds into their devices using iTunes.

				All provisioning profiles are locked to specific devices. You specify the supported devices when you create the profile. If a device doesn't have a profile that matches details embedded in a build, the app won't run.

				Provisioning profiles are also locked to specific apps, through the App ID. You can specify a unique app name—and this is obligatory for access to Apple services including in-app purchase, push notification, or game center. If you don't need these special services, you can use a generic app name that includes a wildcard character and defines a suite of apps.

				If the provisioning process seems complicated, it is. You don't need to understand the principles to use it, but you'll find it easier to work with if you do. Table 11.1 includes a summary of the key elements introduced so far.

				[image: mac_tip.eps] TIP

				For hardware testing, it's helpful to think of an App ID as a container for one or more device IDs.

				[image: /Table 11.1a]

				[image: /Table 11.1b]

				Creating and Installing User Certificates

				The easiest way to work through the provisioning process is to break it down into steps. Ignore your devices for now. Start by creating your development and distribution certificates, following the sequence below:

				1. Create a CSR on your Mac.

				2. Upload the CSR to the Provisioning Portal to request a development certificate.

				3. Approve the request. Download the development certificate.

				4. Download the WWDR certificate, which is generated automatically with the development certificate.

				5. Upload the CSR again to the Provisioning Portal to request a distribution certificate.

				6. Approve the request. Download the distribution certificate.

				7. Add all three certificates to your keychain.

				 This step installs the certificates in Xcode automatically.

				Figure 11.2 summarizes these steps graphically.

				Figure 11.2

				How to generate and install development and distribution profiles

				[image: 9781118007594-fg1102.eps]

				Creating a CSR

				The CSR is a digital key (a series of numbers) that identities you as a unique individual. Technically, it uses a combination of public and private keys to identify you securely. The public key is included in the certificates generated by the iOS Provisioning Profile. The private key is stored in your Mac's keychain. Xcode combines the two keys to confirm your identity.

				[image: mac_caution.eps] CAUTION

				This system isn't as secure as it seems. If your Mac is stolen and your main system password is easy to guess, the stored keys and web passwords may include enough information for a skilled third party to impersonate you online. Although the key system is supposed to prevent app piracy, its relatively easy to strip out the keys from an app and distribute it illegally to users who have jailbroken—bypassed the security—in their iOS devices. It's more realistic to think of the key system as an access tool for Xcode than as an anti-piracy or anti-identity-theft measure.

				To create a CSR, use your Mac's Keychain Access application. You can find it in /Application/Utilities. Select Keychain Access⇒Certificate Assistance⇒Request a Certificate From a Certificate Authority.

				Enter the username and e-mail address you used when you registered as a developer. Leave the CA (Certificate Authority) Email Address field blank. Select the options labeled Saved to disk and Let me specify key pair information, as shown in Figure 11.3.

				Figure 11.3

				To create a CSR, enter your name and e-mail address and select the CSR options.

				[image: 9781118007594-fg1103.eps]

				[image: mac_tip.eps] TIP

				Before you start, create a folder or subfolder for files used in the provisioning process, so you know where they are. The default save location for the CSR file is the desktop, which may not be ideal.

				[image: mac_caution.eps] CAUTION

				You must keep a record of the details you enter here; they're essential if you move to another Mac.

				Select the filename and save path on the next sheet, so the file is saved to your new Provisioning folder. Set the Key Size to 2048 bits and the Algorithm to RSA, as shown in Figure 11.4. When Keychain Access creates the certificate, it gives you the option of viewing its location in Finder. By default, the filename is CertificateSigningRequest.certSigningRequest. You need to know the location of this file for the next part of the process, where you upload the CSR to the iOS Provisioning Profile.

				Figure 11.4

				To create a CSR, set the Key Size and Algorithm.

				[image: 9781118007594-fg1104.eps]

				Uploading the CSR to the Provisioning Portal

				Now that you have a file with a public key that identifies you, you must upload it to the Provisioning Portal. When you use the Portal to generate a certificate, the key is embedded in it, and Xcode uses it to confirm your build, testing, and distribution permissions.

				[image: mac_note.eps] NOTE

				The CSR file created in the previous step is for upload only. Although the key inside the file is referenced by Xcode, the file itself isn't. When you need to re-provision from scratch—certificates expire after a year—it can be useful to keep a copy of the file, so you can skip the initial key generation step.

				To convert a CSR file into a development or distribution certificate, follow these steps:

				1. On the Portal, select Certificates and then select either Development or Distribution.

				2. Click the Request Certificate button.

				3. Upload your CSR file.

				4. Approve the request.

				 Ignore the auto-generated e-mail message.

				5. Download the certificate.

				 You must repeat this sequence for each of the two certificates: development and distribution. As a separate step, you also must download the WWDR certificate.

				6. Log in to your iOS developer account, and open the iOS Provisioning Profile. Select Certificates from the column at the left, and select Development from the tabs. Click the Request Certificate button at the right of the page.

				 The first time you do this, the page should be similar to the one shown in Figure 11.5.

				Figure 11.5

				Getting ready to upload the CSR and generate a development certificate

				[image: 9781118007594-fg1105.tif]

				[image: mac_caution.eps] CAUTION

				This page is visible only when you don't have a valid development certificate. You can't request another certificate if you already have one.

				7. Select the Choose File button at the bottom left, and navigate to the CSR file created in Step 6. Click Submit to confirm the file upload.

				 The Portal auto-generates an e-mail informing you of the CSR. If you're a solo developer, ignore the e-mail; you're in the correct part of the Portal to approve the CSR.

				 The page should now look like the one shown in Figure 11.6. The Team Signing Requests area at the bottom of the page lists your CSR, and the two buttons at the bottom right of the page give you the choice to approve or reject the request.

				8. Select the check box under the Signing Requests tab to the top left of your name—it's not selected by default—and click Approve Selected.

				Figure 11.6

				Approving the CSR

				[image: 9781118007594-fg1106.tif]

				[image: mac_caution.eps] Caution

				Traditionally, the Portal does something buggy at this point. Previously, the portal seemed to ignore the request, although if you refreshed the page you'd find that a certificate was generated correctly. At the time of writing, the Portal asks you to select a signing request, even though you've already selected one. If you click past the error and refresh the page, you find that a certificate is available for download. Future versions may or may not work correctly. Keep this in mind when using the Portal.

				Creating and downloading a development certificate

				When you refresh the page, you see that a new certificate has appeared, with two new buttons named Download and Revoke.

				Revoke cancels the validity of a certificate. Download copies the certificate to your Mac, as shown in Figure 11.7. The file is named developer_identity.cer. If you're using Safari, the file appears in the standard downloads folder.

				Figure 11.7

				Downloading the development certificate

				[image: 9781118007594-fg1107.tif]

				Next, download the Apple WWDR certificate from the link under the development certificate. Optionally, you can move the certificates from the default download folder to your provisioning folder.

				Creating and downloading a distribution certificate

				Click the Distribution tab on the same page, and repeat the process again. Click the Request Certificate Button, and upload your certificate.

				You may be confused by the Pending Issuance message shown in Figure 11.8. If you're a solo developer, there are no Approve/Reject options on this page. So how do you get to the download screen? The answer is simple, but not obvious; you reload the page. You see the Download and Revoke options, as before, and you can download the distribution certificate in the same way. The file is named distribution_identity.cer.

				Figure 11.8

				Dealing with “Pending issuance”

				[image: 9781118007594-fg1108.tif]

				[image: mac_note.eps] NOTE

				If you've signed up for the developer program as an incorporated business, the distribution certificate is labeled with your business name rather than your personal name. But it's still based on your personal public key.

				Installing the certificates

				To install each certificate, navigate to it in Finder and double-click it. Repeat this for all three certificates. Double-clicking a certificate launches the Keychain Assistant and confirms that the certificate has been added to your login Keychain. After you install the certificates, you should see all three in the Keychain, as shown in Figure 11.9.

				If you click the developer or distribution certificates, you see they include your private key. If you click the Keys category, you find the key installed there.

				After installation, you can modify the Xcode build settings to create a distribution build for both Ad Hoc and App Store distribution, as described in Chapter 12. But you can't yet create a test build for a specific iOS device. To complete the process, you must create at least one device provisioning profile.

				Figure 11.9

				All three certificates are installed in your keychain. Xcode reads them from the keychain automatically.

				[image: 9781118007594-fg1109.tif]

				[image: mac_note.eps] NOTE

				The Certificates list includes a number of other certificates. These certificates aren't relevant to provisioning; they manage general online security. You can filter the list to show your own keys by selecting the My Certificates category. This filtered list doesn't include the WWDR certificate.

				[image: mac_note.eps] NOTE

				By default, the certificates are valid for a year. When they expire, you must repeat the key generation and installation process. If you keep your original CSR file, you can reuse it, which is a good idea, because if you generate a new key, your key list becomes unnecessarily cluttered.

				Provisioning Devices Manually

				In addition to certificate generation, the Provisioning Portal also manages your test devices and creates downloadable provisioning profiles. For hardware testing, the provisioning profiles are the final stage in the security chain. When you install a profile on a device, iOS checks that the device is registered for testing, that you have permission to install and run test builds on it, and that the provisioning profile supports a specific App ID. All of these conditions must be true before iOS allows a test build to run on a device.

				Figure 11.10 summarizes the device provisioning process. The steps are described in more detail here.

				Figure 11.10

				Generating and using device provisioning profiles to allow testing on specific devices

				[image: 9781118007594-fg1110.eps]

				To generate device profiles, follow these steps:

				1. Create an app ID.

				 An App ID is embedded in every provisioning profile, so you must begin here.

				2. Upload at least one UDID to the Provisioning Portal, and use it to create a Device Provisioning Profile.

				3. Install the device profile in Xcode.

				 You can now create a debug build and install that build on your chosen device, for live testing.

				4. Optionally, upload further UDIDs and update the Device Provisioning Profile to support these devices for your given App ID. Reinstall the updated profile in Xcode.

				 You can now create and run test builds on these other devices.

				5. Optionally, create an Ad Hoc Distribution Profile.

				 You can select some or all of the supported devices from your list of uploaded devices.

				6. Use the Build Archive feature and the Share feature in the Organizer to create an app for beta testers.

				 (This option is described in detail in Chapters 12 and 13.)

				Steps 2 through 4 are now semi-automated for local test devices. But if you create ad hoc builds for beta testers, you must understand how to obtain their UDIDs, manage them on the Portal, and create a provisioning profile that includes them.

				Creating an App ID

				An App ID isn't just a string; it tags the app's bundle and controls access to various special services. A unique ID defines a single app. An ID that includes a wildcard defines a suite of apps.

				[image: bl.eps] Unique IDs can be configured to give an app access to Apple's live services: in-app purchasing, push notification, and game center.

				[image: bl.eps] Unique IDs also can be linked to specific hardware accessories.

				[image: bl.eps] Keychain access in an iOS device gives all apps with a shared wildcard ID the same access privileges, so they can share passwords and other securely stored data.

				[image: bl.eps] If you don't need to support special features or shared security, use a wildcard ID for convenience. You can use the same ID for all your apps.

				[image: mac_caution.eps] CAUTION

				Don't use a wildcard ID if your apps access the Keychain, unless you explicitly want to enable password sharing. If you create two apps with a common wildcard ID that store passwords, the passwords are shared automatically. This may not be the behavior you want.

				The process as a whole sounds more complex than it really is. In previous versions of Xcode, you were forced to create the App ID manually. In later versions, including Xcode 4, the process has been automated and simplified, so now it mostly “just works.”

				To create a valid ID, follow these steps:

				Creating a suite ID

				1. On the Portal, select App IDs.

				2. Click the New App ID button at the top right, and fill in the fields as shown in Figure 11.11.

				[image: bl.eps] Description: Type a string. This description is for your reference only, but it does appear elsewhere on the portal and in Xcode, so it's a good idea to keep it short, such as MyApp, AppOne, GameOne, and so on.

				[image: bl.eps] Bundle Seed ID: Leave this set to Generate New.

				[image: bl.eps] Bundle Identifier (App ID Suffix): You can either type * as a wildcard or com.domainname.*. Use the latter if your app will be exchanging data with other apps through URL schemes, UTIs, and other more advanced options. Use a single * for a simple self-contained app.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For a very short introduction to URL schemes, UTIs, and so on, see Chapter 17.

				3. Click the Submit button when you're finished.

				 The Portal immediately creates your new suite/wildcard ID and takes you back to the App ID page. The new ID appears at the bottom of the page. The 10-letter string defines the prefix.

				[image: mac_caution.eps] CAUTION

				There is no way—at all—to delete app IDs. After you create one, it stays in your account forever. So it's a good idea not to get too experimental with ID creation, because you won't be able to clean up the ID list later.

				Figure 11.11

				The Portal App ID settings for a wildcard/suite ID

				[image: 9781118007594-fg1111.tif]

				Creating a single ID

				You can use a suite ID for general app development, as long as you understand the security restrictions described earlier. If you don't need the features of a unique app ID, skip the rest of this section and move straight to device provisioning.

				To create a single ID that supports in-app purchase and other special services, repeat the process with some minor differences:

				1. Click the New App ID button again.

				2. Enter another description.

				3. Select the 10-letter suite ID from the Bundle Seed ID menu.

				4. Type a unique app name into the Bundle Identifier box, as shown in Figure 11.12.

				 Don't type a wildcard; the name must be unique.

				5. Click Submit, and you see your new ID has been added to the list again.

				Figure 11.12

				The Portal App ID settings for a unique ID

				[image: 9781118007594-fg1112.tif]

				[image: mac_tip.eps] TIP

				If you want a single App ID, why not skip straight to this step and type the reverse-domain string as the suffix immediately? Because sometimes you'll find you want a related suite ID. You can't create a suite ID from a single ID, but you can create a single ID from a suite ID. If you're sure you need a single unique ID, skip the first step and type the reverse-domain string right away.

				Enabling other features

				When you've created a wildcard/suite ID and a single app ID, the list at the bottom of the App IDs page should look similar to Figure 11.13. You can see that the extra features for the wildcard/suite ID are marked unavailable. Because this ID is generic, they're permanently disabled. If your app doesn't need them, you can skip the rest of this section.

				However, they're enabled for the single ID. If you want to use in-app purchase or the game center, you don't need to do anything more—except write the code.

				However, if you want your app to support push notification, you need to perform some further initialization, because the Configurable for Development and Configurable for Production options require two further certificates.

				Figure 11.13

				Reviewing the individual and wildcard/suite IDs on the Portal

				[image: 9781118007594-fg1113.tif]

				To create them, follow these steps:

				1. Select the Configure button at the right of the ID.

				2. You see the page shown in Figure 11.14.

				3. Click the Configure button next to one of the certificates.

				 You're asked for a CSR file; you can use the same one from the earlier steps. (You did remember to save it, didn't you?)

				4. When the Portal creates a certificate, download it.

				5. Repeat for the other certificate.

				 Don't add these certificates to your keychain; they should be installed on your push notification server.

				[image: mac_note.eps] NOTE

				Setting up a server is beyond the scope of this book, but the Portal page shown in the figure includes links to the relevant documentation.

				Figure 11.14

				Creating push notification server certificates

				[image: 9781118007594-fg1114.tif]

				Registering devices manually

				Now that you have an App ID, you can start adding test devices. The portal includes support for manual device management. You must understand this option to create valid beta builds. For local device testing, Xcode includes a semi-automated option that simplifies provisioning. You still need to register your devices, but it's a quick process:

				1. Find the Device ID/UDID.

				2. Drag-select and copy it to the clipboard.

				3. Add the UDID to the device list on the Portal.

				Finding a Device ID in Xcode

				With the new automated provisioning, you don't usually need to manage local devices manually. But for completeness, the details are included here:

				1. To find the UDID in Xcode, connect your device to your Mac, and launch Xcode.

				2. Select Window⇒Organizer in the main Xcode menu to open the Organizer window.

				3. Select the Devices tab, and click the Device with the green LED in the Devices list at the left.

				 You see the screen shown in Figure 11.15. The field labeled Identifier is the UDID.

				4. Drag-select and copy the UDID from this field to your clipboard.

				Figure 11.15

				Finding a UDID in the Organizer in Xcode is easy because the ID is highlighted.

				[image: 9781118007594-fg1115.tif]

				Finding a Device ID in iTunes

				Your beta testers won't usually have Xcode installed. To get a UDID from your beta testers, ask them to connect a test device and launch iTunes. Selecting the device in the Devices list at the left brings up the display in Figure 11.16. To reveal the UDID, ask them to click the Serial Number field. They can then drag-select and copy the UDID and paste it into an e-mail.

				Figure 11.16

				Finding a UDID in iTunes

				[image: 9781118007594-fg1116.tif]

				Adding a single UDID to the Portal

				When you have a UDID, log in to the Portal and select the Devices tab. Click the Add Devices button near the top right. Enter an arbitrary device name—the name is for your reference only—and paste the UDID into the Device ID field, as shown in Figure 11.17. Click Submit. The device is registered and added to the Device List. You can now include it when you create device provisioning profiles.

				[image: mac_tip.eps] TIP

				If you're working as part of a large team, adding devices manually can be time-consuming. You can simplify the process with the iOS Configuration Utility application, which can be downloaded from the main iOS Developer Downloads page. Use the utility to register multiple devices locally. You can then export multiple UDIDs to a .deviceids file. Click Upload Devices on the Portal, and select the file to register every device in a single operation.

				[image: mac_caution.eps] CAUTION

				You can't register more than a hundred devices a year. Although the Portal includes a Remove Selected option that deletes devices, the deleted devices still count toward your allocation.

				Figure 11.17

				Adding a single device

				[image: 9781118007594-fg1117.tif]

				Creating a Development Provisioning Profile

				After you have a development certificate, an App ID, and at least one registered device, you can create a Development Provisioning Profile, which allows test builds on that device.

				To create a new profile:

				1. On the Portal, select Provisioning from the list at the left.

				2. Select Development and New Profile, and complete the options shown in Figure 11.18:

				[image: bl.eps] Profile Name: This is arbitrary. It's a good idea to use the current date, so you can see how old a profile is when you're using it.

				[image: bl.eps] Certificates: This field displays a check box for every registered developer in your team or a single check box with your name if you're a solo developer. Select the developer(s) who will be allowed to create test builds with the profile.

				[image: bl.eps] App ID: Select an App ID for the profile. It's a good idea to use a suite/wildcard ID for testing.

				[image: bl.eps] Devices: This field displays a check box for every registered device. Select one or more devices. Note that the profile is valid only for the devices you select here; unselected and unregistered devices can't be used for live testing.

				Figure 11.18

				Creating a Development Provisioning Profile

				[image: 9781118007594-fg1118.tif]

				 When you click Submit the Portal generates the file and lists it, as shown in Figure 11.19.

				3. Use the Download button to download the profile.

				 You also can use the Edit button to make changes, but if you do, you have to download the profile again and install it in Xcode.

				Figure 11.19

				Downloading the provisioning profile

				[image: 9781118007594-fg1119.tif]

				Installing the profile in Xcode

				To install the profile in Xcode, navigate to it in Finder, open the Devices page in the Organizer, and drag the profile to the Provisioning Profiles item in the list at the top left, as shown in Figure 11.20. The file has the first name you gave it and the .mobileprovision extension.

				[image: mac_tip.eps] TIP

				You also can install a profile by dropping it onto the Xcode or iTunes icons in the dock.

				Creating and running a device build

				You can now create a new project in Xcode or load an existing one, and select the target device from the menu at the top left of the main Xcode toolbar. Click the Build button at the left of the toolbar.

				The first time you create a test build, Xcode asks you to allow access to your keychain. Select the Always Allow option, and wait. Initially, the build is copied to device flash memory. From there, it's launched automatically and loaded into RAM, just like a standard app launch. This can take a minute or so. Eventually, the app runs. Subsequent builds launch more quickly.

				Figure 11.20

				Installing the profile in Xcode

				[image: 9781118007594-fg1120.tif]

				[image: mac_note.eps] NOTE

				Note that the profile exists in two places: in Xcode and on the device. Before the app is copied to the device, Xcode checks whether the profile has been installed. If it hasn't, it installs it automatically. After your first test build, open the Settings app in your device and select General and Profile. You can view the profile here, and you can delete it—but if you do, Xcode installs it again when you create a new test build.

				[image: mac_caution.eps] CAUTION

				Unlock your phone before a test build. If it's locked, Xcode can't unlock it automatically and can't install your test build.

				Creating a Distribution Provisioning Profile

				The steps for creating a distribution are similar to those needed for a development profile. On the Portal, select the Provisioning item from the list at the left and the Distribution tab. You see the screen in Figure 11.21. It's similar to the development profile screen, but the options are slightly different:

				[image: bl.eps] Distribution method: Select App Store for final app store distribution profile, and select Ad Hoc for a beta distribution profile. The two choices are mutually exclusive.

				[image: bl.eps] Distribution certificate: This is preset for you, with your distribution identity.

				[image: bl.eps] App ID: This is identical to the App ID option for the development profile.

				[image: bl.eps] Devices: This is grayed out for App Store distribution, because the profile isn't tied to specific devices. For Ad Hoc distribution, you can select devices from the list. Excluded devices can't run the beta build.

				Figure 11.21

				Creating a distribution build

				[image: 9781118007594-fg1121.tif]

				When you click the Submit button, the Portal creates a profile and displays a Download button. Download the profile, and drag it from the Finder to the Distribution Profiles item in the Xcode Organizer. This installs it in Xcode. You can now create a distribution build.

				[image: mac_tip.eps] TIP

				The final option in the list at the left on the Portal is called Distribution. It looks as if it might contain the resources needed to manage distribution, but it doesn't. It's really just a collection of documentation links with an unhelpful name. You can use it as a quick help reference, but it has no practical features for certification or provisioning.

				[image: mac_crossref.eps] CROSS-REFERENCE

				You need to do some more work to create a distribution build in Xcode, because the Release build scheme doesn't use the distribution profile unless you tell it to. For details, see Chapter 12.

				Automatic Provisioning

				It would be a huge timesaver if the entire provisioning process were automated. Unfortunately, it isn't. Creating a CSR and generating and installing development, distribution, and WWDR certificates remains a manual process.

				Creating an automatic device profile

				But Xcode now includes an automated device provisioning feature, which does the following:

				[image: bl.eps] Adds a device to the device list on the Portal

				[image: bl.eps] Creates a wildcard App ID for testing

				[image: bl.eps] Generates a development provisioning profile

				[image: bl.eps] Downloads it to Xcode and installs it on the new device

				[image: bl.eps] Downloads and installs existing developer and distribution certificates

				It's important to know the limitations of automatic provisioning. It doesn't do the following:

				[image: bl.eps] Generate public/private keys and a local identity

				[image: bl.eps] Generate and install new developer and distribution certificates

				[image: bl.eps] Download and install the WWDR certificate

				[image: bl.eps] Generate or install an App Store distribution profile

				[image: bl.eps] Generate or install an Ad Hoc distribution profile

				To use automatic provisioning, follow these steps:

				1. Connect a device.

				2. Open the Devices page in the Organizer, and wait for the device to be recognized.

				3. Select the device.

				4. Click the Add to Portal button at the bottom of the window.

				 You're asked for your developer Apple ID and password, as shown in Figure 11.22. The rest of the process is automatic. When it completes, you see that a new development provisioning profile has been generated and installed in Xcode and on the device. You now create and run test builds on the device.

				[image: mac_caution.eps] CAUTION

				Automatic provisioning generates a custom App ID: Team Provisioning Profile.*. This is a wildcard/suite ID, so you can't use automatic provisioning to test game center, in-app purchase, or push technology apps. For these more advanced apps, you have to create a unique App ID and work through device provisioning by hand.

				Figure 11.22

				Automatic provisioning asks for your Portal login details.

				[image: 9781118007594-fg1122.tif]

				Refreshing a profile

				Device profiles expire after three months. You can create a new automatic profile at any time by selecting the Devices tab, Provisioning Profiles at the top left of the Organizer, and clicking the Refresh button at the bottom of the window, as shown in Figure 11.23. You need to enter your Apple ID and password.

				This creates a fresh profile with the current date, as shown in Figure 11.23. The profile uses the Team Provisioning Profile.* App ID.

				[image: mac_caution.eps] CAUTION

				There's no quick way to refresh a profile with a custom unique App ID; you must do this manually.

				Figure 11.23

				Creating a new profile with the Refresh feature

				[image: 9781118007594-fg1123.tif]

				Moving between Macs

				The other way to provision “automatically” is to use the new profile import/export option in Xcode. This works as you'd expect it to; it saves your provisioning information into a password-protected file that you can import into a copy of Xcode on a different Mac.

				To accomplish this, follow these steps:

				1. Select Devices and Developer Profile at the top left of the Organizer window, and click the Export button.

				2. Type a filename, and give the same arbitrary password twice, as shown in Figure 11.24.

				 Xcode asks to access your keychain and packages your complete collection of identities, certificates, and profiles into a file with the .developerprofile extension. You can use the equivalent Import button and the same password to import the profiles on the other Mac.

				Figure 11.24

				Copying the complete developer profile

				[image: 9781118007594-fg1124.tif]

				[image: mac_caution.eps] CAUTION

				At the time of this writing, Xcode 4 fails to copy the WWDR certificate. This may be a bug, or it may deliberate. If you use this feature, keep in mind that you may need to install the WWDR on the other Mac manually.

				Provisioning for OS X Distribution

				So far, this chapter has discussed iOS provisioning. In 2010, Apple announced the Mac App Store and created a provisioning scheme for Mac developers, which is much simpler than its iOS equivalent.

				You don't need to provision until your project is complete and ready to be submitted to the Mac App Store. You also don't need to provision if you distribute your project independently—for example, by selling it or making it available for free on a website. Provisioning is essential only for App Store submissions.

				For Mac developers, the online Developer Certificate Utility is the equivalent of the iOS Provisioning Portal. There are no team development features and no separate device provisioning options: OS X projects run on the development Mac. However, developers must still begin by creating a CSR file with the Keychain Assistant. Developers who have created a CSR for iOS projects can use the same file for Mac distribution.

				The Developer Certificate Utility appears as a link at the right of the main Mac Dev Center page under the Mac Developer Program header, as shown in Figure 11.25.

				Figure 11.25

				Here's the Developer Certificate Utility; as with all online Apple content, the location and design of this feature may change at any time.

				[image: 9781118007594-fg1125.tif]

				Understanding OS X provisioning

				OS X provisioning has five components:

				[image: bl.eps] A CSR with a developer's public key.

				[image: bl.eps] One or more unique App IDs: The reverse-domain format is recommended.

				[image: bl.eps] The standard Apple WWDR certificate: This is the same as the certificate used for iOS development. If you already have a copy, you don't need to install it again.

				[image: bl.eps] A Mac App Software Certificate: This signs your application bundle.

				[image: bl.eps] A Mac Installer Package Certificate: This is a separate signature file for the installer that wraps the bundle into an installable product that can be sold through the App Store.

				There's no support for wildcard/suite App IDs, so you must create a unique App ID and two certificates for every project.

				Provisioning in practice

				The Developer Certificate Utility is shown in Figure 11.26. The first time you provision an OS X project, follow these steps:

				1. If you don't already have a CSR file, create it using the instructions earlier in this chapter.

				2. Create a unique App ID using the Developer Certificate Utility.

				Figure 11.26

				The Developer Certificate Utility is much simpler than the iOS equivalent.

				[image: 9781118007594-fg1126.tif]

				3. Create the App Software certificate using the Developer Certificate Utility.

				 This step uses your CSR file. Download the certificate, but don't install it yet, even though the Utility tells you to.

				4. Create an Installer Package certificate.

				 This step uses the App ID. Download the certificate, but don't install it.

				5. If you don't already have the extra WWDR certificate, download it.

				6. Install the certificates in your keychain.

				 You can now use the certificates to create a distribution build with an installer package and upload the installer package to the App Store. The certificates are valid for a year, or until your developer subscription expires, whichever is shorter. They're not linked to a specific App ID, so you can use the same certificates for all your projects.

				Creating an App ID

				To create an App ID, follow these steps:

				1. Select the Create Mac App ID link, and fill in the two fields, as shown in Figure 11.27.

				2. The name is an arbitrary string.

				3. Use the reverse-domain scheme for the main App ID, such as com.yourdomainnamegoeshere.yourappname.

				[image: mac_note.eps] NOTE

				Your App ID must be unique on the App Store. Although the reverse-domain scheme isn't obligatory for App IDs, it's the best way to make sure your ID is unique. Other developers may use your chosen app name by accident, but if you prefix it with your domain name, uniqueness is guaranteed.

				4. Click the Confirm button at the lower right.

				 You're asked to confirm the submission. When you click Submit, the App ID is added to the Utility.

				[image: mac_tip.eps] TIP

				You can use the View Mac App ID link to view a list of your App IDs. The list includes a Remove feature. To remove an ID, check the box next to an ID and click the Remove button at the lower right of the page.

				Figure 11.27

				Creating a Mac App ID

				[image: 9781118007594-fg1127.tif]

				Creating distribution certificates

				To create a pair of certificates, select the Create Certificates link on the Developer Certificate Utility page. You see the page shown in Figure 11.28. Leave both check boxes unchanged; you typically need to create both certificates.

				Figure 11.28

				Choosing the certificate types

				[image: 9781118007594-fg1128.tif]

				Click past the page that explains the process, and you see the CSR submission page shown in Figure 11.29. Click the Choose File button, navigate to your CSR file, and select it.

				Figure 11.29

				Submitting your CSR file

				[image: 9781118007594-fg1129.tif]

				When you submit your CSR, the Mac App Signing Certificate is generated first. Click the Download button to copy it to your Mac, as shown in Figure 11.30. The file is called mac_app_identity.cer.

				Figure 11.30

				Downloading the App Signing Certificate

				[image: 9781118007594-fg1130.tif]

				To generate the Installer Package Certificate, repeat the same steps: Upload your CSR, generate the certificate, and download it, as shown in Figure 11.31. If you're working in a team, you can use a separate team leader CSR for this step. The file is called mac_installer_identity.cer.

				Figure 11.31

				Downloading the Installer Package Certificate

				[image: 9781118007594-fg1131.tif]

				[image: mac_note.eps] NOTE

				Although it can take a few minutes to generate each certificate, you don't usually need to wait more than a few seconds.

				To install the certificates, double-click them. Keychain Assistant loads automatically and adds the certificates to your login keychain, as shown in Figure 11.32. You can now set up Xcode to create a distribution build, as described in Chapter 12.

				Figure 11.32

				Adding the certificates

				[image: 9781118007594-fg1132.tif]

				Summary

				This chapter introduced provisioning, in theory and practice. It introduced the key concepts and components of provisioning and explained how to generate and install them.

				I began by explaining iOS device provisioning and demonstrated how to begin the process by generating a CSR (Certificate Signing Request) file. I showed you how to embed the CSR into two key files: a development certificate that enabled hardware testing and a distribution certificate that enabled App Store uploads and beta distribution.

				Next I worked through the device provisioning process step by step and explained how to create an App ID, how to register devices on the Provisioning Portal, and how to create device and install provisioning files both manually and automatically.

				Finally I introduced the simpler system used for Mac App development and distribution and demonstrated how to generate and install the necessary files.

			

		

	
		
			
				Chapter 12: Working with Builds, Schemes, and Workspaces

				
				In This Chapter

				

				Getting started with the Xcode build system

				Understanding settings and options

				Editing schemes and build configurations

				Managing schemes, build actions, and targets

				So far in this book, builds have been treated as one-click processes, and projects have been treated as stand-alone collections of files.

				But it's a key feature of Xcode that the build process is almost infinitely customizable. Instead of treating the build process as a black box that takes source files and converts them into an app, you can break the build process into steps, change the settings and outputs from each step, or even add completely new steps—for example, to create hybrid projects with code written in other languages.

				You also can combine projects and files in various ways to create hybrid builds that share related code; for example, you can develop a framework and a project that tests it or uses it at the same time.

				In Xcode 3, this kind of mixed build was difficult to manage. In Xcode 4, sharing code between projects has been simplified with a new workspace system that makes it easy to work on multiple related projects simultaneously.

				This chapter outlines the key features of the Xcode 4 build system and introduces the editors and options that control the build process.

				Chapter 13 introduces some practical examples of build customization and explores more advanced build control options.

				Getting Started with the Xcode Build System

				Although you can use the build system in a simple one-click way, the underlying technology is powerful, but complex. The default one-click option deliberately hides the complexity, but you must be familiar with its key elements before you can begin customizing builds.

				Figure 12.1 is a first look at how Xcode builds are organized.

				These are the key elements:

				[image: bl.eps] Projects: A project is a collection of source files that you can select and change using the editing tools introduced earlier in this book.

				[image: bl.eps] Workspaces: A workspace is a container for one or more projects. Previous versions of Xcode were project-based. However, developers often need to work with source files in a more open way. It's not unusual to use combinations of files from the same code base in multiple related projects. Workspaces make it easy to do this. All projects in a workspace share the same build space, and you can use Xcode's build features to define how the sources are combined. Potentially you can also build multiple projects with a single build operation.

				[image: bl.eps] Targets: A target is a recipe for building the files in a project, and it defines its product—for example, an app or a framework. By default, a project includes a single target. You can add further targets, as needed. Note that a target doesn't have to be a finished app. You can also create targets that process code in other ways—for example, to run a selection of optional test macros to check that important features work correctly.

				[image: bl.eps] Products: A product is the collection of files created by a target: an app, framework, test build, and so on.

				Figure 12.1

				The components of the Xcode build system

				[image: 9781118007594-fg1201.eps]

				[image: bl.eps] Build actions: There are six standard actions, as shown in the figure. Build actions select one or more targets, build them, and then run them through further Xcode features. For example, the Run action loads the code into a runtime environment and launches a debugger, and the Analyze action runs the code through an analyzer to check for basic errors.

				[image: bl.eps] Scheme manager/editor: A workspace can have one or more schemes, which are defined in the scheme manager/editor. You can use schemes to customize build actions; for example, the Run action in one scheme builds one target, but in another scheme, it builds every target in the workspace.

				[image: bl.eps] Scripts: You can set up build actions to run pre-action and post-action scripts, which can play sounds, send e-mail messages, open alert boxes, copy files, and so on.

				[image: bl.eps] Settings and configurations: Although not shown in the figure, settings and configurations define low-level options for compilation, linking, and packaging. They're introduced in more detail later in this chapter.

				Even though Xcode 4 includes new simplified build management features, the relationship between the different elements involved in a build isn't outstandingly intuitive. You may need to read this chapter more than once before the relationships become clear.

				[image: mac_note.eps] NOTE

				You don't need to understand the process in detail to create a simple App Store build, but some elements interact in unexpected ways. You'll find it easier to use productively if you have a good understanding of the build system.

				Creating and organizing a workspace

				When you create a new project, you automatically create a workspace to hold it. For simple app projects, you can ignore workspaces and simply save each new project as a stand-alone unit. For more complex applications that hold multiple projects, you can use a workspace to group related projects together.

				The easiest way to use a workspace is to create an empty workspace and then add projects to it. To create a blank workspace, select File⇒New⇒New Workspace from the main Xcode menu. You can then add projects by right-clicking in the blank area at the bottom of the Project navigator, and selecting New Project….

				You also can add existing projects. Select Add Files…, navigate to an existing project's .xcodeproj file, and select it.

				[image: mac_caution.eps] CAUTION

				This is useful for simple shared development, but this option doesn't support source control, so use it with care. For more advanced source control options, see Chapter 14.

				The workspace acts as an implied master group in the Project navigator. When you save your new project for the first time, you can use the Group pop-up at the bottom of the dialog box to control which group it's added to. The default is the new workspace, as shown in Figure 12.2.

				You also can use this dialog box to define the project's save path in the usual way. Projects in a workspace can be saved to any path; they don't have to be saved to the same folder.

				Figure 12.2

				When selecting a project's group in a workspace, the default selection is usually correct.

				[image: 9781118007594-fg1202.tif]

				[image: mac_note.eps] NOTE

				You can nest projects and put a project inside another project's group. This isn't usually a useful thing to do; projects are easier to work with when each has its own group.

				Working with projects and targets

				A workspace is a container and has no build settings or options. It's effectively a master group that holds other items. Projects and targets do have build options—hundreds of them. Xcode includes a separate build editor to manage them, shown in Figure 12.3. To open this editor, select the project name at the top left of the Project navigator. A list of options appears at the right, as shown in the figure.

				[image: mac_tip.eps] TIP

				It may not be intuitively obvious that you need to click the project name to display the build editor. It's worth taking a few moments to fix this step in your mind to help you remember it later.

				Figure 12.3

				Navigating to the build editor. The project settings are shown by default.

				[image: 9781118007594-fg1203.tif]

				The build editor is complex. There are two items in the gutter area to the left of the options: the PROJECT and TARGETS headings. As you might expect, the project icon displays the options for the project as a whole, while each target icon displays options for each target. Select a target, and you'll see a longer list of tab options at the top of the window, as shown in Figure 12.4.

				By default, each has project has one target. If you need to process a project's files in two or more ways, you can define multiple targets for a project—as you see in Chapter 17, where you work with projects that include two targets, one that creates a standard build and one that creates a specialized build to implement automatic code testing. For standard simple app projects, you can keep the default single target.

				Figure 12.4

				Navigating to the target build settings. The tabs at the top include extra items that aren't included in the project settings.

				[image: 9781118007594-fg1204.tif]

				Understanding settings and options

				There are five critical points to remember about projects and targets:

				[image: bl.eps] Projects and targets can have separate build options.

				[image: bl.eps] Build options are not the same as build settings.

				[image: bl.eps] Build options include information needed to make a target, including selected artwork files, supported orientations, version numbers, property lists, and so on. They also include build settings.

				[image: bl.eps] Build settings are a list of low-level compiler, linker, and packager switches.

				[image: bl.eps] Target options override project options.

				Xcode uses a priority hierarchy to calculate which settings and options to use when building a target. There's more information about this later in this chapter.

				[image: mac_note.eps] NOTE

				In earlier versions of Xcode, you could also define an executable—a context in which a product would run. In Xcode 4, this option has been expanded and built into the new schemes feature, which is described later in this chapter.

				Understanding the project options

				If you select the project icon, you'll see two tabs:

				[image: bl.eps] Info: This includes a minimum supported OS version, a list of configurations (selected build setting presets), and a summary of the files localized for specific languages. In practice, the Localizations option is essential for foreign language support, the Configurations option is useful to App Store build customization, and the SDK/Deployment/OS option is usually overridden by the target.

				[image: bl.eps] Build settings: This is a long list with hundreds of compiler, linker, and deployment options that apply to the project as a whole. They can be overridden by the equivalent settings for each target.

				Understanding the target options

				If you select the target icon, or select one target if your project has many, you see five tabs with different options. Note that target options are independent. If your project has multiple targets, each has different options. These are the tabs you see:

				[image: bl.eps] Summary: This includes basic build information, including an app version number, minimum OS, default nib, and so on. You must customize these settings to make a valid App Store build. These options are described in more detail in Appendix B.

				[image: bl.eps] Info: This is a text-like list of options that control app launch. Again, you must customize these settings for an App Store build. Note that this list is a plist—an XML property list. Editing techniques and contents are described in Appendix B.

				[image: bl.eps] Build Settings: At first sight, this list looks identical to the project build settings: It's another list of compiler, linker, and deployment options. The two lists are very similar, but there are some minor differences. Remember that these target build settings override the project build settings.

				[image: bl.eps] Build Phases: The contents of this tab control the files that are processed and the order in which they're processed. Each phase defines the files and frameworks included in the build sequence. Here, you also can set dependencies to force a rebuild of a target when some related files are modified. For simple apps, you can ignore most of the features on this page, except for one: the option to include standard frameworks in your project.

				[image: bl.eps] Build Rules: The rules define how files of each type are processed. Specifically, you can define or create custom scripts for each existing file type in the list, and you can add new file types of your own, with custom processing options. These advanced options aren't needed for simple apps; they become useful in more complex projects.

				[image: mac_crossref.eps] CROSS-REFERENCE

				Build settings are introduced in this chapter. Build phases and rules are described in more detail in Chapter 13.

				Exploring build settings

				As mentioned earlier in this chapter, the build settings include every compiler, linker, and packager option. When you build a project, Xcode converts these settings into command-line switches and includes them in the compiler scripts. The full list of settings is very long and can seem intimidating. But in practice, you can leave most settings unchanged in a typical project.

				To work with the build settings, select the Build Settings tab in the build options window. The settings appear in an editor, with four buttons that control the layout of the UI. The first two buttons control which settings are visible, and the second two control how they're displayed. The settings appear in a list or table, with group headings. These are the settings:

				[image: bl.eps] Basic: This layout lists a small subset of the build settings, as shown in Figure 12.5. It's not the most useful subset, but it does include some important settings. The list of settings is fixed, so you can't create your own selection.

				Figure 12.5

				Within the basic build settings, the two most useful options are the Compiler Version and the Targeted Device Family.

				[image: 9781118007594-fg1205.tif]

				[image: bl.eps] All: This layout lists every setting, as shown in Figure 12.6.

				[image: bl.eps] Combined: Switches with multiple values appear as embedded menus. You can click a setting to select a different value.

				[image: bl.eps] Levels: This is a complex view that illustrates how the settings cascade through various levels of defaults, as shown in Figure 12.7. This feature is explained below.

				Figure 12.6

				The complete list of settings is shown by the All button.

				[image: 9781118007594-fg1206.tif]

				[image: mac_tip.eps] TIP

				You can use the hide/reveal triangles in the group headings to hide the less useful settings and simplify the display.

				[image: mac_tip.eps] TIP

				If you open the Quick Help in the Utilities pane and select a build setting, you see a short but helpful description of the setting and the equivalent command-line switch. For more advanced customization, the settings are described in slightly (but not much) more detail in the official documentation, which has extra information about how some settings interact with others. Search for Build Setting Reference in the documentation in the Organizer.

				Figure 12.7

				The new Levels view shows multiple build settings in a single window.

				[image: 9781118007594-fg1207.tif]

				Understanding the Levels view

				The Levels view has four columns when viewing target settings, and three columns when viewing project settings. It's not immediately obvious how this view works, but the design becomes clearer after you understand how it's organized.

				There are two key points. The first is that Xcode build settings cascade through multiple levels of defaults. Each level overrides the previous level. When Xcode creates a build, it uses this table to find the settings with the highest priority and applies those to the build.

				The order of priority flows from right to left. These columns are present:

				[image: bl.eps] OS default: These are the standard default switches that apply when the other rows are empty.

				[image: bl.eps] Project settings: This list shows the Project build settings. It's identical to the list you can view by selecting the PROJECT icon and All/Combined buttons under the Build Settings tab. These settings override the OS defaults. If a project has multiple targets, the settings apply to all of them.

				[image: bl.eps] Target settings: This list shows the Target build settings for the current selected target. It's identical to the list you can view by selecting the All/Combined buttons. These settings override the project settings and the OS defaults. If your project has multiple targets, the settings in this column apply to the currently selected target. Other targets can have different settings.

				[image: bl.eps] Resolved: These are the final calculated settings applied to the build. Because they're calculated from the other columns, you can't edit them.

				Figure 12.8 illustrates how each level overrides the next. Levels with higher priority override those lower down the list.

				The second key point is that Xcode only stores the highest level setting needed to create an unambiguous resolution.

				If you scroll through the table, you'll see that many settings are left to their system defaults. There's no entry for either the project or the target. Because they're left empty, the resolved value is the same as the default.

				This may seem like a trivial point, but in fact it's crucial. When you edit a target or project setting, you're not only modifying its value, you're also adding a new entry to the settings table.

				Why does this matter? Consider the following sequence of actions:

				1. You edit a project setting.

				2. The setting has the highest priority, so it applies to all targets. You can change it repeatedly, and it's always applied.

				3. Later on, you decide to edit that setting for one target.

				4. The new target setting is applied as you'd expect.

				5. You change the project setting again.

				6. Because a target setting exists now, the new project setting isn't applied to the target. The target setting continues to override it.

				As soon as you change a setting at the target level, you lock out all future project-level changes to that setting.

				This is almost intuitive—but not quite. If you work exclusively in the Combined View, it can be difficult to understand what's happening, because sometimes changes you make are applied as you'd expect, and sometimes they aren't.

				The Combined View doesn't illustrate the difference in priority between target and project settings. It also doesn't make it clear that if no target setting has been defined, a project setting can—confusingly—appear to override a target setting.

				Figure 12.8

				Build settings are arranged in levels. The diagram shows how levels with higher priority override lower levels.

				[image: 9781118007594-fg1208.eps]

				[image: mac_note.eps] NOTE

				Advanced developers who use the command-line tools can override all settings by hand. This is a specialized and advanced technique, included in the figure for completeness. It's not supported from Xcode directly.

				The Levels view has some quirks:

				[image: bl.eps] The two central columns aren't labeled. They include the project name and an icon, but there's no text to indicate that you're editing project and target settings.

				[image: bl.eps] You can't edit the OS defaults or the Resolved column.

				[image: bl.eps] There are some minor differences between the settings shown for a project and for a target.

				[image: bl.eps] Both the target and project build settings include a Levels view. However, the version in the project settings doesn't include the target settings column.

				As a simple working rule, if you're developing an app with a single target, it's easier to ignore the project settings and work exclusively at the target level. Use the Target Levels view to edit and confirm the settings you want to change. Ignore the project column entirely.

				If your project has multiple targets, it's standard practice to make project-level settings. But beware of the target-level lock out described earlier. Once you add a target-level setting, there's no way to delete it. If you attempt to apply project-level changes, it always overrides them.

				Note also that the empty rows in the project and target columns aren't really empty. If you select them, you see that you can edit them.

				[image: mac_crossref.eps] CROSS-REFERENCE

				There's a more advanced guide to build settings in Chapter 13.

				Working with Schemes and Build Configurations

				Developers often need to customize builds for different purposes; for example, a test build for debugging is likely to have different build settings than a final App Store build. Xcode handles this in two ways.

				Build configurations allow you to change a subset of build settings for a specific aim: debugging, release, and so on. Potentially, every build setting can hold a different value for each configuration. By default, most settings take a single value; only a small number are initialized with multiple values.

				Schemes give you wider control. The key feature of schemes is that they define build actions that allow you to build your project for different purposes: testing and debugging, code analysis, archiving, and so on. Schemes include build configurations, but add other build and test options.

				Getting started with build configurations

				Switching configurations is a quick way to change a group of build settings in a single operation, as shown in Figure 12.9. When you select a configuration, Xcode automatically selects the corresponding values and applies them to the build. Single-valued settings remain constant.

				In practice, this means that you can quickly customize a configuration to create a build for a specific aim—debugging, local testing, App Store release, Ad Hoc release, and so on—without having to create a separate independent list of build settings.

				Conveniently, configurations include the settings needed to create useful debug and distribution builds. Less conveniently, these settings are scattered randomly throughout the full list of all build settings.

				[image: mac_note.eps] NOTE

				Why not duplicate every build setting for a configuration? The practical reason is that the settings editor can display multiple values for different configurations. But duplicating every setting for all possible configurations would make the editor unwieldy and difficult to work with. In practice, most settings don't need to be modified, so most of the duplication would be unnecessary.

				Figure 12.9

				Most build settings have a single value. Settings included in a configuration file can take and display multiple values. The resolved value depends on which configuration is active.

				[image: 9781118007594-fg1209.eps]

				By default, each new project is created with two configurations: Debug and Release. You can create your own configurations by duplicating either or both of these and giving your new configuration a different name. You can then modify its settings and save it with your project.

				To create a setting with multiple values, select it and click the reveal triangle at the far left. The setting opens to show a list of configurations. You can now set different values for each configuration.

				The settings editor gives multiple values special treatment. It displays them with a <Multiple Values> tag, and the configuration settings appear in rows under it. Figure 12.10 illustrates this with an example of a key configuration setting for iOS projects: the Code Signing Identity.

				[image: mac_note.eps] NOTE

				Configurations are project-specific. Configuration names and settings are part of a project. For more advanced configuration customization, see Chapter 13.

				Figure 12.10

				Viewing multiple configuration values for the Code Signing Identity setting

				[image: 9781118007594-fg1210.tif]

				Table 12.1 lists every setting that defaults to multiple values. In practice, you can ignore most of them, because the essential differences can be summarized as follows:

				[image: bl.eps] Debug: This configuration includes debug symbols—an appended list of strings and memory addresses used to display human-readable information in the debugger. On iOS, this configuration signs code with the Developer Identity so it can be tested on live hardware.

				[image: bl.eps] Release: You can use this configuration as the basis of a build suitable for distribution —for example, Ad Hoc beta testing or App Store upload. But it typically has to be modified to achieve this. This configuration doesn't include debug symbols. On OS X, this configuration creates an app that can be run by double-clicking, but it doesn't include App Store distribution information and isn't wrapped in an installer package. On iOS, this configuration is useless without further customization. It doesn't create a build that you can upload to the App Store or e-mail to beta testers.

				[image: /Table 1201]

				Understanding schemes

				Schemes take the various build options and configuration settings and wrap extra features around them.

				By default, when you build a project, Xcode creates a test build that includes debugging symbols. It launches the debugger and attaches it to the active runtime automatically.

				In Xcode, this sequence is one of six standard build actions—options that build and process targets in various ways. These are the standard actions:

				[image: bl.eps] Build: Builds one or more targets—in other words, creates their products, but doesn't launch, process, or use them in any other way. This action is the master action. It's an essential first step and is performed automatically by all other actions. You also can run it manually with the Project⇒Build option in the main Xcode menu.

				[image: bl.eps] Run: Builds and runs the app in the debugger. This is the default action, triggered when you click the big Run button in the main Xcode toolbar.

				[image: bl.eps] Test: Builds and runs the unit testing features described in Chapter 17. If the project doesn't include a unit testing target, this action does nothing.

				[image: bl.eps] Profile: Builds, launches the Instruments profiling and testing application described in Chapter 16, and loads the app into it.

				[image: bl.eps] Analyze: Builds and runs the code analyzer described in Chapter 15. Although a full build may not be necessary for code analysis, Xcode runs the Build action anyway.

				[image: bl.eps] Archive: Builds and packages an app ready for distribution, adding it to the Archive list in the Organizer (introduced in Chapter 10). This option is accessible only through the Product menu and isn't included in the toolbar pop-up.

				The easy way to get started with schemes is to click and hold the master Build button at the top left of the Xcode toolbar. You see four of the actions in the pop-up list, as shown in Figure 12.11. You can select from the full list of actions under the Product header in the main Xcode menu.

				You can use these build actions without changing them, but you also can customize them. At the very least, you should be familiar with the action options, because they interact with Xcode's main menu, build configurations, and build settings in ways that aren't obvious.

				[image: mac_note.eps] NOTE

				You can't easily create your own custom build actions. The standard actions are hardwired into Xcode, and you can't extend or modify the list directly. Expert developers can create their own customized build scripts and run them from the command line, but this takes them out of the Xcode environment.

				Figure 12.11

				Selecting a build action from the toolbar

				[image: 9781118007594-fg1211.tif]

				Editing schemes

				Schemes define how each build action is customized, to define what happens before, during, and after each action. You also can set up each action to build a selection of targets.

				Schemes are managed using Xcode's scheme editor/manager, which has separate dialog boxes for editing schemes and for managing them. You can use it to create a new scheme, edit an existing scheme, or manage a collection of schemes. Simple projects typically need a single scheme, so the edit option is the most useful.

				You can access the editor/manager in two ways:

				[image: bl.eps] The main Xcode Product menu header includes three scheme options at the bottom of the list.

				[image: bl.eps] The same options appear at the bottom of the destination (platform) drop-down menu in the main Xcode toolbar, as shown in Figure 12.12.

				Figure 12.12

				The simple way to display the Scheme editor

				[image: 9781118007594-fg1212.tif]

				The editor is shown in Figure 12.13. It's a deceptively simple dialog box that hides some very powerful features. The five standard build actions are shown in a list at the left, with a special Build catch-all option that controls which actions are supported by the project. (The Build option is described in more detail later in this chapter.)

				You can do the following in the editor:

				[image: bl.eps] Click the reveal triangle to reveal a list of pre-action scripts, action options, and post-action scripts.

				[image: bl.eps] Change the build action options under the Info tab in the pane on the right.

				[image: bl.eps] For selected actions, you can set further customization options, including optional command-line arguments.

				[image: bl.eps] For the Run action only, you also can enable extra low-level diagnostics and logging features.

				[image: bl.eps] For the Build action only, you can include other possible targets and select the targets that are built by the other standard actions.

				[image: bl.eps] Click the Manage Schemes button to open the Scheme Manager dialog box.

				Figure 12.13

				Using the Scheme editor

				[image: 9781118007594-fg1213.tif]

				Each action has different options you can modify, although there's some overlap between them. The options control what happens after a build, what happens before and during the build run, and what happens after the run. By default, nothing happens before or after an action, but you can change this by adding custom scripts for each build action. The options also control other settings, including the build configuration used by the action.

				Selecting a build configuration

				This option is available for every action. Use the drop-down menu to select one of your project's build configurations. If you create a custom build configuration, it appears in the menu automatically.

				Adding pre-action and post-action scripts

				Each build action has six stages. The first three stages run the default build action. The last three define what Xcode does with the output from the build.

				1. Xcode runs one or more pre-action script for the build, if defined.

				2. The project runs the default build action: It compiles, links, copies, and otherwise processes the files to create one or more targets.

				3. Xcode runs one or more post-action scripts for the build, if defined.

				4. The main action runs one or more optional pre-action scripts.

				5. The main action performs its task—one or more built files is loaded into the debugger, analyzed, profiled, tested, and so on.

				6. The main action runs one or more optional post-action scripts.

				You can use pre-action and post-action scripts for set-up and tear-down, messaging, and to trigger other arbitrary events. Scripts can be shell scripts or AppleScript code. You also can select a pre-written script that sends an e-mail message.

				These are some possible applications of scripts:

				[image: bl.eps] Playing a sound at the end of an automated test or debugging run

				[image: bl.eps] Copying files generated during testing or debugging to another Mac, uploading them to a server, or e-mailing them

				[image: bl.eps] Launching another application that uses the results of a test run

				[image: bl.eps] Using the speech synthesizer to report test results from a run

				[image: bl.eps] Bringing some other window to the front of the desktop

				If you can write AppleScript, scripting is an immensely powerful feature for automated testing and test reporting.

				[image: mac_note.eps] NOTE

				For information about AppleScript development, see the companion AppleScript Developer Reference title.

				[image: mac_caution.eps] CAUTION

				Note that scripting shouldn't be used for basic build control. If you need to set build switches, control which files are included in a project, or define how they're processed, use the Build Phases feature described in Chapter 13. Scripting is designed to control what happens after a build, not what happens during a build.

				To add a pre-action or post-action script, select an action, click its reveal triangle to show the three optional stages, and select either the Pre-actions or Post-actions option. By default, you see a message telling you that no actions are defined. Click the + (plus) icon at the bottom left of the pane, and select either the New Run Script Action or New Send Email Action option, as shown in Figure 12.14.

				For a scripted action, you can either type a script or drag and drop an existing script into the script pane. The example code in the figure plays one of the system sounds. You can add multiple independent scripts.

				For an e-mail action, fill in the e-mail fields. The e-mail message is sent automatically when the script runs.

				To remove an action, click the close box at the top left of the script's sub-pane, or select the action by clicking its title bar. Click the - (minus) icon at the bottom left of the pane to delete it.

				Figure 12.14

				Adding a couple of pre-action scripts

				[image: 9781118007594-fg1214.tif]

				[image: mac_note.eps] NOTE

				To clarify the terminology, scripted actions are optional and can be run before and after one of the five standard build actions, which are fixed.

				Setting arguments and environment variables

				The Run, Test, and Profile actions include an Arguments dialog box. You can use it to specify arguments and environment variables that are passed to your application when it launches, via the standard C language argc/argv placeholders. It's up to you to define what your application does with these variables. Click the + (plus) and - (minus) icons in the panes of the Arguments dialog box to add and remove items.

				[image: mac_caution.eps] CAUTION

				These are not build flags or switches. They're passed to your application, not to the compiler/linker.

				Selecting a debugger

				For OS X projects, you can override the debugger selected in the build configuration here. At the time of this writing, for iOS projects, the only debugger option shown here is GDB.

				Setting Run action options

				The Run action has some unique features. You can use the Executable menu to select which file is run. By default, this menu selects the app created by the build, but for more complex projects, such as testing a plug-in in a wrapper/master application, you can nominate some other file.

				You also can select a custom working directory. This makes it easy to find files generated by the app and saved to its local file space, which is particularly useful for iOS projects.

				For both the Run and Profile processes, you can scale the display with the UI Resolution option.

				[image: mac_caution.eps] CAUTION

				This feature works only on OS X projects. At the time of this writing, UI elements aren't always scaled consistently.

				In the Arguments dialog box, you can add an optional list of modules with further debug symbols. This is a specialized feature used to include symbols from modules that may not be built into your project.

				The Diagnostics dialog box enables specialized low-level diagnostic options. You can control memory management, enable logging for various events and exceptions, and allow your application to send messages to the debugger. Table 12.2 lists the options.

				[image: /Table 12.2a]

				[image: /Table 12.2b]

				Setting Profile action options

				The Profile action options are very similar to the Run process options. In fact, for the Arguments list, you can check the Use the Run action's options box to copy the arguments and environment variables from the Run action's settings.

				The significant feature here is the Instrument option. You can use this to launch a default instrument automatically. This saves you having to select an instrument by hand.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more about instruments and profiling, see Chapter 16.

				Setting Archive process options

				App Store and Ad Hoc distribution builds are described in detail later in this chapter. But as a preview, you typically either edit the standard Release configuration or make a copy. A key fact to remember is that if you create a copy for a distribution build, you must select the copy for the Archive action. Otherwise, the Archive action defaults to the standard Release configuration, which is likely to have incorrect settings.

				Working with the Build action

				The Build action has been left until last because it has some unusual features and a unique edit page.

				Selecting common scripts

				You can add pre-action and post-action scripts in the usual way. Because Build is the master action and is included automatically in the other actions, any scripts you add here are run by every action.

				Selecting targets for each action

				The editor also defines which targets are built by the other standard actions. The design of this editor isn't outstandingly intuitive, so it's worth taking the time to understand how to use it effectively.

				As shown in Figure 12.15, targets are listed vertically at the left and the standard build actions are listed across the top. When you check a box under an action, it tells Xcode to build that target when you run that action.

				Figure 12.15

				Selecting the targets built by each action

				[image: 9781118007594-fg1215.tif]

				For example, with the settings in the figure, running Profile builds MyMacProject only. Running Test or Archive builds AnotherTarget only. Running Analyze builds both.

				When you check the Parallelize Build box, Xcode builds independent targets in parallel. This isn't usually a timesaver on a single machine. But if you have more than one Mac, you can split the build process across a network, which is a timesaver, especially for complex projects.

				The Find Implicit Dependencies tells Xcode to find and build dependent targets automatically.

				Adding targets

				Before you can select a target, you must add it. Unfortunately, when you create a new target in Xcode, it doesn't appear on this page automatically. You must add it manually before you can force a build action to build it.

				To add a target, use the main build options pages shown earlier in this chapter. You can then add the target to this page by clicking the + (plus) icon near the bottom left and selecting the new target from the list, as shown in Figure 12.16.

				Figure 12.16

				Adding a target

				[image: 9781118007594-fg1216.tif]

				Note that if your workspace has multiple projects, you can select a target from any project in the workspace. This is the easiest way to create complex multi-target builds.

				[image: mac_caution.eps] CAUTION

				You can't create new targets for a project here; you can only add targets that were already created elsewhere in Xcode.

				Understanding hidden effects

				When there's a single target, enabling and disabling the actions has some erratic effects elsewhere in Xcode. With a single target, you can't disable the Run and Profile actions at all. If you disable Test and Archive, the corresponding options in the main Xcode menu become grayed out, so you can't select them. If you disable Analyze, the corresponding menu option isn't grayed out.

				You can still select the actions with the pop-up menu shown earlier (refer to Figure 12.11), but if you do, you get an error message telling you that the action has been disabled.

				Because none of these effects makes a great of deal of sense, it's easier to ignore this page when your project has a single target. The default settings leave every action enabled.

				Managing schemes, build actions, and targets

				By default, each project has a single scheme. But whenever you create a new target, Xcode 4 autocreates a new scheme for it.

				There's almost limitless potential for confusion in this arrangement, because the UI doesn't make the distinction between schemes and targets clear. In fact, the new scheme and the new target have the same name.

				To clarify the relationship, remember the following:

				[image: bl.eps] The scheme menu selects schemes, not targets.

				[image: bl.eps] In Xcode 4, you never build a target directly. Instead, you run a standard build action.

				[image: bl.eps] The action defines which targets are built.

				[image: bl.eps] A scheme can define separate multiple targets for each action.

				[image: bl.eps] Before a scheme can build multiple targets, you have to add each target to the scheme by hand.

				Figure 12.17 clarifies the anatomy of a scheme. The Build action is central because it's run by every other action, and it selects which targets are built by each action.

				When you create a new target and Xcode autocreates a scheme for it, it enables all the build actions for it. This may or may not match your needs, depending on how your project is organized. For example, if you're creating a framework and building a test project around it, you're more likely to build both at the same time.

				Figure 12.17

				The anatomy of a scheme. The Build action is effectively a subroutine for the other actions. It also can be run independently.

				[image: 9781118007594-fg1217.eps]

				Often, to avoid possible confusion, it's useful to turn off autocreation and manage schemes manually. You can create them by hand as needed, or if you have multiple targets and need a scheme for each, you can click the Autocreate Schemes Now button.

				It's also helpful to create and rename schemes for specific build and test events—for example, “Build All.” Naming your schemes after your targets is likely to distract you, except for those relatively rare occasions when you have a project with multiple independent targets that you want to build separately.

				The key point isn't that there's a right way and a wrong way to use schemes, but that you must understand the relationship among targets, schemes, and autocreation to work with multiple targets effectively.

				Figure 12.18 shows the Manage Schemes dialog box. To disable autocreation, make sure the Autocreate schemes box at the top left is unchecked. To create a new scheme manually, select the + (plus) icon near the bottom left. You can choose to create a new scheme or duplicate an existing scheme. The - (minus) icon deletes a scheme. You can use the gear (action) icon to import and export schemes for reuse across other projects.

				The final option is the container column, which defines whether the scheme is stored in a project or workspace. The advantage of storing a scheme in a project is that when you select the Shared option to the right of the Container column, everyone who is using that project can use the scheme also.

				[image: mac_caution.eps] CAUTION

				Sharing a scheme means that others can delete it or modify it without your permission.

				Figure 12.18

				Managing multiple schemes

				[image: 9781118007594-fg1218.tif]

				[image: mac_note.eps] NOTE

				Note that the scheme menu displays multiple destinations for each scheme. A destination is a platform—or more technically, an SDK. For example, an iOS scheme can select an iOS device, the iPhone Simulator, or the iPad Simulator as a destination. Destinations aren't stored or selected in a scheme, and you'll see that every scheme gives you the same platform choices. Typically, you select a scheme, then you select an SDK, and finally you select a build action, to create a build for that SDK.

				Summary

				This chapter introduced the Xcode build system. It outlined the relationship between workspaces, projects, targets, build actions, and schemes. It introduced build options and build settings, and it illustrated how settings are prioritized and how you can modify them in the build editor.

				Next, it explained how build configurations define project-wide containers for a certain subset of build settings.

				Finally, it examined build schemes, explored how schemes and build actions can be used to build different groups of targets, and explained how the build actions can then process products in various ways for debugging, code analysis, archiving, and so on.

			

		

	
		
			
				Chapter 13: Customizing Builds for Distribution and Advanced Development

				
				In This Chapter

				

				Introducing common basic customizations

				Creating App Store and Ad Hoc builds for iOS apps

				Creating App Store builds for Mac apps

				Working with advanced build techniques

				Chapter 12 introduced the Xcode build system. This chapter introduces some useful examples of simple customization, explains how to create and distribute App Store and Ad Hoc builds, and introduces more advanced build customization techniques that work with build phases and build rules—the steps in the build sequence that define how individual files are processed.

				[image: mac_note.eps] NOTE

				If you haven't read Chapter 12 yet, start there. The contents are a prerequisite for this chapter.

				Introducing Common Basic Customizations

				Basic build customizations are very common. As you develop apps, you'll find that you typically need to perform the same customizations over and over. This section includes a selection of useful customizations. It isn't a definitive list, but it includes tasks that developers need to perform regularly that aren't highlighted in the official documentation. As you gain more experience, it's likely you'll extend this list with standard customizations of your own.

				All require changes to the build options and build settings for projects and/or targets that were introduced in Chapter 12. They don't modify the build rules, which are introduced later in this chapter.

				The customization process for iOS and OS X projects is recognizably similar. OS X and iOS projects have slightly different low-level compiler settings and noticeably different app-specific options under their respective Info tabs, but the settings are organized in the same way and appear in the same editor. Most of the customizations in this section are relevant to both platforms.

				[image: mac_caution.eps] CAUTION

				Be aware that some of the build settings and options interact with each other, while others may not do what you expect them to. These gotchas are listed in this section, with suggested workarounds.

				Creating a build for testing and debugging

				The debug/test build is the default in Xcode. So for iOS Simulator testing and OS X testing, you don't need to do any customization. Optionally, you can select the runtime platform using the pop-up menu at the top left of the main Xcode toolbar and customize other build settings as needed. But the defaults should create a build that can be debugged and launch it.

				Selecting the Base SDK

				The Base SDK is the version of the libraries and headers used to generate apps for a specific version of either iOS or OS X. Whenever a new version of either OS is released, Apple generates a new version of Xcode for developers with an updated SDK.

				Early versions of Xcode 3 didn't handle this intelligently. When you loaded an old project or downloaded a project from a website, Xcode typically displayed an unhelpful “SDK missing” error message. Because Xcode couldn't find the original SDK, the project wouldn't build until you selected an updated SDK manually.

				In Xcode 4, the project build settings include new automated Latest iOS and Latest Mac OS X options, as shown in Figure 13.1. If you save your projects with this setting and reload them into a later release of Xcode, they should select the most recent SDK automatically, even if it's different from the SDK used for the original project.

				Note that projects saved with older versions of Xcode continue to show this error when you reload them. (This is a common error when you try to load a sample project downloaded from a developer's blog.)

				To fix the problem, select the latest SDK manually in the build settings after loading the project.

				[image: mac_note.eps] NOTE

				You may want to change this setting for final distribution builds, as described later.

				Figure 13.1

				Selecting the Latest OS option to ensure that projects always load with a current SDK

				[image: 9781118007594-fg1301.tif]

				Setting the minimum supported OS version

				With each new version of iOS and OS X, new functions, classes, and methods are added, and older elements are removed. Not all users upgrade to the most recent version of each OS, especially not those running OS X, who have to pay for upgrades. iOS users of older devices are typically limited to an older version of the OS.

				It's often useful to create products that are compatible with an older version of the OS, but that also can run on newer versions. The minimum supported OS version is known as the Deployment Target. If a user tries to run the product on an older version, the loader displays an error message.

				Understanding the SDK and the deployment target

				Newcomers to Xcode are often confused by the relationship between the base SDK, the deployment target, and the OS version shown in the Simulator. The key point to understand is that the SDK defines the symbols and libraries that appear in the product. The deployment target is simply a number used by the loader to check OS compatibility.

				[image: mac_caution.eps] CAUTION

				Don't confuse the deployment target with the targets used in a project. The deployment target is an OS version. The build targets are processes and file specifications that create a product. For clarity, the deployment target could have been labeled the deployment OS, but unfortunately it wasn't.

				The SDK supplied with any version of Xcode includes support for older versions of the OS, up to some arbitrary limit. For example, the iOS 4.3 SDK can build projects that run under iPhone OS 3.0 and later, but not iPhone OS 2.x and 1.x.

				An often-repeated rule for selecting an SDK and deployment target is that you should always select the Latest OS SDK (as described earlier) and the most ancient supported deployment target. In practice, beta development complicates the requirements. Here's a more comprehensive guide:

				[image: bl.eps] Select the Latest OS SDK for all development builds. With a beta SDK, you can use this option to experiment with new features.

				[image: bl.eps] If you have a beta SDK installed, select the current public release of the OS—the version before the current beta—as the Base SDK for App Store distribution builds.

				[image: bl.eps] Not all beta SDKs include this previous version. If you've installed a beta SDK and find the current public OS SDK is missing, you must use or reinstall a separate older copy of Xcode for distribution builds.

				[image: bl.eps] Don't try to create a final production build with a beta version of the OS until the beta SDK is upgraded to a final GM (Gold Master) seed and Apple confirms this seed is suitable for production code. This usually happens just before public release.

				[image: bl.eps] You can use a beta SDK for Ad Hoc test builds only if your testers have access to the equivalent beta versions of the OS for their devices. If they don't, which is often the case, select the previous public SDK as the active SDK. You can give them access, but some assembly is required. For details, see the Creating App Store and Ad Hoc builds section later in this chapter.

				[image: bl.eps] The Simulator supports various older versions of the OS. You can use this option to partially test code for backward-compatibility.

				[image: bl.eps] You also can test compatibility on real devices, if you have them. If you need to, you can use Xcode's Organizer to downgrade newer devices to older versions of the OS for testing. (Don't do this on devices you use personally; you're likely to lose data.)

				[image: bl.eps] Set the deployment target as low as possible, for maximum backward-compatibility. This gives users the best chance of being able to buy and use your app.

				A key point is that when you set the deployment target to an older version of the target OS, your code must test for OS-dependent features. Figure 13.2 illustrates this graphically.

				In the figure, your app can run on any device with iOS 4.0 or later. The latest features from the iOS 4.3 SDK aren't available on devices with older versions of iOS, so your code must check they exist before it tries to use them. Your code will of course compile with the iOS 4.3 SDK—but when the deployment target is set to support older version of iOS, it won't run reliably on a range of supported OS versions unless you include versions-specific tests and code features.

				Supporting multiple versions of an OS is non-trivial. It's also difficult to test in full. The only true test is to run the code on multiple devices, each of which has a different version of the OS—or on a single device multiple times, updating the installed OS each until every version has been tested.

				[image: mac_note.eps] NOTE

				This can be lots of work. It's not unusual to test code on the oldest and newest supported OS, check by inspection that the code is likely to work on intermediate versions, and hope there are no surprises.

				Figure 13.2

				The most general view of SDK and deployment selection. Code must include tests to check for OS-dependent features that may not be available on a user's device. Missing features must be implemented with workarounds and fallbacks.

				[image: 9781118007594-fg1302.eps]

				Common practical techniques for multi-OS support include the following:

				[image: bl.eps] Using variations on the respondsToSelector: method to check whether methods are available

				[image: bl.eps] Using NSClassFromString to check whether a class is supported

				[image: bl.eps] Reading the supported system version from UIDevice

				[image: bl.eps] Including conditional compilation elements to manually select OS-dependent code (This option is typically used to check for a platform—for example, OS X, the iOS Simulator, or an iOS device—during compilation. Don't use it to manage OS versions.)

				[image: mac_tip.eps] TIP

				For practical examples of multiple OS support with code, search for Using SDK-Based Development in the documentation. There's more about conditional compilation later in this chapter.

				Setting the deployment target

				You can set the deployment target in three ways:

				[image: bl.eps] Select the deployment OS with the Deployment Target menu in the Project⇒Info tab, as shown in Figure 13.3.

				[image: bl.eps] Select the deployment OS with the Deployment Target menu in the Target⇒Summary tab.

				[image: bl.eps] Select the Deployment Target item in the build settings table for either the project or the target.

				Figure 13.3

				Selecting the Deployment Target. This feature appears in three places, but for single-target apps it's easiest to set it here.

				[image: 9781118007594-fg1303.tif]

				These options appear interchangeable, but they're subtly different. The first option creates a project build setting. The second creates a target build setting. The final option can create either a project or a target setting.

				[image: mac_crossref.eps] CROSS-REFERENCE

				The differences between project and target settings and the interactions between them were introduced in Chapter 12. If you're not yet familiar with them, read that chapter before continuing—the differences are crucial.

				For single-target iOS and OS X apps, use the target summary setting for simplicity and clarity. For more complex projects with multiple targets, it's up to you to select the option that works best in the context of the project.

				Setting the Base SDK

				There's exactly one way to set the Base SDK—it's included in the list of build settings, as shown in Figure 13.4. When you load a project created with an older version of Xcode and you see the “missing Base SDK” error, open the build settings and fix it by selecting the correct “Latest OS” option for your project and platform, as shown in the figure.

				New projects should always have the Base SDK selected correctly, by default.

				Figure 13.4

				Using the Build Settings to set the Base SDK

				[image: 9781118007594-fg1304.tif]

				[image: mac_caution.eps] CAUTION

				Note that Xcode allows you to select an iOS SDK for an OS X project, and vice versa. This is never a wise thing to do. Occasionally you can load an older Mac project and Xcode assumes it's an iOS project—and vice versa. So you may need to correct this by hand. Note also that you can set different SDKs for Release, Debug, and custom configurations. Very occasionally you may discover a practical need for this, but it's not a widely used feature.

				Including a framework or library in a build

				This topic was introduced in Chapter 5, but it's expanded here. To add a framework or library, follow these steps:

				1. Navigate to the Build Phases tab.

				2. Open the Link Binary With Libraries item, as shown in Figure 13.5.

				3. Click the + (plus) button at the bottom left of the item.

				Figure 13.5

				Adding a framework to a target

				[image: 9781118007594-fg1305.tif]

				4. Select the framework or library from the menu.

				5. The framework is added to the Project navigator. To keep the project organized, drag it to the Frameworks group.

				Note that the list of frameworks is filtered by platform, so you can't add an iOS framework to an OS X project (or vice versa).

				You can rearrange the compile order by dragging frameworks up and down the list, although this isn't usually necessary. You also can add an external non-Apple framework by selecting the Add Other option and navigating to the framework files. Use this option to add frameworks or libraries created by other developers.

				Technically, you link against a framework. There are two options: Required and Optional.

				A Required library must be present on the target platform and is loaded at launch with the rest of the application or product. If it isn't present, the application refuses to load.

				Optional libraries are loaded only when they're referenced at runtime. This saves memory and creates a smaller initial product. But if the library isn't available, the application stalls or crashes. You can use the techniques introduced in the previous section—tests for classes and methods, conditional compilation, and so on—to create code that can handle optional libraries robustly.

				Typically, you use the framework build option discussed here to add precompiled binaries with headers. But if you have a framework's source code, you can add the files to the project's sources using the Add Files option in the Project navigator. Third-party frameworks are often supplied as source code that you can add to your project, which may be a simpler option than trying to build and import the code as a stand-alone library.

				Always remove frameworks from a finished project if they're not being used. For example, you might add one of the audio or graphics frameworks to experiment with it, decide that another framework is a better solution, but leave both in the build. Although this is an obvious point, it's easy to overlook it. When you finish development, check to see that every framework listed under Link Binary with Libraries is essential.

				[image: mac_caution.eps] CAUTION

				If you're used to framework management in Xcode 3, be aware that this feature is handled very differently in Xcode 4. The list of linked frameworks still appears in the Project navigator, but the right-click Add Framework option is no longer available.

				[image: mac_tip.eps] TIP

				It can be easier and quicker to add Apple frameworks using a different technique. Open the Frameworks group, right-click any of the existing frameworks, and select Show in Finder to view the default list of Apple frameworks. Each framework appears in a folder. To add a framework, drag its folder from Finder and drop it on the Frameworks group. Leave the Copy items option unchecked. Click Finish. The framework is added to your project, and it also appears in the Link Binary with Libraries list. (Don't forget to add an #import directive to include the headers in your code!)

				Selecting a compiler

				It's not immediately obvious that Xcode 4 includes two compilers for C family languages: the older GCC (Gnu Compiler Collection) and a newer LLVM (Low Level Virtual Machine) compiler. Each compiler has an associated debugger.

				There are significant differences in speed, reliability, and debugger integration between the compilers. The LLVM compiler is more efficient and faster than GCC. The corresponding debugger is more tightly coupled with the source code than the Gnu Debugger, and it produces more informative error messages. But GCC has better optional support for other languages and can sometimes be a better choice for cross-platform projects.

				To select a compiler, choose one of the three options from the Compiler Version menu in the Project build settings. These are your options:

				[image: bl.eps] GCC 4.2: This uses the standard GCC compiler.

				[image: bl.eps] LLVM GCC 4.2: This is a hybrid option that uses the old GCC frontend/parser and the new LLVM compiler. It gives faster compile times, especially on larger projects.

				[image: bl.eps] LLVM Compiler 2.0: This is a somewhat experimental option. It selects the new Clang frontend/parser and the LLVM compiler. If you're used to GCC, you'll find that selecting this option generates new and unfamiliar—but more comprehensive and useful—errors and warnings.

				[image: mac_note.eps] NOTE

				When a project has different targets, it's possible to select a different compiler for each target. While Xcode allows you to do this, it's not a common requirement. Note also that when you switch compilers, some of the switches and options displayed under the Build Settings tab change too. Because you don't usually need to fine-tune the default settings, you can leave these alone, but it's worth being aware that LLVM has a slightly smaller selection of options.

				[image: mac_crossref.eps] CROSS-REFERENCE

				For more information about compiler technology, see Appendix C.

				Controlling warnings

				You can use the Warnings section toward the bottom of the full list of build settings to enable and disable specific warning messages, as shown in Figure 13.6.

				The master switch is called Inhibit All Warnings. When this is enabled, the compiler ignores the other warning switches and suppresses all warnings, without exception. This is a dangerous option.

				Most of the other options are self-explanatory, to varying degrees. For example, unused variables and unused values produce warnings by default. Unused functions don't. It's worth exploring the list to fine-tune the options to match your programming style.

				Figure 13.6

				Selecting warning messages

				[image: 9781118007594-fg1306.tif]

				Disabling iOS PNG compression

				By default, when you include PNG (Portable Network Graphics) image files in your project, the build process runs the art files through a PNG compression stage.

				Unfortunately, Xcode's PNG compression isn't outstandingly efficient and may add unwanted transparency artifacts. You can minimize the size of the files by compressing them manually in an editor such as Adobe Photoshop or Fireworks. You can then tell Xcode to disable its compression and use the files as they are. (If you don't, you may find it makes precompressed files bigger.)

				The compression setting is labeled Compress PNG Files. You can find it at the top of the Packaging heading in the Target Build Settings.

				Changing an app's name before shipping

				It's often useful to change the final production title for an app, to customize the name string that appears under the app icon in iOS or above the Dock in OS X.

				There's no easy way to change the project's filenames or the project name as a whole. But you don't need to, because you can set the name independently using the Product Name setting in the Build Settings. You can find it halfway down under the Packaging header.

				The default is a macro called $(TARGET_NAME). You might assume this means that the target name is copied from the Target name. This is true, up to a point. But it's easier to edit the name directly, as shown in Figure 13.7. You can either single-click twice on the product name to edit the name in place. Or you can double-click to display the floating edit box shown in the figure.

				Figure 13.7

				Editing the product name. This setting changes the name that appears under/over the app in the Dock and in Springboard.

				[image: 9781118007594-fg1307.tif]

				[image: mac_tip.eps] TIP

				It's a good idea to keep iOS app names short, because Springboard truncates longer names with ellipses (…). Ten characters is a realistic maximum, but you may occasionally be able to squeeze in 11. You can test the truncation in the Simulator.

				What if you want to edit the target name instead and force the product name to follow it? You can edit the target name by double-clicking it next to the icon in the gutter area to the left of the settings. If you leave the product name set to the default macro, it should follow suit.

				Unfortunately, it doesn't. The product name field is copied to the target name only when the project loads. So to refresh the name, you have to close the project and load it again.

				This is an obvious bug. It may or may not be fixed in future versions.

				Creating App Store and Ad Hoc Builds

				Now that you're familiar with the build system and with build customization, you can start to create builds for the App Store.

				Xcode 4 includes a simplified building and packaging process that makes it easier to submit apps to the App Store and to create and distribute beta versions for testing. The process is simpler than it was in Xcode 3, but some assembly is still required.

				The first time you submit an app, allow a day or two to work through each stage. The submission process isn't simple. It becomes easier with experience, but the best way to guarantee a successful first upload is to work through the stages carefully and methodically.

				[image: mac_caution.eps] CAUTION

				Before you can create an App Store or Ad Hoc, you must work through the provisioning process introduced in Chapter 11. If you haven't done this, do it now; it's a prerequisite for this section.

				[image: mac_caution.eps] CAUTION

				You must give iTunes Connect information about your bank account and tax details before you begin uploading a paid app. Work through this process well before you submit an app. International tax law is outside the scope of this book, but be aware that you may need to supply extra paperwork for certain territories; otherwise, income is taxed at source, although it may be possible to reclaim deductions later. Non-US individuals require an ITIN (Individual Taxpayer Identification Number) from the U.S. IRS to avoid deductions. It can take between three months and a year to obtain one.

				Building and packaging an iOS project for the App Store

				Debugging and testing an app is only the first stage of the App Store process. To sell it, you must package it and upload it, which takes significant extra work.

				The packaging and uploading process has six steps:

				1. Start by preparing marketing and support materials.

				 Technically, this isn't part of the build process, but you have to do it anyway before you create a final build.

				2. Create a modified Release build configuration.

				3. Customize some of the build options in the new configuration.

				4. Build the project as an archive.

				5. Upload the marketing materials to iTunes Connect, and create an application record.

				6. Validate the project archive to check for basic errors, and submit it to iTunes Connect.

				Preparing marketing and support materials

				You need the following:

				[image: bl.eps] Standard Artwork files: For a list, see Table 13.1. Preparing artwork isn't a trivial job; even if you have good design skills and aren't attempting a complex design, it can take half a day to a day to create every required file—longer to create every possible file. Professional developers often outsource this work to graphic designers. (This list includes essential artwork. Your project also may use its own separate artwork files for icons, sprites, and so on, but if it's finished, it should have those already.)

				[image: bl.eps] An SKU number (an arbitrary product code of your choice): Every app must have a unique SKU.

				[image: bl.eps] Marketing text: This can be up to 4000 words of compelling text to persuade iTunes customers that they need your app.

				[image: bl.eps] A list of search keywords, up to a maximum of 100 characters: Your app appears in iTunes when users search for any of these words.

				[image: mac_tip.eps] TIP

				If you can't think of a suitably professional-looking SKU, you can prefix the code with a shortened version of your name or your company name, followed by the reversed date.

				[image: /Table 13.1a]

				[image: /Table 13.1b]

				Although this list looks long, many of the images are optional, so you can get by with a more minimal selection. For the iPad, there are two default images rather than one: Default-Portrait.png and Default-Landscape.png. Optionally, you can add further default images to suit the LandscapeLeft, LandscapeRight, and PortraitUpsideDown orientations: Default-LandscapeLeft.png and so on. The default screen size is 1024 x 768, but you may need to remove 20 pixels from one edge when the status bar is visible.

				All files except the screenshots should be added to the application in the Project navigator. For convenience, add them to the Resources group.

				[image: mac_caution.eps] CAUTION

				If you're having problems getting Xcode 4 to recognize PNG files during validation (see later in this section), try saving them with the Generic RGB color profile. The default is sRGB, and Xcode 4 sometimes doesn't accept files with this profile.

				Creating a new build configuration

				The build settings for an App Store release typically use a modified version of the default Release build configuration. You can create one in two ways:

				[image: bl.eps] Modify the existing Release configuration in place.

				[image: bl.eps] Make a copy, and use it for the final build.

				The advantage of an in-place edit is that there's less other work to do. You can edit the existing Release configuration settings, and you're ready to build.

				The advantage of creating a copy is that if you create further configurations—for example, for beta distribution—you can use the default Release configuration as a standard starting point. You also can save the configuration with the project and give it a useful name. When you're ready to release an updated version of the project, you can reuse your customized App Store configuration as is.

				This example demonstrates how to use a separate file. Follow these steps:

				1. Select Project and the Info tab.

				2. If the Configurations heading isn't open, click the reveal triangle to open it.

				3. Click the + (plus) icon at the bottom of the subpane.

				4. Select the Duplicate “Release” Configuration option from the floating menu, as shown in Figure 13.8.

				 This creates a new configuration called Release copy.

				5. Single-click twice on the name, and type in a modified name, such as App Store.

				Customizing build settings and options

				Preparing the build is a two-stage process. You can perform the steps in any order:

				[image: bl.eps] Customize the build settings.

				[image: bl.eps] Customize other build options.

				Figure 13.8

				Creating a new configuration for App Store builds by copying the default Release configuration

				[image: 9781118007594-fg1308.tif]

				Customizing build settings

				Select the app target, select the Build Settings tab, select the Combined view, and work through the list that follows.

				Most items are configuration-specific, so if a setting appears with <multiple values>, click its reveal triangle and change the value next to the App Store configuration.

				[image: bl.eps] Base SDK: This should have been set to the most recent public OS version during development. Double-check it anyway.

				[image: bl.eps] Validate Built Product: Select Yes.

				[image: bl.eps] Code Signing Identity: Select a valid distribution provisioning profile. You can use the default iPhone Distribution under the Automatic Profile Selector header, as shown in Figure 13.9. But be very careful: If you have multiple distribution profiles, it may select the wrong one or default to the last one used. Double-check that it really has selected the correct profile, which is usually the one you've named Distribution.

				[image: bl.eps] Strip Debug Symbols During Copy: Select Yes.

				[image: bl.eps] Targeted Device Family: Select the devices supported by your app.

				[image: bl.eps] iOS Deployment Target: Set this to the oldest version of iOS supported by your app, as discussed earlier in this chapter.

				[image: bl.eps] Product name: Set this to the final production name string, as discussed earlier.

				Figure 13.9

				Selecting the distribution profile in the build settings for the new App Store configuration

				[image: 9781118007594-fg1309.tif]

				[image: mac_note.eps] NOTE

				You also can make these changes in the Levels view. The Combined view is simpler and less cluttered, especially on a smaller monitor.

				Customizing other build options

				Customizing the other options is a two-step process. Select the Summary tab, and make the following changes:

				[image: bl.eps] Version: Set this to the current version number of your app.

				[image: bl.eps] Devices: Ignore this; it copies its value from the Targeted Device Family build setting.

				[image: bl.eps] Main Interface: Don't change this. (If you need to use this feature, set it during development and testing.)

				[image: bl.eps] Supported Device Orientations: These options don't define the supported orientations; you do that in code in your view controllers. In theory, they define the orientations in which the app is allowed to launch. In practice, implementation is erratic and seems to vary between devices and different versions of iOS. So you need to experiment with these settings during development.

				[image: bl.eps] App icons: Right-click each icon, and navigate to the icon files you prepared earlier, as shown in Figure 13.10, with the dimensions listed in Table 13.1 (57 x 57 for the required standard icon and 114 x 114 for the optional Retina Display icon).

				Figure 13.10

				Setting the Summary options for an iOS App

				[image: 9781118007594-fg1310.tif]

				[image: bl.eps] Launch Images: Right-click each placeholder, and navigate to the default launch images you prepared earlier, with the dimensions in Table 13.1.

				[image: bl.eps] Other Images: If your app is universal or iPad-only, add images for iPad support in the same way.

				[image: mac_note.eps] NOTE

				It's likely you defined app icons and launch images during development. If so, you don't need to define them again.

				Select the Info tab. You can typically leave the Custom iOS Target Properties unchanged; the Summary settings change some of them, and the default settings are usually correct.

				Occasionally, you may want to add special features. Table 13.2 has a short list of the most useful optional keys. See Appendix B for more information about how to add, edit, and select the features on this page.

				[image: /Table 13.2]

				Building the project

				You're almost (but not quite) ready to build the project. In Xcode 3, you built a project in the usual way, archived it manually in Finder, and manually uploaded the archive to iTunes Connect.

				In Xcode 4, the Archive build action and the validation/submission features automate this process. You can do everything from Xcode without having to find the app package in Finder or using an external uploader.

				By default, the Archive uses the Release configuration. You must change this before building. Follow these steps:

				[image: mac_caution.eps] CAUTION

				If you forget this step, the product is assigned your development certificate. Other very bad things may also happen, and your archive isn't valid.

				1. Select Product⇒Edit Scheme from the main Xcode menu.

				2. Select the Archive action in the column at the left.

				3. Select the App Store configuration from the Build Configuration menu, as shown in Figure 13.11.

				4. Leave the Reveal Archive in Organizer option checked.

				5. Select iOS Device as the Destination from the menu at the top of the dialog.

				6. Make sure the Breakpoints button is deselected.

				Figure 13.11

				Make sure that your new App Store configuration settings are applied when you build to archive/upload.

				[image: 9781118007594-fg1311.tif]

				7. Select Product⇒Archive from the main Xcode menu.

				 This runs the Archive action and builds your app from scratch, which may take a while.

				Eventually, the Archives window from the Organizer appears, as shown in Figure 13.12. But you can't submit the application yet; first, you must fill in the “paperwork” on iTunes Connect so that the App Store is ready for your app.

				Figure 13.12

				The Archive that appears in the Organizer is a packaged app that can be submitted to the App Store, but only after you've filled in some online “paperwork.”

				[image: 9781118007594-fg1312.tif]

				Uploading marketing and support materials

				iTunes Connect works in almost exactly the opposite way you'd expect. Instead of uploading a binary and then adding marketing text and images for it, you upload the marketing materials first to create an application record. You then upload your archived app. It becomes the binary associated with the record.

				[image: mac_note.eps] NOTE

				The way iTunes Connect works may seem counterintuitive, but it has a valid purpose. If your binary is rejected, the application record remains in place, and you don't have to reenter it when you resubmit. Similarly, when you upgrade your app to a new version, you can reuse the details you entered when you first submitted the app.

				Follow these steps to upload your app:

				1. Log in to the iOS Developer Portal, and select iTunes Connect from the list of items at the top right of the screen. (You can also access iTunes Connect directly at itunesconnect.apple.com.)

				2. Select Manage Your Apps.

				3. Click Add New App at the top left.

				4. Work your way through the “paperwork,” the first page of which is shown in Figure 13.13, by filling in the fields, uploading artwork, answering questions about encryption technology and age ratings, and copying and pasting your marketing text.

				 Most of the options are straightforward. The most likely source of confusion is the Bundle ID option.

				5. Select the ID embedded in your distribution profile. If you have a single App ID, use it. If you have multiple IDs, select the last one you used when creating a certificate.

				 If you followed all the steps in Chapter 11, you should have an application record.

				Figure 13.13

				This is the first page of the “paperwork.” Note the Bundle ID menu.

				[image: 9781118007594-fg1313.tif]

				[image: mac_crossref.eps] CROSS-REFERENCE

				See Chapter 11 for a reminder about App IDs.

				[image: mac_note.eps] NOTE

				You can repeat the process to create multiple app records in a single session. In fact, you can create as many records as you want. They aren't visible on the App Store until you upload a binary for each, and the record and binary are approved for sale.

				Submitting an app to iTunes Connect

				Eventually, your application record is complete. At the time of this writing, the final screen tells you to use an application called Application Loader to submit the binary. Whether Apple removes this screen in future, you can ignore it because Xcode 4 includes its own upload and packaging tools.

				Submission is another two-stage process. The first step is app validation; it's optional but recommended. The second is submission/upload.

				Validating an app

				The internal details of the validation process are secret, but we know it checks for basic errors, including missing artwork, invalid package and bundle settings, and incorrect provisioning. Successful validation doesn't guarantee that your app will be accepted for sale, but it flags the most obvious errors that guarantee that Apple will reject it.

				In the Organizer, select your archive (if it isn't already selected), and click the Validate button at the top right of the window. You are asked to log in with your developer name and password. Next, you see the dialog box shown in Figure 13.14.

				The Application menu shows any application records that you haven't yet completed with a binary. Typically, there's a single item here—the last record you created.

				The Identity menu should match the distribution identity you selected in the build settings before you built the app, as described earlier in this section.

				Figure 13.14

				Validating an app before upload

				[image: 9781118007594-fg1314.tif]

				[image: mac_tip.eps] TIP

				The menu is identical to the menu used to select an identity in the build settings. Make sure you select the same item in both.

				Click Next. Xcode packages the app for upload and runs the validation checks. If validation fails, the dialog box lists one or more errors, as shown in Figure 13.15.

				Figure 13.15

				The Validate option displays a list of issues. There may be more than one.

				[image: 9781118007594-fg1315.tif]

				To fix validation errors, follow these steps:

				1. Delete the archive, unless you want to keep it, but typically, you don't.

				2. Add or repair the items that are missing or incorrect.

				 This may mean changing some of the items in the build summary/info pages. You don't usually need to modify the build settings.

				3. Create another archive build by selecting Product⇒Archive from the main Xcode menu.

				4. Revalidate the new archive.

				Figure 13.16 shows a successful validation.

				Figure 13.16

				A successful validation means you're ready to submit the app.

				[image: 9781118007594-fg1316.tif]

				[image: mac_caution.eps] CAUTION

				The validation process isn't completely robust, and sometimes apps fail for no reason. When there's a problem with iTunes Connect, you see cryptic error messages such as “Unable to extra package metadata.” Obvious app problems are usually labeled accurately. It's a good idea to double-check everything, clean the build, and perhaps copy the files to a new folder before archiving and validating again. If you're sure your app is valid, you can sometimes submit it successfully after a failed validation by clicking Submit three or four times until the upload is accepted.

				Submitting an app

				To submit an app, click the Submit button at the top right of the Organizer. The submission process is very similar to validation; you're asked to log in, and then the app is packaged. Instead of a validation pass, the package is uploaded, as shown in Figure 13.17.

				Figure 13.17

				A successful submission

				[image: 9781118007594-fg1317.tif]

				[image: mac_note.eps] NOTE

				In fact, submission includes another validation pass. But it's quicker to validate separately before submitting.

				After submission, the app is added to the review queue. It typically takes one to two weeks for the app to reach the head of the queue, and a random duration that can last a day to a couple of months for the review process. Most apps go on sale within two weeks of submission.

				iTunes connect displays status messages—Waiting For Review, and In Review—to let you see where the app is in the review process. When the review is complete, you'll receive an e-mail with notice of acceptance or rejection.

				Deleting or hiding apps after submission

				If you discover a problem with your binary after submission, select the app, select Binary Details, and click the Reject This Binary button at the top right. You can then repeat the submission process with a new binary. Note that you can't delete an app submission record while a binary is awaiting review.

				If you want to delete an app after it's been accepted for sale, this is a complicated process. It's usually easier and quicker to remove an app from sale than to delete it completely. Select the app, click Rights and Pricing, select the Specific Stores link, and click the Deselect All button at the top right of the Rights and Territories list. This leaves its submission record on iTunes Connect so you can update it with a new version at a later date, but hides it from buyers on iTunes.

				Creating and distributing an iOS Ad Hoc build

				The build process for an Ad Hoc build that you can share with beta testers is similar to an App Store build. But there are differences. Before you create an Ad Hoc build, you must create a suitable distribution profile.

				Creating and installing an Ad Hoc provisioning profile

				For more details about provisioning, see Chapter 11. Figure 13.18 shows the settings for an Ad Hoc profile. Remember that you must do the following:

				Figure 13.18

				Creating an Ad Hoc profile

				[image: 9781118007594-fg1318.tif]

				1. Get the UDID of every supported device from each user, and add it to your device list.

				2. Select the devices in the list that your testers will use.

				 Users can run the app only on the devices in the list.

				3. Pick a valid App ID for the profile or create a new one, and make a note of it for later.

				4. Install the new profile by dragging it from Finder and dropping it onto the Provisioning Profiles item at the top left of the Devices window in the Organizer.

				 The new profile will have the .mobileprovision file extension.

				[image: mac_tip.eps] TIP

				After creating the new profile, don't forget to refresh the page on the portal to update its status from Pending to Active.

				Creating an Ad Hoc build

				Once you have an Ad Hoc profile, use the following steps to build your beta app:

				1. Create a new build configuration based on the default Release profile, and give it a new name, such as Ad Hoc.

				2. Sign the app with the new Ad Hoc distribution profile in the build settings.

				 If you use the profile auto-selector, remember to double-check that this worked correctly and you're signing the build with the Ad Hoc profile. Modify other build settings as needed.

				3. Select the Ad Hoc Release configuration in the Archive Build Action.

				4. Select the iOS Device option in the platform pop-up menu and build the archive with Product⇒Archive.

				5. In the Organizer, use the Share button to create a shareable app package with a .ipa suffix. Select the Ad Hoc profile from the Identity menu, and save the packaged app to a convenient location.

				6. E-mail the file to testers, or upload it to a website and e-mail them a download link.

				7. Testers use iTunes to install and run the app.

				8. If the app is for a beta version of the OS, testers must be able to install that version on their devices before testing the app.

				Installing an Ad Hoc app with iTunes

				To install an app, testers open iTunes and drag and drop the file onto the Library at the top left, as shown in Figure 13.19. Syncing the device with the Sync Apps option—testers may need to check the app in the app list manually—installs the app and automatically installs the embedded distribution profile.

				Figure 13.19

				Installing an Ad Hoc app with iTunes

				[image: 9781118007594-fg1319.tif]

				[image: mac_note.eps] NOTE

				In earlier versions of Xcode, Ad Hoc distribution didn't work unless projects were built with an Entitlements.plist file, and the provisioning profile was supplied to testers with the app. These steps are no longer necessary, because the packaging process embeds a working profile and entitlements are managed automatically.

				[image: mac_note.eps] NOTE

				If you're developing apps for a beta version of iOS or OS X, there's no legal way to supply beta copies of an OS update to testers who aren't registered developers. Illegal ways are discussed online, but they're outside the scope of this book.

				Using Over the Air (OTA) distribution

				In Xcode 3, enterprise developers had the option to create a package that could be downloaded and installed directly on the device by clicking a web link in Safari. This is called Over the Air (OTA) distribution, and it creates a much smoother experience for testers.

				OTA distribution uses a feature built into Safari (and only Safari) that allows the browser to validate a provisioning profile and install an app on any iOS device running iOS 4.0 and later.

				Although it was introduced as an enterprise tool, all developers can use this feature, but the packaging process for creating the support files for an OTA app is moderately complex. In addition to the ipa file, the link requires some basic HTML and a supporting plist manifest file with details of the app. Creating the HTML is easy, but creating the manifest plist is more challenging.

				Xcode 4 doesn't support this feature for standard developers, but various commercial workarounds are available. For example, diawi (www.diawi.com) is an ad-sponsored app that allows developers to upload test builds to its website and e-mail links to testers. TestFlight (http://testflightapp.com), shown in Figure 13.20, is a similar alternative. These options make OTA distribution almost as easy as drag and drop.

				Figure 13.20

				TestFlight: one way to create an OTA distribution for beta testers

				[image: 9781118007594-fg1320.tif]

				Developers who don't want to entrust their files to a third party can use iOS BetaBuilder (www.hanchorllc.com/category/ios-betabuilder/) to create custom HTML and manifest files for distribution from their own web server. BetaBuilder loads an ipa file and generates supporting HTML and a manifest plist tied to a specific download URL. You can then upload the files to a server and e-mail testers the URL. At the time of this writing, a supporting app is being developed.

				Note that although official enterprise OTA doesn't require device registration, standard developers must still register devices and include them in every Ad Hoc distribution profile.

				[image: mac_caution.eps] CAUTION

				Non-enterprise OTA isn't officially supported by Apple. The technology has been borrowed for non-enterprise use, and Apple may withdraw it without notice.

				Creating a Mac App Store submission

				A Mac submission is similar to an iOS submission, but somewhat simpler. Begin by creating an App Record on iTunes Connect, filling in the “paperwork” to create a binary slot. You then customize the app's settings, build it as archive, package it, and upload the binary.

				Currently, there's no device registration or support for device-limited Ad Hoc distribution for testing. (This may change in the future.)

				Finding iTunes Connect

				At the time of this writing, there's no direct link to iTunes Connect on the front page of the Mac Dev Center. To open iTunes Connect, select the Get Your Mac Apps Ready for the Mac App Store link at the top right of the front page, and then click the Log in to iTunes Connect link at the bottom of the Set up Your iTunes Connect Account paragraph, shown in Figure 13.21.

				Creating marketing and support materials

				The “paperwork” for a Mac submission is very similar to an iOS submission. The promotional screenshot must have a resolution of 1280 x 800 or 1440 x 900 in .jpeg, .jpg, .tiff, or .png in the RGB color space with a resolution of 72dpi or better. In practice, this means you can run the app, set your Mac's display resolution to the required dimensions, and use Grab utility in /Applications/Utilities to capture the art as a .tiff file.

				[image: mac_tip.eps] TIP

				The artwork doesn't have to be an unedited screen grab. You also can create custom promotional artwork that captions or highlights important features of your app. This is pushing against the guidelines, but if the artwork isn't too heavy handed and promotional, there's a good chance it will be accepted.

				Figure 13.21

				There's no direct link to iTune Connect from the Mac Dev Center front page; you have to go through this intermediate page.

				[image: 9781118007594-fg1321.tif]

				Creating an App ID and managing certificates

				OS X apps don't support wildcard/suite IDs, so you must create a new ID for each app, following the steps described in Chapter 11.

				App IDs aren't built into the Mac App Software Certificate or the Mac Installer Package Certificate, so you can reuse the same certificates for every app.

				[image: mac_note.eps] NOTE

				When a user buys an app from the store, iTunes generates a receipt file that locks it to one specific Mac. Your app can validate this receipt to prevent piracy. This requires extra code; it's not automatic. Validation isn't part of the build process, but it's a good idea to add it and test it while developing. For details and sample code, see Validating App Store Receipts in the documentation.

				Customizing the build for the App Store

				You must do the following:

				[image: bl.eps] Customize the build settings.

				[image: bl.eps] Modify the build options: summary and info.

				But you don't need to do these things:

				[image: bl.eps] Create a new configuration. The default Release configuration can be used as is.

				[image: bl.eps] Edit the default scheme. There's no need to select an updated configuration in the default settings for the Archive action.

				Customizing the build settings

				Click the project at the top of the project navigator, select the target, and click the Build Settings tab to open the settings editor. These are the critical settings:

				[image: bl.eps] Architectures: Leave this set to Standard (32/64-bit Intel) for backward compatibility. For apps that are 64-bit only, including those that run under OS X 10.7 Lion, set this to 64-bit Intel.

				[image: bl.eps] Debug Information Format: Check that this is set to DWARF with dSym File.

				[image: bl.eps] Code Signing Identity: Set this to the identity that begins with 3rd Party Mac Developer Application, as shown in Figure 13.22.

				Figure 13.22

				Setting the code signing identity for a Mac app

				[image: 9781118007594-fg1322.tif]

				[image: bl.eps] Product Name: Optionally, you can change this to set the final production name.

				[image: bl.eps] Deployment Target: Set the lowest supported version of OS X, as described earlier.

				[image: mac_note.eps] NOTE

				After you set a code signing identity, you can continue to test and run the project on your Mac in the usual way. Unlike iOS code signing, Mac code signing doesn't prevent this. Receipt checking can complicate this, so disable receipt checking code until your final production build.

				Creating the app icon file

				Mac apps use a special multi-icon file with a .icns extension that stores multiple resolutions of the icon. There's only one way to create this file: Use the Icon Composer utility, which is supplied with Xcode 4. You can find it in <Xcode 4 install folder>/Applications/Utilities.

				You have two options for icon design:

				[image: bl.eps] Create a single 512 x 512 file in an image editor, and allow Icon Composer to create the other resolutions for you.

				[image: bl.eps] Create separate files for other resolutions.

				The required resolutions are 512 x 512, 256 x 256, 128 x 128, 32 x 32, and 16 x 16. Rescaling a single file usually creates poor results, but—depending the design of your icon—this may not matter.

				A time-saving option is to create two resolutions: 512 x 512 and 32 x 32. Use Icon Composer to create the 256 x 256 and 128 x 128 resolutions from the larger file, and the 16 x 16 resolution from the smaller. For best results, create the smaller file independently. For example, if the icon includes text, retype the text in the smaller file with a smaller font size.

				Save your source files as PNGs. Launch Icon Composer, and drag the files from Finder into the squares in the Icon Composer UI, as shown in Figure 13.23. When every square is filled, save the file with the .icns extension.

				Figure 13.23

				Creating an icon file with Icon Composer

				[image: 9781118007594-fg1323.tif]

				Modifying the build options

				On the Summary page, shown in Figure 13.24, you need to do the following:

				[image: bl.eps] Add the App Icon: Right-click the Add Icon box and navigate to your new .icns file.

				[image: bl.eps] Select an Application Category: Select one item from the menu. It must match the category in your submission record on iTunes Connect.

				[image: bl.eps] Ignore the Identifier: Set it in the Info window instead.

				[image: bl.eps] Set a version number.

				[image: bl.eps] Ignore the App Runs on Mac OS X menu: This is overridden by the deployment target in the build settings.

				[image: bl.eps] Ignore the Main Interface. If you changed this during development, don't change it again now.

				Figure 13.24

				Preparing the target Summary settings

				[image: 9781118007594-fg1324.tif]

				On the info page, shown in Figure 13.25, you need to do the following:

				[image: bl.eps] Set the Bundle Identifier: This must match the string used as an App ID in your submission record. (See the Caution.)

				[image: bl.eps] Add a copyright notice: Right-click in the Key list, select Add Row, and select Copyright (human readable) from the key list. Click the Value field to the right, and type your copyright text.

				[image: mac_caution.eps] CAUTION

				At the time of this writing, Xcode 4 defaults to a forward domain name on the target Info and Summary pages—in other words, your domain name appears as <yourdomain.com>. Reverse domain names—<com.yourdomain>—are considered standard, so you can manage this in two ways. One option is to create a matching, nominally incorrect App ID. The other is to edit this by hand to correct it. If you leave the PRODUCT_NAME macro unchanged, Xcode 4 successfully adds your product name to the bundle name. You can preview the name in the Identifier box on the target summary page. The critical point is that the Bundle Identifier must match the App ID you create for your project—although if you create a wildcard/suite ID, the product name itself is irrelevant.

				Figure 13.25

				Adding a copyright notice to the Info plist

				[image: 9781118007594-fg1325.tif]

				Building, testing, and validating the app

				Follow these steps to build, test, and validate your app:

				1. Select Product⇒Archive to build the app and open the Organizer.

				 You can use the Validate button to perform basic validation, as for an iOS app. You also must run a separate check to make sure your app will install correctly after it has been downloaded from the App Store.

				2. Select the Share button at the top right, and leave the default setting for Contents unchanged—for example, Mac OS X App Store Package (.pkg), as shown in Figure 13.26.

				3. Save the file to a location you can easily access from the command line, such as your root user directory.

				4. Open Terminal, and type this code snippet:

				sudo installer -store -pkg <path-to-package> -target /

				 This runs the standard OS X installer in App Store mode, which forces it to check signatures and permissions. (If you double-click the app package it installs without these checks.) The app should install in your /Applications folder, where you can run it in the usual way.

				5. If validation and the installer test work correctly, click the Submit button to submit the app.

				6. Log in, select an app record, and pick a signing identity, as for an iOS app.

				Figure 13.26

				Checking installation with a store-compatible manual install

				[image: 9781118007594-fg1326.tif]

				Working with Advanced Build Techniques

				So far, the build process has been treated as a “black box” that does its job after it's initialized with a standard list of build settings. This is adequate for simpler apps, but for more complex projects, it can be useful to break apart the build process and customize it further.

				Understanding the build process

				In outline, the build process has four stages:

				1. Preprocessor

				2. Compiler

				3. Linker

				4. File copier and processor

				The preprocessor makes working copies of the original source files, expanding #include directives to include the original headers, expanding macros (low-level reusable code snippets and definitions), and implementing conditional compilation. Conditional compilation uses directives such as #if and #ifdef to test compiler and system settings and select code according to their values.

				Internally, the preprocessor is more complex than this simple description suggests, but a full introduction is outside the scope of this book. The key practical point is that you can use preprocessor directives to include and exclude code automatically according to various system, platform, and build settings.

				The compiler converts the files generated by the preprocessor into machine code. The LLVM and GCC compilers do this in different ways, but the end result is identical—a file with the .o (object) extension. Projects that use source code in other languages can call an external compiler to produce compatible binaries.

				Each source file in the project creates a separate object file. The linker combines them all into a single executable binary, resolves symbol references to a specific location in the binary, and checks that all references are present and correct. For example, if your code calls a framework, the linker checks that the framework is included. If it can't find the framework or the specific symbol in it, it can't complete its task and the build fails.

				The file copier processes supporting files. Different file types are processed in different ways, according to set rules. For example, nib files are compacted, image files may be compressed, plists are processed using their own separate processor, and so on. All processed files are copied to the target's product folder. Some may be handed to the linker, so the point at which files are processed may vary.

				The Xcode build system implements this scheme inside a customizable build manager. Each stage runs multiple shell scripts. You can add your own scripts to the default build sequence. Potentially, you can even replace the default scripts with your own custom-written alternatives, although this isn't a trivial job.

				In practice, Xcode manages the build process through a combination of two elements:

				[image: bl.eps] Build phases select and process files of a given type. You also can add phases that run arbitrary scripts. Build phases define when files are processed and when other scripted build events happen.

				[image: bl.eps] Build rules define the scripts that control what happens to a file with a specific extension. They define how files are processed.

				To customize a build fully you must know how to do the following:

				[image: bl.eps] Access the standard build settings and environment variables in your code, so you can add conditional compilation features.

				[image: bl.eps] Create your own custom build settings for use in conditional compilation.

				[image: bl.eps] Create and manage build phases.

				[image: bl.eps] Create and manage build rules.

				Introducing conditional compilation

				Conditional compilation is an automated process that literally includes and excludes lines of code from your source files. You create conditional code by surrounding it with preprocessor directives, which look similar to conventional C code but are prefixed with the # character.

				Table 13.3 lists the standard conditional and unconditional directives.

				[image: /Table 1303]

				Using conditional compilation

				In theory, conditional compilation is very simple. A typical example looks like this:

				#ifdef <some token>

				 …code to include…

				#endif

				The token is a general catch-all name for all the available settings, macros, environment variables, and user-defined flags and values. The challenge with conditional compilation is finding which tokens are available.

				Compilers include a range of settings that are defined by the language, platform, compiler, and build. Some tokens are defined as macros and use a special format: their names are prefixed with a double underscore, and they may end with another double underscore. Users can define their own custom tokens as absolute values, references to other settings, or logical combinations of two or more settings.

				[image: mac_caution.eps] CAUTION

				Note that you can't compare strings in an #if directive, but you can compare tokens with numerical values. You can also check whether a specific token has been defined.

				Table 13.4 lists a small selection of useful macros and platform settings.

				[image: /Table 1304]

				Having a single source for these tokens would be useful, but they're scattered across many different locations. For compiler-specific tokens, search online for “GCC preprocessor macros” and “LLVM preprocessor macros.” For some of the Apple-specific tokens, search in Finder for the file TargetConditionals.h.

				Creating custom tokens

				Creating your own tokens is often useful—for example, you can add a token that's only defined when you select a custom configuration.

				Note that it's a good idea to give your tokens a custom prefix; your initials are a popular option. Developers often add tokens to their code. If code is shared, simple names such as DEBUG and IPHONE can be defined in multiple locations, creating conflicts.

				1. Open a project with at least one custom configuration. Open the target build settings, and scroll down the Other C Flags entry under the Language settings, as shown in Figure 13.27.

				2. Click the entry to show the different configuration options.

				3. Click the name of your custom configuration, and click the small + icon that appears to the right.

				 This adds a new token to the build settings.

				4. Select Any Architecture | Any SDK from the floating menu at the left, and type -DMY_TOKEN into the value field at the right to define the name and the value of the token.

				 If you select a specific SDK or architecture, the token is defined only when that SDK is active.

				Figure 13.27

				Adding a custom token. In this example MY_TOKEN is only defined when the My Debug configuration is active.

				[image: 9781118007594-fg1327.tif]

				5. If you need to add more tokens, repeat the process.

				 You can define a value for the token by adding = (equal sign) followed by the value. The critical element that “tokenizes” your entry is the -D prefix.

				 You also can simply #define tokens in your project's -Prefix.pch file. They're available to every file in the project, and they override existing definitions.

				[image: mac_tip.eps] TIP

				The predefined token NS_BLOCK_ASSERTIONS=1 for the Release configuration is an example a token with a value. If you want to use #ifdef, it's enough to define the token without giving it a value. Use the more general <tokenname>=<value> only if you want to check a numeric value or use a string.

				[image: mac_tip.eps] TIP

				If you add #define NSLog to your project's -Prefix.pch file, all instances of NSLog are stripped from your code. This is a quick way to eliminate log messages when you no longer need them.

				After you've defined MY_TOKEN correctly, you can use this conditional directive to include when the token is valid:

				#ifdef MY_TOKEN

				 <…code included if MY_TOKEN is defined…>

				#endif

				[image: mac_note.eps] NOTE

				You can also add tokens to the Preprocessing section. Add them in the same way, but don't prefix them with -D.

				Converting build settings into tokens

				You can convert any build setting into a token by wrapping it in a dollar sign and either brackets or curly braces. For example, to read the value of the SDKROOT build setting into your own custom SDK_ROOT token, use the following:

				SDK_ROOT = $(SDKROOT)

				You see that Xcode substitutes the real value immediately, so, for example, you may see this:

				SDK_ROOT = iphoneos

				Unfortunately, you can't do much with this because the value isn't treated as a C string. If you use SDK_ROOT anywhere, iphoneos is substituted by the preprocessor. The compiler then looks for a symbol called iphoneos and doesn't find it, because it isn't a true symbol.

				You can, however, use this technique to read numerical build settings into your code. But don't forget (again) that these values are valid at compile-time only.

				Conditional compilation is useful for language-, platform-, and target-dependent compilation, but using compile-time build settings to select runtime code is somewhat eccentric. A more useful alternative is to create scripts in the build phases and build rules to define how a build proceeds internally.

				[image: mac_tip.eps] TIP

				To find the name of any build setting, select it in the Build Settings editor, select Edit⇒Copy from the main Xcode menu, and paste the string into TextEdit. You can select multiple settings at the same time, as long as they don't take multiple configuration values. For a full list of build settings, see the Xcode Build Setting Reference in the documentation.

				Understanding build phases and build rules

				It's worth repeating that Xcode is simply a UI for a set of command-line scripts. The Build Phase and Build Rules tabs in the build editor define which scripts are run and what they do.

				You can view the details of the build—the commands given at the command line and the output they generate—by selecting the Log navigator, selecting a completed build, and choosing All and All Messages in the toolbar at the top of the window. The default terse view shown in Figure 13.28 displays the commands in the order they were given. As you can see, the sequence in practice isn't as neat as the preprocess⇒compile⇒link⇒copy template given earlier.

				If you right-click anywhere in the list and select Expand All Transcripts, you see the scripts for each stage. The long list of paths, steps, and compiler switches is difficult to read. In theory, you could copy and run each step in Terminal to create a complete build. In practice, you can't, because each new project uses a randomized file path for the build directory, which is in the project's derived data folder. You can find the location of this folder in the Projects page of the Organizer.

				Working with build phases

				The build phase system can seem complex when you encounter it for the first time, but in fact it's surprisingly easy to work with. To view the build phases editor, select the target build settings and click the Build Phases tab, as shown in Figure 13.29.

				You can do the following:

				[image: bl.eps] Manage target dependencies. (Use this option to control the order in which targets are compiled, so the targets are built in the correct sequence.)

				[image: bl.eps] Add more files to the compile sources list.

				[image: bl.eps] Add more libraries and frameworks to the Link Binary With Libraries list.

				[image: bl.eps] Copy resource files to a product bundle.

				[image: bl.eps] Add a custom build to do one of the following: copy files to the product, copy headers to the product, or run an arbitrary script.

				Figure 13.28

				Listing what happens during a build in the Log navigator

				[image: 9781118007594-fg1328.tif]

				Build phases are most useful when working with multiple targets. For example, if your project has two targets, such as an app and a framework, you typically add the framework to the app's Target Dependencies and add the library it creates to the app's Link Binary with Libraries list as shown in Figure 13.29. Adding it to the link list guarantees that the compiled framework is included in the finished app. Depending on the details of the target, you can choose to compile its source files with the other app files or independently as part of its own target build sequence.

				Figure 13.29

				Exploring build phases

				[image: 9781118007594-fg1329.tif]

				Getting started with scripts and macros

				You can use the Run Script option to add customized scripted processing or support. Scripts can be written in any language that works from the command line, including AppleScript, Perl, Python, Ruby, and the standard UNIX shell, all of which are built into OS X.

				Build setting macros allow you to access useful build settings in your script. The two default examples in Figure 13.30 show how to read the source and destination directories. A more complex script might loop through every file in the source directory, or select files with a specific extension and then process them in some way. Because scripts have access to environment variables and to other processes, the potential of custom scripting is almost limitless. For example, you can implement or import complete source management tools and add them here, or back up some or all of the files in your build to a remote server.

				To remove a script or build phase, click the cancel icon at the top right. You can rearrange the order in which build phases are run by dragging them up and down the list. The Target Dependencies are fixed, but every other phase can be moved.

				Figure 13.30

				Creating a new build phase begins with an empty custom script. Note that the input and output directories are taken from the build settings and filled in for you.

				[image: 9781118007594-fg1330.tif]

				[image: mac_caution.eps] CAUTION

				Rearranging build phases can create nonsensical results; for example, placing the compile phase after the link phase is rarely useful.

				Creating a simple example of a build phase

				It's often useful to copy extra resources such as a font file to a bundle. Both OS X and iOS can access fonts from an application bundle. You can use this feature to guarantee that your choice of fonts is available to your app.

				While it's possible to add fonts using the standard Add Files… option in Xcode, a custom build phase gives you control over your app bundle's folder structure. You can use a build phase to copy items from any location in your Mac to a folder inside the app.

				Figure 13.31 shows one example of a Copy Files build phase. The settings shown in the figure create a folder called /fonts inside the app bundle's /Resources folder, and copy a font file to it from a shared project art directory. The Destination pop-up menu gives you more other powerful choices, including an absolute path option that can install resources to any disk location on a Mac.

				Figure 13.31

				Using a Copy Files build phase to add a font resource to a project.

				[image: 9781118007594-fg1331.tif]

				Figure 13.32 shows the result—the fonts folder is added to the bundle. You can now add a key called Application fonts resource path (ATSApplicationFontsPath) to the project's Info plist, and add standard code to load and use the font in the usual way. OS X treats the font as if it were included in a Mac's standard /fonts folder, but it's not accessible to most users, and can't easily be copied.

				Figure 13.32

				The /fonts folder added to the bundle, with the copied font

				[image: 9781118007594-fg1332.eps]

				Creating build rules

				To view the default build rules, select a target and click the Build Rules tab at the top right. The list shown in Figure 13.33 is the same for every target. It includes a list of file types and names the commands that can process them. The commands are at the lowest level of the Xcode build system; they're utilities that copy, compile, and process files in various ways, and they're scattered around various /usr/bin directories throughout the /Developer directory.

				Figure 13.33

				The default build rules

				[image: 9781118007594-fg1333.tif]

				You can customize the existing rules by clicking the Copy to Target button. This opens the pane shown in Figure 13.34. Use the Process menu to select a file type. You can choose from a standard selection of types, or you can select Source files with names matching: and type the extension in the box to the right. Each of the standard rules defaults to one type. If you select a custom script, the default script stub includes a relevant build setting that points you to the directory holding the associated files. You can modify any of these default options in your script, as needed.

				Use the Using box to select a processing action. You can select from another list of standard options or select the Custom script option to create your own scripted processor. The script editor is identical to the one for build phases, and it can use the same selection of languages supported by the shell.

				Note that build rules are target-specific.

				[image: mac_note.eps] NOTE

				You may be unfamiliar with some of the file types and processes in the menus. Many are highly specialized, and you're unlikely to use them.

				Figure 13.34

				The build rules use the same scripting options as the build phases. (You can get as creative as you want here.)

				[image: 9781118007594-fg1334.tif]

				[image: mac_tip.eps] TIP

				You can speed up complex builds with many files and targets by using the Distributed Builds feature in the Xcode Preferences, which spreads the build process across multiple Macs. Install Xcode on every Mac, open Preferences, select Distributed Builds, Authenticate, and check both boxes. Repeat for other Macs, and select Refresh. Launch Xcode, and repeat the process on other Macs. The Distributed Builds dialog should find the other Macs automatically and distribute builds to them.

				Summary

				This chapter explored practical build customization. It began with a list of common simple customization tasks that used modified build settings to control some small part of the build process.

				Next, it worked methodically through the steps needed to create distribution builds for the App Store and for Ad Hoc beta testing.

				Finally, it introduced the low-level features of the build system, and it sketched how build phases and build rules can be used to create complex, fully customized builds that support multiple targets and dependencies and non-standard file types.

			

		

	
		
			
				Chapter 14: Using Version Control

				
				In This Chapter

				

				Introducing Source Control Management (SCM)

				Using manual version control

				Using snapshots

				Introducing SCM with Git

				Using Git locally in Xcode

				Using Xcode with GitHub

				Development isn't always a smooth process, and sometimes it's necessary to abandon code that isn't working and restore a project to a previous state. It also can be useful to compare older and newer versions and to use tools that manage development across a team.

				Managing code in these ways is known as version control or source control management (SCM). Several version control tools are built into Xcode. They're not obligatory, so you can ignore them, but this isn't recommended. At a minimum, you can manage versions manually in Finder. But you also can use the more powerful tools that are new to Xcode 4.

				Using Manual Version Control

				The easiest way to manage versions is to duplicate and rename project folders in Finder, as shown in Figure 14.1. Each folder should contain stable or nearly stable code with a consistent set of features. The code should build cleanly.

				Create a copy before you begin to add new versions. If it's obvious that the next version must be abandoned, you can mark it by giving the folder a unique name—perhaps one that includes the word “abandoned”—and starting again with a new copy.

				Figure 14.1

				Manual version control is simple and easy to use, but limited.

				[image: 9781118007594-fg1401.eps]

				Manual version control is ideal for simple, self-contained projects, such as apps. It's not recommended for more complex projects, such as frameworks. And it should never be used for a collaborative development. You can rely on manual management if you're a solo developer. Don't use it if you need to share your work or if your code must be linked into another project.

				The advantages of manual control include the following:

				[image: bl.eps] Simple and clear no-fuss management: Each version is separate and clearly marked. If you need to backtrack, you can.

				[image: bl.eps] Easy backups: You can copy folders to a backup server manually or allow Time Machine to manage them.

				[image: bl.eps] Robust persistence: Combined with backups, multiple copies mean that your work is less likely to be lost if a disk crashes. Files in a project are discrete and easy to access.

				The disadvantages include the following:

				[image: bl.eps] No change logs: You can use the Unix diff family of command-line utilities to compare files manually. But you can only do this manually in Terminal, not in the Xcode editor.

				[image: bl.eps] No support for constant file locations: If your files are accessed from another project, you must keep the directory name constant, and this solution isn't practical.

				[image: bl.eps] No simple rollback: You can't see a record of edits, and you can't compare different versions of a file or restore it to a previous state.

				[image: bl.eps] No collaborative development: Although it's possible to use informal schemes to check out code for editing, there's no easy way to integrate changes created by a team into a single code base.

				Although manual version control is extremely primitive, it can be worth considering if you're new to Xcode development and don't yet want to learn how to use a professional solution such as Git, described below. It's a practical solution for simple projects, and it won't distract you with further learning while you're trying to master the rest of Xcode and Cocoa.

				Using Snapshots

				A snapshot is a simple semi-automated solution for source control. You can take a snapshot of your project at any point with the File⇒Create Snapshot menu option in the main Xcode menu. A snapshot records the state of the files in the project, and snapshots are listed in the Organizer. You can restore a project to an earlier state by restoring the snapshot.

				As an example, create a new OS X Cocoa application following these steps:

				1. Save your new OS X Cocoa application as SnapshotExample.

				2. Use the Create Snapshot option to save a snapshot of its initial state.

				 Figure 14.2 shows the new snapshot dialog box.

				3. You can give each snapshot a title and an optional description.

				[image: mac_note.eps] NOTE

				In a real project, you don't usually need to save the initial default state of the application, because you can always re-create the default as a new project. But occasionally, it can be useful to keep the initial state as a starting point when you're experimenting.

				4. Add some code.

				 For an initial demonstration, it can be as simple as a single comment line.

				5. Create another snapshot, and give it a different title and description.

				6. Open the Organizer window.

				 You open the Organizer window by selecting the filing cabinet icon near the top right of the Xcode window.

				Figure 14.2

				Creating a new snapshot, with a name and description

				[image: 9781118007594-fg1402.tif]

				7. Select the Projects icon at the top of the window.

				 You should see a display similar to the one shown in Figure 14.3. The new SnapshotExample project appears at the top of the list at the left of the window. A list of snapshots for the projects appears in the pane at the bottom of the window.

				The snapshot list can become cluttered, so you can delete individual snapshots by selecting the Delete Snapshot icon at the bottom right of the window. You also can restore a project to an earlier state by selecting a snapshot and using the Restore Snapshot option. You'll see a preview window, shown in Figure 14.4, which highlights the changes between the selected snapshot and the preceding snapshot.

				[image: mac_caution.eps] CAUTION

				There's no undo option for deleted snapshots; after they're gone, they're gone. And note that changes are incremental. The preview window doesn't show the changes between the first version of the project and the snapshot. Instead, it shows the changes between the current and previous snapshots.

				Figure 14.3

				Viewing a project's snapshots

				[image: 9781118007594-fg1403.tif]

				[image: mac_tip.eps] TIP

				Xcode can create snapshots automatically before every bulk edit, such as a refactoring operation or a find-and-replace. Select File⇒Project Settings or File⇒Workspace settings to open a preferences dialog, click the Snapshots tab, and check the Create snapshot of project before mass-editing operations box. You can also define a custom location for the snapshots. Note that this feature is on by default.

				You might expect the snapshot to restore the project to its earlier state, but it doesn't. Instead, a Restore dialog box appears and asks you to specify a folder on disk. The old state of the project is written to the folder. To reload the state, close the current project and reload the old version from the folder you specified. This separate save requirement makes the snapshot option clumsy. It implements minimal version control, but it's not very elegant or sophisticated.

				Figure 14.4

				Viewing the restore options

				[image: 9781118007594-fg1404.tif]

				Working with Source Control

				Xcode supports two source control systems—Subversion and Git—which can track changes to files, and support collaborative development. Source control adds the following features to Xcode:

				[image: bl.eps] Open development: You can allow other developers to work with you on projects.

				[image: bl.eps] Edit logging: You can see how files have developed over time, and how code has been added, changed, or removed.

				[image: bl.eps] Change control: You can accept or discard changes made by you or by other developers.

				[image: bl.eps] Blame logging: Changes are tagged with the ID of the developer who made them.

				[image: bl.eps] Project branching: You can create parallel to support independent development of different features, or to split projects to allow branches to develop in different directions.

				[image: bl.eps] Remote server backup: Server-based source control stores code on a remote server, so you're less likely to lose it in an accident.

				Subversion and Git have significant differences. Although Subversion is supported in Xcode, Git is integrated more tightly. You can create and manage a project that supports Git from the Xcode UI without using the command line. Certain advanced Git features are only available at the command line, but you can use Git successfully without them.

				In contrast, you must use command-line access to set up Subversion for a project. After set-up, many basic features are also available in the UI. Subversion requires an external server. Git can be used locally, and it can also support server-based development.

				[image: mac_caution.eps] CAUTION

				Git and Subversion are part of the command-line utilities that are installed with Xcode. To use them, check the System Tools box when you install Xcode. If you don't do this, they're not available.

				Understanding Git

				Source control tools work with a repository or repo—a database configured to manage the files in a project. A key benefit of professional source control is that the contents of a repo can be kept on a single Mac or shared, either on a private server or online. It's possible to copy, or clone, repositories to duplicate them across multiple Macs. Online storage with a service such as GitHub (github.com) gives you “free” backups—a remote copy of your source code is always available—and also supports collaborative development.

				Repositories can store either incremental changes to files or complete files. Subversion stores incremental changes. Git stores complete files; in fact, it always works with a complete local version of the entire project. This makes it more robust than Subversion, at the cost of extra disk space and download/upload times. Because code files are usually small, the time penalty isn't usually significant. Because Git doesn't need to merge and update files, it can feel more responsive.

				To use Git, you create a repository, either locally using Xcode or manually on a remote server, and then add and edit files in the usual way. After each significant edit, you commit the changes. This creates a complete snapshot of the project and adds copies of any modified or added files to the repository.

				Commits don't have to proceed in a linear order. You can create a new branch to experiment with code or work on certain features independently. Branches can develop independently, or they can be merged together.

				If you work with Git locally, version control is automatic. Git tracks your commits, and you can use a new Xcode feature called the Version Editor to view and compare the changes to each file as the project develops.

				[image: mac_caution.eps] CAUTION

				 When you make commits you're updating multiple files at the same time. There's no automated way to revert a single file to an earlier state without also changing other files that were committed at the same time. However, you can use simple manual copy/paste to copy an old version of a file from the Version Editor into the main code editor and then create a new commit with the old contents of the file.

				If you use a remote server, the process becomes more complex. To use Git remotely, collaborators need to supply a name, an e-mail address, and a public key for security. If you are managing a Git project, you can review and accept or decline commits supplied by other developers.

				When you work with an online repo, you can clone a project—copy the current version from the server to your Mac—to work on it independently and then perform a push to merge your changes back into the source. The lead developer can then review the changes and accept or delete them. When you work collaboratively, Git and Xcode include author information with all commits, making it easy to see who is responsible for changes. You can also update a project to refresh the version you're editing with the most recent changes without creating a new copy.

				[image: mac_note.eps] NOTE

				Git is a complex system with many features and options, but it's well documented. This chapter introduces Git in Xcode, but it isn't a complete Git primer on collaborative development with GitHub. For full documentation, see the free ProGit book available at progit.org/book, the official command summaries at gitref.org, and the GitHub help at help.github.com.

				Using Git locally

				You can use Git locally for simple project versioning. Simple versioning doesn't require a remote server, advanced Git skills, or command-line management, and it uses GUI features that are built into Xcode. This example demonstrates how to create a local repository and how to use the Version Editor to review changes to the files in a project. The edits in this sample project are trivial, but they're sufficient to illustrate how you can use the Version Editor to manage code as you work.

				[image: mac_caution.eps] CAUTION

				The Xcode implementation of Git leaves out many of the features and concepts that are used when working with the command line or with existing popular Mac Git tools such as GitX (gitx.frim.nl). For example, Xcode doesn't support explicit file staging. If you've used Git from the command line in other contexts, you'll find that the Xcode implementation is simpler and less powerful, but still adequate for basic SCM.

				Creating a project with Git support

				Git support is optional and available for both OS X and iOS projects. Use the File⇒New Project option in the main Xcode menu to create a new project (this example uses an OS X project called LocalGit) and check the Source Control box, as shown in Figure 14.5.

				Figure 14.5

				Creating a project with Git support

				[image: 9781118007594-fg1405.tif]

				Xcode creates the project in the usual way. If you open the project's folder on disk, you see the standard collection of files. However, if you open the Organizer and select the Repositories tab, you see that a repository has been created for the project, as shown in Figure 14.6. Whether you're working locally or online, this repository view lists all the repositories managed by Git. Whenever you create a new project with Git support, a new repository is added to the list.

				Notice that the project already includes the following:

				[image: bl.eps] The project name: This is defined when you create the project.

				[image: bl.eps] The repository type: This is either Git or Subversion.

				[image: bl.eps] The location: For a local project, this is the folder on disk that contains the source. For a remote project, this is a special URL that links to the repository on the remote server.

				[image: bl.eps] An initial commit: The first commit for the project is created automatically and includes the initial default files. You can use the reveal triangle to view the file list.

				[image: bl.eps] A timestamp: The time and date of each commit is recorded.

				[image: bl.eps] A hash: The faa5b77c734f tag in the figure is a random number generated to give the commit a unique identifier. Each new commit has a new hash. If you work exclusively in Xcode, you can ignore the hash tags. If you work at the command line, you can use the tags to specify a commit when you want to modify it, clone it, delete it, and so on.

				Figure 14.6

				Reviewing the project repository in the Organizer

				[image: 9781118007594-fg1406.tif]

				Inside the repository you'll see two other items:

				[image: bl.eps] A Branches item: Initially, this shows a single item called Master. If you create further branches, they appear here.

				[image: bl.eps] A <ProjectName> folder: This shows the current state of the project on disk. When you add files to a project, they appear in this folder. They don't appear in Root until you commit the project.

				Editing a project with Git support

				Git support is transparent, so you can develop a project in the usual way while Git is active.

				Try this example:

				1. Add an extra Objective-C class to the project by right-clicking the <ProjectName> group in the Project Navigator and selecting New File.

				2. Create a new subclass of NSObject and save it with the default MyClass name.

				3. Make a small, but obvious, change to the original LocalGitAppDelegate.m file.

				 The example shown in Figure 14.7 has been extended with a single comment.

				4. Save the edited file with File⇒Save.

				 Note the icons that appear next to certain files after you save them. The M stands for “modified” and indicates that a file has been changed since the last commit. The A stands for “added.” These icons are added by the Git system, and only appear when a project uses Git.

				Figure 14.7

				When you modifying a project with Git support, modified files are tagged automatically.

				[image: 9781118007594-fg1407.tif]

				[image: mac_note.eps] NOTE

				Edits are tracked by Git, but builds aren't. Git is a source control system, not a binary control system, and it doesn't care if your project builds successfully. It tracks changes to the project source files only. You can make edits that break a build, and Git tracks them faithfully whenever files are saved.

				Committing changes

				To create a new commit, select File⇒Source Control⇒Commit from the main Xcode menu. You see the dialog box shown in Figure 14.8. It shows a list of modified or added files at the top left and a comparison window called the Version Editor—the new Xcode tool for exploring and comparing different versions of a file.

				At the bottom of the window is a blank line for descriptive text about the commit. Note that Xcode forces you to add a comment for each commit. If you don't edit this line, you can't complete the commit.

				Figure 14.8

				Creating a commit. Xcode's new Version Editor displays and compares current and previous versions of a file.

				[image: 9781118007594-fg1408.tif]

				[image: mac_caution.eps] CAUTION

				If you don't have the main editor selected—which is likely, if you're looking at the Organizer—the source control menu options are grayed out.

				The comment has been highlighted in the Version Editor. The highlighting in the view at the left tells you how each file has changed since the last commit, compared to the previous version shown at the right.

				In this example, the changes in each file are trivial, but in a working project, the highlighted areas are more extensive. Added files don't yet have changes, so the same version is shown in both views.

				After a commit, the M and A icons disappear from the Project Navigator until you make further changes.

				To practice the commit process and create further changes, add a few more comment lines to any of the files and commit after each line. Don't forget to save the file after each edit.

				Open the Organizer, select the Repositories icon, and you should see a history list similar to the one in Figure 14.9, showing every commit for the project. Each commit has an author, a hash, the commit description, and a timestamp.

				You can click the reveal triangle next to each commit to show a list of modified files. Click View Changes to open a version display.

				You can hide the history list with the icon at the lower left, or you can change its height by dragging the bar at the top. If you've made changes after a commit, you can use the Commit button at the bottom left of this page to make a new one. You can also open the local project and select files from the list at the top to see the last commit in which they were added or modified.

				This page in the Organizer is designed to give you an overview of the files and commits in a project. It's not an editor, and it doesn't link to an editor.

				This is counterintuitive. You might expect to be able to manage changes here—but you can't. To compare versions and check a time line of commits, use the Version Editor. It's a feature of the main Xcode editor.

				Figure 14.9

				Reviewing the history list in the Organizer after multiple commits

				[image: 9781118007594-fg1409.tif]

				Using the comparison view in the Version Editor

				By default, the Version Editor, shown in Figure 14.10, provides a double comparison window for a given file. To load the editor, select the icon near the top right, as shown in the figure.

				You can view the state of the file at any commit in either window. There's no implied before or after in the left and right views. The two selections are independent. If they're different, the editor highlights the changes.

				Figure 14.10

				Loading the Version Editor to compare versions

				[image: 9781118007594-fg1410.tif]

				There are various ways to view a commit. If you click the jump bar near the bottom of the window, you see a pop-up menu with a list of commits arranged in chronological order, as shown in Figure 14.11.

				It's important to understand that the most recent edit is at the top of this list, and the oldest initial commit is at the bottom.

				The nomenclature for revisions isn't intuitive, so it's explained below:

				[image: bl.eps] Unsaved revision: This version has been edited, but not saved.

				[image: bl.eps] Local revision: The version has been edited and saved, but not committed.

				[image: bl.eps] <Entries with time stamp, name and hash>: These versions have been committed. It's worth repeating that the most recent version is at the top of the list, marked (BASE, HEAD). The oldest initial commit is at the bottom of the list.

				Figure 14.11

				Selecting commits from the jump bar menu

				[image: 9781118007594-fg1411.tif]

				Selecting any commit loads the corresponding state of the file into the viewer window. The left and right windows use an identical system, so you can view any commit in either. To view the commits for a different file, select it in the Project Navigator in the usual way.

				Instead of a list, you can display a time line—similar to a Time Machine time line—with a list of commits between the two views. Select the clock/curved arrow icon in the gutter between the two jump bars. You see the display shown in Figure 14.12. Each “button” in the time line indicates a commit. Older versions appear at the top of the list, so the initial commit is always the first one from the top. Empty commit slots at the top of the list appear in a darker gray.

				The buttons are animated and expand as you mouse over them. Although you can click a button to select a commit, it's not always clear in which window your selection will appear. To select a commit in a specific window, click in the gap to the right or left of the button. The triangle indicator for that window moves to the commit you selected, and the corresponding version of the file is loaded and displayed. The base version at the bottom of the list is the last commit. The local version is the last version after editing and is identical to the Local Revision in the jump bar menus.

				[image: mac_caution.eps] CAUTION

				Arguably, the time line list is upside down. The initial commit is the top item, and the most recent edit appears at the bottom of the time line. Whichever orientation makes more sense to you, it's important to understand that the commits in the jump bar menu are listed in the opposite order to the time line.

				Figure 14.12

				Selecting versions using the new time line feature

				[image: 9781118007594-fg1412.tif]

				[image: mac_caution.eps] CAUTION

				Version comparisons are for display only; when you view a version in the Version Editor, the file doesn't change in the main editor. There's no single-click option for reverting a project to a previous commit. You can revert to an earlier commit manually from the command line using the git revert command, but you can revert individual files in Xcode only by copying a version from the Version editor, pasting the old code into the main code editor, and creating a new commit. If the project has multiple files, you must do this for all of them, but you can simplify this with branches, as described later in this chapter.

				Using the Blame view

				The Version Editor includes two further views. You can select them using the icons at the bottom right of the window. The Blame view, shown in Figure 14.13, is primarily used for team development, but if you're working solo, you can use it to view a list of changes to a file. Each commit is listed at the right of the file in a view that includes time, date, and author information, and it's linked to one or more lines of source at the left. If you select a commit with one of the small gray arrows, it's loaded into the left window of the Version Editor, and the preceding commit is loaded into the right.

				Figure 14.13

				Using the Blame view to list changes to a single file, with the name of the author of each change

				[image: 9781118007594-fg1413.tif]

				Using the Log view

				The Log view, shown in Figure 14.14, is a blend of the code view and the commit list in the Organizer. The code editor appears at the left, and a simple list of commits appears at the right. You can load a commit into the Version editor by selecting its gray arrow.

				Figure 14.14

				Using the Log view

				[image: 9781118007594-fg1414.tif]

				Branching a project

				A branch is a parallel development track. When you create a branch, Git copies the current project and creates an independent version. Editing one branch leaves other branches unchanged. When you select a branch, Xcode loads the files from that branch and displays them for editing.

				It's important to understand that you can only edit one branch at a time. When you select a different branch, Xcode loads all of the files from that branch. Changing branches can literally switch the contents of every file in a project.

				This can be a useful thing. But there are a couple of potential gotchas to be aware of:

				[image: bl.eps] The editor doesn't give you any indication of which branch is being edited. The Organizer is the only way to see which branch is active.

				[image: bl.eps] The editor doesn't include branch switching. Again, you can only switch branches in the Organizer.

				Because of these limitations, branch management can seem more like an afterthought than an essential part of the development process. This is unfortunate, because it can be a very powerful and useful tool.

				In a team context, branching is often used for independent development of unrelated features. Branching allows each team or individual to work with a fixed version of the code that surrounds the feature they're working on.

				As a solo developer, you can use branching for version management. If you create a branch for each version instead of using the commit system to manage versions, you can restore every file in the project to an earlier state quickly and easily, by selecting its branch.

				Because it can be so useful, it's worth taking the time to experiment with branching. For a simple example, follow these steps:

				1. Add a few more lines of comments or code to the project App Delegate.

				2. Open the Repositories page in the Organizer.

				3. Select Branches.

				4. Click the Add button near the bottom right.

				 You'll see the dialog box shown in Figure 14.15.

				Figure 14.15

				Creating a new branch

				[image: 9781118007594-fg1415.tif]

				5. Enter a name for your branch.

				 Spaces aren't allowed.

				6. Check the Automatically switch to this branch box.

				7. Select Create.

				 This adds a new branch to the list.

				8. Commit the changes to the new branch.

				9. In the Organizer, click the Branches folder at the top right,

				 You see that your new branch has been added to the list. If you edit the code, only the current branch is affected. The old Master branch doesn't change.

				 10. To switch between branches, select the project folder under Branches and click the Switch Branch icon near the bottom right.

				 A dialog box with a menu of branches appears, as shown in Figure 14.16. When you select a branch here, the code for the branch appears in Xcode's main editor.

				Figure 14.16

				Although it's not obvious from this dialog box, selecting a branch loads its files into the main editor.

				[image: 9781118007594-fg1416.tif]

				[image: mac_caution.eps] CAUTION

				Note that selecting branches in the Branches folder doesn't load them into the editor. You must click the Switch Branches icon to change branches.

				Merging branches

				To merge branches, begin by using the Organizer to switch to the branch you want to use as a merge destination. This is often, but not always, the original Master branch.

				Next, pick a branch as a merge source. Select File⇒Source Control⇒Merge, and choose a branch from the menu in the dialog. The code in this branch is merged into the destination branch.

				After the merge, this branch remains unchanged—the changes happen only in the destination.

				Xcode displays the Version Editor, as shown in Figure 14.17. A preview of the merged code is shown at the right.

				Figure 14.17

				Although it's not obvious from this dialog box, selecting a branch loads its files into the main editor.

				[image: 9781118007594-fg1417.tif]

				Every difference in every file is highlighted. The gutter area includes a switch icon. You can use the switch buttons at the bottom of the window to select the differences. The switches are on by default, but you can turn them off to exclude a change. You can also use the switches to resolve conflicts.

				Note that you can't toggle the switches by clicking them directly in the gutter. You can only change their state by clicking the button bar at the bottom of the window.

				[image: mac_caution.eps] CAUTION

				At the time of writing, merging isn't working correctly but is likely to be fixed soon. As a workaround, you can use Git's command-line merge option. For details see the Git manual. A link is listed near the end of this chapter.

				Using Xcode with GitHub

				Although it's possible to create a custom remote server for use with Git, the GitHub website at github.org shown in Figure 14.18, has become a popular choice for development teams and solo developers who use Git. In theory, the differences between local and remote development should be minor, because Git handles both situations in a similar way. In practice, remote development requires significant extra effort when creating a new project.

				Figure 14.18

				A first look at github.org

				[image: 9781118007594-fg1418.tif]

				GitHub is optional. If you're working solo, you can develop locally without using GitHub at all. But it's a simple and accessible solution for team development. GitHub features include the following:

				[image: bl.eps] Free public collaborative development: By default, GitHub projects are open and public, so anyone can download your code and add their own commits. This is a good thing for open-source projects, but unhelpful for proprietary development.

				[image: bl.eps] Monthly payment plans for private team development: Privacy on GitHub, which includes the ability to hide your projects from the public and only open them to select developers, costs from $7 to $200, depending on the number of repositories and developers. Open free accounts are limited to 300MB of disk space. Paid accounts offer more.

				[image: bl.eps] Easy online access: You can exchange commits and updates wherever there's an Internet connection. You also can work offline and upload changes when you reconnect.

				[image: bl.eps] Easy downloads: Your projects can be packaged automatically into a single archive to make it easy for third parties to download them.

				[image: bl.eps] Project support tools: These include a Wiki server for documentation, a bug tracker for bug reporting, and the ability to link to a separate project web page.

				[image: bl.eps] “Free” backups: Code is stored securely on commercial servers, with a robust backup policy.

				These are the chief practical differences between local and GitHub development:

				[image: bl.eps] Security: You must set up a username, password, and access key.

				[image: bl.eps] Updates: You should update (download) a file or a complete project before you change it. This guarantees that your version of the project includes the latest commits from other developers.

				[image: bl.eps] Push commands: You must use the command line to update local commits to the GitHub server.

				[image: bl.eps] Location: Instead of a disk location, the project is referenced using a remote server URL.

				Creating a GitHub account

				It's very easy to create a new free GitHub account. GitHub asks for a username, an e-mail address, and a password. You don't need to give any other details.

				On GitHub, your username, e-mail address, and password are essential parts of the online access process. They do more than log you in to the site, so you need them later when you create a user identity for Git on your Mac.

				Optionally, you can add public contact information and other personal information to your account, but these details aren't necessary for basic repo management.

				[image: mac_tip.eps] TIP

				If you have an account with an existing online service such as gravatar or WordPress, you can use your existing login details. GitHub shares login information with all services that use the Automattic service. See automattic.com for more details.

				Creating a public key

				Git communicates with GitHub via ssh (Secure Shell), which is a secure low-level protocol for data transfers between devices. Before you can use ssh, you need to define and upload a binary key that signs communication between your Mac and the GitHub server and makes it possible for GitHub to confirm your identity. Creating a key is a slightly complex process, but you only need to do it once. Follow these steps:

				1. Open Terminal.

				2. Type cd ~/.ssh.

				3. If there's no such file or directory, skip to Step 5.

				4. If the directory exists, you may want to back up the contents to another directory using the cp command. After you have a backup, delete the directory.

				5. Type ssh-keygen -t rsa -C “youremail@address.com”. The e-mail address must match the one you use as a GitHub login.

				6. Type Return when asked for a filename to save to the default location.

				7. Use a good password for the key, and enter it twice.

				 The ssh keygen utility creates a key and saves it to two files: id_rsa, which is the private key you don't share with anyone, and id_rsa.pub, which is the public key file you need to copy to GitHub.

				8. Type cat ~/.ssh/id_rsa.pub | pbcopy.

				 This copies the public part of the key to the clipboard.

				9. Open your browser, and log in to GitHub.

				 10. Click Account Settings.

				 11. Select SSH Public Keys from the menu at the left.

				 12. Select Add another public key, and paste the key into the Key box, as shown in Figure 14.19.

				13. Select Add key.

				 The key is now installed.

				[image: mac_note.eps] NOTE

				You can use the edit option to change your key later. This isn't usually a good idea, unless you start the key-making process from scratch. If the key on your Mac doesn't match the key used by GitHub, you won't be able to access your source code.

				Setting up a Git username and e-mail

				In addition to the key, Git and GitHub require a username and e-mail. These are unencrypted. Although you can give each repository a separate contact name and e-mail, it's much simpler to set these globally for all repositories. You need to make these settings only once.

				Figure 14.19

				Defining your public key

				[image: 9781118007594-fg1419.tif]

				In Terminal, type the following:

				git config --global user.name “<your name>”

				git config --global user.email <your@emailaddress>

				Creating a remote repository on GitHub

				Creating a remote repository is a very simple process; follow these steps:

				1. Log in to GitHub.

				2. Select Dashboard.

				3. Select Create a Repository from the list of items at the left, as shown in Figure 14.20.

				4. Type a name.

				 It's a good idea, for obvious reasons, to use the project name. When you click the Create Repository button, GitHub adds the repository to your account.

				5. Click your account name to see a list of repositories.

				[image: mac_note.eps] NOTE

				It would be convenient if you could create a new GitHub repository by duplicating the existing Git repository on your Mac with a single command. Unfortunately, you can't do this. You must create a new repository on GitHub first, and then copy files to it manually. The GitHub name must match the name of your local repository.

				Figure 14.20

				Creating a new online repository

				[image: 9781118007594-fg1420.tif]

				Copying a local Git repository to GitHub

				After you have an online repository, you can tell Git to copy your project files to it. Eventually Xcode 4 will include UI support for this operation. At the time of writing, it's easier to perform it from the command line.

				In Terminal, cd to the project directory with the original source. For example, if the directory is /MyProjectsX4/LocalGit type:

				cd MyProjects/X4/LocalGit

				Next, tell Git that you'll be using the remote repository. Type on a single line:

				git remote add <RepositoryName> git@github.com:<YourGitHubUserName>/<RepositoryName>.git

				To copy the files, type this:

				git push <RepositoryName> --all

				The --all switch copies all branches, including the master. Figure 14.21 shows the result. The branches are listed under the SwitchBranches option at the left, and commits for the active branch appear in a list beneath the main menu. You can select the Source menu item at the top left and drill down through the source code to view.

				Figure 14.21

				Review the online repository after copying. For clarity, a few more commits were added to this project before it was uploaded. Note how the commit comments you type into Xcode are copied to GitHub.

				[image: 9781118007594-fg1421.tif]

				[image: mac_caution.eps] CAUTION

				If you're familiar with Git on other platforms, you may be used to typing origin for remote repo access and push commands, instead of <RepositoryName>. Sometimes this works. Sometimes it confuses Xcode. You need to experiment with the most recent version of Xcode to find the best name.

				Working with a GitHub repository

				[image: mac_caution.eps] CAUTION

				At the time of writing online repository support remains extremely buggy, with persistent crashes and error messages. Some of the features only work if you ignore the errors and attempt them twice. Xcode 4 should improve as it matures, but don't use these features with valuable production code until you've experimented with them and confirmed their reliability. The following examples are believed correct at the time of writing, but features and operations may change in the future.

				After you create an online repository, the local repository is no longer needed, so you can select it in the Repositories page in the Organizer, and use the Delete key to delete it. Note that this doesn't delete the project itself—it simply removes the list of source changes.

				You can now replace the original local repository with a version that also supports GitHub. In the Repository Page in the Organizer, click the “+” icon at the lower left. Select the Add Repository option. You'll see the dialog in Figure 14.22.

				Figure 14.22

				Creating a new online repository

				[image: 9781118007594-fg1422.eps]

				The two important fields here are the Name and the Location. Set the name to match the repository name. To find the location, select your repository on GitHub, select Source, and click the HTTP box in the middle of the page. This box displays a URL for the repository.

				Copy the URL—it's shown in Figure 14.23—and paste it into the Location field in the dialog. Note that you can also use the SSH URL scheme, but the HTTP URL is easier to work with.

				Xcode recognizes that this is a Git repository automatically and sets the Type menu to Git. If you're online—and you need to be—you should see the Host is reachable label next to a green light.

				Figure 14.23

				Copying the location URL for the repository from GitHub

				[image: 9781118007594-fg1423.tif]

				Click Add to add the online repository. It appears in the list at the left of the Repositories Organizer page. Select it, type your GitHub password into the Password field, and select a branch to download, as shown in Figure 14.24.

				Click Clone to download a local copy of the code. Create a new folder for the code. (Xcode doesn't let you overwrite an existing folder.) Click Open when asked to open the cloned project in Xcode.

				You should now have a complete copy of the original project, with all of the commits you made locally.

				Figure 14.24

				Selecting a branch to download

				[image: 9781118007594-fg1424.tif]

				Further local commits remain local. To copy them to the GitHub repository, select File⇒Source Control⇒Push.

				You can also update a repository from the command line by typing:

				git push <RepositoryName> --all

				in Terminal.

				Using Git from the command line

				The examples in this chapter should be enough to get you started with Git. Git includes more advanced features such as an ignore file, which tells Git to leave one or more files out of the update process, and various filtering options. You also can integrate existing Subversion projects with Git, although this isn't entirely straightforward.

				You can access these features only from the command line. A full list of Git commands is outside the scope of this book. For details, see the documentation referenced earlier in this chapter. A full set of Git man pages is available at www.kernel.org/pub/software/scm/git/docs/git.html.

				[image: mac_tip.eps] TIP

				For more information about SCM with Git and Subversion, see the Managing Versions of Your Project guide in the Xcode 4 documentation. It includes the command-line options needed to work with Subversion.

				Summary

				This chapter introduced source control and demonstrated how to manage source files in Xcode. It sketched a manual method for simple version and file management. It also introduced the Xcode snapshot feature and illustrated it with a simple example.

				It explored the new Git features built into Xcode, with an introduction to the Git source control utility and to the new Version Editor tool. Finally, it demonstrated how to integrate local Git features with the popular GitHub site for team development and remote backups.

			

		

	
		
			
				Part III: Creating Fast and Reliable Code

				
				In This Part

				

				Chapter 15

				Getting Started with Code Analysis and Debugging

				Chapter 16

				Testing Code with Instruments

				Chapter 17

				Creating Unit Tests

			

		

	
		
			
				Chapter 15: Getting Started with Code Analysis and Debugging

				
				In This Chapter

				

				Using the console

				Working with breakpoints

				Using the Variables View

				Using breakpoint actions
Working with command-line debugging

				The Xcode toolchain includes a powerful suite of code analysis, code correction, and debugging tools. Some run outside the main Xcode editor and are introduced in the following chapters. This chapter discusses features that are built into Xcode itself: the code analyzer, tips and issues, the debugging area, and a selection of other options in the Project Navigator that are dedicated to debugging.

				With these features, you can perform the following tasks:

				[image: bl.eps] Check your code for issues as you type

				[image: bl.eps] View tips that can help you correct issues

				[image: bl.eps] Analyze code to reveal more complex issues

				[image: bl.eps] Log messages to a window called the console while your application is running—typically to provide live diagnostic information

				[image: bl.eps] View the console output from previous runs

				[image: bl.eps] Pause execution at any point in the code with one or more breakpoints

				[image: bl.eps] Add conditional breakpoints that pause the code when a specified condition is true

				[image: bl.eps] Step through the code line by line or method by method

				[image: bl.eps] View object properties and list their contents at a breakpoint

				[image: bl.eps] Monitor the state of active threads

				[image: bl.eps] Trigger external events at breakpoints, including sounds or scripts

				The Xcode debugging tool is a windowed frontend to an open-source command-line debugger called GDB (GNU Project Debugger.) GDB adds extra low-level options such as direct hex dumps of memory, object listings, and hundreds of other features. You can access these features by typing commands into the Console window. GDB is a huge, complex tool, and these advanced features are optional. You can be productive and efficient without them, but it's useful to know that they're available.

				[image: mac_note.eps] Note

				GDB and the Debugger support very advanced options, such as remote debugging, that are outside the scope of this book. The definitive guide to the debugger's features is the Xcode Debugging Guide in the documentation. You can find the latest version online. The URL changes regularly, so search for the name.

				[image: mac_note.eps] Note

				Future versions of Xcode will default to an alternative low-level debugger called LLDB (Low Level Debugger). You can select LLDB manually in Xcode in a project's build settings. LLDB is somewhat faster than GDB, but currently there are few other obvious differences. Eventually LLDB will expand to allow advanced scripted debugging. Because it's still a work in progress, it isn't discussed further here.

				Checking and Analyzing Code

				It's more productive to get code right as you type than it is to fix it later. To help you achieve this, Xcode 4 checks code and reports issues as you edit.

				Checking code as you enter it

				This feature is enabled automatically. It begins working as soon as you start typing. Questionable code is underlined or marked with a tiny arrow, and warning or error icons appear in the gutter to the left of the code. If you open the Issue navigator, you can see longer descriptions of each issue, as shown in Figure 15.1.

				[image: mac_note.eps] NOTE

				The issues checker is identical to the code parser used during a build. It flags the same errors and generates the same error messages, but it runs in the background and parses your code as you edit.

				The issues checker is reasonably intelligent, but it can be slow. A lag of a few seconds isn't unusual, and on larger files the lag can be 10 seconds or more. It doesn't understand partial edits, so it reports errors that only exist because you haven't finished typing a complete line of code.

				The faster your Mac, the more you can rely on this feature. Unfortunately, it's less useful on slower hardware. Because of the lag, issues can continue to be flagged after you've fixed them. In extreme cases, you can waste time trying to fix code that's correct, as the parser plays catch-up with your most recent edit. Xcode can also miss errors because of lag.

				This is a powerful feature, but you should treat it with care. Don't assume it's infallible—it isn't.

				Figure 15.1

				Xcode has flagged two errors in this line of code—a missing delimiter, and a misspelled class name.

				[image: 9781118007594-fg1501.tif]

				[image: mac_caution.eps] CAUTION

				Xcode 4 displays a warning whenever you call a method before it's defined. This is a feature of Objective-C—the compiler does a single pass and always flags unresolved method references, even if they're resolved later. Unfortunately this makes it difficult to tell the difference between bad code that attempts to call a nonexistent method and calls to valid methods that are defined lower in the implementation. You can avoid these messages by adding valid method names to a category declaration at the start of an implementation, but this isn't often done.

				Using Fix-It code tips

				If you click on an issue flag in the gutter, Xcode may suggest a possible fix, as shown in Figure 15.2. To accept the fix, double-click the blue fix-it suggestion. The Fix-It feature is good at catching obvious errors, but it isn't a full expert system and lacks awareness of certain common code idioms. For example it's confused by the

				…self = [super init]…

				assignment which is often used in class initialization code. It assumes this code is a mistyped conditional and suggests a fix accordingly.

				Experienced developers will find it easy to tell the difference between helpful and misleading fix-it suggestions. Newcomers should be aware that this feature isn't a substitute for writing good code, and that some of its suggestions may not fix code that isn't working. It's ideal for fixing various minor issues, but it isn't a comprehensive teaching or training tool.

				Figure 15.2

				Using the Fix-It feature

				[image: 9781118007594-fg1502.tif]

				[image: mac_note.eps] NOTE

				If Xcode can't suggest a Fix-It tip, it displays a short issue summary instead. Fix-It tips are only available for a subset of all possible issues. Don't be surprised if Xcode doesn't offer one.

				Using the Static Code Analyzer

				Xcode 4 includes a Static Code Analyzer designed to flag deeper issues, such as errors in code logic and memory management. It's particularly useful for the latter, and is very good at finding and highlighting code that's likely to leak.

				To analyze your code, select Product⇒Analyze in the main Xcode menu. Xcode builds the project and adds an extra analysis pass. Issues are reported in the code and in the Issues navigator with blue highlights, as shown in Figure 15.3. The highlighting is sophisticated enough to display execution logic and variable dependency chains.

				Figure 15.3

				Issues appear with blue highlights.

				[image: 9781118007594-fg1503.tif]

				[image: mac_note.eps] NOTE

				The Analyzer displays likely issues. It doesn't suggest fixes for them—but the issue descriptions are often detailed enough to hint at what needs to be fixed.

				Getting Started with Debugging

				The Issues navigator and the Static Analyzer are good for finding basic syntactical errors and simple logical errors. But bugs are often more complex, and don't appear until you run the code. The Xcode 4 debugger includes a selection of tools for checking code as it runs.

				The debugger appears in its own area, which is hidden by default. To display it, click the middle icon of the three near the top left of the Xcode window. You also can select View⇒Show Debug Area in the main Xcode menu. The debug area appears at the bottom of the screen, under the code editor. There are three active panes:

				[image: bl.eps] A mini-toolbar: The buttons are used with breakpoints. You can use them to single-step or restart execution after a pause.

				[image: bl.eps] A hierarchical object viewer called the Variables View, in the pane at the left: The viewer displays an object as a tree that can be expanded to show its contents. Like the toolbar, this pane is used when working with breakpoints to examine objects and check their contents.

				[image: bl.eps] The console window, in a pane at the right: The console displays messages from the application and the OS.

				You can choose to show either or both of these panes with the three buttons above the console. Or you can resize the entire area by clicking and dragging the line under the toolbar—the area is usually too small, by default—and move the split point between the left and right panes by clicking and dragging it.

				[image: mac_tip.eps] TIP

				In Xcode 3, the debugger appeared in a separate floating window. You can emulate this by opening a new tab, displaying and resizing the debug area until it fills the editor window, and tearing it off. It's useful to have code visible at the same time as you use the debugger. But the split-pane design can feel awkward, especially on a smaller monitor.

				Optionally, you can display the Navigator area at the left. Figure 15.4 shows a typical combined view of the display at a breakpoint, with the Debug Navigator, the code editor showing the location of the breakpoint, and the two debug area panes at the bottom of the screen.

				[image: mac_tip.eps] TIP

				If you need to run an application full-screen you can place a smaller version of the debugger window in front of it by selecting Product⇒Window Behavior⇒Xcode in Front. When Xcode hits a breakpoint, the window expands to show a larger version of the debugger window.

				Figure 15.4

				The Debug Navigator at the left of the debug area is optional. You can hide it to maximize the code view.

				[image: 9781118007594-fg1504.tif]

				Using the Console

				The console is a text output terminal, equivalent to UNIX's stdout (the standard output file), which is typically routed to a display rather than written to disk. It displays four kinds of messages:

				[image: bl.eps] System generated messages: Console messages include time stamps and other supporting information that is generated automatically.

				[image: bl.eps] Custom messages, created with NSLog or printf statements in your code: Use custom messages to check program flow, dump information about object properties, and monitor variable values.

				[image: bl.eps] System generated warnings: These are rare. A very small number of Cocoa classes generate text to report errors or warnings. Beta OS versions are more likely to generate warnings than production versions.

				[image: bl.eps] Crash dumps: These are also known as a backtraces and stack dumps, and they list the messages and events that led to the crash.

				You can choose some or all of these messages with the output selection menu at the top left of the console. These are your options:

				[image: bl.eps] All Output: Displays all messages

				[image: bl.eps] Debugger Output: Displays system messages, crash reports, and error messages

				[image: bl.eps] Target Output: Displays messages from your application

				You also can use the Clear button to clear the console of all output.

				Creating custom messages

				You can write a message to the console by including a call to printf anywhere in your code. For example,

				printf(“This is a message”);

				writes This is a message to the console. All of the standard printf formatting features are supported.

				If you are writing Objective-C rather than C or C++, the NSLog function is more comprehensive. It includes additional formatting and output options that aren't available in printf, at the cost of slightly clumsier syntax. For example, to write a text string, you must prefix it with Objective-C's @ “objectification” feature:

				NSLog(@”This is a message”);

				NSLog supports the standard printf formatting features and adds a new one—the %@ option, which displays information about an object. Table 15.1 summarizes the most useful options.

				[image: /Table 15.1]

				For example, to display the value of an integer use:

				NSLog(@”Int value is: %i”, someInt);

				To dump information about an object, use:

				NSLog(@”%@”, someObject);

				Note that the first @ prefixes the format and output string; the second @ selects the format.

				This object logging feature has special properties. It runs a method called description on the object being logged. Different objects implement description in different ways. For example, data collection objects such as NSArray and NSDictionary dump their contents as text. For other objects, description defaults to the object's class name and memory address.

				[image: mac_note.eps] NOTE

				description isn't always listed in class reference documentation. The easiest way to discover what this method does is by experimenting.

				[image: mac_tip.eps] TIP

				Every message in the console appears with a date and time stamp. The time is specified to the nearest millisecond. You can sometimes use this information to check performance.

				Using custom messages

				You can add custom messages anywhere in your code. Figure 15.5 shows a log message added to the application didFinishLaunchingWithOptions: method in the app delegate of a typical iOS project. This method runs once when the application loads. The console logs the message, as shown in the figure.

				You can use this technique to log events—for example, by writing a message to confirm when a method is called. You also can use messages to list variables and values, display loop counts, and so on.

				Unlike breakpoints, messages don't interrupt execution. They're usually faster and more informative than breakpoints when you want to check a sequence of events, but they don't give you the option of exploring memory or checking conditional execution.

				[image: mac_caution.eps] CAUTION

				Be careful about using messages in loops. There's nothing to stop you writing from a message on every repeat of a loop, but this may generate hundreds or thousands of messages. It's good practice to use messages more selectively. Don't forget that you can surround log messages with custom code to create conditional logging. For example, you might log only every tenth or hundredth iteration of a loop.

				[image: mac_caution.eps] CAUTION

				NSLog is slow, and you certainly don't want to include it in production code. You can comment out all NSLog statements by hand, but it's easier to include a single line with #define NSLog in the project's .pch file. This redefines NSLog to a null feature and eliminates it from the project. You can comment out this line to re-enable logging if you need to continue debugging.

				Figure 15.5

				Adding an NSLog message to send output to the console

				[image: 9781118007594-fg1505.tif]

				Understanding crashes

				When an application crashes, the console appears automatically and displays a series of diagnostic messages that can help you discover the cause of the crash.

				Your projects will crash accidentally often enough. But as an exercise that illustrates how Xcode handles crash event, you can create a crash deliberately. Add the following line to the application didFinishLaunchingWithOptions: method of the app delegate of an iOS project, such as the IB project from Chapter 7:

				[window thisWillCrash];

				The window object has no method called thisWillCrash, so the app crashes when it tries to execute this line.

				Figure 15.6 shows the result. If it's not already visible, the Debug Navigator appears automatically at the top left. The message that caused the crash is highlighted in black. Internal messages associated with the crash are shown in a lighter gray.

				Figure 15.6

				Displaying a crash event

				[image: 9781118007594-fg1506.tif]

				You can see immediately that the crash occurred within the application didFinishLaunchingWithOptions: method of the IBAppDelegate object. In a larger project, this gives you enough information to find the file with the bug.

				The top pane shows a disassembly of the code around the crash point. This is rarely useful. iOS apps trap crash events, and this code is usually part of the iOS crash handler. Because it's in assembler and internal to iOS, you can usually ignore it. If the crash happens in a less controlled way, and you're skilled with assembler, you may be able to extract useful information from this listing. But it's usually easier and more productive to use Xcode's other debugging tools.

				The bottom pane shows the backtrace/stack dump. This is a more detailed version of the message list shown in the Debug Navigator.

				Figure 15.7 shows a clearer view, with the Debug Navigator hidden to expand the bottom pane and make the backtrace easier to read. The console lists a reason for the crash: “unrecognized selector sent to instance 0x4d278f0”. This tells you that the object at that address received a method call it couldn't execute.

				[image: mac_note.eps] NOTE

				OS X applications don't always display a backtrace when they crash. Backtrace availability seems sporadic, and depends partly on the reason for the crash and partly on the version of the OS. When no backtrace is available the console displays a simple error description with no other information. Note also that unlike an iOS application, an “unrecognized selector” exception doesn't crash a Mac app.

				Figure 15.7

				A clearer view of the crash event, with the Debug Navigator hidden

				[image: 9781118007594-fg1507.tif]

				The next line includes supplementary information. In this example, it includes the object and the method that caused the crash. The extra information shown here depends on the type of crash and the objects associated with it.

				The backtrace is a chronological list of messages and events that led to the crash, with the most recent events at the top. The last few messages are usually internal to the OS. To find the event in your code that caused the problem, look down the second column until you find the name of your app. The event to the right triggered the crash. Previous events may have contributed to it.

				The list is usually “noisy”: Lots of detail is available about internal OS objects and messages that may not be described in the documentation. Typically, you can ignore most of the noise and concentrate on the event in your code that created a problem. When you fix a bug in your code, you usually find that the surrounding OS features work correctly.

				[image: mac_caution.eps] CAUTION

				Crash dumps aren't always as straightforward as this. If your app has serious memory errors, it may stop without displaying any crash information at all. You can usually rely on a backtrace for useful hints. But sometimes you get nothing at all, and the only way to find a problem is to use breakpoints. Very occasionally, you may get internal OS crashes that you can't fix. This is most obvious with beta OS versions, but it does happen—extremely rarely—with production code. When an OS object crashes, it's likely you initialized it incorrectly. But sometimes the OS itself is buggy, and you have to work around the problem in some other way.

				Viewing multiple logs

				You can use the Log Navigator shown in Figure 15.8 to compare the console output from different runs. Each build and debug run adds a new entry to the list at the left. Clicking a Build entry displays build information, including errors and warnings. Clicking a Debug entry displays the console output from that run.

				Figure 15.8

				Viewing a list of logs in the Log Navigator: Debug logs display console output. Build logs display build results.

				[image: 9781118007594-fg1508.tif]

				For example, the log message added earlier has been modified, and the most recent Debug entry shows the modified text. Although it's not illustrated in the figure, clicking the earlier Debug entry shows the original console output from the example earlier in this chapter.

				Sessions aren't saved with the project, and the list of entries and their contents is cleared when you close a project.

				[image: mac_tip.eps] TIP

				You can drag-select the contents of the Console and use the right-click context menu to copy them. You also can use the main Xcode File⇒Save As… menu option to write the entire log to a text file.

				Working with Breakpoints

				A breakpoint is a deliberate pause in your code. When Xcode encounters a breakpoint, it stops and drops into a special breakpoint mode. You can use this mode to view memory, list objects and their contents, and step through the code line by line.

				Breakpoint debugging is very powerful, but relying on it can slow you down. For maximum productivity, use breakpoint debugging selectively, and don't assume that it's a reliable solution for every possible problem. For example, if you don't manage memory correctly in an iOS app, memory errors can happen at almost any point in your code. Single-step debugging can show you that an object or property has incorrect or null contents, but it won't show you which line of code released it prematurely.

				Working with simple breakpoints

				To explore breakpoints, create a very simple application as a test bed. Use File⇒New in Xcode to create a new OS X Cocoa Application and save it as BreakpointTest. Add a simple counter loop to the end of the applicationdidFinishLaunching: method in the App Delegate:

				for (int i = 0 ; i< 10; i++) {

				 NSLog(@”Count: %i”, i);

				}

				The code counts from 0 to 9 and logs each increment to the console. Open and resize the console window, and then build and run the application. The result should look like Figure 15.9.

				When you run the code, the count completes almost instantly. With a breakpoint, it's possible to step through the loop manually and check what happens at each repeat.

				Figure 15.9

				Logging a very simple counter to the console

				[image: 9781118007594-fg1509.tif]

				Inserting a breakpoint

				To insert a breakpoint, click in the gutter area to the left of the for… line, as shown in Figure 15.10. An arrow indicator appears in the gutter. Note that the debug mode button—the arrow to the right of the Stop icon in the toolbar at the top left of Xcode—is selected and highlighted automatically. This tells you that Xcode is running in debug mode and that breakpoints are active.

				[image: mac_caution.eps] CAUTION

				Be careful not to click in the shaded area to the right of the gutter. The shaded area controls the code folding feature described in Chapter 10. It hides the code instead of adding a breakpoint, which isn't what you want here.

				Figure 15.10

				Inserting a breakpoint

				[image: 9781118007594-fg1510.tif]

				Build and run the application again. This time the run pauses automatically at the breakpoint, with the display shown in Figure 15.11. The breakpoint is highlighted in the code editor, the Debug Navigator appears at the left, and the Variables View appears at the bottom of the screen. You can now use the Variables View, described in more detail later, to examine objects, or you can continue to step through the code by hand.

				Continuing after a breakpoint

				When Xcode pauses at a breakpoint, you can use the toolbar to control how execution continues. The buttons have the following functions:

				[image: bl.eps] Show/Hide Debug area: Click this to show or hide the debugging area at the bottom of the screen. This option is equivalent to the show/button in the toolbar at the top right of Xcode.

				[image: bl.eps] Continue: Click this to run the application from the point at which it paused. It continues to run until it's terminated or it encounters a breakpoint.

				[image: bl.eps] Step Over: This executes the current line and stops at the next. This is equivalent to the single-step option in other debuggers.

				[image: bl.eps] Step Into: This steps into a method or function. By default, Xcode runs a method or function without stepping into it; you see the result, but you can't step through each line of the code. Use this option when you want to examine what happens inside the method or function.

				[image: bl.eps] Step Out: This steps out of the current method or function—in other words, it runs to the end or returns—and then it steps in the calling function or method. If there is no calling function or method, this option steps out to an assembly listing of the OS internals.

				Figure 15.11

				Examining the state of the application at a breakpoint

				[image: 9781118007594-fg1511.tif]

				In this example, use the Step Over button to continue the count manually. You see the code cycling between the first line of the for… loop and the second line. The value of the i loop counter increases with each repeat.

				When i is 9 on the last repeat, the final Step Over takes you to the end of the method. If you Step Over again, you see an assembly listing of the method dispatch code in the Objective-C runtime. This is OS internal code. Although you can continue stepping through it statement by statement, this isn't usually a useful thing to do.

				Enabling and disabling breakpoints

				You can disable an individual breakpoint by clicking its gutter arrow, which becomes translucent. A disabled breakpoint remains in place but is ignored by Xcode. (It also keeps its settings, which are described below.)

				You can also disable all breakpoints by clicking the main Debug arrow at the top left of Xcode. This turns off debug mode globally. As before, all breakpoints remain in memory, and they are saved as part of the project. But when Debug Mode is disabled globally, Xcode ignores them.

				[image: mac_tip.eps] TIP

				You can click any breakpoint and drag it to move it.

				Using the Variables View

				Figure 15.12 shows the Variables View expanded to full screen size. The view shows a list of objects in the application, with disclosure triangles next to each. Clicking a triangle reveals an object's contents, including named properties. Where relevant, properties may have associated memory addresses or literal values. The current object—the one in which the breakpoint was triggered—is labeled self.

				Standard system objects such as the app delegate, windows, and views have very complex hierarchies. In the figure, you can see that the app delegate's window object includes a long list of properties. Many of the items in this list are objects in their own right and have further sub-properties that you can explore.

				Because the view is unfiltered, it can be difficult to find useful details. As a general rule, you can ignore internal properties and objects unless you have a good reason to check them. In this example, all the properties of window are irrelevant. But in a more complex project, you might want to check the _delegate, _initialFirstResponder or _frame properties to see if window is being initialized correctly.

				[image: mac_tip.eps] TIP

				You can also view the contents and structure of an object by hovering the mouse cursor over it. A yellow box appears with reveal triangles that can drill down through the object hierarchy. This can be a very useful debugging tool.

				Figure 15.12

				Exploring the contents of an object with the Variables View

				[image: 9781118007594-fg1512.tif]

				[image: mac_note.eps] NOTE

				System object instance variables are typically prefixed with an underscore character. They may not be listed in the documentation. Examining them can give you useful insights into how system objects are organized and how they work with each other.

				The useful detail in this example is the i = (int) 32 entry at the bottom of the window. This is a placeholder for the i loop counter, which hasn't yet been initialized. Use the Step Over button to step through the loop. You see the value is initialized to 0 and incremented on each repeat. Figure 15.13 shows how the value is updated in the Variables View before the log message prints it to the Console.

				Figure 15.13

				A typical combined debugging session that combines information from the Variables View with messages on the console

				[image: 9781118007594-fg1513.tif]

				[image: mac_tip.eps] TIP

				You don't need to use the right-click contextual menu to display the edit box for a variable. As a shortcut, you can simply double-click the value.

				Working with values

				The Variables View isn't just a passive display. Right-click a variable to show the menu illustrated in Figure 15.14. You can use the options here to enable and disable data formatting and type information and to edit values by hand. For example, select the Edit Value option as shown in the figure, and type 0 into the box that appears next to the i variable. This resets the counter without restarting the application. You can now repeat the count from the beginning.

				Figure 15.14

				Using the right-click menu to edit a value “live” after a breakpoint

				[image: 9781118007594-fg1514.tif]

				Using expressions

				You can add your own items to the Variables View using expressions. An expression is an extra customized listing of an object, property, or variable. You can use expressions to extract properties and values from objects, so you don't have to drill down the hierarchy to find them. Expressions can contain standard C, C++, and Objective-C code, but they don't require the semicolon terminator. Expressions must be prefixed with a cast to define the type.

				Figure 15.15 shows a sample expression. Right-click anywhere in the Variables View, select Add Expression, enter the following string, and click Save.

				(NSString *) [window description]

				You see a new entry in the view, which shows the result of running the description method on the window object. For a different result, replace window with aNotification. You'll see information about the initial notification that is posted when the application completes its startup sequence.

				Expressions can be challenging but powerful. The syntax required to display a certain value or property can become complex, and you often need to rely on trial and error before you find the correct answer. But if you can master expressions, you can make your debugging sessions significantly more productive. You can review the most important properties and variables at a glance, without having to open other objects to reveal them.

				Figure 15.15

				Creating a custom expression to display a value of interest

				[image: 9781118007594-fg1515.tif]

				Using data formatters

				Every item that appears in the Variables View is formatted, and the formatting information is set by a data formatter. All the standard data types have predefined formatters. In practice, these define extra details that may be unnecessary. Uncheck the Enable Data Formatters option in the right-click contextual menu to hide these details, leaving a shorter summary of the key information.

				You can also customize the formatting for certain data types. Use the Edit Summary Format option to display a dialog box with an editable field that defines the formatting. Formatters are similar to expressions, but the syntax is more complex and more general. A formatter is enclosed between curly brackets and usually includes a type cast. It may also include one or more macro placeholders to represent input data and a format reference that selects one of four display options. Table 15.2 summarizes the key options.

				[image: /Table 15.2]

				For example, this line of code runs the standard Objective-C sel_getName function on the selected variable and outputs the description as a summary string:

				{(char *) sel_getName($VAR)}:s

				Data formatters can create some very sophisticated effects. You have almost total freedom to select and combine data from any object in your application and to display it as you choose. However, the programming cost can be substantial. Custom data formatters are best reserved for more complex projects where Xcode's other features can't display data in a useful way.

				[image: mac_tip.eps] Tip

				You can define your own custom data formatters and import them into Xcode. The process is moderately complex, but you need to do it only once. You can then reuse the formatters in any project. For details, see the Viewing Variables and Memory section of Xcode Debugging Guide in the documentation.

				Adding watchpoints

				A watchpoint is loosely related to a breakpoint, but it's triggered when a variable is modified. Use the Watch Address of… option in the right-click contextual menu to create a watchpoint, as shown in Figure 15.16. There's no way to add a watchpoint using the code editor.

				When the watchpoint is triggered, Xcode logs a message to the console and highlights the line of code that modified the variable in the code editor. Messages list the values of the variable before and after the watchpoint was triggered.

				[image: mac_caution.eps] CAUTION

				There's no way to delete a watchpoint manually. A watchpoint is deleted automatically when execution moves beyond the scope of the watched variable. This is strange behavior and not entirely helpful; for better or worse, watchpoints are only loosely related to breakpoints. Internally, they modify the stack. This means system calls are likely to crash if you set a watchpoint for a local stacked variable, because this operation modifies the stack.

				Figure 15.16

				Creating and using a watchpoint

				[image: 9781118007594-fg1516.tif]

				Viewing and editing memory

				You can use the View Memory of… option in the menu to display a hex memory dump, as shown in Figure 15.17. The dump appears in the editor area and starts with the address of the selected variable. You can rearrange the display to show various byte groupings and dump lengths. Hex dumps can be useful when working with text or with byte-level buffers. But unless you can read raw hexadecimal and convert it to code in your head, other applications are limited.

				The display includes an editor, and you can edit, insert, or delete individual bytes by hand. This is a powerful but dangerous low-level feature. Used indiscriminately, it can destroy a build, but it is sometimes useful to tweak byte-level features for testing.

				Figure 15.17

				Viewing and editing raw hex in memory

				[image: 9781118007594-fg1517.tif]

				Using advanced breakpoint features

				Breakpoints include a selection of optional advanced features. You can use these to create conditional breakpoints, which are triggered selectively, and to trigger actions (external events).

				Editing breakpoints

				To access the more advanced features, right-click a breakpoint to display a right-click contextual menu. The following options are available:

				[image: bl.eps] Edit Breakpoint: This displays the dialog box described later in this chapter.

				[image: bl.eps] Disable Breakpoint: This is equivalent to clicking a breakpoint to disable it, as described earlier.

				[image: bl.eps] Delete Breakpoint: This removes the breakpoint, with all existing settings.

				[image: bl.eps] Reveal in Breakpoint Navigator: This opens the Breakpoint Navigator and highlights the breakpoint.

				Creating conditional breakpoints

				You can create a conditional breakpoint in two ways. Follow these steps for your first option:

				1. Delete the original breakpoint at the loop initialization point.

				2. Add a new breakpoint at the line with the NSLog statement.

				3. Right-click the breakpoint, and select the Edit Breakpoint option.

				4. Set the Ignore value to 5, as shown in Figure 15.18.

				5. Build and run the application.

				 The breakpoint is ignored the first five times the code runs through the loop, and it isn't triggered until the sixth repeat. This option is ideal for simple delayed breakpoints where you know in advance how many times a loop or method will be executed.

				Figure 15.18

				Creating a delayed conditional breakpoint

				[image: 9781118007594-fg1518.tif]

				You can create a similar result by resetting the ignore count to zero and entering i == 5 into the Condition box. In this simple example, this creates exactly the same outcome. But the Condition box is far more flexible. You can reference any variable that is in scope and use any valid code as a conditional.

				For example, if you replace i == 5 with aNotification, the breakpoint is triggered whenever aNotification is non-zero. In this example, the condition is always true. In a more complex application, aNotification might follow some other feature or event. You can use this feature to add intelligence to your debugging, creating conditions that reference values in distant but related objects.

				Triggering actions at breakpoints

				The Actions feature is one of the more powerful options in the debugger. You can use it to trigger almost any event at a breakpoint. For example, you can:

				[image: bl.eps] Run an AppleScript

				[image: bl.eps] Send the debugger a text command

				[image: bl.eps] Log a message to the console or speak it as text

				[image: bl.eps] Run a UNIX shell command

				[image: bl.eps] Play a sound

				You can combine actions without limit, adding and deleting them with the +/- buttons. You can also run multiple scripts simultaneously or run a script at the same time as you run a shell command.

				For example, select the AppleScript option from the Action menu and type the following:

				display dialog “Breakpoint %B, Count: %H”

				Check the Automatically continue after evaluating actions box. Select Done and then build and run the application.

				[image: mac_note.eps] NOTE

				The %B option lists the breakpoint location, which is typically the method name and a line number. The %H option lists the number of times the breakpoint has been triggered.

				You won't see the alert shown in Figure 15.19, because your application has focus. This is a drawback of the action system; some features don't work unless you can force focus or the action doesn't need it.

				For this simple example, force focus manually by clicking anywhere in the Xcode window to bring the alert to the front. Click OK or Cancel, and watch the count increment. With a more sophisticated script, you could force focus from the script code and create a delayed loop that displayed the alert for a short period before continuing execution.

				Actions are almost infinitely customizable. They're limited only by your imagination and scripting skills. A key point is that you don't have to use them for manual debugging. You can use actions to create complex automatic testing tools that can respond to external events, log code paths, and list variable values to log files. You can run tests remotely, posting the results by e-mail or uploading them to a web server. These advanced options are specialized, and describing them in detail is outside the scope of this book. But it's important to understand that after you include actions, your debugging options become much more open-ended and creative.

				Figure 15.19

				Using simple scripting to create a custom breakpoint alert

				[image: 9781118007594-fg1519.tif]

				Using the Breakpoint Navigator

				The Breakpoint Navigator, shown in Figure 15.20, displays a list of all breakpoints in the project. You can use this list to simplify breakpoint management. You can enable, disable, and delete breakpoints in a single window without having to find and edit the corresponding file. The options in the right-click menu are similar to those available for a single breakpoint, with a couple of additions:

				[image: bl.eps] Move Breakpoints To: Use this to group breakpoints. You can enable and disable every breakpoint in a group with a single menu selection. There are three groups: Project, User, and <project name>. By default all breakpoints are in the <project name> group. There's no way to create further custom groups. But you can command-click any number of breakpoints to create a single manual multiple selection.

				[image: bl.eps] Share Breakpoints: Use this option to export breakpoints to a file that can be shared with other developers.

				Figure 15.20

				Working with the Breakpoint Navigator

				[image: 9781118007594-fg1520.tif]

				Debugging multiple threads

				Debugging becomes more complex when an application has multiple parallel threads. Breakpoints suspend execution in a single thread, but other threads continue to run. It can be useful to suspend them so other events don't interfere as you step through your application. Figure 15.21 illustrates the Debug Navigator's thread display. To suspend a thread, right-click it and select the Suspend Thread option from the menu.

				[image: mac_caution.eps] CAUTION

				The lowest few threads in the display are usually system threads. Xcode lets you suspend system threads, but unless you have a very good reason for stopping OS threads, it's better to leave them running.

				Figure 15.21

				Suspending a thread in the Debug Navigator

				[image: 9781118007594-fg1521.tif]

				Working with Command-Line Debugging

				The (gdb) text at the bottom of the console window is a command-line prompt. You can enter text commands to the GDB debugger to reveal details that can't be accessed with the standard debugging tools.

				The complete list of GDB commands includes hundreds of entries, and it's unlikely that any Xcode user has ever memorized them all. Many commands are legacy features left over from GDB's origins. Although interesting, they're not essential if you're working with a high-level language such as Objective-C. Others can provide useful insights. Table 15.3 shows a small selection.

				Figure 15.22 shows an example of GDB command-line control. The help command lists the main command groups, and the backtrace command displays a stack dump. Note that standard breakpoints support GDB commands. You can type in a command as a breakpoint action, and GBD prints the output to the console. Use this feature to print extra information about objects without using NSLog or to modify test conditions. For example, one breakpoint can set or delete another automatically.

				[image: /Table 15.3]

				Figure 15.22

				Using the GBD command line

				[image: 9781118007594-fg1522.tif]

				[image: mac_tip.eps] TIP

				You can use the up and down arrows to scroll through a list of typed commands. For example, to repeat a command without retyping it, tap the up arrow key followed by the Return key.

				Summary

				This chapter introduced Xcode's Debug area. It explored the features of the console, introduced the Variables View, and explained how to use it to modify and track variables, view their contents, and list and edit memory.

				It discussed Xcode's simple breakpoint features; demonstrated how to create, edit, and delete breakpoints; and explained how to step through code line by line, monitoring variables and results.

				It introduced more advanced breakpoint features, including conditional breakpoints and actions.

				Finally, it listed some of the more useful command-line options available in the underlying GDB debugging environment, explained how to explore the rest, and demonstrated how command-line options provide extra debugging options that aren't included in the main graphic debugging environment.

			

		

	
		
			
				Chapter 16: Testing Code with Instruments

				
				In This Chapter

				

				Beginning with Instruments

				Exploring the Instruments UI

				Using instrument templates

				Profiling a live application

				Comparing runs

				Creating custom templates and instruments

				Debugging is ideal for low-level line-by-line fault finding. But it's often useful to take a wider view of application performance—for example, to identify performance bottlenecks, monitor processor loading, and check for memory leaks.

				The Xcode toolchain includes a powerful and comprehensive helper application called Instruments, used for general testing and profiling. Instruments is a general purpose time line–based test rig that supports a selection of instruments—plug-in test probes that monitor some feature or performance metric.

				[image: mac_note.eps] NOTE

				The name of the test application is Instruments, with a capital I. The individual test plug-ins are instruments, with a small i.

				You can combine multiple instruments to create a custom test rig, save the rig for use with other applications, and save the results of every test run for comparison with other runs. Instruments supports both iOS and OS X applications, but each OS supports a slightly different selection of instruments.

				These are the key benefits of Instruments:

				[image: bl.eps] A time line: You can graph and compare the output of multiple instruments simultaneously and watch supporting charts and tables.

				[image: bl.eps] Live testing: You can interact with an application and monitor how user events affect its performance.

				[image: bl.eps] Overall system profiling: Some instruments monitor how an application affects system resources as a whole and how other applications or processes compete with it.

				[image: bl.eps] A comprehensive library of instruments: You can monitor performance in almost every possible way.

				[image: bl.eps] Automated testing: You can play back scripted events to drive your application.

				[image: bl.eps] Simultaneous parallel testing: You can track and monitor multiple instruments in the same application; on OS X, you can monitor multiple applications simultaneously.

				[image: bl.eps] Test recording: Instruments creates a record of each run on separate tracks. You can save the record and reload it to compare it with other runs.

				[image: bl.eps] Customized instruments: Advanced developers can create their own instruments.

				Beginning with Instruments

				Instruments runs in an independent window, as shown in Figure 16.1. You can launch it intwo ways:

				[image: bl.eps] Select Product⇒Profile in the main Xcode menu to build a project and load it into Instruments. By default, Instruments is automatically attached to (set up to profile) the current project. The monitored application is called the target.

				[image: bl.eps] Launch Instruments independently from Finder or the Dock. Instruments is in the main Xcode /Developer/Applications directory. When you launch Instruments manually, you must attach it to a target yourself. Usually, the target is your project, but you can monitor any running process, with some limitations, described later in this chapter.

				Figure 16.1

				A first view of Instruments, showing one instrument out of the many that are available

				[image: 9781118007594-fg1601.tif]

				Understanding Instruments

				Instruments is a multi-track recorder for system events and statistics, similar to a music or video recorder.

				Each instrument records data of one type—object allocations, processor load, user events, and so on—on a separate lane, or data track. When you start a test run, Instruments initializes each lane and begins to fill it with statistics collected from the target. Instruments remembers the results of each test run, and you can review each recording while Instruments is paused.

				Many instruments include filters, and you can use them to include or exclude certain event sub-types. For example, when monitoring object and memory allocations, you can exclude all low-level malloc events to simplify the display and make it easier to monitor object-level events of interest.

				In addition to the time line view, most instruments display various statistics as they're collected. Statistics may appear as tables, charts, lists, or other summaries.

				[image: mac_note.eps] NOTE

				Instruments is huge and complex, almost as complex as Xcode. A detailed breakdown of every element would fill this book. Most features can be understood with educated guesswork and experimentation. This chapter doesn't list every feature, but it does outline how you can get started with Instruments so you can begin to explore it for yourself and start working with the tools that you're most likely to find useful.

				Exploring the Instruments UI

				Figure 16.2 shows a more typical working view of the Instruments UI, this time showing the Allocations instruments, which monitors objects in memory. The design follows the standard OS X guidelines, with a selection area at the top left, an active area in the middle, and a view at the right that can display supporting information. The active area is split into a time line view at the top and a detail pane the bottom. A toolbar at the top of the window controls the main application features.

				The selection area is called the instruments pane and includes a list of all instruments used in a trace. Each instrument has a reveal triangle that shows the results of previous runs and an information icon that reveals extra options for fine-tuning a recording.

				The time line view is called the track pane. You can use a slider at the bottom of the instruments pane to expand the scale of the track pane.

				The detail pane fills the bottom of the display. It includes a selection area at the left that can fine-tune and filter the information that's displayed and a display pane in the bottom middle that displays the information that has been selected.

				The extended detail pane at the right shows optional further detail that supports the information in the detail pane. In the figure, the extended detail pane shows a stack trace.

				Figure 16.2

				Looking in more detail at the Allocations instrument

				[image: 9781118007594-fg1602.tif]

				You can see there's an immense amount of detail in the display. The Allocations instrument (refer to Figure 16.2) literally lists every object in memory. You can monitor the creation and destruction of specific class instances and view stack traces for each creation event. You can also get more general statistics about created and destroyed objects, the total memory footprint of the application, and so on. Not all instruments display this much detail; others are simpler summaries of less complex application states.

				[image: mac_caution.eps] CAUTION

				Some features work at a low level, so you need a basic understanding of Cocoa and OS X/iOS internals to get the most from certain instruments. You can use Instruments without this knowledge, but you will miss the more powerful and productive features.

				[image: mac_note.eps] NOTE

				Because some instruments literally modify the OS kernel as it's running, you may be asked for your OS X username and password before they grant low-level access. The kernel changes are transparent and temporary.

				Introducing the toolbar

				The toolbar includes the most important controls and is visible unless you hide it using the button at the top right. The features in the toolbar are described in the following sections.

				Record, pause, and loop control

				The large Record button begins and ends recording. While recording, the label changes from Record to Stop. If you're recording an instrument that manages UI events, the label changes to Drive and Record.

				[image: mac_caution.eps] CAUTION

				When you profile an application, you first select one or more instruments for a run, as described later in this chapter. Instruments then pauses while the instruments are loaded, and eventually it begins recording automatically. If you're profiling your project from Xcode, don't click the Record button while nothing seems to be happening. Instruments begins recording when it's ready. If you're profiling some other existing process, you need to start the recording manually.

				The Pause button pauses recording. The timer shown in the main time indicator stops, and Instruments stops collecting data. In fact, the timer continues to run, and if you click the pause button again, you see that a gap has appeared in the recording, as shown in Figure 16.3. This isn't an essential feature, and typically you can ignore it. But occasionally, you may want to change application settings or interact with the application without recording the results.

				Figure 16.3

				Creating gaps in the recording with the Pause button

				[image: 9781118007594-fg1603.tif]

				The Loop button toggles between playing a track once and repeating it. You can use this feature with recordings of UI events to create multiple test runs from the same user actions.

				The target menu

				Use the target pop-up to select the process or processes to be recorded. When you profile a project from Xcode, your project is pre-selected for you here. But you can profile any running process by attaching Instruments to it, as shown in Figure 16.4.

				Manual attaching is more limited than project profiling. For example, system applications such as iTunes, Front Row, DVD Player, and QuickTime are deliberately cloaked from Instruments, and you can't collect data from them. Some instruments rely on debug symbol tables. Most applications don't include these, so you can't profile or test them at a low level.

				Figure 16.4

				When you are attaching to a process, the pop-up shows all running processes, including ones you won't usually want to profile.

				[image: 9781118007594-fg1604.tif]

				Like many features in Instruments, the target menu has hidden depths, and you can make very specific selections. Figure 16.5 shows the Edit Active Target sub-option in the target menu. You can define the environment variables for the target, add new variables and launch arguments, and select one of the possible consoles for the application.

				Figure 16.5

				Working with target settings

				[image: 9781118007594-fg1605.tif]

				[image: mac_tip.eps] TIP

				The Agents and Daemons views are useful because they collect default plists for each system item in a single, easily accessible location. To view the defaults, select a daemon or agent from the list and click the eye icon at the bottom right of the dialog box. You see a text XML dump of the plist, with the keys and values in the dictionary. To edit the plist, double-click it. Xcode opens a new plist editor window. For more about editing plists, see Appendix B.

				The inspection range

				Use the three inspection range buttons to set the start and end time of the display. To set the start time, drag the position cursor in the time line (described later) to your chosen start point and click the leftmost range button. To set the end time, repeat for the rightmost button. To clear the range, click the middle button.

				The inspection range doesn't affect the time line. It doesn't zoom to fill the screen, and it doesn't modify the position cursor. However, it sometimes affects the statistics that are chosen and displayed elsewhere in Instruments.

				The time/run control

				This shows the elapsed time in a recording. You can use the arrows under the time display to select different runs. The clock/run icon to the right of the time digits toggles the display between the current recording position and the current cursor time.

				The view selector

				The three view buttons display and hide the various possible panes. You can view as much detail as possible, or you can hide everything except the time line display, as shown in Figure 16.6. It's more usual to run Instruments with the left and lower panes showing.

				Figure 16.6

				Use the view selector to hide all information except the track lanes. This isn't often useful, but occasionally you may want to maximize the number of visible tracks, to simplify multiple comparisons.

				[image: 9781118007594-fg1606.tif]

				The library button

				This button toggles display of the instrument library—a floating window that lists all available instruments, as shown in Figure 16.7. You can use the gear icon at the bottom left of the window to show a menu with various display options. The Library menu at the top of the window displays a list of instrument groups. You can use the library to create your own instrument collections, saving them as templates—instrument collections that profile related application elements.

				Figure 16.7

				Use the Library's view options to save space on smaller monitors. The large icons are impressively detailed, but they waste space on a smaller monitor.

				[image: 9781118007594-fg1607.eps]

				[image: mac_note.eps] NOTE

				Only instruments that match the current project platform are shown; in other words, only Mac-compatible instruments appear for an OS X project, and only iOS compatible instruments appear for an iOS project. There are significant differences between the instruments supported on each.

				The search field

				You can use the search field to add another set of filters to the information in the detail pane. Search operations depend on the data produced by an instrument, so searches are context-dependent.

				Figure 16.8 shows how you can filter the output of the allocations instrument to show only CFArray items. In your own projects, you can use this feature to monitor your own custom objects while hiding all other activity. It's easy to overlook the search field, but it can be a very powerful way to filter a flood of data to a trickle of precisely targeted useful statistics.

				Figure 16.8

				Use the search field to filter the output of the allocations instrument, reducing hundreds of items to just two.

				[image: 9781118007594-fg1608.tif]

				Getting Started with Instruments

				Instruments has some quirks, and the easiest way to become familiar with them is to experiment with a practical profiling project—one that monitors memory events in an iOS app.

				Memory management in iOS can be challenging, and Instruments includes tools that can monitor memory and report on crashes. Although Instruments has many possible applications, memory profiling is one of the most useful. If you develop for iOS, Instruments can save you time and help you create apps that are robust and don't leak memory.

				Creating a leaky test app

				To demonstrate this in practice, you need to create an app that deliberately leaks memory. Instruments monitors the leak so you can see how allocations and leaks are graphed and summarized as statistics. Follow these steps:

				1. Create a new Window-based iOS project in Xcode with File⇒New Project.

				 Don't include unit tests or Core Data.

				2. Save the project as MemoryLeak.

				3. Modify the start of MemoryLeakAppDelegate.m so it matches the following listing:

				@implementation MemoryLeakAppDelegate

				@synthesize window;

				- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

				{

				 // Override point for customization after application launch.

				 [self.window makeKeyAndVisible];

				 NSTimer *theTimer =

				 [NSTimer scheduledTimerWithTimeInterval:1.0

				 target:self

				 selector:@selector(timerDo)

				 userInfo:nil

				 repeats:YES];

				 return YES;

				}

				- (void) timerDo {

				 NSObject *theLeak = [[NSObject alloc] init];

				}

				 This code creates a timer that repeats once per second. The timerDo timer handler method creates a new object called theLeak, which is never released. When the pointer is overwritten, the memory is lost and becomes a leak.

				If you build and run the project, as shown in Figure 16.9, the app appears to work. The window has no UI elements and does nothing. But the app doesn't crash, and there's no indication that it's leaking memory. If you leave it running for long enough, it eventually causes an iOS memory error. But because theLeak is a small object, it's difficult to distinguish the leak from other possible crash events, unless you monitor memory directly.

				Figure 16.9

				There's no way to tell from the Simulator or from the build messages in the editor that this app is leaking memory.

				[image: 9781118007594-fg1609.tif]

				Profiling an app with Instruments

				Loading a project into Instruments is known as profiling. The process is the same for OS X and iOS projects. The simplest version has the following steps:

				1. Make sure the project builds with no errors.

				2. Select the Product⇒Profile option in the main Xcode menu.

				3. Wait while Xcode creates a special profiling build.

				 You see the usual Build Succeeded message at the end of this step.

				4. Wait again while Xcode loads and launches Instruments automatically.

				 You don't need to launch Instruments manually when profiling.

				5. Select a trace template.

				A template includes one or more instruments with predefined settings, and it's designed to collect and display information about specific issues or runtime values.

				6. Wait while Instruments initializes the instrument.

				7. Optionally, authenticate with your standard OS X user password if asked to.

				 Not all instruments require this step.

				8. Wait again while Instruments completes its initialization.

				 This can take a few seconds. Instruments appears to do nothing, and your Mac may become slow or unresponsive until initialization completes.

				9. Begin monitoring the app, using the instrument you selected.

				 The time line begins scrolling with a graphical display, and the details pane shows dynamic statistics. Depending on the instrument, you can modify the display to zoom in or out, select or hide certain statistics, reveal further details, and so on.

				 10. At the end of a run, select the Stop button at the top left.

				 You can now scroll through the time line to review the graph.

				This process seems simple, but there are a few hidden complications. Not all templates are available on all platforms. When Instruments launches, it offers a slightly different selection for OS X, iOS Simulator, and iOS hardware projects.

				Note also that the startup delay is variable and inconsistent. When you load Instruments for the first time, it can take up to a minute before the time line displays useful information. iOS projects usually take longer than OS X projects, because it can take a while for the Simulator or a device to load and run an app. Instruments needs extra initialization time on top of this delay. Generally, startup isn't an instant process, and there's an ambiguous period after launch where it may not be clear if everything is running correctly. (It usually is.)

				[image: mac_tip.eps] TIP

				You can delay recording and time line updates by selecting File⇒Record Options in the main Instruments menu. The options dialog box includes a start delay option, a time limit option, and a deferred display check box that disables data processing and display until the end of a run, minimizing the live processing overhead. Delay times can be set in seconds, milliseconds, microseconds, or nanoseconds. (You won't often use the last option.)

				[image: mac_caution.eps] CAUTION

				In the first release of Xcode, Instruments sometimes fails to attach itself automatically to the iOS Simulator if you select Product⇒Profile. If this happens, attach manually instead.

				Note that although you can scroll along the time line graph manually, Instruments doesn't necessarily keep a record of the statistics gathered at every point. Typically, the statistics remain frozen with the values they had at the end of the run. Although it would be useful to replay statistics manually, Instruments doesn't support this.

				Selecting a trace template

				To explore this process in practice, select the Project⇒Profile menu option in Xcode to create a profile build and launch Instruments.

				Figure 16.10 shows the Trace Template selection dialog box. Because this project is running in the iOS Simulator, Instruments has pre-selected the relevant iOS Simulator Instruments. The All option at the top left displays all available templates. You can filter them by selecting the Memory, CPU, and File System groups.

				Figure 16.10

				Selecting a template from the standard list

				[image: 9781118007594-fg1610.tif]

				For this example, select the Leaks template. Click Profile. Wait while Instruments launches and initializes. Eventually, you see the display in Figure 16.11. The Leaks template includes two instruments: Allocations and Leaks.

				Figure 16.11

				A first look at the Leaks template

				[image: 9781118007594-fg1611.tif]

				Understanding the time line

				After the display is updating regularly, you can begin reviewing the output to see how it offers insights into the behavior of the app.

				There are two areas of activity. The time line area shows an initial flurry of allocation events when the app launches and a steadily increasing series of events in the Leaks lane. The statistics show a much more comprehensive—and difficult to understand—list of information, which is described in more detail later.

				The Leaks graph provides a clear indication that the app is leaking. But note that the graph doesn't exactly mirror the leak activity. You might expect the leak count to grow steadily, but by default, the graph is sampled every 10 seconds, so the leaks time line displays a summary view.

				[image: mac_tip.eps] TIP

				In fact, you can change the sampling time to force the graph to update more frequently. For smaller apps the cost is a small performance hit. Select the Leaks instrument, and change the value in the box in the Sampling Options configuration under the Instruments list. The initial 10 second default is excessively long for many applications. As apps use more memory, the performance hit becomes more obvious, so use this feature with care.

				Generally, the time line is best used for quick broad-brush overviews of app activity. It's not a precise diagnostic tool, but it does give you enough information to check whether more detailed investigation is necessary.

				Getting started with the statistics

				The statistics in the detail pane are the key to using Instruments productively. Where the time line provides an overview, the statistics provide extremely detailed information.

				At first sight, the Allocations statistics may look complex, but the display is simply a list of all objects created by your app, with an associated instance count, and the instrument is literally monitoring and counting every object in memory.

				A combined All Allocations summary at the top of the list counts the total number of objects and lists the total memory used. You can click each column header (Category, Live Bytes, # Living, and so on) to sort the list in various ways and to highlight aspects of the data.

				[image: mac_note.eps] NOTE

				If you can't see the display shown in Figure 16.11, select the Allocations instrument at the top left of the time line pane and select Statistics and Object Summary using the menus under the time line.

				[image: mac_note.eps] NOTE

				Allocations displays all objects and all low-level memory allocations. Many of the objects in the list aren't documented, because they are internal to the OS and are created and released at a low level. Typically, when you create a standard Cocoa object, the allocation code runs a number of low-level allocations and creates various other low-level structures and objects. Allocations lists them all separately.

				As the app runs, you see that both the # Living and the # Overall counts for the All Allocations summary increase by one every second. The # Living column counts objects that are allocated and active. The # Overall column is a running total for the app, and it includes objects that have been released. Because our leaky app doesn't release any objects, the two numbers are identical. In a real project, the two numbers diverge almost immediately.

				[image: mac_caution.eps] CAUTION

				Occasionally, you find that Apple's own iOS and OS X objects are leaking memory. When this happens, Instruments shows it clearly. But don't forget that in the application, the objects are organized in a hierarchy and not a linear list, and OS objects may leak memory at the malloc level. If your code is doing nothing while memory allocations are increasing, you're likely dealing with a genuine OS bug. You may not be able to see which object is causing the problem, because Allocations is reporting the problem as a low-level leak.

				Monitoring specific objects

				The unfiltered object list includes objects created behind the scenes by the OS. You don't usually need to monitor these, so instruments includes a powerful selection of filtering options that can help you focus on some objects while hiding others.

				Use these options to show objects with specific names. Functionally, the various filters overlap, and there's usually more than one way to pick out individual objects from the list. It's up to you to choose the approach that works for you.

				Selecting objects with the category list

				Select the Category column header to sort the object list alphabetically. Scroll down to find the NSObject entry, as shown in Figure 16.12. If you monitor this entry while the app is running, you see that its # Living and # Overall count both increase steadily.

				Figure 16.12

				Using the Category column to list objects alphabetically

				[image: 9781118007594-fg1612.tif]

				Selecting objects with the search field

				Figure 16.13 shows an alternative solution. Type one or more class names into the search field at the top right of the Instruments window, select the magnifying glass icon, and choose Matches Any. The main list is filtered to show the object names you entered. Use this approach when you want to monitor a small number of related objects.

				Figure 16.13

				Selecting objects with the search field

				[image: 9781118007594-fg1613.tif]

				[image: mac_caution.eps] CAUTION

				There may be a difference between internal system object names and official documented object names. In Figure 16.13, you can see that searching for NSArray displays two related internal system objects that implement NSArray internally. These objects aren't mentioned in the documentation, but ideally you should know enough about Cocoa to understand what they do from the search context. This applies only when you're monitoring Cocoa and other system objects. Your own custom objects should have unique and unambiguous searchable names.

				Listing object allocation events

				When you select an object, you can click the detail arrow that appears to its right to reveal a list of allocation events, as shown in Figure 16.14. The list includes an address, time stamp, and context for every allocation.

				You can see from this list that the app is generating multiple NSObject allocations. Because all of them are live, it's not releasing them. Most of them are created in the timerDo method in the app delegate.

				Figure 16.14

				Listing objects of a single class with their associated allocation times, addresses, and the application/library and method in which the allocation occurred

				[image: 9781118007594-fg1614.tif]

				In a real project, this kind of information can give you useful debugging hints, but even more detail is available. If you select the detail triangle next to an allocation event, you see the display shown in Figure 16.15. The critical column here is RefCt, which is the object's reference count.

				The object view in the Allocations instrument is the only way to get a reliable reference count. Conveniently, you can view the counts of multiple objects simultaneously. This can be a lifesaver on projects with memory issues, because it gives you an X-ray of the app's memory events. You can interact with the app while it's running and monitor an object to check whether it's being allocated and released correctly.

				[image: mac_caution.eps] CAUTION

				Don't forget that Cocoa may not release objects immediately after they receive a release or autorelease message. Depending on the context, some other object may be retaining your target object. Or it may simply take Cocoa a short while to run the release or autorelease code. However Cocoa handles an object, you can monitor it with Instruments.

				Figure 16.15

				Looking at a single object allocation to view the reference count

				[image: 9781118007594-fg1615.tif]

				Viewing an allocation event stack trace

				A related powerful option gives you precise information about the event that created an object. Select an allocation event, and click the extended detail icon in the toolbar—the one at the right of the group of three labeled View.

				You should see the display in Figure 16.16. The stack trace lists the events that preceded the allocation. You can display further information in the trace; for example, you can list the Cocoa and OS libraries by name, highlight user and system events with different icons, and display file links to your source code.

				The latter is an extremely useful option, but because it's buried so deeply, it's easy to overlook. Use the menu (refer to Figure 16.16) to enable every display option. Scroll down to item 5—the item that lists the allocation event in your code, marked with the head-and-shoulders user icon. Double-click the file link to the left of the icon.

				Figure 16.16

				Viewing an allocation stack trace

				[image: 9781118007594-fg1616.tif]

				Viewing code from a stack trace

				Instruments loads the source code and highlights the line associated with the event, as shown in Figure 16.17. You can immediately see where the object was allocated.

				For an object that's still active—one with a retain count greater than zero and that hasn't been released from memory—the reference count display in Figure 16.15 shows the most recent memory management event. You can use the source code link feature in Figure 16.17 to find the code associated with that event.

				[image: mac_note.eps] NOTE

				You can use this feature to monitor system objects. But if you try to jump into the source code, you see a short assembly listing, because naturally you cannot view or change the original system files.

				Figure 16.17

				Bringing it back to the source code

				[image: 9781118007594-fg1617.tif]

				Using the Leaks instrument

				The Leaks instrument, shown in Figure 16.18, is a version of Allocations designed to display leak events only. The UI and features are similar—you can drill down to show source code in the same way—but only leak events are listed.

				You can use either Allocations or Leaks to find leaky code. But because Leaks displays leaks without the clutter of surrounding allocations, it's a more efficient way to find and debug leak events.

				Figure 16.18

				Using Leaks to view leak events without other allocations

				[image: 9781118007594-fg1618.tif]

				Managing zombies

				Unfortunately, there's no way to view objects that have been freed; after they're gone, they're gone, and they no longer appear in any of the statistics. When you release an event and send a message to it, it becomes a zombie—an undead object that haunts memory and tries to eat your Mac or iPhone's brain. Because manual memory management is so tricky, Instruments include a special zombie monitoring tool to help you capture zombies before they get out of hand.

				To illustrate this, the next example uses bad code to deliberately create a zombie and demonstrate how Instruments can highlight its location. Create a new Window-based iOS application, or modify the one you made earlier, changing the code in the app delegate to this listing:

				#import “ZombiesAppDelegate.h”

				@implementation ZombiesAppDelegate

				NSObject *theZombie;

				@synthesize window;

				- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

				{

				 [self.window makeKeyAndVisible];

				 NSTimer *theTimer =

				 [NSTimer scheduledTimerWithTimeInterval:1.0

				 target:self

				 selector:@selector(timerDo)

				 userInfo:nil

				 repeats:YES];

				 theZombie = [[NSObject alloc] init];

				 [theZombie release];

				 return YES;

				}

				- (void) timerDo {

				 NSLog (@”Tick”);

				 [theZombie release];

				}

				The code creates an instance of NSObject and releases it immediately. The timer handler includes a duplicate release event. If you build and run this app without profiling it in Instruments, it crashes because the second release creates a zombie.

				Figure 16.19 shows the result. You can see that the app crashed. But other than the EXC_BAD_ACCESS, which can be caused by various issues, there's nothing to suggest why it crashed.

				[image: mac_note.eps] NOTE

				If you have some experience with iOS, you may know that the absence of a stack trace or console report often suggests a memory error. But there's nothing here to tell you where the error is located.

				Figure 16.19

				In this unhelpful crash report, Xcode doesn't give anything away about the cause of the crash.

				[image: 9781118007594-fg1619.tif]

				To use the zombies feature, follow these steps:

				1. Select Product⇒Profile in the main Xcode menu.

				2. Choose the Zombies instrument, as shown in Figure 16.20.

				[image: mac_caution.eps] CAUTION

				In iOS, the Zombies instrument is available only in the Simulator. It isn't included in the templates for an iOS device.

				3. Wait for Instruments to load, and begin recording.

				4. Authenticate when asked to.

				 The test app crashes almost immediately, and it can take a while for Instruments to catch up. Don't worry if you see the spinning beach ball while this happens; Instruments is working toward a useful display.

				Figure 16.20

				Selecting the Zombies instrument

				[image: 9781118007594-fg1620.tif]

				Eventually, you see the display in Figure 16.21. The zombie event is tagged with a small red flag at the top of the time line and a floating pop-up that includes a short summary of the zombie event. The detail pane shows the history of the object and the reference count history of the history. In this example, the reference count history is very simple: The object is created, released, and released again. In a practical project, this history can be longer and more complex.

				If you open the extended detail pane, you can see a stack trace for each event, as shown in the figure. Note that the Responsible Library and Responsible Caller fields are blank in the history table and that the stack trace doesn't include source code links. It would be useful if this information were available, but unfortunately it disappears when an object is released, and the zombies display doesn't include it. Instead, you have to work back from the hints you're given. For example, you might search the code for NSObject release events and monitor each event with a breakpoint.

				Usually, there's just a single zombie event, because the app crashes immediately after it encounters one. It's possible, under special circumstances, to have more than one, and the Zombies instrument displays multiple red flags on the time line. You can view the contents of each by clicking it and using the Done button to hide the pop-up dialog box when finished.

				Figure 16.21

				Catching a zombie

				[image: 9781118007594-fg1621.tif]

				Exploring the detail pane

				When you've finished exploring zombies, note that the Allocations instrument can display even more information in the detail pane. The default view in the detail pane is called the Statistics view. But the pane can display allocation data in other ways. You can select the other options, described later, using the menu above the detail pane, as shown in Figure 16.22. Here's what's available:

				[image: bl.eps] Call Trees: This displays a complete list of nested function and method calls. Use it with the Mark Heap feature, described later, to display a calling context for an active method. You also can view the complete call tree of the entire application. This gives you a very detailed view of the events in your app, but it's so detailed that it's rarely useful.

				[image: bl.eps] Object List: This is a simple linear list of objects that can be sorted by memory address, category (name, for example), creation time, size, library, and calling context. It's identical to the object list introduced earlier.

				[image: bl.eps] Heapshots: This creates a simple summary snapshot of heap (total memory) use. Click the Mark Heap button at the left to measure the heap. The Heap Growth column displays the difference between the current and previous heap sizes.

				[image: bl.eps] Console: This displays a console window to monitor text output. You can select the application console or the main system console.

				Figure 16.22

				Selecting other types of displays in the detail pane

				[image: 9781118007594-fg1622.tif]

				Modifying instrument settings

				When you load a template, the instruments it contains are initialized with default settings. You can modify these settings before or after a run by clicking the small information (i) icon at the right of the instrument to show an Inspector dialog box, as shown in Figure 16.23. Each instrument displays a different set of options. Some options are available for many instruments.

				The settings inspector is easy to overlook, but it includes powerful features. Some common settings include the following:

				[image: bl.eps] Target: By default, this matches the process or thread that Instruments is monitoring. Some instruments allow you to select a different process or thread with this menu, to enable simultaneous monitoring across multiple applications.

				[image: bl.eps] Launch Configuration: These are general settings for the instrument.

				[image: bl.eps] Track Display - Zoom: The Zoom option changes the vertical height of the time line. You can use it to emphasize the data from one instrument or to highlight activity at the lower scale of the display.

				[image: bl.eps] Track Display - Style and Type: The Style and Type options can show cumulative or activity-summary views of the data. The Overlay type displays different runs on a single graph, while the Stacked type (which is preferred) displays a series of strips with the same vertical scale.

				Figure 16.23

				Changing instrument settings with the inspector

				[image: 9781118007594-fg1623.tif]

				For the Allocations instrument, the remaining settings are unique. The Launch Configuration options for the Allocations instrument include a selection of check boxes. Most are self-explanatory. For example, the Record reference counts option does what you'd expect it to; if you uncheck the box, the instrument doesn't record reference counts.

				[image: mac_tip.eps] TIP

				Note that Enable NSZombie detection turns on the zombie monitoring feature introduced earlier. There is no separate Zombies instrument; zombie detection is built into the Allocations instrument, and you can enable or disable it here. It's important to remember this if you create your own templates; otherwise, you'll look for a Zombies instrument and wonder why there isn't one.

				The Recorded Types option enables crude but useful filtering of the objects list in the detail pane. Events tagged with Malloc are typically low-level system events, and they can clutter up the display, so it's often useful to ignore them. CF (Core Foundation) objects are slightly more complex, but they're still relatively low level. NS objects are Cocoa objects.

				[image: mac_caution.eps] CAUTION

				Your custom objects are considered Cocoa objects. If you don't record NS objects, Instruments ignores them, even though their names may not begin with NS. But on iOS, objects that begin with UI aren't ignored. Also, you can set the Recorded Types options to filter out everything. If you do this, you'll see an empty yellow time line with a warning message.

				If you click the Configure button at the bottom right of the inspector, it spins around to show the view in Figure 16.24. By default, this dialog box repeats the record/ignore options from the previous view, but you can use the add/remove icons under the table to add your own prefix strings for customized filtering. Most instruments include the Configure option, but as with the main settings, every instrument displays a different set of features on the flip view.

				Figure 16.24

				The other side of the inspector. Not all instruments implement this flip view feature. Each instrument displays different options.

				[image: 9781118007594-fg1624.tif]

				Comparing different runs

				To monitor a new run, click the Record button to stop a run, and click it again to begin recording. By default, you see a new set of tracks in the time line, and the description string under the main time counter changes to “Run N of N”, where N is the total number of runs.

				To compare different runs, click the reveal triangle at the left of an instrument. The time line displays each run on a different track, as shown in Figure 16.25. Selecting each run in the time line displays its final statistics in the detail view. You can also select runs by clicking the forward/back arrows on each side of the “Run N of N” text in the time counter.

				Figure 16.25

				Comparing different runs

				[image: 9781118007594-fg1625.tif]

				[image: mac_caution.eps] CAUTION

				Although each run in this example is identical because they all use the same zombies test app, you can see from the graphs how different the timing can be. Instruments must share Mac resources with other applications, including Xcode and the Simulator. The time taken to launch an app and begin recording events can vary dramatically. Generally, you can't rely on profiling for interactive time-critical monitoring, at least not for the first minute or so of each run.

				Saving and loading runs

				To save a run, select File⇒Save As from the Instruments menu. The current run is saved to a .trace file, with all the current settings and data. You can reload a trace with File⇒Open. After loading, you can record further runs. They're added to the data in the usual way. The original runs aren't deleted or modified. You can then resave the new file with a new name or overwrite the original.

				Working with Instruments and Templates

				You can use the templates to get started with Instruments. But to customize the testing with your own preferred mix of instruments, you must understand the difference between instruments, documents, and templates.

				Understanding templates

				The standard templates have three elements:

				[image: bl.eps] One or more instruments

				[image: bl.eps] Default settings for each instrument

				[image: bl.eps] An appealing graphic that appears in the standard template list on launch

				The default templates are designed to create a selection of standard useful profiles. But you can create custom templates, with your own selection of instruments and settings. When you save a template, it's added to the user library. You can select one of the standard icons for the template when you save it.

				Creating a template

				To create a new template, select File⇒New in Instruments and select the Blank template. Click the Library button, and drag and drop one or more instruments from the list onto the Instruments column at the left of the Instruments window, as shown in Figure 16.26.

				Go through each instrument, and change the settings to useful defaults. You can add multiple copies of the same instrument to the template with different settings. For example, you might add two copies of the CPU Monitor instrument and use the Configure options to display two different statistics in the time line, such as PhysicalMemoryUsed and PhysicalMemoryFree.

				[image: mac_caution.eps] CAUTION

				Make sure you select only the instruments that match your target platform.

				Figure 16.26

				Creating a custom template

				[image: 9781118007594-fg1626.tif]

				If you want to monitor different threads and processes in each track, set the Target menu in the toolbar to Instrument Specific. You can then select the targets for each instrument when the template loads.

				Finally, use the File⇒Save as Template option in the main Instruments menu to save the new template. Click the triangle at the bottom right of the Icon box to select one of the standard icons. Give the template a memorable name.

				As shown in Figure 16.27, when you create a new Instruments document, the saved template appears in the User section of the template list. To delete a custom template from the list, navigate to the path shown in the template description in Finder, and delete the file by hand.

				[image: mac_tip.eps] TIP

				The Library window includes a terse description for each instrument in the list. You can find more information about each instrument, with selected extra details about parameters and settings, in the documentation under Tools & Languages⇒Performance Analysis Tools⇒Instruments User Guide⇒Built-in Instruments.

				Figure 16.27

				Loading a custom template

				[image: 9781118007594-fg1627.tif]

				Creating custom instruments

				You can create custom instruments to monitor OS features and other events that aren't included in the standard library. Instruments uses a technology called DTrace, which is outlined below. But you can create simple custom event monitors without understanding DTrace.

				Select Instrument⇒Build New Instrument to display the custom instrument dialog box, shown in Figure 16.28. If you understand DTrace and the D scripting language, you can fill in the DATA, BEGIN, and END fields with custom code.

				For a simple event monitor, you can enter a library and function name in the probe fields and select one or more parameters to monitor in the Record the following data: box. A more detailed primer on creating custom instruments is beyond the scope of this book. A basic outline is included in the documentation at Tools & Languages⇒Performance Analysis Tools⇒Instruments User Guide⇒Creating Custom Instruments with DTrace.

				Figure 16.28

				The custom instrument dialog box

				[image: 9781118007594-fg1628.tif]

				DTrace and Instruments

				Internally, Instruments is based on a technology called DTrace. Originally developed by Sun Microsystems (now Oracle) to help debug kernel and application issues in Solaris, DTrace was made available under a free Common Development and Distribution License (CDDL) and ported to various Unix systems. Instruments, effectively, is a GUI for DTrace, with a selection of pre-written scripts for monitoring useful performance features. Because DTrace works at the kernel level and modifies running code, it requires kernel level privileges.

				DTrace scripts are written in a custom programming language called D. The syntax of D is very similar to C, but the program structure has more in common with the acronymically named AWK language invented by Alfred Aho, Peter Weinberger, and Brian Kernighan.

				Internally, DTrace uses a selection of providers, or access points,that are patched into key parts of the kernel. For example, a provider called objc reports information about Objective-C objects in user space. syscall reports on system calls in the kernel. fbt (function boundary tracing) reports kernel functions. Each provider can be monitored by one or more probes that report on provider-level events.

				You can access DTrace from the command line in Terminal with the dtrace command. For example, the following dumps a list of active probes:

				sudo dtrace -l

				Instruments works by adding a custom action to each probe, which runs when the probe “fires”—in other words, when some relevant event triggers it. You can script your own actions, although you need to have some understanding of each probe and its options.

				You don't need to use or understand DTrace to use Instruments, but it can be useful to incorporate DTrace features into command-line development. A full introduction to the scripting syntax is outside the scope of this book. Default scripts are available in /usr/bin. In Terminal, type the following to see a list of scripts that you can reverse-engineer:

				grep -l DTrace /usr/bin/*

				More information is available at wikis.sun.com/display/DTrace/Documentation.

				Although this kind of low-level exploration of DTrace is better suited to experienced programmers than beginners, it can give almost everyone some insights into how DTrace can be used to monitor application and process activity.

		

				Working with UIAutomation

				It's often useful to send a sequence of test events to an app to check the UI for various possible errors and fail states. Instruments includes an Automation script player that can read a set of automation and test events from a file and send them as actions to an iOS app.

				Test scripts are written in JavaScript and use the UIAutomation class. UIKit objects have a library of associated UIAutomation objects that can receive automation events. You can find the full list of objects in the UI Automation Reference Collection in the Xcode documentation.

				Test scripts can be simple, or extremely complex. It's up to you to decide how you want to test your UI. The following example is very simple indeed, but illustrates the process of testing and can be expanded to create a more sophisticated test suite.

				It's tempting to leave testing to the end of the development cycle, but it can be more productive to develop your test script as you develop. Testing adds some overhead, but if you combine automated testing with the unit testing described in Chapter 17 you can create a useful test suite that exercises the key features of your project and helps ensure that features aren't broken by updates and bug fixes.

				[image: mac_tip.eps] TIP

				Most UI objects are subclasses of UIAElement. The documentation for UIAElement lists the messages you can send to objects as you test them. It's a good place to start when you begin using UIAutomation. (If you look at the object subclasses themselves, you won't find much of interest.)

				[image: mac_note.eps] NOTE

				The Automation instrument is only available on iOS. For OS X, Instruments includes a simple UI recorder that can capture and replay user actions.

				Setting up objects to support automation

				The UI automation system doesn't use outlets or links. Objects are referenced in two ways:

				[image: bl.eps] Views can be accessed through the application's view tree. With the correct code, views “just work.”

				[image: bl.eps] UI elements must be modified in IB.

				To include an object in testing, select in IB and modify it as listed here and shown at the right of Figure 16.29:

				[image: bl.eps] Make sure the Accessibility box is checked. (For many objects, Accessibility is on by default.)

				[image: bl.eps] Give the object a unique name in its Label field.

				The figure shows a very simple example with a single text field. A real UI is likely to have a longer list of UI elements, and you must repeat both steps for all of them.

				Figure 16.29

				Setting up a UI object to support test automation

				[image: 9781118007594-fg1629.tif]

				[image: mac_caution.eps] CAUTION

				Don't enable accessibility for container views. If you do, automation can't find the UI elements inside them.

				Creating a test script

				In Xcode 3, you could load a script before launching the Automation instrument. It's possible Xcode 4 will restore the same approach at some point in the future, but at the time of writing scripts are managed in a less elegant and intuitive way.

				The easiest way to create a test script is to create an empty file with a .js extension using an editor such as TextEdit. You can save the file anywhere. Your project directory is a good location because it guarantees you'll be able to find it later. Optionally you can include some test code in the file, but you'll be editing this file later within Instruments, so it's convenient to leave the file blank until you do that.

				[image: mac_note.eps] NOTE

				Even though Automation files can be loaded into Instruments and saved in a project directory, they're not part of the project's code base. You can't edit them with the main Xcode editor, and there's no reason to add them to a build.

				Launching the Automation instrument

				Select Product⇒Profile and choose the Automation instrument, as shown in Figure 16.30.

				Figure 16.30

				Selecting the Automation instrument

				[image: 9781118007594-fg1630.eps]

				At the time of writing this launches the instrument, and immediately begins recording—nothing. No script is selected, so Automation simply fills the time line with a blank rectangle.

				Click the Stop button to stop the run. Wait while Instruments resets itself, then select the Choose Script option from the menu, as shown in Figure 16.31. Click Choose Script again and navigate to your script file in the file selector to load it.

				[image: mac_note.eps] NOTE

				The first time you select the Choose Script menu, it has one item in it—the Choose Script option. Whenever you load a script, it's added to the list to this menu, so you don't have to navigate to it again.

				Figure 16.31

				Loading an automation script

				[image: 9781118007594-fg1631.tif]

				Editing an Automation script

				Select Product⇒Profile and choose the Automation instrument, as shown in Figure 16.30.

				Click the Edit button and an edit window appears as shown in Figure 16.32. This window is part of the Dashcode widget editor described in Appendix A. It includes keyword highlighting for JavaScript and a script selection menu. But it's less sophisticated than the Xcode editor and lacks most of Xcode's features, including code completion, syntax checking, and automated indentation.

				Even though it's limited, it's built into the Automation instrument; this makes it more convenient than an external editor.

				Figure 16.32

				Editing an automation script

				[image: 9781118007594-fg1632.tif]

				Getting started with Automation scripting

				Automation scripting is related to the Document Object Model (DOM) used to access the features of web pages. Like Objective-C, it uses objects and accessors, but the syntax is somewhat different. You don't need to create classes in your code, because they already exist.

				Initializing the script

				Scripts typically start with the following boilerplate code:

				var target = UIATarget.localTarget();

				var thisApp = target.frontMostApp();

				var thisWindow = thisApp.mainWindow();

				You can then use the object types listed in the documentation for UIAElements to return arrays of UI elements. For example:

				var textfields = thisWindow.textFields();

				returns an array of textfields. You can then access the textfields by the name you set in IB

				textfields.[“aNameSetInIB”]…

				or by the standard numerical subscript

				textfields[0]…

				The length function returns the number of items in an array.

				Generating input events

				You can set values for UI events by accessing their value property. For example

				textFields[“username”].setValue(“Mr Anonymous”);

				You can also automate button taps using the tap() function. For example

				myButtons[“okButton”].tap();

				An extended version of the same code can tap buttons on the built-in keyboard. For example

				app.keyboard().elements().[“go”].tap();

				taps the Go button.

				If your application needs to wait after an event, use

				target.delay(timeInSeconds);

				Logging output

				To log events and values, use calls to UIALogger, which displays messages in the script log window under the time line. UIALogger has various message levels, which force messages to appear in different colors. For example

				UIALogger.logFail (“Something bad happened.”);

				appears on the console in red.

				Creating test scripts

				Testing typically follows these steps:

				1. Preset some UI elements with test values.

				2. Perform an operation, sometimes using a button tap.

				3. Pause if necessary.

				4. Read return values and generate messages for pass/fail conditions or general reporting.

				You can, of course, include various paths through the test sequence, depending on the test results.

				Figure 16.33 shows a trivial example that runs a very simple test. In this example the code is unlikely to fail, because the number of text fields is fixed. But in a more complex test it can be useful to report the number of items in a UI. For example, you can report the number of cells in a table view after loading data from a remote source.

				Figure 16.33

				The output from a very simple test script

				[image: 9781118007594-fg1633.tif]

				[image: mac_caution.eps] CAUTION

				Scripts can be unpredictable, and features may not work as expected. It's a good idea to review the many online examples of scripting created by other developers before you begin creating your own. At the time of writing, scripting remains somewhat buggy.

				Summary

				This chapter introduced Instruments and explained how they can be used to aid debugging, testing, and performance profiling. It began by demonstrating how to launch Instruments when profiling a simple test app, and it outlined the key UI features.

				Next, it delved in some detail into the Allocations and Leaks instruments, explored how to use them to monitor and debug memory problems in an active application, and explained how to look for lines of code that might be causing memory issues.

				It introduced the Zombies template, explained how it was related to the Allocations instrument, and showed how to manage instrument settings and display options.

				It demonstrated how to create and use custom templates for your own projects and touched briefly on creating custom instruments for advanced low-level monitoring and debugging.

				Finally it introduced the Automation instrument and explained how you can use it to create automated test sequences for UIs.

			

		

	
		
			
				Chapter 17: Creating Unit Tests

				
					In This Chapter

				

				Introducing unit testing

				Understanding unit testing in Xcode

				Creating a project for unit testing

				Creating a test case

				Running tests

				Unit testing is a powerful software engineering technique that's supported in Xcode. This chapter outlines the technique so you can understand the theory behind unit testing, and it explains how to use unit testing in practice.

				Introducing Unit Testing

				You can test software in many ways, and software engineering has evolved formal processes that can simplify design and improve project efficiency.

				Software can fail in five ways:

				[image: bl.eps] The conceptual model for the user interface is misleading, incorrect, or inconsistent. If typical users make wrong assumptions about the software, the developer has made wrong assumptions about how users think and how they expect the software to work. Failures at this level may not be critical, but they frustrate users and waste their time.

				[image: bl.eps] The UI is fragile. Common and inevitable user errors—such as whitespace in text, null entries, misspellings or invalid characters, or accidental mouse clicks—cause the application to fail.

				[image: bl.eps] The UI or underlying model isn't secure. Deliberate hacking attempts can open an application's internal features to outsiders in an uncontrolled way.

				[image: bl.eps] The underlying logic is flawed. Code may contain incorrect assumptions about interfaces, contracts, and processing requirements.

				[image: bl.eps] The underlying logic is fragile. Memory or file errors, API inconsistencies and bugs, and other method-driven issues create crashes or other problems. Failures can be complex and cumulative; a feature works until a problem occurs, and then a dependent feature appears to fail at some point later. The dependencies may not be obvious.

				[image: mac_note.eps] NOTE

				In software engineering a contract is an explicitly defined interface between two elements. The two elements are designed to exchange information in a certain way, and the contract defines the details of the exchange—specifically the data format, timing, and sequence of the exchange.

				Unit testing is designed to help with some of these problems but isn't a solution for all of them. Philosophically, unit testing is closer to method and function testing than sequence testing. To use unit testing successfully, code should have clearly defined interfaces and predictable outputs.

				A key benefit of unit testing is that if a bug is easy to reproduce, it's easy to test for it. Creating a test guarantees that future bug fixes don't reintroduce problems. Unit testing can help make these regression errors less likely.

				Another benefit is that with minor modifications, test code can be used as example code in documentation, to illustrate how features are designed to work.

				You also can use unit testing as a design aid. If you test as you go, you can catch logical inconsistencies and overly complex contracts before you implement them. Potentially, you can use test code to sketch how a feature should work before you implement the code for the feature.

				In spite of the advantages, unit testing remains controversial. There's an approximate consensus that unit testing is most effective in collaborative projects with a well-defined API. Solo programmers are more likely to have an overview of their project than group developers, so objective testing of elements can sometimes be more of a distraction than a benefit. As interaction becomes more GUI-driven and open-ended, unit testing code can become so large that it rivals the size of the main application, and the return on the time and effort invested becomes smaller.

				For all applications, unit testing is most effective when combined with intensive beta testing and formal bug tracking. The most robust production regime combines beta testing, unit testing, and aggressive defensive coding that anticipates and codes around likely input errors.

				Understanding Unit Testing in Xcode

				In outline, you can do the following with unit testing:

				[image: bl.eps] Compare returned values from a method or function with expected values

				[image: bl.eps] Check that objects are created and initialized correctly

				[image: bl.eps] Confirm that error conditions throw an exception

				[image: bl.eps] Repeat tests any number of times

				[image: bl.eps] Create composite test sequences that run various tests in order

				[image: bl.eps] Select tests depending on the results of previous tests

				When you create a new iOS or OS X project, you can choose to add unit testing features. Xcode automatically adds the features—in fact, it adds a separate target that implements unit testing—and initializes them. However, the initialization isn't comprehensive, and extra work is required before you can begin adding test code. The work isn't described in the official documentation, but it is listed below.

				In detail, the unit testing package includes the following:

				[image: bl.eps] A framework called SenTest: The framework manages the testing and creates error reports. You must add custom code for each feature or case you want to test.

				[image: bl.eps] A set of test macros: The macros are designed to check for possible error conditions and report them during a build.

				[image: bl.eps] A separate test bundle: To run your tests, build the bundle. Errors are reported during the build.

				[image: bl.eps] A test class, which is part of the bundle: You add custom test code to this class and include macros to check for error conditions and report them. This custom code runs automatically during a build. Each test method in the class is called a test case.

				[image: bl.eps] A unit test application: This runs automatically behind the scenes, triggered by a script, and does the heavy lifting required for the unit testing process. You don't have to run it by hand.

				If you're new to unit testing, you may find the process counterintuitive. You might expect unit testing to be a runtime process, like debugging, but it isn't. In fact, you run unit tests by building your project in a special way. The build process runs your test code, and errors appear in the build log. They're not logged to the console like runtime errors.

				You must understand that the test build is independent of the standard release/debug builds. It's possible for a release/debug build to complete with no errors, even though a test build reports multiple bugs.

				A standard build reports basic compilation and linking errors. Your test build adds further checks for logical consistency, predictable output, and other error conditions. It's up to you to define these checks, to add custom test code to implement them, and to define the format and content of the error messages that report them.

				The testing framework gives you the tools to build tests, but it doesn't recommend specific tests, include any default tests, or suggest useful testing strategies. Until you add test case code, a test build does nothing. So it's also up to you to decide which features should be tested, how they should be tested, and how complex and exhaustive the testing process should be.

				[image: mac_caution.eps] CAUTION

				If your test code includes logical errors, the testing process itself fails. Keep tests as simple as possible, and build more complex tests from simple tests that are known to work. This won't guarantee that your tests are valid, but it's more likely to be useful and manageable than a complex, intricate test system that's difficult to understand.

				[image: mac_note.eps] NOTE

				The test framework is called SenTest in the test code. You may see it described as OCUnit in the Apple documentation. Technically, OCUnit is the Objective-C variant of SenTest. In practice, the two names are interchangeable.

				Creating a Simple Unit Test Project

				To create a project that includes unit testing, follow these steps:

				1. Use File⇒New Project to create a new project.

				 Check the unit testing options before you save the project. This creates a standard project with extra test build features that include a build bundle and a test class.

				2. Develop your project, modifying the standard project classes and adding new classes in the usual way.

				3. For each feature you want to test, add test case code to the test class file.

				4. Initialize Xcode's settings to make sure the test code runs as it should.

				5. Optionally, you can use standard debugging tools to verify the test code.

				6. Whenever you need to test the project, select the test build and build it.

				 If the test build fails, correct the bugs in the project code.

				7. When the project is complete, build a release version in the usual way.

				 Because the test code exists in a separate bundle, it isn't linked into a standard release build.

				Because unit testing is open-ended, the example described in the rest of this chapter illustrates how to create a single simple test case for a single trivial class; it's a very basic math operation in a math framework. Although the framework and the test code are trivial, you can easily expand this example to meet the needs of a real project.

				[image: mac_note.eps] NOTE

				This example illustrates how to create unit test for an iOS project. The unit testing process for iOS and OS X projects is similar enough to be considered identical.

				[image: mac_note.eps] NOTE

				If your project uses Core Data, you can include it in the usual way. Core Data features and unit testing features are unrelated. You can add either, neither, or both to a project.

				Creating a new project that supports unit testing

				For both Xcode and iOS projects, the unit testing option appears as a check box, as shown in Figure 17.1. For this example, create a new Navigation-based project and check the box. Save the project as UnitTest.

				[image: mac_caution.eps] CAUTION

				Although you can add unit testing to an existing project, it's not a simple process. It's more efficient to include unit testing when you create a new project. If you don't use the test features, they won't get in your way, but they'll be ready if you need them.

				Figure 17.1

				Creating a new project that supports unit testing

				[image: 9781118007594-fg1701.tif]

				Xcode automatically adds unit testing features to the project, as shown in Figure 17.2. You'll find a new product bundle with the suffix Tests.octest, a new target with the Tests suffix, and a new class called Tests with a standard header and implementation file.

				Figure 17.2

				Exploring the new test features

				[image: 9781118007594-fg1702.tif]

				Although these features are included in the project, testing isn't enabled. To enable it, select the Tests target and view the Build Settings. Scroll down to the Unit Testing switches, and make sure Test After Build is set to Yes, as shown in Figure 17.3.

				[image: mac_caution.eps] CAUTION

				Make sure you enable testing for the test target, not for the main build. Optionally, scroll up to the Linking switches. You'll see -framework SenTestingKit added to the Other Linker Flags field. In earlier versions of Xcode, you had to set this switch manually, but this is no longer necessary in Xcode 4.

				Figure 17.3

				Enabling testing. Testing is disabled if this switch is set to No, even during test builds.

				[image: 9781118007594-fg1703.tif]

				Creating a class for testing

				Testing doesn't modify your main source code. It's an external process, and it leaves your main build code unchanged.

				For this example, create a new class called MathMachine to hold some basic math code. Right-click the UnitTest group in the Project Navigator, select New File, choose the Objective-C class option, and set it to be a subclass of NSObject. Save the file as MathMachine. Xcode adds a header and implementation file to the Classes group in the usual way.

				[image: mac_note.eps] NOTE

				Because this project is called UnitTest, the UnitTest group holds the main source code. The unit testing code is in the UnitTestTests group. In a project with a different name such as ProjectX, the unit testing code would be in ProjectXTests—and so on.

				MathMachine is going to unleash the power of gigahertz computing by adding together two integers—inputA and inputB—and storing them in a property called sumAB. Add the following code to the header file, as shown in Figure 17.4:

				#import <Foundation/Foundation.h>

				@interface MathMachine : NSObject {

				 int inputA;

				 int inputB;

				 int sumAB;

				}

				@property int inputA;

				@property int inputB;

				@property int sumAB;

				-(id) initWithSum: (int) inA and: (int) inB;

				@end

				This defines the MathMachine class with some supporting properties. It also creates a single method called initWithSum:.

				Figure 17.4

				Creating a new class to add a pair of integers

				[image: 9781118007594-fg1704.tif]

				Add the following code to the implementation file, as shown in Figure 17.5:

				@implementation MathMachine

				@synthesize inputA;

				@synthesize inputB;

				@synthesize sumAB;

				-(id) initWithSum:(int)inA and:(int)inB

				{

				 if (self = [super init]) {

				 self.inputA = inA;

				 self.inputB = inB;

				 self.sumAB = inA + inB;

				 }

				 return self;

				}

				}

				@end

				Figure 17.5

				Implementing the initialization and addition method

				[image: 9781118007594-fg1705.tif]

				[image: mac_note.eps] NOTE

				If you're new to Objective-C and Cocoa, this may seem like a lot of code for a simple operation. In fact, most of this code creates a new class and defines one possible custom initialization method. Although this is a long-winded idiom, it's standard for Objective-C and Cocoa classes. In a real math framework, the class would be extended with many more properties and many other initialization and processing methods.

				Creating a test case

				Now that the project includes something to test, you can add the code to test it. Tests are defined as individual methods in the <ProjectName>Tests class. The name of each method must start with test. Methods that begin with any other string are ignored.

				Each method is called a test case. As explained earlier, it's up to you to create test code that exercises the features of your target class in the most logical and comprehensive way. In practice, this requires three steps:

				1. Define the inputs to the test and the results they should generate.

				2. Add a test case method to the Tests class header.

				 Depending on your test code, you may need to define the inputs and expected results as constants.

				3. Implement the test method in the Tests implementation file.

				 Use assert macros, described below, to implement the tests and report errors.

				4. Optionally, add set-up and tear-down code around the test.

				 The Tests implementation file includes predefined setUp and tearDown methods to hold this optional code. You can create and release test objects in these methods, or you can build alloc and release calls directly into each test case. The best solution depends on the test requirements.

				Defining test inputs and results

				Figure 17.6 shows the header of the test class. You can see two predefined inputs, kA and kB, and a predefined expected sum, named kExpectedSum. The testMathMachineSum method runs the test that compares them. Here's the code:

				#import <SenTestingKit/SenTestingKit.h>

				#define kA 1

				#define kB 1

				#define kExpectedSum 2

				@interface UnitTestTests : SenTestCase {

				@private

				}

				-(void) testMathMachineSum;

				@end

				The #define statements and the testMathMachineSum method have been added. The other parts of the file are created with the project. Note that the method doesn't take parameters, and there are no semicolons after the #define directives.

				This example is trivial. In a more realistic test case, the relationship between the expected result and the inputs would be less obvious. It might rely on a series of object allocations and other complex operations. Potentially, you could predefine an array holding a sequence of input events in the setUp method and sequence through the array in the test code implementation. Inputs and expected results might be downloaded as a file from a remote server and created by other members of a development team.

				Figure 17.6

				Defining test inputs, an expected value, and a test method

				[image: 9781118007594-fg1706.tif]

				The key point isn't that the test is simple, but that the relationship between the test inputs and the expected output is well defined and predictable. The point of testing is to confirm that this relationship is reliable and that the code being tested reproduces it on demand.

				The test code itself can use any standard Cocoa/Cocoa Touch and OS X/iOS features in any combination. You can even generate inputs and results dynamically using independent code that is known to work.

				Creating test code

				By default, the test implementation file includes a single testExample method that prints a “Unit tests are not implemented yet…” message. To create a test, delete this method and add the code shown in Figure 17.7 and listed below. The code creates an instance of the MathMachine class, initializing it with the initWithSum: method. It runs an assert macro to check whether the expected sum is the same as the sum returned by the method. Finally, it releases the instance. The two %i parameters are part of the macro. The first displays the expected value, the second the value returned by the test method.

				[image: mac_note.eps] NOTE

				The alloc and release code could go into the setUp and tearDown methods. This example is deliberately self-contained for simplicity. In a more complex example, you can often improve clarity by keeping set-up, test, and tear-down code separated.

				#import “UnitTestTests.h”

				#import “MathMachine.h”

				@implementation UnitTestTests

				- (void)setUp {

				 [super setUp];

				 //Set up code here

				}

				- (void)tearDown {

				 // Tear-down code here.

				 [super tearDown];

				}

				-(void) testMathMachineSum

				{

				 MathMachine *testMathMachine =

				 [[MathMachine alloc] initWithSum: kA and: kB];

				 STAssertTrue(testMathMachine.sumAB == kExpectedSum,

				 @”Sum incorrect. Expected %i, got %i”,

				 kExpectedSum, testMathMachine.sumAB);

				 [testMathMachine release];

				}

				@end

				Figure 17.7

				Implementing a test method

				[image: 9781118007594-fg1707.tif]

				Understanding STAssert macros

				The core of the test is in the line that begins STAssertTrue. This is one of the special macros included in the test framework. The full list is shown in Table 17.1.

				[image: /Table 17.1]

				Table 17.1 OCUnit Assert Macros

				The macro syntax is unusual compared to standard Objective-C, so it's worth breaking it apart element by element. To create a test using the macro, you must include the following:

				[image: bl.eps] An STAssert macro from the table

				[image: bl.eps] A conditional expression to implement the test, which may take multiple parameters

				[image: bl.eps] An error string, which optionally can contain standard printf/NSLog parameter placeholders with formatting codes

				[image: bl.eps] The parameters to be logged, if there are any

				In the example code, the elements look like this:

				[image: bl.eps] STAssertTrue. Test if the following conditional evaluates to true. Write an error to the build log if it doesn't.

				[image: bl.eps] testMathMachine.sumAB == kExpectedSum. This is the conditional that implements the test. It checks whether the expected sum constant matches the sum returned by the initWithSum: method in the previous line.

				[image: bl.eps] @”Sum incorrect. Expected %i, got %i”. This is the text of the message that appears in the build log when the test fails. It takes two integer parameters.

				[image: bl.eps] kExpectedSum, testMathMachine.sumAB. These two parameters are reported in the message. If the test fails, the current value of the parameters is logged as part of the message.

				When you create test code, you must select a macro from the table, add a suitable expression, and fill in the message and parameter details as needed. Without a test macro, your test code does nothing.

				You can test for multiple error conditions by including multiple macros in a single test method. You can and should include multiple independent test methods. In a real example, each test case method should test a specific feature in your code. When you add a new feature or correct a bug, add a corresponding test case. You can also use these macros to generate messages that confirm when tests have been passed.

				[image: mac_tip.eps] TIP

				The assert macro syntax is used throughout development in many environments. If this is your first encounter with it, it can seem unintuitive because assert assumes negative logic and does the opposite of what you'd expect it to in English. It checks a condition and logs an error if the condition isn't true. When you use these macros, it can be helpful to think of “assert” as equivalent to “test if.”

				Running tests

				When you save the code, the tests are almost ready to run. But Xcode requires one final step before it can run a test build successfully.

				By default, classes that are being tested aren't included in the test bundle. If you try to run a test build, Xcode can't find the headers or the code for them.

				To fix this, select the UnitTestTests target, as shown in Figure 17.8. Select the Build Phases tab, and open the Compile Sources pane. Click the + triangle to add a new source, and select the MathMachine.m file, as shown in the figure. This adds the source file to the build and ensures that the test framework can see the class you're trying to test.

				When you are testing multiple classes, you must add them all. Add UI management classes such as view controllers only if they're referenced in the classes that are being tested.

				Figure 17.8

				Adding the code to be tested to the test build

				[image: 9781118007594-fg1708.tif]

				Optionally, if you have multiple versions of Xcode installed, you can choose to run a specific version of the OCUnit testing package, as shown in Figure 17.9. The package is run as a script. The default selects the standard system script, which should be suitable for most projects. The modified default shown in the figure selects the most recent version. You may also need to do this if Xcode can't find the standard script, so it's worth knowing that this option exists.

				Figure 17.9

				Selecting the test script using the Run Script option in the Build Phases. You don't usually need to do this, but it is worth knowing how to change this option in case you want to customize the process.

				[image: 9781118007594-fg1709.tif]

				You can now run your first test build. Select Product⇒Test from the main Xcode menu, as shown in Figure 17.10. Xcode runs the testing script on both targets. You should see a Build Succeeded message. The project passes the build test with no errors.

				Figure 17.10

				Select the test build. The initial build should be successful.

				[image: 9781118007594-fg1710.tif]

				To see what happens when a build fails, open the MathMachine.m file and change

				self.sumAB = inA + inB;

				to

				self.sumAB = inA - inB;

				Clearly, this won't add two numbers correctly. Build the test again, and you should see the output shown in Figure 17.11. The test case for the sum operation reports that the sum is incorrect. The error message uses the text and parameters you added to the test code.

				Figure 17.11

				This time the test failed. The unit testing code generated an error message to tell you which test raised an error.

				[image: 9781118007594-fg1711.tif]

				Note again that testing isn't like a normal build or debug session. The error appears in the test case code, not in the class is being tested. In fact it appears—with some redundancy—under the code that defines the error. And it's reported in the Issue Navigator as an issue with the test bundle, not the main target.

				This shouldn't be surprising, but it is unusual compared to a standard Xcode build, and it's worth keeping the differences in mind when you work with the SenTest test framework.

				[image: mac_tip.eps] TIP

				SenTest/OCUnit is ideal for Objective-C tests, but alternatives are available. For C++, it's worth exploring the alternative googletest framework available from code.google.com/p/googletest/. The framework isn't trivially easy to integrate into Xcode, but it offers expert developers a richer feature set and wider community support.

				[image: mac_tip.eps] TIP

				Don't forget that you can use the UI Automation feature in Instruments to exercise a UI. UI Automation is a different system, but the two test systems can work well together. You can use unit tests to check basic code logic and then exercise the UI to ensure that it manages user events correctly.

				Summary

				This chapter introduced the SenTest/OCUnit unit testing framework. It explained some of the theory behind unit testing and demonstrated how to prepare a project for unit testing and set up Xcode so the unit testing features work correctly.

				It illustrated the essential features of the test process with a simple example test case and summarized the key STAssert macros used to create test code.

				Finally, it showed how to run the test code and how to find and interpret the messages it generates.

			

		

	
		
			
				Part IV: Appendixes

				
				In This Part

				

				Appendix A

				Using Xcode's Tools and Utilities

				Appendix B

				Working with Other Editors

				Appendix C

				Understanding Compiler Technology

			

		

	
		
			
				Appendix A: Using Xcode's Tools and Utilities

				
					In This Appendix

				

				Understanding tools and utilities

				Introducing Dashcode

				Getting started with Quartz Composer

				Introducing the other tools

				Working with the utilities

				Xcode 4 is bundled with an exceptional collection of tools and utilities. These extras are easy to miss. They're not built into the main Xcode application, and many are sparsely documented. This is unfortunate, because the tools offer developers significant extra creative possibilities, finer control over app development and packaging, and advanced testing and customization features.

				A full user guide for every tool would double the size of this book, so this appendix summarizes the key features of each tool. Interested readers can find more detailed information in Apple's official documentation and in online discussions.

				[image: mac_note.eps] NOTE

				The online URL for the tools and utilities is currently http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/OSX_Technology_Overview/Tools/Tools.html.

				Finding the Tools and Utilities

				Figure A.1 shows how the tools and utilities appear in /Developer/Applications. Some of the tools—Dashcode, Quartz Composer, and Instruments—are placed at the same level as Xcode in the /Applications folder to draw attention to them. The remaining tools are grouped into folders.

				Figure A.1

				Finding Xcode's external tools and utilities

				[image: 9781118007594-fgb101.eps]

				Understanding the Top-Level Tools

				The Instruments tool is described in detail in Chapter 16. The remaining two tools are Dashcode, a widget editor used to create mini-apps for the OS X Dashboard, and Quartz Composer.

				Introducing Dashcode

				Dashcode, shown in Figure A.2, supports Apple's Dashboard technology. Dashboard was introduced in OS X 10.4 Tiger, adding an alternate desktop that can be populated with small, simple applications known as widgets. Widgets are written in a combination of HTML, CSS, and JavaScript, using Apple's WebKit framework.

				Dashcode was released with OS X 10.5 Leopard and is a widget design and coding tool. Apple worked hard to support widget technology by promoting its own widgets and creating a sales and promotion page for third-party developers. For a year or so, some developers made significant sums from widget sales.

				Figure A.2

				Dashcode's design and layout tools and the code editor have obvious similarities to Xcode.

				[image: 9781118007594-fgb102.tif]

				But technically, widget technology is hampered by the ease with which anyone with a copy of Dashcode can open a widget and extract the graphics and source code. Apple's focus soon switched to the iPhone and iOS apps.

				With the arrival of OS X Apps in OS X 10.7 Lion, widgets have become a legacy technology. Although app and widget technology doesn't overlap perfectly—widgets are designed to be small and self-contained, while OS X Apps are designed to run full-screen—the market for widget sales has almost disappeared. New developers are being encouraged toward app development for OS X.

				[image: mac_note.eps] NOTE

				For practical information about widget editing and creation with Dashcode, see the Cocoa Developer Reference companion title to this book.

				Getting started with Quartz Composer

				Quartz Composer, shown in Figure A.3, is a sophisticated tool that can create static image filters and complex animations, including screen savers. As the name suggests, it uses the Quartz image generation and processing libraries built into OS X, but you don't need to know anything about Quartz to use Composer successfully.

				Figure A.3

				A simple Quartz Composer project can create sophisticated animated effects.

				[image: 9781118007594-fgb103.tif]

				Composer is the video- and image-filtering equivalent of a music synthesizer. Developers link together compositions from a library of objects—known as patches—that create and transform graphics, video, and supporting parameter information.

				A composition is a set of objects with defined connections. The connections are made visually with virtual patch cords that link patch input and output parameters, which appear as terminals on each visible object. To make a connection, drag a cord from an output terminal on one object to an input terminal on another.

				The library is feature-rich, with hundreds of patches. Some patches perform simple operations such as basic arithmetic or simple time-varying control of animation parameters. Others work at an intermediate level. For example, the audio splitter patch splits an audio stream into a set of frequency-filtered bins that can be used to build an audio visualizer. A few create very complex effects that you can drop into your own compositions.

				The patching system includes a macro feature that can hide the internal complexity of a composition and make it reusable as a new patch called a clip. Clips can be nested almost indefinitely.

				Quartz Composer includes a selection of application templates, listed in Table A.1. Most templates include sample compositions that you can modify and extend.

				[image: /Table A.1]

				[image: mac_caution.eps] CAUTION

				Compositions saved to either /Library/Screen Savers or /Library/Compositions become available to other applications. You may need to modify file permissions before you can save files to these folders from within Quartz Composer. Also note that the link between iTunes and a Quartz Composer visualizer patch starts to work properly only after you select one of the existing visualizers in iTunes. If you don't select an existing visualizer and run it in iTunes, the visualizer template appears to do nothing.

				Using Quartz Composer with Xcode

				Under the hood, Quartz Composer creates Quartz library calls, which in turn are compiled to OpenGL instructions that run on a Mac's graphics card. Composer is much easier to work with than either Quartz or OpenGL. As a visual development tool with instant feedback, it's more productive and creative than the others.

				You can develop for Quartz Composer visually, or you can access a code level which is closely associated with two Quartz Composer player objects: QCView and QCRenderer. On the Mac, Xcode includes a Quartz Composer plug-in application template. You can use this to create your own patches. You can also add a selection of Quartz Composer objects to your own applications from the library in IB, as shown in Figure A.4. The list includes a patch controller that can connect parameters in a composition to custom code, a player view, a parameter view, and a composition picker.

				Figure A.4

				Use IB to add a QCView object to the standard Mac application template.

				[image: 9781118007594-fgb104.tif]

				Quartz Composer is very powerful and can create complex and rich video effects with little effort. Unfortunately, it remains poorly documented, and support for the API and the visual editor is minimal. However, if you have an interest in visual effects, it can be worth persevering with the documentation, which is currently at developer.apple.com/graphicsimaging/quartzcomposer. Searching for third-party examples elsewhere online is also worth the effort. There aren't many, but the ones that exist can help fill in some of the background detail missing in the official documentation.

				[image: mac_note.eps] NOTE

				Currently, Quartz Composer is available only on OS X. It's not supported on iOS.

				Working with the Other Tools

				The remaining tools are a grab bag of utilities and extras. None is essential. Some can be very useful, but others seem to be lingering for historical reasons.

				Introducing the audio tools

				The /Developer/Applications/Audio folder includes two tools: HALLab and AULab. HALLab (Hardware Abstraction Layer Lab), shown in Figure A.5, displays information about audio hardware and drivers. You can use it to test audio drivers and report on the status of the default system drivers.

				AULab (Audio Unit Lab) is a host application for audio units. If you don't own a separate sequencer application such as Logic, you can use AULab to host and test AU plug-ins.

				Figure A.5

				The HALLab interface is minimal, but you can use it to check the operation of audio drivers and their related hardware.

				[image: 9781118007594-fgb105.eps]

				Introducing the graphics tools

				The graphics tools include three groups of applications: Quartz and Quartz Composer support, OpenGL support, and general graphics.

				General graphics tools

				There are two general graphics tools. Pixie is a floating magnifying window. Anything under the window is magnified by a factor between 1X and 12X, depending on Pixie's settings. You can lock movement horizontally or vertically. Pixie is useful for general magnification of app windows and includes a capture feature that can save the magnified image to disk.

				Core Image Fun House, shown in Figure A.6, is a filter preview tool. You can test the effects of the standard Core Image filters on a small selection of images. You can also stack filters to create combined effects and use this tool to test custom filters.

				Figure A.6

				The results of using a couple of Core Image filters on the standard wolf image

				[image: 9781118007594-fgb106.eps]

				Quartz graphics tools

				The two Quartz graphics tools are Quartz Composer Visualizer and Quartz Debug.

				Quartz Visualizer is a more sophisticated version of the Viewer tool built into Quartz Composer, with improved network support. You can use it to test local compositions and run them remotely.

				Quartz Debug is a reporting and control tool that monitors frame rates and CPU loads. You can use it to enable or disable a minimal selection of hardware acceleration options.

				OpenGL graphics tools

				The OpenGL Driver Monitor, shown in Figure A.7, displays a fanatically comprehensive list of information about OpenGL events. To use it, click the Parameters button at the lower right of the window and select one or more driver parameters from the slide-out list. The results report the status of the OpenGL subsystem as a whole.

				Figure A.7

				Track system-wide OpenGL events and parameters with the OpenGL Driver Monitor.

				[image: 9781118007594-fgb107.eps]

				The OpenGL Profiler tool is the app-specific equivalent. You can attach it to any application and use it to monitor a selection of graphics-related information. Initial set-up can be slightly tricky, and you may need to log out of your Mac and login again before this tool works correctly.

				The OpenGL Shader Builder is a development and test environment for custom shader code. It provides a generic run-time environment for shader testing, with a simple editor for development. Although you can develop shader code directly in Xcode, OpenGL Shader Builder includes a selection of simple test shapes with basic but useful texture loading and selection.

				Introducing the performance tools

				There are two performance tools. The Quartz Debug tool is a direct alias for the Quartz Debug tool in the /Graphics Tools folder.

				Spin Control reports hang events that display the Spinning Beachball of Death. To use Spin Control, launch it and leave it running. Check it when an application hangs. Spin Control can give you hints about what the application was doing at the time.

				Working with the Utilities

				The utilities are grouped together in /Developer/Applications/Utilities. The collection is a grab bag of assorted mini-applications. It's well worth your time to become familiar with the full list, because a few of the utilities fill in features that are missing elsewhere in OS X. Rather than listing the utilities alphabetically, the sections below collect them into related groups.

				Device and hardware support utilities

				With the utilities in this group, you can probe and test the I/O and hardware features of your Mac:

				[image: bl.eps] The Bluetooth Diagnostics Utility counts dropped packets and checks for other Bluetooth issues. Less usefully, it also prepares a diagnostics report and uploads it to Apple's Bluetooth engineering team.

				[image: bl.eps] Bluetooth Explorer lists active devices and logs discovery attempts. Devices can be interrogated to reveal a detailed set of low-level Bluetooth parameters; tested to show connection quality.

				[image: bl.eps] The Packet Logger shows raw byte-level Bluetooth packet data. All three Bluetooth utilities are in the /Applications/Utilities/Bluetooth folder.

				[image: bl.eps] IORegistryExplorer lists detailed information about a Mac's hardware registry, which can be useful when working with the I/O Kit OS X framework.

				[image: bl.eps] iSync Plug-in maker is a tool for building and testing plug-ins that handle specific features in a hardware device, typically a cell phone. For more information, search for the iSync Plug-in Maker User Guide in the documentation.

				[image: bl.eps] USB Prober monitors the USB subsystem. You can list the USB parameters and settings of each USB port and device, find the associated kernel extensions, review the USB devices listed in the IORegistry, and monitor USB events with a logger.

				Application and OS support utilities

				These utilities provide extra support for debugging, resource creation, and application management:

				[image: bl.eps] Application Loader is used to upload apps to the App Store. You define sales information for an app in iTunes Connect and then run Application Loader to locate and copy the app to the store's review queue.

				[image: bl.eps] CrashReporterPrefs, shown in Figure A.8, can create detailed crash reports for both user and system processes. This isn't helpful if you're debugging in Xcode, but it can be useful if you're testing an application in a live environment.

				[image: bl.eps] FileMerge can compare—‘diff'—and merge the contents of files or directories. The file merge is ASCII-only, and the tool doesn't understand application-specific file formats. Anyone migrating from Windows can use this tool to recreate the directory-merge behavior, which is the default in Windows Explorer but isn't implemented in Finder.

				[image: bl.eps] Help Indexer creates an index for a help file. For more information about supporting your application with help files, search for the Apple Help Programming Guide in the documentation.

				[image: bl.eps] Icon Composer is a tool for creating and editing OS X icon files. The feature set is very basic, but it includes preview options that aren't available in standard image editors.

				[image: bl.eps] Package Maker is a key utility that wraps an installer around any OS X application. You can add binaries and other elements to the installer package, specify an organization name, and customize the interface.

				[image: bl.eps] SleepX schedules sleep and hibernate cycles. This can be useful for testing, but you also can use this app to wake up your Mac automatically at certain times.

				[image: bl.eps] Syncrospector is a debugger and monitoring tool for the OS X synchronization engine. You can view a history of sync sessions and check the sync database. For more details, search the documentation for the Sync Services Tutorial. Alternative third-party examples are available online.

				Figure A.8

				Setting the Crash Reporter Preferences with CrashReporterPref is easy; this isn't a sophisticated application.

				[image: 9781118007594-fgb108.eps]

				Language support utilities

				Some utilities are designed to work with other languages. Previous versions of Xcode included templates for Java and Python applications. Apple no longer supplies these templates, but you can still use the Build Applet utility to convert Python code into stand-alone applications. Two versions are included: one for MacPython and one for the standard version of Python.

				MacPython includes OS X features and supports the optional PyObjC package, which gives full access to the Cocoa libraries from Python. Standard Python is the default OS-independent version of Python.

				[image: mac_note.eps] NOTE

				Early beta versions of Xcode 4 included corresponding tools for creating Java applications from Java code. Apple is scaling down its Java support, and these tools weren't included in the final release.

				Accessibility utilities

				The accessibility utilities test an application's support for accessibility features. The two main utilities are in the /Applications/Utilities/Accessibility Tools folder. The speech synthesizer editors are in /Applications/Utilities/Speech.

				[image: bl.eps] Accessibility Inspector reports accessibility attributes and actions when you roll the mouse cursor over the controls in an application's UI.

				[image: bl.eps] Accessibility Verifier checks for mistakes in an application's accessibility information.

				[image: bl.eps] Repeat After Me can improve the performance and legibility of the standard OS X speech synthesizer. This application includes a PDF manual.

				[image: bl.eps] SRLanguageModeler supports custom language model design for the speech synthesizer.

				Introducing the Command-Line Tools

				Most of the features of Xcode are duplicated at the command-line level. If you prefer to work with pipes, processes, and raw text, you can use all the tools that are standard in any BSD (Berkley Software Distribution) UNIX distribution. Xcode adds a selection of other tools that are specific to OS X development. The tools can compare and process text files; automate events under the control of Python, Perl, Ruby, or Java code; and provide low-level information about memory use and the Mac's hardware.

				The complete list of tools is very long. Many are highly specialized, and some are obsolete. Because most of the useful features are also available in Xcode, a full description is outside the scope of this book. However, hardware developers should review the list in Apple's Tools documentation (available at the URL listed earlier in this appendix) because some of the kernel and I/O level tools can only be accessed from the command line.

				[image: mac_note.eps] NOTE

				Unlike the other tools and utilities mentioned in this appendix, the Command-Line Tools aren't installed by default. To install them, check the “UNIX Development” box when you install Xcode.

				Summary

				This appendix listed the tools and utilities that are bundled with Xcode but aren't built into the main application. It explored Dashcode and Quartz Composer and listed the audio, graphics, and performance monitoring tools. Finally, it introduced the full set of supporting utilities and briefly summarized each one.

			

		

	
		
			
				Appendix B: Working with Other Editors

				
					In This Appendix

				

				Understanding plists

				Editing plists

				Editing Core Data model files

				Using external editors

				Xcode includes a number of other built-in editors and supports links to external editors.

				Editing plists

				Plists (or property lists) define application settings. When you create a new iOS or OS X app, Xcode automatically creates a file called info.plist, prefixed with the app name—for example, myApp-info.plist.

				This file includes important app settings—the name of the nib file loaded on launch, the application icon, version number, and so on—which are discussed later in this appendix. You can also create your own separate custom plists for your own use—for example, to define application preferences.

				Plist editing is more complex than it looks. Xcode 4 has a number of non-obvious features that can simplify the editing process, if you know they exist and understand how to use them.

				Understanding plists

				Internally, a plist is an XML file saved with the .plist extension. The content is a standard Cocoa NSDictionary. It holds a hierarchy of named key objects that either store a single value or hold an array or dictionary object with its own contents.

				If you're new to iOS and OS X, think of a key/value pair as an entity with two components: a key, which is a name string, and a value, which can be a simple or complex object.

				Simple values are one of the following: a string, a number, a date, a Boolean, and a general data field.

				Container objects are arrays or dictionaries.

				An array stores values in strict sequential order and can be accessed with either a numerical or enumerated index. Array items typically appear with a number, such as Item 0, Item 1, and so on. Non-contiguous numbering isn't allowed.

				A dictionary is more free-form and is used as a more general, but slower, key/value container.

				Container objects can be nested. An item in an array can be a string, a Boolean, and another array. This second array can contain a date and a dictionary. The dictionary may contain one or more further collections and so on, creating a hierarchical data structure.

				Plists are typically used for application initialization of launch settings and user preferences. Although they can be arbitrarily complex, they're not designed for generic data storage. Some plists are standardized with specific keys and content formats. When you edit these in Xcode, you can only add keys from a fixed set of options. The formatting of the key values is preset.

				Other plists are optional and freeform. It's up to you to design their formatting and content.

				It can take some time to master plist editing, so it's good practice to experiment with it before you need to use it professionally.

				Getting started with plist editing

				Although Xcode includes a general purpose plist editor, it also includes features that simplify the editing of certain kinds of plists.

				Four options are available:

				[image: bl.eps] To edit any plist included in a project bundle, select it in Xcode, as shown in Figure B.1. This loads the file into Xcode's plist editor window.

				[image: bl.eps] For simplified access to the main application settings plist—the info.plist file—you can use two editors built into the project build settings. These editors can be used only to modify this one file.

				[image: bl.eps] To edit another plist—for example, one of the standard OS X plists used to define the preferences for other applications—double-click it in Finder. After you install Xcode, it becomes the default editor for all plists. A floating editor window appears, as shown in Figure B.2. This editor is identical to the plist editor in Xcode. If the plist is part of an Xcode project, the project isn't loaded.

				[image: bl.eps] You can edit a plist as raw text in TextEdit, as shown in Figure B.3. Right-click the plist in Finder, select Open With⇒Other…, and select TextEdit.app in the Applications window.

				[image: mac_caution.eps] CAUTION

				In Xcode, you don't need to save a plist file by hand. If you edit the same file in multiple Xcode editors, you see that any change in any editor is instantly duplicated in every editor. The file is saved automatically when you build or quit a project, like a source code file. This applies only to Xcode. Edits made in TextEdit must be saved in the usual way. It's a bad idea to open a file in Xcode and TextEdit at the same time.

				Figure B.1

				Editing a project plist in Xcode is the easiest way to work with plists.

				[image: 9781118007594-fgb201.tif]

				Figure B.2

				Loading a plist into the Xcode editor as a stand-alone file launches Xcode, if it's not already running. If the plist is part of a project bundle, the rest of the project isn't loaded.

				[image: 9781118007594-fgb202.eps]

				Figure B.3

				Using TextEdit, you can make changes to the text and resave the file, but the contents must be formatted correctly.

				[image: 9781118007594-fgb203.eps]

				Editing info.plist project settings in Xcode

				Every project includes a <projectname>-info.plist file that stores application settings. The settings are chosen from a list of standard keys. When you create a new Xcode project, info.plist file appears in the project's Supporting Files group. If you import a project created with an older version of Xcode, the info.plist file usually appears in the Resources group.

				Understanding the application settings

				When your app launches, one of the first things it does is load this info.plist file. It reads the keys and values from the file to find paths to the app's initial nib file and other support resources, to define runtime features such as the OS platform and multitasking options, to enable or disable graphics options such as anti-aliasing and the gloss look on iOS springboard icons, and so on.

				The full list of keys that can be included in the file is long and is grouped under five headings:

				[image: bl.eps] Launch Services: These keys define low-level architecture-specific options.

				[image: bl.eps] OS X: These miscellaneous keys are specific to OS X apps.

				[image: bl.eps] UIKit: These miscellaneous keys are specific to iOS apps and the iOS UI.

				[image: bl.eps] Core Foundation: These keys for either or both platforms define application housekeeping and set-up features.

				[image: bl.eps] Cocoa: These keys define Cocoa initialization options and Cocoa support features.

				[image: mac_note.eps] NOTE

				A brief introduction to each key is available in the documentation in the Information Property List Key Reference document.

				By default, the info.plist file includes a minimal selection of essential keys. You can and should set the values of some of these keys by hand; otherwise, your app won't be accepted for sale.

				The other keys are less critical. If they're included in the default info.plist, you can leave their settings unchanged. If they're not included in the default file, you can usually ignore them.

				Occasionally, you may want to add a key by hand to enable a non-standard feature. For example, you can use the optional UIFileSharingEnabled key to allow a user to access files created by the app through iTunes. Including the UIPrerenderedIcon key and setting the value to YES disables the iOS shine effect for the app's icon in Springboard. Adding other keys adds other corresponding features.

				The info.plist editors include features for editing the default keys and for adding optional new keys.

				Introducing the application settings editors

				Editing the info.plist file is a critical part of app development. This file gets preferential treatment in Xcode, so there are three ways to edit it:

				[image: bl.eps] You can select it in the Project Navigator and edit it with the standard plist editor, which is described later in this chapter.

				[image: bl.eps] In the project build settings, you can use a simplified Summary editor to display and change selected important settings, as shown in Figure B.4.

				[image: bl.eps] Also in the project build settings, you can use a more comprehensive Info editor, as shown in Figure B.5. This editor is similar to the standard Xcode plist editor, but it adds some extra features.

				To use the editors in the build settings, select the project name at the top left in Project Navigator, select the project under TARGETS, and choose either the Summary or the Info tab at the top of the build settings window.

				[image: mac_caution.eps] CAUTION

				It's important to understand that these editing options all edit the same file.

				Figure B.4

				When you view the Summary settings, there's nothing to indicate that when you change these settings, you're editing the info.plist file, but you are—immediately and permanently.

				[image: 9781118007594-fgb204.tif]

				Figure B.5

				The more comprehensive Info editor is similar to the standard Xcode plist editor, but it has added fields to set an optional document type and UTI (Uniform Type Identifier) and URL scheme keys. The iOS and OS X versions of this file include slightly different contents, but they are recognizably similar and can be edited in the same ways.

				[image: 9781118007594-fgb205.tif]

				Changing settings with the Summary editor

				The Summary settings editor is a collection of buttons, menus, and text fields used to define the basic key values needed for App Store acceptance. For simplicity, this editor hides many of the keys in the file. To view and edit them, use one of the other editors.

				Although the meanings of the settings may not be obvious, the UI features are Mac-standard and simple enough to be self-explanatory. Changing any setting immediately updates the corresponding value in the app's info.plist file. The settings are listed in Table B.1.

				[image: /Table B.1]

				Changing settings with the Build Info editor

				Unlike the Summary editor, which lists selected highlights from a project's info.plist file, the Build Info editor lists every key and value in the entire file. It's very similar to the standard plist editor described later in this chapter, but it includes four extra options: Document Types, Exported UTIs, Imported UTIs, and URL Types. The OS X version adds one further option called Services. These options add standard keys to the plist that define optional document type, URL scheme, and services support for an application.

				Adding optional keys

				To add an optional key, follow the steps below:

				1. Right-click an existing row.

				 You can select any row as long as it isn't a multi-valued type; for example, the Type field isn't Array or Dictionary.

				2. Select Add Row from the floating menu.

				3. Select a key from the floating list, as shown in Figure B.6.

				4. Click the Value field to edit the key.

				 Value editing depends on the value type and is described later in this chapter, in the description of the general plist editor.

				Figure B.6

				Adding one of the optional keys to the info.plist file

				[image: 9781118007594-fgb206.tif]

				To remove a key, select its row and click the - (minus) icon to the left of the Type field.

				A few caveats apply to key editing. Some keys are valid only on one platform; for example, it makes no sense to specify the Application requires iPhone environment key for an OS X app. But the key list is the same for iOS and OS X projects, and there's nothing to stop you from adding an invalid key to the project settings. Results are unpredictable; the OS may ignore the key, or it may crash your app.

				Don't assume that the keys work as advertised, because some don't. For example in iOS 4.2, you can set the Status bar is initially hidden key for an iOS app, but unless you add extra supporting code to your app's applicationDidFinishLaunching: method, the status bar is still visible after launch. Generally, explicit initialization code is more reliable than the start-up keys. It's good practice to experiment with a key to make sure that it works correctly.

				Finally, do read the Information Property List Key Reference. This reference is buried in the docsets, and it's difficult to find unless you know it exists. Without it, you won't know which keys are available or what they do, and the start-up options and settings will remain inexplicable and mysterious.

				Adding support for documents, URL schemes, and services

				In addition to generic start-up options, experienced iOS and OS X developers and programmers can add further optional keys to define how an app uses file types, URL schemes, and services.

				In iOS and OS X, a URL scheme is a system that links an application to a certain URL launch string. In the same way that the http:// string always opens a web page, you can define custom strings here that can launch your apps from some other app.

				A UTI can define your app as an editor or viewer for a custom file type.

				Services on OS X are similar but more advanced features that can define an application as a provider or consumer of Services; these are optional external options that appear in every major application under the “Application Name”⇒Services menu entry.

				[image: mac_note.eps] NOTE

				For more information about UTIs, search the documentation for Uniform Type Identifiers. For information about URL schemes, search for the Apple URL Scheme Reference document. For information about Services, see the Services Implementation Guide.

				These optional keys appear in a list at the bottom of the Info editor. Figure B.6 includes a simple example. In a practical application, more set-up would be needed, with extra support code to implement this feature.

				Creating new plists

				The app's info.plist file is created for you and its keys are fixed and standardized, but you can add further custom plists for your own use and add arbitrary keys to them to suit the needs of your app. Here's how:

				1. Right-click the Supporting Files group, and select New File.

				 For iOS and OS X, select Resource and then Property List.

				2. Select Next, and save the file with a useful name.

				On iOS only, you can create a unique kind of plist known as a settings bundle. This is identical to a standard empty plist, but you can use it to store and manage application preferences. The iOS preferences system is complex and outside the scope of this book. But in this context, the settings.bundle file can be edited in the plist editor in the same way as a standard plist; the editor ignores the unusual name.

				Using the general Xcode plist editor

				The main Xcode plist editor is similar to the Info editor in the Build settings, but it lacks the UTI, document, file type, and services options.

				In fact, the info.plist is just one of a number of default plist file types. In the Summary and Info editors, the plist file type is fixed. In the general plist editor, you can select an alternative plist type. This doesn't change the contents or the format of the file, but it does replace the standard list of optional keys with one of a number of other lists.

				Depending on the application, you can use these alternative key lists to save time when entering new keys. Or you can ignore them and create your own unique key list.

				To select a file type, right-click anywhere in the edit area, select Property List Type, as shown in Figure B.7. Select one of the options from the sub-menu. For a customized key list, Unique is the best choice.

				Figure B.7

				When you set the plist type, this doesn't modify the file type; it selects between the different sets of default keys that appear while editing.

				[image: 9781118007594-fgb207.tif]

				[image: mac_note.eps] NOTE

				These options are not all properly documented. The easiest way to find out what each file type does is to select it, select one or more of the default keys, and search for them in the documentation. Most options are aimed at intermediate to expert developers.

				After you set the type, you can edit the list in the following ways:

				[image: bl.eps] Add a new key: Right-click an existing single-value key, and select Add Row. Either select the key name from the default list or edit the default New Item name.

				[image: bl.eps] Change or select the key type: Right-click the key, and select one of the types from the Value Type sub-options.

				[image: bl.eps] Delete a key: Select the key, and use the Cut option in the right-click menu or press the Delete key.

				[image: bl.eps] View the raw key name: For keys associated with Cocoa and other OS constants and parameters, you can view the key names by right-clicking and selecting Show Raw Keys/Values. This shows the key as a name—for example, CFBundleIconFile—instead of a text description. This can be useful when you're looking for key names in the documentation.

				[image: bl.eps] Edit a value: Value editing depends on the key type. See Table B.2 for details.

				Note that if you're creating a completely customized plist, it's up to you to decide if arrays or dictionaries are the best containers for the data. If you're editing any of the standard pre-defined key lists, the type is defined by the standard values and can't be edited.

				[image: mac_caution.eps] CAUTION

				Note that if there are no single-value keys in the list, if you try to add a new key, you get a new key/value pair in one of the multi-value items. The workaround is to make a copy of the multi-value item and edit it as needed, rather than trying to add it from scratch.

				[image: /Table B.2]

				Editing Core Data Files

				In addition to an updated plist editor, Xcode 4 also includes a revised editor for Core Data files. Core Data is an optional data management framework included in both iOS and OS X. Although the concepts used in Core Data are simple, the English words used to describe them are complicated, and elements of the API are also more complex than they need to be. This can make Core Data seem more intimidating than it really is.

				Understanding Core Data

				Core Data has three main elements, supported by three optional elements:

				[image: bl.eps] A managed object context: This is a complicated way to say “a container for objects.”

				[image: bl.eps] One or more entities: An entity is an object that holds data.

				[image: bl.eps] One or more attributes in each entity: An attribute is a key/value pair. The key is a name string, and the values are one of a set of standard supported types: integers of various lengths, decimal numbers, floats, doubles, strings, Booleans, and so on.

				[image: bl.eps] Optionally, entities can have relationships: A relationship references one entity from another. References can be bidirectional. They can be one-to-one, linking entities directly, or one-to-many, with multiple cross-links. Core Data's support for one-to-many relationships is limited.

				[image: bl.eps] Optionally, entities can include one or more predefined fetch requests: A fetch request is an operation that returns objects or selected object attributes, such as the highest or lowest value.

				[image: bl.eps] Optionally, each fetch request can include one or more predicates: These are specific search filters.

				Although Core Data isn't a full relational database, it's often used for general data management. Typical applications include media collections and contact databases. For example, to manage a library, you might create a Book entity and add attributes to store the title, year of publication, author, and so on. You can then call standard Core Data code to add an instance of the Book entity for each book in the library, call other code to list all books with a specific author, and so on.

				Entities, attributes, relationships, and other details are defined in a data model file, with the .xcadatamodel extension.

				When you create a new project, you can include Core Data by ticking the Use Core Data option, as shown in Figure B.8. This option generates a blank data model file that you can expand with your own entity designs.

				The data model becomes “live” with only supporting code. The Core Data templates include minimal set-up and tear-down code, but you must add further code to access and modify the data.

				[image: mac_note.eps] NOTE

				This section is a brief practical introduction to the Core Data model editor but isn't a complete guide to Core Data development. For an introduction to practical Core Data programming and more information about creating and using entities, relationships, fetch requests, and predicates in practice, see the companion Cocoa Developer Reference title.

				Figure B.8

				Creating a Core Data project for OS X. iOS projects include the same feature.

				[image: 9781118007594-fgb208.eps]

				Introducing the data model editor

				The data model editor appears when you select a data model file in the Project Navigator, as shown in Figure B.9. The default file is empty.

				[image: mac_caution.eps] CAUTION

				File selection is somewhat counter-intuitive. The data model file appears inside a container file with the .xcadatamodeld extension. To load the editor, click this file's reveal triangle and select the .xcadatamodel file inside it. The .xcadatamodeld container file can, in theory, contain more than one data model file. Even if there's only one, you must select it to edit it.

				A key feature of the editor is the Editor Style option at the bottom right of the window. You can use this feature to toggle between the default table view and a graph view, as shown in Figure B.10. When the file is empty, the graph view shows a blank editing area with a graph paper background.

				The table view is designed for quick summary overviews of the entities in the file. The graph view shows entities and relationships visually. The table view is easier to work with when the data model is busy, with many entities. The graph view is better suited for simpler models with a smaller number of entities, and it provides a more intuitive visual guide to entity relationships.

				Figure B.9

				A first look at the Core Data editor, with an empty default data model file

				[image: 9781118007594-fgb209.tif]

				Figure B.10

				A first look at the graph editor

				[image: 9781118007594-fgb210.tif]

				Creating a simple data model

				As a very simple example of a data model, you'll add a couple of entities with a handful of attributes and create a relationship between them.

				To create an entity, follow these steps:

				1. Begin in the table editor, and click the Add Entity button near the bottom left of the window, as shown in Figure B.11.

				 A new entity appears in the Entities list at the top left.

				2. Give the entity a name such as Entity1.

				[image: mac_note.eps] NOTE

				As soon as you create an entity, a new configuration named Default appears under the Configurations header. You can select the Default configuration to view a list of entities in the file with associated class names. By default, each entity is an instance of Cocoa's NSManagedObject class. In a more complex project, you can subclass entities to customize them with special features, but you can use Core Data successfully without subclassing.

				Figure B.11

				Creating a new entity

				[image: 9781118007594-fgb211.tif]

				[image: mac_caution.eps] CAUTION

				Entity names cannot contain spaces or special characters. Only letters, digits, and underscores are allowed. Names must begin with a letter.

				To add attributes, follow these steps:

				1. Click the + button at the bottom of the Attributes pane, and type a name.

				2. Left-click (not right-click) in the Type column to set the type.

				 Figure B.12 shows an entity with three attributes.

				3. To remove an attribute, click the − button.

				[image: mac_caution.eps] CAUTION

				Although you can modify entities and attributes at any time, if your project has a data collection, you need to reversion the data. Reversioning is a complex topic outside the scope of this book; in outline, you must create a new extended data model and then merge the existing data with it. If you change the data model and re-import an existing data collection, Core Data crashes. It's good practice to finalize the design of the entities, attributes, and relationships in a data model before you begin working with live data.

				Figure B.12

				Adding attributes

				[image: 9781118007594-fgb212.tif]

				To create relationships, follow these steps:

				1. Add another entity, and add a property.

				 Name this Entity2.

				2. Select Entity1 again, and click the + button in the Relationship pane.

				 You'll see a new relationship called “relationship.”

				3. Left-click under the Destination header to select Entity2 as a destination, as shown in Figure B.13.

				 This creates a simple one-way link between Entity1 and Entity2.

				4. Select Entity2.

				 You'll see the relationship in the Relationships pane.

				5. Select Entity1 as a destination and select relationship again under the Inverse header.

				 These steps create a mutual two-way link between Entity1 and Entity2. In your code, you can use the relationship to share data between Entity1 and Entity2.

				Figure B.13

				Creating relationships

				[image: 9781118007594-fgb213.tif]

				Using the graph editor

				Select the graph editor to view the entities and their relationship visually, as shown in Figure B.14. The graph view is notional. The contents of each entity and the arrows that indicate relationships are significant. You can move entities by dragging them. Entity positions on the graph aren't important, so you can rearrange them for clarity. You also can add an attribute by selecting an entity and clicking the Add Attribute button near the bottom right of the editor.

				Figure B.14

				Viewing entities and relationships in the graph editor

				[image: 9781118007594-fgb214.tif]

				[image: mac_tip.eps] TIP

				Arrowheads include information about relationship. A one-way relationship has a single arrowhead at one end. Two-way relationships have an arrowhead at each end. To-many relationships have double arrowheads. Note that you can have a one-way to-many relationship; this appears as a double arrowhead at one end, while the other end of the link has no arrowhead.

				Using other options

				You can add fetched properties in the Fetched Properties by clicking the + button. To add a predicate filter rule, click twice under the Predicate header and type the predicate as a string.

				When the data model editor is selected in Xcode, a number of menu items become available under the main Xcode menu Editor header. Some options duplicate the buttons in the main editor; for example, the Add Entity menu item duplicates the Add Entity button.

				However, this menu includes unique options that lack corresponding buttons:

				[image: bl.eps] Add Configuration.

				[image: bl.eps] Add Fetch Request: This defines a fetch request used to read data from records that match a selected entity type and also match an optional list of attribute conditions. Figure B.15 shows an example.

				[image: bl.eps] Create NSManagedObject subclass: Use this option to create a customized version of one or more of your entities, with extra code features. By default, each entity is an instance of NSManagedObject. This class provides basic read, search, and write options for an entity. If your entity needs to do more—for example, it might need to interact with the rest of your application whenever data is accessed—this option creates code files for a subclass.

				[image: bl.eps] Import: Use this option to import an existing data model from a saved file.

				[image: bl.eps] Create Model Version and Convert to Versioned Model: Use these options to manage multiple versions of a model file and convert data between versions.

				[image: mac_caution.eps] CAUTION

				Xcode 3 included a useful UI generator feature. To create an OS X UI from a Core Data model, you could select every entity in the graph editor and drag and drop the objects into an Interface Builder document. The resulting file created an application with a working UI and basic search and editing feature. No extra code was needed. This feature isn't yet implemented in Xcode 4, but it may appear in later versions.

				Using external editors

				In Xcode 3, you could define the external editors used to open supporting files such as text, graphics, audio, and so on. Currently, Xcode 4 has no equivalent.

				In Xcode 4, selecting an item, right-clicking, and selecting the Open With External Editor menu option loads the default editor or viewer for that file type. To open a file with some other editor, select the Show in Finder option, right-click the file, and use Finder's Open With option.

				Figure B.15

				You can define arbitrary fetch requests in code, but it can be easier to define standard requests in the model editor. You can then load them and use them as needed.

				[image: 9781118007594-fgb215.tif]

				Summary

				This appendix introduced plists and four different ways to edit them. It explained how a project's info.plist file gets special treatment in Xcode in the project's build settings. It also demonstrated how to use the main Xcode plist editor to edit other plist files.

				Next, it sketched the key features of Core Data and explained how to use Xcode's new Core Data model editor. Finally, it ended with a brief note about using external editors for other file types.

			

		

	
		
			
				Appendix C: Understanding Compiler Technology

				
					In This Appendix

				

				Introducing GCC

				Moving to LLVM

				Introducing Clang

				Selecting a compiler

				One of the biggest changes between Xcode 3 and Xcode 4 is almost completely invisible. Xcode 4 begins a move away from the GCC (GNU Compiler Collection) frontend and code generator to a new compiler technology called LLVM (Low Level Virtual Machine). This small change has big implications for the future of Xcode and has influenced the design of some of the new features in Xcode 4.

				Figure C.1 shows the two main components of a compiler. The parser/frontend reads source code written in a given language and converts it into an intermediate list of instructions. This is called intermediate form (IF) code. IF code uses a simplified set of virtual instructions that represents the essential operations and variables in the source in a machine- and language-independent way. IF code also includes a flow graph that optimizes the order in which instructions are processed. Variables may also be rearranged to optimize access.

				The code generator module converts the IF code into machine-specific binary. It performs further optimizations that use the specific features of each target processor—for example, managing registers—to create a binary that is as efficient as possible. Most compilers, including Xcode, create binaries with an .o (object file) extension.

				The linker, not shown in the figure, resolves variable references across different object files and collects them into a single executable binary. For example, if you define a variable called myNumber in one file, the linker fixes the location of myNumber in the binary and ensures that every reference anywhere in the project accesses that location.

				Code parsing and code generation technology are still being researched and developed. Linker technology is largely a solved problem and typically “just works.”

				[image: mac_note.eps] Note

				A complete set of compiler tools that includes an editor, one or more language frontends, a code generator, and a debugger is sometimes called a tool chain.

				Figure C.1

				The compiler revealed. IF code uses a simplified virtual instruction set that isn't implemented on any specific CPU.

				[image: 9781118007594-fgb301.eps]

				Introducing GCC

				Earlier versions of Xcode used GCC modules for both the parser and the code generator. GCC, shown in Figure C.2, is a core project managed by the Free Software Foundation (FSF.) GCC is free in the sense that it can be freely modified and developed by anyone; it's also free in the sense that it costs nothing.

				Figure C.2

				The GCC website at gcc.gnu.org includes information about updates, language support, and a mission statement.

				[image: 9781118007594-fgb302.tif]

				Initially, Xcode was designed as a runtime wrapper and code editor built around GCC. When the user clicks the Run icon, Xcode runs GCC in the background, collects its warnings and error messages, and displays them in Xcode's Build Results window. You can edit Xcode files directly with a text editor and run GCC directly from the command line in Terminal. But most developers find it easier and more productive to use a window-based editing environment because it offers extra features such as code completion and error marking.

				Xcode's debugger is a wrapper for GDB, the GCC debugging tool. Xcode translates messages and user actions into text commands that are sent to GDB, and it converts GDB's responses into windowed output.

				GCC has the advantage of an established code base and wide support for languages outside the C family. While Xcode doesn't support languages such as ADA and Fortran directly, you can add plug-ins to Xcode that make it possible to use Xcode's editor to write code in languages other than C and its descendants. Although this is a minority interest, languages such as Fortran are still used in scientific computing.

				However, over time GCC has become a legacy project. Development is run by volunteers. Some features and Xcode plug-ins have become abandonware and are no longer compatible with current versions of Xcode. For example, Figure C.3 shows the current state of GCC's Fortran plug-in.

				Figure C.3

				Like many projects run by volunteer developers, interest in maintaining GCC add-ons wanes after a project has been completed successfully.

				[image: 9781118007594-fgb303.tif]

				GCC has other disadvantages. Parts of the codebase date back to the 1980s, and compiler technology in the second decade of the 21st century is significantly more advanced. Put simply, GCC is inefficient and old-fashioned. It compiles code slowly and produces slow code.

				GCC 4.0 is now considered a legacy compiler and is no longer supported in Xcode. GCC 4.2 is still available for backward compatibility. GCC 4.5 is the most recent version of GCC, but it will not be supported in future versions of Xcode.

				Moving to LLVM

				LLVM, whose project website is shown in Figure C.4, is an updated set of compiler tools that uses recent compiler research to speed up compilation times and create faster binaries. LLVM began as a research project at the University of Illinois at Urbana-Champaign under Vikram Adve and Chris Lattner. In 2005, Apple hired Lattner and created a team to develop LLVM in Xcode and also for Apple's internal R&D.

				Figure C.4

				Current versions of Xcode still support GCC for backward compatibility. Future versions will move to LLVM exclusively.

				[image: 9781118007594-fgb304.tif]

				Like GCC, LLVM's source code is open, and it is a collaborative development project. But unlike GCC, LLVM is released under a version of the BSD (Berkeley Software Distribution) license that allows proprietary use.

				In spite of the name, LLVM does not attempt to implement a virtual machine—a complete abstract model computer. Instead, it uses the most recent academic research to create fast, efficient, and highly optimized code. The LLVM code generator module is compatible with the IF code generated by GCC. This makes it possible to use GCC as a familiar frontend while using LLVM for final code output.

				Introducing Clang

				Clang is a C-family frontend that is paired with LLVM and tightly integrated with it. Clang parses Objective-C code much more quickly than GCC—up to three times faster in some tests. It also includes extra features that are starting to influence the editing and debugging of C++ and Objective-C in Xcode.

				A key benefit of Clang is parser modularity. The GCC C-family frontend is self-contained and designed to run in batch mode. Effectively, it runs as a single closed process that converts source code into IF code.

				Clang is more advanced and can be run interactively to parse expressions on demand. It also includes a static code analysis tool that can highlight possible bugs. Both features improve the performance and usefulness of the LLDB (Low Level Debugger) tool, which is included in LLVM as an advanced alternative to GDB Internally. Clang has been developed as a series of libraries and modules that can be used individually or together. Advanced users can customize and extend some or all of the features, or use them interactively with other languages—for example, using commands generated by Python or Java to manage code and control compilation.

				Like LLVM, Clang is an open collaborative project. The website is shown in Figure C.5.

				These are some of the other benefits of Clang:

				[image: bl.eps] Very fast and memory-efficient code parsing: This makes large projects more practical on basic hardware.

				[image: bl.eps] Improved context-aware error messages and error correction: Compared to GCC, Clang attempts to guess developer intentions and can correct code automatically.

				[image: bl.eps] Code profiling with bug finding: For example, Clang can report possible memory errors in iPhone code.

				[image: bl.eps] Unified support for C, Objective-C, C++, and Objective-C++: Clang provides a single parser for all C-family languages, making it easier to mix code in a project. It also aims to support all the major variants, including dialects and unusual features.

				[image: bl.eps] Interactive debugging: LLDB includes the key features of the Clang parser, allowing you to include complex expressions in debugging statements or to generate complex expressions in Python or Java to control the debugger.

				Figure C.5

				The Clang website at clang.llvm.org introduces the key features of Clang and evangelizes its benefits.

				[image: 9781118007594-fgb305.tif]

				Selecting a Compiler

				Xcode 4 defaults to a hybrid compiler named LLVM GCC 4.2. This uses the LLVM optimizer and code generator with the GCC 4.2 frontend. Although this isn't the speediest or most efficient option, it is the most reliable.

				The LLVM Compiler 2.0 option selects the LLVM code generator and Clang frontend. For the moment, this remains an experimental option. Clang is still being developed and doesn't support the full range of extensions and other specialized features in GCC. This is unlikely to cause problems in most iPhone projects, but it may occasionally be an issue for OS X developers.

				[image: mac_note.eps] Note

				For a current list of incompatibilities, see the C Language Features section toward the bottom of the Clang User Manual at clang.llvm.org/docs/UsersManual.htm.

				To select a compiler manually, select the Project Navigator in the left pane and click the Project item at the top left of the pane, as shown in Figure C.6. Next, select Build Settings and find the Compiler Version. Click the arrows to display a pop-up menu with a list of compilers.

				Figure C.6

				When selecting a compiler, keep in mind that the LLVM GC 4.2 default remains the best choice for now, but you can experiment with LLVM 2.0 to see if you can improve build times and execution speeds.

				[image: 9781118007594-fgb306.tif]

				[image: mac_note.eps] Note

				If your project has multiple targets, you can select different compilers for each. This isn't usually a useful thing to do. Rarely you may run into a compiler bug that requires a downgrade from LLVM to GCC—but this happens so infrequently it's unlikely you'll encounter this issue.

				When you select a compiler, the items under it are updated with compiler-specific options. If you select Basic in the line under the Build Settings tab, you can view the most critical compiler options. For iPhone development, you can typically leave these unchanged. For OS X development, select All to see all compiler settings and then scroll down, as shown in Figure C.7.

				Although the list seems dauntingly long, only a handful of settings may need to be modified, as shown in Table C.1. Chapters 12 and 13 introduced key build settings for projects and targets. But you also may want to customize the compiler settings, for example by controlling which warnings appear by modifying the Warnings options. Removing some warnings is dangerous, and selecting the option to Inhibit All Warnings is very dangerous indeed. But many warnings are a matter of personal taste, and you can use this section to show warnings that are disabled by default as well as disabling warnings that may not be useful to you.

				Figure C.7

				Select All to see the full list of compiler options. Each compiler displays a different list, but most of the settings can be left unchanged.

				[image: 9781118007594-fgb307.tif]

				[image: /Table C.1]

				Summary

				This appendix introduced the essential features of compiler technology and listed the new compiler choices available in Xcode 4. It explored key features of the new technologies, explained how to change the default compiler, and listed the most important settings to consider when developing for OS X.

			

		

	OEBPS/images/9781118007594-fg0704_fmt.jpeg
8ene Oe
E— Welcome to Xcode 4

mnoazme] L) View Controller JE]
1B
'-1mgu.lossn«u) Placeholders
» (] Classes File's Owner
» [Other Sources @ First Responder
v (] Resources |
| 1B-Info.plist [% Objects]
| InfoPlist.strings.
B Delegat é
s i R
IBViewController.xib | Wind: 1
» (] Frameworks SRS
» (] Products

View
Loaded from "IBViewController"

+| O@AG(Q) (3@

OEBPS/images/9781118007594-fg0606_fmt.jpeg
J B &
(<] >] //devel le.com/library/ios/#codinghowtos/Tools/index.html

c)l B

D iOS Reference Library

Tools Coding How-To's

General: How Do ..

-.. Determine which version of the SDK is installed?
. Get my application onto my device for testing?
-. Debug my application?
- Create the image that appears in lication's window on launch?
Il tive-C++ compilation?
men! ision Hi
General

How do | determine which version of the SDK is installed?
You can ine this by ing the ildversion property of the iPhone OS SDK systemversion.plist. If you have more than one iPhone O!
Systemversion.plist files, one in each SDK path. For example, to check the iPhone OS SDK 2.0 version, you would check the path shown in Listing 1

Listing 1: Determining which version of the SDK | am running

% cat /Developer/Platforms/iPhone0S.platform/Developer/SDKs/iPhone0s2.0.sdk/System/Library/Coresy

" " : " " X

I

OEBPS/images/9781118007594-fg0802_fmt.jpeg
|__| Button - CHANGE IT

@l)

Build IB: Succeeded | Today at 00:17

No Issues

CHANGE IT

I) (O[SE]) (=]

000000000000

(i obyecrs =)

Table View - Displays data in a list of plain, sectioned, or
grouped rows.

Table View Cell - Defines the attributes and behavior of
cells (rows) in a table view.

-~

. | T
I-!-. nimumm«:rqm

Text View - Displays multiple lines of editable text and
sends an action message to a target object when Return is.
tapped.

Web View - Displays embedded web content and enables
content navigation.

Jﬁl Map View - Displays maps and provides an embeddable

rre

[

D« »

(

S

9

OEBPS/images/9781118007594-fg1413_fmt.jpeg
@imp

@syn

@end

LocalGitAppDelegate.m
LocalGit

Created by Richard Wentk on 04/01/2011.
Copyright 2011 Skydancer Media Ltd. All rights reserved.

#import “LocalGitAppDelegate.h”

lementation LocalGitAppDelegate

thesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {

// Insert code here to initialize your application

// This is a comment added to illustrate how edits appear in the
Version Editor

// This is a second comment
// This is a third comment
// Etc

Richard ... 4 Jan 2011

Initial Commit

Richard ... 4Jan 2011 8b...Q
This s a commit message. This is version 0.01
Richard ... 4Jan 2011 8211el..Q
Richard _.. 4Jan 2011 40635¢7...Q
Richard ... 4Jan 2011 faasb77...Q
Initial Commit

OEBPS/images/9781118007594-fg1511_fmt.jpeg
CETD oy quene

v Thread 1
‘com.apple.main-thread
1 0 -[BreakpointTestAppDelegate applicationDidFinishLaunching:]
B 1 _nsnote_callback

23 19 NsApplicationMain
|20 main

ru sl
» ¥ Thread 3

Br
// BreakpointTest

// Created by Richard Wentk on 26/12/2@:
/1 Copyright 2010 Skydancer Media Ltd.

0.
1L rights reserved.

#import “BreakpointTestAppDelegate.h”

1 ation Bri

@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {
/1 Insert code here to initialize your application

for Lint i = 0; i <10; i++) {
}

NSLog(@"Count: %i", i);
}
@end

SR T MACSE G|

Local ¢)
_cmd = (SEL) 0x931¢f502 applicationDidFinishLaunching:
@ = (NSC *) 0x13d8f0

v [self = (BreakpointTestAppDelegate *) 0x127b10
» NSObject = (NSObject) {...}
» window = (NSWindow *) 0x126b00
M= 632

OEBPS/images/9781118007594-fg1122_fmt.jpeg
Xcode File Edit

View Navigate

Editor Product Window Help

= & Wed21:56 Q

41°C000rpm Jf M O <4

noe

LIBRARY
L Developer Profile
[] Provisioning Profiles
'z Software Images
" Device Logs
% Screenshots

DEVICES

e
1(8B117)
(] Provisioning Profiles
4 Applications
BE Console

. Device Logs
& Screenshots

Organizer - Devices

iPhone Provisioning Portal login
Please provide your credentials for login to the iPhone Dev Center

Username: [|

Password:
"I Remember Password in Keychain

Provisioning No provisioning profiles ©

A Ball, Ball0.2, Fi GKTank, Locater, MapKit Touches, MapsTest, OpenGLE... ©

34 FairPlay-encrypted applications

Device Logs No Device Logs ©

Screenshots No screenshots ©

Add to Portal

Remove

OEBPS/images/9781118007594-fg0315_fmt.jpeg
abBar - MainWindow.xib

- Running TabBar on iPhone Simulator
\\)/\ /.\ TabBar | iPhone 4

No Issues

« [TabBar) (| TabBar) [l MainWindow.xib

B TabBar
1 target, i0S SDK 4.3
(] TabBar
h| TabBarAppDelegate.h
m| TabBarAppDelegate.m

) FirstViewController.h
m| FirstViewController.m
h) SecondViewController.h
m| SecondViewController.m
A Firstview.xib
SecondView.xib

(L] Supporting Files

(] Frameworks

(] Products

@ Placeholders

File's Owner
@) First Responder

W% Objects

¥ Tab Bar App Delegate
Window

o Tab Bar

() First View Controller - First
8 Tab Bar Item - First

() Second View Controller - Second
8 Tab Bar Item - Second

TabBar

KA 11:31 PM

Second View

Loaded by the second view
controller — an instance of
SecondViewController — specified
in the View Controller Attributes in
the Main Window nib file.

OEBPS/images/9781118007594-fg0413_fmt.jpeg
T A QD | Errors Only
—rey . Build target myCleverApp
Project myCleverApp | Configuration Debug
‘¥ © Compile myCleverAppAppDelegate.m ...in /Volumes/Developer/+ Projects/+ Tests & Experiments... 42 @
@ No declaration of property 'viewContrller' found in the interface
A\ Property 'viewController requires method '~viewController' to be defined - use @synthesize, @dynamic ... more
A\ Property 'viewController’ requires the method 'setViewController:' to be defined - use @synthesize, @dyn... more

o Build failed 28/10/2010 21:05

A Build myCleverApp
1!!10[101_!12&55'

., Build myCleverApp
09/01/2001 11:43 .

1 error, 2 warnings

OEBPS/images/9781118007594-fg0511_fmt.jpeg
o000

(®) () mimaon s .. £]

| Animation Test

Welcome to Xcode 4

Project (i1
1 Animation Ycumdtnro) i c
|mlT @ A | 4 » ||| Animation Test) No Selection | <o D B8
msm T o dseungs | |y ey
v (] Resources Open with External Editor | q Project Name | Animation Test.xcodeproj
L ;"'::::':s";i":; Open As ¥ Dependencies (0 items) Location | Not applicable 3]
| MainMenuxib New File... Containing directory
v [] Other Sources New Project... Add target i Full Path :re“,Mim Teu,ml::m/_u
¥ Project Document
New Group from Selection Project Format | Xcode 3.1 D)

Add Files to “Animation Test"...

undle Resources (2 items)

st.strings ...in English.lproj/
Delet lenu.xib ..in English.lproj/ MalaxtSettiogs
[CLinked Framey ~ V€I€t€ Indent Using [Spaces
» (3 Cocoa.framy
= Source Control > Widths 4@
(2] Other Framew . Y T
> g:”","':"“" Project Navigator Help » e Sources (2 tems) Wrap lines
» (fl CoreData.fre
» (1] Foundation.framework g JaSouccaControl
v (] Products. — T TR Version Fetching... (up to date)
4 Animation Test.app - LTenAptitopse Status No changes
L +* -|
¥ Link Binary With Libraries (1 item)
(11] Cocoa.framework
DI} & =
[[l File Template Library D
l+ - Drag to reorder f -
{‘ " Objective-C class - An Objective-C class with a header
| Sowic
= UIViewController subclass - An Objective-C view controller
i subclass
s
m}"’ ‘Objective-C NSObject category - An Objective-C categoryon v
+| OAG Q@ Add Target Q -

OEBPS/images/9781118007594-fg1217_fmt.jpeg
RUN ACTION

TEST ACTION

PROFILE
ACTION

ANALYZE
ACTION

ARCHIVE
ACTION

Build Editor
selects targets to
be built for
each action

!

BUILD ACTION

| Build pre-action scripts |

I Run settings |

h 4

—>| Run pre-action scripts | RUN | Run post-action scripts

| Test settings |

—>| Test pre-action scripts | TEST | Test post-action scripts

| Profile settings |

—>| Profile pre-action scripts | PROFILE | Profile post-action scripts

| Analyze settings |

BUILD SELECTED TARGETS]|
| Build post-action scripts |

—>| Analyze pre-action scripts |ANALYZE|AnaIyze post-action scripts|

I Archive settings |

—>| Archive pre-action scripts |ARCHIVE |Archive post-action scripts

OEBPS/images/9781118007594-fg1119_fmt.jpeg
8006 Provisioning Profiles - iOS Provisioning Portal - Apple Developer

uu + ﬂhttpl/developer apple(om/InsImamge/pmvlslonlngpmﬁles/lndex mlon ¢ [M(Qr Google

‘ Developer Technologies Resources Programs Support Member Center (@ Search Developer
iOS Provisioning Portal Welcome, Richard Wentk | Edit Profile | Log out
P Portal : Media Go to i0S Dev Center
Home
Certificates Development Distribution History How To
Devices L

¢ Development Provisioning Profiles

App IDs

m) Provisioning Profile ~ AppID Status Actions
Distribution O '@ aname QAKHQQUMER.* Active @opa) Edit

a
v

OEBPS/images/9781118007594-fg1315_fmt.jpeg

OEBPS/images/9781118007594-fgb303_fmt.jpeg
Xcode/gfortran Contest Winner: Damien Bobillot
By dgohara at Wed, Sep 20 2006 12:49pm | News

NOTE: This plugin will not work with Xcode 2.5 or 3.0. And will not work in
Leopard at all. The plugin will work on Mac OS X Tiger with Xcode 2.4.

UPDATE UPDATE UPATE UPDATE UPDATE UPDATE UPDATE

A newer version of the plugin, installer and gfortran is now available. Please see the
following news item:

http://www.macresearch.org/xcode_gfortran_plugin_update

About a month or so ago, we put out a call for someone to develop a gfortran plugin

for Xcode. Damien Bobillot has stepped up to the plate and produced a plugin that meets the requirements of
the contest. As a result of his winning entry, Damien will receive a 4GB iPod Nano. You can download all of the
files necessary to begin using the plugin directly from the MacResearch site (see below). Detailed instructions
for using the plugin, as well as possible remedies for troubleshooting are given below.

One of the requirements for the contest was that the plugin source be made publicly available. It is our hope
that others will take advantage of Damien's good work to help extend and improve the plugin and make the

changes available to the community at large. If you do modify the plugin, please keep in mind that crediting

author is Damien Bobillot, and please let us know that an update is available. If there is enough development
interest, MacResearch can host a repository on the project.

Thanks again Damien for your work on this and enjoy the prize!

MacResearch Mirror

gfortran compiler for ppc archive
gfortran compiler for intel archive
gfortran plugin and templates installer
gfortran plugin source

Beginning
Mac OS X Snow Leopard
Programming

Your guide to programming on
the Mac 05 X 10.6 Platform

[PayPal Donations]

7" Cocoa for Scientists

N
The Xgrid Tutorials

I’ - OpenCL Tutorials

OEBPS/images/9781118007594-fgb205_fmt.jpeg
s reData
1 target, Mac OS X SDK 10.6

[h] MacCoreDataAppDelegate.h
Im| MacCoreDataAppDelegate.m
 MainMenu.xib
| MacCoreData.xcdatamodeld
[MacCoreDataD...del.xcdatamodel
(] Supporting Files
| MacCoreData-Info.plist
| | InfoPlist.strings
[h] MacCoreData-Prefix.pch
|m| main.m
3 Credits.nf
» (] Frameworks
»(] Products.

P

+ 0O0RB O)

PROJECT

8 MacCoreData

TARGETS
MacCoreData

uild Succeeded | 14/01/2011 at 21:3|

e, b e
B 6
Project (11

Summary

| mfo |

Build Settings Build Phases Build Rules

v _Custom Mac OS X Application Target Properties

Key

Localization native development region

Executable file

Icon file

Bundle identifier
InfoDictionary version
Bundle name

Bundle OS Type code

Bundle versions string, short
Bundle creator OS Type code
Bundle version

Minimum system version
Main nib file base name
Principal class

» Document Types (0)

» Exported UTIs (0)

» Imported UTls (0)

¥ URL Types (1)

[y myure

specified

v Additional url type properties (0)

.

Identifier myURL

No
Wriage icon [None =

I Tra—

Type

Value

Click here to add additional url type properties

Type Value

String en

String S{EXECUTABLE_NAME}

string

string skydancermedia.com. ${PRODUCT_NAME:rfc10

String 6.0

String S{PRODUCT_NAME}

String ApPL

String 10

String m

String 1

String $S{MACOSX_DEPLOYMENT_TARGET}

String MainMenu

String i

)
| URL Schemes | myURL

~
i
v

‘Add Target

e+

OEBPS/images/mac_note_fmt.jpeg

OEBPS/images/9781118007594-fg0732_fmt.jpeg
I) (O[SE]) (=]

Show |_Layout Rectangle B

S8 | w6))
X ¥

I —

bt v wen. 0

Round Rect Button - Intercepts touch events
and sends an action message to a target object
when it's tapped.

Segmented Control - Displays multiple
segments, each of which functions as a discrete
button.

) Text Field - Displays editable text and sends an
| Text action message to a target object when Return is
tapped.

[SHICY)

rre

Slidac - Dical i et

Q)

9

OEBPS/images/9781118007594-fgb107_fmt.jpeg
ATIRadeonX1000GLDriver: ATl Radeon X1600 — 381

Driver Monitor Parameter
2D Command Data

2D Context Switches

2D Contexts

w Log $ 0 il 1G $

Clear Log/Linear Min Max

Table

CPU Texture Page-off Wait
CPU Texture Page-on Wait

CPU Texture Upload Wait (2D context only)
CPU Wait for 2D Operations to Finish

CPU Wait for 2D Swap to Complete
CPU Wait for DVD Operations to Finish

CPU Wait for DVD Swap to Complete

CPU Wait for Free 2D Command Buffer

CPU Wait for Free 2D Context Switch Buffer

CPU Wait for Free DVD Command Buffer

CPU Wait for Free DVD Context Switch Buffer
CPU Wait for Free OpenGL Command Buffer
CPU Wait for Free OpenGL Context Switch Buffer
CPU Wait for Free OpenGL Data Buffer

CPU Wait for Mapped DMA Buffer Removal
CPU Wait for OpenGL Operations to Finish
CPU Wait for OpenGL Swap to Complete
CPU Wait for Operations to Finish

CPU Wait for Swap Completion

Show | Driver Monitor Parameter a Current Max # || CPU Wait in User Code

5.06

Color

v Buffer Swaps 129 1,558 - | CPU Wait to Submit Commands

Il . cruwaitfor GPU 8,715,802 1,239,595,597 ns [CPU Wait to perform Surface Read
] Current DMA Memory 536,870,912 536,870,912 b CPU Wait to perform Surface Resize

¥ OpenGL Command Data 5,961,978 8.512,053 bys | CPU Wait to perform Surface Write

CPU Wait to perform VRAM Surface Page-off
CPU Wait to perform VRAM Surface Page-on
CPU Wait to reclaim Surface GART Backing Store

Current Free DMA Memory

Action Clear Max Values Parameters,

OEBPS/images/9781118007594-fgb102_fmt.jpeg
e

Workflow Steps
Lay out interface » =) mainjs $ <Noselected symbol> §
*
Place an item from the library This file was generated by Dashcode.

You may edit this file to customize your widget or web page
according to the license.txt file included in the project.
*/

1"
/1 Function: load()
/7 Called by HTML body element's onload event when the widget is ready to start

177
function load()
2l {

dashcode. setupParts();

N [«

OEBPS/images/9781118007594-fg1418_fmt.jpeg
¢ | (Q github

M h b Pricingand Signup ~ Explore GitHub ~ Features Blog Login
github

519,000 people hosting over 1,551,000 git repositories

jQuery, reddit, Sparkle, curl, Ruby on Rails, node.js, ClickToFlash, Erlang/OTP, CakePHP, Redis, and many more Find any repository

twitter @rocspoce dign Yarioo! (i shopify [EIIN siajar

glt /'gtt/ g]_t-hub /'gthab/

Git is an ly fast, efficient, distril version control system GitHub is the best way to collaborate with others. Fork, send pull
ideal for the of softy requests and manage all your public and private git repositories.

Plans, Pricing and Signup

Free public repositori llab issue tracking, wikis, downloads, code review, graphs and much more...
Team management Code review Reliable code hosting Open source collaboration
30 seconds (0 give people access 1o Comment on changes, track issues, We spend all day and night making Participate in the most important open
code. No SSH key required. Activity compare branches, send pull requests sure your repositories are secure, source community in the world today—
feeds keep you updated on progress. and merge forks. backed up and always available online or at one of our meetups.

More ahent collabharation are aheat code review Meore aheant code haatine Mere ahaert sawr cammuniv

NI 4

OEBPS/images/9781118007594-fg1709_fmt.jpeg
Unit] UnitTest.xcodeproj

Build UnitTest: Succeeded | Today at 22:14 EIE O ==
] El
No Issues

PROJECT

Info Build Settings | Build Phases | Build Rules

3 UnitTest 1 UnitTest Q)
[h] UnitTestAppDelegate.h TARGETS » Target Dependencies (1 item)
m) UnitTestAppDelegate.m A UnitTest (i e J
ﬁ M"‘M”J:m. > compile Sources (3 items) 8)
m RootViewController.m [> Link Binary With Libraries (3 items))]
/ RootViewController.xib
[f] MathMachine.n [Copy Bundie Resources (2 items) a)
im MathMachine.m

v [Supporting Files v _Run Seript [%]

[unitTest-Info.plist shell [7bin/sh]

| | InfoPlist.strings

2| "${SYSTEM_DEVELOPER_DIR}/Tools/RunUnitTests"
3

[m| main.m

@ UnitTest-Prefix.pch EJI Run the unit tests in this test bundle.
v] UnitTestTests

@ Show environment variables in build log
([Run script only when installing

Input Files

Add input files here
+ -
Output Files.

Add output files here
bl

+ 0ORGB® Add Target

‘Add Build Phase

OEBPS/images/9781118007594-fg0418_fmt.jpeg
Finished running myCleverApp

nie|

b2 Hell
// myCleverAppAppDelegate.m e
// myCleverApp myCleverAppAppDelegate : NSObject
" Name: NSObject
// Created by Richard Wentk on 17/10/20
/1 Copyright (c) Skydancer Media Ltd. All rights Availability: iOS (2.0 and later)
reserved. Abstract: NSObject is the root class of most Objective-C class hierarchies. Through NSObject, objects
1" inherit a basic interface to the runtime system and the ability to behave as Objective-C objects.
3 o g & Declared In: NSObjecth
#import "myCleverAppAppDelegate. e NSsObject Class Refe
#import "myCleverAppViewController.h" Related Documents: Cocoa Fundamentals Guld!
Sample Code:

inpl ion mycl

@synthesize window;

@synthesize viewController;

- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary)
launchOptions

// Override point for customization after
application launch.

[window addSubview:viewController.view]l;

[window makeKeyAndVisible];
return YES;

- (void)applicationWillTerminate: (UTApplication %)
application {

// Save data if appropriate.

- (void)dealloc {
[window releasel;

[viewController releasel;
[super dealloc];

@end

OEBPS/images/9781118007594-fg0503_fmt.jpeg
| Animation Test
Welcome to Xcode 4

Project 431

< ») (z2F={m) (& Animation Test) Q

¥ DEVICES Shared Folder
[Eris —Name————————— 4| Date Modified
,'3 Macintosh HD Animation Test.xcodeproj Today, 00:44
£l ipisk Animation_Test_Prefix.pch 22/05/2010
L1 Mac 05 X Install DVD - Animation_Test-Info.plist 22/05/2010 g
: B - Animation_TestAppDelegate.h 22/05/2010 7y @
! Developer - Animation_TestAppDelegate.m 22/05/2010 dent
(5 build 22/05/2010
Ml . | [English.iproj 02/11/2010
B1s2 10808 = main.m 22/05/2010
¥ PLACES
[dcns
(2] Developer
Group: | Animation Test)
Add to targets: # ;A Animation Test |
NEE
rfile |

Comei) S e

<>

Header File - An empty header file

+ | OREQ)

3
N

OEBPS/images/9781118007594-fg0905_fmt.jpeg
—] 7
1BAppDelegate.h 1BAppDelegate.h
18 // 1B

Created by Richard Wentk on 23/11/ C ed by Richard Wentk on 23/11/
[} MyAppDelegate.m (wa. 2010. 20
'-I%lm,m e // Copyright 2018 Skydancer Media Ltd. // Copyright 2010 Skydancer Media Ltd.
ALl rights reserved. ALl rights reserved.
¥ /4 MainWindow.xib 1" 7
“ < MainWindow.xib (E..)]
#import <UIKit/UIKit.h> #import <UIKit/UIKit.h> E
-
@class IBViewController; @class IBViewController;
nterface B ject < @interface IBAppDelegate : NSObject <
UIApplicati te> { UIApplicationDelegate>
UIWindow *window; UIWindow *window;
IBViewController *viewController; IBViewController *viewController;
¥
@property (nonatomic, retain) IBOutlet @property (nonatomic, retain) IBOutlet
UIWindow *window; UIWindow *window;
@property (nonatomic, retain) IBOutlet @property (nonatomic, retain) IBOutlet
IBViewController *viewController; IBViewController *viewController;
@end @end

AN

T ¥ PP mm—

OEBPS/images/9781118007594-fg0212_fmt.jpeg
¥ DEVICES Shared Folder
& Eris | @@ + Beta - [* About Xco...0S SDK.pdf

El ibisk : (3 + Projects [% About Xcode.app
] Mac OS X Install DVD | (L0 + STORE -~ [Applications
[e (23 Documentation
(1] Documentation - [Examples
| (L] Provisioning ~ | (@l Extras
v PLACES (] Headers
(2] Developer (7 Library
(@ Pictures (] Makefiles
Desktop (L Platforms
&} Main (30 SDKs
[} Documents [Tools
Moues £ usr
J3 Music
A Applications
¥ SEARCH FOR
() Today
(L) Yesterday
(L) Past Week
All Images
All Movies
All Documents

& Developer

OEBPS/images/9781118007594-fg0709_fmt.jpeg
8] B8 v |0

v View
Show | Frame Rectangle i
= 0l 20
N X Y
320 I3 460
Width Height

Autosizing Example

Arrange | Position View

OEBPS/images/9781118007594-fg1503_fmt.jpeg
| 5

Y beelithiichs

Analyze Sucuuie\‘l | Today at 00:04
Project 03

incremented. The object now has a +1 retain count +

| Bl O =)

Method returns an Objectiv..
@ Reference count incremente.
Object allocated on line 125...
& mk!hdugmagenluere
Variable 'returnDate’ decl.
Undefined or garbage value

v 3 Mem:
e et ek

& Method returns an Objecti

— Reference count incremente.

44 Semar
um.od —disp!lvfovADne no...

Viethod - atapiayForADate? no...

(IBAction) toFirstDate
if (![dateToDisplay isEqualToDate: firstDate])
1
UIViewAnimationTransitionCurlDown;
[firstDate retain];

transition =
dateToDisplay =

- -(NSDate *) todayInDays

_-NsDate #returnDate;
\u (currentYear)

'»wsnmcomponem +todayComponents = [thisCalendar components: (NSDayCalendarUnit |
t | NSYearCalendarUnit) fromDate: [NSDate datell;

*sreturnn.ce = |[Ithi:

[
| menmmsmo»mm.cmm.mm.mmum«mm:m;em)o
— s +1 retain count
_—1F (followingvear)
(returnDate = [lastDate retain];
IS
“~»if (precedingYear)
| - returnDate = [firstDate retain];
AN
“rreturn returnbate;
Nlles to caller) o
not contain ‘copy’ st

| ﬂl.m}eaillmuﬂmllne 125 and stored into 'returnDate’ is returned from a.
@ Potential leak of an object allocated on line 125 and stored into ‘returnDate"
~(void) toToday

dateTodayl;

NSComparisonResult result = [dateToDisplay compare:
if (result != NSOrderedSame) {
[dateToday releasel;
dateToday = [[self todayInDays] retain];
dateToDisplay =
transition =

[dateToday retain];
UIViewAnimationTransitionCurlUp;
:dateToDi ;

TETTTTT™

N

OEBPS/images/9781118007594-fg1307_fmt.jpeg
318 - oj

Running def on iPhone
No Issues E

Build Rules

Basic @D | Combined

=
Info.plist File
Info.plist Other Preprocessor Flags
Info.plist Output Encoding
Info.plist Preprocessor Definitions
Info.plist Preprocessor Prefix File
Preprocess Info.plist File
Preserve HFS Data
Private Headers Folder Path

Header Searc
Library Searc
Rez Search

1y Resolved
1B-Info.plist

binary

No
No &

def.app/Privat...

def

P
IB-Info.plist

[|

Sub-Directories to Exclude in Recursiv...
Sub-Directories to Include in Recursive...
User Header Search Paths

“.nib *.Iproj *.f...

¥ Unit Testing

Other Test Flags
Test After Build
Test Host

Test Rig

No @

OEBPS/images/9781118007594-tbbappb1.jpg
Table B.1 Key Application Settings

Setting i0S/0S X Notes

Identifier Both Defines the application name. Set automatically from the project filename. Can be edited
manually, but this isn't usually necessary.

Application 0S X only Sets the category in the App Store from a menu of standard options.

c@tegory

Version Both App version number. Uses the standard major.minor numbering format—for example, 1.2.
The numbers are arbitrary.

Devices i0S only Defines an app as iPhone-only, iPad-only, or Universal.

Apprunson... Both Selects the minimum compatible 0S version. Code must support this version. Newer 0S
versions can optionally be supported with soft linking and conditional 0S-specific code.

Main interface Both The initial nib file loaded with the application. Usually left unchanged.

Supported device i0S only A group of buttons that selects various orientations. Portrait is mandatory for the iPhone,

orientation but other orientations are optional. All orientations are mandatory for the iPad.

App icon(s) Both Defines the icon file that appears on the Dock or Springboard. Must be a png. Right-click an

empty icon box to select a file with Finder. See the platform documentation for information
about the required pixel dimensions.

Launch images i0S only Defines the image that appears while the app is loading. See the documentation for infor-
mation about pixel dimensions for each platform.

OEBPS/images/9781118007594-fg0508_fmt.jpeg
eoe B (LG =
Welcome to Xcode 4
=

Project (11

Animation Test Y
¥ (31 target, Mac 05 X 50K 10.6 /1 Header.h Y. tdeoticy and T
o 77 Mt vee e eioane
|| ThisisANewFileName.h // Created by Richard Wentk on 11/11/2010. File Type [_Default - C Header ... 1+)
Animation_T...ppDelegate.| // Copyright (c) 2010 Skydancer Media Ltd. All rights reserved.
" Animation_T...ppDelegatem| | 7/ T
v (] Other Sources i)
Q Animation_Test_Prefix.pch Full Path /Volumes/Developer/+
| main.m Projects/_MACOSX/
v (] Resources Animation Test/
| Animation_Test-Info.plist ThislsANewFileName.h
| InfoPlist.strings. ¥ Localization
| MainMenu.xib

OEBPS/images/9781118007594-fg1212_fmt.jpeg
Edit Scheme
New Schem
Manage Scheme:

(NSString

id)ini
if ((self = [super
// Custom initialization

return self;
*/
I*
/1 Implement loadView to create a view hierarchy programmatically, without using a nib.
- (void)loadView {
}

*/
|

/%
/1 Tnplement viewDidLoad to do additional setup after loading the view, typically from a

nib.
- (void)viewdidLoad {
[super viewDidLoad];

}
*/

// (Jverrnle to allow orientations other than the default portrait orunnﬁon.
- (8OO : (UIInterfaceOri faceOri

// Return YES for supported orientations
return (interfaceOrientation == UIInterfaceOrientationPortrait);

}
*/
- (void)didReceiveMemoryWarning {
// Releases the view if it doesn't have a superview.
[super didReceiveMemoryWarning];
/1 Release any cached data, images, etc that aren't in use.
- (void)viewDidUnload {
// Release any retained subviews of the main view.

7/ e.q. self.myOutlet = nil;
la NSObject *theObject = [[NSObject alloc] initl;

+ OR6(® ' | -

OEBPS/images/9781118007594-fg1508_fmt.jpeg
oy Debug I8 GNU gdb 6.3,
24/12/2010 23:13 Copyright 2004 Free Software Foundation, Inc.

ild GDB is free software, covered by the GNU General Public License, and you are
A-' 18 welcome to change it and/or distribute copies of it under certain conditions.

24/12/201023:13 Type “show copying" to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty" for details.
This GDB was configured as "i386-apple-darwin".sharedlibrary apply-load-rules all
ey Attaching to process 5335.
T e Pending breakpoint 1 - ""IBViewController.m":68" resolved

catdl; & -12-24 23:13:38.697 IB[5335:207] This is a log that displays a different message.

C Fyyrey)
24/12/2010 23:06

s Debug 18
24/12/2010 23:05

v Build 1B
24/12/2010 23:05

A Build 1B
24/12/2010 02:17

OEBPS/images/9781118007594-fg1704_fmt.jpeg
+ OR6®

#inp

@int

@prol
@proj
@proj
-(id

@end

MathMachine.h
UnitTest

Created by Richard Wentk on 24/03/2011.
Copyright 2011 Skydancer Media Ltd. ALl rights reserved.

ort <Foundation/Foundation.h>

erface MathMachine : NSObject {

int inputA;
int inputB;
int sumAB;

perty int inputA;
perty int inputB;
perty int sumAB;

) initWithSum: (int) inA and: (int) inB;

OEBPS/images/9781118007594-fg1004_fmt.jpeg
o000 Organizer - Devices

1= M@

Projects Archives

LIBRARY Q- Profile Name
Name 20thSept2010
ey SONATENEagEE - Creation Date 2010-09-20 21:37:15 +0100
R e (s Expiration Date 2010-12-19 20:37:15 +0000
 Screenshors “ Profile Identifier 3F4AF672-EA87-46B2-A474-0E4685776D93
.
i App Identifier QAKHQQUMER.
iPod Name AdHoc
"B ey N Creation Date 2010-09-20 21:31:30 +0100 Delete Profile
. Device Logs Expiration Date 2011-09-19 21:31:30 +0100
@ Screenshots Profile Identifier BIAFO93C-3B17-4ESE-BD17-FIE086824997 —_—
iPhone o App Identifier QAKHQQUMER.*
4.1 (88117)
. Device Logs Name DsitributionProfile
% Screenshots - Creation Date 2010-09-20 21:31:50 +0100
T Expiration Date 2011-09-19 21:31:50 +0100
M i (8C148) L Profile Identifier 0BFB4AF7-4BAE-4DDC-A23F-4BE3DSOAF660
[] Provisioning Profiles o App Identifier QAKHQQUMER.*
4 Applications
8 Console
. Device Logs
& Screenshots

This profile will expire on 19 Dec 2010 20:37

« Device Name Installed
@ iPhone Installed
iPhone
iPod

& % ¥ Automatic Device Provisioning (Refresh |
Import Export

OEBPS/images/9781118007594-fg1102_fmt.jpeg
Use the Keychain Access utility to
generate a CSR file.

:

Upload the CSR to request a
Developer Identity Certificate and

enable hardware testing of debug builds.

l

'

(The Portal notifies the team
manager by e-mail).

i

Approve the CSR on the Portal.

:

Download the
Developer Identity Certificate.

'

Download the WWDR certificate.

]

Upload the CSR to request a
Developer Identity Certificate and
enable App Store and Ad Hoc builds.

l

(The Portal notifies the team
manager by e-mail).

l

Approve the CSR on the Portal.

l

Download the
Distribution Identity Certificate.

l

Install all three certificates in your
keychain.

OEBPS/images/9781118007594-fg0102_fmt.jpeg
| « [» | [+ [[Tntp://developer.apple.com/tools/mpw-tools/

,
@& Developer

(=) Log In | Not a Member?

Advanced Search
Support

Macintosh Programmer's Workshop

Macintosh Progr Workshop (MPW) s a product designed specifically for
i R bei

Quick Clicks
MPW FAQ collection of development tools designed to support C, C++, and assembly-language
MPW Command Refemnca programmers who are writing software for Mac 0S 7.x/B.1/9.x. MPW is an open,
Updated provides the flexibiity to
for 68K and Power Macintosh
About MPW Iy
AltiVec Support
Compliers Download MPW
FTP Sto A complete, fully configured is avaiiable for from the
Reference Books Apple Developer FTP site. mmmmnmmnmmuam
Rblekas Ny the "Tool " folder on the August
S 2001 Developer CD. Detaiied instructi MPW are
o provided in the ReacMe fie. See the MPW FAQ for answers to frequently asked
questions about MPW.
ADC Resources Updated MPW Components.
Deduggers that have been the August 2001 Developer CD was
Development Kits from the
Documentation
Sample Code MPW and Mac 0S 8.5 (or later)
Start Mac 0S Programming If you intend to use MPW with Mac OS 8.5 or later, please read these important notes.
B < wew
‘The MPW Command Reference pdated to
3rd Party Links the MPW-GM foider on the August 2001 Devehnevco mem:m-lnnum.fomm

Links to too's, hnuulnn. source

and is avaiiable onine.
Questions?
The MPW FAQ has to over

NI 4

OEBPS/images/9781118007594-fg0822_fmt.jpeg
») (M) |iphoneToiPad | iP... 3

D ® A== 8

[iphoneToiPad - iphoneToiPad.xcodeproj

get, 05 SD
v (] iphoneToiPad
[h] iphoneToiPadAppDelegate.h
|ml iphoneToiPadAppDelegate.m
4 MainWindow.xib
[h) iphoneToiPadViewController.h
m] iphoneToiPadViewController.m
iphoneToiPadViewController.xib’
Supporting Files
[| iphoneToiPad-Info.plist
| " InfoPlist.strings
[h] iphoneToiPad-Prefix.pch

=
Running iphoneToiPad on iPhone Simulator Y
- E [eli=]y O =] (1
No Issues
| 4> | [iphoneToipad D8
PROJECT | summary | Info Build Settings. Build Phases B v Identity
[iphoneToi... | i0s Appli Target Project Name | iphoneToiPad
TARGETS \dentifier | skydancermedia.com.iphoneToiPad o sy
phoneTo iphoneToiPad.xcodeproj |
Version | 1.0 Full Path /Volumes/Developer/+
; X4/iphoneToiPad/
s] iphoneToiPad.xcodepro] ©
Deployment THW ¥ Project Document
L ct Format | Xcode 3.2-compatible |4
v iPhone / iPod Info s oo

Organization Skydancer Media Ltd

s Main Interface | MainWindow ¥ Text Settings
m| in.m
o ramevorks naen s (spaces)
» §® UIKit.framework Supported Device Orientations Widths 4|6 4
» §= Foundation.framework ———— Tab Indent
CoreGraphics.framework — ™ Wrap lines.
+ [Products 1
i iphoneToiPad.app
Upside Landscape
Down ft
App lcons.
o e D | =
image image
specified specified Objects =8
Retina Display .
Label - A variably sized amount of
[Label static text.
Launch Images
Round Rect Button - Intercepts
[] [(| touch events and sends an action

+ 0ORGB® =E n 2 3

£ | iphoneToiPad

message to a target object when...

. Segmented Control - Displays
|1 2| multipie segments, each of which

«»(

Q

OEBPS/images/9781118007594-fg1209_fmt.jpeg
Value active when “Debug”

> Debug” configuration [~ s selgctad

Value active when
“Release” is selected

Configurable build setting “Release” configuration [—>

> Opt!onal gther —>-| Optional other values...
configurations...

OEBPS/images/9781118007594-fg0209_fmt.jpeg
¥ DEVICES
& Eris
£l ibisk e

About Xcode and i0S

SDK.pdf

-
¥ SEARCH FOR v | Xcode and iOS SDK i Xcode and iOS SDK.mpkg

OEBPS/images/9781118007594-fg0307_fmt.jpeg
e YaXe)

(»), () [mycooiNewspp| .. &/

‘myCoolNewAppAppDelegate.h

Delegate.h

|mn @ A = » B8

+ [myCoolNewApp
1 target, i0S SDK 4.3

m| myCoolNewAppAppDelegate.m
& MainWindow.xib
[h] myCoolNewAppViewController.h
Im| myCoolNewAppViewController.m
= myCoolNewAppViewController.xib
Supporting Files
[myCoolNewApp-Info.plist
| InfoPlist.strings
[h] myCoolNewApp-Prefix.pch
m| main.m
v (] Frameworks
» §= UIKit.framework.
» §3 Foundation.framework

¥ DEVICES
8 Eris
) Macintosh HD
Bl ibisk
J1 Mac OS X Install DVD &
e

| Developer

¥ SHARED
(= 192.168.0.6

¥ PLACES
& + AR
(2] Developer
8 Main
[} Documents
[l Pictures
[Movies
J3 Music
/A Applications
¥ SEARCH FOR
(L) Today
(L) Yesterday
(L) Past Week
All Images

v

Shared Folder

¥ @ en.lproj

_| InfoPlist.strings
 MainWindow.xib

myCoolNewAppViewController.xib
main.m

myCoolNewApp-info.plist
myCoolNewApp-Prefix.pch
myCoolNewAppAppDelegate.h
myCoolNewAppAppDelegate.m
myCoolNewAppViewController.h
myCoolNewAppViewController.m

Date Modified
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50
Today, 21:50

| Developer + [T + X » 1] myC + [C] myCe

OEBPS/images/9781118007594-fgb213_fmt.jpeg
E "Entityl
Entity2

FETCH REQUESTS

CONFIGURATIONS
(@ Default

/1| MyCoreDataP...xcdatamodeld

O relationship

v Entity2

== QO

Add Entity

Qo @

‘Add Attribute Editor Style

OEBPS/images/9781118007594-fg0421_fmt.jpeg
myCleverAppAppDelegate.m
myCleverApp

Created by Richard Wentk on 17/10/2010.
Copyright (c) 2018 Skydancer Media Ltd. All rights reserved.

#import “myCleverAppAppDelegate. h"

#import “myCleverAppViewController.h"
@impl myCl g

@synthesize window;

@synthesize viewController;

(B0OL)application: (UIApplication *)application didFinishLaunchingWithOptions: (NSDictionary *)
i fons {

+ | OREQ),

// Override point for customization after application launch.

[window addSubview:viewController.view];

[window makeKeyAndVisiblel;

[application didChangeValueForKey: (ETRIIIIN wi ion: ionKi
usingObjects: (NSSet *)

return YES;

- (void)applicationWillTerminate: (UIApplication *)application {

// Save data if appropriate.

- (void)dealloc {

[window release];
[viewController releasel;
[super deallocl;

@end

OEBPS/images/9781118007594-fg0614_fmt.jpeg
| « | » | [+][I ntep://developer.apple.com/library/ios /navigation /index. html#section=Topics&topic=Audio%2(&

Release Notes
Sample Code Documents 184 of 1140 (@ 0) [z]
Technical Notes
Technical Q&As
" » AAC Audio - Encoder Delay and Synchronization ~ Technical Notes Audio & Video CoreAudio 2009-11-19
Audio First Version
~ Topics » AddMusic Sample Code Audio & Video MediaPlayer 2009-10-01
. Audio Minor Change
S Test Sample Code Audio & Video AudioToolbox ~ 2010-06-28
Tools & Languages Audio Content Update
Data Management » Audio & Video Coding How-To's Coding How- Audio & Video 2010-06-04
General Tos Minor Change
Graphics & Animation » Audio Component Services Reference Reference Audio & Video AudioUnit 2009-04-24
Networking & Internet Audio Minor Change
S » Audio Converter Services Reference Reference Audio & Video AudioToolbox 2009-08-31
Bar Audio Minor Change
RS B » Audio File Services Reference Reference Audio & Video AudioToolbox ~ 2009-08-17
N K Audio Minor Change
~ Cocoa Touch Layer » Audio File Stream Services Reference Reference Audio & Video AudioToolbox ~ 2010-02-24
Audio Minor Change
AddressBookUl
EventKitUl » Audio Format Services Reference Reference Audio & Video AudioToolbox ~ 2009-08-14
Audio Minor Change
iAd » Audio Host Time On iPhone OS Technical Q8As Audio & Video CoreAudio 2009-05-18
o Audio First Version
MessageUl » Audio Interruptions during Movie Playback Technical Q8As Audio & Video AudioToolbox ~ 2009-08-05
First Version
UIKit — E—
» Audio Mixer (MixerHost) Sample Code Audio & Video AudioUnit 2010-07-27
~ Media Layer Audio First Version
o ud h the ud Technical Q8As Audio & Video d
» Audio panning with the 3D Mixer audio unit echn u i AudioUnit 2010-05-22
AudioToolbox o Audio First Version
5 Technical Q8As Audio & Video <
» Audio Queue - Handling Playback Interruptions echn i AudioToolbox ~ 2009-06-17 4
AVFoundation s 9. Pyt e Audio Content Update |V

<>

OEBPS/images/9781118007594-fg0712_fmt.jpeg
Archive Succeeded | 17/03/2011 at 22:21

Format View Window Help

No Issues.

File

Edit

Y X

@

E [E1EE =] (1 =]

v _Content Filters

No Content Filters

+1=]

OEBPS/images/9781118007594-fg1130_fmt.jpeg
Developer Certificate Utility

pple.com/certificates/index.action#maccertrequest

Mac App Signing Certificate Assistant

Expiration Date

Richard Wentk's Cert... Feb 03, 2012 Frem——

Step 1. Download Cert
Download your Mac App Signing Certificate to your Mac OS X computer.

Step 2. Install Certificate
Double click the downloaded .cer file to install your certificate in Keychain.

OEBPS/images/9781118007594-fg1614_fmt.jpeg
O Al Objects Created

) Created & Still Living
) Created & Destroyed

v Call Tree

#.|Object Address
0 Ox4e25e40
1 0x4b3bbb0
2 0x4b37320
3 0x4b3f8b0
4 0x4b3fafo
5 0x4e258d0

() Separate by Category
O Separate by Thread
O Invert Call Tree

@ Hide Missing Symbols
O] Hide System Libraries
O Show Obj~C Only
Flatten Recursion

Call Tree Constraints
Min
O Count 0
O Bytes oy

v Specific Data Mining
|

Symbol) (_ Library

Max
o
«

Restore

6

7 0x4e25b00
8 0x4b36430
9 Ox4e25a80
10 0x4b3cbf0
11 Ox4b3cc00
12 0x4b39020
13 0x4b39030
14 0x4e27010
15 0x4e27020
16 0x4e27030
17 0x4e27040
18 0x4e27050
19 Ox4e274c0
20 Ox4e274d0
21 Ox4e274e0
22 Ox4e274f0
23 0x4e27500
24 0x4b3cb50
25 0x4b3cb60
26 Ox4hich70

00:47.877
00:48.877

00:56.313
0056 R7R

3 08B O 8 O 0 0

) B Statistics $) Object Summary) NSObject
Creation Time Live Respor

Responsible Caller —

-[UINib instantiateWithOwner:options:|
timerDo]
~[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
-[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~[MemoryLeakAppDelegate timerDo]
~IMemaorvl eakAnnDeleaate timerDol

\ <>

OEBPS/images/9781118007594-fg0619_fmt.jpeg
Next

Foundation Functions Reference

System Guides F
Results

Declared in NSBundle.h

Types and Timing

™ ion Types and Timing Guide NSByteOrder.h
ion Types and Timing Guide NSDecimal.h
+ [A Tour of Xcode NSException :
NSGeometry.!
P ATouof xcode NSHFSFileTypes.h
SR & Tow of Newl NSHashTable.h
> Ly Scroll View Programming Guide for Cocoa NSJavaSetup.h
») Cocoa Drawing Guide NSMapTable.h
»[I3| Rulers and Paragraph Styles NSObjCRuntime.h
[Drawing attributed strings that are both filled and stroked NSObject.h
ion Types and Timing Guide NSPathUtilities.n
NSRange.h
Text Layout Programming Guide Nezonch

" Resus .
B rees Overview
»B SampleRaster
va s.s:::g More Results :‘his d|aptker describes the functions and function-like macros defined in the Foundation
» B Gt ramework.
» B Sketch-112
» B DockTile
» I SpeedometerView .
» B WebKitPluginStarter Functions by Task
» 1 WebKitPluginWithjavaScript
et Assertions
:= m’:kmﬂv For additional information about Assertions, see Assertions and Logging Programming
» B Sketch-+Accessibility Guide. L
» 1 NineSlice NSAssert =
v

P T o T

OEBPS/images/check.jpg

OEBPS/images/9781118007594-fg1323_fmt.jpeg
Intitle

(o]

J
EVI Shared Folde!
& Eris Documentation

. Macintosh HD

E iDisk i coer m
£l Mac OS X Install... & *0

 Icon.png]

Masks | Preview | Developer

= <« >
| 192.168.0.5 — A= =)
J°1 Etc + [%) Icon.png

1.64 GB available

OEBPS/images/9781118007594-fg1421_fmt.jpeg
[<« [» | [+ @ neps://github.com/RichardWentk/LocalGit/commits /master =19

& RichardWentk = Dashboard = Inbox 0 AccountSettings = Log Out

github

PR Canet | SSSS
Explore GitHub ~ Gist Blog Help Qv Search)
@ RichardWentk / LocalGit #Admin © Unwatch (& Pull Request @1 £ 1
Source Commits Network Pull Requests (0) Fork Queue Issues (0) Wiki (0) Graphs Branch: master
Switch Branches (2) v Switch Tags (0) Comments Contributors
LocalGit/ Commit History & Keyboard shortcuts avaiable
2011-04-01
Merge branch 'Branch@.01' commit 470632d@31efaleebcfl
tree 90f623125f9959caaScf
RichardWentk (autnor) parent ddSed1e2e73abO8daSeb
aboutan hour ago parent 4f65629d21b1b495ed29
Merging. .. commit 4f65629d21b1b495ed29
tree 2c77b41da25caaS4ad86
RichardWentk (author) parent fc7bbf4225dc85ab0f35
about an hour ago
Pre-merge commit ddSedle2e?3ab90daSeb
tree 90f623125f9959caaScf
RichardWentk (author) parent fc7bbf4225dc85ab@f35
about an hour ago
Branch. .. commit Fc7bbf4225dc85ab0F3S
tree 59404cdedSad68b7a818
(aiii) parent a80db336271d35ee3ded
about an hour ago

commit a80db336271d35ee3ddd
tree 90f623125f9959caaScf

N

OEBPS/images/9781118007594-fg1619_fmt.jpeg
oy Queue
Thread 1
com.apple.main-thread
ﬂ 0 objc_msgSend
ﬂ 10 UlApplicationMain

» ¥ Thread 4 WebThread

main.m
Zombies

ik

// Created by Richard Wentk on 18/01/2011.

// Copyright 2011 Skydancer Media Ltd. All rights reserved.
1"

#import <UIKit/UIKit.h>

int main(int argc, char argv(])
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

"3 int retVal = UIApplicationMain(arge, argv, nil, nil);
[pool releasel;
return retval;
E > o & 2| 4Zombies) ¥ Thread 1 [11 main
= a ST Al Outpur 3 CGear) (D L CO)
arge = (int) 1 9815 (Apple version gdb-1515) (sat
» [argv = (char **) Oxbffff07c
Copyright 2004 Free e Foundation, Inc.
» I8 pool = (NSAutoreleasePool *) 0x4b0f320 [G00 15 Fraw sivtinen, ceiare) by the B Bensrul
[retval = (int) 0 Public License, and you are

| welcome to change it and/or distribute copies of it
under certain conditions.

| Type "show copying" to see the conditions.

| There is absolutely no warranty for GDB. Type "show
|warranty" for details.

| This GDB was configured as "i386-apple-

| darwin”.Attaching to process 4476

2011-01°19 01:26:21.170 Zombies[4476:207] Tick
sharedlibrary apply-load-rules all

‘Current language: ~auto; currently objective-c
(gdb)

OEBPS/images/9781118007594-fg0717_fmt.jpeg
== 0 (=)

I » e e baml
» | , [h]1BViewCo...) No Selection | B =
77 v Label m
77 I8ViewController.h
18 Text This is off
S /1 Created by Richard Wentk on 23/ Baseline [Align Centers 3]
11/2010. =
/1 Copyright 2010 Hedia aks (Tunae Tal 9]
5 Ltd. All rights reserved. All'llﬂl

#import <UIKit/UIKit.h> Lines | 1@

@interface IBViewController : Font Helvetica 24.0 @
UIViewController {
Min Font Size ml:]

} () Adjust to Fit

@end Text Color | M | Default

Highlighted | M | Default
Shadow | == | Default [

)

)
’mmmm&@ V&ﬂlﬂ-ll@
ERGEEED] s s

K1

v View
Family
Nodelbtaftmmmmmemmmemenne)
yup Std ~ Regular | L
Gill Sans Light Alpha Loo i)
Gil Sans Uitra Bold || Obiique Background 5
Goudy Old Style Bold =
U =
Haettenschweiler | Bold Oblique (objecs
L Handwriting - Dak« L k
Harringtol Text View - Displays multiple lines
bt 4 of editable text and sends an action
v Helvetica v message to a target object when...
Q Web View - Displays embedded

and enables content

navigation.

— =3
{55555 | Map View - Displays mapsand | ¥
[l Q y

OEBPS/images/9781118007594-fg0204_fmt.jpeg
Apple Developer

EE] £ Dhttp.//developer.apple&oml

4] (Q' apple developer

Learn Why You'll Love to Develop
with Apple Technologies

Read about our powerful, yet easy to use
tools and technologies that allow you to
turn your concepts into reality.

FHECL @
) N aEY
O] g

& Developer

Technologies
Developer Tools
ios

Mac 0S X

Safari

Resources

i0S Dev Center

Mac Dev Center

Safari Dev Center

Apple Applications
Hardware & Drivers

iPod, iPhone & iPad Cases

Join the iOS Developer Program

Join the Mac Developer Program
Get all the tools and information you need Gain access to a range of technical

to develop and distribute applications for resources to as:

iPad, iPhone and iPod touch.

sist you in developing
innovative applications for Mac OS X.

Development Videos
Developer Forums

App Store Resource Center
i0S Developer News
Licensing & Trademarks

Shop the Apple Online Store (1-800-MY-APPLE), visit an Apple Retail Store, or find a reseller.

Copyright © 2010 Apple Inc. All rights reserved. Terms of Use | Privacy Policy

Programs

i0S Developer Program

i0S Enterprise Program

i0S University Program

Mac Developer Program

Safari Developer Program

MFi Program

Register as an Apple Developer

Choose your language

Support
i0S Developer Program
Mac Developer Program

Safari Developer Program

ADC Members

Bug Reporting

iTunes Connect Support
Technical Support

Mailing Lists

RSS Feeds

OEBPS/images/9781118007594-fg0720_fmt.jpeg
» | , [h]1BViewCo...) No Selection | B

// 1BViewController.h
18

Text Thisisoff |

"

// Created by Richard Wentk on 23/ un,.
11/2010. =

// Copyright 2010 Media Truncate Tail o

Ltd. AlL right ed. i

" Lo At Aignment [= _femed] =)

#import <UIKit/UIKit.h> Lines | l]

@interface IBViewController : Font Helvetica 24.0 @
1{

W: 1610 | UIViewController

Bend Text Color | M | Default

K X

S

g

3
e

7' Text View - Displays multiple lines
= | of editable text and sends an action
iiz.Z. | message to a target object =

Web View - Displays embedded
web content and enables content
navigation.

View - Displays maps and

OEBPS/images/mac_caution_fmt.jpeg

OEBPS/images/9781118007594-fg1328_fmt.jpeg
2 ala)

[BuildSettings

e — Running BuildSettings on iPhone Simulator
BuildSettings | iP... 3| =
@) @ Eutsns 7., 5) (=]
1 Build ings. [fix.pch c
. O A < » | /A Build BuildSettings : 13:57:48 D@
Jy 03P BulldSertngs 34 | €D Recent | @UITTEFTED Allissues(Q

28/02/2011 13:57 b

28/02/2011 13:57
Debug BuildSettings
1% 28/02/2011 13:53
A Build BuildSettings
28/02/201113:53

., Build BuildSettings
28/02/2011 13:47

., Build Buildsettings
28/02/2011 13:46

., Build Buildsettings
28/02/2011 13:46

., Build BuildSettings
28/02/2011 13:45
Debug BuildSettings

Lﬂ 28/02/2011 13:45

4, Build BuildSettings
28/02/2011 13:45
4, Build Buildsettings
28/02/2011 13:44
A, Build BuildSettings
28/02/2011 13:43
4, Build Buildsettings
28/02/2011 13:42
., Build BuildSettings
28/02/2011 13:39
., Build Buildsettings
28/02/2011 13:38
., Build BuildSettings
28/02/2011 13:38
4, Build Buildsettings
28/02/2011 13:37
., Build Buildsettings
28/02/2011 13:36

|+, Debug BuildSettings
28/02/2011 13:35

© Touch ~*

- A Build target BuildSettings
Project BuildSettings | Configuration Debug

© Process BuildSettings/BuildSettings-Info.plist
@ Precompile BuildSettings/BuildSettings-Prefix.pch
@ Compile main.m ...in /Volumes/Developer/+ X4/BuildSettings/BuildSe.
© Compile BuildSettingsAppDelegate.m
© Compile BuildSettingsViewController.m
@ Link /Users/Main/Library/D
© Generating BuildSettings.app.dSYM
@ Copy BuildSettings/en.|proj/InfoPlist.strings
© Compiling MainWindow.xib
© Compiling BuildSettingsViewController.xib

in /Volumes/Developer/+ X4/
in /Volumes/Developer/+ X

in /Users/Main/Library/Develop

in /Volumes/Developer/+ X4/BuildSetti
in /Volumes/Developer/

Copy
Open These Results as Transcript Text File ‘

Sy

Expand All Transcripts

Collapse All Transcripts
Task and Session Log Viewing Help »

2 & % |Buildsettings

Not Applicable

D {}] & =

Object Library B

Push Button - Intercepts mouse- O
down events and sends an action
message to a target object when...

Gradient Button - Intercepts
mouse-down events and sends an
action message to a target object...

Rounded Rect Button - Intercepts .
mouse-down events and sends an
. =

Vi

OEBPS/images/9781118007594-fg1204_fmt.jpeg
[} 1B-Info.plist
| | InfoPlist.strings
% MainWindow.xib

< IBViewC...oller.xib

» &% Foundat... mework
» i CoreGra...mework
» (] Products

+ 0ORE®

‘ ‘Summary ‘ Info Build Settings Build Phases Build Rules
ios Target
Identifier skydancermedia.com.|B
Version 1.0
Devices | iPhone B
App runs on i0S 4.2) and above
v _iPhone / iPod Info
Main Interface | MainWindow =
Supported Device Orientations
Upslde I.andsnpe
App Icons.

No

image
specified

Retina Display

Launch Images

<l

Add Target

OEBPS/images/9781118007594-fg1601_fmt.jpeg
e e ———— " UL

. Trace Highlights =
v HighlightBy —

% CPU

@ shockwave Fiash (Ch...

 Xcode

===ssssssssay4»

CPU Time

Kernel _task
Google Chrome Renderer|
BBC iPlayer Deskiop
‘Shockwave Flash (Chro...
Google Chrome

00.00 3:11:56.11516

Real Memory Usage

WindowServer,

‘Google Chrome
kernel_task

‘Shockwave Flash (Chro...
Xcode!

0 Bytes

13363MB 267.25 MB

Vi

OEBPS/images/9781118007594-fg0310_fmt.jpeg
| Applescript
1 target, Mac 05 X SDK 10.6
v (] Classes
& AppleScriptA...te.applescript
(] Other Sources
|| AppleScript_Prefix.pch
) main.m
v (] Resources.
|| AppleScript-Info.plist

AppleScriptAppDelegate.applescript
AppleScript

Created by Richard Wentk on 19/10/201
Copyright (c) 2010 Skydancer Media Ltd. All rights reserved.

ipt AppleScriptAppDelegate
property parent : class “NSObject"

on npphcltxm\iillFinishLlunehmg_(mntlfxtntxon)
— Insert code here to initialize your application before any files are opened
end applicationMillFinishlaunching.

on applicationShouldTerminate_(sender)
nsert code here to do any housekeeping before your application quits
return current application's NSTerminateNow
end applicationShouldTerminate_

end script

OEBPS/images/9781118007594-fg1310_fmt.jpeg
» §= Accelerate.framework
» [settings.

7] settings - settings.xcodeproj =

s | < » | [setings

Id settings: Succeeded | Today at 14:00

No Issues.

PROJECT
[settings
TARGETS

Summary | Info Build Settings Build Phases Build Rules
ios Target

Identifier | skydancermedia.com.settings

Version 1.0
evices
Deployment Target | 4.3 =
v _iPhone / iPod Info
Main Interface | MainWindow =
Supported Device Orientations
Upside Landscape Landscape
Down Left Right
App Icons
No No
image image
specified specified
Retina Display
Launch Images

<ot

N\

OEBPS/images/9781118007594-fg0601_fmt.jpeg
+ ﬂhp//ve4pple.olllrryliosia!ilindex.hlml 4 Q'ple d| [

& Developer

D iOS Reference Library

i0S Developer Library v overview (CEEe] Required Reading Featured

~ Resource Types
Learn the basics about iOS development by reading these Getting Started documents.

Coding How-Tos

Getting Started

Guides =] © iOS Overview © Learning Objective-C: A Primer

Hefuiticy © Tools for iOS Development © Creating an iPhone Application

Release Notes

Sample Code © A short Practical Guide to Blocks

Technical Notes

Technical Q&As As you navigate deeper into the iOS Reference Library, you'll see additional lists of Getting Started documents in

Video the upper-right corners of topic pages. Each of these lists is specific to the topic at hand. After you write your

first Hello World application, use these resources to orient you to more focused programming goals.

~ Topics

Audio & Video

e
Tools & Languages
Data Management 0
Documents 1140 of 1140 ‘@ o

General

Graphics & Animation

Networking & Internet » MessageComposer Sample Code MessageUl 2010-11-08

feide Content Update

ey » iPhoneUnitTests Sample Code Tools & Languages 2010-11-01

i e e 1DEs Content Update
~ Frameworks » Data Management Coding How-To's Coding How- Data Management 2010-11-01 |3

Tos Minor Change

~ Cocoa Touch La v
— ..

OEBPS/images/9781118007594-fg0819_fmt.jpeg
Archive IB: Succeeded | 25/02/2011 at 01:31] lE“El (W] lE‘ [§] lEl
No Issues

(] Highlight Reverses Direction
Drawing (] Shows Touch On Highlight
™ Highlighted Adjusts Image
™ Disabled Adjusts Image
Line Break |_Truncate Middle v

T T —
Inset - ¥ oo ol
= ol —— o) m

v Control
| IB-Info.plist Alignment] a O
InfoPlist.strings | Horizontal
1 O B O [@
Vertical
Content [_] Highlighted
([selected ™ Enabled
v View
Mode

Drawing () Opaque O Hidden
™ Clears Graphics Context
) Clip Subviews
™ Autoresize Subviews

srctioa [osol@ [_ooo])
[ool T 1ol
Width Height

Interaction (M User Interaction Enabled e
[Multiple Touch v

+ ©80(® IFGT o ulel=

OEBPS/images/9781118007594-fg1606_fmt.jpeg
StackiDepth

T 0 W |

-

@ O]
W Allocations.

Statistics 3

‘Object Summary

«

>

OEBPS/images/9781118007594-fg1327_fmt.jpeg
1target, iOSSDK 4.3
uildSettings
v] A Framework
v (L] Supporting Files
[h| A_Framework-Prefix.pch
[c| DoNothing.c

[h| DoNothing.h
» (] Frameworks

» (] Products

+ 0ORGB®

PROJECT
[BuildSettings.

TARGETS
BuildSettings

s.xcodeproj

at 13!

Generate Register Subroutine Function... No
Increase Sharing of Precompiled Headers No
¥ Other C Flags <Multiple val...
Debug
Any Architecture | Any SDK
My Debug
Any Architecture | Any SDK : © -DMY_TOKEN
Release
vothercs+q [coMGORN]
Debug
My Debu
Release
Precompile
Prefix He:
Recognize
Recognize
Set Output

Done

Summary Info | BuildSettings | Build Phases Build Rules
Basic Combined (DD Q-)
Setting A Resolved [/ BuildSettings | [BuildSe
LU CF EXCEPUONS “res =
Enable C++ Runtime Types Yes
Enable Linking With Shared Libraries Yes
Enable Objective-C Exceptions. Yes
Enable Trigraphs No
Generate Floating Point Library Calls ~ No -
Generate Indirect Function Calls No

|
L]
-DMY_TOKEN

<Multiple val... | <Multiple
J

Short Enumeration Constants No
Use Standard System Header Directory ... Yes

VLLVM GCC 4.2 -

¥ Preprocessor Macros. <Multiple val... | <Multiple &
Debug DEBUG DEBUG ¥
Jalvl

Add Target

‘Add Build Settis

OEBPS/images/9781118007594-fg0716_fmt.jpeg
=L

Welcome to Xcode 4

» | , [h]1BViewCo...) No Selection | B

1/

// 1BViewController.h

// 1B

1"

// Created by Richard Wentk on 23/
11/2010.

// Copyright 2018 Skydancer Media
Ltd. All rights reserved.

17"

#import <UIKit/UIKit.h>

@interface IBViewController :
UIViewController {

eend

v Label ~
Text Label
ssseioe (Wgncomers___13)
Line Breaks | Truncate Tail B

Alignment [= = =

Lines 1)

Font Helvetica 17.0
Min Font Size 102
™ Adjust to Fit

Text Color | M | Default
| | Default
Shadow | == | Default

)
)
)
swadowotset| 00| 1)

Horizontal Vertical

Text View - Displays multiple lines
of editable text and sends an action
message to a target object when...

Web View - Displays embedded
‘web content and enables content

navigation. \:
{5555 | Map View - Displays mapsand |7
Q)

N

OEBPS/images/9781118007594-fg0401_fmt.jpeg
| | TangoToken.h
| TangoToken.m
» (] Other Sources
v (] Resources

|| Tango-Info.plist
v (] Frameworks
» (] uikit.framework
» (] Foundation.framework
» (L] CoreGraphics.framework
» (] Products

+ | OREQ

TangoViewController.h
7/ Tango

// Created by Richard Wentk on 28/04/2010.

// Copyright Skydancer Media 2010. All rights reserved.
#import <UIKit/UIKit.h>

#import “TangoView.h"

@interface TangoViewController : UIViewController {

TangoView *thisTangoView;
1BOutlet UISegmentedControl #segment;

@property (nonatomic, retain) IBOutlet TangoView *
thisTangoView;

@end

2 FileName TangoViewControllerh |
File Type [Default - C Header Source |41
tocton sesmeroooe______19)
./ (]

Full Path /Volumes/Developer/+ STORE/
Tango/0.1 - finger circle/Classes/ ©
TangoViewController.h

No Localization

b

¥ Target Membership
) gh Tango No Role

¥ Text Settings

=
Line Endings |_Unspecified (Mac OS X / Unix (LF))

B —
[— ﬁ@

il'npln:s
»_Source Control

D0 & = |
[l Fite Template Library ™ (=8

= Application - An Intertace Builder document |
. suitable for creating an iPhone/iPod Touch k.
application, including an application...

I
v

Nz

OEBPS/images/9781118007594-fg1330_fmt.jpeg
8 BuildSettings - BuildSettings. xcod

Running BuildSettings on iPhone Simulator

No Issues.

LHE:3 =il B s visening=
B Tﬂ'ﬁ."&"’é’n« - PROJECT Summary Info Build Settings | Build Phases | Build Rules
%3 . [BuildSettings. Q)
v (] BuildSettings TARGETS
- » Target Dependencies (1 item)
[h! BuildSettingsAppDelegate.n & A Framework ()
m] BuildSettingsAppDelegate.m BuildSettings [» Comile Sources (3 items))]
 MainWindow.xib
| BuildSettingsViewController.h > Link Binary With Libraries (4 items) ()]
|m] BuildSettingsViewController.m
7 BuildSettingsViewController.xib > Copy Bundie Resources (3 items) 8)

P
i

shell [/bin/sh
@A_Fmewkmeﬁx.pch - -
» (] Frameworks 1 /7 This script does nothing...
» (] Products

™ Show environment variables in build log
[Run script only when installing

Input Files
$(SRCROOT)/myfile

+ - |

Output Files
$(DERIVED_FILE_DIR)/myfile

Add Target ‘Add Build Phase

TS S

+ 0ORGB® = n

OEBPS/images/9781118007594-fg0814_fmt.jpeg
Running IB on iPhone Simulator

Project

No Quick Help

|| IBViewController.h
| 1BViewController.m

L TR
¥ en with External Editor

Open As >

New File...
New Project...

New Group
New Group from Selection

Add Files to “IB"... i flip.png
Delete

Source Control >

Project Navigator Help >

3 L | aB Q

OEBPS/images/9781118007594-fg0618_fmt.jpeg
|l Graphics & Animation
|| Mathematical Computation
» [l Media Layer

» Networking & Internet

» @) Performance

» [security

»[)] Tools & Languages
JRE I = Bocneocy
» g iPhone OS 4.0 Library
» i# Mac OS X 10.6 Core Library

» i Xcode 4.0 Developer Tools Library

10S Reference Libral

v overview (T Eoi) Required Reading Featured

~ Resource Types
Articles
Learn the basics about iOS development by reading these
Coding How-Tos
Getting Started
Guides =] © iOS Overview © Learning Objt
LI © Tools for iOS Development © Creating an il
Release Notes
Sample Code © A short Practical Guide to Blocks
Technical Notes
Technical Q&As As you navigate deeper into the iOS Reference Library, you'll see additional Ii
Video the upper-right corners of topic pages. Each of these lists is specific to the t
first Hello World application, use these resources to orient you to more focu:
1 ~ Topics
Audio & Video
=
Tools & Languages
Data Management O
Q L)
S I Documents 1192 of 1192 (2]
Graphics & Animation
L It » i0S 4.2 API Diffs Release Notes General
Performance
Security » i0S 42 beta 4 API Diffs Release Notes General
User Experience
~ Frameworks » i0S 4.2 Release Notes Release Notes General
~ Cocoa Touch Layer
AddressBookUl » Camera Programming Topics for iOS Guides Audio & Video
EventKitUl
GameKit » i0S Development Guide Guides Tools & Langu
IDEs -
iAd 2
» UlDevice Class Reference Reference Data Managem ¥
——

OEBPS/images/9781118007594-fg0205_fmt.jpeg
iOS Developer Program - Apple Developer

¢ | (Q~ apple developer

developer.apple.com/program:

iOS Developer Program

The fastest path from code to customer.

sosiyear

1. Develop 2. Test 3. Distribute
Develop your application with the iOS SDK Test and debug your code on iPad, Distribute your apps on the App Store
and a wealth of technical resources in the iPhone and iPod touch to finalize your and reach millions of iPad, iPhone, and

iOS Dev Center. Learn more » applications. Learn more » iPod touch users. Learn more » -

OEBPS/images/9781118007594-fg0303_fmt.jpeg
Choose a template for your new project:

Application
Framework & Library
Other

& MacOs X
Application
Framework & Library
Application Plug-in
System Plug-in
Other

Navigation-based OpenGL ES Split View-based Tab Bar Application
Application Application Application

Application Application

Navigation-based Application

This template provides a starting point for an application that uses a navigation controller. It
provides a user interface configured with a navigation controller to display a list of items.

Crrions) o)
Cormvons

OEBPS/images/9781118007594-fg0725_fmt.jpeg
K1

Connection
Object File's Owner
Name 1mmmw.s'rwgzj]

Event (Touch Down 53
Arguments
CHANGE IT

// 1BViewController.h
18

// Creat
11/2010.

// Copyright 2018 Skydancer Media
Ltd. ALl rights reserved.

by Richard Wentk on 23/

#import <UIKit/UIKit.h>

@interface IBViewController :
UIViewController {

}
f{ ecns

‘Touch Up Outside
Value Changed

- Outlets

‘New Referencing Outlet

v

Outlet
New Referencing Outlet Collection

O [0 0OOO00000000000

Label w&wmmu

0

Round Rect Button - Intercepts

touch events and sends an action

message (0 a target object when...
o ey
Q Y

OEBPS/images/9781118007594-fg0107_fmt.jpeg
= BEEmE

initializer. Override to perforn setup that is required before the view is loaded.
.(uss ring 1 bundle: dl :“”4(“

Unsaved Files

nlthuuuon
Counterparts

Superclasses
Subclasses

Categories rchy programmatically, without using a nib.
Includes > UlTableViewController

Included By

/%
// Inplement viewDidLoad to do additional setup after loading the view, typically from a nib.
~ (void)viewDidLoad {

[super viewDidLoad];

}
*/

II Override to allow orientations other than the default portrait orientation
- (B0OI faceOr (UIInterfaceOr faceor {
// Return YES for supported orientations
return (interfaceOrientation == UIInterfaceOrientationPortrait);

*/

- (void)didReceiveMemoryWarning {
// Releases the view if it doesn't have a superview.
[super didReceiveMemoryWarning];

// Release any cached data, images, etc that aren't in use.

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;

- (void)dealloc {
[super deallocl;

@end 4

OEBPS/images/9781118007594-fg1101_fmt.jpeg
060 Overview - iOS Provisioning Portal - Apple Developer
[https:/ apple.com/i g iew/index.action ¢ | (Qr Google

Welcome, Richard Wentk Edit Profile Log out

P Portal : Skyd: Media Go 10 i0S Dev Center
— poral Resources
e Welcome to the iOS Provisioning Portal |3 Program user Guide
The iOS Provisioning Portal is designed to take you through the necessary steps

Devices to test your applications on iOS devices and prepare them for distribution. T
App IDs Obtaining your Certificate
Provisioning El @ viewvideo
PR ! Visit the Member Center for Team, Account, and Program info Assiguiing Devices

The new Member Center is now your destination for: I Viewieien

* Sending invitations to join your development team and editing - Creating your App IDs
existing development team members. B Viewvideo

* Requesting or purchasing Technical Support.

* Viewing account information, such as your Team ID, profile,
and Program details.

Creating Provisioning Profiles
€ B Viewvideo

Visit the Member Center now
O Support Resources

iTunes Connect Support
Find answers to questions about the
iTunes Connect system, including
Get your application on an iOS with the Development uploading your application or finding
Provisioning Assistant a'Hinance Report-
As a Program Admin, you can use the Development Provisioning
Assistant to create and install a Provisioning Profile and iOS Development
Certificate needed to build and install you're for
10S devices.

Technical Support

Receive code-level, technical
istance for your specific

development issue.

Launch Assistant Developer Support

Contact us for general inquiries,
including Program questions,
account issues and change of contact
information.

PIRS

OEBPS/images/9781118007594-fg1009_fmt.jpeg
Organizer - Devices

LIBRARY
2. Developer Profile
(] Provisioning Profiles
24 Software Images
. Device Logs
% Screenshots

DEVICES

4 Applications
8 Console
. Device Logs
Screenshots
iPhone
4.1(88117)
Device Logs
- Screenshots
g P
4.1(88117)
. Device Logs
Screenshots

Add to Portal

Remove

iPhone
Capacity 15.03 GB
Model iPhone 4
Serial Number 830274TDA4S
ECID 2169329495374
Identifier e7e6254d29ed6234783ab19ee64601385f4eedc
Software Version [4.2.1 (8C148) 4] [__Restore iPhone |

Provisioning @ 20thSept2010, 21st August 2010, Team Provisioning Profile: * ©

Applications Car Finder, Hu, Locater, Tango, WinNumbers, ZettaClock, fonts, uSha, uToomiPro ©
32 FairPlay-encrypted applications

@ g oo B

Device Logs 45 Crash Logs, 5 Low Memory Logs ©

Screenshots 4 screenshots ©

OEBPS/images/9781118007594-fg1003_fmt.jpeg
Save e ® |

1 Softy
6::‘: <> [(s3i=im) [T Provisioning) Q 3|
DEVICES | ¥ DEVICES Shared Fold
v iPod EEis Name Date Modified
4.1 E Macintosh HD 20thSept2010.mobileprovision 20/09/2010
?:"’ I iDisk 21st_August_2010.mobileprovision 20/09/2010 |
Eco Ll MacOsXinstall DvD a AdHoc.mobileprovision 20/09/2010 |
2 pd ! Etc - AppleWWDRCA.cer 20/09/2010
@5 [0 Developer ~ Certific i i 20/09/2010 |
'l iPhot e d‘evelope‘r_ldentltYA(er 20/09/2010
41 . distribution_identity.cer 20/09/2010 |
é: E R - DsitributionProfile.mobileprovision 20/09/2010 |
¥ PLACES D: 2010. isi 20/09/2010
vl m Egchio | ios_developer_program_user_guide__standard_program_v2.7__final_9110.pdf 20/09/2010 E
De [z Developer .2010.certSigni 20/09/2010
#sq A Deskop |

£ Main

Enter the password used to secure the Developer Profile |

Password: |
Verify: |

|
& W *Export Developer Profile’ will package the identities and Provisioning
Ry o Profiles listed above into a secure file format that can be used with 'Import
Import Export Developer Profile’ to transfer your Developer Profile to a new machine.

OEBPS/images/9781118007594-fg1110_fmt.jpeg
Create a unique App ID
or wildcard App Suite ID.

Upload UDIDs of local test
and beta devices to the Portal.

Generate a Development
Provisioning Profile for
a given test app or app suite
for a given set of devices.

Generate a Distribution
Provisioning Profile for
a given test app or
app suite.

Generate an Ad Hoc
Distribution Provisioning
Profile for a given test app
or app suite for a given set
of devices.

Download and install the
profile in Xcode.

Download and install the
profile in Xcode.

Distribute to beta testers
with a beta build.

OEBPS/images/9781118007594-fg1012_fmt.jpeg
Organizer - Devices

LIBRARY
A, Developer Profile

i Sun Dec 19 22:21:58 unknown kernel[8] <Debug>: USB mux: B short packets, 8 dups
[Provisioning Profiles Sun Dec 19 22:21:58 unknoun kernel[8] <Debugs: AppleS5LBI3GXUSBPhy : :enableDevicetiode : enabl
4 Software Images Sun Dec 19 22:21:58 unknown kernel[8] <Debugs: iceClock : enable: @, index: 8
. Device Logs Sun Dec 19 22:21358 unknown kernel [0] <Debug>: Apples5LES3BXSEPh :
% Screenshots Sun Dec 19 22:22:85 unknown SpringBoard[29] Notices: Mul 2292e8) uilock state: 8 —> 1
Sun Dec 19 22:22:28 unknown ConnCenter [34] <Notices: Telling CSI to go low pover.
DEVICES Sun Dec 19 22:22:28 unknown ConnCenter [34] <Notices: CSI can enter low pover, so now telling to do so.

. iPod
4.1(8B117)

Sun Dec 19 22:22:20
Sun Dec 19 22:22:20
Sun Dec 19 22:22:20

unknoun ComnCenter [34] <otices: Will sleep.

Heard from CSI in 8.88101161 seconds

unknown configd[25] <Debug>:

usbeth_handle_interfaces_found:666 found iointerface

. Device Logs unknown conf igd[25] <Debugs: usbeth_handle_interfaces_found:666 found iointerface

B Scommaains Sun Dec 19 22:22:28 unknown configd[25] <Errors: WiFi:[314498149.883421]: Unable to dispatch message to client Preferences (268435468)
: Sun Dec 19 22:22:20 unknoun configd[25] <Errors: WiFi:[314498149.884437]: Error initiating scan request: 82

iPhone Sun Dec 19 22:22:28 unknown conf igd[25] <Debug>: usbeth_handle_interface_found:565 handling interface Bx142c3

4.1(88117) Sun Dec 19 22:22:20 unknown conf igd[25] <Debug>: usbeth_handle_interface_found:565 handling interface Px142c3

. Device Logs Sun Dec 19 22:22:26 unknown configd[25] <Errors: WiFi:[314498148.896837]: Error initiating scan request: 62

@ Screenshots Sun Dec 19 22:22:21 unknoun kernel[B] <Debug>: AppleSsl trator:: : -8

i Sun Dec 19 22:22:21 unknown kernel[8] <Debugs: ato

Sun Dec 19 22:42:10

unknoun kernel [8] <Debugs:

tr
virtual void AppleRGBOUT:

H =0
io_pover_state_change(): fSoft: @ fHard: © swapBusy: @

4.2.1 (8C148)

fontroller: 8 —> 8
L] Provisioning Profiles 50 pec 19 22:42:18 unknown kernel[B] <Debug>: AppleBCHWLAN: :setPoverStateGated() : Powering Off and slesping

4 Applications Sun Dec 19 22:42:18 unknoun kernel [8] <Debug>: AppleS5LBI3BXUSBATbitrator : hand eUSBCableTypeChange : no change in cable-type

Sun Dec 19 22:42:18 unknown kernel [3] <Debug>: AppleBCHILAN Left BSS: @ Px94837808, BSSID = B9:09:5b:h7:1e:51, rssi = -63, rate =
eYDavica i 24 (44%), channel = 11, encryption = 8x1, ap = 1, failures = @, age = 234, ssid[7] = "ORION_2"
B Sun Dec 19 22:42:18 unknown kernel[8] <Debug>: AirPort: Link Down on end. Reason 1 (Unspecified).

Sun Dec 19 22:42:18
Sun Dec 19 22:22:20
Sun Dec 19 22:42:18
Sun Dec 19 22:42:10
Sun Dec 19 22:42:18
Sun Dec 19 22:42:10
fController: 8 -> 8
Sun Dec 19 22:42:10
Sun Dec 19 22:42:10
Sun Dec 19 22:42:10
Sun Dec 19 22:42:18
Sun Dec 19 22:42:10
Sun Dec 19 22:42:18
Sun Dec 19 22:42:10
Sun Dec 19 22:42:10
Sun Dec 19 22:42:10
Sun Dec 19 22:42:18
Sun Dec 19 22:42:10
Sun Dec 19 22:42:18

A

Clear

unknown kernel [8] <Debugs-:
unknoun kernel [8] Debugs:
unknown kernel [8] <Debugs-:
unknoun kernel [8] Debugs:
unknoun kernel [8] <Debugs-:
unknoun kernel [8] Debugs:

App LeBCMHLAN : :powerOff Ready to power off

System Slesp

piu vake events: rtc

ApplessL itrator:
ator : :setPover

virtual void AppleRGBOUT: :do_power_state_ chunge() fSoft: @ fHard: 1 swapBusy: @

urknoun kernel[8] <Debug>: AppleBCHULAN: :setPowerStateGated() :
unknoun ComnCenter [34] Notices: Telling CSI to exit low pover
unknown configd[25] <Debugs: usbeth_handle_interfaces_found:666 found iointerface

unknoun configd[25] <Debugs: usbeth_handle_interface_found:565 handling interface Bx142fb
unknoun SpringBoard[29] otice>: MultitouchHID(2558e8) uilock state: 1 —> 1

urknoun CLTH[25] <Errors: CLTH: stale battery temp: now = 1292798538, lastupdate = 1292797338
unknown CLTHM[25] <Errors: CLTH: resetting temps: now = 1292798538, last update = 1292797336
unknoun CLTH[25] <Notice>: CLTM: created idle sleep assertion

unknoun CLTH[25] otices: CLTH: got kIOMessageSystemilillPowerdn

unknoun SpringBoard[29] <arnings: NO WIFT BARS: current WiFi network name is (null)

unknown configd[25] <Notice>: Sleep: Success - BATT 99 - Idle Sleep

unknown configd[25] <Notices: Wake: Success - BATT 99 v

Powering On

Save Log As

OEBPS/images/9781118007594-fg1308_fmt.jpeg
1B - IB.xcc =

n . — Build IB: Succeeded | 13/02/2011 at 20:22 —
No Issues
= P
:

PROJECT | Info | Build Settings
v SDK and Target

TARGETS Targets in this project can run on i0S 4.2 B and above

Ayabe
v G
Name Based on Configuration File

» Debug No Configurations Set

No Configuratic

Resources
English 3 Files Localized

O
+ OA6(®) Add Target

OEBPS/images/9781118007594-fg1213_fmt.jpeg
B 1 target, iOS SDK 4.2
v (] Classes
[h] 1BAPpDelegate.n

%) [iPhone 4.2 Simulator

5 (=)

1dle0rNil {
Scheme Destination Breakpoints) {
> 1-“ ’ | info | Arguments Diagnostics
. Run ThisAppName...

¥ % Debug Build C Debug i

e ehn (msoptamesTootong 0 %) Jrossagseam

forpsont Debugger (GB———— W
> w Test

Debug 5
Launch @ Automatically

_ Profile ThisAppNa...

(3] Debug O wait for ThisAppNamelsTooLong.app to launch typically from a
Use this option if you will manually launch your application.
(i Analyze
Debug Working Directory [Use custom working directory:

. Archive

> % Release
Ul Resolution [Enable display scaling:
&
lation.
10 125 15 20 30 interfaceOrientation
LDuplkzle Scheme) (Manage Schemes...) @
Z

+ OR6(®

[super didReceiveMemoryWarningl;

// Release any cached data, images, etc that aren't in use.
- (void)viewDidUnload {

// Release any retained subviews of the main view.

11 e.g. self.myOutlet = nil;

NSObject xtheObject = [INSObject alloc] initl;

SRR e

NI

OEBPS/images/9781118007594-fg1302_fmt.jpeg
Your code must test if the methods,
classes, and symbols in these versions
exist before using them, and include

Your code can't use
these methods, symbols,

Your code can use any
methods, classes, and symbols

in these versions of i0S. fallbacks if they don't. and classes.
| 30 | 31 | 32 40 | a1 | 42 | a3 4x
Deployment Active Base SDK

target SDK (beta)

OEBPS/images/9781118007594-fg1622_fmt.jpeg
@] O [1]
Wi Allocations s
 Heapshot Analysis

| 8 Statistics

__Mark Heap)

'77 ocati -
O Al Objects Created
© Created & Still Living
O Created & Destroyed

O Separate by Thread

O Invert Call Tree

™ Hide Missing Symbols
O Hide System Libraries
O Show Obj-C Only

O Flatten Recursion

» Call Tree Constraints
v Specific Data Mining

(_Symbol) (_Library) (_Restore)

k1ol PattachC; 1, cateaory list*. sianed char*) | hb%bnr.A

ERICH
22 Objects List ‘Symbol Name [
i Heapshots 32 [E| wstart MemoryLeak
i)z console | 32 Wmain MemoryLeak
| ¢S J 320 ‘YUlApplicationMain UIKit
5.89KB 100.0% 32| VGSEventRun GraphicsServices
5.80KB 100.0% 323 VGSEventRunModal GraphicsServices
5.80KB 100.0% 32 ¥CFRunLoopRuninMode Corefoundation
5.89KB 100.0% 32 ¥CFRunLoopRunSpecific CoreFoundation
5.89KB 100.0% 32|00 ¥__CFRunLoopRun CoreFoundation
5.80KB 100.0% 323 ¥__CFRunLoopDoTimer CoreFoundation
5.81KB 98.6% 300 ¥__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION_ CoreFoundation
5.81KB 98.6% 30 [VCA: timer_callback(_CFRunLoopTimer*, void*) QuartzCore
5.81KB 98.6% 30 g vrun_animation_callbacks(double, void*) QuartzCore
5.16KB 87.5% 170 UIKit
S.11KB 86.7% 16 0 K UIKit |
5.11KB 86.7% 16 [5] ‘vobjc_msgSend libobjc.A.dylib
S.11KB 86.7% 16 v_class_lookupMethodAndLoadCache ibobjc.A.dylib
5.11KB 86.7% 16 VlookUpMethod libobjc.A.dylib
5.08KB 86.2% 15 vprepareForMethodLookup libobjc.A.dylib
4.73KB 80.3% 10 _class_initialize libobjc.A.dylib |
473KB 80.3% 10 v_class_getNonMetaClass |ibobjc.A.dylib
4.73KB 80.3% 10 realizeClass(class_t*) libobjc.A.dylib
480 Bytes 7.9% 7 »attachCategoryMethods(class_t*, category_list*, signed char*) ibobj:.
4.00KB 67.9% 18 »attachMethodLists(class_t*, method_list_t+*, int, signed char*) |ibob)
240 Bytes 3.9% 1 E »buildPropertyList(objc_property_list const*, category._list*, signed cha.
32Bytes 0.5% 1 _calloc_internal libobjc.A.dylib ~
352 Bytes 5.8% Hio| realizeClass(class_tY) |ibobjc.A.dylib 4
96 Bvtes1.5% Y

OEBPS/images/9781118007594-fg0815_fmt.jpeg
18

v[, target, iOS SDK 4.2

v (] Classes
| IBAppDelegate.h

LB

Running IB on iPhone Simulator

Project @1

File's Owner
@ First Responder

v Image View

e —
Highlighted | fiP-png

|| IBViewController.h

| IBViewController.m
» (L] Other Sources
(] Resources

[¥) flip.png

| | 1B-Info.plist

| InfoPlist.strings.

| MainWindow.xib
» (| Frameworks
» (] Products.

B4 Image View
|__|Label - This is off
|__|Button - CHANGE IT

Y

=

+ | ORAEQ)

UllmageView

State [Highlighted

¥ View

Mode
Alpha 1003
1 [Default]
Tag oft)
Drawing @ Opaque [Hidden
™ Clears Graphics Context
(J Clip Subviews
™ Autoresize Subviews
Stretching 0.00/[7) 0.0/
X v

1002 100 (2]
Width Height
Interaction (] User Interaction Enabled
O Multiple Touch

DU & ® .

il Media Library B G

OEBPS/images/9781118007594-fg0106_fmt.jpeg
loloEa0)

[IBAppDelegate.h
|m] 1BAppDelegate.m

[h] 1BViewController.n
m] 18ViewController.m
] 1BView.h
[m] 1BView.m

1IBViewController.h
1B

Created by Richard
Copyright 2810 Skyd:

#import <UIKit/UIKit.h>

@interface IBViewController : UIViewController {
UILabel *_theLabel;

- (IBAction)buttonWasTapped: (id)sender;
@property (nonatomic, retain) IBOutlet UILabel *theLabel;

eend

+ 0BG (®)|

OEBPS/images/9781118007594-fg0420_fmt.jpeg
myCleverAppAppDelegate.n
myCleverApp

Created by Richard Wentk on 17/10/2010.
Copyright (c) 2018 Skydancer Media Ltd. All rights reserved.

myCleverAppViewController.m #import “myCleverAppAppDelegate.h"

(%) myCleverApp._ Prefix.pch #import “myCleverAppViewController.h"
| main.m
v (| Resources.
L] myCleverApp-info.plist @synthesize window;

| InfoPlist.strings 3

| | MainWindow.xib @synthesize viewController;
|| myCleverAppViewController.xib

@implementation myCleverAppAppDelegate

// Override point for customization after application launch.
[window addSubview:viewController.viewl;
[window makeKeyAndVisible];
[WIVifw
B00L UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(NSString *videoPath)

UIViewAnimationCurve UIViewAnimationCurveEaseIn

- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions: (NSDictionary *)
1 i {

UIViewAnimationCurve UIViewAnimationCurveEaseInOut

UIViewAnimationCurve UIViewAnimationCurveEaseOut

UIViewAnimationCurve UIViewAnimationCurvelinear

- UIViewAnimationTransition UIViewAnimationTransitionCurlDown

. UIViewAnimationTransition UIViewAnimationTransitionCurlUp

. UIViewAnimationTransition UIViewAnimationTransitionFlipFromLeft
. UIViewAnimationTransition UIViewAnimationTransitionFlipFromRight

+| oREQ

OEBPS/images/9781118007594-fg1711_fmt.jpeg
£\ shell Script Invocation W
sldnﬁng ‘tests; the lﬂ\onlslmullm platf...
v [m) UnitTestTests.m

! testMathMachineSum (Um(Tes(Tes[s) h\
est.:mMa(hme sum;

= warning: no mh to process file 'S(PROJECT_...

owo®)

UnitTestTests.m
UnitTestTests

Created by Richard Wentk on 24/03/2011.

7/ Copyright 2011 Skydancer Media Ltd. All rights reserved.

#import “"UnitTestTests.h"
#import “"MathMachine.h"
@implementation UnitTestTests
- (void)setUp
i [super setUpl;

// Set-up code here.

- (void)tearDown
// Tear-down code here.

[super tearDown];

- (void)testMathMachineSum
{

* ine = [ine alloc] ini

STAssertTrue(SumAB ==
@"Sum incorrect. Expected %i, got %i",

KA and:kBl;

kExpectedSum, testMathMachine.sumAB) I

[testMathMachine releasel;

eend

OEBPS/images/9781118007594-fg1515_fmt.jpeg
[8y Thread JECTTET

Thread 1
hd ! com.apple.main-thread

E 1_nsnote_callback

[19 NsApplicationMain
20 main

1 Thread 2
ccom.apple.libdispatch-man...

» ¥ Thread 9

@synthesize window;

for (int i = 8; i <10; i++) {
NSLog(@"Count: %i", i);

= 2 3

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {
// Insert code here to initialize your application

2 | . BreakpointTest) ¥ Thread 1) [0

Local ; Q | Al Qutput ¢
» <NSWindow: 0x31cf60>
Type a valid expression 07:29:41 UTC 2010)

shiaunchingNotification

(NSString *) [window description]
() Show in All Stack Frames

|
[Cancel | | save | |

GNU gdb 6.3.50-20050815 (Apple
version gdb-1511) (Mon Nov 1

Copyright 2004 Free Software
Foundation, Inc.

GDB is free software, covered by
the GNU General Public License,
and you are

welcome to change it and/or
distribute copies of it under
certain conditions.

Type "show copying" to see the
conditions.

There is absolutely no warranty
for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-
apple-darwin®.tty /dev/ttys@0®
sharedlibrary apply-load-rules all
[Switching to process 9578]
2010-12-26 23:29:51.062

Count: @

Count: 1

Count: 2
Count: 3
Count: @
Count: 1

Count: 2

OEBPS/images/9781118007594-tb0301.jpg
Table 3.1 Xcode Template Categories

Applications

Framework & Library

Application Plug-in

System Plug-in

Other

i0Sand 0S X

i0S and 0S X

0SX only

0S X only

i0Sand 0S X

Application skeletons. i0S offers a selection of standard application starting points.
0S X offers a standard Cocoa application, an AppleScript application with access to
Cocoa, and a command-line tool.

Custom frameworks. i0S supports static Cocoa Touch libraries only. 0S X supports
custom Cocoa frameworks and libraries, project bundles, and Cand C++ libraries.

Plug-ins for specific 0S X applications, including Automator, Address Book, Installer,
WebKit, Quartz Composer, and Interface Builder.

Low-level plug-ins that extend the features of 0S X, such as AU Instruments and
Effects, [0Kit drivers for hardware support, custom screen savers, and so on.

A blank template. OS X also offers an external build system template.

OEBPS/images/9781118007594-fgb209_fmt.jpeg
ENTITIES

FETCH REQUESTS

/11| MyCoreDataProject.xcdatamodeld

[« ATIONS

| @iEl O ==

Destination

Inverse

Outline Style Add Entity

0 m=

Add Attribute Editor Style -

OEBPS/images/9781118007594-fg0621_fmt.jpeg
Organizer - Documentation

lo(® m

#i | 4 > Lgios 4.1 Library) [Audio & Video) [| AVAssetReader Class Reference) No Selection

g i0S 4.1 Library
vl Audio & Video
» [l Audio
Audio & Video Coding How-To's
Audio Interruptions during Movie Playback
I8 Audio Unit Properties and Core Foundation Data Types
»[£] AV Foundation Constants Reference
AV Foundation Error Constants
AV Foundation Framework Reference
»[£] AV Foundation Functions Reference
AV Foundation ID3 Constants
» [E] AV Foundation iTunes Metadata Constants
AV Foundation Programming Guide
» [AV Foundation QuickTime Constants
»[[£] AVAsset Class Reference
AVAssetExportSession Class Reference
» [AVAssetimageGenerator Class Reference

AVAssetReader Class Reference

~ Overview
» = Tasks
» -~ Properties

» — Class Methods

» -~ Instance Methods

» - Constants

_— Revision History

» [£] AvAssetReaderAudioMixOutput Class Reference
»[] AVAssetReaderOutput Class Reference
» [[£] AVAssetReaderTrackOutput Class Reference
Class Reference

»[] AVAssetTrack Class Reference

AVAssetTrackSegment Class Reference

»[©] AvAssetWriter Class Reference

» [] AVAssetWriterinput Class Reference
AVAssetWriterlnputPixelBufferAdaptor Class Reference
»[[£] AvAsynchronousKeyValueLoading Protocol Reference
AVAudioMix Class Reference

» [AvAudioMixinputParameters Class Reference

»- AVCauureAudioChlnntl ctus Reference

il

Next

AVAssetReader Class Reference

Inherits from NSObject
Conforms to NSObject (NSObject)
F /St [Library/F / AVF

Availability Available in iOS 4.1 and later.
Declared in AVAssetReader.h
Overview

An AvAssetReader object provides services for obtaining media data of an asset,
whether the asset is file-based or represents an assemblage of media data from
multiple sources, as with an AvComposition object.

AVAssetReader supports:

= Reading raw un-decoded media samples dlreclly from storage, obtaining samples
decoded into forms, and re-i samples according to
compression settings.

= Obtaining references to samples stored in files, without the sample data itself, for
writing to movie files that make use of such references.

- V'a special subclasses of AVAssetReaderOutput
ioMixOutput and

), mixing multiple audio tracks of the
asset and composmg mulnplz vuieo tracks.

’s pipelines are i ded i lly, and after you initiate reading
with initWithAsset:error: it loads and processes a reasonable amoun(of sample
data ahead of use so that retrieval such as
(AvAssetReaderOutput) can have very low Iatem:y.

4
v

OEBPS/images/9781118007594-fg1626_fmt.jpeg
@ Library
VT TCKET = TTACKS U1 VITUaT Hemmory
Instruments BB space of a process over time, identifying
regions by tag and reporting usage...

Shared Memory - Monitors the opening and
unlinking of shared memory.

ObjectGraph - Examines a process for block
references and allows for analysis of the
process' object graph.

- Analyzes the Y
cycle of process' allocated blocks; can record
reference counting events.

Leaks - Examines a process' heap for leaked
memory; use with ObjectAlloc to give
memory address histories.

Time Profiler - Profiles running threads on
all cores at regular intervals for one or all
processes.

Drag recording instruments here from tf
Trace Document. Spin Monitor - Measures and records

samples during spins.

Sampler - Samples all threads of a process
at a regular interval.

2NK BN AN O AN AN |

Process - Records processes being executed
by other processes.

[« Tp T

ObjectAlloc
Mac

€)

Analyzes the memory life-cycle of process’ allocated
; can record reference counting events.

C %) (QFiler)
(@] e—— —] Y

OEBPS/images/9781118007594-fg1607_fmt.jpeg
fi Library

w

Core Data Saves - Displays information about Core Data save activity. .
Core Data Fetches - Displays information about Core Data fetch activity.

Core Data Faults - Displays information about fault firing in Core Data.

Core Data Cache Misses - Displays information about filesystem access
during Core Data faulting.

Sudden - y sudden ination support for a single
Q process by reporting unprotected file system access the process should be,
but is not, guarding with calls to disable sudden termination. A
v
7 Time Profiler
‘z/ Mac

Profiles running threads on all cores at regular intervals for one or all processes.

O View Icons
O View Icons And Labels

¥ O= View Icons And Descriptions
O- View Small Icons And Labels

Show Group Banners

New Group
New Smart Group
Remove Group

Edit
Remove From Group
Remove /

S

om Libr

OEBPS/images/9781118007594-fg1705_fmt.jpeg
MathMachine.m
UnitTest

Created by Richard Wentk on 24/03/2011.
Copyright 2011 Skydancer Media Ltd. ALl rights reserved.

#import "MathMachine.h"

@inplementation MathMachine

@synthesize inputA;
Supporting Files @synthesize inputB;
S @synthesize sumAB;
~(id) initWithSum:(int)inA and:(int)inB

=.lsuper_initl) {
WPUtA = inA;
f.inputB = inB;
53y el inB;

return self;

@end

+ OR6®)

OEBPS/images/9781118007594-fg0319_fmt.jpeg
Choose a template for your new project:

ios.
Application ﬁ 3‘
Framework & Library

Othe
e Cocoa Framework: Cocoa Library

85D C Library
& MacOs X

Application
Framework & Library

Application Plug-in 2
System Plug-in

Other STL C++ Library

G Cocoa Framework

This template builds a framework that links against the Cocoa framework.

oo) (o)
Cormvons

OEBPS/images/9781118007594-fg0602_fmt.jpeg
™ Check for and install updates automatically Last check: 18 Nov 2010 16:51 Check and Install Now

Cesm O

i0S 4.1 Librz
i0S 4.2 Library
iPhone OS 4.0 Library

Xcode 4.0 Developer Tools Library

@[+]-]
AP reference and conceptual documentation for iPhone OS 4.0.
Cnpyrlgnt@ 2010 Apple Inc. Al rights reserved.
l AppleiPhone4_0.atom

apple. apple.ad

Weh Root URL: apple.
Identifier: com.apple.adc.documentation.AppleiPhone4_0.iPhoneLibrary
Installed Location: ALibrary/Developer/Documentation/DocSets/
com.apple.ade.documentation.Apf . i

Universal Access: || Never use font sizes smaller than: 12

OEBPS/images/9781118007594-fg1127_fmt.jpeg
8006 Developer Certificate Utility
EE] + [nttp:/ /developer.apple.com/certificates/index.action#bundle [] (Qv Google j
m

,
- Developer Hi, Richard Wentk | Member Center | Log out

Developer Certificate Utility

Overview

Register Your Mac App ID

An App ID is an identifier used by iOS and Mac OS X to recognize any future updates to your app.
Your Mac App ID is the CF Bundle Identifier for the app which you are developing as found in the

- Info.plist of your app. Your App ID must be registered with Apple and unique to your app. App
™% Mac App IDs IDs are app-type specific (either iOS or Mac OS X) and the same App ID cannot be used for both
i0S and Mac OS X apps. Register your App ID to ensure its availability in iTunes Connect when you

are ready to submit your app for distribution.
(L3]] mac certficates

¥ Mac Developer Program

© History Register Your Mac App ID (Step 1 to 2)

App ID Name or Description

Help and Tutorials | [My Cool hpp You cannot use special characters, such as @, & *,

For more information on Enter a common name or description of your Mac App ID using The iption you specify
submitting your Mac OS X will be used to identify this App ID in iTunes Connect when you are ready to set up your app for distribution.
apps to the App Store view:

Get Your Mac Apps Ready for
the Mac App Store

Submitting Your Mac App to App ID (Bundle Identifier)

the App Store

com.mydemain.myceolapn Example: com.domainname.appname

Download the WWDR Enter the CF Bundle Ide
intermediate certificate string for your App ID.

tifier of your Mac App. The recommended practice is to use a reverse-domain name style

(el D
TR DDA A O OO
Copyright © 2011 Apple Inc. All rights reserved. Terms of Use | Privacy Policy

OEBPS/images/9781118007594-fg1314_fmt.jpeg
Please choose your application record and signing identity

alidate...]
([share..)
(L submit..]
i = I
Identity: | iPhone Distribution (currently matches ‘iPhone Di =)

OEBPS/images/9781118007594-fg0904_fmt.jpeg
+ 0ORGB S

Ar(hlve IB Su(mded | 25/02/2011 at01:31

No Issues.

IBAppDelegate.m
18

Created by Richard Wentk on 23/11/2010.
Copyright 2010 Skydancer Media Ltd. All rights reserved.
#import “IBAppDelegate.h"

#inport “IBViewController.h"

einplenentation IBABRY (¢

Copy
@synthesize window; Paste
@synthesize viewContra
Show Issue
- (B0OL)application: (U i N
QidF iniahLaonchim s dump bo Definition 20 Bicii ¢
/7 Override point Structure » launch.

[window addSubvi

i Refactor Rena
[window makeKeyAnd

Extract

/1 This lines proves in Adi i C
77 trom another objec OPeN in Adjacent Editor "C82, Create Superclass...
/1 viewController.the Openin... X< Move Up

return YES; i j i
) Reveal in Project Navn.gatnr Move Down

Reveal in Symbol Navigator Encapsulate

- (void)applicationWil Show in Finder

1/ save data if ag Speech >
- (void)dealloc { Source Editor Help 4

[window releasel;
[viewController releasel;
[super deallocl;

@end

v _Identity and Type

File Name | IBAppDelegate.m

File Type | Default - Objective-... S

oo e 0 Govp__18)
IBAppDelegate.m m

Full Path /Volumes/Developer/+
X4/1B Custom View;

[l} definng 3 block 85 a type.

CInline Block as Variable - Used
for saving a block to a variable so we
can pass it as an argument multiple...

defining a block as a type. J'

-~
N

C typedef - Used for defining a
type.

C++ Class Declaration - Used for
describing a new class type
containing instance variables, ..

-~

C++ Class Template - Used to
define a new class template.

e

C++ Function Template - Used to
define a new function template.

—~—
——

C++ Namespace Definition -
‘ Used to define a new namespace or
extend an existing namespace.

C++ Try / Catch Block - Used for
{ } ‘ trying to execute code that might
generate an exception, and...

<>

s s | C++ Using Directive - Used to
e

3
\

OEBPS/images/9781118007594-fg1216_fmt.jpeg
ot

!ulld P1: Succeeded | Today at 05:14 == == =
% L=
No Issues.

‘Choose targets to build as part of this scheme
e Build Rules
1 target, Mac OS X S| Q .
P2 ———
’.lumet.uuosu 1 [vEn
P1 B
> B} targer, Mac 05 x 8 APl Brallel instead of one at a time.
\com.P3
viEP
Post-actions . Hependent targets automatically. b
Run PLapp I 7 | tun [P [Archive
8 v | and above
2 VB ¥ ¥ ¥ &
> ‘ -
Debug AP e
" mmhn
> w L.app ‘
» A ————
“""" ‘ Required *
[ey ‘
‘
+ =
(Duplicate Scheme) (* Manage Schemes...) @
Z

+ OA6(®) Add Target

OEBPS/images/9781118007594-fgb206_fmt.jpeg
Build Succeeded | 14/01/2011 at 21:36
Project (11

Via o PROJECT Summary | Info | Build Settings Build Phases Build Rules
8 MacCoreData v _Custom Mac OS X Application Target Properties
K e Value
TARGETS Y = e {Tye
Localization native development region String en
N Executable file String S{EXECUTABLE_NAME}

4 MainMenu.xib
v || MacCoreData.xcdatamodeld
[MacCoreDataD...del.xcdatamodel

+[] Supporting Files ;‘P [String skydancermedia.com. S{PRODUCT_NAME:rfc10
| MacCoreData-Info.plist Appiicat on should GEEAPY DL.C. String 6.0
| InfoPlist.strings Application supports iTunes fil... | String S{PRODUCT_NAME}
] MacCoreData-Prefix.pch | Application Ul Presentation Mode e ey
|m| main.m I dsey String 1.0
"4 Credits.rtf | Architecture priority String m
» (] Frameworks | Bundle creator OS Type code String 1
»(] Products | Bundle display name | string ${MACOSX_DEPLOYMENT_TARGET}
| Bundle identifier | String MainMenu
| Bundle name R s 7
| > Document Types (0)
» Exported UTIs (0)
» Imported UTIs (0)
¥ URL Types (1)
%]
Identifier | myURL | URLSchemes ‘myURL

P e — T S—

image
specified

v Additional url type properties (0)
| Key Type Value

Click here to add additional url type properties

<o

e+

I N ‘Add Target

+ 0O0RB O)

OEBPS/images/9781118007594-fg1311_fmt.jpeg
B Sharekit - §

- e it
Archive ShareKit: Succeeded | Today at 01:12
Project (148

%) [0S Device

Scheme Destination Breakpoints
 Build Debug EE—
> & arger Build CMMW‘HM I
Run uSha.app Release
> 1% pebug Archive Namery
. Test
> & pepug Options ¥ Reveal Archive in Organizer
_ Profile uSha.
> & Release e
Analyze
> 8 pepug
Archive
¥ 5 app store
Pre-actions \J
Post-actions

Right

(Duplicate Scheme) (* Manage Schemes...) @

«»i

+ OA6(® Add Target

N

OEBPS/images/9781118007594-fg0605_fmt.jpeg
iPhone Config Profile C

Profile Key a

apple.c: y/ios/ ticles/iPhoneC

D iOS Reference Library

rable of Contents.

¢ | (Q~ apple developer

¥ Configuration Profile Key
rence

Configuration Profile Keys

Payload Dictionary Keys
Common to All Payloads

v Payload-Specific Property Keys

Profile Removal Password
Payload

Passcode Policy Payload

Email Payload

Web Clip Payload

Restrictions Payload

LDAP Payload

CalDAV Payload

Calendar Subscription Payload

SCEP Payload

APN Payload

Exchange Payload

VPN Payload

Wi-Fi Payload
Sample Configuration Profile
Revision History

Configuration Profile Key Reference = i

A configuration profile is an XML file that allows you to distribute configuration information to iOS-based devices.
If you need to configure a large number of devices or to provide lots of custom email settings, network settings,
or certificates to a large number of devices, configuration profiles are an easy way to do it.

An iOS configuration profile contains a number of settings that you can specify, including:

Passcode policies

Restrictions on device features (disabling the camera, for example)
Wi-Fi settings

VPN settings

Email server settings

Exchange settings

LDAP directory service settings
CalDAV calendar service settings
Web clips

Credentials and keys

Advanced cellular network settings

Configuration profiles are in property list format, with data values stored in Base64 encoding. The .plist format
can be read and written by any XML library.
There are four ways to deploy configuration profiles:
= By physically connecting the device as described in iPhone Configuration Utility
= In an email message
= On a webpage
= Using over-the air configuration as described in Over-the -Air Profile Delivery and Configuration
iOS also supports using encryption to protect the contents of profiles and guarantee data integrity. To learn

about encrypted profile delivery, read iPhone Configuration Utility or Over-the-Air Profile Delivery and v
Configuration.

v

OEBPS/images/9781118007594-fg1613_fmt.jpeg
[e 1]
ﬂ‘MIoali\?ns 3

O Al Objects Created
© Created & Still Living
O Created & Destroyed

() Separate by Category
() Separate by Thread
O Invert Call Tree

Hide Missing Symbols
J Hide System Libraries
O Show Obj-C Only

) Flatten Recursion

O Count 0 ...
O Bytes - -

HH statistics ¢

‘Object Summary

224 Bytes

OEBPS/images/9781118007594-fg0729_fmt.jpeg
EEla (oo alz]

» | [Automatic [R) 1BViewController.h) (2] @interface 1BViewController |
77 I8ViewController.h
18

7/ Created by Richard Wentk on 23/11/2010.
7/ Copyright 2010 Skydancer Media Ltd. ALl rights reserved.

#import <UIKit/UIKit.h>

@interface IBViewController : UIViewController {
UILabel theLabel;

- (IBAction)buttonWasTapped: (id)sender;
| @property (nonatomic, retain) IBOutlet UILabel *theLabel;
[@end

CHANGE IT

OEBPS/images/9781118007594-fg0316_fmt.jpeg
Utility - Utility.xcodeproj

O Utility | iPhone 4.... 3| =

Running Utility on iPhone Simulator /

No Issues
Utility.xcodeproj
n o A ™ Ltility

PROJECT Summary
N 7 Carrier =
Utility
Utility 3 uriliey 105 Application Target

UtilityAppDelegate.h TARGETS h -
AR s Identifier skycancermi
MainWindow.xib
MainViewController.h
MainViewController.m o
MainView.xib
FlipsideViewController.h
FlipsideViewController.m
FlipsideView.xib
Supporting Files
Frameworks
Products

Version 1.0

Deployment Target

iPhone / iPod Deployment Info

Main Interface | MainWindow

Supported Device Orientations

Portrait

App lcons

Launch Images

Add Target

o &t | ulity

OEBPS/images/9781118007594-tb1304.jpg
Table 13.4 Useful Macros and Co al Compilation Tokens

Macro Meaning

__FILE__ The name of the current file as a C string constant

_ LINE_ The current line number in a source file as a decimal integer
__ DATE_ The date as a Cstring constant

__ _TIME_ The time as a Cstring constant

__OBJC___ True for an Objective-C project
TARGET_IPHONE_SIMULATOR True when compiling for the Simulator

TARGET_OS_IPHONE True when compiling for i0S, false for 0S X

OEBPS/images/9781118007594-fg0405_fmt.jpeg
. myCleverApp
1 target, iOS Device SDK 4.1
v (] Classes

[l myCleverAppAppDelegateh

myCleverAppAppDelegate.m
| | myCleverAppViewController.h
| myCleverAppViewController.m
v (] Other Sources
|| myCleverApp_Prefix.pch
|| main.m
v (] Resources
| | myCleverApp-Info.plist
| InfoPlist.strings
| | MainWindow.xib
| | myCleverAppViewController.x
|| myCleverAppViewControlle
v (] Frameworks
» (] UIKit.framework
» (L] Foundation.framework
v (1] CoreGraphics.framework
» (L] Headers
v (] Products

Build myCleverApp: Succeeded | Today at 19:54

myCleverAppAppDelegate.h
// myCleverApp

// Created by Richard Wentk on 17/10/2010.
Ltd.

ALL

@ Skydancer Medi

1/ Copyright (c)
rights reserved.

1"

#import <UIKit/UIKit.h>

@class myCleverAppViewController;

UIApplicationDelegate>
UIiindow *window;

Leinlerfu:e nytleverAppAppDe}egnte : NSObject <

' myCleverApp.app

Do you want to permanently delete the file
“myCleverAppAppDelegate.h” from disk, or only remove the
reference to it?

This operation cannot be undone. Unsaved changes will be lost.

v _Identity and Type
File Name ' myCleverAppAppDelegate.
h

File Type | Default - C HeaderS... &

P —
[}
Full Path /Volumes/Developer/+
Projects/+ Tests &

Experiments/
myCleverApp/Classes/
myCleverAppAppDelegat

()

eh

No Localizations

(Cancel)

(_ Remove Reference Only) (Moveto Trash)

+| opE @

Objective-C protocol - An
Objective-C protocol

Objective-C test case class - An
Objective-C class containing an
OCUnit test case with a header

C File - A C file with a header file

— ~
a
v

C++ File - A C++ file with a header
file

Header File - An empty header file

N

OEBPS/images/9781118007594-fgb212_fmt.jpeg
Welcome to Xcode 4

No Issues.
Undefined

Integer 16
i | 4 » | [MyCoreDat: Data Integer 32
st =
> Decimal o N -
E "Entityl s

FETCH REQUESTS

(CONFIGURATIONS
(@ Default

OEBPS/images/9781118007594-tb1701.jpg
Table 17.1 OCUnit Assert Macros

Macro Reports an error if...

STAssertNil (al, message, <parameters>)

STAssertNotNil (al, message,
<parameters>)

STAssertTrue (expression, message,
<parameters>)

STAssertFalse (expression, message,
<parameters>)

STAssertEqualObjects(al, a2, message,
<parameters>)

STAssertEquals (al, a2, message,
<parameters>)

STAssertEqualsWithAccuracy(al, a2,
accuracy, message, <parameters>)

STAssertThrows (expression, message,
<parameters>)

STAssertThrowsSpecific (expression,
specificException, message,
<parameters>)

STAssertThrowsSpecificNamed (express
ion, specificException, aName,
message, <parameters>)

STAssertNoThrow (expression, message,
<parameters>)

STAssertNoThrowSpecific (expression,
specificException, message,
<parameters>)
STAssertNoThrowSpecificNamed
(expression, specificException,
aName, message, <parameters>)

STAssertTrueNoThrow (expression,
message, <parameters>)

STAssertFalseNoThrow (expression,
message, <parameters>)

STFail (message, <parameters>)

alisnotnil.

alisnil.

expression doesnot evaluate to true.

expression doesnot evaluate to false.

alisnotequal toa2. Both must be Objective-C objects.

alisnotequaltoa2.Bothmust be Cscalar values.

aland a2 arenot within the stated accuracy. Used
to compare floats and doubles, allowing for small
rounding errors.

expression doesnot throw an exception.

expression doesnot throw an exception of the
specificExceptiondass.

expression doesnot throw an exception of the
specificException dasswithaName.

expression throws anexception.

expression throws an exception of the
specificExceptiondass.

expression throws anexception of the
specificException dasswithaName.

expressionisfalse or throws an exception.

expressionistrue or throws an exception.

Always.

OEBPS/images/9781118007594-fg1114_fmt.jpeg
n !! UM!ps://dmlnper.apple.com/ios/managelbundleslmnﬁguve.aﬂlan?dlsnlayld=SUVEA?TKSP ¢ [M(Qr Google

App IDs - iOS Pr oning Portal

Provisioning
Distribution

Media Gotoi0S DevCenter | [
Manage How To |

Configure App ID

In order to set up your App ID for the Apple Push Notification service you will need to create and install the following two items.
For more information on utilizing the Apple Push Notification service, view the Apple Push Notification service Programming Guide,
the App ID How-To as well as the Apple Push Notification topic in the Apple Developer Forums.

1. An App ID-specific Client SSL Certificate : For each App ID you wish to enable push notifications for, you need to create a Client SSL
Certificate that allows your notification server to connect to the Apple Push Notification service. Each application you wish to sent
notifications to will require a separate Client SSL Certificate.

2. An Apple Push service ing profile: After you have generated your Client SSL certificate, create a new
provisioning profile containing the App ID you wish to use for notifications.

Once the steps above have been completed, you should build your application using this new provisioning profile.
ASinglelD

9RB3V]SFQ2.myApp

Enable for Apple Push Notification service

Push SSL Certificate Status. Expiration Date Action
[E Development Push SSL Certificate @ Configurable
Production Push SSL Certificate @ Configurable

~

I

:

Y

OEBPS/images/9781118007594-tb1101b.jpg
Developer certificate/identity

Distribution certificate/identity

Development provisioning profile

App Store distribution provisioning
profile

Ad Hoc distribution provisioning
profile

App ID
Device Identifier/UDID
Certificate Signing Request (CSR)

Device list

A permissions file that signs an app build, and allows Xcode to create test builds for individual
i0S devices. (Not needed for Simulator testing.)

A permissions file that signs an app build and makes it possible to upload apps to the App
Store—but doesn’t allow local running or testing.

A permissions file installed on one or more devices. It allows a specified developer to install
and run test builds on those devices.

A permissions file installed in Xcode. It allows an app or app suite to be uploaded to the
App Store.

A permissions file sent to beta testers with a beta build, which allows them to install and run
that build. The profile includes a list of devices allowed to run the build.

An arbitrary string that identities an app, or a collection of apps from a single developer.
A hex number that uniquely identifies an i0S device.

A request uploaded to the portal by a developer requesting hardware testing or distribution
build privileges.
Alist of devices associated with a developer’s account on the Provisioning Portal. The list is

used to generate device profiles, developer profiles, and ad hoc profiles. Each profile is locked
to one or more devices in the list.

OEBPS/images/9781118007594-fg1131_fmt.jpeg
Developer Certificate Utility

pple.com/certificates/index.action#maccertrequest

Mac Installer Package Signing Certificate Assistant

Expiration Date

Richard Wentk's Cert... Feb 03, 2012 Frem——

Step 1. Download Certificate
Download your Mac Installer Package Signing Certificate to your Mac OS X
computer.

Step 2. Install Certificate
Double click the downloaded .cer file to install your certificate in Keychain.

Go Back

OEBPS/images/9781118007594-fg1520_fmt.jpeg
_| BreakpointTest

(=]
Build BreakpointTest: Succeeded | Today at 03:24

Project @1

+
= e»|[f) [m) @ hing: |« @ » B

// BreakpointTestAppDelegate.m
// BreakpointTest

BreakpointTestAppDelegate.m
~ window - Line 13 -

/1 Created by Richard Wentk on 26/12/2010.
/1 Copyright 2010 Skydancer Media Ltd. ALl rights reserved.

#import “BreakpointTestAppDelegate.h”

Edit Breakpoint mplementation BreakpointTestAppDelegate
Disable 2 ynthesize window;
Share Breakpoints I
\(void)applicationDidFinishLaunching: (NSNotification *)aNotification {
Delete Breakpoints | 71 Insert code here to initialize your application

| Project i 133 {

3 W User

% BreakpointTest

+ - | B@Q)

OEBPS/images/9781118007594-fg0404_fmt.jpeg
28ala) | myCleverApp =]

B Build myCleverApp: Succeeded | Today at 19:54
@ @ | myCleverApp (iPhon... | | =
——— No Issues
1 myCleverAppAppDelegate.h i ¥
W nT & A = » 8 W 4 » | “my. [| myCleverAppAppDelegate.h) No Selection lnl8
- myCleverApp ” ¥ _Identity
¥ L 1 target, i0S Device SDK 4.1 x lyE{everprppDelegnte.h
e myCleverApp Group Name | Classes
<y Showin Finder |~ 55 Created by Richard Wentk on 17/10/20: Path | Relative to G o
. " ive to Group -
Open with External Editor // Copyright (c) 2010 Skydancer Media L
Open As » rights reserved. Classes ©
" Full Path /Volumes/Developer/+
New File... i i i Projects/+ Tests &
- #import <UIKit/UIKit.h> e
New Project...
@class myCleverAppViewController; Classes,
. @interface myCleverAppAppDelegate : NSObject < Y Joxt Settings
New Group from Selection UIApplicationDelegate> { Indent Using | Spaces $
UIWindow *window; o
i “ " myCleverAppViewController #viewController; s 8]
Add Files to “myCleverApp’ — —
Delete @property (nonatomic, retain) IB0utlet UIWindow * & Wrap lines
Source Control >
@property (nonatomic, retain) IBOutlet
Project Navigator Help > myCleverAppViewController #viewController;
@end
» (] Headers D} » =
File Template Library B
myCleverApp.app N =
J, | Objective-C protocol - An
3 .. Objective-C protocol O

\3. Objective-C test case class - An
Objective-C class containing an
OCUnit test case with a header

CFile - A C file with a header file

C++ File - A C++ file with a header
file
4

Header File - An empty header file ¥

+ | OREQ

OEBPS/images/9781118007594-fg0211_fmt.jpeg
& Install Xcode and iOS SDK

Custom Install on “Macintosh HD”

[Package Name ion Size
B heaacaian v Essentials 1 v 3 xcodea B 7.34GB
V! Xcode Toolset =l Macintosh i~ Upgrade 1.76 GB
¥ i0S SDK Upgrade 5.58 GB
© i0S SDK License ¥ System Tools Upgrade 31.9 MB
) UNIX Development Skip 713.2 MB
¥ Documentation Install Zero KB

O License

Installs Xcode, Instruments, Dashcode, Quartz Composer, LLVM
compiler 2.0, LLVM GCC 4.2, GCC 4.2, LLDB, GDB, and other
developer tools. Also installs iOS and Mac OS X SDKs. All content
is placed inside a location chosen by the user (default is /Xcode4
on the boot volume).

o~

(Go Back) (" Continue)

OEBPS/images/9781118007594-fg0906_fmt.jpeg
18
¥4,y target, iOS SDK 4.2
v (] Classes

IBAppDelegate.h

['BAppDelegate.m
1BViewController.h

| | 1BViewController.m
» (] Other Sources
v (] Resources

| 1B-Info.plist

| InfoPlist.strings.

| MainWindow.xib

| | 1BViewController.xib
» (] Frameworks
» (] Products

LB
Build 18: Succeeded | Yesterday at 23:34

// 1BAppDelegate.m
pe:

/1 Created by Richard Wentk on 23/11/2010.

/7 Copyright 2010 Skydancer Media Ltd. All rights reserved.
#import “IBAppDelegate.h"

#import “IBViewController.h"

@implementation IBAppDelegate

@synthesize window;

@synthesize viewController;

- (B0OL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary) launchOptions {

/7 Override point for customization after application launch.

UIAlertView *theAlert = [UIAlertView initWithTitle: @"Title"

message: @"Message"
1

delegate: ni
cancelButtonTitle: nil
otherButtonTitles: nill;
E_ Edit All%n Scope ler.view];
viewCont FOUTEFIERELABETIEEXE = @"Changed";
return YES;

- (void)applicationWillTerminate: (UIApplication *)application {

/7 Save data if appropriate.

- (void)dealloc {

[window, releasel;
ontroller releasel;
[super deallocl;

@end

¥ Quick Help

Name: window
Declared In: IBAppDelegate.h

‘Objective-C Class Declaration
Used for defining a new Objective-C
class.

Enumerate Index Set - This takes
an index set and enumerates through
it.

Objective-C KVO: Values
affecting key - Used for defining
which keys, when modified, affect..

Core Data: Fetch with a
Predicate - This will fetch managed
objects that meet given criteria.

Objective-C Class
Implementation - Used for
implementing a new Objective-C...

Clnline Block as Variable - Used
for saving a block to a variable so we
can pass it as an argument multiple...

UlTableViewController delegate:
Navigation on selection - This
allows you to navigate to another...

Objective-C KVO: Observe
Value For Keypath - Used for
‘customizing behaviour in the...

P

4

OEBPS/images/9781118007594-fg1208_fmt.jpeg
Final resolved active settings

A

‘ (Command line build settings)

A

‘ Target bui

Id settings

A

‘ Project bu

ild settings

Y

0S defaults

Increasing
priority

OEBPS/images/9781118007594-fg1404_fmt.jpeg
SnapshotExampleAppDele

otExampleAppDelegate.m
1 Snlvihct!lllp\

// Created by Richard Wentk on l!l.ll}lll.
ALL

7/ Copyright 2011 Skydancer Medi:
rights reserved.

Ltd.

@synthesize window;

- (void)applicationDidFinishLaunching:
(NSNotification *)aNotification {
// Insert code here to initialize your

SnapshotExampleAppDelegate.m
/7 SnapshotExample

7/ Created by Richard Wentk on 02/01/2011.

/7 Copyright 2011 Skydancer Media Ltd. ALl
rights reserved.

"

#import "SnapshotExampleAppDelegate.h"
@implementation SnapshotExampleAppDelegate
@synthesize window;

- (void)applicationDidFinishLaunching:

(NSNotification *)aNotification {
/7 Insert code here to initialize your

lication lication
7 commen’ s to T
the feature

} @end

@end
[21 November 2010 21:38

universal &
U 21 November 20102100 v | ﬂ
(i Restore Snapshot Delete Snapshot Yy

B |

OEBPS/images/9781118007594-fg0728_fmt.jpeg
> ())] ®view..) [-bumorwasTapped:] D B B8 @ | O |

Comnecton (Outer ©)

Object | File's Owner

e T
e [Ubel)

storage

CHANGE IT

// 1BViewController.h
1B

// Created by Richard Wentk on 23/11/2010.
// Copyright 2010 Skydancer Media Ltd. All
rights reserved.

1"
#import <UIKit/UIKit.h>

I@interfa(e IBViewController : UIViewController {
}

- (IBAction)buttonWasTapped: (id)sender;

@end

v Referencing Outlets

‘New Referencing Outlet [e)
) Outlet
New Referencing Outlet Collection (o]

Label w&wmmu

0

Round Rect Button - Intercepts

touch events and sends an action

message (0 a target object when...
o ey
Q Y

OEBPS/images/9781118007594-fgb214_fmt.jpeg
FETCH REQUESTS

Project (12 =

e e

(| Supporting Files.
works.

CONFIGURATIONS
(@ Default

¥ Relationships
relationship

‘Add Attribute

Editor Style

Y

OEBPS/images/9781118007594-fg1113_fmt.jpeg
Shop the Apple Online Store (1-800-MY-APPLE), visit an Apple Retail Store, or find a reseller.

¢ Q- Google

build with a single App ID. In addition, it can be incorporated into any external hardware accessories you wish to pair your iOS r
application with. Registration of your App ID is required to utilize the Apple Push Notification service (APNs) and to register an
application to incorporate In App Purchases.

The Bundle Identifier portion of an App ID can be substituted with a wild-card character (asterisk "*') so that a single App ID may be
used to build and install multiple applications. If the wild-card character is not used, the Bundle Identifier portion of your App ID
must be input as your CF Bundle ID in Xcode to allow the application to install on your device. The Bundle Seed ID portion of your
App ID does not need to be input into Xcode. Wild-card App IDs cannot be used with the Apple Push Notification service or for In
App Purchase.

For more information on utilizing the Apple Push Notification service, view the Apple Push Notification service Programming Guide,
the App ID How-To as well as the Apple Push Notification topic in the Apple Developer Forums.

For more information on incorporating In App Purchases into your applications, view the Store Kit Programming Guide, the App ID
How-Tos, and the iTunes Connect User Guide for setup instructions.

For more information on Keychain Access sharing, view the Keychain Services Reference.

For more on external to with your iOS application, view MFi Program.
W 4 Apple Push Notification service In App Purchase = Game Center Action
9RB3VJS5FQ2.* o
AsuitelD ® e Detals
9RB3VJ5FQ2.myApp @ Configurable for
ASinglelD Development @ Enabled @ Enabled Configure

@ Configurable for Production

~
a

Mailing Lists | RS Feeds

OEBPS/images/9781118007594-fg0723_fmt.jpeg
CHANGE IT

> | [h]1BViewCo...) No Selection | B}

// 1BViewController.h
18

// Creat
11/2010.

// Copyright 2018 Skydancer Media
Ltd. ALl rights reserved.

1"

by Richard Wentk on 23/

#import <UIKit/UIKit.h>

@interface IBViewController :
UIViewController {

@end

B —
BottomBar None |3
v View
Mode | Scale To Fill B
Alpha 1.00

)
—a
2

(B
Tag DI:
Drawing @ Opaque [Hidden
() Clears Graphics Context
Dcupsm
Amuk:s:bvim

svuas— o0f) [Go0)
el

Interaction ¥ User Interaction EmhIad
) Multiple Touch

(il Ovjects 2

controllers that represent tab bar...

M-m‘:mﬂuﬁ”
region in which it draws and receives

Window - Defines that B
manage and coordinate the views
ﬂisﬂlved on the screen. el
v
Q)

9

OEBPS/images/9781118007594-fgb108_fmt.jpeg
8.0.0 Crash Reporter Preferences

Select the desired mode of operation for Crash Reporter:

e R Display the Unexpectedly Quit dialog only for application
Basic crashes.

Display the Unexpectedly Quit dialog for all processes run by
O Developer the user (including background and command line processes).
Show iti backtrace inf in the dialog.

~ Never display the Unexpectedly Quit dialog. This allows for
(Server unattended operation while the user is logged in. Server Mode
is the default for Mac OS X Server.

OEBPS/images/9781118007594-fg0507_fmt.jpeg
| Animation Test

Welcome to Xcode 4

Project (i1

|m|T @ & i | 4 » | | Animation Test) []Classes) | Header.h) No Selection |4a» lnl8
. Animation Test 74 ¥ _Identity and Type
¥ L 1 target, Mac 05 X SDK 10.6 /1 Header.h 0
// Animation Test File Name | Header.h
7"

%a Show in Finder
Open with External Editor

Open As

New File...

New Group

New Project...

Richard Wentk on 11/11/2010.
|c) 2010 Skydancer Media Ltd. ALl rights reserved.

New Group from Selection

Add Files to “Animation Test"...

>

1 Project Navigator Help >

+ | OREQ

T

File Type Default - C HeaderS... +]
v

D » =

ios 2

HE=

oo

Objective-C class - An Objective-
C class with a header

UlViewController subclass - An
Objective-C view controller subclass

Objective-C NSObject category
- An Objective-C category on
NSObject

Objective-C protocol - An
Objective-C protocol

Objective-C test case class - An
Objective-C class containing an
OCUnit test case with a header

C File - A C file with a header file

C++ File - A C++ file with a header
file

Header File - An empty header file

Application - An Interface Builder
document suitable for creating an
iPhone/iPod Touch application,...

Vi

OEBPS/images/9781118007594-fg1610_fmt.jpeg
o000

™ MemoryLeak - MemoryLeakAppDelegate.m

(=)
e = Build MemoryLeak: Succeeded | Today at 22:18 —
@@\Memoryl.&aklnr’h 3 - [Z‘HJ
— Project (14 @1 =
‘MemoryLeakAppDelegate.m f g
' _ _ Profile 'MemoryLeak 0>

MemoryLeak Choose Trace Template or Existing Document:
YA Sissues r~

v [m) MemoryLeakAppDeleg, . 105 Simulator R
1
1

-
/4 Unused variable " i

e | i
. Unused variable ** |

Unused variable ‘thg Moy,
[\ Unused Entity Issue| CPU

Unused variable the | ije system

Blank

4 Unused Entity Issue, Allocations Leaks Activity Monitor
Unused variable ‘the
|] ibtoold(2244,0xb030B * et

© Uncategorized N
ibtoold | Al
. Document “
Open

Recent Zombies Time Profiler CPU Sampler

l Allocations

This template measures heap memory usage by tracking allocations, including specific
object allocations by class. It also can record virtual memory statistics by region.

Automation

tionary *)

tor:@selector

n occur for
'SMS message) or
round state.

frame rates.

- (void)dealloc {

[window releasel;
[super dealloc];

OEBPS/images/9781118007594-fg0414_fmt.jpeg
Build myClever/
zann/mu 21:05
d myCleverApp

* 28[1012010 20:55

., Build myCleverApp
ogmuzom 11:43

|_| myCleverApp =]

@i | < » | A Build myCleverApp : 21:05:41

Build myCleverApp: Failed | Today at 21:05

@D | Al Messages @IIEENTD Errors Only Q

iPhoneSimulator4.1.sdk -fexceptions -fvisibili i 10.6 - r
gdwarf-2 -fobjc-abi-version=2 -fobjc-legacy-dispatch -
| IPHONE 05_\ VERSIM MIN_| REOUIREDJ.I'I -lquu!e /Users/Main/Library/Developer/Xcode/

De pp-dyvujy irxugp/Build/Intermediates/

uyo App.build/Debug-i imulator/myCleverApp.build/myCleverApp-generated—

files.hmap —IIUsersmaxnllxhrarylneveloperIXcorleIBenvedBata/myCleverApp—

dyvu)ynl irxugp/Build/In: / "1everApp build/Debug-
inulator/myCleverApp.build/myCleverApp t, headers.hmap -I/Users/Main/

Lmrar /myCl App- i irxugp/Build/

Intermediates/myCleverApp. build/Debug—iphonesinulator/myCleverApp. build/myCleverApp-
all-target-headers.hmap -iquote /Users/Main/Library/Developer/Xcode/DerivedData/

myCleverApp: rxugp/Build/Intermediates/myCleverApp. build/Debug-
xphonesmulntor/-ycleverupn buxld/myclcverApp-pru)e:t-he-ﬂers.hm-p -FIUscrs/Hnnl
Library/ /myCleverApp- irxugp/Build/
Productsll}ebug—xphonesmulatur —I/UsersIHixn/berury/Developer/chde/DerlvedData/
myCleverApp- irxugp/Build/Products/Debug-iphonesimulator/include —
Illlserslﬂalnllerarleevelnper/x:odelnenvedl)atalmy('leverApp—

dyvujynl irxugp/Build/Int /myCleverApp.build/Debug- |

iphonesinulator/myCleverApp. build/DerivedSources/i386 ~1/Users/Main/Library/Developer/
Xcode/DerivedData/myCleverApp-dyvujynltbbkkacxnxomvairxugp/Build/Intermediates/ |
myCleverApp. build/Debug-iphonesinulator/myCleverApp. build/DerivedSources -include /
Users/Main/Library/Devel
dyvujynltbbkkacxnxonvairxugp/Build/PrecompiledHeaders/myCleverapp_Prefix-
babjbmuitpjjpwegxiasgzthslxr/myCleverApp_Prefix.pch —c “/Volumes/Developer/+ Projects/+
Tests & Experi /myCleverApp/Cl: /myClever legate.n" —o /Users/Main/
Library/Developer/Xcode/DerivedData/myCleverApp-dyvujynltbbkkacxnxomvairxugp/Build/ |
Intermediates/myCleverApp.build/Debug-iphonesimulator/myCleverApp.build/Objects-normal/
1386/myCleverAppAppDelegate.o

/Volumes/Developer/+ Projects/+ Tests & Experiments/myCleverApp/Classes/ |
myCleverAppAppDelegate.m:18: error: no declaration of property ‘viewContrller' found in
the interface

/Volumes/Developer/+ Projects/+ Tests & Experiments/myCleverApp/Classes/
myCleverAppAppDelegate.m:43: warning: property ‘viewController' requires method '-
viewController' to be defined - use @synthesize, @dynamic or provide a method
implementation

/Volumes/Developer/+ Projects/+ Tests & Experiments/myCleverApp/Classes/
myCleverAppAppDelegate.m:43: warning: property 'viewController' requires the method
"setViewController:' to be defined - use @synthesize, @dynamic or provide a method
implementation
© No declaration of ymperty vneucnnuller lound in me mlerfa(e
4\ Property viewController’ requires method "-viewController' to be defined - use @synthesize, @dynamic ... more

4\ Property 'viewController' requires the method 'setViewController:' to be defined - use @synthesize, @dyn... more

! o Build failed 28/10/2010 21:05

1 error, 2 warnings

OEBPS/images/9781118007594-fg0610_fmt.jpeg
806 i0S 4.0 to iOS 4.1 API Differences a
ﬂn developer.apple.com/library/ios/#releasenotes/General /iOS41APIDiffs/index.ntml

C Q- apple developer

D iOS Reference Library

AddressBook 0

ABPerson.h

Added ABPersonCopyImageDataWithFormat ()
Added ABPersonImageFormat

Added iginalSize
Added il

AddressBookUI

No changes
AssetsLibrary
AlAssetsLibrary.h
Added -[ALAssetsLibrary write: lbum:metadata:completionBlock:]
Added -[ALAssetsLibrary write: 1b tadata:completionBlock:]

AudioToolbox

No changes

AudioUnit
s

PN,

OEBPS/images/9781118007594-fg1633_fmt.jpeg
Instruments5 (=)
@] (@ wvessage)
View Library Search
N RA R RA RN RN R R R RR R RN RY) e

Automation

® Automation ¢) 8 Script Log =
cript Index A Timestamp Log Messages 'Log Type Screenshot|
< 0 23:13:05 GMT+01:00 | Text fields: 1 Default

1 23:13:05 GMT+01:00 Correct number of text fields Pass

Slimesiza 2 23:13:05 GMT+01:00 | Script completed. Default
Stop Script) (_Start Script
Script is stopped.

s

Take Screenshot Now
v Logging —
[Continuously Log Results

var target = UIATarget.localTarget();

Choose Location.. ‘0 var thisApp = target.frontMostApp();
var thisWindow = thisApp.mainWindow();
(Export All Results Now...)

var textfields = thisWindow.textFields();

UIALogger. logMessage (“Number of txt fields: "+textfields.length);

if (textfields.length != 1) {

UIALogger. logFail("Incorrect number of text fields");
} else {

UIALogger. logPass ("Correct number of text fields");

OEBPS/images/9781118007594-fg1218_fmt.jpeg
(=]

Y

Finished running MyMacProject
No Issues.

(_ Autocreate Schemes Now)

.Mlocrea!e schemes
SN -
[MyMacProject project
™ Another when | made a get [My project

| Shared

(]

UN_CLANG_STATIC_ANALYZER

vating this setting will cause

the Clang static analysis tool on
ntly

1 Ole(®
lorary :
el |

jage to a target object when. .

CT0KT) iemt surton - mercets

e-down events and sends an

to a target object...

Rounded Rect Button - Intercepts
‘mouse-down events and sends an
action message to a target object...

Rounded Textured Button -
Intercepts mouse-down events and
sends an action message to a...

OEBPS/images/9781118007594-fg1414_fmt.jpeg
[M]

+| OAG (@

LocalGitAppDelegate.m
LocalGit

Created by Richard Wentk on 04/01/2011.
Copyright 2011 Skydancer Media Ltd. All rights reserved.

#import “LocalGitAppDelegate.h"
@implementation LocalGitAppDelegate
@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {
// Insert code here to initialize your application

// This is a comment added to illustrate how edits appear in the
Version Editor

}
eend

v0.03

Richard ... 03:51:58 821lel... @
v0.02

Richard .. 03:18:28 90608b... ©

This is a commit message. This is version
0.01

Richard ... 02:02:40 faasb7... @
Initial Commit

OEBPS/images/9781118007594-tb1301a.jpg
Table 13.1 Standard Artwork Files

Obligatory?

Name

Size

Notes

Icon.png

Default.png

57x57

320x480

Yes

Yes

Springboard icon. i0S automatically adds
the glass effect and rounds the corers.
(Note that you can disable the glass effect
by editing the project’s info .
plistfile.SeeTable 13.2 and
Appendix B for details.)

iPhone and iPod touch loading screen. In
theory, this should be a static copy of the
default view, and splash screens aren't
allowed. In practice, this rule isn't always
applied.

OEBPS/images/9781118007594-fg1301_fmt.jpeg
Build IB: Succeeded | Yesterday at 23:20

| | : Bl =
No Issues
Current Mac 05
PROJECT Info Mac OS X SDKs
8 Mac 05 X 10.6
] - Unknown OS 10.6 (missing) 1 T
T‘::‘I:s Sasohed Latest Mac O X (Mac 05 X 10.6) | > oot
Additional SDKs 105 SDKs
Architectures Standard (armv6 armv?) 105 4.2 fmv -
Base SD
Build Active Architecture Only No : | o -
Supported Platforms iphoneos iphonesimulator honeos iphonesimulator
Valid Architectures armv6 armv7 larmv6 armv7
¥ Build Locations.
Build Products Path build |build]
Intermediate Build Files Path build]
¥ Per-configuration Build Products Path <Multiple values> <Multiple values> |
Debug build/Debug-iphoneos |
Release build/Release-iphoneos |build/Release-iphoneos]
¥ Per-configuration Intermediate Build Fi... <Multiple values> |<Multiple values> |
Debug build/IB.build/Debug-iphoneos [build/1B.build/Debug-iphoneos |
Release build/IB.build/Release-iphoneos [build/IB.build/Release-iphoneos ||
Precompiled Headers Cache Path Ivar/folders/jp/jpuT0OTNGFSrku... | /var/folders/jp/jpuTO0TnGFSrku... |
¥ Build
Build Variants normal |normal]
Debug Information Format DWARF with dSYM File : |DWARF with dSYM File :
Enable OpenMP Support No : INo - |
Generate Profiling Code No:
Precompiled Header Uses Files From B... Yes - |
Run Static Analyzer No:
Scan All Source Files for Includes No :)
Validate Built Product No :
Code Signing Entitlements
¥ Code Signing Identity : 5]

<>

Add Target 'Add Build Setting

OEBPS/images/9781118007594-fg0811_fmt.jpeg
By Type
1t

(.

) Placeholders

> Tissue

File's Owner
@ First Responder

Running IB on iPhone Simulator

Project @1

 —
Highlighted | =)

¥ Objects

B4 Image View
|__| Label - This is off
|__| Button - CHANGE IT

=

UlimageView

State (] Highlighted

ode [Scale To Fill ;
Alpha 100 [3)

wmm Default

v View

Recently Used Colors

omO

m— Dark Text Color
== Group Table View Background Color
= Light Text Color

B Scroll View Textured Background Color
m—View Flipside Background Color

=] Clear Color

= Light Gray Color

m—Black Color
[White Color
B Dark Gray Color

Other...

Label - A variably sized amount of .
Label garicext.

-~ Round Rect Button - Intercepts
| | touch events and sends an action
" message to a target object when...

Segmented Control - Displays
multiple segments, each of which
functions as a discrete button.

1|2
= Text Field - Displays editable text
EWR |

Q -

OEBPS/images/9781118007594-fg1615_fmt.jpeg
O All Objects Created
© Created & Still Living
O Created & Destroyed
v CallTree
() Separate by Category
() Separate by Thread
O Invert Call Tree
Hide Missing Symbols
J Hide System Libraries
O Show Obj-C Only
(] Flatten Recursion

OEBPS/images/9781118007594-fg1419_fmt.jpeg
¢ J(Q~ Google

Explore GitHub ~ Gist Blog Help Search.

Free

free

Change plan

Public Profile
Account Admin
Email Addresses

SSH Public Keys

Job Profile

Center Plans & Biling Repositories Organizations

0.00GB/0.30GB

private repositories private collaborators disk space (soft limit)

We use these to give you access to
your git repositories. Need help with
public keys?

[iwer)
Key

ssh-rsa

DHSHIAMTKCS/ Tm6rnxZwiTIn
mH//0dzAINr ™Q
nCSrCHgyXLFIL2uX 1dS/2RwrDwa
CxaNePIDPY4pBUMLCPVXLA+/qF J2Uhe IyXi gAzDrZGINK4CYSASSH
1U34i108xS1mginHbt9Z239534vITI Jeh+d1BQDIMSMINZAIPRGUTE 4
h19kH5Q5YVdsqImjgGzak JurwpkcqelFZ)2ebU7MLu737h6bloCLy

VKOI! 900YkS0i6b). Qd Q-)
Add key or cancel
Our RSA is 16:27:ac:a5:7 E 48

RichardWentk Dashboard Inbox 0 Account Settings = Log Out

I T

NI

OEBPS/images/9781118007594-fg1123_fmt.jpeg
Name AName
Creation Date 2011-01-31 23:39:40 +0000
Expiration Date 2011-05-02 00:39:40 +0100
Profile Identifier 4592FC3E-FDES-49E1-B74C-4F5807BA1F72
App Identifier QAKHQQUMER.*
Name Team Provisioning Profile: *
Creation Date 2011-02-02 21:58:15 +0000
Expiration Date 2011-05-03 22:58:15 +0100
PROV Profile Identifier E9D5B21D-E3C0-4829-A5C2-4F26111484ED
- App Identifier 9RB3VJSFQ2.

+ Device Name linstalled
@ iPhone Installed
iPhone
iPod

OEBPS/images/9781118007594-fg0733_fmt.jpeg
L :‘::lgq Mac 05 X SDK 10.6
» (] Classes
» (] Other Sources
v (| Resources.
| App-info.plist
| InfoPlist.strings

Credits.rtf

) Placeholders

" File's Owner
@ First Responder
oA Application

% Objects.

¥ &= Menu Item - App
v [Menu - App
=4 Menu Item - About App
&= Menu Item - Separator
= Menu Item - Preferences...
= Menu Item - Separator
¥ == Menu Item - Services
7 Menu - Services
= Menu Item - Separator
= Menu Item - Hide App
= Menu Item - Hide Others
= Menu Item - Show All
=4 Menu Item - Separator
= Menu Item - Quit App
» &= Menu Item - File
» &= Menu Item - Edit
» == Menu Item - Format
» &= Menu Item - View
» == Menu Item - Window
» &= Menu Item - Help
v [5= Window - App
(B2 View
5 Aop App Delegate
B Font Manager

+| OAG (@

@@

OEBPS/images/9781118007594-fg1007_fmt.jpeg
LIBRARY
A Developer Profile
(] Provisioning Profiles
Software Images

Screenshots
DEVICES

iPod

"B esun

(1] Provisioning Profiles
4 Applications
B Console

. Device Logs
% Screenshots
iPhone

4.1 (88117)

. Device Logs
% Screenshots
iPhone

4.2.1 (8C148)
. Device Logs
% Screenshots

Organizer - Devices

cation

WW
S ey | CrashReporter Key: baBB7fadbebf 3a9c8408897cf 2915721 76ac42a

uSha Crash

Low Memory
BBC,Maps Low Memory
YouTube, i... Low Memory
TonePad Crash

@ WinNumbers Crash
WinNumbers Crash
WinNumbers Crash
WinNumbers Crash
WinNumbers Crash
MobilePhone Crash
BECNews Crash
Orange, e... Low Memory
iBooks, St... Low Memory
Preferences Crash
Preferences Crash
Preferences Crash
uToomiPro Crash
MobileSafa... Low Memory
TonePad Crash
uToomiPro Crash
Map View Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash
BinaryClock Crash

27/08/2010 20:41
21/08/2010 02:47
19/08/2010 21:13
19/08/2010 21:13
15/08/2010 21:25
14/08/2010 21:42
14/08/2010 15:04
14/08/2010 05:57
14/08/2010 01:14
09/08/2010 23:38
29/07/2010 16:37
28/07/2010 20:18
26/07/2010 01:02
20/07/2010 02:29
20/07/2010 00:22
18/07/2010 17:05
15/07/2010 13:17
15/05/2010 18:58
15/05/2010 04:21
13/05/2010 17:31
13/05/2010 05:42
26/04/2010 00:52
18/04/2010 19:29
18/04/2010 19:23
18/04/2010 19:23
18/04/2010 19:23
18/04/2010 19:23
18/04/2010 19:22
18/04/2010 19:22
18/04/2010 19:19
18/04/2010 19:18
18/04/2010 19:07
18/04/2010 19:06
18/04/2010 19:06
18/04/2010 19:06
18/04/2010 17:58

Hardware Model:
0S Version:
Date:

Free pages:
Wired pages:

Purgeable pages:

Largest process:

Processes

Nane

installd

assetsd

ZettaClock

Mobi leTiner

Contacts

BEC News

Hob LeS L ideShow

Habi leSafar i

Haps

iPhone3, 1
iPhone 05 4.8.1 (8A386)
2010-88-19 21:13:57 +6100

1335
38973

13
Mobi leSafari

-01008c833adc50d5952ceatdd1164d4a>
<3b751db23d6ef 8e39f 3998bf 9d5755f 3>
<5B8640049d70d5b6200ef b87d4cB16429>
<488c18a37c67933f Bdc2c4f £ 7096038>
<Bedf 8953c9655adcf 3745f 991e237539>

Count. resident pages
294

485
16636
1351
1137

<74abec357b851d962e26eca79915%84>
<154417f af 5327269a26b2bch309257a3>

3752 (.
3883 (active)
20916

<701

Preferences
Hobi LeSHS
debugserver

Car Finder
debugserver
debugserver
debugserver

Mobi letai |

Habi lePhone
debugserver
debugserver

SCHe lper

Mobi leStorageMou
inagent.

lsd

apsd

notifyd

BTServer
CommCenter
SpringBoard

50176042511 9f beSf fbaf
<7fe6d992b4c700dd3950984b46cBaal 6>
<31320af 83c15e836dc82c87f eef 1237b>
<6bcdab41f 4ebcB898d49af 5248af 9f e3>
<f3c168d147d5b20e58d3522ac32752be>
<6bcdab41f 4ebcB898d49af 5248af 9f e3>
<Bbcdab41f 4ebc8898d49af 5248af 9f e3>
<6bcdab41f 4ebcB898d49af 5248af 9f e3>
<Af dce633927f B 5894b0Of 5d76b168d98>
<051f e65d559f 839af 64f 996C64842667>
<Bbcdab41f 4ebc8898d49af 5248af 9f e3>
<Bbcdab41f4ebcB898d49ar 5248af 9 €3>
<ce22adbl1968a04deSaed1 74b3dacsf 58>
<23bab46f 41cc216f bf 66efbanl 786e18>
<B6768cea53a93f Bce605a8272d62d0276>
<543930d522316b0A36e7echact Ibdef >
<£5543879781056eacaB46d212h7424182>
048d93c15f 38deBeacdd4754d22ddaBs>
<154c9311732b99d8e3375bf Ba66522ac>
49811 b92ef In3b1b56beAe663f 3610
<21944120ac4bbd64832b6061450b11b35>

4263 (jetti)
279

469
7673 (active)

b Y

Import Export

OEBPS/images/9781118007594-tb1303.jpg
Table 13.3 Conditional Compilation Directives

Macro Meaning

#define Sets the value of a token.

#if Includes the following code if a conditional test is true. Conditional comparisons work only with
integers. There’s no way to compare a macro with a string or with the numeric value of a string.

#ifdef Includes the following code if a token is defined.

#ifndef Includes the following code if a token isn't defined.

#else Includes the following code when the preceding test is false.

#elif Combined #else #1 £ fornested conditionals.

#endif Ends the conditional test. Code after #endi £ is always included, in the usual way.

#include Includes the following code unconditionally.

#import The Objective-Cequivalent of #include.

#warning Prints a Cstring warning to the console. (Because this is a C directive, don't prefix the string with

the Objective-C @ objectifier.)

OEBPS/images/9781118007594-fg1623_fmt.jpeg
O Created & Still Living
O Created & Destroyed
Gl Tree
Separate by Category
CJ Separate by Thread
) Invert Call Tree
o Hide Missing Symbols
CJ Hide System Libraries
Show Obj-C Only
latten Recursion
» Call Tree Constraints

ihufipasifin,Oate,ial0 wmm—

Launch Configuration
Discard unrecorded data upon stop
@ Record reference counts
) Only track active allocations
(O identify C++ Objects
 Enable NSZombie detection
Track Display
Style: (CurrentBytes %)
Type: (Overlay %)
Zoom: Dr—— 1%
Recorded Types
 Record all types.

[11123
3154

O Ignore types with 'NS' prefixes

[Ignore types with 'CF' prefixes

O Ignore types with Malloc' prefixes

(_ Configure)

O Malloc 128 Bytes 4.50KB
(J Malloc 8 Bytes 4.78 KB
(J CFString (store) 73.94 KB
] Malloc 80 Bytes 7.50 KB
) Malloc 48 Bytes 15.19KB
() CFBasicHash (value-st.. 16.16 KB
(J Malloc 64 Bytes 10.12 KB
] CFArmay 11.28 KB
() CFBasicHash 15.53 KB
() CPBasicHash (key-store) 13.73KB
) Malloc 96 Bytes 14.25 KB
O cFaray (store-deque) 4.22K8
) Malloc 144 Bytes 4.36 KB
() Malloc 1.00 KB 55.00 KB
(J Malloc 160 Bytes 6.72KB
O CrURL 3.05KB
O _NSAmrayM 1.41K8
O Malloc 112 Bytes 2.19K8
(7] CFBasicHash (count-s... 784 Bytes

2533
1733
36
612
263
96
324
174
162
355
354
119
152
41
31
55
43
65
45
20
38

5034
629
[
474
1815
23
298
424
148
269
194

200
115

2.01MB
59.11 KB
99.50 KB
68.97 KB
231.38KB
4.96 KB
138.41 KB
40.62 KB
22.12 KB
52.42 KB
22.25KB
11.28 KB
15.53 KB
42.03 KB
25.03 KB
8.06 KB
12.23 KB
79.00 KB
10.47 KB
3.05KB
1.41 K8
4.81KB
912 Bytes

L =
Living #Transitory | Overall Bytes | #Overallw|# Allocations (Net / Overal)

16157 [y
b e |
2533 I
2207 IS
1851 |

635 N
s61
520 1

472
43 0
356

NI 4

OEBPS/images/9781118007594-fg0623_fmt.jpeg
| <[> | [+ [*Fnep:/s ogle.co.uk/search?cl TF-8&0e=UTF-8&redir e & | (Qr uiview

Google uiview ios Search ‘

About 46,600 resuts (0.46 seconds) Advanced search
*4 Everything UlView Class Reference
~ More 4 Jun 2010 ... Describes the interface for mtemotlve lectmwlarareas on the screen.

dsvdoper wpla ca'nlllbrafyllo.l Juikit/... IllVIw Classl United States - Cached
Search near...

EIES loction @ There are many iPad and iPhone apps where custom ratings could be useful, such as news
apps, and picture rating apps. The problem with programming a custom.
maniacdev.com/.../easily-create-a-custom-uiview-for-5-star-ratings/ - United States - Cached

The web
Pages from the UK Flip UIView pre-iOS 4 from left to right - Stack Overflow 2y
S 23 Aug 2010 ... | know there's a simple L i nLeft ...
/More search tools {\1view beginAnimations: @"flipOverCard1* context: il UViow .. 4
stackoverflow.com/questions/.../flip-uiview-pre-ios-4-from-left: yn Cached
ini nf in 4 wil | size of the i -

Is there any other way than @2x to let iOS know that the graphic is Retina ...
stackoverflow.com/.../saving-uiview-contents-in-ios-4-with-real-size-of-the- images-inside-i-e-
scale-c - Cached

Show more results from stackoverflow.com

Simple UIView transitions animation using blocks in iOS 4 A

20 Sep 2010 ... Demonstration of how to do UIView transitions animation using blocks based
i0S 4 API with XCode lmmd sampls pvqecl mduded

www.dizzey.com/. i ing-blocks-in- ios-4/ - Cached

ng Uni | it in n n Dyne “.
31 Oct 2010 ... What happens when you are developing a UlViewController based application
and you want to have an slmp!e trampamm ovurhy for displeylng
www.james-vandy y ios/ - Cached

UIVIEW - iOS: UlVew & CALayer - 2D vs 3D transforms - efreedom
UIVIEW - i0S: UIVew & CALayer - 2D vs 3D transforms. in my previous code, | changed the
coordinate system in my view's drawRect, so that the rectangle had
efreedom.com/.../1.../iOS-UIVew-CALayer-2D-Vs-3D-Transforms - Cact\ed

IPHONE - Flip UlView pre-iOS 4 from left to right - efreedom “
IPHONE - Flip UlView pre-iOS 4 from left to right. | know there's a simple ...
.com/Question/1.../Flip-UlView-Pre-iOS-Left-Right - Cached

NI 4

OEBPS/images/9781118007594-fg0509_fmt.jpeg
n 9 A

. Animation Test

|| Animation Test
Welcome to Xcode 4

¥ L 1 target, Mac 0S

|| ThisisAlsoAN
|| Animation_T.

B Movies

J3 Music

l Shared Folder

% 75b31806-080d-4ff5S-8bdc-b864518189da.jpg 07/10/2010
¥| 539ca25-188a-474f-bac5-827fd9b85709.jpg 05/08/2010
¥ d7d6bf73-67f1-4df3-a820-a91171239671.jpg 23/08/2010

¥ ghilljpg
B IMG_0010.jpg
* IMG_0486.jpg
» (1] iPhoto Library

Date Modified
07/10/2010

22/08/2010
16/08/2010

20/08/2010
24/09/2010

v Applications
A [¥] Nuendo4.jpg 19/08/2010
¥ SEARCH FOR 5/ wh.ipg /08200 B W
O e Y (EE

» (] Other Framey (L) Yesterday £ =

v (] Products =
A Animation Te rotocol - An
tocol

Destination G Copy items into destination group's folder (if needed)

Folders () Create groups for any added folders
(O Create folder references for any added folders

st case class - An
s containing an
with a header

Add to targets @ /A Animation Test

‘with a header file

#+ file with a header

(ST /mjmmmw

+ | OREQ

An Interface Builder
-mll for creating an :
iPhone/iPod Touch application,... +

Q o

OEBPS/images/9781118007594-fg1509_fmt.jpeg
@@\W

1 BreakpointTestAppDelegate.m [

BreakpointTest

Project @1

Running BreakpointTest

n oA

hi

> [est) (] Classes) |

m) @

By Type
BreakpointTest

¥ A issue o

» | ibtoold(8869,0xb030b000) ...

// BreakpointTestAppDelegate.m
// BreakpointTest

// Created by Richard Wentk on 26/12/201
// Copyright 2010 Skydancer Media Ltd. A
#import “BreakpointTestAppDelegate.h"
@inplementation BreakpointTestAppDelegate
@synthesize window;

- (void)applicationDidFinishLaunching: (N
// Insert code here to initialize you

for (int i = 0; i <10; i++) {
NSLog(@"Count: %i", i);

@end

| 4 BreakpointTest

H.n.2 % 3

All Output +

GNU gdb 6.3.50-28050815 (Apple version gdb-15:
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU Gene
welcome to change it and/or distribute copies
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i3B6-apple-darwin".tty /dev/ttys@ee

[s-mchxnn

to process 8882]

17:57:35.280 Bre kpolntYllt‘ Count:
17:57:35.333 Breakpoint’ 1 Count:
17:57:35.357 BreakpointTest| Count:
17:57:35.362 BreakpointTest| Count:
17:57:35.364 BreakpointTest| Count:
17:57:35.367 BreakpointTest| Count:
17:57:35.369 BreakpointTest| Count:

BreakpointTest| Count:

0 BreakpointTest| Count:
17:57:35.411 BreakpointTest| Count:

CENONAWNES

OEBPS/images/9781118007594-fg0801_fmt.jpeg
File's Owner

v View
 Label - This is off
|__ Button - CHANGE IT

@l)

Build IB: Succeeded | Today at 00:17

No Issues

I) (O[SE]) (=]

CHANGE IT

1] Objects B

Table View - Displays data in a list of plain, sectioned, or
grouped rows.

Table View Cell - Defines the attributes and behavior of
cells (rows) in a table view.

-~

. | T
I-!-. nimumm«:rqm

Text View - Displays multiple lines of editable text and
sends an action message to a target object when Return is.
tapped.

Web View - Displays embedded web content and enables
content navigation.

Jﬁl Map View - Displays maps and provides an embeddable

rre

[

D« »

(

S

9

OEBPS/images/9781118007594-fg0417_fmt.jpeg
myCleverAppAppDelegate.m
myCleverApp

Created by Richard Wentk on 17/10/201
Copyright (c) @ Skydancer Media Lt
reserved.

1"

#import “myCleverAppAppDelegate. h"
#import "myCleverAppViewController.h"

dasl

p ion mycl

@synthesize window;

@synthesize viewController;

- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)
launchOptions

// Override point for customization after
application launch.

[window addSubview:viewController.view]l;
[window makeKeyAndVisible];
return YES;

- (void)applicationWillTerminate: (UIApplication *)
application {

// Save data if appropriate.

- (void)dealloc {

[window releasel;
[viewController releasel;
[super dealloc];

@end

| idendity aod Typs,

. AL rights

File Name ' myCleverAppAppDelegate.m

-

File Type | Default - Objective-C Source

Location |_Relative to Group

[al
Full Path /Volumes/Developer/ + Projects/+ Tests & Experiments/myCleverApp/Classes/ °
myCleverAppAppDelegate.m
|oRuLocalization,
No Localizations
+ -
R Japet Merbeship,
™ A myCleverApp No Role
aRText Sestiogs, .
Text Encoding [(Unicode (UTF-8)))]
Line Endings | Mac OS X / Unix (LF) 2]
Indent Using [_Spaces S}
Widths 4 42
| - 10 et 6}
™ Wrap lines
| Source Contrnl, .
Version Fetching... (up to date)
Status No changes

OEBPS/images/9781118007594-fg0620_fmt.jpeg
e|em

v applic Aoole
105 4.1 Library
Biach 105 4.2 Library

iPhone OS 4.0 Library
v Mac 05 X 10.6 Core Library
Mac OS X Legacy Library

Xcode 4.0 Developer Library

System Guides
¥ I o 3 More Resuls
» [l Cocoa Performance Guidelines
3 safari's "Mail [Co...ail Client events...
[l How to remove t...Cocoa application |
NSRunningApplic... Class Reference
» [Rulers and Paragraph Styles
» [services Implementation Guide
» [l Cocoa Bindings Programming Topics
1) Why does my ap...k screen on iOS 47
» [l Multiple User Environments
[Application Kit R... (10.5 and Earlien).
» |&) Document Intera...ing Topics for iOS|
» [View Controller P...ing Guide for i0S
Tools Guides.
1 Results
» [Xcode Quick Start Guide
. py Sample Code
Show 123 More Results
» B AppPrefs
» B Cocoa Tips and Tricks
» ™ OpenGLCaptureToMovie
» ™ CoreAnimationKioskStyleMenu
» B ImageTransition
» B PopupBindings
» I NSTableViewBinding

Available in Mac OS X v10.0 and later.
Declared In
NSApplication.h

NSApplicationDidChangeScreenParametersNotification

= Posted when the configuration of the displays attached to the computer is changed.

The configuration change can be made either programmatically or when the user changes settings in the
Displays control panel. The notification object is sharedApplication. This notification does not contain a
wuserlinfo dictionary.

Availability

Available in Mac OS X v10.0 and later.

Declared In

NSApplication.h

NSApplicationDidFinishLaunchingNotification

Posted at the end of the finishLaunching method to indicate that the application has completed launching
and is ready to run.

The i ion object is lication. This notification does not contain a userinfo dictionary.
Availability

Available in Mac OS X v10.0 and later.

Declared In

NSApplication.h

NSApplicationDidHideNotification

Posted at the end of the hide: method to indicate that the application is now hidden.
The notification object is Nsapp. This notification does not contain a userinfo dictionary.
Availability

Available in Mac OS X v10.0 and later.

Declared In

NSApplication.h

NI -)

OEBPS/images/9781118007594-fg1620_fmt.jpeg
9 Zombies - ZombiesAppDelegate.m

Build Zombies: Succeeded | Today at 16:49
[Elu=) @)

Project (L2 @1

s

»>

Y S issues

¥ |m| ZombiesAppDelegat

. Unused variable

Unused variable:

) Unused Entity lss|

Unused variable:

v|] ibtoold(1631,0xb03

Uncategorized
Wl

Choose Trace Template or Existing Document:

- i0S Simulator i ———
Memovv
cPu

File System
Blank Allocations

. User
z
All
ictionary *)
B oocumen “
Y

Zombies Time Profiler CPU Sampler Automation

- Zombies

Measures general memory usage while focusing on the detection of over-released "zombie
objects. Also provides statistics on object allocations by class as well as memory address
histories for all active allocations.

A

Leaks Activity Monitor

lector:@selector

Recent

Platforms /MacOSX.platform/

(Path : file:/,
Developer/Library Pl

Cancel) (@Proflen) ¢ can occur for
r SMS message) or

dckground state.

}
- (void)applicationWillTerminate: (UIApplication *)application

// Save data if appropriate.

Profile ‘Zombies' 0

~

nGL ES frame rates.

OEBPS/images/9781118007594-fg0901_fmt.jpeg
») (M) |IB(iPhone Simulat... 5

PEERN X

Running IB on iPhone Simulator

VB, target, iOS SDK 4.2
v (] Classes
[h] 1BAppDelegate.n
[IBAppDelegate.m

h| IBViewController.h
D IBViewController.m
» (] Other Sources
(| Resources
| 1B~Info.plist
| InfoPlist.strings
|| MainWindow.xib
|| 1BViewController.xib

+ | OREQ

=

& [aipz]y 1 =] (1

= - (BOOL)application: (UIApplication *)application
X" didFinishLaunchingWithOptions: (NSDictionary *)launchOptions {
// Override point for customization after application launch.
[window addSubview:viewController.view];
[window makeKeyAndVisiblel;
viewController.theLabel.text = @"Changed";
return YES;
af}
- (void)applicationWillTerminate: (UIApplication *)application {
// Save data if appropriate.
- (void)dealloc {
[window releasel;
[viewController releasel;
[super deallocl;
@end

E on oo & t|aB

Project @1
)< > B[])Mm m) @ |<e>H8 Dla
77 ick Hel
77 TIsAppbelegate.m Y ek fep
2
/7 Created by Richard Wentk on 23/11/2010, No Quick Help
// Copyright 2018 Skydancer Media Ltd. All rights reserved.
"
#import "IBAppDelegate.h"
#import “IBViewController.h"
@implementation IBAppDelegate A ' (},[o=
[=8
@synthesize window; . Objective-C dealloc Method -
T {}] sl o

Core Data: Basic Fetch - This
{ } | allows you'to fetch an entity from a
managed context.

Reusable UlTableView Cell -
{ } | Used for reusing UTableview cels to
improve performance.

GCD: Dispatch After - Used for
{ } | executing a block atter a set amount
| of time.

{ } | GBlock typedef - used for
defining a block as a type.

Objective-C Finally Block - Used
{ } | when there is code that needs to do
cleanup after an exception.

Core Data: Fetch with Sorting -
{ } | s will fetch managed objects ina
specific order

GCD: Dispatch Once - Used for
{ } | executing code once through the
lifetime of the object, such as fora...

o
N [«

OEBPS/images/9781118007594-fg0504_fmt.jpeg
Animation Test
1 target, Mac OS X SDK 10.6
Classes

E] Anlmmo« T ppoeleqm.m
v (] Other Sources
D Animation_Test_Prefix.pch

| Animation_Test-Info.plist
| | InfoPlist.strings

| MainMenu.xib
Frameworks

(L] Cocoa.framework

(] Other Frameworks
v (] Products
4 Animation Test.app

+| OAG (@

Animation_TestAppDelegate.h
Animation Test

Created by Richard Wentk on 22/05/2010.
Copyright 2010 Skydancer Media Ltd. ALl rights reserved.

#import <Cocoa/Cocoa.h>

@interface Animation_TestAppDelegate : NSObject <NSApplicationDelegate>

NSWindow *window;

@property (assign) IBOutlet NSWindow *window;
@end

UlViewController subclass - An
Objective-C view controller subclass

Objective-C NSObject category
- An Objective-C category on
NSObject

Objective-C protocol - An
Objective-C protocol

Objective-C test case class - An
Objective-C class containing an
OCUnit test case with a header

CFile - A C file with a header file

C++ File - A C++ file with a header
file

Header File - An empty header file

Application - An Interface Builder
document suitable for creating an
iPhone/iPod Touch application,...

<>

N

OEBPS/images/9781118007594-fg1510_fmt.jpeg
00 Q

BreakpointTest

Created by Richard Wentk on 26/12/2010.
Copyright 2010 Skydancer Media Ltd. All rights reserved.

#import “BreakpointTestAppDelegate.h”

eimpl

g
@synthesize window;

- (void)appli (NSNotification *)aNotification {
// Insert code here to initialize your application

for (int i = 0; i <10; i++) {
NSLog(@"Count: %i", i);

OEBPS/images/WileycopyrightLogo_fmt.jpeg

OEBPS/images/9781118007594-fg1332_fmt.jpeg
¥ DEVICES Shared Folder
1 eris) “Name
=} Macintosh HD [} Info.plist
B iDisk » [Macos
Jd Mac 05 X Install DVD _ Pkginfo
¥ [Resources
> [en.lproj
¥ @ fonts

¥ SHARED [tama_minio2.TTF

[192.168.0.6
¥ PLACES
(L] Project Templates.

7\ Applications

¥ SEARCH FOR
(L) Today
(L) Yesterday
(L) Past Week
All Images
(& All Movies
All Documents

Date Modified
Today, 11:50
Today, 11:51
Today, 11:50
Today, 11:51
Today, 11:51
Today, 11:51
Today, 11:51

Jalr

OEBPS/images/9781118007594-fg0708_fmt.jpeg
D 8 B|w s ©

v Si Metrics

Orientation | Portrait

Status Bar | Gray E
Top Bar [None S
Bottom Bar | None 2]
v View
Mode | Scale To Fill B
Alpha 100]
Background |] E
Tag 0 L:]
Drawing ¥ Opaque () Hidden
("] Clears Graphics Context
(] Clip Subviews
g Autoresize Subviews
Stretching 0.00(%] 0.00[)
X Y
1.00/[7) 1002
Width Height

Interaction s User Interaction Enabled
(] Multiple Touch

OEBPS/images/9781118007594-fg0412_fmt.jpeg
myCleverApp

1 target, iOS Device SDK 4.1
v (] Classes
|| myCleverAppAppDelegate.h
| | myCleverAppAppDelegate.m
| | myCleverAppViewController.h
| myCleverAppViewController.m
v (] Other Sources
| | myCleverApp_Prefix.pch

main.m

v (] Resources
| | myCleverApp-Info.plist
| InfoPlist.strings
| | MainWindow.xib
| | myCleverAppViewController.xib

| UlAccessibilityAdditions.h
|| UlAccessibilityConstants.h
|| UlAccessibilityElement.h
|| UlActionSheet.h

|| UlApplication.h

|] UiBarButtonitem.h
|| UiBaritem.h

|| UiBezierPath.h

|| UtButton.h

. UiColor.h

| myCleverAppViewController.xib (English)

Build myCleverApp: Succeeded | Today at 20:55

No Issues.

Info ‘

s

PROJECT Build Settings Build Phases Build Rules
5 myCleverapp sasic @D | Levels Q-)|
TARGETS Setting A myCleverApp T
¥ GCC 4.2 - Warnings =
Check Switch Statements Yes
Effective C++ Violations Nos
Four Character Literals Not
Hidden Local Variables
Implicit Conversion to 32 Bit Type
Incomplete Objective-C Protocols
Inhibit All Warnings.
Initializer Not Fully Bracketed
Mismatched Return Type
Missing Braces and Parentheses
Missing Fields in Structure Initializers
Missing Function Prototypes
Missing Newline At End Of File
Multiple Definition Types for Selector
Nonvirtual Destructor No$
Other Warning Flags
Overloaded Virtual Functions No$
Pedantic Warnings No:
Pointer Sign Comparison Yes
Prototype Conversion No:
Sign Comparison No:
Strict Selector Matching No
Treat Missing Function Prototypes as E... No &
Treat Nonconformant Code Errors as ... No &
Treat Warnings as Errors No
Typecheck Calls to printf/scanf Yes
Undeclared Selector No:)¢
Uninitialized Automatic Variables Not 3
Add Target Add Build Setting

OEBPS/images/9781118007594-fg1406_fmt.jpeg
LocalGit
olumes/Developer/

LocalGit
Location /Volumes/Developer/+ X4/LocalGit
Type Git

.
v 4425323ef6b0 by Richard Wentk 9 files modified at 15:32

[} /LocalGit/main.m

[/LocalGit/LocalGitAppDelegate.h

) /LocalGit/en.Iproj/Credits.rtf

[/LocalGit/en.lproj/InfoPlist.strings

) /LocalGit/LocalGitAppDelegate.m

) /LocalGit/LocalGit-Info.plist

) /LocalGit/LocalGit-Prefix.pch

) /LocalGit/en.lproj/MainMenu.xib

[} /LocalGit.xcodeproj/project.pbxproj

Initial Commit

Today
5 8

OEBPS/images/9781118007594-fg1628_fmt.jpeg
Name: DTrace Instrument | Category: |Custom Instruments

Description: ‘D’l’rlm Instrument (Created Sat 01/22/11 12:42 AM)

© All Objects Creat|
O Created & still Ly

T (G)

If the following conditions are met:
Probe Probe 1 of type (User Process) hits |Library | [Function | Cer DIECH
Perform the following script:
=
Record the following data:
(Record in %) (Last Error # D) @ |
» END

i

rall)

 Separate by Cat
 Separate by Thre
& invert Call Tree
¥ Hide Missing S

@ Preserve previous instrument and recorded data

Z

¥ Hide System Libraries
¥ Show Obj-C Only
¥ Flatten Recursion

OEBPS/images/9781118007594-fg1625_fmt.jpeg
© All Objects Created

O Created & Still Living
O Created & Destroyed
v Call Tree
Separate by Category
parate by Thread
O Invert Call Tree
@ Hide Missing Symbols
Hide System Libraries
Show Obj-C Only
) Flatten Recursion

>
» Specific Data Mining

) A statistics $) Object Summary

Graph

J000000000000000000000®A

| Category
* All Allocations *
Malloc 16 Bytes
CFString

Malloc 32 Bytes

Malloc 128 Bytes

Malloc 80 Bytes
CFString (store)
CFBasicHash (value-st...
Malloc 48 Bytes
CFArray

Malloc 64 Bytes
CFBasicHash
CFBasicHash (key-store)
Malloc 96 Bytes

Malloc 144 Bytes
CFArray (store-deque)
CFURL

(CFBasicHash (count-s...
Malloc 1.00 KB

Malloc 112 Bytes
CFRunLoopSource

Live Bytes |
521.34 KB
18.42 KB
42.81 KB
31.31K8
2.38K8
4.53K8
53.28KB
12.34 k8
7.92 K8
7.39K8
3.94K8
8.56 KB
10.92 kB
3.75K8
3.80K8
2.58K8
159KB
544 Bytes
17.00 kB
1.42KB
3.17K8
384 Bytes

#Living #Transitory | Overall Bytes | #Overallw|# Allocations (Net / Overall)

5123
1179
1194
1002
19
58

2208
244
0
123
587
394
159
108

822.79 KB
22.23KB
42.81 KB
35.16 KB
75.75 KB
35.31KB
82.92 KB
25.98 KB
11.39KB

7.39KB
14.12 KB
8.56 KB
23.28KB
12.28K8B
8.02KB
4.12KB
1.59KB

592 Bytes

31.00 KB
3.17KB
3.17KB

384 Bytes

7331

it

Nz

OEBPS/images/9781118007594-fg1409_fmt.jpeg
v i LocalGit
[} LocalGit-Info.plist
[h) LocalGit-Prefix.pch
[h] LocalGitAppDelegate.h
LocalGitAppDelegate.m

Today

' v a80db336271d by Richard Wentk
[/LocalGit/LocalGitAppDelegate.m
(View Changes)
Another recent commit

v f3e24dd0ec8S by Richard Wentk
[/LocalGit/LocalGitAppDelegate.m
(View Changes)

Second commit

L ¥ €4605ca6eal8 by Richard Wentk
(I /LocalGit/LocalGitAppDelegate.m
[/LocalGit/MyClass.h
(I /LocalGit.xcodeproj/project.pbxproj
) /LocalGit/MyClass.m
View

1 files modified at 16:00 f
1 files modified at 16:00
4 files modified at 15:58
|
v

S B
Pull Commit

 ®©

Switch Branch Hide History

OEBPS/images/9781118007594-fg1417_fmt.jpeg
M)

LocalGitAppDelegate.m
// LocalGit

/7 Created by Richard Wentk on @1
/0472011,

// Copyright 2011 Skydancer Media
Ltd. AlL rights reserved.

#import "LocalGitAppDelegate.h”

@implementation
LocalGitAppDelegate

@synthesize window;
- (void)

applicationDidFinishLaunching:
(NSNotification *)

| - (void)

LocalGitAppDelegate.m
// LocalGit

/1 Created by Richard Wentk on 01
/04/2011.

// Copyright 2011 Skydancer Media
Ltd. AlL rights reserved.

#import "LocalGitAppDelegate.h"

@implementation
LocalGitAppDelegate

@synthesize window;

applicationDidFinishLaunching:
(NSNotification)

aNotification aNotification
{ {

// Insert code here to // Insert code here to
initialize your initialize your
application application

// This comment has been added // This comment has been added
to test SCM to test SCM

// This is a later change // This is a later change

// This is the most recent // This is the most recent
change change

77 This comment only appears 77 s comment only appears
in this branch (e in this branch

T // This comment tests merging T // This comment tests merging
@end @end

(@]@]

(@]

OEBPS/images/9781118007594-fg1121_fmt.jpeg
; 0O " Disti tion P ,, sionil Profiles - | 5 ” onin % ” - Ap e v r :
| <[» | [+ [hups://developer.apple.com/ios /manage/provisioningprofiles/ create.actionZtype=2 [

Go 1o i0S Dev Center

Portal : Sk Media
‘Home
Certificates ‘ Development ‘ Distribution ‘ History l How To
peviees Create iOS Distribution Provisioning Profile
App IDs
Generate provisioning profiles here. To learn more, visit the How To section.
Distribution

Distribution Method © App Store O Ad Hoc

Profile Name [Enter a profile name
C Media on Jan 31, 2012)
App ID [Select an App ID 2}

Shop the Apple Online Store (1-800-MY~-APPLE), visit an Apple Retail Store, or find a reseller.

e | TN

Mailing Lists RSS Feeds

n; the final :) |
&
I
4

OEBPS/images/mac_tip_fmt.jpeg

OEBPS/images/9781118007594-fg1126_fmt.jpeg
8006 Developer Certificate Utility

= Uhttp://deveIoper.apple.cnm/cemﬁcaleslinde)(.a(tion#wen/iew ¢ M(Q~ Google

.
- Developer Hi, Richard Wentk | Member Center | Log out

Developer Certificate Utility

¥ Mac Developer Program

Developer Certificate Utility

The Developer Certificate Utility allows Mac Developer Program members to request and download signing
certificates for Mac Applications and Safari Developer Program members to request and download Safari
ﬁ Mac App IDs Extension signing certificates.
- Mac Certificates
- Mac Developer Program

(5 History

In order to submit your Mac OS X apps to the App Store, you will need to sign both the application bundle and the installer
package you will be submitting. Click on the Create Certificates link to generate the two certificates you will need to sign
your app and installer package. After you have installed your certificates, use Xcode to sign your app and installer package. If

Help and Tutorials | g you do not have the WWDR intermediate certificate installed, click here to download now.

For more information on

submitting your Mac OS X Certificates - App IDs

apps to the App Store view. o Create Certificates | e Create Mac App ID

¢ Download Certificates * View Mac App ID

Get Your Mac Apps Ready for
the Mac App Store

Submitting Your Mac App to
the App Store

Download the WWDR
intermediate certificate

le Inc. All reserved. Terms of Use | Privacy Policy

OEBPS/images/9781118007594-fg1304_fmt.jpeg
settings - settings.xcodeproj

(=)
Build settings: Succeeded | Today at 14:00 1 = =

No Issues
+
| <4 » | [settings
PROJECT Summary info | BuildSettings | Buil oM
1 settings Basic | Combined (DD (Q-| MacOSXSDKs
TARGERS. setting A Sein *]‘ r&f M):A:lgssx (Mac 05 X 10.6)
settings
Additional SDKs 105 SDKs
Architectures Standard (ar... i0S 4.3
) Base SDK Latest iOS (...
Build Active Architecture Only No
Supported Platforms. iphoneos ipho...
Valid Architectures armv6 armv7
¥ Build Locations.
Build Products Path build
Intermediate Build Files Path build
¥ Per-configuration Build Products Path <Multiple valu
Debug build/Debug-i
Release build/Release- [build/F
¥ Per-configuration Intermediate Build Fi... <Multiple valu <Multi{
Debug build/settings. build/s
Release build/settings.. build/s
Precompiled Headers Cache Path Jvar/folders/jp. | /var/fd
¥ Build Options. —
Build Variants normal [normal
Debug Information Format DWARF with DWARF
Enable OpenMP Support No [No:
Generate Profiling Code No No: |
Precompiled Header Uses Files From B... Yes [ves :
Run Static Analyzer No No :
Scan All Source Files for Includes No [No :
¥ Validate Built Product <Multiple v... : [<Multiple v... § No :
Debug No No: o
Release Yes Yes &] No :
e inai
Y Yl
© ©.
+ o™) Add Target Add Build Setti

OEBPS/images/9781118007594-fg1707_fmt.jpeg
+

oRE (&

UnitTestTests.m
UnitTestTests

Created by Richard Wentk on 24/03/2011.
Copyright 2011 Skydancer Media Ltd. ALl rights reserved.

#import "UnitTestTests.h"
#import "MathMachine.h"
@implementation UnitTestTests
- (void)setUp
. [super setUpl;

/1 Set-up code here.

- (void)tearDown
// Tear-down code here.

[super tearDown];

- (void)testMathMachineSum
{
* ine = [ine alloc] initWi :kA and:kB];

STAssertTrue(SUMAB ==
@"Sum incorrect. Expected %i, got %i",
kExpectedSum, testMathMachine.sumAB);

[testMathMachine releasel;

@end

OEBPS/images/9781118007594-fg1612_fmt.jpeg
200 (0) Lm Memonyteak ia]

Allocations

(000

[— — — — — — — — IR
EH Statistics ¢) Object Summary

Malloc 128.00 KB
" Allo a MemoryLeakAppDelegate
O All Objects Created NSAutoreleasePool
© Created & Still Living NSBundle
NSCFTimer
NSCe
Separate by Category NSCountedSet
Separate by Thread NSFileManager
O Invert Call Tree NSKeyValueMethodGetter
Hide Missing Symbols NSKeyValueMethodSetter
ide System Libraries NSLock
how Obj-C Only NSNotificationCenter

CJ Flatten Recursion

Symbol) (_Library) (Restore

IDDDDODDODDUODIODDOODDDODDD[@

NSPlaceholderMutable. ..
NSPlaceholderNumber
NSPlaceholderstring
NSPlaceholderValue
NSProcessinfo

SBSAccelerometer
UlApplication
UlCachedDeviceWhite...
UlDevice

Live Bytes | #Transitory ~ Overall Bytes #Overall # Allocations (Net / Overall) [
128.00 KB 1 0 128.00 KB 1 r
16 Bytes 1 0 16 Bytes 1 |

32 Bytes 1 [32 Bytes 1
144 Bytes 3 0 144 Bytes 3 |
16 Bytes 1 0 16 Bytes X
96 Bytes 3 0 96 Bytes 3 |
16 Bytes 1 [16 Bytes 1
16 Bytes 3 0 16 Bytes 1 [
96 Bytes 2 o 96 Bytes z
96 Bytes 2 0 96 Bytes 2 \
320 Bytes 5 0 320 Bytes H
64 Bytes 1 0 64 Bytes 1 |
1 6 Bytes 1
7 0 7 7 |
16 Bytes 1 0 16 Bytes 1
16 Bytes 1 0 16 Bytes 1
16 Bytes 1 0 16 Bytes 1
16 Bytes 1 0 16 Bytes 1
32 Bytes 1 0 32 Bytes 1
480 Bytes 6 0 480 Bytes 6 |
48 Bytes 1 0 48 Bytes 1
128 Bytes z 0 128 Bytes 2 |
64 Bytes 1 0 64 Bytes 1
80 Bytes 1 0 80 Bytes i 9
32 Bytes 2 0 32 Bytes 2 s
16 Bytes 1 [] 16 Bytes 1 v
P

OEBPS/images/9781118007594-fg0603_fmt.jpeg
g iOS 4.1 Library

»[l Audio & Video

» [l Cocoa Touch Layer

»|i)| core OS Layer

»[core Services Layer

»[l3)] Data Management

» [General

»[@ Graphics & Animation

» [Mathematical Computation
»)l Media Layer

»|)f Tools & Languages
») User Experience

» g i0S 4.2 Library
» g iPhone OS 4.0 Library
» i# Mac OS X 10.6 Core Library

» i# Xcode 4.0 Developer Tools Library

Next

ABNewPersonViewControllerDelegate Protocol
Reference

Conforms to NSObject

Framework /System/L v/ / I.
Availability Available in iOS 2.0 and later.

Declared in ABNewPersonViewController.h

Related sample code QuickContacts

Overview

The ABNewPersonViewControllerDelegate protocol declares the interface that
ABNewPersonViewController delegates must implement.

Tasks

Responding to User Events

— newPersonViewController:didCompleteWithNewPerson: required method

Instance Methods

NS «

newPersonViewController:didCompleteWithNewPerson:

OEBPS/images/9781118007594-fg1618_fmt.jpeg
Extended Detail

%

Leaks Discovered

et Leaks EH Leaked Blocks $)mmum =
v Snapshots Leaked Object = # Address Size i Frame |

@ Automatic Snapshotting “YNSObject 1. < multiple > 256 Bytes timerDo]
Snapshot Interval (sed) 10,0 | NSObject 0x802ec10 16 Bytes timerDo]
Stats: idle NSObject 0x802ec00 16 Bytes | Memoryleak | -[MemoryLeakAppDelegate timerDol
NSObject 0x802bd70 16 Bytes timerDo]
NSObject ~ 0x802bd60 16 Bytes timerDo]
O ——— NSObject 0x802bd50 16 Bytes i timerDo)]
O Gather Leaked Memory Contents NSObject 0x802bd40 16 Bytes i timerDo]
v Grouping NSObject 02 16 Bytes I timerDo]
O Individual Leaks NSObject 0x802b9d0 16 Bytes MemoryLeak ~[MemoryLeakAppDelegate timerDo]
© Identical Backtraces NSObject 0x802b9c0 16 Bytes timerDo]
v Call Tree NSObject 0x802b9b0 16 Bytes MemorylLeak -lMemolvt:lkAppDeleglle timerDo]
O Separate by Thread ~ NSObject 0x802b9a0 16 Bytes timerDo]
O Invert Call Tree NSObject 0x802b990 16 Bytes MemorylLeak »lMumM.ukAppDelegam timerDo]
{ Hide Missing Symbols NSObject 0x4b28820 16 Bytes timerDo]
() Hide System Libraries NSObject 0x4b26130 16 Bytes MemorylLeak -lMtnvaelkAppDelegilz timerDo]
Show Obj-C Only NSObject 0x4b1b870 16 Bytes timerDo]
CJ Flatten Recursion NSObject 0x4b16340 16 Bytes MemorylLeak ~[MemoryLeakAppDelegate timerDo]

v Stack Trace

1 [aatioc

$#—Q

libSystem.B.dylib

OEBPS/images/9781118007594-fg1701_fmt.jpeg
Product Name | UnitTest

Company Identifier | skydancermedia.com
Bundle Identifier skydancermedia.com.UnitTest

) Use Core Data
™ Include Unit Tests

OEBPS/images/9781118007594-fg1312_fmt.jpeg
ShareKit
Creation Date: 25 February 2011 01:45 W
Version: Unspecified =TT

Identifier: com.zettaboom.uSha m

(Q- Name)

Status

OEBPS/images/9781118007594-fg1116_fmt.jpeg
& Movies
1 TV Shows

Info Apps Music Movies TVShows Podcasts iTunesU Books Photos

iPhone

F) Podaasts Q|

7 iTunes U
1) Books

(&) Apps 17)

" Radio
STORE
() iTunes Store
$Q Ping
=] Purchased
=] Purchased on iPhone

DEVICES

Name: iPhone
Capacity: 14 GB
Software Version: 4.2.1
Identifier QUDID): e7e6254d29ed6234783ab19ee64601385f4eedc6
Phone Number: 07930 555555

Version

Your iPhone software is up to date. iTunes will automatically check for

SHARED
£} Home Sharing

GENIUS
% Genius

PLAYLISTS
2 iTunes D)

£k 90's Music

£ Classical Music
4k Music Videos
%k My Top Rated
4¥ Recently Added
4k Recently Played
4k Top 25 Most Played
=] Front Row Playlist
=] untitled playlist

t

SLo LIS L an update again on 08/02/2011.

If you are experiencing problems with your iPhone, you can restore its
Restore original settings by clicking Restore.

Options

(L] Open iTunes when this iPhone is connected

[CJ Sync only checked songs and videos
[Prefer standard definition videos

Capacity

e Audio Video Photos Apps Books Other Free

0.16 GB 050 GB 013 GB 021GB 0.02GB 0.30GB 128GB

OEBPS/images/arrow.jpg

OEBPS/images/9781118007594-fg1205_fmt.jpeg
i O

Build IB: Succeeded | Yesterday at 23:20 = IE"E' O H'El @

No Issues.

Summary Info | BuildSettings | Build Phases Build Rules

[easic BTN Levels Q-)
Setting B =
v Build Options
¥ Validate Built Product <Multiple values> §

Debug No &

Release Yes
v Compiler Version
¥ C/C++ Compiler Version

Debug Gccaz:

Release Gccaz:

Installation Directory
¥ Strip Debug Symbols During Copy

/Users/Main/Applications

<Multiple values> §

Debug No ¢
Release Yes
Strip Linked Product No
Targeted Device Family iPhone $
v Packaging
Info.plist File 1B-Info.plist
Product Name 18
Wrapper Extension app
¥ Search Paths
Always Search User Paths No
¥ GCC 4.2 - Code Generation
Generate Position-Dependent Code No ;
¥ GCC 4.2 - Language
Precompile Prefix Header Yes :
Prefix Header 1B-Prefix.pch
¥ GCC 4.2 - Warnings
Inhibit All Warnings Yes : vy
¥ User-Defined £

Add Target

‘Add Build Settis

OEBPS/images/9781118007594-fgb306_fmt.jpeg
000 B x4

(=]
@ @ x4 (iPhone Simulato... & e = LI O [iis]
+

< » | [x4) No Selection

PROJECT Info | Build Settings |
v Glsses B A Levels @)
[h] x4AppDelegate.h TARGETS — [Bxa B
m x4AppDelegate.m Aexa Y Architectures, a
|h| xaViewController.h Architectures Standard (armv6 armv?) ;
|m x4ViewController.m Base SDK i0S Device 4.1 &
» (L] Other Sources ' Build Options
v (] Resources Validate Built Product No &
| help2.png ¥ Code Signing
E’ x4-Info.plist Code Signing W S BEV GO S0 I
| InfoPlist.strings v Compiler Version Jd cccaz
| MainWindow.xib C/C++ Compiler Version
| 7 xaviewController.xib v | LLVM compiler 2.0 E
» (] Frameworks Installation Directory
» [Products Strip Linked Product Otherz:
Targeted Device Family iPhone 4
ios Target 05413
¥ Linking
Dead Code Stripping Yes
Prebinding No:
¥ Packaging
Info.plist File
Product Name
¥ Interface Builder XIB Compiler - Options \J
Overriding Plug-In and Framework Dir...
¥ LLVM GCC 4.2 - Cod: i
Compile for Thumb Yes ¢
Optimization Level
Debug configuration & None [-00]
Release configuration § Fastest, Smallest [-Os] $
¥ LLVM GCC 4.2 - Language ~
C Language Dialect GNU99 [-std=gnu99) :
+| o@B@) Add Target Add Build Setting

OEBPS/images/9781118007594-fg1401_fmt.jpeg
¥ DEVICES Shared Folder
& gris Date Modified Kind
) Macintosh HD ¥ [l usha 28 September 2010 23:35 Folder
El iDisk @ o0 15 September 2010 00:50 Folder
Jd Mac 05 X Install DVD (L 0.1 - basic interface 26 August 2010 22:19 Folder
! Etc (i 0.2 - sharing (abandoned email) 26 August 2010 22:19 Folder
& Developer (& 0.3 - sharing 26 August 2010 22:19 Folder
[0.4 - slimmed down 27 August 2010 21:25 Folder
[0.5 - emai bug 28 August 2010 16:54 Folder
(i 0.6 - wallpaper 29 August 2010 06:15 Folder
(& 0.7 - sliding wallpaper 30 August 2010 03:26 Folder
(& 0.8 - flip view 30 August 2010 23:42 Folder
(& 0.9 - tidying up 9 September 2010 01:02 Folder
(2 1.0 - last few bugs 9 September 2010 01:02 Folder
[1.1 - really last few bugs 14 September 2010 14:43 Folder
{3 1.2 - universal for 3.1.3 23 September 2010 16:28 Folder
& 1.3 - universal - ...fixes and additions 29 September 2010 21:24 Folder
&3 At 29 September 2010 00:40 Folder
(& Art copy 15 September 2010 00:35 Folder
uToomi CarPin 23 September 2010 22:15 Folder
(2 0.5 - first version 8 June 2010 23:53 Folder
(L 0.6 - improved interface 23 September 2010 03:20 Folder
(21 0.7 - further improvements 25 September 2010 01:29 Folder
(2 Graphics 24 September 2010 03:57 Folder

¥ PLACES
@ch1z
Developer
4} Main
[} Documents
(@i Pictures
B Movies
J3 Music

7\ Applications

¥ SEARCH FOR
(L) Today
() Yesterday

(-) Past Week
All Images
All Movies

YYVYYBYYYYYYVYYVYYYYYVYVYY

|| Developer » (] Xcode4 + (] Applications » @ Xcode.app

. . lof97selected, 473.1GBavailabe gz

OEBPS/images/9781118007594-fgb211_fmt.jpeg
Welcome to Xcode 4

No Issues.

FETCH REQUESTS

CONFIGURATIONS
@ Default ™

(7] MyCoreDataP... xcdatamodeld

OEBPS/images/9781118007594-fg0101_fmt.jpeg
x4AppDelegate.m
x4

Created by Richard Wentk on 18/09/2010.
Copyright (c) 2010 Skydancer Media Ltd.
A\l rights reserved.

#import “x4AppDelegate.h"

#import “x4ViewController.h"

@inplementation x4AppDelegate

@synthesize window;

@synthesize viewController;

- (BOOL)application: (UIApplication %)
application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions {

// Override point for customization after
application launch.

[window addSubview:viewController.view];

[window makeKeyAndVisiblel;
return YES;

- (void)applicationWillTerninate:
(UIApplication *)application {
NSLog(@"Quitting");

- (void)dealloc {
[window releasel;

[viewController releasel;
[super deallocl;

@end

| , Counterparts) | " x4AppDelegate.h) No Selection

17
// xA4AppDelegate.h
x4

// Created by Richard Wentk on 18/09/2010.

// Copyright (c) 2010 Skydancer Media Ltd.
A\l rights reserved.

1"

#import <UIKit/UIKit.h>

@class x4ViewController;

@interface x4AppDelegate : NSObject <
UIApplicationDelegate> {

UIWindow *window;
x4ViewController *viewController;

@property (nonatomic, retain) IBOutlet
UIWindow *window;

@property (nonatomic, retain) IBOutlet
x4ViewController *viewController;

@end

OEBPS/images/9781118007594-fg0302_fmt.jpeg
® Xcode m Edit View Navigate Editor Product Window Help 30 3 C A ™ = ¢ & 5= Sunl8:54 Q
8606 New Tab e =
o~ = . w " - New Window
\}/ [T Add Files to “Tango".. X #A : - 2]]| 'jm ‘E‘

= Open.. %0 New File 8N
1 TangV () o Recent > New Target. =
Open Quickly.. 080 New Project. Ex L ango view | « . »\ D E B » & ©
New Workspace ~EN View
Close Window ®rW Show [F R 0 D]
(] Classes New Group XN (st L.
TangoAPR Cose “TangoViewController.xib” ~sew New Group from Selection 3 . X
TangoApR (yoce Project n 2 -
TangoView 320 (7 480 3]
TangoViey gave 5) Width Height
TangoViey ¢ As 038s Origin
TangoView o
R evert--.
TangoTok
L jOther Source g1,y in Finder
(| Resources
Autosizing
:‘::;:/1?:; Save As Workspace... Arrange | Position View E
BT Project Settings...
d ‘:'K";”"“ Source Control
‘oundatio| -
(& CoreGrapl Create Snapshot... 8S
(] Products Page Setup...
Print...
+ | OREQ]

OEBPS/images/9781118007594-fg0213_fmt.jpeg
(<] > (== (o] @ J

¥ DEVICES
& Eris
£l iDisk
] Mac OS X Install DVD
[Etc

¥ Developer

¥ PLACES
ﬁ Developer
(@) Pictures
Desktop
8 Main
[} Documents
Movies
n Music
ﬁ Applications
¥ SEARCH FOR
(L) Today
(L) Yesterday
(L) Past Week
All Images
All Movies
(] All Documents

Shared Folder

(+ Beta
(1 + Projects

' (23] Developer

(] Documentation
(2 Provisioning
(& Xcode4

| [l Developer » [] + STORE

(] + Abandoned
(1 + APl info

(] + Common Art
(] + PR contacts
(1 BClockFor3
(] CheatSheet
(] Dummy

[ExifMap

(] Facebook SDK
(. Glyphish Icons
(1] GPS stripper
(L GravBall

(] Grid Runner
(4 Hu

(1 Locator

(1] Marketing

(1] QuoteADay - 1.0 FINAL
(] Reminderator
(1 Sharekit.0.2.0
(] Synthesizer
(3 Tango

£ Temp

(] uSha

(1] uToomi CarPin
(1] uToomiPro

OEBPS/images/9781118007594-fg1011_fmt.jpeg
LIBRARY

A, Developer Profile
(] Provisioning Profiles
‘24 Software Images

. Device Logs
% Screenshots
DEVICES

iPod

"B Y emn

. Device Logs
% Screenshots
iPhone
4.1(88117)

_ Device Logs
% Screenshots

Application Name)

Name

Bundle ID
Executable Version
Min OS Version

Name

Bundle ID
Executable Version
Min OS Version

Name

Bundle ID
Executable Version
Min OS Version

Name

Bundle ID
Executable Version
Min OS Version

Name

Bundle ID
Executable Version
Min OS Version

Name

Bundle ID
Executable Version
Min OS Version

Name

Bundle ID
Executable Version
Min OS Version

Name
Bundle ID

Car Finder
com.yourcompany.Car-Finder
1.0

a1

Hu
com.yourcompany.Hu
1.0
4.0

Locater
com.yourcompany.Locater
Lo

313

Tango
com.yourcompany.Tango
L0

313

WinNumbers
‘com.yourcompany.WinNumbers
10

4.0

ZettaClock
‘com.yourcompany.zettaclock
Lo

3.13

fonts
skydancermedia.com.fonts
L0
4.2

com. uSha

OEBPS/images/9781118007594-tb1502.jpg
Table 15.2 Variable View Reference Options and Macros

n Shows the variable name

v Value

t Type

S Summary

%apath.to.avalue% Dot syntax key pathforapath.to.avalue
SVAR Variable value

3D Variable identifier

SPARENT Structure or object containing the variable

OEBPS/images/9781118007594-fg1106_fmt.jpeg
Certificates - iOS Provisioning Portal - Apple Developer

¢ P(Q~ Google

(4 Developer

Technologies Resources Programs Support Member Center Q Search Developer
ioS Provnsmning Portal Welcome, Richard Wentk | Edit Profile | Log out
P Portal : Media Go to i0S Dev Center
Home
m Development Distribution History How To
Devices .
Current Development Certificates
App IDs
Provisioning [=] Your Certificate
Distribution
Name ~ Provisioning Profiles Expiration Date Status Action
[E] Richard Wentk

Pending Issuance

*If you do not have the WWDR intermediate certificate installed, click here to download now.
AL Team Signing Requests (1)

Signing Requests Active Certificates

O Name - Email Status. Date Submitted

Jan 30, 2011

Richard Wentk richard@wentk.com Pending Issuance

Mave Selected Reject Selected

a
v

OEBPS/images/9781118007594-fg1608_fmt.jpeg
Allocation Lifespan
O All Objects Created
® Created & Still Living
O Cre: Destroyed
v Call Tree

Ewme by Category
() Separate by Thread
O Invert Call Tree
 Hide Missing Symbols
(O Hide System Libraries
) Show Obj-C Only

CJ Flatten Recursion

) CFArray (store-deque)

| LiveBytes | #Living #Transitory = Overall Bytes | #Overallw|# Allocations (Net / Overall)
12.92K8 322 707 44.98 KB 1020 B
14.64K8 198 546 232.55K8 744 1

OEBPS/images/9781118007594-fg1519_fmt.jpeg
g BreakpointTest

CETD oy auene

7
// BreakpointTest

// Created by Richard Wentk on 26/12/2010.
/1 Copyright 2010 Skydancer Media Ltd. All rights reserved.
1"

#import “BreakpointTestAppDelegate.h”

eimpl

g
@synthesize window;

- (void)appli (NSNotification *)aNotification {
// Insert code here to initialize your application

for (int i = 0; i <10; i++) {
NSLog(@"Count: %i", i);

19, Count: 1

W 2 & % | .BreakpointTest

OEBPS/images/WileyTitlePageLogo_fmt.jpeg
%)

ViLEY
Wiley Publishing Inc

OEBPS/images/9781118007594-fg0715_fmt.jpeg
// Created by Richard Wentk on 23/
11/2010.

// Copyright 2010 Skydancer Media
Ltd. ALl rights reserved.

1"

#import <UIKit/U!

@in

@end

IBViewController.h
18

Class | UlButton oM

terface IBViewController :
[14%

Label | Xcode Specific Label

XBWwlesuww

obeaw| 9

Lock [Inherited - (Nothing) 4

Notes (] Show With Selection

<p

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when...

~— Segmented Control - Displays
1 | 2 | mutiple segments, each of which

functions as a discrete button.

/) Text Field - Displays editable text
Text and sends an action message to a

target object when Return is tapped.

ider - Displays a continuous range |+
values and allows the selection of

OEBPS/images/9781118007594-fg0804_fmt.jpeg
1B
'Bm.gq,msnku

Build IB: Failed | 25/11/2010 at 03:20

No Issues

Choose a template for your new file:

ios mw OF) 0
| 1BAppDelegate.m Cand C++ {uwe e Specific Label
|| IBviewController. (e) ST
| 1BViewController. e Dea UlViewController Objective-C Objective-C protocol it g
» (5 Other Sources by subclass NSObject category t
v [Resources. Code Signing
|| 1B-Info.plist | Other
| InfoPlist.strings. =
" MainWindow.xib T
|| IBViewController. Cocoa Objective-C test
» (] Frameworks Cand C++ case class
» [Products User Interface NSObject
Core Data UlTableViewCell
Resource Subclass
Other
‘]* Objective-C class
(obic]
An Objective-C class which is a subclass of UIView, with a header that includes the <UIKit/
UlKit.h> header.
(Crreioss) (e
+| oREQ)3 |

Q

OEBPS/images/9781118007594-fg0111_fmt.jpeg
| | TangoToken.h
| TangoToken.m
» (] Other Sources
v (] Resources

|| Tango-Info.plist
v (] Frameworks
» (] uikit.framework
» (] Foundation.framework
» (L] CoreGraphics.framework
» (] Products

+ | OREQ

TangoViewController.h
7/ Tango

// Created by Richard Wentk on 28/04/2010.

// Copyright Skydancer Media 2010. All rights reserved.
#import <UIKit/UIKit.h>

#import “TangoView.h"

@interface TangoViewController : UIViewController {

TangoView *thisTangoView;
1BOutlet UISegmentedControl #segment;

@property (nonatomic, retain) IBOutlet TangoView *
thisTangoView;

@end

2 FileName TangoViewControllerh |
File Type [Default - C Header Source |41
tocton sesmeroooe______19)
./ (]

Full Path /Volumes/Developer/+ STORE/
Tango/0.1 - finger circle/Classes/ ©
TangoViewController.h

No Localization

b

¥ Target Membership
) gh Tango No Role

¥ Text Settings

=
Line Endings |_Unspecified (Mac OS X / Unix (LF))

B —
[— ﬁ@

il'npln:s
»_Source Control

D0 & = |
[l Fite Template Library ™ (=8

= Application - An Intertace Builder document |
. suitable for creating an iPhone/iPod Touch k.
application, including an application...

I
v

Nz

OEBPS/images/9781118007594-fg0206_fmt.jpeg
‘om/programs/mac/

Mac Developer Program

The Mac Developer Program offers a range of technical resources and
i with Mac OS X.

support for d pers and IT professional

S99 year

d

®)

Development Team

You can add developers within your company or organization to your Mac Developer Program Team when
you enroll as a company. Learn More »

Mac OS X Pre-Release Software
Access pre-release versions of the latest
software for development and compatibility
testing. Learn more »

Apple Developer Forums
Discuss development topics with Mac
developers and Apple engineers.
Learn more »

apple developer

Development Videos

Watch Apple engineers deliver the latest
on Mac OS X through iTunes.

Learn more »

Technical Support

Receive practical, insightful code-level
on almost any

topic. Learn more »

a
v

OEBPS/images/9781118007594-fg0407_fmt.jpeg
a4l

@interface NSDictionary (NSDictionaryCreation)

(id
(id
(id
(id
(id
(id

(id
(id

(id
(id
(id

[

[

@end

b
Build myCleverApp: Succeeded | Today at 19:54

(id)dictionaryWithContentsOfFil
(id)dictionaryWithContentsOfURL: (NSURL *)url;
(id)initWithContentsOfFile: (NSString *)path;
(id)initWithContentsOfURL: (NSURL *)url;

dictionary;

dictionaryWithObject:(id)object forKey:(id)key;
dictionaryWithObjects: (id *)objects forKeys:
dictionaryWithObjectsAndKeys: (id) firstObject,
dictionaryWithDictionary: (NSDictionary *)dict
dictionaryWithObjects: (NSArray *)objects forKeys: (NSArray *)keys;

*)keys count: (NSUInteger)ent;
. NS_REQUIRES_NIL_TERMINATION;

initWithObjects: (id *)objects forkeys: (id *)keys count:(NSUInteger)cnt;
:(id)fir » oo NS_REQUIRES_NIL_TERMINATION;
initWithDictionary: (NSDictionary *)otherDictionary;
initWithDictionary:(NSDictionary *)otherDictionary copyItems:(BOOL)flag;
initWithObjects: (NSArray *)objects forKeys:(NSArray *)keys;

(NSString *)path;

Mutable Dictionary

@interface i Yy : ¥

- (void)removeObjectForKey: (id)aKey;
- (void)setObject: (id)anObject forKey: (id)aKey;

@end

@interface Dictionary ictionary)

- (void)addEntriesFromDictionary: (NSDictionary *)otherDictionary;
- (void)removeAllObjects;

~ (void)removeObjectsForKeys: (NSArray *)keyArray;

- (void)setDictionary: (NSDictionary *)otherDictionary;

@end

@interface Dictionary ionaryCreation)

+ (id)dictionaryWithCapacity: (NSUInteger)numItens;
- (id)initWithCapacity: (NSUInteger)nunItems;

@end

NI

OEBPS/images/9781118007594-fg0318_fmt.jpeg
(E/‘. (l) WindowBased | iP.

WindowBased.xcodeproj

mn o A

0
(] WindowBased
h| WindowBasedAppDelegate.h
m) WindowBasedAppDelegate.m
(] iPhone
h| WindowBasedAppDelegate_iPhone.h
m WindowBasedAppDelegate_iPhone.m
MainWindow_iPhone.xib
(]iPad
h| WindowBasedAppDelegate_iPad.h
m| WindowBasedAppDelegate_iPad.m
MainWindow_iPad.xib
(1] Supporting Files
(] Frameworks
(] Products

No Issues

™ windowBased

PROJECT Summary |

8 WindowBased i0S Application Tl

TARGETS
Identi

Ver:
Oey
Deployment Ta

iPhone / iPod O

Main Interf

Supported Devig

App lcons

Launch Images

= 12:07 AM

©

Add Target

& % | windowBased

My Universal App on iPhone

OEBPS/images/9781118007594-fg0425_fmt.jpeg
PROJECT

|| myCleverApp

Choose

Finished running myCleverApp

5 myCleverApp

and libraries to add:

@l

)

hnu | Build Rules

TARGETS

myCleverApp

» Compile Sources (3 items)

(] Device - i0S 4.1
&% Accelerate.framework

| v Link i ib (€]

(1 UIKit.framework

€% AssetsLibrary.framework

[~

ol

» Copy Bundle Resources (3 if

| bundlel.o

(Add Other...)

= CFNetwork

= CoreAudio.framework

= CoreData.framework

&% CoreFoundation.framework
&% CoreGraphics.framework
= CoreLocation.framework
= CoreMedia.framework

e e

<> ¢

(cancel) |

5)

%]
Required 5
Required 5
Required §

Add Target

OEBPS/images/9781118007594-fg1001_fmt.jpeg
Capacity 15.03 GB
Model iPhone 4
Serial Number 830274TDA4S
ECID 2169329495374
Identifier
Software Version 4.1 (88117)

This device is not currently connected.

Add to Portal Remove

OEBPS/images/9781118007594-fg0730_fmt.jpeg
@

CHANGE IT

7
7/ Created by Richard Wentk on 23/11/2010.

7/ Copyright 2018 Skydancer Media Ltd. ALl rights reserved.
1"

#import “IBViewViewController.h"
@implementation IBViewViewController

) @synthesize thelabel;

- (void)dealloc
[theLabel release];
[super deallocl;
- (void)didReceiveMemoryWarning
// Releases the view if it doesn't have a superview.
[super didReceiveMemoryWarningl;

#pragma mark - View lifecycle

/%

1 Inﬂlmeﬂl viewDidLoad to do additional setup after loading
view, typically from a nib.

= (vo“)viMidLond

[super viewDidLoad];
t
- (void)viewDidUnload
[self setTheLabel:nil
[super viewDidUnload];

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;

- (BOOL)shoul
(UIInter'faceUrxentat).on)lnterfuceﬂrlentah.nn

// Return YES for supported orientations
return (interfaceOrientation ==
UIInterfaceOrientationPortrait);

NI 4

OEBPS/images/9781118007594-fgb204_fmt.jpeg
(73 plist - plist.xcodeproj

Welcome to Xcode 4

PROJECT
5 plist

[h) plistAppDelegate.h| TaRGETS
m| plistappDelegate.m
 MainWindow.xib
[h! plistvie...ntroller.h
Im| plistvie...troller.m
 plistVie...roller.xib
(] Supporting Files
[} plist-Info.plist
| InfoPlist.strings
[h| plist-Prefix.pch
{m] main.m
» (] Frameworks
(] Products

| Summary | Info Build Settings Build Phases Build Rules
ios Target
Identifier | skydancermedia.com.plist |

Version 1.0

Devices | iPhone =)
App runs on i0S | 4.2 1) and above

v _iPhone / iPod Info

Main Interface MainWindow

Supported Device Orientations
Portrait
App Icons.
No No
image image

| specified specified

Retina Display

Launch Images

« >

e
+ 0O0RG O

Add Target

OEBPS/images/9781118007594-fg1424_fmt.jpeg
LocalGit
htps://RichardWentk.

LocalGit

Location https://Ri i ocalGit.git
Type Git

Username | RichardWentk]

Password | sssses.

=]

(3] refs/heads/Branch0.01

refs/heads/master

e

OEBPS/images/9781118007594-fg0320_fmt.jpeg
¥ DEVICES
188 Eris
£l ipisk
[l Mac 05 X Install DVD
i Erc
2 Developer
¥ SHARED
[Euterpe
¥ PLACES
@cns
Developer
& Main
(@) Pictures
[Movies
J3 Music
/A Applications
¥ SEARCH FOR
(L) Today
(L) Yesterday
(L) Past Week
All Images
(3] All Movies
All Documents

Shared Folder

¥ @ iPhoneOS.platform
¥ [Developer
» (] Documentation
¥ @ Library
» [Instruments
» [PrivateFrameworks
¥ @ Xcode
» (1] File Templates
» [Plug-ins
¥ [Project Templates
¥ @ Application
¥ [Navigation-based Application
¥ @ Navigation-based Application
__PROJECTNAME__.xcodeproj
[h| __PROJECTNAMEASIDENTIFIER___Prefix.pch
__PROJECTNAMEASIDENTIFIER__-Info.plist
¥ @ Classes
h| __PROJEC DENTIFIER h
__PROJECTNAMEASIDENTIFIER__AppDelegate.m
1| RootViewController.h
RootViewController.m
E} main.m
| MainWindow.xib
_ RootViewController.xib
» [Navigation-based Core Data Application
|| TemplateChooser.plist
» [OpenGL ES Application
» [Split View-based Application
» (L1 Tab Bar Application
>
>

(2 utility Application
(1] View-based Application

Date Modified
Yesterday, 22:17
Yesterday, 22:17
Yesterday, 22:

19 April 2010 19:36
Yesterday, 22:17

5 August 2010 07:42
S August 2010 05:49,
Yesterday, 22:17

9 September 2010 16|
9 September 2010 1
Yesterday, 22:17
Yesterday, 22:
Yesterday, 22:18
Today, 14:45
Yesterday, 22:18

S August 2010 05:50}
5 August 2010 05:50)
Yesterday, 22:18

5 August 2010 05:50
S August 2010 05:50}
5 August 2010 05:50)
Yesterday, 22:18

5 August 2010 05:50
S August 2010 05:50
S August 2010 05:50
9 September 2010 17
S August 2010 05:50
9 September 2010 17,
9 September 2010 17
9 September 2010 17
9 September 2010 17
9 September 2010 17

Yain

[l Developer » G +] » G » G » G3 » G0+ G2 ~ .~ G2 » [Navigation-based Application » [___PROJECTNAME__.xcodeproj

OEBPS/images/9781118007594-fg1516_fmt.jpeg
o000

_| BreakpointTest

@ @ | BreakpointTest (L... + n

Running BreakpointTest

Project @1

= [alE=)

| BreakpointTestAppDelegate.m

I

| <« » | [est) (| Classes) | | m) @ hing:
@synthesize window;
- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {
// Insert code here to initialize your application
for (int i = 0; i <10; i++) {
NSLog(@"Count: %i", i);
}
@end
E 1> 2 & 2 | .BreakpointTest) ¥f Thread 1) [0
Auto ¢ Q All Output + C
» [aNotification = (NSC: *) 0x332fd0 Not.. 2010-12-27 01:53:49.362 BreakpointTest[9578:80f] Count: 6
Chi=a =] Watchpoint 2 for expression *(int %) 3221219708, was triggered in
m Print Description i thread 1. The old value was 6, and the new value was
v I self - 11470 2010-12-27 01:53:52.668 BreakpointTest[9578:80f] Count: 7
PNSON , Enable Data Formatters Watchpoint 2 for expression *(int %) 3221219700, was triggered in
» wi thread 1. The old value was 7, and the new value was 8.
v Show Types 010 01:53:58.114 Breakpoi 9578:80f] Count: 8
Watchpoint 2 for expression *(int *) 3221219700, was triggered in
Edit Value... thread 1. The old value was 8, and the new value was 9.
Edit Summary Format... (wib)
Add Expression...
Delete Expression
Watch Address of "i"
View Memory of "i"
Debug Area Help >
—_—
y/

OEBPS/images/9781118007594-tb1202a.jpg
Table 12.2 Run Process Diagnostics Options

Setting Notes

Memory management

options
Enable Scribble Fill memory with 0<AA on allocation and 0x55 on release.
Enable Guard Edges Add guard pages before and after large allocations to prevent corruption from small overruns.

Enable Guard Malloc Usethe 1 ibgmal 1 oc library to monitor and report common memory errors.

OEBPS/images/9781118007594-fg0616_fmt.jpeg
| « | » | [+ [[nttp://developer.apple.com/library/mac/search/?q=nsmakepoint [

@& Developer g Support Member Center (@ seuh beope)
Search Results
Trsmakepoit D)
o= ios 2 Mac 133 safari 0
General Guides Reference Sample Code
(No results) Cocoa Drawing Guide Foundation Functions Reference HID Config Save
Paths PlayView.m
N ~ QA1531: Drawing attributed
Addvanoed Threiing Teckalquies strings that are both filled and CompositeLab
Scroll View Programming Guide stroked CompositeView.m
for Cocoa Cla:
Scrolling the Document View o bl i
Animation Types and Timing SpeedyCategories.m
Programming Guide SpeedometerView
Property-Based Animations PR
Rulers and Paragraph Styles SpeedyCategories.m
Using a Ruler Views Client WebKitPluginWithJavascript
A Tour of Xcode SpeedometerView.m
Xcode Workflow Tutorial SpeedyCategories.m
Speech DockTile
Recognizing Speech SpeedometerView/SpeedometerV...
e amialiig Colda SpeedometerView/SpeedyCatego...
Creating a Custom View Dicey
DCDie.m

NSBezierPath- RoundedRect.m

OEBPS/images/9781118007594-fg0705_fmt.jpeg
Ooe e

+| OAG (@

OEBPS/images/9781118007594-fg1513_fmt.jpeg
@A 8y Queue

_Thread 1
¥ ¥ com.apple.main-thread
1 0 -[BreakpointTestAppDele.
Il

1 20 main

1 Thread 2
ccom.apple.libdispatch-man...

» ¥ Thread 5

Running BreakpointTest

@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {

/7 Insert code here to initialize your application

for (int i = 0; i <10; i++) {
NSLog(@"Count: %i", i);

& 2 | .BreakpointTest) ¥ Thread 1) [0

Q

All Output 7

_cmd = (SEL) 0x931ef502 applicationDidFinishLaunching
» [aNotification = (NSConcreteNotification *) 0x332f...
Mi=(n4
» [self = @BreakpointTestAppDelegate *) 0x321d70

GNU gdb 6.3.50-20850815 (Apple version gdb-1511) (Mon Nov 1

07:29:41 UTC 2010

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License,

and you are

welcome to change it and/or distribute copies of it under certain

tomﬁ(ions.

Type “show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"

for details.

This GDB was configured as "i386-apple-darwin".tty /dev/ttys00e

sharedlibrary apply-load-rules all

[Switching to process 9578]

12-26 23:29:51.062 BreakpointTest[9578
67

A\

OEBPS/images/9781118007594-fg1602_fmt.jpeg
Extended Detail

 Description
Category: CFBasicHash (key-store)
Type: Malloc
Pointer: 0x400760
Retain Count: 1
Size: 16

istForBu...

in.

()| CFBasicHashAddValue
. ") CrDictionaryAddValue
Rl
— |0 _crainaryPlistCreateObject2
=08 (FBmaryﬂm(ruIeOh]mZ
ubnry g Caller [_CFroyearsesinary
00x 9“: s "V': -""a— o _CFPropertyListCreateWithData
>kt S5 v Rl stac CFPropertyListCreateWithStream
O All Objects Created 2 0x102380 . dyld _dyld_start
CFPropertyListCreateFromStream
© Created & Still Living 310108020 - -{CPXPreferencesPropertyListSource .
O Created & Destroyed 410x10br20 .
P 5 0x10c3a0 . -[C istSource
6 . -[CI istSource sy..
() Separate by Catego:
e oy Caoeaoty 7 0x4008d0 . 0 _c
1) Separate by Thread e 00920
O Invert Call Tree b Kot - 0 c
 Hide Missing Symbols YT = 0
O] Hide System Libraries -) +INsuserDefaults(NSUserDefaults) s...
O Show Obj-C Only 1110x400860 - I +INsapplication initialize]
B o Rt e 12 0x400e60 00:01.227 . Pol
= 13 0x400eb0 00:01.227 . [—class iniialize
— 14 0x400f00 00:01.227 . ol
P 15 0x400b0 00:01.227 . (o]
- 16 0x401000 00:01.227 . 5] _class_lookupMethodAndLoadCache
17 0x401050 00:01.227 . Y obic_msasend
18 0x4010d0 00:01.227 . I san
19 0x401120 00:01.227 .
20 0x4011a0 00:01.227 .
21 0x4011f0 00:01.227 .
22 0x401270 00:01.227 .
- 23 0x4012c0 00:01.227 .
Symbol)) (ibeary, Restore 24 0x401340 00:01.227 5
25 0x401390 00:01.228 .
26 Nx401410 nn01.228 .

OEBPS/images/9781118007594-fg0305_fmt.jpeg
Loading

< ») (= m)

C LU=)

@+X4

¥ DEVICES

Mac 05 X Install DVD

[e

[Developer
¥ SHARED

(=) 192.168.0.6
¥ PLACES

] +AR

(2] Developer

A Desktop

£} Main

[} Documents

(8] Pictures

[Movies

J3 Music

7\ Applications

Shared Folder

> A2
» (1] AdHocTest
> [App
» (1] AppTest
» (1] BreakpointTest
» (] BuildSettings
» [Debugtest
> @
> [l fonts
> helloagain
> s
» [1B Custom View
» (i 1B Lanuage
» [18 refactored
» ([1B UllmageView
» [LocalGit
» (1] MacCoreData
» [MacUnitTest
» (i3 meh

Date Modified
18/01/2011
26/02/2011
25/11/2010
18/01/2011
18/01/2011
28/02/2011
26/12/2010
11/01/2011
24/11/2010
16/03/2011
29/11/2010
13/02/2011
29/11/2010
29/11/2010
29/11/2010
04/01/2011
12/01/2011
28/12/2010
01/03/2011

Source Control: [_| Create local git repository for this project
Xcode will place your project under version control

OEBPS/images/9781118007594-fg0308_fmt.jpeg
(m)
) \./ myCoolNewApp |

myCoolNewApp.xcodeproj
n QA » 8
0
(L] myCoolNewApp
h) myCoolNewAppAppDelegate.h
m) myCoolNewAppAppDelegate.m
MainWindow.xib
myCoolNewAppViewController.h
myCoolNewAppViewController.m
myCoolNewAppViewController.xib
(] Supporting Files
myCoolNewApp-Info.plist
InfoPlist.strings
h| myCoolNewApp-~Prefix.pch
m main.m
(] Frameworks
&= UIKit.framework
= Foundation.framework
= CoreGraphics.framework
(] Products
9B myCoolNewApp.app

™ myCoolNewApp - myCoolNewApp.xcodeproj

Running myCoolNewApp on iPhone Simulatog

™1 myCoolNewApp

PROJECT Summary Info Build Setting|
[myCoolNe...| i0S Application Target

=

10:29 PM

TARGETS 1
A Identifier = skydancermedia.com.f{

Version 1.0
Devices | iPhone

Deployment Target
iPhone / iPod Deployment Info

Main Interface ' MainWindow

Supported Device Orientations

Portrait

App lcons

Launch Images

©

Add Target

myCoolNewApp

OEBPS/images/9781118007594-fg0613_fmt.jpeg
http://devimages.apple.com/llvm /videos /StateOfClang.mov

& | [Q~ apple developer

State of Clang

Doug Gregor
Chris Lattner
Ted Kremenek

October 2, 2009

& P woo o 23220 4) Ry

OEBPS/images/9781118007594-fg1605_fmt.jpeg
Instrument Det:

Choose Target:
.Execunhlu |) - ey
Eris 16.52 KB TWXI=Xr-X
- 17.58K8 Main WXP-XT-X
Favorites
Volumes
(o
= |
WO=="" pgemss
y Recents
) Automatic
Snapshot
Status: K¢
—
@ Display lal
OTrack ins | Environment Variable Value
® Coalesce DYLD_FRAMEWORK_PATH
O Show Full
() Readable ' Arguments
) writable
) Executabl
[+] | [Options =| # View All [Traverse Packages
Bl | Process |/O L |
¥ Instruments Console
Svsem Conol (o) (@)
Discard y
T Target Architecture T
¥ 32-Bit
64-Bit ‘
T —————————————" |
C b) L IS

OEBPS/images/9781118007594-fg1103_fmt.jpeg
Certificate Assistant

Certificate Information

Enter information for the certificate you are requesting.
Click Continue to request a certificate from the CA.

User Email Address: |y i il.com 2]

Common Name: Your Registered Developer Name

CA Email Address: [[Ieave this blank]

Request is: () Emailed to the CA
@® saved to disk
E Let me specify key pair information

Continue

OEBPS/images/9781118007594-fg0702_fmt.jpeg
UIWindow

UlViewController .view
SWAP
View swap operation links
in the new view after it has UlView
been loaded from the nib.

new UlViewController

MainWindow.xib

newViewController.xib

LOAD

(Created in code, loads the view
from the newViewController.xib file)

OEBPS/images/9781118007594-fg1014_fmt.jpeg
myCleverApp

myCleverApp

Creation Date: 21 November 2010 21:02
Version:

myCleverAj

myCleverApp 21 November 2010 21:01

OEBPS/images/9781118007594-fg1411_fmt.jpeg
LocalGitAppDelegate.m
LocalGit

Created by Richard Wentk on 04/01/2011.
Copyright 2011 Skydancer Media Ltd. All
rights reserved.

#inport “LocalGitAppDelegate.h"
@inplementation LocalGitAppDelegate
@synthesize window;

- (void)applicationDidFinish

(NSNotification *)aNotification {
/7 TInsert code here to initialize your

aunching:

application

(5 Local Revision
() 04/01/2011 Richard Wentk 40635c7a7c9e (BASE, HEAD)
(©) 04/01/2011 Richard Wentk 8211e1786440

() 04/01/2011 Richard Wentk 90608b614cca

v © 04/01/2(31 Richard Wentk faa5b77c734f

LocalGitAppDelegate.m
LocalGit

Created by Richard Wentk on 04/01/2011.

Copyright 2011 Skydancer Media Ltd. All

rights reserved.

#import “LocalGitAppDelegate.h"

@inplementation LocalGitAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:

(NSNotification *)aNotification {

// Insert code here to initialize your
application

// This is a comment added to illustrate
how edits appear in the Version Editor

// This is a second comment
// This is a third comment

@end

OEBPS/images/9781118007594-fg0718_fmt.jpeg
v - ;onn:;q i0S SDK 4.2
v (]iPhone
|| MainWindow_iPhone.xib
[h| fontsAppDelegate_iPhone.h
Im| fontsAppDelegate_iPhone.m
v []iPad
| MainWindow_iPad.xib
h| fontsAppDelegate_iPad.h
|m| fontsAppDelegate_iPad.m
» [Classes
» (] Other Sources
» (] Resources
» (] Frameworks
» (] Products

+| o@pE Q@) |03

American Typewriter

Arial

Arial Rounded Bold

Cochin

Courier

Courier New

Futura

Heiti SC

Finished runnin,

\g fonts

Helvetica

Marker Felt
Palatino

Times New Roman
Trebuchet MS

Verdana

Vel

Orientation |_Portrait
Status Bar

Top Bar | None

Bottom Bar | None

¥ Window

Window () Visible at Launch
™ Full Screen at Launch

s
Alpha 1.00 %)
droms [E————19)
Tag ofd
Drawing () Opaque (] Hidden
() Clears Graphics Context
(O Clip Subviews
™ Autoresize Subviews

swrewching | 0.00/() [0.00/f3) ¢
X v
——a——al
—
(o e

Label - A variably sized int of
Label static text. s .

v View

Round Rect Button - Intercepts

(touch events and sends an action
| WS message to a target object when...
s s
v| 7 Segmented Control - Displays v
“(al0) each of which

OEBPS/images/9781118007594-fg0807_fmt.jpeg
via
IBAppDelegate.h
IBAppDelegate.m
|| IBViewController.h
| IBViewController.m
| IBView.h
| 1BView.m

| 1B-Info.plist
| InfoPlist.strings
| MainWindow.xib

+| ®

Running 1B on iPhone Simulator

,,,,, MKMapView

b UlActionSheet
UlActivityindicatorView v
Object ID | UlAlert v

Lock
Notes

R P Label - A variably sized amount of
Label saic ext.

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when...

e - Segmented Control - Displays
1 | 2 | mutiple segments, each of which
functions as a discrete button.

() Text Field - Displays editable text
Text and sends an action message to a
target object when Return is tapped.

= Slider - Displays a continuous range
@ ™ of values and allows the selection of
asingle value.

P o

| @) Switch - Displays an element
Q)

n

N

OEBPS/images/9781118007594-fg1322_fmt.jpeg
o206

0

h mycoolapp - mycoolapp.xcodeproj

@ @ 7“"“”'”;" My . :‘ EJ Finished running mycoolapp = Z‘ ‘

No Issues
‘mycoolapp.xcodeproj Jr -
| % ©@ A = » @ [m| <« » | Fmycoolapp
mycoolapp passopsieng PROJECT Summary Info | BuildSettings | Build Phases Build Rules
 iceipng 53 mycoolapp sasic @D | CEIIED Levels [a-
(-] mycoolapp TARGETS T oot e ——
|h| mycoolappAppDelegate.h mycoolapp ¥ Build Options
@_ TjooispPAPROS sate o Build Variants normal
= M"""‘"“"‘r": ¥ Debug Information Format <Multiple values> 3
- -n::pomng iles o s
i Release DWARF with dSYM File ¢
» (] Products
Enable OpenMP Support Not
Generate Profiling Code Nos
Precompiled Header Uses Files From B... Yes :
Run Static Analyzer No:
Scan Al Source Files for Includes Not
Validate Built Product No:
¥ Code Signing

Don't Code Sign —
Code Signing Entitlements

1 Code Signing Identity v 3rd Party Mac Developer Application: Skydancer Media

Code Signing Resource Rules Path iPhone Developer: Richard Wentk (CX5P8IN63C)
Other Code Signing Flags iPhone Distribution: Skydancer Media
v Compiler Version a o e
C/C++ Compiler Version
v
Additional Strip Flags
Alternate Install Group Main
Alternate Install Owner Main
Alternate Install Permissions. u+w,go-w,a+rX
Alternate Permissions Files
Combine High Resolution Artwork No 3
Deployment Location No i
Deployment Postprocessing No & .
Install Group Main)
Install Owner Main

+ oma® Add Target Add Build Setting

OEBPS/images/9781118007594-fg0203_fmt.jpeg
0006 |« |»

S ¢ A TNO

Featured Top Charts Categories Purchased Updates

(Y —
(Q xcode

(2 o -]

Xcode

Xcode 4 provides everything developers need to create great applications for Mac, iPhone,
and iPad. Xcode 4 is also available to members of the Mac and iOS Developer Programs
from the Apple Developer website.

Xcode 4 has been streamlined to help you write better apps. It has unified user interface
design, coding, testing, and debugging all within a single window. The Xcode IDE analyzes
the details of your project to identify mistakes in both syntax and logic, it can even help fix
your code for you.

More

new Xcode projet

Open | 2 Shomw this mindow when Xeode launches

Apple® W >
Xcode Support >
App License Agreement >

Information

Category: Developer Tools
Released: 09 March 2011
Version: 4.0

Size: 4.24 GB

Language: English
Developer: Apple Inc.

© 2011 Apple Inc.

Rated 4+

Requirements:
Mac 05 X 10.6.6 or later

More Apps by Apple®

Pages
Productivity
Aperture
Photograph

g Keynote
- uctivit

(‘ Numbers 23
Productivity

OEBPS/images/9781118007594-tb0201.jpg
Table 2.1 Apple Developer Prog

Layer Cost Comments
Mac Developer $99/year This program Includes the current production SDK and future seed releases
Program—Individual of 0S X for a solo developer. Registration typically takes 1 to 2 weeks. With

this program, you can sell Mac apps through the Mac App Store. It does not
give you access to the iPhone App Store.

Mac Developer $99/year This program includes the current production SDK and future seed releases

Program—~Company of 0S X for one or more developers working as a team for a corporation or
small business. Proof of incorporation must be faxed to Apple during
sign-up. Registration may take a few weeks. With this program, you can sell
Mac apps through the Mac App Store. It does not give you access to the

iPhone App Store.
iPhone Developer $99/year This program includes the current production SDK and future seed releases
Program—Individual of the iPhone SDK for a solo developer. It includes access to the App Store. It

allows local and remote beta testing on the Simulator and up to 100 devices.
Registration typically takes 1to 2 weeks. With this program, you can sell i0S
apps through the i0S App Store It does not include access to 0S X seed builds
(preview versions of 0S X) or to the Mac App Store.

iPhone Developer $99/year This program includes the features above, but is intended for small

Program—~Company companies and corporations. It supports team management features that
canallow or deny access to the program for individual developers. Proof of
incorporation must be faxed to Apple during sign-up. Registration may take
afew weeks. With this program, you can sell i0S apps through the i0S App
Store This program does not include access to 0S X seed builds (preview
versions of 0S X) or to the Mac App Store.

iPhone Developer $299/year This program is for corporations developing in-house apps for their

Enterprise Program employees. Apps must be distributed internally and cannot be sold through
the App Store. It requires a Dun & Bradstreet number, which isan
international business identification number that is made available only to
larger businesses. It includes access to future versions of the SDK and i0S.

iPhone Developer Free This program is for accredited degree-granting academic institutions. It

University Program allows testing on hardware devices and the Simulator, and it includes access
to the current SDK, but not to forthcoming beta versions. It does not include
access to the App Store, in-house distribution, or Apple’s technical support.

OEBPS/images/9781118007594-fgb201_fmt.jpeg
+

oRE (©

Bundle display name
Executable file

Icon file

Bundle identifier
InfoDictionary version
Bundle name

Bundle OS Type code

Bundle versions string, short
Bundle creator OS Type code
Bundle version

requires iPhone
Main nib file base name
v Supported interface orientations
Item 0
ftem 1
Item 2
Item 3

String
String
String
String
String
String
String
String
String
Boolean
String

String
String
String
String

Value

en
S{PRODUCT_NAME}
S{EXECUTABLE_NAME}

com.${PRODUCT_NAM
6.0
${PRODUCT_NAME}
APPL
1.0
m
1.0
YES
MainWindow
(4 items)
Landscape (right home button)
Portrait (bottom home button)
Landscape (left home button)
Landscape (right home button)

OEBPS/images/9781118007594-fg0422_fmt.jpeg
o000

® (®) mcieverasp on... &) (=

myCleverAppAppDelegate.m

| myCleverApp

Build myCleverApp: Succeeded | Yesterday at 21:26

No Issues.

T @ A =E =» 8

» | | | myCleverApp) [_|Classes) | | myC

m @

v [m rApp
L 1 target, i0S Device SDK 4.1

v (] Classes

|| myCleverAppAppDelegate.h
e

myCleverAppViewController.h
myCleverAppViewController.m
v (] Other Sources

|| myCleverApp_Prefix.pch

| main.m
v [] Resources

| | myCleverApp-Info.plist

| InfoPlist.strings.

// myCleverApp

// Copyright (c)

@synthesize window;

@synthesize viewController;

| MainWindow.xib
| | myCleverAppViewController.xib
5 myCt .ler.xib (English)
v (] Frameworks

» [UiKit. framework
» (1] Foundation.framework
» (1] CoreGraphics.framework

v (] Products
myCleverApp.app
—
+| o@E Q@

[window addSubview:vi
[window makeKeyAndVis

return YES;

- (void)applicationWillTert

// Save data if approp,

- (void)dealloc {
[window releasel;

[viewController releasi
{super deallocl;

@end

// myCleverAppAppDelegate.m

// Created by Richard Wentk on 17/10/2010.
0 Skydancer Media Ltd. All rights reserved.
#import “myCleverAppAppDelegate. h"

#import “myCleverAppViewController.h"

@inplementation myCleverAppAppDelegate

Cut

Copy
Paste

Show Message Bubble
Show Fix-It

Structure
Refactor

Reveal in Project Navigator

Reveal in Symbol Navigator

Speech
Source Editor Help

- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)
¢ ions {

// Override point for customization after application launch.

on {

Balance Delimiter

Re-Indent

Shift Right %]
Shift Left £
Move Line Up N[
Move Line Down 3]
Comment Selection 38/

OEBPS/images/9781118007594-fg0114_fmt.jpeg
o000

1 hello (=)
—_— Running hell =
®» @ hello (Local Mac (32... | = | "::"g :: Elr[=) @Ea) (=)
ect
MainMenu.xib +
QA= = B < > | [Yhelio) (| > [mai xib) [} xib (English)) =/ Window - hello) B View |44»
By Type ® © hello File Edit Format View Window Help
hello
Y Jissues |7 File's owner o
» || helloAppDelegate.m @ First Responder
oA Application

(@ Shared User Defaults Con...

v (&= Window - hello
v (B2 View

HELILO!

HELLO!

N>
Vi

OEBPS/images/9781118007594-fg1630_fmt.jpeg
Profile ‘automation’.

‘Choose Trace Template or Existing Document:

‘ i0S Simulator o
]
———— 1
Memory
Le)
File System
2 e

@& M
All
. Document @
Open

Blank Allocations, Activity Monitor

Recent Zombies Time Profiler Automation Threads

5 Automation

This template executes a script which simulates Ul interaction for an iOS application
launched from Instruments.

Camee) o)

OEBPS/images/9781118007594-fg0719_fmt.jpeg
ERS) (OS] (=)

» | ,) |hBViewCo...) NoSelection B| 0O B @B |W|

1/ v Label m

// 1BViewController.h

;/ 13 Text | This is off

/

// Created by Richard Wentk on 23/n..
11/2010. =

// Copyright 2010 Skydancer Media Line Breaks | Truncate Tail :

i Ltd. All rights reserved. m"_.

#import <UIKit/UIKit.h> Lines | 1@

0.6 8 oo = Font | Helvetica 24.0 @
’Q il =2 Min Font Size 10

D — LT

Text Color Default
o —
Sk
snuwmfm @ 2|3

Vertical

l_JL_J_,

m@m

v View
N
mmf—mm&
I——

Text View - Displays multiple lines
of editable text and sends an action
message t0 a target object

Web View - Displays embedded
‘web content and enables content
navigatior
{5555 Map View - Displays mapsand |
oIl Q ot

OEBPS/images/9781118007594-fg0817_fmt.jpeg
bk
Build 1B: Succeeded | Yesterday at 00:17

No Issues.

PROJECT | info | Build Settings
s 1B

TARGETS Targets in this project run on i0S 4.2 B and above
1B
X
Name Based on Configuration File
» Debug No Configurations Set
» Release No Configurations Set
| 1B-Info.plist S Kl
| InfoPlist.strings. ‘Command-line builds use
| | MainWindow.xib
|| 1BViewController.xib L
Language Resources
English 3 Files Localized

» &% Foundation.framework

-

Duplicate English to:
Afrikaans
Afrikaans—Namibia
Afrikaans—South Africa
Albanian
Albanian—Albania
Amharic
Amharic—Ethiopia
Arabic
Arabic—Algeria
Arabic—Bahrain
Arabic—Egypt
Arabic—Iraq
Arabic—Jordan
Arabic—Kuwait
Arabic—Lebanon
+| OAG (@) Add Target A

OEBPS/images/9781118007594-fg0104_fmt.jpeg
- l“)inhﬂiﬂ“m NSStr.ing *)nibNameOrNil bundle.(lls undle -t)nﬂllundleﬂmﬂ. {
if ((self = [super un {
// Custom innhhnu«m

}
return self;
*/
/o
/ Implement loadView to create a view hierarchy programmatically, without using a nib.
; (void) loadView {

*/

/%
7/ Inplement viewDidLoad to do additional setup after loading the view, typically from a nib.
- (void)viewDidLoad {

[super viewbidLoad];

*/

II Mrrlde to allow orientations other than the default portrait orientation.
- :(UIInterfaceOrientation)interfaceOrientation {

II Mturﬂ YES for supported orientations
return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
*/
- (void)didReceiveMemoryWarning {
// Releases the view if it doesn't have a superview.
[super didReceiveMemoryWarning];

// Release any cached data, images, etc that aren't in use.

// Release any retained subviews of the main view.
77 e.g. self.myOutlet = nil;

(void)dealloc {
[super deallocl;

eend

= ===

OEBPS/images/9781118007594-fg1202_fmt.jpeg
0606 {5 Untitled - P3.xcodeproj ="
” / " il 2 eded 2
° o b1 M Mac 32-bit. n Build P1: Succes | Today at 05:14

No Issues

< ») (= m) (G@+Xxe) Q

¥ DEVICES Shared Folder
Eris e N1 ——ts| Date Modified
=} Macintosh HD > A2 18/01/2011
B ibisk » [Aop 25/11/2010
[l Developer a » [AppTest 18/01/2011
+ cnane » [BreakpointTest 18/01/2011
[192.168.0.5 - : = :b"g““ iz;;i;igﬁ
¥ I;ACES » [fonts 24/11/2010
ch12 > Gas 29/11/2010
(] Developer » [l IB Custom View 13/02/2011
[Desktop » [IB Lanuage 29/11/2010
4 Main » ([18 refactored 29/11/2010
B - s Unmageve A — 291172010
&l Pictures » [LocalGit e 04/01/2011
[Movies » [MacCoreData {88 Supporting Files 12/01/2011
e 3 e o
A it » (] MemoryLeak2 [Other Frameworks 17;0112011
¥ SEARCH FOR » [MemoryLeak3 (23 Products 17/01/2011
L} oday » G Myappstorepry 1 P2 13/02/2011
() Yesterday » (] MyCoreDataPr @r2 27/01/2011
(L Past Week s » [myiPadProject [Supporting Files 14/02/2011 &
(& Al images. | » [MyMacProject (] Frameworks L Todav. 00:23 7
(1] Other Frameworks
(] Products T
Source Contro| Be I
=121 I
Groug (1] Supporting Files

| (] Frameworks
(] Other Frameworks

£ Products (Cancel) (Create)

OEBPS/images/9781118007594-fg1104_fmt.jpeg
Certificate Assistant

Key Pair Information

Specify the key size and algorithm used to create your key
pair.

The key pair is made up of your private and public keys. The
private key is the secret part of the key pair and should be

kept secret. The public key is made publicly available as part
of the digital certificate.

Key Size:

Algorithm: | RSA B

(Learn More...)

Continue

OEBPS/images/9781118007594-fg0202_fmt.jpeg
@ Photoshop File Edit Image Layer Select Filter Analysis 3D View Window Help [= <) Wed 20:37 Q
B v wxv | W Q & | By H~ ESSENTIALS ¥
1 ol | [EIRITIE] | Feather[oox Stvle: (Nomal 13

O . viewcontrolleraib NAVIGATOR |JINEG)

Mm@ A = » B w | < Ball » [|Resources BallViewController.xib Ball View

N 00

SRNEFNS

D>x—e2cOQ

Ll

<,

p

-
&

+| 0

et, i0S Simulator SDK 4.1
sses
her Sources

M O O [emailbig.png @ 100% (Layer 0, RGB/8)

Ball_Prefix.pch
main.m
lsources
ball.png
icon.png

MainWindow.xib
Ball-Info.plist
meworks

ducts

@EQ

e

a

Doc: 265.4K/353.9K

Add an adjustment
ol |17+
SV |G

S /4R PN

ADJUSTMENTS | IMASKS =

L

»

Levels Presets

Curves Presets

Exposure Presets

Hue/Saturation Presets

Black & White Presets

Channel Mixer Presets

viv[v[v[v[¥][¥

Selective Color Presets

(L]

LAYERS | CHANNELS | PATHS

OEBPS/images/9781118007594-fg0109_fmt.jpeg
Tango
vy 1 target, iOS Device SDK 4.1

| | TangoToken.h
| | TangoToken.m
» [Other Sources
v (] Resources
| TangoViewController.xib
| MainWindow.xib
|| Tango-Info.plist
v (] Frameworks
» (] UIKit.framework
» (] Foundation.framework
» (L] CoreGraphics.framework
» (] Products

+ | OREQ)

Welcome to Xcode 4
-»
Project (L8

wi | <4 » | [[) | TangoAppDe...) No Selection | 4 i P

1

// TangoAppDelegate.m

/7 Tango

1"

// Created by Richard Wentk on 28/04/2010.
// Copyright Skydancer Media 2010. All rights
reserved.

#import “TangoAppDelegate. h"
#inport "TangoViewController.h"

ation T: gat

@synthesize window;
@synthesize viewController;

- (B0OL)application: (UIApplication *)
application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions {
[[UTApplication sharedApplication]

Hidden:YES

: NOJ;

1" 0verr{de point for customization after
app

[window addSubview:viewController.view];

[window makeKeyAndVisiblel;

return YES;

- (void)dealloc {
[viewController releasel;
[window release];

[super dealloc];

[Manual 0] L =
., Counterparts »

Subclasses

9 Sbinss 10, Apple Inc. All

, Categories

!
§ Includes o imaihe
, Included By
thodSignature,
" T NSEnumerator;
@class Protocol;
Basic protocols

[k R id

koK
@protocol NSObject ‘

- (BOOL)isEqual:(id)object;
- (NSUInteger)hash;

(Class)superclass;
(Class)class;
(id)self;

(NSZone *)zone;

(id)performSelector: (SEL)aSelector;

(id)performSelector: (SEL)aSelector
withObject: (id)object;

(id)performSelector: (SEL)uSelector
withObject: (id)objectl withObject: (id)
object2;

- (BOOL)isProxy;

- (BOOL)isKind0fClass: (Class)aClass;

- (BOOL) isMember0fClass: (Class)aClass;

- (BOOL)conformsToProtocol: (Protocol *)
aProtocol;

- (B0OL) respond:

: (SEL) H
(id)retain;

(oneway void)release;

(id)autorelease;

(NSUInteger) retainCount;

- (NSString *)description;

@end

NI 4

OEBPS/images/9781118007594-fg1006_fmt.jpeg
LIBRARY Q- Application
A, Developer Profile Incident Identifier: E320D515-12BA-4C5C-B6E2-ACABIAFFETDA
[] Provisioning Profiles MobileSafari 19/11/2010 15:41 CroshReporter Key: baB@7fadbcbf 3a9cA4cB897cT 2915721 76008420
4 Software Images MobileSafari 11/11/2010 08:54 ::g:‘s’;"’ tiodel: usm‘?g;‘]ﬂ'i
MobileSafari 10/11/2010 17:13 Path: /var /mobi le/App L icat ions/D2061240-482F -406B-B6AB-C4ABDAF TED4A/
Screenshots MobileSafari 23/10/2010 16:39 i opniiig
DEVICES Identifier: usha
== MobileSafari 04/10/2010 13:40 version: 777 (777
-8 4.1 (88117) uSha 29/09/2010 01:29 Code Type: ARM (Native)
B v ning Pret i 22:01 Parent. Process: launchd [1]
es
are "
4 Applications e o ﬁ;; Date/Tine: 2010-19-87 18:33:56.127 +8100
i Console : 05 Version: iPhone 05 4.1 (8B117)
. Device Logs 2010 1614 Report Version: 184
$ A MobileSafari 15/09/2010 05:14
o usha 14/09/2010 02:10 Exception Type: EXC_BAD_ACCESS (SIGSEGV)
iPhone uSha 14/09/2010 01:43 Exception Codes: KERN_INVALID_ADDRESS at Bx3f500085
4.1 (88117) usha 14/09/2010 01:42 Croshed Thread: 8
Dibaslied usha 08/09/2010 01:18
screenshots uSha 08/09/2010 01:15 Thread 9 Erashed:
e . 8 libobjc.A.dylib xBBBBZ7dB objc_nsgSend + 16
+0 ' s OS] 00/ GO 1 UKKit 8xPB15e7eD - [UlTextView setText:] + 184
4.2.1 (8C148) usha 08/09/2010 00:13 2 usha BxPPAZb3be Px1068 + 172988
. Device Logs usha 08/09/2010 00:10 3 Foundation xBBAL46ac _nsnote_cal Lback + 136
Screenshots uSha 06/09/2010 23:10 4 CoreFoundation 8xBBBZE70C __CFXNotificationPost_old + 396
T 06/09/2010 23:09 5 CoreFoundation _CFXNot if icati ification + 112
" 6 Foundation xBBBB3AbD — [NSNotif icationCenter
e Rl JEL i:ig posthot if icationane object :userInfo:] + 64
i 7 UIKit 8xBBBaf9cE - [UIInputVieuTransition
usha 28/08/2010 23:07 postNotif icationsForTransitionStart] + 648
usha 28/08/2010 20:09 8 Uit 6xBBBaf 4de - [UIPeripheralHost (UIKitInternal)
usha 28/08/2010 12:33 executeTransition:] + 538
usha 28/08/2010 04:19 9 UIKit xBBB48f6e - [UIPeripheralHost (UIKitInternal)
i 28/08/2010 04:03 setInputVieus ianinationStyle:] + 142)
usha 03:47 16 UIKit —[UIPer itInternal)
: setInp 1+ 34
usha 28/08/2010 03:43 i1 Dwit _{utpert itInternal)
uSha 126 setInp 1]+ 10
usha 28/08/2010 03:23 12 UKKit xBBB47706 - [UIPeripheralHost (UIKitInternal)
uSha 03:20 e BRI
usha 28/08/2010 02:46 || 13 UIKit xBBB4F36 - [UIResponder L
usha 108/ 2124 & - R 1+58 o a
oy n 27/08/20002100 |3 1% UIKit 6xBBB4691D - [UIResponder resignFirstResponder] +

OEBPS/images/9781118007594-fg0112_fmt.jpeg
TangoViewController.h
7/ Tango

// Created by Richard Wentk on 28/04/2010.

#import <UIKit/UIKit.h>
#import “TangoView.h"

@interface TangoViewController : UIViewController {

TangoView *thisTangoView;
IBOutlet UISegmentedControl #segment;

@property (nonatomic, retain) IBOutlet TangoView *
thisTangoView;

eend

// Copyright Skydancer Media 2010. All rights reserved.
1" 5

Objective-C dealloc Method
All Platforms

- (void)dealloc {
deallocations
[super deallocl;

= = = 0 =

& File Name ‘TangoViewController.h]
File Type Default - C Header Source 2]

Code Snippet Library

@ ‘Objective-C init Method

@ ‘Objective-C Fast Enumeration
O e

OEBPS/images/9781118007594-fg0812_fmt.jpeg
006 [J18 =

& Running IB on iPhone Simulator
1B (iPhone Simulat... . [=] Z

Project @1

— < ») (2= m] [Developer
¥ L 1 target, i0s SD}
v (5 Classes ¥ DEVICES Shared Folder
[18AppDelegat L Eris reme .
| IBAppDelegat -\ Macintosh HD & 5l2.png 16/09/2010
0 ﬁmm’ El ipisk [% Default.png 31/08/2010
L1 o [l Mac 05 X Install DVD = It
o hm“ms ¥ = i Default.psd 31/08/2010
el -
i Glass panel.psd 26/08/2010
e ¥ help.png 15/09/2010
192.168.0.5 a *| home.png 01/09/2010
¥ Icon.png 02/09/2010
» (] Frameworks V PLACES ¥ info.png 30/08/2010
» (] Products @ Xcode.app @ iPad.png 16/09/2010
a > iTunes images 16/09/2010 a
Gicns e 109/ .
(] Developer v [¥ legal.png 15/09/2010 v
Destination [Copy items into destination group's folder (if needed)
Folders () Create groups for any added folders
(O Create folder references for any added folders. E £l
Add to targets ¥ oA 1B
tton - Intercepts
sends an action
‘get object when...
introl - Displays
D o
_//screte button. .

e Ol 3y s | Text Field - Displays editabe text

.
+| o@pE Q@ [T 2| AB Q -

OEBPS/images/9781118007594-fg1112_fmt.jpeg
K. Yok ADD 0O visioning Portal -
!II, nimp:lId!veloper.apple.(om/Ins/manage/bundlzs/add.amon ¢

Portal : Sk Media Go to i0S Dev Center
‘Home
Certificates Manage | How To
Devices
ECam. e
Distribution

Enter a common name or description of your App ID using alphanumeric characters. The description you specify will be used
throughout the Provisioning Portal to identify this App ID.

[This is a unique app You cannot use special characters as @, & *, " in your description.
Bundle Seed ID (App ID Prefix)

Generate a new or select an existing Bundle Seed ID for your App ID.

If you are creating a suite of applications that will share the same Keychain access, use the same bundle Seed ID for each of your
application's App IDs.

Bundle Identifier (App ID Suffix)

Enter a unique identifier for your App ID. The recommended practice is to use a reverse-domain name style string for the Bundle
Identifier portion of the App ID.

|lunlqueName ’ Example: com.domainname.appname

e

OEBPS/images/9781118007594-fg1403_fmt.jpeg
'~ SnapshotExample

[+ Gittub
Yesterday 22:50 Location /+ X4 xcodeproj ©
m UnitTest Status Open
30 December 2010 23:
Derived Data ~/Li i ©
& Derived Data includes index, build output and logs
28 December 2010 19:54
" °
9 ';7 e tae Snapshots allow you to save your project state at different points in time
11 27 December 2010 16:58)

0 Debugtest
L 26 December 20102328

Second Today 00:29
£ Now with some changes

- uToomiPro -

- = First Today 00:29
20 December 2010 15:33

The initial state of the project

1B
1313 pecember 2010 18:25

1B
ﬁ 13 December 2010 15:44

0 MyFirstMacApp
29 November 20102331

1B
E} 29 November 2010 01:12

1B
& 29 November 2010 01:11

E] fonts.
24 November 2010 01:38
ViewBased

i D galli
o e 00O

. myCleverApp
[0 27 November 201021:38 |

[<T>

0 universal
21 November 2010 21:00
&l @ Restore Snapshot Delete Snapshot

OEBPS/images/9781118007594-fg0207_fmt.jpeg
App and library
Debug configuration

. MyNewUnitTests target
Feature Development
Launch MyApp in the Debugger
« o wid <« P »> » e

43:05 * -9:53

OEBPS/images/9781118007594-fg1207_fmt.jpeg
| Build Phases

PROJECT
(A1 ‘ [a- b
TARGETS (A8 =) [+ 08 Default T
Architectures Standard (armvé armv7) ©
Base SDK Latest iOS (105 4.2) :
Build Active Architecture Only No !
Supported Platforms. iphoneos iphonesimulator
Valid Architectures armvé armv?
¥ Build Locations
Build Products Path build |build]
Intermediate Build Files Path build butd |
¥ Per-configuration Build Products Path <Multiple values> [<Multiple values>
Debug build/Debug-iphoneos build/Debug-iphoneos
Release build/Release-iphoneos |build/Release-iphoneos |
¥ Per-configuration Intermediate Bui... <Multiple values> <Multiple values>
Debug build/1B.build/Debug-ip. build/1B.build/Debug-~iphoneos
Release build/I1B.build/Release-i... build/IB.build/Release-iphoneos
Precompiled Headers Cache Path /var/folders/ip/jpuT00T .. |/var/folders/jp/jpuTOOTAGFSr
¥ Build Opti
Build Variants normal |normal
Debug Information Format DWARF with dSYM File :
» Enable OpenMP Support
Generate Profiling Code No @
Precompiled Header Uses Files Fro... Yes -
Run Static Analyzer No:
Scan All Source Files for Includes No -
¥ Validate Built Product <Multiple values> : <Multiple values> §]
Debug No:
Release Yes : Yes :
luX.Cada Signing s
.|
o .
Add Target Add Build Setting

OEBPS/images/9781118007594-fg0809_fmt.jpeg
vice

m) 1BView.m

| InfoPlist.strings
i
4 IBViewC...oller.xib
» | Settings.bundle
» (] Frameworks
v [Products.
o ThisApp...ong.app

[1B - MainWindow.xib

Archive IB: Succeeded | 25/02/2011 at 01:31

No Issues.

+ 0ORGB S

Loaded from "IBViewController"

View

=
] mj | E
, CICIE)
v Custom Class.
Class | IBAppDelegate =
¥ User Defined Runtime Attributes

Key Path Type Value

=]
¥ Identity
Label 1B App Delegate
XS W wweuwwe

Object ID | 3
Lock [Inherited - (Nothing))
Notes (] Show With Selection

D {1

OEBPS/images/9781118007594-fg1325_fmt.jpeg
v

N

+ 0ORGB®)

) mye AR A e XA A
Finished running mycoolapp
No lssues

i3 b) Bmcooer

PROJECT
1 mycoolapp

TARGETS
mycoolapp

Summary | Info | Build Settings Build Phases Build Rules
¥ Custom Mac OS X Application Target Properties
Key Type Value
Localization native development region String en
Executable file String S{EXECUTABLE_NAME}
Icon file String Icon.png

Bundle identifier
Clients allowed to add and re...
| Cocoa Java application

‘com.mydomain.S{PRODUCT_NAME:rfc1034identil

6.0

S{PRODUCT_NAME}
String APPL
Core Data persistent store type String L0
| Dock Tile plugin path String m
| Document types String i
| Environment variables String Entertainment
| Executable architectures String ${MACOSX_DEPLOYMENT_TARGET}
| Executable file String MainMenu
| Exported Type UTls String NsApplication
» Document Types
» Exported UTIs (0)
» Imported UTIs (0)
» URL Types (0)
» Services (0)

£0

OEBPS/images/9781118007594-fg1521_fmt.jpeg
000

B (=)

® @ (B irhone s

Running IB on iPhone Simulator

roect 01 Ey& EEO (@)

L o :
O A= =) W | 4 » | |IB)[Classes) | IBViewController.m) No Selection |«®» B
By Queue LD P
1 */
7 ¥ com.apple.main-thread
L 0-[IBVi e /7 PO R TR O SO R ST
3 1 -(UViewController view] using a nib.
2 - (void)loadView {
o icati }
0s = */
[15 uApplicationMain
1 16 main
-m > - (void i". o;a(
| = ol [Suspend Thread | l NSLog(@"View") ;
¥ ¥ om apple.libdispatch-manager Suspend Thread q [,.,pgr'vm.,m.,m;
[0 kevent —
2] 5 start_wqthread
= I
v ¥ Thread 3 71 Override to allow orientations other than the default portrait orientation.
B0OL) oInterfaceOri ion: (UIInterfaceOr
E30_worka kernretur interfaceOrientation {
[2 start_wgthread // Return YES for supported orientations
. return (interfaceOrientation == UIInterfaceOrientationPortrait);
v ¥ Thread 4 WebThread } I3
*/
[E1 0 mach_msg_trap |
[E] 8 thread_start = o > % L | AIB) ¥ Thread 1) ~[1BViewController viewDidLoad)]
All Output ¢ (Clear) (IO |00

GNU gdb 6.3.50-20050815 (Apple version gdb-1511) (Mon Nov 1 ©7:29:41 UTC 2010)
Copyright 20804 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “"show copying" to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty" for details.

This GDB was configured as "i386-apple-darwin".sharedlibrary apply-load-rules all
Attaching to process 10677.

Pending breakpoint 2 - ""IBViewController.m":6
Pending breakpoint 3 - “"“IBViewController.m":33'
Current language: auto; currently objective-c
(gdb)

resolved
resolved

OEBPS/images/9781118007594-fg1129_fmt.jpeg
(6] Developer Certificate Utility

uu' ﬂhltps://developev,apple,com/ceniﬁ(axesllndex.action&maccemequest 4

Mac App Signing Certificate Assistant

Submit Certificate Signing Request

The creation of a CSR will prompt Keychain Access to simultaneously generate a public and
private key pair. Your private key is stored on your Mac in the login Keychain by default and
can be viewed in the Keychain Access application under the “Keys" category. Your Mac App
Signing Certificate will be the public half of your key pair.

Select the Certificate Signing request (CSR) file that you saved to your disk.

((Choose File) no file selected

Cancel Go Back Gen

OEBPS/images/9781118007594-fg0722_fmt.jpeg
K X

» |, » |h]IBViewCo...) No Selection | Bl

1"
#imp

eint

@end

1BViewController.h
18

Created by Richard Wentk on 23/
11/2010.

Copyright 2010 Skydancer Media
Ltd. ALl rights reserved.

ort <UIKit/UIKit.h>

erface IBViewController :
UIViewController {

T eq

[
il
H|<

Autosizing Example

Arrange | Position View
Position in Container
Center Horizontally In Container
Center Vertically In Container
Fill Container
Fill Container Horizontally
Fill Container Vertically

I

Align Vertically

Top Edges

Vertical Centers

Baselines

Bottom Edges
Align Horizontally
Left Edges
Horizontal Centers
Right Edges

message to a target object when...
Web View - Displays embedded
‘web content and enables content
navigation.

View - Displays maps and

OEBPS/images/9781118007594-fg0727_fmt.jpeg
K 2

CHANGE IT

T ¢ <>

1"

IBViewController.h
1B

Created by Richard Wentk on 23/11/2010.
Copyright 2010 Skydancer Media Ltd. ALl
rights reserved.

#import <UIKit/UIKit.h>

I interface IBViewController —&IViewController {
} -

R (1§Acti~,} GuttonWasTapped: (id)sﬂM

@end

‘New Referencing Outle Zarection O

(il Ovjects 2

Label Label- Avrth saed amoun of 0

Round Rect Button - Intercepts

touch events and sends an action

message (0 a target object when...
o ey
Q Y

OEBPS/images/9781118007594-fgb215_fmt.jpeg
MyCoreData...xcdatamodel

oRGE O

ENTITIES
Entityl
Entity2

F Heightls50

(@ Configuration
@ Default

Fechall (Entiyl %) objects where:
L) of the following are true.

FETCH REQUESTS

OEBPS/images/mac_crossref_fmt.jpeg

OEBPS/images/9781118007594-fgb207_fmt.jpeg
Property List.plist

[plist - Property List.plist
Welcome to Xcode 4

Elns @ao) (@)

+

mWnoA=m»8

wi | 4 » | Bplist) [plist) []Supporting Files) [l Property List.plist) No Selection

B Y‘r‘:rlgel, 05 SDK 4.2
v plist
[h! plistAppDelegate.h
|m) plistAppDelegate.m
 MainWindow.xib
[h! plistvie...ntroller.h
Im| plistVie...troller.m
 plistVie...roller.xib
(] Supporting Files
B plist-info.plist
| 1 InfoPlist.strings
k| plist-Prefix.pch
m| main.m

Settings.bundle
» (] Frameworks
»{_] Products

——

+ 0O0RG O

Key Type Value

Cut
Copy
Paste

Shift Row Right
Shift Row Left

Value Type
Add Row
Show Raw Keys/Values

Property List Type > Default for File Type

None
Property List Editor Help »

AppleScript Suite
AppleScript Terminology
Example Structure
Example Structure (with full Zodiac defined)
Info.plist
v Interface Builder Class Description
Open Source Property List
Xcode Editor Language Specifications
Xcode Editor Syntax Type Specifications
Xcode Editor Text Macros
Xcode File Types
Xcode Specifications
Xcode Specifications (Generic)
iPhone Entitlements plist
iPhone Settings plist

OEBPS/images/9781118007594-fgb305_fmt.jpeg
L <[>} [+]6 ntp:/rciang.vm.org/ [rece 1 CH

LLVM Home -
clang: a C language family frontend for LLVM
About The goal of the Clang project is to create a new C, C++, Objective C and Objective C++ front-end for the LLVM
Features compiler. You can get and build the source today.
Comparisons
User's Manual
n mpatibili Features and Goals
Language Extensions
C++ Status Some of the goals for the project include the following:
[Clang Development | End-User Features:
Get Started X
Cot s « Fast compiles and low memory use
* Expressive diagnostics (examples)
el « GCC compatibility
ility ane lications:

« Modular library based architecture

« Support diverse clients (refactoring, static analysis, code generation, etc)
* Allow tight integration with IDEs

* Use the LLVM 'BSD' License

:l 5 R = Internal Design and Implementation:
« A real-world, production quality compiler
Check Out SVN « A simple and hackable code base
Browse SVN * Asingle unified parser for C, Objective C, C++, and Objective C++
Browse ViewVC

« Conformance with C/C++/ObjC and their variants

— Of course this is only a rough outline of the goals and features of Clang. To get a true sense of what it is all about, see
the Features section, which breaks each of these down and explains them in more detail.

Spec. References
s WAl D

N

OEBPS/images/9781118007594-fg1506_fmt.jpeg
») (M) |IB (iPhone Simulat... 3

O A= w8

L. =

Running IB on iPhone Simulator -
S 1| G) [ug=] (1
Project (11 @1

w o« > | [kl y 948D-4F43-A91C.) No el |<«@» 8

By Queue

Thread 1
‘com.apple.main-thread

B 12 _forwarding_prep_ o

M3

Options:

14 i ¢
[26 uiApplicationMain
27 main

| Thread 2
¥ om.apple.libdispatch-manager
» ¥ Thread 3

» ¥ Thread 4 WebThread

0x94a0d16c <+0000> mov SBXCBIZS %Eax
0x9420d171 <+0005> call 0x949ac3d8 <_sysenter_trap>
D 0x9420d176 <+0010> jae 0x94a0d186 <__kill+26>< Thread 1: Program received signa: SIG...
0x94a0d178 <+0012> call @x94a0d17d <_kill+17>
0x94a0d17d <+0017> pop Sedx
0x94a0d17e <+0018> mov @xbcBI767 (%edx) , sedx
0x9420d184 <+0024> jmp edx
0x94a0d186 <+0026> ret

E > 2 & & | AB) ¥Thread1l) [|0 _kill

All Output + (Clear) (0 10 JED
Pending breakpoint 1 - ""IBViewController.n":60" resolved =
2010-12-24 02:17:22.071 IB[3750:207) This message appears when the app loads.
2010-12-24 02:17:22.075 IB[3750:207] -[UIWindow thisWillCrash]: unrecognized
selector sent to instance 8x4d279f@
-1 07] +++ Terninating app due to uncaught exception
thisWillCrash]: unrecognized

st tor sent to instance Ix“z19fl
%% Call stack at first throw:
(

@ CoreFoundation il i + 185
1 libobjc.A.dylib 0x80cbb5c2 objc_exception_throw + 47
2 CoreFoundation oxi 86fb ~[NSObject(NSObject)

8366 ___forwarding__ + 966
7£22 _CF_forwarding_prep_0 + 50

4 l:or.Follndlh.on

5 18 0x000022d1 ~[IBAppDelegate

e SN O S fonss] 4+ 204

6 UIKit 0x000131fa -[UIApplication
_callInitializati :payl] + 1163

7 UIKit 1555¢ -[UIApplication

+ 439

ol
handleEvent:withNewEvent:] + 1533
9 UIKit

yle: :
1fdb2 -[UIApplication

02 ~[UIApplication sendEvent:]

71
10 UIKit _UIApplicati Event +
7576
11 Grlphx:sS.rv:ﬂts lxllllcn!ﬁ PurpleEventCallback + 1550
12 CoreFoundatic

__CFRUNLOOP_IS_(CALLIIC OUT_TO_A_SOURCE1_PERFOI :unn_ + 52
13 CoreFoundation __CFRunLoopDoSourcel + 215
14 CoreFoundation __CFRunLoopRun + 979

>l

B = O

15 C i CFRunlL ific + 208

OEBPS/images/9781118007594-fg0506_fmt.jpeg
DI Y=

Animation Test

Welcome to Xcode 4

Cocoa Touch
Cand C++
User Interface

Core Data
Resource
v (L] Resources. Code Signing
imation_Test: Other
| | InfoPlist.strings -
| MainMenu.xib LR

Cocoa
Cand C++
User Interface

Objective-C test
case class

#

Objective-C Objective-C protocol ames/Developer/+
NSObject category icts/_}
Jation Test

LN
h

Proto

«»

Options ¥ Targeted for iPad
) UITableViewController subclass
M With XIB for user interface

|
& UlviewController subclass
e

An Objective-C class which is a subclass of UlViewController, with a header file which includes
the <UIKit/UIKit.h> header. A XIB file containing a view configured for this View Controller is

also included.

-C NSObject category
tive-C category on

e
(Previous
btttk

~C protocol - An
protocol
Z

Objective-C test case class - An
-C class containing an
OCUnit test case with a header

CFile - A C file with a header file

C++ File - A C++ file with a header
file

<

o
A

OEBPS/images/9781118007594-fg0604_fmt.jpeg
8006 LS e

uu + ﬂhps://Inpr.I.cmlllbrv/iolaigaiollex.llenlon

esource¥20Types & | (Q- apple developer [

& Developer

D iOS Reference Library

iOS Developer Libral
Iy, v Resource Types
T Resource types are ies of doc i i for specific content. Some, like release notes, technical
A notes, and Q&As, provide information on complex issues or new features. Others, such as guides and reference
Gl documents, provide in-depth discussions of Apple technologies.
Getting Started
Guides
Reference
o
Release Notes | Documents 1140 of 1140 (@ o)
Sample Code ﬁ
Technical Notes
> | -11+
Technical QeAs MessageComposer Sample Code MessageU 20101 5{
Video
» iPhoneUnitTests Sample Code Tools & Languages 2010-114
~ Topics 1DEs Content Ugf
Audio & Video » Data Management Coding How-To's Coding How- Data Management 2010-11
Mathematical Computation Tox by
Tools & Languages » MVCNetworking Sample Code Networking & Internet 2010-10
Data Management First Versid
el » lcons Sample Code General Uit 2010-10,
Graphics & Animation First Versig
Networking & Internet > WiTap Sample Code Networking & Internet Foundation 2010-104
P formanca Services & Discovery Content Ug
Security » Popovers Sample Code User Experience UIKit 2010-10-
User Experience Windows & Views First Versid
~ Frameworks » aurioTouch Sample Code Audio & Video AudioUnit 2010-10{a
Audio Content Ugt

~ Cocoa Touch v
—_rr————— ..

OEBPS/images/9781118007594-tb1101a.jpg
Table 11.1 Provisioning Elements

Elements Reports an Error If...

Public/private user key An identity file generated from a digital key created on your Mac and stored in your keychain.
[tidentifies you asa unique individual and allows Xcode to check and confirm your other
permissions. The public element of the key is included in your certificates. The private element
stays on your Mac and is used as a check.

WWDR certificate An Apple-generated permissions file which confirms that you are an Apple developer, and
that you're allowed to use Xcode for testing and development.

OEBPS/images/9781118007594-tb1202b.jpg
Logging options
Distributed Objects

Garbage Collection Activity
Malloc Stack

Compact Stack

Log Exceptions

Log DYLD API

Log DYLD Libraries
Legacy/Debugger

Stop on Debugger() and
DebugsStr()

Enable logging for NSConnection,NSInvocation,
NSDistantObject,and NSConcretePortCoder objects.

Log collection events, new region allocations, and weak reference manipulations.
Log the state of the stack during allocations and deallocations.

Record compact stack logs during allocations and deallocations.

Log Objective-C runtime exceptions.

Log API calls to the dynamic-linker.

Log library loads by the dynamic-linker.

Allow your code to call these routines to start the debugger with a message and send a SIGINT
signal to the current process.

OEBPS/images/9781118007594-fg0415_fmt.jpeg
vB rlmkplm :

|| myCleverAppAppDelegate.m

e

-application:didFinish.. WithOptions: - Line 24 [

- @

myCleverAppAppDelegate.m
myCleverApp

Created by Richard Wentk on 17/10/2010.
Copyright (c) 2010 Skydancer Media Ltd. ALl rights reserved.

#import “myCleverAppAppDelegate. h"

#import “myCleverAppViewController.h"

ion myCl gat

@synthesize window;
@synthesize viewController;

- (B0OL)application: (UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions {

// Override point for customization after application launch.
[window addSubview:viewController.view];
[window makeKeyAndVisiblel;

// NSLog (@This line creates a build issue);
return YES;

- (void)applicationWillTerminate: (UIApplication)application {

// Save data if appropriate.

- (void)dealloc {
[window releasel;

[viewController releasel;
[super deallocl;

@end

OEBPS/images/9781118007594-fg0317_fmt.jpeg
7 ViewBased - ViewBased.xcodeproj

- Running ViewBased on iPad Simulator
ViewBased | iPad

‘ EloZ @ao (=

ViewBased.xcodeproj

i0S Simulator - iPad / iOS 4.3 (8F190)
Z @ A [viewBased

PROJECT
s [Viewdased
h| ViewBasedAppDelegate.h
m| ViewBasedAppDelegate.m
MainWindow.xib
h) ViewBasedViewController.h
m| ViewBasedViewController.m
ViewBasedViewController.xib
(L] Supporting Files
(] Frameworks
Products

i0S Application T
TARGETS

App lcon

Launch Images.

©

Add Target

3 t | ViewBased

OEBPS/images/9781118007594-fg1415_fmt.jpeg
Create a branch
Branches Enter a name for the new branch.

Branch Name |Branch0.01]

Startng Point

@ Automatically switch to this branch

I'HIWA

OEBPS/images/9781118007594-fg1317_fmt.jpeg
mycoolapp.app

No issues were found in “mycoolapp.app”.
app” has passed validation and has been submitted to the App Store
for further review.

OEBPS/images/9781118007594-fg0714_fmt.jpeg
K X

» |, » |h]IBViewCo...) No Selection | Bl

1BViewController.h
18

Creat
11/2010.

// Copyright 2018 Skydancer Media
Ltd. ALl rights reserved.

by Richard Wentk on 23/

1"
#import <UIKit/UIKit.h>

@interface IBViewController :
UIViewController {

@end

Cass[uvew Ol

v Identity
Label | Xcode Specific Label
XBWLewwe
obean 6
Lock [_Inherited - (Nothing) &
Notes (] Show With Selection

owi

o =

Label - A variably sized amount of
Label caicien 3

Segmented Control - Displays
multiple segments, each of which
functions as a discrete button.

Text Field - Displays editable text
Text | and sends an action message to a
\ target object when Return is tapped.

Slider - Displays a continuous range
of values and allows the selection of

Q Y

OEBPS/images/9781118007594-fg0501_fmt.jpeg
| Animation_TestAppDelegate.n i

| Animation Test

Welcome to Xcode 4

Project (i1

Bz GEE

+
| @ A W | < » | |AnimationTest) []C) |Animation_TestAppDelegate.h) No Selection | « [\ b D8
Animation Test 77 ¥ Identity
¥ L 1 target, Mac OS X SDK 10.6 /7 Animation, Testlppnelegnte h
= 77 Bnimation Test Group Name | Classes
(v = Class§ . =
[P oW I Eincer by Richard Wentk on 22/05/2010 th | Rel
™ o o y Richard Wentk on . Path | Relative to Group v
" an Open with External Editor ht 2010 Skydancer Media Ltd. All rights reserved. ———
v(jote OpenAs
Full Path /Volumes/Developer/+
0a/Cocoa. h> Projects!, MACOSX/
New Project... Animation_TestAppDelegate : NSObject <NSApplicationDelegates Animation Test
N C s v Text Settings
lew Group | 4 by % -
3 Indent Using | Spaces D
New Group from Selection]
assign) IBOutlet NSWindow *window; Widths 416 4
Add Files to “Animation Test e LS
™ Wrap lines
Delete
Source Control
Project Navigator Help
T
D0 =
& Mac 0S5 X 3) (88 =

+ | OREQ

CFile - A C file with a header file

C++ File - A C++ file with a header
file

Header File - An empty header file

OEBPS/images/9781118007594-fgb105_fmt.jpeg
Device List

ID Name
0x104 Built-in Microphone
0x102 Built-in Input
0x106 Built-in Output

Default Devices

Input: | Built-in Microphone

Output: | Built-in Output

System: | Built-in Output

Other

] Process Muted
(] Allow Idle Sleep
] Mix Stereo to Mono

Play Alert Sound

OEBPS/images/9781118007594-fg1210_fmt.jpeg
PROJECT Summary Info | Build Settings | Build Phases
G sasic @D | Combined fa)
TARCETS Setting A Resolved A B 110 "1 i0S Default J—
Generate Profiling Code No
Precompiled Header Uses Files From B... Yes r
Run Static Analyzer No |
Scan All Source Files for Includes No
¥ Validate Built Product <Multiple values> <Multiple values> &
Debug No)
Release Yes © Yes &] No
¥ Code Signing i
Code Signing Entitlements
¥ Code Signing Identity <Multiple values> |<Multiple values> 5 | <Multiple values> ;
Debug iPhone Developer
Any i0S SDK & iPhone Developer
alenra iPhone Distribution iPhone Distribution +

Code Signing Resource Rules Path

Alternate Install Permissions
Alternate Permissions Files
‘Combine High Resolution Artwork
Deployment Location

u+w,go-w,a+rX

No
No

Other Code Signing Flags |
v Compiler Version]
¥ C/C++ Compiler Version Gec 4.2 J GCC 4.2

Debug Gec a2 J Geca.2
Release Gec 42 J GCC 4.2

Additional Strip Flags

Alternate Install Group Main

Alternate Install Owner Main

Add Target

OEBPS/images/9781118007594-fg1501_fmt.jpeg
o
» © Semantic Issue
Unknown receiver ‘NSOBject’; did ...
.Expemﬂ':‘

owo®)

1"

// issues

// Created by Richard Wentk on 24/03/2011.

Z Copyright 2011 Skydancer Media Ltd. All rights reserved.

#import "issuesAppDelegate.h"

@inplementation issuesAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification

. /7 Insert code here to initialize your application
NSObject *theObject = [NSQBliect alloc initl;

}

@end

OEBPS/images/9781118007594-fg1109_fmt.jpeg
Keychains.

" login -

& PrivateEncryptedDatak

a k.dat
& system

) System Roots

A Allltems
. Passwords
. Secure Notes
E My Certificates
7 Keys

Intermediate certificate authority

@ This certificate is valid

[5) Amazon Services Europe SARL
[E] Class 1 Public Primary Certification Authority
¥ [5] iPhone Developer: Richard Wentk (CXSP8IN63C)
 Richard Wentk
v [5] iPhone Distribution: Skydancer Media
§ Richard Wentk
[5) Thawte Personal Freemail Issuing CA
[5) UTN-USERFirst-Client Authentication and Email
[5) VeriSign Class 1 Individual Subscriber CA - G2
VeriSign Class 1 Individual Subscriber CA - G3
[E] Verisign Class 1 Public Primary Certification Authority - G3

Apple Ce

ertification Authority

Expires: Sunday, 14 February 2016 18:56:35 United Kingdom Time

private key

|Expires

24 Jun 2011 00:59:59
14 Feb 2016 18 35
2 Aug 2028 00:59:59
30 Jan 2012 23:51:31

31Jan 2012 20:59:31
17 Jul 2013 00:59:59
31 Dec 2028 23:59:59
27 Oct 2015 23:59:59
1 May 2019 00:59:59
17 Jul 2036 00:59:59

OEBPS/images/9781118007594-fg1423_fmt.jpeg
| <[» J [+ [®nutos://github.com/Richarawentk /LocaiGit e

° & RichardWentk = Dashboard ~Inbox 0 AccountSettings Log Out
github
'SOCIAL CODING

ExporeGitup Gist Bog Hep () (@ Search..)
@ RichardWentk / LocalGit #Admin © Unwatch (& Pull Request @1 £ 1

Source Commits Network Pull Requests (0) ForkQueue Issues (0) Wiki(0) Graphs Branch: master
Switch Branches (2) » Swich Tags (0) Branch List

click here to add a description

1 Downloads
click here to add a homepage
Git Read-Only [_] This URL has Read+Write access
After git commit b644ec513e7e5c0faad4
tree 7090612651b4e260b826
RichardWentk (author) parent 470632d031efaleebcfl
13 minutes ago
LocalGit/
name age message history
[LocalGit.xcodeproj/ about 3 hours ago A note for the first commit [RichardiWentk]
= LocalGit/ 13 minutes ago After git [RichardWentk]

Blog Support Training JobBoard Shop Contact API Status () Powered by the Dedicated Servers and

OEBPS/images/9781118007594-fg1706_fmt.jpeg
UnitTest: Succeeded | Today at 22:14

UnitTestTests.h

v (] Supporting Files
| UnitTest-Info.plist
InfoPlist.strings
UnitTest-Prefix.pch
main.m
] UnitTestTests

UnitTestTests.m

+ OR6®

Unit
Created by Richard Wentk on 24/03/2011.

Copyright 2011 Skydancer Media Ltd. ALl rights reserved.
#import <SenTestingKit/SenTestingKit.h>

#define kA 1

#define kB 2
#define kExpectedSum 2

@interface UnitTestTests : SenTestCase {
@private

}

-(void) testMathMachineSum;

@end

OEBPS/images/9781118007594-fg0210_fmt.jpeg
& Install Xcode and iOS SDK

Select a Destination

Select the disk where you want to install the Xcode and i0OS
© Introduction SDK software.

O License
© iOS SDK License

Developer Etc
6.16 GB free 202.41 GB free 6.32 GB free
99.69 GB total 500.11 GB total 274.95 GB total

24.57 GB total

Installing this software requires 7.39 GB of space.

You have chosen to install this software on the disk
“Macintosh HD".

(GoBack) (Continue)

A

OEBPS/images/9781118007594-fg0423_fmt.jpeg
v [_|Classes
|| myCleverAppAppDelegate.h
| | myCleverAppAppDelegate.m
| | myCleverAppViewController.h
| myCleverAppViewController.m
v (] Other Sources
| | myCleverApp_Prefix.pch
main.m
v (] Resources
| | myCleverApp-Info.plist
| InfoPlist.strings
| | MainWindow.xib
| | myCleverAppViewController.xib
|| myCleverApp...ler.xib (English)
v (] Frameworks

» (] UIKit.framework

» (L] Foundation.framework

» (L] CoreGraphics.framework

Bkl hrabr i

Build myCleverApp: Succeede:

No Issues.

d | Yesterday at 21:26

Info

+ | OREQ

| D Levels Q- Y
"5 myCleverApp =
Aviyciede Additional SDKs
Architectures Standard (armvé armv?) §
Base SDK Latest iOS Device (currently set to iOS 4.1) ;
Build Active Architecture Only Not
Valid Architectures armvé armv7
¥ Build Locations
Build Products Path build
Intermediate Build Files Path build
Per-configuration Build Products Path
Debug configuration build/Debug-iphoneos
Release configuration build/Release-iphoneos.
Per-configuration Intermediate Build Fi...
Debug configuration build/myCleverApp.build/Debug-iphoneos
Release configuration build/myCleverApp.build/Release-iphoneos
Precompiled Headers Cache Path ipi TI/-Caches-/
¥ Build Options.
Build Variants normal
Debug Information Format DWARF with dSYM File ¢
Enable OpenMP Support No:
Generate Profiling Code No ¢
Precompiled Header Uses Files From B... Yes {
Run Static Analyzer No:
Scan All Source Files for Includes No ¢
Validate Built Product No ¢
¥ Code Signing
Code Signing Entitlements
Code Signing Identity . e
Any Configuration | Any SDK iPhone Developer (currently matches ‘iPhone Developer: § [
Add Target Add Build Setting

OEBPS/images/9781118007594-fg0706_fmt.jpeg
Welcome to Xcode 4

OEBPS/images/9781118007594-tb0502.jpg
Table 5.2 Nib File Templates

Template

Availability Comments

Application

Window

View

Empty

i0S/0S X The 0S X nib includes a Font Manager, a Main Menu, a Window and View, and an
Application object. Note that there’s no App Delegate.
The i0S version of this nib includes an App Delegate object and a UTWindow.

i05/0S X The 0S X nib includes an NSWindow with an associated NSV i ew.
Thei0S nibincludes a UTWindow only.

i0S/0S X The 0SX nibincludesan NSView.
Thei0S nibincludesaUIView.

i0S/0S X On both platforms, this is a plain, empty nib. Only the File’s Owner and First
Responder placeholders are included.

OEBPS/images/9781118007594-fg0820_fmt.jpeg
Archive IB: Succeeded | 25/02/2011 at 01:31

No Issues

CHANGE IT

+ ©80(® IFGT o ulel=

OEBPS/images/9781118007594-fg1215_fmt.jpeg
[MyMacProject

1%) My Mac 32-bit

Scheme Destination

alyzer
G_STATIC_ANALYZER

Build
]
¥ 52 targers Build Options @ Parallelize Build b :‘me::s:"::l -
Pre-actions When enabled, independent targets are built in parallel instead of one at a time. -Thlx allaaer
 Build ™ Find Implicit Dependencies tive-C files.
Post-actions When enabled, Xcode discovers and builds other dependent targets automatically. YZER]
|+ Run MyMacProject...
Debug
Test
> ¥ pebug s AnotherTarget ™ 5] ™ (=] ™
» i S mmh MyMacProj...
» Aum-
& mbug
>
+ -
(Duplicate Scheme) (Manage Schemes...)
v Compiler Version
C/C++ Compiler Version LLVM compi... : [LLVM co| Rounded Rect Button - Intercepts
- mouse-down events and sends an
C y action message to a target object...
e ~ Rounded Textured Button -
| Intercepts mouse-down events and
‘Add Target sends an action message to a...
-\
|@m m 2 & % |MyMacProject Q

+ 0ORGB®

OEBPS/images/9781118007594-tb0401.jpg
Table 4.1 Default Build Config

Category oS Comments

Debug i0S Used for testing and development.

Release i0S Useless on its own, but can be edited to create builds for the App Store and for Ad Hoc app release.
Debug 0SX Used for testing and development.

Release 0SX (an be used to create an application that can be used as is or packaged with an installer.

Also can be edited to create a special build for the 0S X App Store.

OEBPS/images/9781118007594-tb1301b.jpg
<arbitrary>

Icon-72.png
Default-iPad.png
Icon-small.png

Default@2x.png

Icon@2x.png

Icon-Small-50.png

<aDocumentType>.png
Icon-Small@2x.png

<aDocumentType>
@2x.png

<aDocumentType>-
small.png

<aDocumentType>.png

Screenshots

512x512

72X72
7681024
29x29
640 x 960

114x114

50x50

22x29

58x58
4458

64 x 64

320x320

Various

Yes

Yes for iPad projects
Yes for iPad projects
Recommended

Recommended

Recommended

No

No

No
No

No

No

Yes

iTunes artwork file. In theory, this should
be a high-resolution version of Icon.png,
but some creative license is allowed.

Largericon file for the iPad.
iPad loading screen.
Smaller icon for the i0S Settings app.

High resolution launch image for i0S
devices with a retina display.

High-resolution icon for iOS devices with a
retina display.

iPad icon for Spotlight searches. The
image includes a 2-pixel frame, so the safe
area is 48 x 48 pixels.

Iconfor supporting document files.
High-resolution icon for Settings.

High-resolution icon for supporting
document files.

SmalliPad document icon.

Large iPad document icon.

Between one and five screenshots of your
app inaction. You can grab these in the
Organizer at your app’s native resolution
and export them as PNG files.

OEBPS/images/9781118007594-fg1132_fmt.jpeg
@& PrivateEncryptedDatak
a

& system
) System Roots

A Allltems
L. Passwords

3rd Party Mac Media
Issued by: Apple Worldwide Developer Relations Certification Authority
Expires: Friday, 3 February 2012 14:03:41 United Kingdom Time

@ This certificate is valid

Developer Installer: Skydancer Media
Richard Wentk (CX:) certificate
» 5] iPhone Distribution: Skydancer Media certificate

» [5] iPhone 30 Jan 2012 23:51:31

31Jan 2012 20:59:31

OEBPS/images/9781118007594-fg1514_fmt.jpeg
@ @ \Breakpom!Test(L = n

BreakpointTest (=)

Running BreakpointTest J = @ EEO) =)

Project @1

[

+

| 4 » || |BreakpointTest) [|Classes) | |

m) @ hing: (<@ »

By Queue

read 1
¥ ¥ com.apple.main-thread

B 1 _nsnote_callback I

[19 NsApplicationMain
20 main

Thread 2
» ¥ com.apple.libdispatch-man.

» ¥ Thread 5

@synthesize window;

for (int i = 8; i <10; i++) {
tR s

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {
// Insert code here to initialize your application

NSLog(@"Count: %i", i);
}
@end
E 1> 2 & 2 | A4BreakpointTest) ¥f Thread 1) [0
Local ¢ Q All Output +

[_cmd - (SEL) 0x931f502 appicationdidrmshLaunching: ONU gdb 6.3.50-20050815 (Apple version gdb- 1511) (Mon Nov
~ (NSC) 0x332... .

Print Description

v Enable Data Formatters
v Show Types

Edit Summary Format...

Add Expression...
Delete Expression

Watch Address of "i"
View Memory of "i"

Debug Area Help

»

d70

07:29:41 UTC 2010)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"
for details.

This GDB was configured as "i386-apple-darwin".tty /dev/ttys80@
sharedlibrary apply-load-rules a

[Switching to process 9578]

1.062 BreakpointTest[9578
4.967 BreakpointTest[9578
398 BreakpointTest[9578
.252 BreakpointTest[9578

wNHe

OEBPS/images/9781118007594-fg0609_fmt.jpeg
806 Foundation Framework Reference a

uu [https:/ /developer.apple.com, i F ion/ObjC_c/- & | (Q~ apple developer

Foundation Framework Reference

The Foundation framework defines a base layer of Objective-C classes. In addition to providing a set of useful pnminve objec(classes, it introduces
several paradigms that define functionality not covered by the Objective-C I The d with these goals in
mind:

= Provide a small set of basic utility classes.
= Make software easier by il i i i for things such as deallocation.

= Support Unicode strings, object persistence, and object distribution.
= Provide a level of OS i to enhance

The Foundation framework includes the root object class, classes representing basic data types such as strings and byte arrays, collection classes for
storing other objects, classes representing system information such as dates, and classes representing communication ports. See Figure I-1 for a list
of those classes that make up the Foundation framework.

[More]
Framework /System/Library/F F
Header file i /System/Library/ /Headers
‘Companion guides Cocoa Fundamentals Guide

Foundation Release Notes

Class References Protocol References Other References
NSArray NSCacheDelegate Foundation Functions
NSAssertionHandler NSCoding Foundation Data Types
NSAttributedString NSCopying Foundation Constants
NSAutoreleasePool NSDecimalNumberBehaviors
NSBlockOperation NSDiscardableContent Revision History
NSBundle NSErrorRecoveryAttempting

« >l

NSCache NSFastEnumeration

OEBPS/images/9781118007594-fg0707_fmt.jpeg
» (] Other Sources
v (] Resources.
| 1B-Info.plist
|| InfoPlist.strings
MainWindow.xib
» (] Frameworks

[Products

+| O@AG(Q)

Class | UIView
eldeatiy,
Label | Xcode Specific Label]
XBULewuwe
Object 1D | 6
Lock | Inherited - (Nothing)
Notes (] Show With Selection

Traits () Button O uink
) Image () Selected

() Summary Element

™ User Interaction Enabled
() Updates Frequently

() search Field

OEBPS/images/9781118007594-fg0701_fmt.jpeg
UIWindow

UlViewController

.view

UlView

MainWindow.xib

AUTO-LOAD

appViewController.xib

OEBPS/images/9781118007594-fg0805_fmt.jpeg
vy ?mgu.msnxu
@
IBAppDelegate.h
IBAppDelegate.m
|| IBViewController.h
| IBViewController.m
| IBView.h
| 1BView.m

| 1B-Info.plist
| InfoPlist.strings
| MainWindow.xib
[1BViewController.xib
» (] Frameworks
>

+| O@AG(Q

Origin

Ea

Autosizing Example

Arrange [Position View =

[o ojejm
[T — 1)

("I functions as a discrete button. |~

TF [Text Field - Displays editable text
Text

and sends an action message to a
target object when Return is tapped.

Slider - Displays a continuous range P

@ of values and allows the seection of {
.

v

asingle value.

Switch - Displays an element
showing the boolean state of a value.
Allows tapping the control to...

Activity Indicator View - Provides
feedback on the progress of a task or
process of unknown duration.

Progress View - Depicts the
ST progress of a task over time.

(c)

N

OEBPS/images/9781118007594-fg0903_fmt.jpeg
[1B - IBAppDelegate.m

@ @ (1B]i0S Device +| [mm Archive IB: Succeeded | 25/02/2011 at 01:31
1l evice v
~ ———— A No Issues
IBAppDelegate.m +
BnNOA=m8 » | (918) [Classes) m| m) @ D B

18
M- b target, iOS SDK 4.3
v (] Classes
[h] IBAppDelegate.h

¥

BViewController.h
|m) 1BViewController.m
[h] 1BView.h
|m) 1BView.m

» (] Other Sources

» [] Resources.

» (] Frameworks

v [Products.
% ThisApp...ong.app

+ 0ORGB S

IBAppDelegate.m
18

Created by Richard Wentk on 23/11/2010.

Copyright 2010 Skydancer Media Ltd. All rights reserved.
#import “IBAppDelegate.h"

#inport “IBViewController.h"

@inplementation IBAppDelegate

@synthesize window;
@synthesize viewController;

- (BOOL)application: (UIApplication *)application

v _Identity and Type

File Name | IBAppDelegate.m
File Type Default - Objective-...
Location | Relative to Group $

1BAppDelegate.m ol #
Full Path /Volumes/Developer/+
Xa4/1B Custom View/
DI} & =
(Tjlil] code Snippet Library BIEIS)
[T eer———
“ i} \ defining a block as a type. J

C Inline Block as Variable - Used
for saving a block to a variable so we

{}

didFinishtaunchir . © “ptions { can pass it as an argument multipl...
/1 Override point Copy launch. {)] Cormeser s st
[window addSubvie Paste e
[window makeKeyAr

% ?;;: ;’s‘:::e?r:;;: Show Issue i{:} text C++ Class Declaration - Used for

77 viewcontroller.tt Jump to Definition ~%D { } | desciing a new ciss type

return YES;
' | Stucture > |

- (void)application Refacior

Uisave duta ity Open in Adjacent Editor 38,

Openin... X#<
Reveal in Project Navigator
Reveal in Symbol Navigator
Show in Finder

- (void)dealloc {

[window releasel;
[viewController t
[super deallocl;

Speech
eend
Source Editor Help

containing instance variables,...
Balance Delimiter

C++ Class Template - Used t¢
Re-indent ~ (R e i
Shift Right 8]
Shift Left [

C++ Function Template - Used to
Move Line Up = xl l define a new function template.
Move lineBiosn: | * Wem Namespace Definition -
Comment Selection 88/ | Used to define a new namespace or

extend an existing namespace.

C++ Try / Catch Block - Used for
trying to execute code that might
generate an exception, and...

C++ Using Directive - Used to

N\ [«

OEBPS/images/9781118007594-fg1318_fmt.jpeg
¢ P(Q~ Google

Welcome, Richard Wentk | Edit Profile | Log out

App IDs

Distribution

Go to i0S Dev Center

Development Distribution History How To

Create iOS Distribution Provisioning Profile

Generate provisioning profiles here. To learn more, visit the How To section.

Distribution Method O App store © Ad Hoc
Profile Name Ad Hoc
C Media on Feb 13, 2012)
App ID [ATestApp 3
Devices (optional) Select up to 100 devices for the final the final will run only on

these selected devices.

Select All

@ Aaron Phone ™ AlexaPhone
™ iPhone () iPhone

O iPod

Canc

<>

OEBPS/images/9781118007594-fg1416_fmt.jpeg
Current Branch: Branch0.01

» [lLocaiGit Select a branch to switch

» [LocalGit.x

v Branch0.01 (Current Branch)

» a80db336271d by Richard Wentk 1 files modified at 16:00
Another recent commit

» f3e24dd0ec85 by Richard Wentk 1 files modified at 16:00
Second commit

» e4605ca6eal8 by Richard Wentk 4 files modified at 15:58
A note for the first commit

» 4425323ef6b0 by Richard Wentk 9 files modified at 15:32
Initial Commit

g b bbb

= c ©

+ - Pull Commit Refresh Switch Branch IIde!InmA

OEBPS/images/9781118007594-fg1505_fmt.jpeg
Running 1B on iPhone Simulator

@synthesize viewController;
- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
// Override point for customization after application launch.

[window addSubview:viewController.view];
[window makeKeyAndVisiblel;
NSLog(@"This message appears when the app loads.");

// viewController.theLabel.text = @"Changed";
return YES;
}
- (void)applicationWillTerminate: (UIApplication *)application {

// Save data if appropriate.

- e e AL

Output ; — ;
GNU gdb 6.3.50-20050815 (Apple version odb—lsll‘ ‘Ion Nov 1 07:29:41 UTC 2010)
Copyuuht 2004 Free Software Foundation, Inc.

B is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i3B6-apple-darwin".sharedlibrary apply-load-rules all
Attaching to process 3695.

Pending breakpoint 1 - ""IBViewController.m":69" resolved

2010-12-24 02:03:01.619 IB[3695:207] This message appears when the app loads.

OEBPS/images/9781118007594-fg1603_fmt.jpeg
Instrument Detail

@ O —]
B Trace Highlights =

16.00%

CPU Time

WindowServer
Google Chrome Renderer|
BBC iPlayer Desktop)
Google Chrome

Real Memory Usage

@ Flash (Ch...
@ Google Chrome

~ WindowServer
 Xcode

kernel_task

Pias.44MB

Flash (Chro...
‘Google Chrome

kernel_task

OByles 90.77MB

12:40:58.45658

181.53 MB

OEBPS/images/9781118007594-fg0312_fmt.jpeg
\ (m) s -
w\?/»v @) NavigationBased

NavigationBased.xcodeproj

=9 A - 8

(| NavigationBased
h| NavigationBasedAppDelegate.h
m] NavigationBasedAppDelegate.m
 MainWindow.xib
h| RootViewController.h
im] RootViewController.m
RootViewController.xib
(L] Supporting Files
(L] Frameworks
(] Products.

NavigationBased - NavigationBased.xcodeproj

Running NavigationBased on iPhone Simulatos

No Issues

[NavigationBased
PROJECT
™ NavigationBased

Summary
i0S Application Target

TARGETS

4
A Identifier skydancerme

Version 1.0

Devices _iPhone
R

Deployment Target
iPhone / iPod Deployment Info

Main Interface | MainWindow|

Supported Device Orientations

Portrait

App Icons

Launch Images

©

Add Target

NavigationBased

Carrier 10:47 PM

OEBPS/images/9781118007594-fg1410_fmt.jpeg
% D 1 target, Mac OS X SDK 106
v [Classes
| LocalGitAppDelegate.h

LocalGitAppDelegate.m
MyClass.h

LocalGitAppDelegate.m
LocalGit

Created by Richard Wentk on 04/01/2011.
Copyright 2011 Skydancer Media Ltd. All
rights reserved.

1"

#inport “LocalGitAppDelegate.h"

@inplementation LocalGitAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:
(NSNotification *)aNotification {

// Insert code here to initialize your
application

eend

LocalGitAppDelegate.m
// LocalGit

// Created by Richard Wentk on 04/01/2011.
// Copyright 2011 Skydancer Media Ltd. All
rights reserved.
1"
#import “LocalGitAppDelegate.h"
@inplementation LocalGitAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching:
(NSNotification *)aNotification {
// Insert code here to initialize your
application

// This is a comment added to illustrate
how edits appear in the Version Editor

// This is a second comment
// This is a third comment

@end

OEBPS/images/9781118007594-fg1321_fmt.jpeg
8en6 Get Your Mac Apps Ready for the App Store - Apple Developer

+ |[Ihttp://developer.apple.com/devcenter/mac/checklist/ 4] (Q' |

m =

Mac Dev Center

Get Your Mac Apps Ready
for the Mac App Store

iTunes Connect Set Up Prepare for the Mac App Store App Store

Set up Your iTunes Connect Account

To distribute your Mac apps on the Mac App Store, you'll need to set up your accounts in iTunes Connect. -
This suite of web-based tools allows you to submit and manage your apps for distribution on the App A f’\\“
Store, check the status of your contracts, set up your tax and banking information, obtain sales and

finance reports, and manage iTunes Connect users. Log in to iTunes Connect » N —

v’ Set up your iTunes Connect Account X n

When creating an iTunes Connect user account, you are able to define user roles and notifications.
There are four distinct user roles: Admin, Legal, Finance, and Technical. You can specify the type of
email notifications your users will receive regarding your iTunes Connect account.

APPS.

OEBPS/images/9781118007594-tbbappc1.jpg
Table C.1 Selected Important OR USEFUL Compiler Settings

Enable SSE3 Extensions Enable when using the vDSP and BLAS features in the Accelerate framework in 0S X.
Enable Supplemental SSE3 Extensions (Note: SSE4 extensions are supported only on selected Intel processors, but the
Enable SSE4.1/4.2 Extensions Accelerate framework creates conditional code that uses them if they are available.)
Objective-C Garbage Collection Enable to turn on garbage collection on S X. (Note: This is off by default.)

Enable AltiVec extensions Enable when compiling legacy binaries for PPC processors with AltiVec acceleration.

OEBPS/images/9781118007594-fgb104_fmt.jpeg
@ First Responder
oA Application

Ll

Welcome to Xcode 4

ct

» [| Main Menu
Window - Animation Test

imation Test App Delegate
¥ Font Manager

JEL

nie =
v Quick Help

Name: NSView L
Availability: Mac OS X (10.0 and later) i
Abstract: NSView is a class that defines v

() Quartz Composer

Quartz Composer Patch Controller
~ A controller for binding published
ports.

Quartz Composition Parameter
View - Quartz Composer Composition
Parameter View

i<« Quartz Composition Picker View -
I¥r<1% Quartz Composer Composition Picker
[SISES) View

Quartz Composer View - A view for
displaying compositions from
QuartzComposer.

I

OEBPS/images/9781118007594-fgb202_fmt.jpeg
Value

Key
Localization native development region

Bundle display name
Executable file

Icon file

Bundle identifier
InfoDictionary version
Bundle name

Bundle OS Type code

Bundle versions string, short
Bundle creator OS Type code
Bundle version

Application requires iPhone environme

Main nib file base name

¥ Supported interface orientations

en
${PRODUCT_NAME}
S{EXECUTABLE_NAME}

com.${PRODUCT _|

6.0
${PRODUCT_NAME}
APPL

10

10

YES.
MainWindow
(4 items)

Landscape (right home button)
Portrait (bottom home button)
Landscape (left home button)

Landscape (right home button)

OEBPS/images/9781118007594-fg0726_fmt.jpeg
@
.

T ¢ <>

// 1BViewController.h
1B

// Created by Richard Wentk on 23/11/2010

// Copyright 2018 Skydancer Media Ltd.
rights reserved.

1"

#import <UIKit/UIKit.h>

@interface IBViewController : UIViewController {

}
- (IBAction)buttonWasTapped: (id)sender;

@end

g

H

g

{
@00000|

d
§
H

of o] [cooooo00

New Referencing Outlet Collection

(il Ovjects 2

umu:z:gﬁmﬁmn_ad.g

Round Rect Button - Intercepts

touch events and sends an action

message (0 a target object when...
o ey
Q Y

OEBPS/images/9781118007594-fgb203_fmt.jpeg
L
1.8" encoding="UTF-8"7>
<IDOCTYPE plist PUBLIC "~//Apple//DTD PLIST 1.8//EN" "http://www.apple.con/DTDs/Propertylist-1.0.dtd">
alist version="1.8">
adict>

<key>CFBundleldent if ier</key>
<stringsskydancernedia.con. ${PRODUCT_NAYE : identif ier}</strings
<key>CFBund eDeve LopmentRegion</key>
<stringsen</string>

<key>CFBund eExecutab le</key>
<string>${EXECUTABLE _NAME}</string>
<key>CFBundlelconF i le</key>
<string></string>

<key>CFBund|eInfobict ionaryVersion</keys
<string>6.8</string>

<key>CFBund | eNane</key>
<string>${PRODUCT_NAME}</string>
<key>CFBund lePackageType</key>
<StringAPPL</string>

<key>CFBund leSignature</key>
<string>??77</strings

<key>CFBundleDisp LayNane </key>
<strings${PRODUCT_NAME}</string>
<key>CFBundleversione/key>
<strings1.0</string>

<key>CFBund leShortVersionstring</key>
<strings1.0</string>
ey>LSRequiresIPhone0S</key>

<true/>

Key>NSMainNibFi le</key>
<stringsMainilindow</strings>

dInterfaceOr %

<array>
<stringsUlInterface0rientationPortrait</strings
<string>UlInterface0rientationlandscapelef t</string>
<stringsUlInterface0rientat ionLandscapeRight </strings
</arrays
</dict>
</plist>

OEBPS/images/9781118007594-fg1124_fmt.jpeg
s

(«7») (s27=1m) [Provisioning)

DEVIQ

<
L]

<
(=)
A M (en @ on @l oz

¥ DEVICES
[Eris
2} Macintosh HD
B iDisk
J4 Mac 05 X Install DVD
[Erc
| Developer

¥ SHARED
[192.168.0.5
& Typhon

¥ PLACES
[=[558
(2] Developer
Desktop
~

»

»

30Jan2011.certSigningRequest
AName.mobileprovision
AppleWWDRCA.cer
developer_identity.cer
distribution_identity.cer

(@ old

~
a
v

Date Modified
30/01/2011
Yesterday

09/11/2009
31/01/2011
31/01/2011
30/01/2011

Enter the password used to secure the Developer Profile

Password:
Verify: sesssses

ir

§

‘Export Developer Profile’ will package the Identities and Provisioning
Profiles listed above into a secure file format that can be used with 'Import
Developer Profile’ to transfer your Developer Profile to a new machine.

OEBPS/images/9781118007594-fg0608_fmt.jpeg
8006 iPad Human Interface Guidelines: iPad Ul Element Guidelines a
y/ios/ /General/C¢ /iPadHIG/UIEleme: & | [Q~ apple developer

| <] » | [+ [COnups:// apple.c

¥ Table of Contents

Introduction
> Key iPad Features and Action Sheets, Alerts, and Modal Views
Characteristics
» From iPhone Application to . : . " <
iPad Application Action sheets, alerts, and modal views are temporary views that appear when something requires the user's
S Pncl Unar: Expmriaetn! attention or when additional choices or functionality need to be offered. People cannot interact with an
Guidelines application while one of these views is on the screen.
» iPad Ul Element Guidelines
oo § Action Sheet

An action sheet displays a set of choices related to a task the user initiates.

In an iPad application, an action sheet is displayed within a popover; it never has full-screen width. Figure 4-13
shows the action sheet that appears when the user taps the Reply button in Mail.

Figure 4-13 An action sheet is displayed inside a popover

From: (Leah 3,

‘Thanks for the memories :-)

February 9, 2010 1025

Marshal and | you and Sam. It was great go
chance 1o relax and talk. And your new house is beautiul! Next e you're on the West coast,
wed love 10 retum the favor!

Sent from my iPad

OEBPS/images/9781118007594-fg1604_fmt.jpeg
All Processes
Attach to Process
Choose Target

Instrument Specific

Edit Active Target

A

4 Google Chrome Helper (433)
4 Google Chrome Helper (428)
4 Google Chrome Helper (426)
4 Google Chrome Helper (422)
4 Google Chrome Helper (420)
& Mail (418)

@ Google Chrome (413)

B LCCDaemon (226)
© BBC iPlayer Desktop (224)
& smcFanControl (223)
& iTunesHelper (222)

4 TiSwitcher (210)

o Little Snitch Network Monitor (205)
- Little Snitch UlAgent (204)

~ AirPort Base Station Agent (202)

O Automatic Snapshotting
Snapshot Interval (sec)
Status: Idle

O Track inspection head

¥ VM Options.
Coalesce Regions
O Show Full Paths.

Readable
O Writable
O Executable

3

T ARDAgent (197)

K Finder (174)

4 SystemUIServer (173)
™ Dock (172)

¥ loginwindow (46)]

System
B DTActivityServer (6042)
& ibtool (6023)

B momc (6003)

| Interface Builder Cocoa Touch Tool (3528)
@ Interface Builder Cocoa Touch Tool (3527)

B usbmuxd (838)

& AppleVNCServer (218)

& UserEventAgent (194)

/& fontd (189)

/& pboard (180)

& coreaudiod (137)

B cvmsServ (121)

| NIUSBAudioDaemon (114)
& HyperPenTabletDr (109)

1 sh (102)
v

L e ————— Yel>

Q- Instrument Detail

L
1
i

‘ e

fesident ... | Virtual Size

OEBPS/images/9781118007594-fg0402_fmt.jpeg
= EEN O O
*‘Hide or show: Navigator, Utility
Y —

OEBPS/images/9781118007594-fg1111_fmt.jpeg
. L

(1] hep: developer apple.com/ios/ manage/bundies/add.action c

Create App ID

Distribution

[This description is for your reference only) You cannot use special characters as @, & *, *in your description.
Bundle Seed ID (App ID Prefix)

Generate a new or select an existing Bundle Seed ID for your App ID.

If you are creating a suite of applications that will share the same Keychain access, use the same bundle Seed ID for each of your

application's App IDs.

Bundle Identifier (App 1D Suffix)

Enter a unique identifier for your App ID. The recommended practice is to use a reverse-domain name style string for the Bundle
Identifier portion of the App ID.

[either * or com.domainname.* Example: com.domainname.appname

o | TN

Media Go 10 i0S Dev Center
Manage How To
Enter a common name or description of your App ID using alphanumeric characters. The description you specify will be used
throughout the Provisioning Portal to identify this App ID.
IS
[x

N

OEBPS/images/9781118007594-fg0313_fmt.jpeg
@ @ OpenGLES | iPhon... §

OpenGLES.xcodeproj

W @ A

1 OpenGLES - OpenGLES.xcodeproj

Running OpenGLES on iPhone Simulator

%

No Issues

<« » | [y OpenGLES

0

PROJECT

(] OpenGLES
|h| OpenGLESAppDelegate.h
m| OpenGLESAppDelegate.m
MainWindow.xib
| Shader.fsh
Shader.vsh
EAGLView.h
EAGLView.m
‘OpenGLESViewController.h
n| OpenGLESViewController.m
‘OpenGLESViewController.xib
(] Supporting Files
(] Frameworks
] Products

8 OpenGLES
TARGETS
| OpenGLEs |

Summary | Info

tion Target y

Identifier skydancerme

Version 1.0

Devices | iPhone

Deployment Target
v iPhone / iPod Deployment Info]

Main Interface MainWindow

Supported Device Orientations

Portrait

App lcons

Launch Images

©

Add Target

£ | OpenGLES

OEBPS/images/9781118007594-fg1407_fmt.jpeg
laaEa0)

LocalGitAppDelegate.m
LocalGit

Created by Richard Wentk on 84/01/2011.

Copyright 2011 Skydancer Media Ltd. All rights reserved.
#import “LocalGitAppDelegate.h"

@implementation LocalGitAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {
// Insert code here to initialize your application

// This is a comment added to illustrate how edits appear in the Version Editor

eend

OEBPS/images/9781118007594-fg1117_fmt.jpeg
Sovors - 404 Deviss 108 prosloning Pora feple Dovipe

29, ..n

Profile | Log out

Go to i0S Dev Center

¢ P(Q~ Google
‘ Developer Technologies Resources Programs Support Member Center (Q Scarch Developer
oning Portal Welcome, Richard Wentk
P Portal : Media
Home
Certificates Manage History How To
I | ocices
App IDs.
Provisioning You can add up to 95 device(s). Enter a name for each device and its ID. Finding the Device ID.
Disfoution Device Name Device ID (40 hex characters)
aniPhone 663290f12f1802¢ce2

Cancel

®

|

a

OEBPS/images/9781118007594-tb1201.jpg
Table 1 Settings Included in a Configuration

Included Should be

Setting in 0S edited? Notes

Build Active Architecture 0SX Not usually This speifies builds for 32-bit only, 64-bit only, or both

Only

Code Signing Identity i0S Yes Fora distribution build, select the iPhone distribution
identity created and downloaded in Chapter 11. For live
hardware debug builds, the iPhone Developer identity is
selected by default.

Per-Configuration Build Both No This defines the file path to the intermediate build

Products Path products.

Debug Information 0SX No This controls whether symbols are included with the build.

Format

Validate Built Product i0S No This enables an extra build validation pass. It should be
enabled for final App Store distribution builds, but not for
debugging.

Compiler Version i0S Optional Optionally, you can select a different compiler for debug
and distribution builds.

Strip Debug Symbols Both No By default, this removes symbols from a distribution build.

During Copy

Path to Link Map File Both No This defines the file path to intermediate files generated
by the linker.

Generate Position 0SX No By default, code is position-independent.

Dependent Code

Optimization Level Both Not usually You can experiment with this setting to trade off code size
against performance.

Other CFlags i0S Not usually Use this option to add custom compiler flags for C code.

Other C++ Flags i0S Not usually Use this option to add custom compiler flags for C++
code.

Preprocessor Macros Both No This enables the optional DEBUG preprocessor macro for

architectures. For debug builds, this setting should match
the hardware for debug builds on your test Mac. For
distribution builds, it can enable or disable support for a
specific architecture.

debug builds.

OEBPS/images/9781118007594-fg0710_fmt.jpeg
DB 8 W% |0

¥ Referencing Outlets

(view (% File's Owner

New Referencing Outlet

v Referencing Outlet C

New Referencing Outlet Collection

OEBPS/images/9781118007594-fg1206_fmt.jpeg
+ 0ORGB S

Summary Info | BuildSettings | Build Phases Build Rules
Basic Levels @)
Setting B T
¥ Architectures
Additional SDKs
Architectures Standard (armv6 armv7) &
Base SDK Latest iOS (i0S 4.2) + |
Build Active Architecture Only No:
Supported Platforms iphoneos iphonesimulator I
Valid Architectures armvé armv7 |
¥ Build Locations.
Build Products Path build |
Intermediate Build Files Path build
¥ Per-configuration Build Products Path <Multiple values>
Debug build/Debug-iphoneos
Release build/Release-iphoneos
¥ Per-configuration Intermediate Build Fi... <Multiple values>
Debug build/IB.build/Debug-iphoneos
Release build/IB.build/Release-iphoneos
Precompiled Headers Cache Path / iplip TI/-Caches-/com.apple.Xco
v Build Options.
Build Variants normal |
Debug Information Format DWARF with dSYM File &
Enable OpenMP Support No: |
Generate Profiling Code No s
Precompiled Header Uses Files From B... Yes |
Run Static Analyzer No i
Scan All Source Files for Includes No |
¥ Validate Built Product <Multiple values> §
Debug No
Release Yes § e
¥ Code Signing 5

‘Add Build Settis

OEBPS/images/9781118007594-fg1105_fmt.jpeg
‘_ L " ! 1 e - i0 Provi al =/ eloper '
| <] » | [+ [http://developer.apple.com/ios/manage/ certificates/team/create.action 4

Home r
Development Distribution h History How To
Devices § i
Create iOS Development Certificate
App IDs
Provisioning The Development Certificate is used to sign a provisioning profile and associate a developer to a registered device. Each member of
a team may have only one active Development Certificate. To learn more, visit the How To section.
Distribution

How to create a development certificate:
1. Generate a Certificate Signing Request (CSR) with a public key

= In your Applications folder, open the Utilities folder and launch Keychain Access.
= Choose Keychain Access > Certificate Assistant > Request a Certificate from a Certificate Authority.
In the Certificate Information window, enter or select the following information:

= In the User Email Address field, enter your email address
= In the Common Name field, enter your name

= In the Request is group, select the Saved to disk option
= Click Continue

The Certificate Assistant saves a Certificate Signing Request (CSR) file to your Desktop.

The public/private key pair will be generated when you create the Certificate Signing Request (CSR) if you use the Key Chain
Assistant to create the CSR.

2. Submit the CSR through the Provisioning Portal to the Admin for approval.

= Click the Development tab
= Upload the certificate by choosing the file
= Click Submit

3. You will be notified by email when your CSR has been approved or rejected.

o fle selected

NI 4

OEBPS/images/9781118007594-fg1632_fmt.jpeg
®00

M. Instruments5 (=)
0OO) N CTr—
Record Target Range View Library Search

Automation

O (1]
M Automation =
wSeript |

F_

¥ Run on Record
Stop Script) (_ Start Script)

v Screenshot
Take Screenshot Now
¥ logging
[Continuously Log Results
Choose Location...

var target = UIATarget.localTarget(
var thisApp = target.frontMostApp();
var isWi = thisApp inWi):

var textfields = thisWindow.textFields();
UIALogger.logMessage("Text fields: “+textfields.length);
if (textfields.length != 1) {

UIALogger. logFail("Incorrect number of text fields"
} else

UIALogger. logPass("Correct number of text fields");

OEBPS/images/9781118007594-fg0424_fmt.jpeg
myCleverApp
1 target, iOS Device SDK 4.1

v] Classes
|| myCleverAppAppDelegate.h
| | myCleverAppAppDelegate.m
| | myCleverAppViewController.h
| myCleverAppViewController.m
v (] Other Sources
|| myCleverApp_Prefix.pch
| main.m
v (] Resources
| | myCleverApp-Info.plist
| InfoPlist.strings
| | MainWindow.xib
| | myCleverAppViewController.xib
| myCleverApp...ler.xib (English)
v (] Frameworks

» (] UIKit.framework

» (L] Foundation.framework

» (L] CoreGraphics.framework

Build myCleverApp: Succeeded | Yesterday at 21:26

5 myCleverapp
TARGETS
myCleverApp

| info | Build Settings Build Phases Build Rules
v Custom iOS Target Properties

Key Type Value

Localization native development region String en

Bundle display name String ${PRODUCT_NAME}

Executable file String ${EXECUTABLE_NAME}

Icon file String

Bundle identifier String jia.com. ${PRODUCT_NA!
InfoDictionary version String 6.0

Bundle name String ${PRODUCT_NAME}

Bundle OS Type code String APPL

Bundle creator OS Type code String m

Bundle version String 1.0

LSRequiresIPhoneOS Boolean YES

Main nib file base name String MainWindow

v _Document Types (0)

No Document Types

v _Exported UTIs (0)

No Exported UTls

v Imported UTIs (0)

PRNS

+ | OREQ

Add Target

e+

OEBPS/images/9781118007594-fg0408_fmt.jpeg
"

ct, contains
In Project
Find text containing “myClever"
Find text starting with “myClever"
In Project and Frameworks
Find text containing “myClever"
Find text starting with *myClever”

“myClever”, ignore case

Q)

Build myCleverApp: Succeeded | Today at 19:54
No Issues

myCleverAppAppDelegate.m
myCleverApp

Created by Richard Wentk on 17/10/2010.
Copyright (c) 2010 Skydancer Media Ltd. ALl rights reserved.

#import “myCleverAppAppDelegate. h"

#import “myCleverAppViewController.h"

1 ion myCl gats

@synthesize window;

@synthesize viewController;
- (80OL) TApplication
E’Mq *) {

// Override point for customization after application launch.

[window addSubview:viewController.view];
[window makeKeyAndVisible];
return YES;
- (void)applicationWillTerminate: (UTApplication *)application {

/7 save data if appropriate.

- (void)dealloc {
[window releasel;

[viewController releasel;
[super deallocl;

@end

OEBPS/images/9781118007594-fg0513_fmt.jpeg
PROJECT

|| myCleverApp

Choose

Finished running myCleverApp

5 myCleverApp

and libraries to add:

@l

)

hnu | Build Rules

TARGETS

myCleverApp

» Compile Sources (3 items)

(] Device - i0S 4.1
&% Accelerate.framework

| v Link i ib (€]

(1 UIKit.framework

€% AssetsLibrary.framework

[~

ol

» Copy Bundle Resources (3 if

| bundlel.o

(Add Other...)

= CFNetwork

= CoreAudio.framework

= CoreData.framework

&% CoreFoundation.framework
&% CoreGraphics.framework
= CoreLocation.framework
= CoreMedia.framework

e e

<> ¢

(cancel) |

5)

%]
Required 5
Required 5
Required §

Add Target

OEBPS/images/9781118007594-fg0611_fmt.jpeg
CryptoExercise

<|» ||+ [[Tnups/ apple.com/library/ i ode/Ct i ion/Intro.html ¢ | (Q~ apple developer
m
OS Reference Library
* bl of Contets
T
About CryptoExercise - Next
Readmert CryptoExercise
main.m
Classes/AppDelegate.h
Classes/AppDelegate.m Last Revision: Version 1.2, 2009-05-13
Classes/CryptoClienth Adopted iPhone OS 3.0 UlTableView and UlTableViewCell APIs. Added check for
VP availability of WiFi network. Made minor bug fix in hash computation.
Classes/CryptoClient.m (Full Revision History)
Classes/CryptoCommon.h
Classes/CryptoServer.h Build Requirements: Mac OS X 10.5.6, Xcode 3.1.3, iPhone OS 3.0
Classes/CryptoServer.m Runtime Requirements: Mac OS X 10.5.6, iPhone OS 3.0 (Device *Only*)
Classes/CryptoServerRequest.h
Classes/
Crynmsarverﬂgqu:s-!.m This sample demonstrates the use of the two main Cryptographic APl sets on the iPhone OS SDK. Asymmetric Key
Classes/KeyGeneration.h Encryption and random nonce generation is handled through the Security framework APl set, whereas, Symmetric
Classes/KeyGeneration.m Key Encryption and Digest generation is handled by the CommonCrypto APl set. The CryptoExercise sample
Classes/ brings both of these APIs together through a network service, discoverable via Bonjour, that performs a "dummy"
L cr hic protocol between devices found on the same subnet.
Classes/
LocalBonjourController.m Next
Classes/SecKeyWrapper.h
R T B © 2009 Apple Inc. All Rights Reserved. (Last updated: 2009-05-13)
Classes/ServiceController.h
Classes/ServiceController.m
Ravision History Did this document help you? Yes It's good, but.. Not helpful...
Shop the Apple Online Store (1-800-MY-APPLE), visit an Apple Retail Store, or find a Mailing Lists RSS Feeds
reseller.
Copyright © 2010 Apple Inc. All rights reserved. ~ Terms of Use Privacy Policy

~ iOS Dev Center » iOS Developer Library » Framework » Core OS Layer » Security g

OEBPS/images/9781118007594-fg1518_fmt.jpeg
Running Breakpmm'res(

read 1
¥ ¥ com.apple.main-thread

0 ~[BreakpointTestAppDele...

B3 1 _nsnote_callback

[19 NsapplicationMain
20 main

. Thread 2
” ¥ com.apple.libdispatch-man...
» ¥ Thread 3

1/ B
// BreakpointTest

// Created by Richard Wentk on 26/12/2010.

/7 Copyright 2010 Skydancer Media Ltd. ALl rights reserved.
"

#import “BreakpointTestAppDelegate.h”
@inplementation BreakpointTestAppDelegate

@synthesize window;
_ ¥ BreakpointTestAppDelegate.m:19

Condition x 21

ignore 5 |[2) time(s) before stopping

Action Click to add an action

Options (] Automatically continue after evaluating actions

1 (_Done)
] » 2 & & | .BreakpointTest) ¥f Thread 1)
Ao @ | AlOutput s (Glear) (1

» [aNotification = (NSConcreteNotification *) 0x134b50 NSAppli...

MWi=@n)5
» [} self = (BreakpointTestAppDelegate *) 0x427730

GNU gdb 6.3.50-20050815 (Apple version gdb-1511) (Mon Nov
1 07:29:41 UTC 2010)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public
License, and you are

welcome to ch-nge it and/or distribute copies of it under
ccrtlxn condltluns.

Type “show copying” to see the conditions.
There is absolutely no warranty for GDB.
warranty" for details.
This GDB was configured as
ttys001

sharedlibrary apply-load-rules all
[Switching to process 99931
2010-12-27
2010-12-27

Type “show

“i386-apple-darwin”.tty /dev/

o
525
2010-12-27 02:52:26.529
2010-12-27 02:52:26.546
(gdb)

0f] Count:

OEBPS/images/9781118007594-fg1320_fmt.jpeg
en6 TestFlight | iOS beta testing on the fly
(<[>] [[Bhup:/ festfightapp.com/ ¢] (Q- ightpatn os.
m

TestFlight

i0S beta testing on the fly LogIn Support Blog [Followus

Drag your IPA here Email yourself and others Real-time counter

- ool I8

Serioushy,
try 2! /Q

Wateh it!

By dragging a file you agree to 705 and P * Thanks Apple, for building the tools to make magic possible

OEBPS/images/9781118007594-fg1616_fmt.jpeg
Category: NSObject
Type: Malloc
Pointer:

X G (1] S ———

+) EH statistics $) Object Summary) NSObject

Wi Allocations
Object Address
0 Ox4e25e40
1 0x4b3bbb0
2 0x4b37320
3 0x4b3f8b0
4 Ox4b3fafo
5 0x4e258d0
6 0x4e09200
7 0x4e25b00
8 0x4b36430
9 Ox4e25a80
10 0x4b3cbf0
11 0x4b3cc00
12 0x4b39020
13 0x4b39030
14 0x4e27010
15 0x4e27020
16 0x4e27030
17 0x4e27040
18 0x4e27050
19 0x4e274c0
20 Ox4e274d0
21 Ox4e274e0
22 Ox4e274f0
23 0x4e27500
24 0x4b3cb50
25 0x4b3cb60
26 0xah3ch70

Creation Time Live Responsible Libraryw |Responsible Caller
00:10.843 . UIKit ~(UINib instantiateWithOwner-options:]
5 = Do)
00:12.878 + Memoryleak ™ L timerDo)
00:33.013 + Memoryleak ~[MemoryL timerDo]
00:33.877 + Memoryleak ~[MemoryLeakAppDelegate timerDo]
00:34.877 + Memoryleak ~lMemoryLnkAppDe!egae timerDo)
« Memoryleak M timerDo)
00:36.877 + MemoryLeak [MemoryL timerDo)
00:37.877 + Memoryleak ~[MemoryLeakAppDelegate timerDo]
00:38.877 * Memoryleak -lMemoryLukAppDelegile timerDo)
00:39.877 . yLeak timerDo)
00:40.879 + Memoryleak M timerDo)
00:41.877 + Memoryleak - MemoryLukAppDelegale timerDo)
00:42.877 . L timerDo)
00:45.291 + Memoryleak L timerDo]
00:45.879 . ~[MemoryLeakAppDelegate timerDo]
00:46.877 . ~[MemoryL:akAppDelegne timerDo)
00:47.877 . timerDo]
00:48.877 . L timerDo)
. gate timerDo)
. -(MemochakAopDekg:u timerDo]
00:51.877 . timerDo)
00:52.877 . -lemoryLnkAapDelegale timerDo)
: . —lMemoryLukAppDelegne timerDo)
00:54.877 . yL timerDo]
00:56.313 + Memoryleak -[Me L timerDo]
0056 878 + Memorvi eak ~IMemarvl eakAnnDeleaate timerDal

1l

<

Retain Count: 1
Size: 16

v
16 [5 [st
15 fm) . it ¥ Source Location

10 UIAplecanon ¥ Library Name
v Frame #
13 [[7] GseventRun.| ¢ File Icon

12 [7 GSEventRuny

Invert Stack

Trace Call Duration
Lookup API Documentation

11 [[CFRuntoopR|
= Copy Selected Frames

Stack Trace - Q

Y D CFRunLOOPRI

93 D __CFRunLoopRun

CoreFoundation

CoreFoundation
] —CFRunLoopDoTimer

CoreFoundation
7 [[—CFRUNLOOP_IS_CALLING_OUT_TO_A TIMER_CALLBA...
= ‘oreFoundation

. D __NSFireTimer

Foundation
5 [m| [-IMemoryLeakappDelegate timerDo]

4 [[+INsObject(NSObject) alloc]
CoreFoundation
Iy n +[NSObject(NSObject) allocWithZone:]
undation

2y E class_createlnstance

A.dylib
1 [[5] -internal_class_createlnstanceFromZone

libobjc.A.dylib
o[E calloc

libSystem.B.dylib

OEBPS/images/9781118007594-tbbappa1.jpg
Table A.1 Selected Important Compiler Settings

Application

Notes

Basic composition

Graphic animation

Graphic transition
Image filter

Music visualizer

RSS visualizer

Screen saver

Mesh filter

A blank composition with a frame store timer.

An open-ended animation template that can create 2D and 3D moving backgrounds. The animations
can be used in Mac applications such as Keynote.

Atemplate for customized transition effects that can be used in Final Cut Pro.
Atemplate for image filter effects that can be used in Mac applications such asiChat and iPhoto.

A sound-to-animation template that takes frequency bin information from iTunes or a live audio
input and converts it into color and movement.

Atemplate that can parse and display RSS feeds, converting them into plain text and/or
sophisticated animations.

A screen saver template. The sample project copies the screen and rotates the colors in the
copied image.

A composition that modifies a 3D mesh. This is an advanced effect use in OpenCL development.

OEBPS/images/9781118007594-fg0818_fmt.jpeg
000 B (=]

@ @ @J (=) Build I8: Succeeded | Yesterday at 00:17

No Issues
1 IBViewController.xib [+
= <« > || 'l,l).ksmlmes)"‘lemnun.x&b,)‘dﬁﬂJerum-mm |8
'ﬁl.nrgu,xossmu — S
v (] Classes
D IBAppDelegate.h Traditional Chinese y
. 1BAppDelegate.m i AAAAAAAARZ
memz-; = — CCCCCDDEIEE
R x EEEEEECGCGG
et X ARTITTTTT]! !
» [21] Other Sources 4 Ghen Iujl,(u:l.zuﬂ
v (] Resources " NNNNOOOOOO
| 18-Info.plist ¥ Miscellaneous 06 6 GERRRS & s
v | InfoPlist.strings ® Crosses SSTTFTUUOO
S:’n * Stars/Asterisks ‘ 9 g GOOUWY Y 9‘:'
v [Mnindowsib | oo Eteint
B QDescription & code) (Insert)
¥ | IBViewController.xib Y
[en —
v (] Frameworks o B | i
’;ummm I_]
& Foundation.framework .
:‘CF:e::muhmm e
» (L] Products
+| o@E Q@)| B3| T T

OEBPS/images/9781118007594-fg0907_fmt.jpeg
000
>)(m

L8 =
ey Build 1B: Succeeded | Yesterday at 23:34 - =
S
|7 @ &4 = ®» @ [@ « > 8 [IC. Bvewcontollerm) []-tableviewdidselectRowAtindexpath: | B

= l.largel, i0S SDK 4.2
v [Classes
B IBAppDelegate.h
| 1BAppDelegate.m
| | 1BViewController.h

» [__| Other Sources
v (] Resources
| 1B~Info.plist
| | InfoPlist.strings
| MainWindow.xib
| 1BViewController.xib
» (] Frameworks
» (] Products
+ | OREQ

@implementation IBViewController

- (void)tableView: (UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath) indexPath {
NextViewController *nextViewController = [[NextViewController
alloc] initWithNibName:@" Nib name " bundle:nill;
// Configure the new view controller.

[self.navigationController pushViewController:nextViewController
animated: YES];
[nextViewController releasel;

// The designated initializer. Override to perform setup that is
required before the view is loaded
- (id)i (NSString *
nibBundleOrNil {
if ((self = [super initWithNibName:nibNameOrNil bundle:

il bundle: (NSBundle *)

nibB
3 1"
“ontroller delegate: 'on selection

return 4| | {)] 0T

*/
- (void)tableView: (UITableView *)tableView

/% didSelectRowAtIndexPath: (NSIndexPath *)indexPath {
// Implement NextViewController *nextViewController =

without [[NextViewController alloc] initWithNibName:

 (void)load @ Nib name " bundle:nill;
3 // Configure the new view controller.
*/
[self.navigationController pushViewController:
nextViewController animated:YES];
I* [nextViewController releasel;
// Inplement
typical
- (void)viey
[super

} ——
*/ (Edit)

(_ Done

J

// Override to allow orientations other than the default portrait
orientatio

¥ Quick Help

No Quick Help

.

LT Shich keys, when modified, affect..

Core Data: Fetch with a

‘ Predicate - This will fetch managed
objects that meet given criteria.
Objective-C Class

‘ Implementation - Used for
implementing a new Objective-C...

for saving a block to a variable so we

‘ C Inline Block as Variable - Used
«can pass it as an argument multiple...

allows you to navigate to another...

- (!OOL)shculdlu(orn(at!ToXn(erfaceﬂrlen(ltlon:(UIInterflczﬂrlenlition) ‘;

interfaceOrientation
// Return YES for supported orientations

v (Q

Objective-C KVO: Observe
‘ Value For Keypath - Used for
‘customizing behaviour in the...

when there i code that needs to do
cleanup after an exception.

‘ Objective-C Finally Block - Used

Objective-C dealloc Method -
Used for releasing memory that is not
needed for an object once itiis...

PIY |

| GCD: Dispatch Once - sed for

N

OEBPS/images/9781118007594-fgb301_fmt.jpeg
Source code —>

Language parser/
front end

—> (IF code) —>

Code
generator

—> Binary

OEBPS/images/9781118007594-fg1305_fmt.jpeg
[} 1B-Info.plist

| InfoPlist.strings

= MainWindow.xib
IBViewC...oller.xib

» (] Frameworks

» (L] Products

Build Settings

Q)
[Target Dependencies (0 items) |
[Compile Sources (3 items) 8)
| v Link Binary With Libraries (3 items) [X)|
= UIKit.framework Required 5
= Foundation.framework Required 5
& = Drag to reorder frameworks
L3
= =)

)
+ 0RA)

Add Target

‘Add Build Phase

OEBPS/images/9781118007594-fg0103_fmt.jpeg
(] Resources-iPad
[MainWindow-iPad.xib

MessageUl.framework
» 3 Security.framework
» §® SystemConfiguration.framework

@ Project Symbols
» (3] Implementation Files
» (3 NIB Files

|rereeEEE |

UiWebView+SHK.m
UiWebView+SHK.h
‘SHKViewControllerWrapper.m
SHKViewControllerWrapper.h
SHKTwitterForm.m

-(void)

o
< » [RootViewController.m:630 ¢ [-keyboardWillHide %

finishEmail {

thisAppDelegate = [[UIApplication sharedApplication] delegate];

theURL =
item

[NSURL URLWithString:theTextView.text];
= [SHKItem URL:theURL title:thisAppDelegate.likeString];

[self shortenURL];

if ([MFMessageComposeViewController canSendText]) {

} els

mailController = [[MFMailComposeViewController alloc] init];
NSLog(@"%@", mailController);

[mailController setSubject: thisAppDelegate.likeString];
[mailController setMessageBody:[item customValueForKey:@"shortURL"] iSHTML:N
mailController.mailComposeDelegate = self;
hiddenFlag = YES;
[[NSNotificationCenter defaultCenter] removeObserver:self];
[self presentModalViewController: mailController animated: YES];
I [mailController release];

e {
infoAlert =

[[UIAlertView alloc] initWithTitle:
message:

delegate: n

cancelButtonTitle:
otherButtonTitles:

@"uh oh. 1
@"You can't send email from
nil

e ("
nill;
[infoAlert show];

[infoAlert release];

OEBPS/images/9781118007594-fg1702_fmt.jpeg
v (] Supporting Files.
[} UnitTest-Info.plist
| InfoPlist.strings.
[h] UnitTest-Prefix.pch
{m main.m
v (] UnitTestTests
[h] UnitTestTests.h
m] UnitTestTests.m
» (] Supporting Files

7] UnitTestTests.octest

PROJECT
1 UnitTest
TARGETS
oA UnitTest
W UnitTestTests

Info | BuildSettings | Build Phases Build Rules
Basic @D | Levels Q-
Setting [UnitTestTests T
Additional SDKs
Architectures Standard (armv6 armv?)
Base SDK Latest iOS (i0S 4.3) ¢
Build Active Architecture Only No ¢
Supported Platforms iphoneos iphonesimulator
Valid Architectures armvé armv7
¥ Build Locations,
Build Products Path build
Intermediate Build Files Path build

¥ Per-configuration Build Products Path
Debug
Release

¥ Per-configuration Intermediate Build Fi...

<Multiple values>
build/Debug-iphoneos
build/Release-iphoneos
<Multiple values>

Debug build/UnitTest.build/Debug-iphoneos
Release build/UnitTest.build/Release-iphoneos
Precompiled Headers Cache Path / ip/ip TI/-Caches-...
¥ Build Options
Build Variants normal
Debug Information Format DWARF with dSYM File ¢
Enable OpenMP Support No:
Generate Profiling Code No:

Precompiled Header Uses Files From B...

Run Static Analyzer
Scan All Source Files for Includes
Validate Built Product

v Code Signing

Code Signing Entitlements.
¥ Code Signing Identity

Don't Code Sign &

«»(

Y

+ 0ORGB®)

‘Add Target

Add Build Setting

OEBPS/images/9781118007594-fg1120_fmt.jpeg
Organizer - Devices

= B O

Devices Repositories Projects Archives Documentation

LIBRARY
Devels Profil H
L Deselopes brofie iPhone

Capacity 15.03 GB

¢ Software Images e

; Device Logs Model iPhone 4
@ Screenshots
Serial Number 830274TDA4S

DEVICES

ECID 2169329495374
Identifier e7e6254d29ed6234783ab19ee64601385f4ee9c6

(1] Provisioning Profiles

Software Version | 4.2.1 (8C148) 4| | Restore iPhone
4 Applications

8 Console

. Device Logs

@ Screenshots Provisioning AName, Team Provisioning Profile: * ©

iPhone)

4.1 (88117) Applications

Car Finder, Hu, Locater, MemoryLeak, Tango, WinNumbers, ZettaClock, Zombies, fonts, uSha, uToomiPro ©

. Device Logs 32 FairPlay-encrypted applications

 Screenshots
iPod

4.1 (88117)

. Device Logs
Screenshots

Device Logs 49 Crash Logs, 5 Low Memory Logs ©

Screenshots 4 screenshots ©

Add to Portal Remove

OEBPS/images/9781118007594-fg0208_fmt.jpeg
8en0e6 Mac Dev Center - Apple Developer

+ ([http://developer.apple.com /devcenter/mac/index.action ¢ (Qr Google

- DeVeIOper Technologies Programs Support Member Center Q evelor

Mac Dev Center Mac Dev Center

Hi, Guest Register Log In

Log in to get the most out of the Mac Dev Center.

The Mac Dev Center provides access to technical resources and information to assist you in developing with the latest technologies in Mac OS X. Log in with
the Apple ID and password you used to register as an Apple Developer, or register for free today.

Developing for Mac OS X Snow Leopard Program Member Resources

Technical Documentation Featured Content Mac App Store
Mac Developer Program members.
Access a range of resources to help

Mac OS X Reference Library W Mac OS X Technology Overview

o Articles « Release Notes ; o You prepare and submit your apps to
o Getting Started o Sample Code W9 ‘What's New i Mac OS X the Mac App Store. Log in »

« Guides o Technical Notes W What's New in Xcode

* Reference o Technical Q8As W Concurrency Programming Guide

W Get Your Mac Apps Ready for the Mac App Store

Development Videos

« Mac Development + WWDC 2010
Downloads Mac 05 X Lion
Mac Developer Program members can
- Xcode 4 download pre-release versions of Lion
This complete developer toolset for creating Mac, iPhone, and iPad apps includes the Xcode IDE, and start designing apps with a range
performance analysis tools, iOS Simulator, and the latest Mac OS X and iOS SDKs. of new features and capabilities. -
: .
Log in »

e ——

OEBPS/images/9781118007594-fg0411_fmt.jpeg
CID o vee

App
Y Zissues °
v Mkvtrwbd!m

O Expected *
Expected upnsslon before ‘@' token

Format not a string literal and no format arguments
Format not a string literal and no format arguments

o0 @)

myCl
// myCleverApp
1"

// Created by Richard Wentk on 17/18/20
// Copyright (c) @ Skydancer Med
1"

. AL rights reserved.

#import “myCleverAppAppDelegate. h"

#import “myCleverAppViewController.h"

ion myCl gats

@synthesize window;
@synthesize viewController;

- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions

// Override point for customization after application launch.

[window addSubview:viewController.view];
[window makeKeyAndVisible];

NSLog (@This line creates a build issue); —
' return YES;

- (void)applicationWillTerminate: (UIApplication *)application {

// Save data if appropriate.

- (void)dealloc {
[window releasel;

[viewController releasel;
[super deallocl;

@end

OEBPS/images/9781118007594-fg1629_fmt.jpeg
1oz [EcE]) (=)

| ¥ Custom Class
Class | UlTextField Ol

v _Identity
Label | Xcode Specific Label
4 MainWindow.xib
) xBULUUeww

automationViewController.h
‘automationViewController.m Object ID | 8
Lock |_Inherited - (Nothing) B
Notes (] Show With Selection

v

Accessibility ¥ Enabled
Label | theTextField]
Hint

Traits [Button O Link
O Image O selected
(O Plays Sound
(J Keyboard Key
(] static Text
() Summary Element
™ User Interaction Enabled
() Updates Frequently
(] search Field

€

+ OR6® PIFCTI o € Yy <>

OEBPS/images/9781118007594-fg0624_fmt.jpeg
D e A DT S e

.Q, http://stackoverflow.com/questions/tagged/iphone+ios+uiview = ¢ | (Qr uiview

-~
= | stackoverflow

Tagged Questions newest | featwred hot votes active
1 How to rotate two UlView's? 2
| created a app with the iOS 4.1 SDK. In this app | did the following: | add two UIView's as subview to the

V° Window of the Application. One view is a navigationcontrollerview and the other is a :mv 12 - questions
iphone | uiview | ios| ios4 | rotation asked Nov 12 at 8:
N 0 e e o v
34 views o 10127

o Passing object data with UlButton press

I've created a custom UlIView class FormDropdown, which contains a question & button in the nib. In the ARE A 51
votes class is also an NSArray property which is supposed to store the various options for the ...

iphone | objective-c| uiview M uibutton asked Nov 8 at 11:59
cannyboy
32 views 976 =416

3 How do | build a calculator-style number input field in i0S?
| already know how to enable the numeric keyboards and validate the field input to ensure it's numeric. What |
votes want to know is how to set up an input view that'l let my user enter a number value from ...

Jphone | uview| fos| uitextiield asked Nov 4 at 21:44

David Demaree
61 views 148 +5
o How to requeue request for UIView drawRect for manual “Animations” up grade your
| am trying to do some manual "Animation" within a Ulview. | put "Animation" in quotes, in that | am trying to career today

votes animate movement and display of arbitrary elements which | control - rather than clear ...

Jphone | ipad | uiview| ios | Bke0 NN 294 0:43 PLISQL Software Development e

P Brad Engineer at Terra Technology £
SN 2,487 <2012 (Sch IL; Seattie, WA;

33 views

OEBPS/images/9781118007594-fg1333_fmt.jpeg
. BuildSettings
1 target, iOS SDK 4.2
libA Framework.a
v (] BuildSettings
|h| BuildSettingsAppDelegate.h
|m] BuildSettingsAppDelegate.m
4 MainWindow.xib
[h| BuildSettingsViewController.h
|m] BuildSettingsViewController.m
~ BuildSettingsViewController.xib
Supporting Files
v (] A Framework
(] Supporting Files.
[h| A_Framework-Prefix.pch
|c| DoNothing.c
[h] DoNothing.h
» (] Frameworks
» (] Products

+ 0ORGB®

B = oj =)

Running BuildSettings on iPhone Simulator

No Issues.

| < > | [YBuildsettings

PROJECT Summary Info Build Settings Build Phases |
[BuildSettings D Target Q

g
g
2
z

TARGETS
& A Framework

v CopyPlistile

Process: text.plist opy to Target
Using: CopyPlistFile

v CopystringsFile
Process: Localization string files to Target
Using: CopysStringsFile

i I

v CopyTiffFile

Process: image.tiff Copy to Target
Using: CopyTiffFile

v DTrace

Process: DTrace source files Copy to Target
Using: DTrace

v Data Model Compiler (MOMC)

Process: Data model files
Using: Data Model Compiler (MOMC)

o

opy to Target

v Core Data Mapping Model Compiler (MAPC)

Process: Mapping model files Copy to Target
Using: Core Data Mapping Model Compiler (MAPC)

v Data Model version Compiler (MOMO) |
s {

i

Add Target Add Build Rule

2 & % |Buildsettings

OEBPS/images/9781118007594-fg0713_fmt.jpeg
K X

» |, » |h]IBViewCo...) No Selection | Bl

1BViewController.h
18

Creat
11/2010.

// Copyright 2018 Skydancer Media
Ltd. ALl rights reserved.

by Richard Wentk on 23/

1"
#import <UIKit/UIKit.h>

@interface IBViewController :
UIViewController {

@end

Cass[uvew Ol

v Identity
Label | Xcode Specific Label
XBWLewwe
obean 6
Lock [_Inherited - (Nothing) &
Notes (] Show With Selection

g
z

o =

Label - A variably sized amount of
Label caicien 3

Segmented Control - Displays
multiple segments, each of which
functions as a discrete button.

Text Field - Displays editable text
Text | and sends an action message to a
\ target object when Return is tapped.

-
Slider - Displays a continuous range |4
of values and allows the selection of v

Q Y

OEBPS/images/9781118007594-fg1203_fmt.jpeg
[} 1B-Info.plist
| InfoPlist.strings
4 MainWindow.xib
1BViewC...oller.xib
v (L] Frameworks
UIKit.framework

» §= Foundat...mework

» i CoreGra... mework
» (] Products

PROJECT
\ 1B
TARGETS

AB

Build Settings
Targets in this project can run on i0S | 4.2) and above
v Configurations
Name Based on Configuration File
» Debug No Configurations Set
» Release No Configurations Set
+ -
Command-ine s use
¥ Localizations
Language Resources
English 3 Files Localized
ok

)
+ 0RA)

Add Target

OEBPS/images/9781118007594-fg1108_fmt.jpeg
 http://developer.apple. (omIlosImamge/(emﬁ(a(eslteamldlsmbule action?actionName=distrib. & | [Q~ Google

‘ Developer Technologies Resources Programs Support Member Center (Q Scarch Developer
iOS Provisioning Portal Welcome, Richard Wentk | Edit Profile | Log out
P Portal : Media Go to i0S Dev Center
Home
m Development Distribution History How To
Devices L . .
Current Distribution Certificate
App IDs
Provisioning Name Expiration Date Provisioning Profiles Status Actions
Distribution || v Skydancer Media Pending Issuance

*If you do not have the WWDR intermediate certificate installed, click here to download now.

a
v

OEBPS/images/9781118007594-fg0419_fmt.jpeg
Finished running myCleverApp

nie|

-
1 b2 Hell
// myCleverAppAppDelegate.m | ek Help .
;I myCleverApp Name: view |
A Declaration: @roperty(nonatomic, retain) UIView =view | »
// Created by Richard Wentk on 17/108/2@ & a
// Copyright (c) Skydancer Media L Availability: i0S (2.0 and later) +
reserved.
1"
#import "myCleverAppAppDelegate. h" ([l Fite Template Library ™ =S
#inport "myCleverAppViewController.h"
| Objective-C class - An Objective-C class with a header
inpl ion mycl obic
@synthesize window; & UlViewController subclass - An Objective-C view controller subclass
@synthesize viewControllar; L)
- (BOOL)application: (UIApplication *)application FS“ i :
didFinishLaunchingWithOptions: (NSDictionary) ot Objective-C NSObject category - An Objective-C category on NSObject
launchOptions (o]

// Override point for customization after

application launch. Objective-C protocol - An Objective-C protocol

[window addSubview:viewController.view]l;
[window makeKeyAndVisible];

return YES; Objective-C test case class - An Objective-C class containing an OCUnit test case with a header

- (void)applicationWillTerminate: (UIApplication *) CFile - A C file with a header file
application {

// Save data if appropriate. N
C++ File - A C++ file with a header file

- (void)dealloc { —

[window release]; Header -
[viewController releasel; SisgAn ey b e
[super dealloc]; S—

Application - An Interface Builder document suitable for creating an iPhone/iPod Touch application, -

@end including an application delegate and window.

OEBPS/images/9781118007594-fg1517_fmt.jpeg
(.

») (m) (1B (Phone Simulat... 3

Running IB on iPhone Simulator

Project @1

e A= e W4 > 1) J§ Oxbfffd7a8
r—— BFFFD7AB FB D7 FF BF A3 BA CC 00 9C 34 00 @0 BC 05 OC 08 FB D7 FF BF 5€ 86
BFFFD7BE AC B9 70 2E E3 A4 9E 64 43 BA ES D7 FF BF 1A AS CB 0@ 9C 34 08 69
S BFFFD7D4 03 26 42 60 B1 00 B0 00 60 PP 00 B9 A0 33 DB 0 79 1A 42 0@ 18 0B
b e i BFFFD7EA FF BF A3 8A CC 69 CB 21 69 89 78 37 E3 04 18 DB FF BF 05 22 00 00
[0 -[1BViewController viewDidLoad) BFFFD30 70 2E E3 64 B3 26 42 00 60 DA 60 B0 01 60 B9 00 7D 2D 61 BA D7 CA
[1 -(uIViewController view] BFFFDS16 EF B9 85 D8 FF BF FA 31 61 B9 FA 24 E3 04 BA 32 42 0O BA A6 B1 B4
2 BFFFDS2C 0 B9 0@ 60 14 3D F3 00 99 94 BL B4 83 D& FF BF 55 49 61 BA (A 42
O BFFFDE42 E3 B4 D9 BB CC 09 B9 9D B1 PA 00 B9 09 69 B9 08 BO PA ES 2€ 53 69
2 = BFFFDE53 78 DB FF 6@ 0@ 60 69 00 60 PR 00 A9 00 00 BY 0 B1 0A 68 B1 0 69
[15 uiApplicationMain BFFFDSGE 00 B9 50 3C B1 4 CA EE 60 B9 ES DS FF BF B5 53 B1 00 1 09 00 69
16 main BFFFDS34 BA A6 BL 64 ES D3 FF BF 5E 55 A1 B0 BO 46 BL 04 79 1A 42 B9 00 69
o BFFFDSA 00 B9 0O 69 PR 0 B9 09 62 PA 56 E3 5A 88 E8 D8 FF BF CC F7 01 69
> ¥ m“"‘ O — BFFFDSBA 00 B9 0 63 A7 A0 B9 00 D3 DS FF B9 0O 00 07 0 B1 0A 68 07 08 69
A2ppe ot = BFFFDSCE 00 69 |p0 62 B9 0 B9 09 60 BA A6 B1 P4 57 FA 41 B9 E5 D9 FF BF CC
» ¥ Thread 3 BFFFDSDC F7 B1 0@ 6@ AR 60 B9 00 60 PA 0 ES DI FF BF B2 FD A1 68 BA A6 B1
BFFFDSF2 04 E9 19 42 P9 0 69 09 62 B9 00 B9 PO 61 B9 0 B9 PO 68 PP 00 69
" BFFFD903 06 B9 0A 62 1F 98 94 A4 33 DB 00 B9 00 0@ BA 68 15 14 12 DA 14 DE
R BFFFD91E 0O 1B 09 0P B2 63 6 00 00 A1 B9 B0 6 00 00 PO B9 B 6B B2 04 58
BFFFDI34 E3 5A 0@ 78 D9 FF BF 07 96 CB 0 AD 33 D& DA FC BA B2 64 83 D9 FF
+ il Memory BFFFDS4A BF B9 0O 60 B9 0 B9 09 60 55 E3 5A 09 7C 19 98 94 6D DF CB 00 FE
o BFFFDI56 FF FF_FF 20 38 D3 B9 78 D9 FF BF 68 A6 CE DA 6B A6 CB 08 B5 F7 61
Bxbfffd7a8 C<I»] (&) (512
Address Memory Page Lock Number of Bytes
= » 2 % & | AB) ¥Threadl) ~[1BViewController viewDidLoad)
Local § Q

B =

[} _emd = (struct objc_selector *) 0x43649e
¥ [4 objc_super = (struct _objc_super) {...}

¥ self = (id) Oxbfffd7f8

¥ cls = (Class) Oxcc8aa3
» [self = (1BViewController *) Ox4e32e70

OEBPS/images/9781118007594-fg1324_fmt.jpeg
il =

| <« » | [mycoolapp

Finished running mycoolapp

No Issues

ycoolapp
1 target, Mac OS X SDK 10.6 PROJECT
[mycoolapp
TARGETS

|h| mycoolappAppDelegate.h lapp

|m| mycoolappAppDelegate.m
= MainMenu.xib
» (] Supporting Files

| Summary | Info Build Settings Build Phases Build Rules

Mac OS X Application Target

Category | Entertainment

Identifier com.mydomain.mycoolapp

MV GOOIL
Version 1
JAEE ApprunsonMacOSX 106 [andabove
Main Interface MainMenu %)
App Icon
| ¥ Linked Frameworks and Libraries

= Cocoa.framework Required 5

+ ORAG(® Add Target

OEBPS/images/9781118007594-tbbappb2.jpg
Table B.2 Key Value Edit

Single/

Key Type Multi-Value Editing Operation

Boolean Single Double-click and use the menu to select YES or NO.

Data Single Double-click and enter an XML data value—for example, a string with arbitrary contents—
between the angle brackets. The format and meaning of the data type is context-dependent.

Date Single Double-click and enter a date and time string. Dates are checked for validity before the edit is confirmed.

Number Single Double-click to enter an integer or floating-point number in string form. Invalid entries (text) are
set to zero.

String Single Double-click value to enter a new string.

Array Multi Use the +and - icons to add and remove key/value pairs. Set the type for each and edit as above.

Use the reveal triangle to view the hierarchy.

Dictionary Multi Use the +and - icons to add and remove key/value pairs. Set the type for each and edit as above.
Use the reveal triangle to view the hierarchy.

OEBPS/images/9781118007594-fg1422_fmt.jpeg
Add a Repository
You may specify the location using either a URL or local file path.

Location |scheme://host
) No host

Tvee

OEBPS/images/9781118007594-fg0615_fmt.jpeg
~ Topics
Mathematical Computation
Tools & Languages.

Data Management
General
Graphics & Animation
Networking & Internet

|

AVFoundation

| « | » | [+][I ntep://developer.apple.com/library/ios /navigation /index. html#section=Topics&topic=Audio%2(&

IDowments 184 of 1140 (@ 0) [z]

we o lbeowedseslToc [fomewk Jowe

Audio

» Audio & Video Coding How-To's Coding How- Audio & Video 2010-06-04
Tos Minor Change

» Getting Started with Audio & Video Getting Started Audio & Video 2010-07-09
Minor Change

» Audio Queue Services Programming Guide Guides Audio & Video AudioToolbox 2010-07-09
Audio Minor Change

» Audio Session Programming Guide Guides Audio & Video AudioToolbox 2010-09-01
Audio Content Update

» Audio Unit Hosting Guide for iOS Guides Audio & Video AudioUnit 2010-09-01
Audio Content Update

» AV Foundation Programming Guide Guides Audio & Video AVFoundation 2010-09-08
Minor Change

» Core Audio Overview Guides Audio & Video CoreAudio 2008-11-13
Audio Content Update

» iPod Library Access Programming Guide Guides Audio & Video MediaPlayer 2010-05-21
Audio Minor Change

» Multimedia Programming Guide Guides Audio & Video 2010-09-01
Minor Change

» Audio Component Services Reference Reference Audio & Video AudioUnit 2009-04-24
Audio Minor Change

» Audio Converter Services Reference Reference Audio & Video AudioToolbox 2009-08-31
Audio Minor Change

» Audio File Services Reference Reference Audio & Video AudioToolbox 2009-08-17
Audio Minor Change

» Audio File Stream Services Reference Reference Audio & Video AudioToolbox 2010-02-24
Audio Minor Change

» Audio Format Services Reference Reference Audio & Video AudioToolbox 2009-08-14

Minor Change

-
.
v

_

OEBPS/images/9781118007594-fg1128_fmt.jpeg
8006 Developer Certificate Utility

EE] m[]https:lldevelopev.apple.com/cerriﬁ(ales/nndex.anion#ma(cemequesr [] (Qv Google j
[aa]
.’ Developer Hi, Richard Wentk | Member Center | Log out
eveloper Certificate Utility
Overview

Create Your Mac OS X Signing Certificates

The Certificate Utility will guide you through the steps required to obtain both the Mac Application Signing
ﬁ Wac App 1Ds Certificate and the Mac Installer Package Signing Certificate you need in order to submit your Mac OS X
applications to the App Store.

What kind of Mac OS X Certificate would you like to create?

(Y History

¥ Mac Developer Program

® Mac App Software Certificate

™ Mac Installer Package Certificate

Help and Tutorials ! S

For more information on
submitting your Mac OS X

apps to the App Store view: Cancel (Create Certificate

Get Your Mac Apps Ready for
the Mac App Store

Submitting Your Mac App to
the App Store

Download the WWDR
intermediate certificate

Copyright © 2011 Apple Inc. All rights reserved. Terms of Use | Privacy Policy

OEBPS/images/9781118007594-fg1502_fmt.jpeg
issues
YA D issues o

+ @ issuesAppDelegate.m
» © Semantic Issue
Unknown

receiver ‘NSOBject’; did ...

o
Expected '

owo®)

1"
// issues

// Created by Richard Wentk on 24/03/2011.

Z Copyright 2011 Skydancer Media Ltd. ALl rights reserved.

#import "issuesAppDelegate.h"

@inplementation issuesAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification

// Insert code here to initialize your application

NSObject *theObject = [NSObject alloc initl; O Unknown receiver 'NSOBject’ did you mean NSObject? €3
}

Issue © Unknown receiver 'NSOBject’; did you mean 'NSObject?
@e: Fix-it Replace “NSOBject" with “NSObject’

OEBPS/images/9781118007594-fg0113_fmt.jpeg
TR By Queue
v Thread 1
‘com.apple.main-thread

4 0 -[helloAppDelegate applicationDidFi.

E 1 _nsnote_callback

[319 NsApplicationMain
20 main

v Thread 2
‘com.apple.libdispatch-manager
] 0 kevent
&) s start_wathread
v ¥ Thread 3
[E]0 _workq_kernreturn

ﬂ 2 start_wgthread

Running hello

#import "helloAppDelegate.h"
@implementation helloAppDelegate
@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification {
/7 Insert code here to initialize your application

- (void)dealloc {

window releasel;
[managedObjectContext releasel;
persistentStoreCoordinator releasel;
[managedObjectModel releasel; ve
super deallocl; L3
} v
E ®» 2 & 2t | aheloapp ¥ Threadl
Local % IcY | All Output 3 (Clear) (0
_emd = (SEL) ching: GNU gdb 6.3. sl-zusoazs (Apple version gdb-1505) (Tue

Aug 10 07:2
Copyright 2004 Frez Snfhﬂre Foundation, Inc.
GDB is free software, covered by the GNU General
Public License, and you are

welcome to change it and/or distribute copies of it
under certain conditions.

Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.
warranty" for details.
This GDB was configured as
dev/ttyso
sharedlibrary apply-load-rules all
[Switching to process 4602]

(gdb)

aNotification = (NSConcreteNotification *) 0x247210 NS...
» NSObject = (NSObject) {...}
VI self = (helloAppDelegate *) Ox11bbed
» NSObject = (NSObject) ...}
» window = (NSWindow *) 0x21e9e0
}

‘oordi.
) 0x0
> managedObjectContext = (NSManagedObjectContext *) 0x0

Type "show

“i386-apple-darwin". tty /

OEBPS/images/9781118007594-fg0306_fmt.jpeg
myCoolNewApp iOS Device
iPad 4.3 Simulator
> H Phone 4 ato
Edit Scheme...
New Scheme...
i | IT | Manage Schemes...
s P PROJECT
get, i0S SD
Vi iNewApp 8 myCoolNe...
[h] myCoolNewAppAppDelegate.n TARGETS
|m] myCoolNewAppAppDelegate.m myCool

4+ MainWindow.xib
[h] myCoolNewAppViewController.h
Im| myCoolNewAppViewController.m
 myCoolNewAppViewController.xib
v [Supporting Files
[myCoolNewApp-Info.plist
| InfoPlist.strings.
[h] myCoolNewApp-Prefix.pch
m| main.m
v [Frameworks
» = UIKit.framework
» = Foundation.framework

myCe _l_'_nnd' j)
Xcode
E [eifz]y 1 =] (1
poolieion D e
| summary | Info Build Settings Build Phases v Identity
i0S Application Target Project Name myCoolNewApp
Identifier | skydancermedia.com.myCoolNewApp Location v
myCoolNewApp.xcodeproj
e 1.0 Full Path /Volumes/Developer/+
X4/myCoolNewApp/

Devices | iPhone)
Deployment Target 4.3 =

myCoolNewApp.xcodeproj ©

v _Project Document

v iPhone / iPod Info

Project Format Xcode 3.2-compatible 1)

Organization Skydancer Media Ltd

Main Interface MainWindow

Supported Device Orientations

18

Portrait Upalde undsap:

App Icons.
No No
image image
specified specified
Retina Display
Launch Images

v Text Settings

Indent Using [Spaces 2}

Widths 40 4
Tab Indent
™ Wrap lines
D Ulw =

il code snippet Library 3] (23 15E)

C Block typedef - Used for
defining a block as a type.

(0] :

+ ORB S

Add Target

Clinline Block as Variable - Used
for saving a block to a variable so we
can pass it as an argument multiple...

{}
C typedef - Used for defining a
e.

A}

J<Tot

Q

OEBPS/images/9781118007594-fg0502_fmt.jpeg
|| Animation Test

Welcome to Xcode 4

Project (11

Code Signing
Other

- Mac0S X

Cocoa
Cand C++
User Interface

N
=

|

8
ity

UlViewController
subclass

Objective-C
NSObject category

Objective-C protocol

Objective-C test
case class

Subclass of [NsObject %]

? f* Objective-C class

obj.C

An Objective-C class, with a header that includes the <Foundation/Foundation.h> header.

e
(" Previous)
B

ames/Developer/+

icts/.

1ation Test

S —

ces -
el alf)

Indent
rap lines

h

Z

CFile - AC file with a header file

C++ File - A C++ file with a header
file

Header File - An empty header file

Q Vg

OEBPS/images/9781118007594-fg0808_fmt.jpeg
B

IB (iPhone Simulat.... 5 | | =

IBView.m

IBView.m

Classes

}
return self;

- (void)drawRect: (CGRect) rect {
CGPoint startFill, endFill;

CGContextRef aContext = UIGraphicsGetCurrentContext();
CGContextClearRect(aContext, rect);
CGContextSetShouldAntialias(aContext, YES);

CGColorSpaceRef myRGB
size_t num_locations =
CGFloat locations [3]
CGFloat components [12]
{1.0, 0.0, 0.0, 1.0,

CGColorSpaceCreateDeviceRGB();

{e.0, 0.5, 1.0};

1.0,
CGGradientRef myGradient =
CGGradientCreateWithColorComponents(myRGB,
components,
locations,
num_locations);

CGContextSaveGState(aContext);
CGContextAddRect (aContext, CGRectMake(O,
CGContextClip(aContext);
startFill = CGPointMake(0, 0);
endFill = CGPointMake (320, 460);
CGContextDrawLinearGradient (aContext,

myGradient,

startFill,

endFill,

kCGGradientDrawsBeforeStartLocation+

KkCGGradientDrawsAfterEndLocation);
CGContextRestoreGState(aContext);

0, 320, 460));

CGGradientRelease(myGradient);
CGColorSpaceRelease(myRGB) ;

}

- (void)dealloc {
{super deallocl;
}

Running IB on iPhone Simulator_

Carrier 12:18 AM

amount of

tercepts
in action
t when.

isplays
bf which
tton.

itable text
age to a
is tapped

uous range

an ele

election of

ment

OEBPS/images/9781118007594-fg1306_fmt.jpeg
PROJECT
B

TARGETS

Succeeded | 09/02/2011 at 23:20

No Issues

Treat Missing Function Prototypes as E... No -
Treat Nonconformant Code Errors as ... No -

Treat Warnings as Errors No

Typecheck Calls to printf/scanf Yes ¢

Undeclared Selector No
Automatic Variables No

Summary Info | BuildSettings | Build Phases Build Rules

sasic @D | Combined) @)
Seti A Resolved A8 e [+ ioS Default |
¥GCC 4.2 - Warnings

‘Check Switch Statements Yes @

Effective C++ Violations No &

Four Character Literals No ©

Hidden Local Variables No &

Implicit Conversion to 32 Bit Type No :

Incomplete Objective-C Protocols Yes :
» Inhibit All Warnings No & No

Initializer Not Fully Bracketed No &

Mismatched Return Type Yes :

Missing Braces and Parentheses Yes :

Missing Fields in Structure Initializers No ©

Missing Function Prototypes No :

Missing Newline At End Of File No ©

Multiple Definition Types for Selector No :

Nonvirtual Destructor No ©

Other Warning Flags

‘Overloaded Virtual Functions No ©

Pedantic Warnings No

Pointer Sign Comparison Yes :

Prototype Conversion No

Sign Comparison No

Strict Selector Matching No:

Add Target

OEBPS/images/9781118007594-fgb101_fmt.jpeg
¥ DEVICES
8 eris
1 Macintosh HD
El iDisk
J-d Mac 05 X Install DVD
[e
[l Developer
¥ PLACES
(L] Project Templates
[=EYY
P2 Developer
8 Main
[} Documents
(@i Pictures
[Movies
J3 music

7\ Applications

¥ SEARCH FOR
(L) Today
(L) Yesterday
(L) Past Week
(] All Images
All Movies
(] All Documents

Shared Folder

¥ @ Applications
> [Audio
4 Dashcode.app
» (1 Graphics Tools
@ Instruments.app
» (1] Performance Tools
(3 Quartz Composer.app
¥ @ Utilities
» [Accessibility Tools
¥ Application Loader.app
(L Bluetooth
@ Clipboard Viewer.app
#\ CrashReporterPrefs.app
_' FileMerge.app
‘%7 Help Indexer.app
] Icon Composer.app
4 IORegistryExplorer.app
% iSync Plug-in Maker.app
» ([MacPython 2.5
@ PackageMaker.app
> [Python 2.6
4 SleepX.app
> [speech
1% Syncrospector.app
“. USB Prober.app

4 Macintosh HD + (i3] Developer » (L] Applications » [} Dashcode.app

Date Modified

Today, 19:43

19 March 2011 11:14
19 March 2011 11:36
19 March 2011 11:34
19 March 2011 11:36
19 March 2011 11:34
19 March 2011 11:36
19 March 2011 11:26
19 March 2011 11:14
19 March 2011 11:36
12 February 2011 06:27
19 March 2011 11:36
19 March 2011 11:36
19 March 2011 11:36
19 March 2011 11:36
19 March 2011 11:36
19 March 2011 11:36
19 March 2011 11:36
12 February 2011 00:36
19 March 2011 11:36
12 February 2011 00:39
19 March 2011 11:36
20 August 2009 16:12
19 March 2011 11:36
19 March 2011 11:36

Jear

OEBPS/images/9781118007594-fg1211_fmt.jpeg
@® Run
@ Test

@ erofile

@ Analyze

[} 1BViewController.m

+ OR6(®

(usst ring

(id
if (lseli = [supe
// Custom inituliuuon

return self;
*/
I*

7/ Inplement loadView to create a view hierarchy programmatically, without using a nib.
- (void) loadView {
}

*/

/%
/1 Tnplement viewDidLoad to do additional setup after loading the view, typically from a
nib.
- (void)viewdidLoad {
[super viewDidLoad];

}
*/

/l (’lv:rride to allow orientations other than the default portrait orlentltlon.
- (BOOI faceOr (UIInterfaceOri faceOri

{
// Return YES for supported orientations
return (interfaceOrientation == UIInterfaceOrientationPortrait);

}
*/
= (void)didke:eivalenorywnrnin {
/ Releases the view if it doesn't have a superview.
lsuper didReceiveMemoryWarning];
/1 Release any cached data, images, etc that aren't in use.
- (void)viewDidUnload {
// Release any retained subviews of the main view.
/1 e.q. self.myOutlet = nil;
NSObject *theObject = [INSObject alloc] initl;
}

OEBPS/images/9781118007594-fg0821_fmt.jpeg
8ene [iph iPad - iphoneToiP xib)

- - - Running iphoneToiPad on iPhone Simulator
») (M) |iphoneToiPad | iP... 3| | =

E [eifz]y 1 =] (1

No Issues

% @ A = » B
vB ;pz:‘r'g'::ri:;sngx 43
v (]iphoneToiPad
[h] iphoneToiPadAppDelegate.h
|ml iphoneToiPadAppDelegate.m =
4+ MainWindow.xib 320
[h) iphoneToiPadViewController.h 5 X
m] iphoneToiPadViewController.m
T ller.xib

<4 » | Miphone...) (]) ~) iphoneToiPadViewController.xib (English)) | |View D B 8B | 0

Supporting Files — —

[} iphoneToiPad-Info.plist [1 [2 | j
" InfoPlist.strings. . S |

[h] iphoneToiPad-Prefix.pch
m] main.m

v (] Frameworks

Arrange | Position View ~)
» = UIKit.framework

Autosizing Example

| D% =

(Ll ovjects 22

[Label Label - A variably sized amountof. [

static text.

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when...

[” Segmented Control - Displays
| multiple segments, each of which

— |QIBY ke sermers ool

+ 0ORGB® = =~ & % | iphoneToiPad Q

<>t

OEBPS/images/9781118007594-fg1118_fmt.jpeg
Profiles - i0S

bbbt chooor riet it

uu + ﬂhm)s l/develnpzr apple cnmllos/manage/provlsmnlngproﬁlzs/edtt anlonmvolespIayid:SVWP‘ ¢ [M(Qr Google

(4 Developer

Technologies Resources Programs Support Member Center Q Search Developer

ioS Provisioning pona| Welcome, Richard Wentk Edit Profile Log out
P Portal : Media Go to i0S Dev Center
Home
Certificates Development Distribution History How To
Devices L L
Modify iOS Development Provisioning Profile
App IDs.
| rovsionng [e
Distribution
Certificates ™ Richard Wentk
App ID [ATestapp)]
Devices Select All
(O Aaron Phone (0 AlexaPhone
™ iPhone ™ iPhone 3
™ ipod

Cancel

PR

OEBPS/images/9781118007594-fg1507_fmt.jpeg
L. =

Running IB on iPhone Simulator

Project (11 @1
- | Ll u_uuwm_mmlmu—mm-nmmmm) No Selection |4«0» B
8x94a0d16¢ <+BGBI> mov. $0xc0025, seax
0x9420d171 <+8@@5> call ©x949ac3dB <_sysenter_trap>
0x94a0d176 <+8010> jae 0x94a0d186 <__kill+26> *__ Thread 1: Program received signal: "SIGABRT.
0x94a0d178 <+0012> call 0x94a@d17d <__kill+17>
0x9420d17d <+0017> pop Sedx
0x94a0d17e <+0018> mov 0xbcB9I767 (%edx) , ¥edx
0x04a0d184 <+8024> jmp dx
0x9420d186 <+0026> ret

[= T 3

2 | AlB) ¥ Thread 1) [“]0_kill

All Output +

Type "show copying” to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as

CoreFount

UIKit
UIKit
+ 439
8 UIKit
9 UIKit
10 UIKit

11 GraphicsServices

1

2

3

4 CoreFoundation
5 IB

6

7

ation

12 CoreFoundation

(Clear) (0 [1m JED

“i386-apple-darwin”.sharedlibrary apply-load-rules all

169" resolved
the app loads.
h]: unrecognized lllcetﬂr t to instance lxld279f|
due to *NSInvali , reason: *
.x“z1$f.‘

\C

-, P! + 18!
0x00cbb5c2 objc_exception_throw + 47

i :] + 187
8366
7£22 _CF_ p 50
22d1 ~[IBAppDelegate icati] + 194
-lunpuumu. allInitializati payload 1 + 1163
. My g H y dadais]

handleEvent:withNewEvent:] + 1533
sendEvent:] + 71
+ 7576

0x0101ca36 PurpleEventCallback + 1550

0x00eal __CFRUNLOOP_IS_CALLING, WT TO_A_SOURCE1_PERFORM_FUNCTION__ + 52

0x00e086f7 l:FllllLoupllusollr:.l + 215

0x00e05983 __CFRunLoopRun + 979
RunL ifi

a
2

+ 208
CFRunLoopRunInMode + 97
~[UIApplication _run] + 636
UIApplicationMain + 1160
main + 162

start + 53

PN

OEBPS/images/9781118007594-fg1005_fmt.jpeg
Organizer - Devices

Devices Projects Archives

LIBRARY

Q- Software Version

& Developer Profile Software Version v Hardware Model
L] Provisioning Profiles 4.2.1 (8C148) iPhone 4

Software Images 4.2.1 (8C148) iPod touch (2nd generation)

File Size
654.6 MB
363.6 MB

. Device Logs. 4.0 (8A230m) iPod touch (2nd

Screenshots
DEVICES

iPod
"B esun d
(] Provisioning Profiles
4 Applications
B8 Console
. Device Logs
 Screenshots
iPhone
4.1(8B117)
. Device Logs
% Screenshots
iPhone
4.2.1 (8C148)
. Device Logs
@ Screenshots

Delete Software Image
Reveal Software Image in Finder

320.9 MB

OEBPS/images/9781118007594-fg0703_fmt.jpeg
en6

(») (m) 18 GPad Simulator ...2 =]

H noA=m=8
vB Illmgﬂ. i0S SDK 4.2
» (] Classes
» (L] Other Sources
v (| Resources.
|| 1B-Info.plist
| InfoPlist.strings

| MainWindow.
1BViewControll

» (] Frameworks
» (] Products

| 4 > | [918) [JResources)

Welcome to Xcode 4

|_| MainWindow.xib) | ‘|en) () View Controller

Bt

+ | OREQ

(o B il
-

i s D
{ \
i i
i i
i \
i i
i i
i i
i i
i i
i i
i i
i i
i]
i \
i i
i]
i |
[]
| View |
i Loaded from "IBViewController" 1
i |
i i
i]
i i
[i
i i
i i
i i
i i
i |
i |
i i
i |
i |
i i
i \
i |
i]
e 4

OEBPS/images/9781118007594-fg1201_fmt.jpeg
Build

Project A Project B Project C Projects store source
‘ ‘ | ‘ code, component files, l\?lgrrlzrg];:r
and general build settings Run
‘ Target A1 | Target B:1 | Target C:1 Test
- - (Defines
Target B:2 Build actions can Analyze settings and
] select and build) scripts for
TargetB3 one or more targets Fighile each build
from any project Archive action)
“Build
Actions”

Product: App Product: Product:
Test 1 Framework
1 Product:
Test 2 Targets define
P;{ﬁj%uﬁ;[the build settings,
y options, and operations,

used to create products

Build actions also define
what Xcode does with a completed
product: run/debug, profile, test, and
so on.

OEBPS/images/9781118007594-fg0201_fmt.jpeg
ll | + [T netp:/ /www.apple. om/why macl(ompar!l 6 Qr Google

Which Mac is right for you?

Notebook or desktop. Mac mini or iMac. No matter which Mac you choose, you're getting a computer
that features the latest technology and is ready to help you do amazing things right out of the box.

Overview All Mac notebooks All Mac desktops

- ____= ! .! - = = = |
MacBook MacBook Pro MacBook Air iMac Mac mini Mac Pro
Our most affordable Our most advanced The thinnest and The ultimate all-in- A lot of computer ina The fastest, most
notebook. notebooks. lightest Mac notebook. one computer. little space. powerful Mac ever.
Just §999 From §1199 From $1499 From §1199 From $699 From $2499
Learn more » Learn more » Learn more » Learn more » Learn more » Learn more »
Polycarbonate unibody Precision aluminum Precision aluminum All-in-one aluminum Sleek aluminum Aluminum enclosure with
unibody unibody enclosure enclosure removable side panel
Intel Core 2 Duo
. X Intel Core 2 Duo (13- Intel Core 2 Duo Intel Core i3, i5, or Intel Core 2 Duo One or two Quad-Core
13.3-inch LED-backlit inch); Intel Core i5 and i7 quad-core i7 or 6-Core Intel Xeon
glossy widescreen {Calacs motale 0.16 to 0.76 inch thin Highly energy efficient
display 21.5- or 27-inch LED- Three open full -length
13.3-,15.4-, or 17 13.3-inch LED-backlit backlit glossy widescreen ~ AlSO available: Mac mini gy b race 5 o

Multi-Touch trackpad glossy widescreen display with Snow Leopard
display Server
Apple Wireless Keyboard

and Magic Mouse

inch LED-backlit glossy
widescreen display

expansion slots

Multi-Touch trackpad MuikiFTouch trackpad

NI

OEBPS/images/9781118007594-fg0816_fmt.jpeg
B

. | Running IB on iPhone Simulator
(P\ /-\ IB (iPhone Simulat... 5 | | =
4 Project @2
1BViewController.xib
« 1B) []Resources) | | IBViewController.xib) | en)| |View) Image View - flip.png
@ Placeholders
File's Owner
@) First Responder

W% Objects

View

Label - This is off
Button - CHANGE IT

This is off

CHANGE IT

AlB

Carrier =

This is off

CHANGE IT

OEBPS/images/9781118007594-fgb304_fmt.jpeg
8006 The LLVM Compiler Infrastructure Project

I i i I + |@ http://llvm.org/ ¢ 'Q‘ livm I

The LLVM Compiler Infrastructure

e LLVM Overview Latest LLVM Release!
D m. The LLVM Project is a collection of modular and reusable compiler and April 27,2010: LLVM 2.7 is now
Command Guide toolchain technologies. Despite its name, LLVM has little to do with traditional ~available for download! LLVM is
FAQ virtual machines, though it does provide helpful libraries that can be used to publicly available under an open source
Publications build them. License. Also, you might want to check
LLVM Proi out the new features in SVN that will

From its humble beginnings as a research project at the University of Illinois, appear in the next LLVM release. If you
LLVM has grown to be an umbrella project consisting of a number of different want them early, download LLVM
LLW subpmjeqs, many of which are b'ei.ng used in pmducuon bya widc. variety of_ through anonymous SVN.
—CMMB“ Daat commercial and open source projects as well as being widely used in academic

ng research. Code in the LLVM project is licensed under the "UIUC" BSD-Style
Ly Llogo license

Blog — Upcoming Releases
The primary sub-projects of LLVM are:
Download! The LLVM 2.8 release schedule has been
Posaloadnow 1. The LLVM Core libraries provide a modern source- and target- announced:
7 independent optimizer, along with code generation support for many
popular CPUs (as well as some less common ones!) These libraries are * 9/3 — Branching
Try the built around a well specified code representation known as the LLVM ® 9/6 — Pre-release 1 testing begins
intermediate representation ("LLVM IR"). The LLVM Core libraries are ® 9/12 — Pre-release 1 testing ends
well documented, and it is particularly easy to invent your own language * 9/20 — Pre-release 2 testing

Vonte oo iine (or port an existing compiler) to use LLVM as a optimizer and code begins
license generator. ® 9/26 — Pre-release 2 testing ends

* 929 — Release!
2. Clang is an "LLVM native" C/C++/Objective-C compiler, which aims

Search this Site to deliver amazingly fast compiles (¢.g. about 3x faster than GCC when
compiling Objective-C code in a debug configuration), extremely useful = =
error and warning messages and to provide a platform for building great Upw ming Meetmg
source level tools. The Clang Static Analyzer is a tool automatically finds
Useful Links bugs in your code, and is a great example of the sort of tool that can be ~ November 4,2010
built using the Clang frontend as a library to parse C/C++ code. -
Mailing Lists: 4
LLVM-announce 3. llvm-gec 4.2 and dM integrate the LLVM optimizers and code Try out LLVM in your M
S T N s igige Serrtagriyni e /

OEBPS/images/9781118007594-fg0105_fmt.jpeg
eee

®), (@ (Bispee (]

[1B - IBViewController.h

|

IBViewController.h
1B

// Created by Richard
// Copyright 2018 Skyd
#import <UIKit/UIKit.h>
@interface IBViewContro
UILabel *_theLabel;
- (IBAction)buttonWasTa
@property (nonatomic,

eend

Archive IB: Succeeded | 25/02/2011 at 01:31

IBViewController.m
1B

// Created by Richard Wentk on 23/11/2010.
// Copyright 2010 Skydancer Media Ltd. All rights reserved.

#import "IBViewController.h"

@inplenentation IBViewController

/%
/1 The designated initializer. Override to perform setup that is required
before the view is loaded.

- (id) (NSString 1 bundle: (I le *)
nibBundleOrNil {
if ((self = [super 1 bundl 0rNill))

// Custom initialization
return self;
*/
/%
// Implement loadView to create a view hierarchy programmatically, without
using a nib.
; (void) loadView {
*/

/%

7/ Implement viewDidLoad to do additional setup after loading the view,
typically from a nib.

- (void)viewDidLoad {
[super viewDidLoad];

*/

T

‘\

OEBPS/images/9781118007594-fg0301_fmt.jpeg
Welcome to Xcode

Version 4.0 (4A304a)

Create a new Xcode project
Start building a new Mac, iPhone or iPad
application from one of the included templates

Connect to a repository
Use Xcode's integrated source control features to
work with your existing projects

Learn about using Xcode
Explore the Xcode development environment with
the Xcode 4 User Guide

Go to Apple's developer portal
Visit the Mac and iOS Dev Center websites at
developer.apple.com

Recents
pong
r/+ STORE MAC/pong/0.04 - text message
pong
+ STORE MAC/pong/0.02 - full screen view

Hu
Developer/+ STORE i0S/Hu/0.4 - Minimal app

helloagain
Developer/+ X4

pong
r/+ STORE MAC/pong/0.03 - bundled fonts

B Fullscreenimage

Developer/+ Projects/Full Screen Mac

" pong
TORE MAC/pong/0.01 - full screen window

mycoolapp
Developer/+ X4

B
. Developer/+ X4/IB Custom View

Thing
Developer/+ X4

#x
#e
L

| Last opened Today 21:23

OEBPS/images/9781118007594-fg1013_fmt.jpeg
.18
D 13 December 2010 18:25 Location /Volumes/Developer/+ X4/IB/IB.xcodeproj ©

B Status Open
13 December 2010 15:44 R
B uToomiPro
12 December 2010 23:43 Derived Data ~/L ©
m App Derived Data includes index, build output and logs
30 November 2010 12:39
" °

MyFirstMacApp Snapshots allow you to save your project state at different points in time
15 29 November 2010 2331 i i kol s

18
m 29 November 2010 01:12

18
[j 29 November 2010 01:11

Gr:

I New s shot Today 00:10
adient -
28 November 2010 23:34

5, No description provided

i
24 November 2010 01:38
[j ViewBased
22 November 2010 01:29
B gallimaufry
22 November 2010 00:02
Wit
21 November 2010 21:38
i
21 November 2010 21:00
[j Animation Test
19 November 2010 21:05
a Toolkit
12 November 2010 17:14
0 __PROJECTNAME__
22 October 2010 14:50
D __PROJECTNAME__
22 October 2010 14:46
[—j Test
21 October 2010 22:19

Dlhn
21 October 2010 22:19

« i

Cocoa framework
15 22 October 2010 2206
PECY) Restore Snapshot Delete Snapshot

OEBPS/images/9781118007594-fgb302_fmt.jpeg
8en6 GCC, the GNU Compiler Collection - GNU Project - Free Software Foundation (FSF)

I i i I + | & http://gcc.gnu.org/ [qu gcc I

GCC, the GNU Compiler Collection

The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, and Ada, as
well as libraries for these languages (libstdc++, libgcj,...). GCC was originally written as the compiler /
for the GNU operating system. The GNU system was developed to be 100% free software, free in the /

sense that it respects the user's freedom.

We strive to provide regular, high quality releases, which we want to work well on a variety of native
and cross targets (including GNU/Linux), and encourage everyone to contribute changes and help
testing GCC. Our sources are readily and freely available via SVN and weekly snapshots.

Major decisions about GCC are made by the steering committee, guided by the mission statement.
News Status

October 1,2010

GCC 4.4.5 has been released.
September 28, 2010
Our old Bugzilla instance has been upgraded to the
latest release 3.6.2, bringing a better user experience
and a new and powerful API for external tools. The
upgrade has been done by Frédéric Buclin of the
Bugzilla project at Mozilla.
September 28, 2010
Support has been added for the Xilinx MicroBlaze
r target by Michael Eager, Eager
Consulting.
July 31,2010
GCC 4 5 has been released.
May 22
CC 4 3 has been released.
April 29,2010
GCC 4.4.4 has been released.
April 14,2010

Current release series: GCC 4.5.1 (changes)

Status: 2010-07-31 (regression fixes and docs only).

Serious regressions. All regressions.
e series: GCC 4.4.5 (changes)

E Status: 2010- 10~_Q (regression fixes and docs only).

rious regre . All regressions.
Oldest malnlalnod mlaase series:

GCC4.35
Stalus 2010-05-22 (regression fixes and docs only).

ions. All regressions.
Acﬁve development: GCC 4.6.0 (changes)

SVN write access

Development

Why contribute?

Status: 2010-09-30 Stage 1, open for d

Search our site

(Search)
1%) Sortby: [Newest (%)
There is also a detailed search form.

Match: [Al words

OEBPS/images/9781118007594-fg1010_fmt.jpeg
LIBRARY
A Developer Profile
[] Provisioning Profiles
124 Software Images
. Device Logs
% Screenshots
DEVICES

iPod
AL Py

. Device Logs

Screenshots

iPhone

Profile Name)

o o

Name
Creation Date
Expiration Date

Profile Identifier

App Identifier
Name

Creation Date
Expiration Date
Profile Identifier
App Identifier
Name

Creation Date
Expiration Date

Profile Identifier F4509168-01AA-4847-8691-1C3BA7461AC1

App Identifier

20thSept2010
2010-09-20 21:37:15 +0100
2010-12-19 20:37:15 +0000

3 Y
21st August 2010
2010-08-21 03:03:45 +0100
2010-11-19 02:03:45 +0000

BD261025-CA79-493D-9165-975C45772C8A

QAKHQQUMER.*

Team Provisioning Profile: *
2010-07-19 18:02:45 +0100
2010-10-17 18:02:45 +0100

‘QAKHQQUMER.*

L+
[0

OEBPS/images/9781118007594-fg1326_fmt.jpeg
0006 Organizer - Archives

Devices leposmdes ijeds Documentation

Select the content and options for sharing:

mycoolapp.app

L
Contents: (*) Mac OS X App Store Package (.pkg) —_—
O Application
O Archive
Identity: [3rd Party Mac * (currently matches 3rd___ 3]

Last login: Sun Feb 27 83 01 on ttyseee

Password
installer:
installer:

package.pkg has valid signature for submission
Installation Check: Passed

Volume Check: Passed

Bundle con.mydonain.mycoolapp will be installed to /Applications/mycoolapp.app
Starting install

Install 8.8% complete

Install 9.1% complete

Install 16.7% complete

Install 23.1% complete

Install 28.6% complete

installer:

instal ler:

OEBPS/images/9781118007594-fg1703_fmt.jpeg
» UnitTest
2 targets, i0S SDK 4.3

(] UnitTest

v

[h] UnitTestAppDelegate.h
m| UnitTestAppDelegate.m
 MainWindow.xib

v (| Supporting Files
[} UnitTest-Info.plist
| InfoPlist.strings.
[h] UnitTest-Prefix.pch
{m main.m
v (] UnitTestTests
[h] UnitTestTests.h
m] UnitTestTests.m
» (] Supporting Files

7] UnitTestTests.octest

N

+ 0ORGB®)

=14 > B

PROJECT
1 UnitTest
TARGETS
oA UnitTest

UnitTestTests

Info | BuildSettings | Build Phases Build Rules
Basic @D | Levels Q- b
Setting [UnitTestTests =
Library Search Paths ~

Rez Search Paths

Sub-Directories to Exclude in Recursiv... *.nib *.Iproj *.framework *.gch (*) CVS .svn .git *.xcodeproj *...
Sub-Directories to Include in Recursive.
User Header Search Paths

¥ Unit Testing

Other Test Flags |

P Test After Build v Yes

¥ Test Host No
tea Other...
Release
Test Rig
Current Project Version

Generated Versioning Source Filename ~ UnitTestTests_vers.c
Generated Versioning Variables

Versioning Name Prefix
Versioning Name Suffix |
Versioning System None $
Versioning Username Main
LLVM GCC 4.2 - Code
Accelerated Objective-C Dispatch Yes
Call C++ Default Ctors /Dtors in Objec... Yes 3
Compile for Thumb Yes
Enable SSE3 Extensions No:
Enable SSE4.1 Extensions No: |
Enable SSE4.2 Extensions No:
Enable Supplemental SSE3 Instructions No &)¢
Enforce Strict Aliasing Nos 5

‘Add Target

‘Add Build Settis

OEBPS/images/9781118007594-fg0803_fmt.jpeg
Edit Format

View Window Help

" File's Owner

9 Font Manager

P &

[[l code Snippet Library

WMM
wuﬂnm-m

=M D)

[{}

\ I ‘ Objective-C Ch.uMmllon» I

Protocol Definition

- Used for Mlﬁ! 2 new Objective-
a
v

liad for definis
S

N

OEBPS/images/9781118007594-fg0806_fmt.jpeg
B

A~ : Running IB on iPhone Simulator N =
M) | B (iPhone Simulat... 5 | =
&) (&) L8 iPhone Simu e N) (=
1BView.m
“ 1B) [|Classes 1BView.m » [J -drawRect:

return self; 5

- (void)drawRect: (CGRect) rect {
CGPoint startFill, endFill; \

CGContextRef aContext = UIGraphicsGetCurrentContext();
CGContextClearRect(aContext, rect);
C6ContextSetShouldAntialias (aContext, YES);

CGColorSpaceRef myRGB = CGColorSpaceCreateDeviceRGB();]
size_t num_locations
CGFloat locations [3] = {0.9, 0.5, 1.0};
CGFloat components [12] =
{1.0, 0.0, 0.0, 1.0,
0.0, 1.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0};
CGGradientRef myGradient =
CGGradientCreateWithColorComponents (myRGB,
components,
locations,
num_locations);

This is off

CGContextSaveGState(aContext);

CGContextAddRect (aContext, CGRectMake(®, @, 320, 460));
CGContextClip(aContext);

startFill = CGPointMake(0, 0); CHANGE IT

endFill = CGPointMake(320, 460); JEcin
CGContextDrawLinearGradient(aContext,
myGradient,
startFill, tercepts
endFill, n action
kCGGradientDrawsBeforeStartLocation+ t when.
kCGGradientDrawsAfterEndLocation);
CGContextRestoreGState(aContext); isplays
pf which
CGGradientRelease(myGradient); Imv:v &
CGColorSpaceRelease (myRGB) ; .
} itable text
age to a
- (void)dealloc { ires
[super deallocl;
} uous range
Selection of
@end

jprays an element

o

OEBPS/images/cover.jpg
. . . Richard Wentk

Xcode 4

£ Developer Reference

OEBPS/images/9781118007594-fg1412_fmt.jpeg
() (m) [tocalGit toca v 5] ()

|| LocalGit

Welcome to Xcode 4

|mT @ A » B8] » | | |LocalGit) [|Classes) | LocalGitAppDelegate.m) No Selection
LocalGit 77
L] 1 target, Mac 05 X SDK 10.6 LocalGitAppDelegate.m // LocalGitAppDelegate.m
LocalGit // LocalGit
(] Classes "

| LocalGitAppDelegate.h
" MyClass.h
| MyClass.m
» [] Other Sources
» (] Resources
» [] Frameworks
» [Products.

/7 Created by Richard Wentk on 04/01/2011.
// Copyright 2011 Skydancer Media Ltd. All
rights reserved.
#import "LocalGitAppDelegate.h"
@implementation LocalGitAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching:
(NSNotification *)aNotification {
// Insert code here to initialize your
application

// This is a comment added to illustrate
how edits appear in the Version Editor

// This is a second comment
// This is a third comment

/1 Etc

@end

(JLocalGit » [~ master » (L Local Revision

// Created by Richard Wentk on 04/01/2011.

// Copyright 2011 Skydancer Media Ltd. ALl
rights reserved.

7"

#import “LocalGitAppDelegate.h”

@inplementation LocalGitAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:
(NSNotification *)aNotification {

// Insert code here to initialize your
application

@end

4 January 2011 02:02

04/01/2011 Richard Wentk faasb77c734f

+| o@6B @

= B

OEBPS/images/9781118007594-fg0510_fmt.jpeg
. Animation Tes!
L T arger, Mac 05

|| Animation Test

sebd et b

Welcome to Xcode 4

Project (11

Choose a directory that contains this file

<« ») (52 =/m) (&3 Animation Test

v (] Other Sources
| Animation_Té
| main.m

(| Resources
| Animation_Té
| | InfoPlist.strin
| MainMenu.xit

Frameworks
(] Linked Frame

fran
(] Other Framev

v (] Products.
4 Animation T

¥ DEVICES Shared Folder

=} Macintosh HD

El iDisk

[Mac 05 X Install DVD
[Erc

[l Developer

¥ SHARED

[192.168.0.8

»»n»

»

¥ PLACES

(i Pictures

[EH Movies

53 Music

7\ Applications
¥ SEARCH FOR

(L Today

(L) Yesterday

(L) Past week

All Images

<l

Animation Test.xcodeproj
Animation_Test_Prefix.pch
Animation_Test-Info.plist

Date Modified
Today, 21:35
22/05/2010
22/05/2010

Animation_TestAppDelegate.h Today, 21:32
Animation_TestAppDelegate.m 22/05/2010

Application.xib
» {3 build
» (7 English.lproj

main.m

Today, 16:22
22/05/2010
02/11/2010
22/05/2010

i3]
lacosx/Animation .,

—

No Role

—

+| o@E Q@ ‘

<

}_& Objective-C NSObject category - An Objective-C category on
(
Q

N

OEBPS/images/9781118007594-fg1708_fmt.jpeg
[UnitTest - UnitTest.xcodeproj o

Build UnitTest: Succeeded | Today at 22:14
9) itTest | i o - Ll =
No Issues
° = = Sl > Choose items to add: :
= PROJECT Build Settings | Build Phases | Build Rules
e e B UnitTest (@ Q)
[h] UnitTestAppDelegate.n TARGETS v [UnitTest Dependencies (1 item)]
m| UnitTestAppDelegate.m oA UnitTest
4 MainWindow.xib v & UnitTest + Sources (1 item)
[h| RootViewController.h [h] UnitTestAppDelegate.h !
m| RootViewController.m [m| UnitTestAppDelegate.m [mm .m ...in UnitTestTests/
 RootViewController.xib [h] RootViewController.h
[h] MathMachine.h @ RootViewController.m
m] MathMachine.m
v [l Supporting Files [MathMachine.h |
[UnitTest-Info.plist [} MathMachine.m
| | InfoPlist.strings | v (| Supporting Files With Libraries (3 items) m]
[h) UnitTest-Prefix.pch [} UnitTest-Info.plist | Tr——— a)
m) main.m [h] UnitTest-Prefix.pch
¥ (] UnitTestTests & mainm m]
[h] UnitTestTests.n S
m] UnitTestTests.m v] UnitTestTests
[h] UnitTestTests.n
v (] Supporting Files .
» § UKKit.framework [} unitTestTests-Info.plist 4
[T A dmtar s o ies e M
» = CoreGraphics.framework —
v G Products (Cancel)
A UnitTest.app /)
] UnitTestTests.octest
R
+ oR6® \ Add Target Add Build Phase

OEBPS/images/9781118007594-fg1504_fmt.jpeg
5y Queue
. Thread 1

¥ ¥ (om.apple.main-thread
1 0 -{IBViewController buttonWasTapped:]
3 1 -(uiApplication sendAction:

[16 ulApplicationMain
17 main

. 4y Thread 2
¥ Com.apple.libdispatch-manager
» ¥ Thread 3

» ¥ Thread 4 WebThread

DB
Running I8 on iPhone Simulator =2EEl o o=

- (void)viewDidUnload {
// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;

- (void)dealloc {
[_theLabel releasel;
[super dealloc];

- (IBAction)buttonWasTapped: (id)sender {

@ if ([_thelabel.text isEqualToString:@"This is off"])
7 _theLabel.text = @'This is on";

else
_theLabel.text = @'This is off";
}
@synthesize theLabel = _theLabel;
@end

2 & % | 4IB) ¥ Thread 1[I0 -(IBViewController buttonWasTapped:]

a | Al outpur ¢ (Clear) (i NI CN)

3 _cmd = (struct objc_selector *) 0x2d4d SNU gdb §.3.50-20050815 (Apple version 9db-1511) (Mon
. Nov 1 07:2
SV G CHAT R G 2Rt Copyright el ro RS Eolindtann, dacs
¥ UlViewController = (UlViewController) {...} GDB is free software, covered by the GNU General
» _theLabel = (UlLabel *) Ox4e2a9¢0 Public License, and you are
¥ [sender = (UIRoundedRectButton *) Ox4e2e580 welcome to change it and/or distribute copies of it
» isa = (Class) 0x5b0b80 under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show
warranty" for details.

This GDB was configured as "i386-apple-
darwin".sharedlibrary apply-load-rules all
Attaching to process 3357.

Pending breakpoint 1 - ""IBViewController.m":69"
resolved

Current language: auto; currently objective-c

(gdb)

OEBPS/images/9781118007594-fg1115_fmt.jpeg
8006 Organizer - Devices

LIBRARY
A Developer Profile 5
(] Provisioning Profiles iPhone
124 Software Images Capacity 15.03 GB
A} Device Logs Model iPhone 4
% Screenshots
Serial Number 830274TDA4S
DEVICES
ECID 2169329495374
v - iPhon
(8C148) Identifier e7e62! 6
] Provisioning Profiles Software Version (42,1 (8C148) Restore iPhone
4 Applications
B Console
. Device Logs
% Screenshots Provisioning Team Provisioning Profile: * ©
= . iPhone
4.1(88117) Applications Car Finder, Hu, Locater, MemoryLeak, Tango, WinNumbers, ZettaClock, Zombies, fonts, uSha, uToomiPro ©
. Device Logs 32 FairPlay-encrypted applications
% Screenshots
iPod . .
"B Yesun
. Device Logs T S T R R - - —r S
Screenshots

Device Logs 49 Crash Logs, 5 Low Memory Logs ©

Screenshots 4 screenshots ©

Add to Portal Remove

OEBPS/images/9781118007594-fg0409_fmt.jpeg
Find
Found 23 results in 7 files

| ==
Qr myClever)

main.m
¥ [ryGleverapp project
Elu
e myclmvknwwd-nm

=V myclmrAppAppwegm.h

@class myCleverAppViewController;

myCleverAppAppDelegate : NSObject <UIApp...

vy myCleverAppAppDelegate.m
myCleverApp project

. | myCleverAppViewController.h
myCleverApp project

-~ /I myCleverAppViewController.h

D molnrupvl-wcmlmw m

Elu -Amwmcowwzr.m

/1 myCleverApp
#import “myCleverAppViewController.h”
c] myClevers

U myu-vuvApp_andl

= U myCleverApp.xcodeproj
myCleverApp workspace

A e e T

/1 myCleverApp
. —Apyw-umrﬂl- UlViewControll...

-Mﬂ‘nrmm the ‘myCleverApp' proje...
yCleverApp' target in the ‘myCleverApp' proj...

Q

- A

Build myCleverApp: Succeeded | Today at 19:54

// myCleverAppAppDelegate.h
// myCleverApp

/1 Created by Richard Wentk on 17/18/2010.
/1 Copyright (c) 2018 Skydancer Media Ltd. All rights reserved.

#import <UIKit/UIKit.h>
@class myCleverAppViewController;
@interface myCleverAppAppDelegate : NSObject <UIApplicationDelegatex {
UIWindow *window
myCleverAppViewController +viewController;
@property (nonatomic, retain) I80utlet UIWindow *window;

@property (nonatomic, retain) IB0utlet myCleverAppViewController *viewController;

@end

OEBPS/images/9781118007594-fg0115_fmt.jpeg
(Running helloagain on iPhone Simulator
(») \ a s
P’ \‘!} helloagain | iPho [3

helloagainViewController.xib

“ [helloagain) [_]helloagain » I helloagainViewController.xib) helloagainViewController.xib (|

11:40 PM

%/JL A

=EH n oo % | helloagain

Ao

OEBPS/images/9781118007594-fg1631_fmt.jpeg
(D203 [@]

Automation

‘Choose Script...

Recent Scripts
automation.js

Clear Menu

erl 8001 m—]
(J Continuously Log Results
Choose Location.. 10

Log Type

OEBPS/images/9781118007594-fg1512_fmt.jpeg
& 1®» 2 % & | .BreakpointTest) ¥ Thread 1

Local _ - — Q @ mm
_cmd = (SEL) 0x931ef502 applicationDidFinishLaunching:
> = (NSC |
¥ [self = (BreakpointTestAppDelegate *) 0x12dal0
¥ NSObject = (NSObject) {...}
b isa = (Class) 0x4268
¥ window = (NSWindow *) 0x303210
» NSResponder = (NSResponder) {...}
> _frame = (NSRect) {...} x=279, y=317, width=480, height=382
» _contentView = (NSView *) 0x1240a0
» _delegate = (id) 0x0
¥ _firstResponder = (NSWindow *) 0x303210
» _lastLeftHit = (NSView *) 0x0
» _lastRightHit = (NSView *) 0x0
» _counterpart = (id) 0x0
¥ _fieldEditor = (id) 0x0
_winEventMask = (int) ~1071906816
_windowNum = (NSinteger) 3093
_level = (int) 0
» _backgroundColor = (NSColor *) 0x0
> =

_postingDisabled = (unsigned char) 0 "\000"
_styleMask = (unsigned char) 15 '\017"
_flushDisabled = (unsigned char) 0 000"
_reservedWindow1 = (unsigned char) 0 '\000'
_cursorRects = (void *) 0x0
_trectTable = (void *) 0x3247a0

» _minilcon = (NSimage *) 0x0
_unused = (int) 0

» _dragTypes = (NSMutableSet *) 0x0 0 objects

» _representedURL = (NSURL *) 0x0 nil

> _sizeLimits = (NSSize *) 0x307100

» _frameSaveName = (NSString *) 0x0 nil

» _regDragTypes = (NSSet *) 0x0 0 objects

» _wFlags = (struct __wFlags) {...}

¥ _defaultButtonCell = (id) 0x0

¥ _initialFirstResponder = (NSView *) 0x1240a0
_ = (struct i v

(int) 32

OEBPS/images/9781118007594-fg1334_fmt.jpeg
Running BuildSettings on iPhone Simulator

No Issues.

B4 > Comeseunss

- BuildSe!

Y ':)SWS; Py PROJECT Summary Info Build Settings Build Phases | Build Rules |
i [BuildSettings. Target Q)
libA Framework.a
v (] BuildSettings TARGETS v Nasm assembly files using Script (%]
[h! BuildSettingsAppDelegate.n &/ A Framework
m) BuildSettingsAppDelegate.m BuildSettings Process [Nasm assembly files 2}
MainWindow.xib
[h| BuildSettingsViewController.h e T)

@ BuildSettingsViewController.m 1 $(DEVELOPER_BIN_DIR)/nasm
- BuildSettingsViewController.xib 2

Output Files

Add output files here

+— |

v CopyPlistFile

Process: text.plist

Using: CopyPlistFile

[copystringsFile
Process: Localization string files Copy to Target
Using: CopyStringsFile

[v CopyTiffFile
Process: image.tiff
Using: CopyTiffFile
[+ prrace] i
| 11y
Add Target Add Build Rule

TS S

+ 0ORGB® = on 2 % t

OEBPS/images/9781118007594-fg1617_fmt.jpeg
=8
| (2o (m]

Source

v
100.00% NSObject *theLeak = [INSObjec...

¢) E statistics $) Object Summary) NsObject) [1] ~[MemoryLeakAppDelegate timerDo]

i MemoryLeakAppDelegate.m LN

35
36

#import "MemorylLeakAppDelegate.h"

@implementation MemorylLeakAppDelegate

@synthesize window;

- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions
{

// Override point for customization after application launch.
[self.window makeKeyAndVisible];
NSTimer *theTimer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self selector:
@selector(timerDo) userInfo:nil repeats:YES];
return YES;
}

- (void) timerDo {

//Leak a small obiect once a second

}

- (void)applicationWillResignActive: (UIApplication *)application
{

/e

Sent when the application is about to move from active to inactive state. This can
occur for certain types of temporary interruptions (such as an incoming phone call
or SMS message) or when the user quits the application and it begins the transition
to the background state.

Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL ES
frame rates. Games should use this method to pause the game.

o/

<

OEBPS/images/9781118007594-fg0512_fmt.jpeg
Animation Test

1 target, Mac OS X SDK 10.6

v (] Resources

| Animation_Test-Info.plist
| | InfoPlist.strings

| MainMenu.xib
v [Other Sources
| Animation_Test_Prefix.pch

v

(] Other Frameworks

v (1] AppKit.framework
v (] Headers.

[AppKith

|| AppKitDefines.h

| NSAlert.h
|| NSAnimation.h
|| NSAnim..ntext.h
| NSAppl...nsions.h
|| NsApplication.h
|| NSAppli...ipting.h
| NSArray...roller.h
|| NSATST...setter.h
|| NSAttri.__String.h
| NSBezierPath.h
|| NSBitm...geRep.h
|| NSBox.h

| NSBrowser.h

.~
.
v

+ | OREQ

|| Animation Test

Welcome to Xcode 4

/* Parameterized Attribute methods
*/

- (NSArray naccessnuutyvaramneuzenuuhuteuanes
AVAILABLE_MAC_0S_X_VERSION_1 3

- (id)accessibilityAttributeValue (NSStrmg +)attribute forParameter:
(id)parameter AVAILABLE_MAC_0S_X_VERSION_1@_3_AND_LATER;

/* Acessibility action methods
*

- (NSArray *)accessibilityActionNames;
- (NSString *)accessibilityActionDescription: (NSString #)action;
- (void)accessibilityPerformAction: (NSString *)action;

/# Return YES if the UIElement doesn't show up to the outside world - i
.e. its parent should return the UIElement's children as its own —
cutting the UIElement out. E.g. NSControls are ignored when they
are single-celled.

*/
- (B0OL)accessibilityIsIgnored;

/% Returns the deepest descendant of the UIElement hierarchy that
contains the point. You can assume the point has already been
determined to lie within the receiver. Override this method to do
deeper hit testing within a UIElement - e.g. a NSMatrix would test
its cells. The point is bottom-left relative screen coordinates.

*/
- (id)accessibilityHitTest:(NSPoint)point;

/* Returns the UI Element that has the focus. You can assume that the
search for the focus has already been narrowed down to the reciever
. Override this method to do a deeper search with a UIElement - e.g
. a NSMatrix would determine if one of its cells has the focus.

*/
- (id)accessibilityFocusedUIElement;

/% Optional methods to improve performance of accessible objects with
large numbers of children or large numbers of UI Elements returned
from attributes that return an array (selected children, or visible
children, for instance). The default implementation for these
operations will call -accessibilityAttributeValue: to retrieve the
entire array of values, and then perform the appropriate operation.
If these methods are implemented, they will be used instead. For
accessibility objects with many children, the results to these
methods can sometimes be calculated without generating the entire
array of children which can improve performance.

*/

MR T L e S S Sl Ty R S W TR i o s R T e s

= ¥ _Identity and Type

File Name NSAccessibility.h

File Type | Default - C Header Source 3

Location | Relative to Enclosing Co...
i3]

Full Path /System/Library/
Frameworks/
AppKit.framework/

¥ Text Settings

fr——
Line Endings | Unspecified (Mac OS X /... 1#)

P —

Widths 4@]

iwru:llnes

Indlnl

v Source Control

Version Fetching... (up to date)
Status No changes

___EQ v = .

objC

4

‘& Objective-C class - An Objective- .
C class with a header
Lot

UlViewController subclass - An
Objective-C view controller subclass

<>

<t

N

OEBPS/images/9781118007594-fg0617_fmt.jpeg
Audio Toolbox
Audio Unit

+ (] AV Foundation ID3 Constants AV Foundation

»[] AV Foundation iTunes Metad. Core Audio

» [l AV Foundation Programming ... Core Graphics

AV Foundation QuickTime Co... Core Text

» [] AVAsset Class Reference v
Image 10
Media Player
OpenGL ES

] AVAssetReaderTrackOutp =

»[E Av: erTra ut C...

» [F] AVAssetReaderVideoComposi... RO O

» (€] AVAssetTrack Class Reference Address Book

» [AVAssetTrackSegment Class CFNetwork

» (€] AVAssetWriter Class Reference Core Data

» [£] AVAssetWriterinput Class Ref. Core ol

» [[£] AVAssetWriterinputPixelBuffe.

» [AVAsynchronousKeyValueLoa. ot Locang

» (5] AVAudioMix Class Reference s

» [AvAudioMixinputParameters Core Motion
Core Telephony
Event Kit
Mobile Core Services
Quick Look
Store Kit

Class.

System Sound Services Reference

Media Player Framework Reference

Reference

Reference

Audio & Vide,

Audio & Vide
Audio

Reference Audio & Vi
» MPMoviePlayerViewController Class Reference Reference Audio & Vide|
Video
» AVAudioSession Class Reference Reference Audio & Vide|
Audio
» AVAudioRecorder Class Reference Reference Audio & Vide|
Audio
» AVAudioPlayer Class Reference Reference Audio & Vide|
Audio
+ Core Audio Glossary Reference Audio & Vide|
Audio
» MPMediaPlayback Protocol Reference Reference Audio & Vide|
Video
» MPMediaPickerControllerDelegate Protocol Reference Audio & Vide|
Reference Audio
» Class Reference Audio & Vide|
» AVAsset Class Reference Reference Audio & Vide|
» Core Video Framework Reference Reference Audio & Vide
Video
» Core Video Constants Reference Reference Audio & Vide|
Video
» CVTime Reference Reference Audio & Vide
Video
» CVPixelFormatDescription Reference Reference Audio & Vide'y’

v
QY - - - T s e T PN

Video

OEBPS/images/9781118007594-fg0731_fmt.jpeg
B

i~ Running IB on iPhone Simulator = T
»>) (m ElEG (OQO) (=
@ - ’ 02
< , Top Level Objects) | | IBViewController.m) [[] -buttonWasTapped: | < =]

L

typically from a nib.
= - (void)viewDidLoad {
[super viewDidLoad];

}
*/

/%
// Override to allow orientations other than the default portrait
orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation: (UIInterfaceOrientation)
interfaceOrientation
// Return YES for supported orientations
return (interfaceOrientation == UIInterfaceOrientationPortrait);

This is on

}
*/
- (void)didReceiveMemoryWarning {

// Releases the view if it doesn't have a superview.
[super didReceiveMemoryWarningl;

// Release any cached data, images, etc that aren't in use.
- (void)viewDidUnload {

// Release any retained subviews of the main view.

CHANGE IT // e.g. self.myOutlet = nil;

- (void)dealloc {
[_theLabel releasel;
[super dealloc];

- (IBAction)buttonWasTapped: (id)sender {

if ([_theLabel.text isEqualToString:@'This is off"])
_theLabel.text = @"This is on";

_theLabel.text = @"This is off";

}

@synthesize thelabel = _thelabel;

~ @end

OEBPS/images/9781118007594-fg0304_fmt.jpeg
Choose options for your new project:

Product Name | myCoolNewApp

Company Identifier ' skydancermedia.com

Bundle Identifier skydancermedia.com.myCoolNewApp

eviceFamiy (inene 8)

) Include Unit Tests

OEBPS/images/9781118007594-fg1309_fmt.jpeg
PROJECT
[sharekit

TARGETS
ShareKit

= [EE) O ==

Summary Info | Build Settings | Build Phases Build Rules
sasic Leveis @)
Settingis oA ShareKit T
Precompiled Headers Cache Path Ivar/ ip Tij-Cach appleXco..
¥ Build
Build Variants normal '
Debug Information Format DWARF with dSYM File ¢ |
Enable OpenMP Support No |
Generate Profiling Code No s |
Precompiled Header Uses Files From B... Yes + |
Run Static Analyzer No s |
Scan Al Source Files for Includes No: |
¥ Validate Built Product <Multiple values> & |
App Store Yes
Debug
Release |
Code Signing L
Code signing Don't Code Sign

¥ Code Signini Automatic Profile Selector (Recommended)

iPhone Developer
v iPhone Distribution (currently matches 'iPhone Distribution:

Add Target

(for i ifiers ")
iPhone Distribution: Skydancer Media (current Automatic selection)
Team Provisioning Profile: * (for Appli ifiers '*)
CodeSigning iPhone Developer: Richard Wentk (CXSPBIN63C)
Other Code S\ me (for Application Identifiers ")
YCompiler iPhone Richard Wentk (CXSPBON63C)
¥ C/C++ Comy
AppStore Other...
Debug TVMGCC a2t n
Release GCca2: 52
Add Build Setti

OEBPS/images/9781118007594-fg1002_fmt.jpeg
Developer Profile

dan Issuer
iPhone Distribution: Skydancer Media 3RS56978PY
iPhone Richard Wentk (... Skydancer Media

Apple Worldwide Developer Relations Certification Authority
Apple Worldwide Developer Relations Certification Authority

Profile Name | Profile Identifier App Identifier | Creation Date | Expiration Date

AdHoc B1AF093C-3B17-... * 2 201... 19 201121:31:30
DsitributionProfile ‘0BFB4AF7-4BAE-. » 20 201... 19 2011 21:31:50
20thSept2010 3F4AF672-EAB7-. » 20 September 201...

19 December 2010 20:37:15 GMT

2
§f

Profile’ will package the Identities and Provisioning
Profiles listed above into a secure file format that can be used with 'Import
Developer Profile'

to transfer your Developer Profile to a new machine.

OEBPS/images/9781118007594-fgb307_fmt.jpeg
Bl =& (00 (&)

Combined JPIVH

)
TARGETS — - L
F ¥ LLVM GCC 4.2 - Code r
Accelerated Objective-C Dispatch Yes &
Auto-vectorization No
Call C++ Default Ctors/Dtors in Objective-C Yes §
Compile for Thumb Yes &
Enable SSE3 Extensions. No &
Enable SSE4.1 Extensions No ¢
Enable SSE4.2 Extensions No ¢
Enable Supplemental SSE3 Instructions No &
Enforce Strict Aliasing No:
Feedback-Directed Optimization off
Generate Debug Symbols Yes &
Generate Position-Dependent Code No :
Generate Test Coverage Files Not
Inline Methods Hidden No
Instruction Scheduling PowerPC G4 [-mtune=G4]
Instrument Program Flow No &
Kernel Development Mode No ;
Level of Debug Symbols. Default [default, -gstabs+ -feliminate-unused-debug-symbols] 3
Link-Time Optimization No 3
Make Strings Read-Only Yes &
No Common Blocks No ¢
Objective-C Garbage Collection Unsupported &
Optimization Level
Debug configuration § None [-00] &
Release configuration 3 Fastest, Smallest [-Os] 3
Relax IEEE Compliance No : L
Separate PCH Symbols Yes ¢ Y
Statics are Thread-Safe Yes 3 v

Add Target

Add Build Setting

OEBPS/images/9781118007594-fg0309_fmt.jpeg
Choose a template for your new project:

ios

Application
Framework & Library
Other

& Mac0S X
Application
Framework & Library
Application Plug-in
System Plug-in
Other

.v!

@ETIITIIETID Cocoa-AppleScript Command Line Tool
Application

Options [Create Document-Based Application
() Use Core Data
[include Spotlight Importer

A Cocoa Application

This template builds a Cocoa-based application written in Objective-C.

Prevlou s

OEBPS/images/9781118007594-fg0612_fmt.jpeg
800 22 L N T Tt e .
L« [> J [+ [Cnutps: developer.apple.comlibrary & J(Q- apple developer

2008/

1620.htm!

D iOS Reference Library

Technical Q&A QA1620 m
Animating the frame of a CAlLayer.

Q: When | try to animate the £rame of a CALayer nothing happens. Why?

A: The frame property of a CALayer is a derived property, dependent on the position, anchorPoint, bounds and transform of
the layer. Instead of animating the £rame, you should instead animate the position or bounds, depending on what effect you are trying to
accomplish.

To move a layer, you can animate the position as shown in Listing 1.

Listing 1: Animating the position of a layer.

-(void)moveLayer: (CALayer*)layer to:(CGPoint)point

{
// Prepare the animation from the current position to the new position
CABasicAnimation *animation = [CABasicAnimation animationWithKeyPath:@"position"];
animation.fromValue = [layer valueForKey:@"position"];
animation.toValue = [NSValue valueWithPoint:NSPointFromCGPoint(point)];

// Update the layer's position so that the layer doesn't snap back when the animation
completes.
layer.position = point;

// Add the animation, overriding the implicit animation.
[layer addAnimation:animation forKey:@"position"];

PN,

OEBPS/images/9781118007594-tb1501.jpg
Table 1 Useful NSLog Format Options

Option Used for

%i or %d signed int

%u unsigned int

9%f float/double

%X or %X int as hexadecimal

%p memory address (similar to %, with a standard Ox prefix)
%zu size_t

%@ object

\r new line

OEBPS/images/9781118007594-fg0908_fmt.jpeg
Y

+ 0ORGB S

118 - IBAppDelegate.m

Archive IB: Succeeded | 25/02/2011 at 01:31
Project @2

IBAppDelegate.m
18

Created by Richard Wentk on 23/11/20
Copyright 2010 Skydancer Media Ltd.

1 rights reserved.

#import "IBAppDelegate.h”
#import “IBViewController.h"

@implementation IBAppDelegate

@synthesize window;
@synthesize viewController;

- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions {

// Override point for customization after application launch.

UIAlertView xtheAlert = [UIAlertView initWithTitle: ﬁthﬁ

v _Identity and Type

File Name | IBAppDelegate.m

File Type |_Default - Objective-... +

Location
1BAppDelegate.m (]

Full Path /Volumes/Developer/+
X4/IB Custom View/

.
v

message: ssage#>
del nil
1 | Title iOS Alert
[window addsul €um, Summary | Displays an alert box|
[window makeKi - -
7} ThisCiees.p@ Platform (All %) Language (Objective-C
/7 from another { | comjetion Shortcut

// viewControlle

return YES; ‘Completion Scopes (Function or Method

¢ UIAlertView *theAlert = [UIAlertView initWithTitle:
- (void)applicatis title
// Save data message
delegate:
nil
- (void)dealloc { cancelButtonTitle:
@"Cancel"
[window relea: otherButtonTitles:
[viewControlly | @"0K"];
fsuper deallol QUENEED (_Done) |+
=

6]

Struct Declaration - Used for
{ } ‘ describing a new structure type
containing instance variables.

Switch Statement - Used for
executing different sections of code
when an expression has one of...

-~
e

UlTableViewController delegate:
Navigation on selection - This
allows you to navigate to another...

-~
L

Union Declaration - Used for
describing a new union type
containing instance variables, only...

———
~

‘While Statement - Used for
‘ executing code while a condition is
true.

initWithCoder Method - Used for

‘ Objective-C NSCoding
initializing a new object from data...

NSView
{} ‘ initWithFrame Method - Used for
overriding an NSView's...

iOS Alert - Displays an alert box .
v

Q o

OEBPS/images/9781118007594-fg0416_fmt.jpeg
Cl
L AT

Running myCleverApp o

T oy auese

myCl gate.m

v Thread 1
com.apple.main-thread
L 0 ~[myCleverAppAppDelegate application:didFinishL

[*]} E
[13 uiApplicationMain
14 main

> Thread 2
‘com.apple.libdispatch-manager
» ¥ Thread 3

» ¥ Thread 4 WebThread

myCleverApp

Created by Richard Wentk on 17/10/20:
Copyright (c) 2010 Skydancer Med

. AL rights reserved.

#import “myCleverAppAppDelegate. h"

#import “myCleverAppViewController.h"

ion myCl gats

@synthesize window;
@synthesize viewController;

- (B0OL)application: (UTApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions {

// Override point for customization after application launch.

[~ [window addSubview:viewController.viewl;
[window makeKeyAndVisiblel;

) 7/ NSLog (@This line creates a build issue);
return YES;

- (void)applicationWillTerminate: (UIApplication *)application {

// Save data if appropriate.

- (void)dealloc {

[window releasel;
E > o & £ |G) M.

Local ¢ @

- L
¥ [launchOptions = (NSDictionary *) 0x0 0 key/value pairs
» [self = (myCl "

OEBPS/images/9781118007594-fg0321_fmt.jpeg
. __PROJECTNAM 77
B Trarget, o Dece k.41 RootViewController.m
v (] Classes / PROJECTNAME___

17

[h] RootViewController.n Created by ___FULLUSERNAME___ on __DATE__ .

m| RootViewController.m Copyright __YVEAR___ __ORGANIZATIONNAME_ . ALl rights reserved.
1

#import "RootViewController.h"
@implementation RootViewController

|| RootViewController.xib #pragma mark -
ragma mark View lifecycle
|| MainWindow.xib o k View lifecycl

...__~Info.plist

/#%% THIS TEMPLATE HAS BEEN CHANGED %/

» (L] Products

| - (void)viewDidLoad {
[super viewDidLoad];

}

I*

- (void)viewWillAppear: (BOOL)animated {
[super viewWillAppear:animated];

}

*/

/%

- (void)viewDidAppear: (BOOL)animated {

¥ [super viewDidAppear:animated];

*/

I*

- (void)viewWillDisappear: (BOOL)animated {
[super viewWillDisappear:animated];

}

*/

/%

-y +(BOOL!
) [super viewDidDisappear:animated];

*/

OEBPS/images/9781118007594-fg1710_fmt.jpeg
Product

Profile
Analyze
Archive

Build For

v Unlﬂ'os()

2 targets, i05 SDK 4.3 7/ UnitTestTe: Perform Action »
v (& UnitTest // UnitTestTe}
17 | i
[h] UnitTestAppDelegate.h 77 Created by Build #8
m| UnitTestAppDelegate.m Z Copyright | Clean 08K rights reserved.
4 MainWindow.xib Stop 8.
é RootViewController.n #import <SenTe; Debug >
RootViewController.m
 RootViewController.xib :::2:: :{.\ 0 Window Behavior >
I% MathMachine.h #define kexpec Attach to Process >
MathMachine.m
v (] Supporting Files Edit Scheme... ®<
[} unitTest-Info.plist Pkt S New Scheme...
|_| InfoPlist.strings. Manage Schemes...
[h] UnitTest-Prefix.pch }
Im main.m ~(void) testMathMachineSum;
UnitTestTests
eend
UnitTestTests.m

Supporting Files
[] UnitTestTests-Info.plist
| | InfoPlist.strings
[h] UnitTestTests-Prefix.pch
v (] Frameworks
» % UIKit.framework
» §= Foundation.framework
= CoreGraphics.framework
v [Products
oMy UnitTest.app
) UnitTestTests.octest

+ ORE(S

OEBPS/images/9781118007594-fg1609_fmt.jpeg
) MemoryLeak - MemoryLeakAppDelegate.m

- Running MemoryLeak on iPhone Simulator
\) Q Memoryleak | iPh... 3 (=
Project (.4 @1
MemoryLeakAppDelegate.m 1
- ™ MemoryLeak) [|MemoryLeak » m| MemoryLeakAppDelegate.m » [I] -timerDo |

77
// Created by Richard Wentk on 18/01/2011.

// Copyright 2811 Skydancer Media Ltd. All rights reserved.
/

#import "MemoryLeakAppDelegate.h"

@implementation MemoryLeakAppDelegate

@synthesize window; |
- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions: (NSDi

// Override point for customization after application launch.
[self.window makeKeyAndVisiblel;

NSTimer *theTimer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self sele:
return YES;

}
- (void) timerDo {
//Leak a small object once a second
NSObject *theLeak = [[NSObject alloc] initl;
}

- (void)applicationWillResignActive: (UIApplication *)application
{

*
Sent when the application is about to move from active to inactive state. This
(such as an incoming phone call or SMS message) or when the user quits the
background state.
Use this method to pause ongoing tasks, disable timers, and throttle down OpenG!
pause the game.
*/
&

- (void)applicationWillTerminate: (UIApplication *)application

// Save data if appropriate.

=

- (void)dealloc {
[window release];
[super deallocl;

fend
4 MemoryLeak

OEBPS/images/9781118007594-fg1214_fmt.jpeg
7%) [iPhone 4.2 Simulator B (=) u‘amm‘m {

Destination
h) IBAppDelegate.n 1 Build
m) 18AppDelegate.m | |~ ¥ 1target v Runscript
IBViewControlle Run
[% 1viewControlier | * 9 Debug Shell [/bin/sh]
@ IBView.h 1 afplay '/System/Library/Sounds/Hero.aiff’ ut using a nib.
] 1BView.m + Run ThisAppNamelsT... ‘
» (] Other Sources Post-acti
» (| Resources.
» (] Frameworks. v Send Email
» (] Products.
To:| i com typically from a

Subject: Debug process
Message: | And so it begins...|

lation.
interfaceOrientation

-
New Send Email .Action Vi

super leceiveMemoryWarningl;
// Release any cached data, images, etc that aren't in use.

- (void)viewDidUnload {
// Release any retained subviews of the main view.

11 e.g. self.myOutlet = nil;
ject = [ject alloc] initl;

1"

B AN aecitan B

+ OR6(®

NI &

OEBPS/images/9781118007594-fg1627_fmt.jpeg
Instruments16

Instrument Detail

Choose a Template for the Trace Document:

i iPhone p——

] 1

All] 1

Memory |
cru

File System
Graphics

.Mslmmm
Al

Memory
cru
File System

w Mac 0S5 X
| :lm ‘ UsefulOne

-
::"s This is my new template. It does... useful stuff. =
e System
Behavior (Path : file:/, ==
UsefulOne tracetemplate)

Cheard)

OEBPS/images/9781118007594-fg1125_fmt.jpeg
86 Mac Dev Center - Apple Developer
+ |[Ihttp://developer.apple.com/devcenter/mac/index.action ¢ P(Q~ Google

Mac Dev Center Mac Dev Center

Hi, Richard Wentk My Profile Log out

Developing for Mac OS X Snow Leopard Q ! ’ Mac Developer Program
Technical Documentation Featured Content Get Your Mac Apps Ready for the
Mac App Store

Mac OS X Reference Library W Mac App Store Review Guidelines €2 The Mac Apg Store 15 now open. Learn
ﬂ * Articles * Release Notes how to prepare and submit your apps

o Getting Started « Sample Code I Submitting to the Mac App Store B to the Mac App Store. Learn more »

« Guides e Technical Notes W Validating App Store Receipts @3

o Reference o Technical Q&As

Development Videos
* Mac Development * WWDC 2010

Developer Certificate Utility
Xcode and iOS SDK Xcode and iOS SDK 4.2 Manage your App IDs and certificates
for Mac apps in the Developer
3 Xcode 3.2.5 and iOS SDK 4.2 Nov 22, 2010 Certificate Utility. Get started »
[® About Xcode 3.2.5and iOSSDK 4 Nov 22, 2010

This complete developer toolset for
creating Mac OS X and i0S
applications includes the Xcode IDE,
performance analysis tools, i0S

Simulator, and OS framework bundles -

in the form of Mac SDKs and Certificate

105 SDKs.

Apple Developer Forums
A IMPORTANT NOTE Post Mac OS X development and

If you are a member of the Mac Developer Program and wish to submit apps to the Mac App Store, distribution questions for an open
download and install the Application Tools 1.1 package after installing Xcode 3.2.5 and iOS SDK 4.2. discussion with other developers and 3
Some APIs added by the Application Tools package, and documented in Submitting to the Mac App Apple engineers. Learn more » 3

Store, require the latest Mac OS X 10.6.6 combo update.

OEBPS/images/9781118007594-fg0410_fmt.jpeg
@

O @@

«
issidgles s S Siag

B

«
(i G2 | @il

dales=>l33

<«

O

Build myCleverApp: Succeeded | Tuday at 2055

ov("'l"“'" e v '] main.m in myCleverApp project 1 match
Y 77
o = 4 // main.m // main.m
. | myCleverAppAppDel 17 PP (D // myVeryCleverApp
o myCleverApp project 7
ol Tclaver // Created by Richard Wentk on 17/10/ // Created by Richard Wentk on 17/10/
o v | | myCleverAppAppDelegate.h in myCleverApp project 6 matches
77 77
= 7 ppAppDelegate.h // myVeryCleverAppAppDelegate.h
o 7/ myCleverApp a» |/ llyVery%TeverApp
(a] " 7
= 77 77
o // myCleverAppAppDelegate.h 7 myVeryCleverAppAppDzlegnte h
// myCleverApp (0] x myVeryCleverA;
o /.
o // Created by Richard Wentk on 17/10/ Created by Richard Wentk on 17/10/
= #inport <UIKit/UIKit.h> #import <UIKit/UIKit.h>
(s] eclass myCleverAppViewController; (D eclass myVeryCleverAppViewController;
(=]
@interface myClever te : @interface myVeryClever legate
o @class ly(leverApquuCuntroller. @class myVeryCleverAppViewController;
o @interface ppAppDelegate : (O ceinterface myVeryCleverAppAppDelegate
o NSObject <UIApplicationDelegate> { 'NSObject <UTApplicotionbelegate
a UIWindow *window; {
NSObject <UTApplicationDelegate> {
o IWindow *window; UIWindow *window;
ppViewController (0 myVeryCleverAppViewController *
o viewController; viewController;
a b bl
o @property (nonatomic, retain) IBOutlet @property (nonatomic, retain) IBOutlet
o ppViewController * o) eryCleverAppViewController *
ontroller; v_%ﬁxe ontroller;
(s}
(=] v || myCleverAppAppDelegate.m in myCleverApp project S matches
(] | [77 77
i anlppbelegnte.ll 7 meg_g\.umpmpnzlegne.m
nﬂmrkppmdmj (S (o)
ov g 4| | // myCleverApp // myVeryCleverApp
= Clereriop workipace .! 7 7"

Bl

u

OEBPS/images/9781118007594-fg1107_fmt.jpeg
o000

Certificates - iOS Provisioning Portal - Apple Developer
L[> ||+ [@htp/ apple.com/i g i /team /index.action ¢ | (Qr Google
m &
‘ Developer Technologies Resources Programs Support Member Center (@ Search Developer
oning Portal Edit Profile | Log out
P Portal : Media Go to i0S Dev Center
Home
m Development Distribution History How To
Devices
Current
App IDs
developer_identity.cer
Provisioning = Your| || 28xs
Distribution
Name Expiration Date Status Action
[E] Richa Jan 30, 2012 Issued Download) Revoke
*If you d re to download now. N/
28 Team
Signing R

)

Your team currently does not have any active signing requests

OEBPS/images/9781118007594-fgb208_fmt.jpeg
Choose options for your new project:

Product Name |

Company Identifier | skydancermedia.com
Bundle Identifier skydancermedia.com.ProductName
P - S —
[0 Create Document-Based Application
Document Class MyDocument
Document Extension mydoc

Use Core Data
Include Unit Tests
() Include Spotlight Importer

OEBPS/images/9781118007594-fg1303_fmt.jpeg
LX) [settings - settings.xcodeproj

Build settings: Succeeded | Today at 14:00

No Issues.

| Summary | Info Build Settings Build Phases Build Rules
ios Target

PROJECT
1 settings
TARGETS

Identifier | skydancermedia.com.settings
Version 1.0

oevies

Deployment Target

upslde
rugm
App Icons
No No
image image
specified specified

Retina Display

Launch Images

+ OA6(® Add Target

OEBPS/images/9781118007594-fg0110_fmt.jpeg
806 Tango
o —_— —
\b [Tango (iPhone Simul... 3 | [| @l[]ﬁ”lj m =]
— = " as —
TangoViewController.xib | +
< =) Tango... Segmented Control - First, Second | € b , Top Level Objects » | | TangoViewController.h) No Selection <
T T 77
// TangoViewController.h
// Tango
7"

// Created by Richard Wentk on 28/04/2010.
// Copyright Skydancer Media 2010. All rights reserved.

<UIKit/UIKit.h>
“TangoView. h"

#import
#import

@interface TangoViewController : UIViewController {
#angoView *thisTangoViey
MGy [nsert Outl or Outlet Collection

I80utlet TangoView *thisTangoView;

@property (nonatomic, retain)

@end

OEBPS/images/9781118007594-fg0622_fmt.jpeg
B hellvagain= Succaadlad | estentayat 23133

Project (11 @3

|mm @ A = » B

B i".!'.;'?'& SDK 4.3 % helloagainViewController.m
S I cloacal x helloagain
|h) helloagainAppDelegate.h // Created by Richard Wentk on 16/03/2011.
Im| helloagainAppDelegate.m // Copyright 2011 Skydancer Media Ltd. All rights reserved.
4 MainWindow.xib "
] helloagainViewController.n #import "helloagainViewController.h"

"helloagainViewController.m

falioagairViewCorstrolier,xib & | @implementation helloagainViewController

ZNl=ponn e - (void)dealloc
» (] Frameworks
» (] Products g [super dealloc];

- (void)didReceiveMenoryWarning

| 14 Dalas’ #ha uiew if it dnaca't have a superview.
@ didReceiveMemoryWarning R
Name: didReceiveMemoryWarning c that aren't in use.
= yWarning

Availability: iOS (2.0 and later)
to the vi when the receives a
memory warning.
Declared In: UlViewController.h
Reference: UlViewController Class Reference
Related View Controller Guide for iOS

setup after loading

¥
*/
F (void)viewDidUnload
[super viewDidUnload
° NSObject #theObject = [NSOb

77 Release any retained subviews of the main view.
77 e.g. self.myOutlet = nil;

}

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation
-

// Return YES for supported orientations
O return (interfaceOrientation ==
+ 0ORGB®) UIInterfaceOrientationPortrait):

(M) ¥ Quick Help

Name: didReceiveMemoryWarning

Declaration: -
(void)didReceiveMenorywarning
Availability: iOS (2.0 and later)

application receives a memory warning.
Declared In: UlViewController.n
Reference: UlViewController Class
Reference

Related API: loadView, viewDidUnload
Related Documents: View Controller
Programming Guide for i0S

Sample Code: AQOfflineRenderTest,
AddMusic, Audio Mixer (MixerHost),
SpeakHere, TableViewSuite

Abstract: Sent to the view controller when the

D Ulo =

static text.

~~ Round Rect Button - Intercepts

| touch events and sends an action

(12 e sgments, e o when

" message to a target object when...

Label Label - A variably sized amount of O

<>

<t

Q

N

OEBPS/images/9781118007594-fg0406_fmt.jpeg
(») (m) [myCleverapp (iPhon... +] [m]

D D CTTD

Build myCleverApp: Succeeded | Today at 19:54
No Issues

¥ IS 2 workspace, 151 system

' [£] myCleverAppAppDelegate
M -application:didFinishLaunchingWithOptions:
(1) -applicationWillTerminate:

Protocols

> B o pokapus, 38 spaein
Functions

* E3) workspace, 2123 system

»B Structs
0 workspace, 216 system
Unions.

* & o workspace, 25 system
Enums

>[5 0 workspace, 205 system
Types

¥ [o workspace, 783 system

Globals
> B g workspace, 858 system

myCl
// myCleverApp

// Created by Richard Wentk on 17/18/2010.
/1 Copyright (c) 2010 Skydancer Media Ltd. All rights reserved.

#import “myCleverAppAppDelegate. h"
#import “myCleverAppViewController.h"

1 ion myCl gats

@synthesize window;

@synthesize viewController;

- (BOOL)ap JIApplicatic
(NSDictionary) launchOptions {
/7 Override point for customization after application launch.
[window addSubview:viewController.view];
[window makeKeyAndVisiblel;
return YES;
}
- (void)applicationWillTerminate: (UIApplication *)application {

/7 save data if appropriate.

- (void)dealloc {
[window releasel;

[viewController releasel;
[super deallocl;

@end

OEBPS/images/9781118007594-fg0711_fmt.jpeg
File Edit Frmat View Window Help

¥ Represented Filename

Conso
Controller Key

'values

Model Key Path

@800 0 myoolp 000 Value Transformer

(¥ Raises For Not Applicable Keys
Multiple Values Placeholder

No Selection Placeholder
Not Applicable Placeholder

Null Placeholder

» Title
Title With Pattern
v Display Pattern Titlel

() Bind to: [Shared User Defaults C... [4)

Controller Key

\ values

Model Key Path

Value Transformer
4
v

Display Pattern
Htitle1}@

= | DU ow =

OEBPS/images/9781118007594-tb1302.jpg
Table 13.2 Selected Optional iOS App Keys

Setting Notes

Application does not run in background Set YES to force the app to terminate immediately without running in the background.
Application supports iTunes file sharing Set YES to enable access to saved files through iTunes

Icon already includes gloss effects Set YES to disable the i0S glossy overlay.

Required background modes Include at least one of audio, location, VolIP to allow the app to run in the background

permanently

OEBPS/images/9781118007594-fg1331_fmt.jpeg
< pong
1 target, Mac 05 X SDK 10.6

esinaton

Subpath | fonts]
([Copy only when installi
[) tama_mini02.TTF __in ../art/

kol
(+] Q.
Add Target Add Build Phase
B B 2 & % |NoSelecon
Loaal ¢ @ Al Outpur :

+ ORG S Vi

OEBPS/images/9781118007594-fg0823_fmt.jpeg
{ /I iphoneToiPad | iP... +

-
MainWindow-iPad.xib
w9 A - 8 « [iphone

=, iphoneToiPad

£ 1 target, i05 SDK 4.3
(] iphoneToiPad

[iPad

h) iphoneToiPadAppDelegate.h
m| iphoneToiPadAppDelegate.m

MainWindow.xib

h) iphoneToiPadViewController.h
m| iphoneToiPadViewController.m

iphoneToiPadViewController.xib
(] Supporting Files

iphoneToiPad-Info.plist x)
InfoPlist.strings >
h| iphoneToiPad-Prefix.pch

m main.m
(] Frameworks
&= UIKit.framework
= Foundation.framework
= CoreGraphics.framework
(] Products
oA iphoneToiPad.app

OR@

shoneToiPad - Nind:

p d - MainWindow-iPa

Running iphoneToiPad on iPad Simulator

iphoneToiPad

Ela =z ESE)

iOS Simulator - iPad / iOS 4.3 (8F190)

Segmented Control - Displays
multiple segments, each of which

functinne ac 2 diccrata huttan

=

OEBPS/images/9781118007594-fg1313_fmt.jpeg
| <] » | [+ [[3nttps://itunesconnect.apple.com/WebObjects/iTunesConnect.woa/wo/3.0.0.9.7.3.3.1 _ Apple Inc. &

@& iTunes Connect Richard Wentk, Skydancer Media

Enter the following in UK English.

App Name il-tempered Avians 1 ®
SKU Number 'sky-123-456-789-0002 | @
Bundle ID [Select B ®

You can register a new Bundle ID here.

Does your app have specific device requirements? Learn more

Home | FAQs | Contact Us | Sign Out
Copyright © 2011 Apple Inc. All rights reserved. Terms of Service | Privacy Policy

OEBPS/images/9781118007594-tb0501.jpg
Table 5.1 Objective-C File Templates

Template

Availa

Comments

Objective-C class

UIViewController subdass

NSManagedObject subcass

Objective-CNSObJj ect category

Objective-C protocol

Objective-C test case class

i0S/0S X

i0S only

Both

i05/0S X

i0S/0S X

i0S/0S X

This s a minimal Objective-C class with a header file. By default,
this creates a subdass of NSObj ec t. You can edit the
header to create a subclass of any other Cocoa object.

This creates a subclass of UTViewController witha
header, an implementation with sample code. If you add this
template with drag-and-drop, you can choose to create a
default nibfile and select iPhone or iPad screen sizes.

The sample code is commented out, but you can remove the
comments to create your own implementations of some of the
standard UTViewController methods.

There’s no 0S X equivalent that creates an NSWindow or
NSV iew with an assodiated nib.

Thisis a subdlass of NSManagedObject, witha
header, for use in Core Data applications. This template doesn’t
include sample code or method definitions.

This creates a header and implementation file for an empty
category on NSObject. You can edit the class name to
create a category on some other Cocoa class, and you can add
custom methods to extend that class with your own features.

This creates a header file with a protocol declaration. Depending
on the context, it's sometimes easier to ignore this option and
add the protocol code directly to a class.

This creates a header and implementation file for an OCUnit test
case object. This is used exclusively for automated testing. For
more details, see Chapter 17.

OEBPS/images/9781118007594-fgb103_fmt.jpeg
m ala e e

Patch Library Zoom Levels
Root Patch il Uibrary
® 0 = ! 3D Transformation
. " Accumulator
& " Addition
Run Stop Full-Screen
" Affine Clamp
" Affine Tile

™ Anchor Position

" Apple Remote

" Area Average

" Area Histogram

" Area Maximum

" Area Maximum Alpha
" Area Minimum

% Area Minimum Alpha

B 2o

My Description
Copyright: My Copyright

411x348 Pixels 60.06 FPS Scale Z Path: /Users/Main/Library/Graphics/Quartz Composer
Patches/2D .qtz

® Offset
® PWM Ratio - Q

OEBPS/images/bl_fmt.jpeg

OEBPS/images/9781118007594-fg1420_fmt.jpeg
" RichardWentk | Dashboard Inbox 0 AccountSettings Log Out

github

Explore GitHub ~ Gist Blog Help Qv Search

Create a New Repository

Project Name Note
LocalGit |) _
If you intend to push a copy of a repository that is

already hosted on GitHub, please fork it instead.

(optional)

URL (optional)

Who has access to this repository? (You can change this later)
@ Anyone (learn more about public repos)

Id n 1]

Create Repository

Blog Support Training JobBoard Shop Contact API Status Powered by the Dedicated Servers and
©2011 Te fService Privacy Security rockspoce Cloud Computing of Rackspace Hosting®

) English Deutsch Frangais H#JE Portugués (BR) Pycckwi X Seeall avallable languages +

(<] >] gil https://github.com/repositories/new <

OEBPS/images/9781118007594-fg1621_fmt.jpeg
-
Zombie Messaged

An Objective-C message was sent to a deallocated
object (zombie) at address: 0x4b41f70. &

Allocations

(€M)

1 B 0x266a

10 D 0x2b42e
9 D 0x102532d

8[4 0x1025268

Vel | 7[§ oxeof16l
EH statistics #) Object Summary) NSObject) History: Ox4b41f70 = 6 OxeO40

Category |Event Type RefCt Address Size Resp... Caller,
0 NSObject Malloc 1 00:29.351 0x4b4lf70 16 5[4 Oxeofcco
1 NSObject Release 0 0029351 0x4b41f70 0 ARy (o
@ All Objects Created 2 NsObject. Zombie -1 00:30.480 O0x4b41f70 O i [} e
O Created & Still Living 3 E'l Oxeblfe3
O Created & Destroyed
T —— 2[4 oxalzas
() Separate by Category B
() Separate by Thread S DR
O invert Call Tree 0y oxedzich
 Hide Missing Symbols
) Hide System Libraries
) Show Obj-C Only

(] Flatten Recursion

OEBPS/images/9781118007594-fg1402_fmt.jpeg
Welcome to Xcode 4

Create Snapshot
Provide name and short description for your snapshot.
[Flrs!

The initial state of the project

+ | OREQ y

OEBPS/images/9781118007594-tb1001.jpg
Table 1 iOS Device Available

Device Available RAM

iPhone 1st generation 128MB
iPhone 3G 128MB
iPhone 3GS 256MB
iPhone 4 512MB
iPod Touch 1st generation 128MB
iPod Touch 2nd generation 128MB
iPod Touch 3rd generation 256MB
iPod Touch 4th generation 256MB
iPad 1st generation 256MB

iPad 2nd generation 512MB

OEBPS/images/9781118007594-fgb210_fmt.jpeg
Dol

ENTITIES

MyCoreDataProject
VB, target, Mac 05 X SOK 10.6
via! MMﬂ FETCH REQUESTS
C \TIONS

(/| MyCoreDataProject. xcdatamodeld

i MyCoreDataProjectDataModel.xcdatamodel

(] Supporting Files.
works.

| outlinesStyle Add Entity Add Auribute Editor Style

OEBPS/images/9781118007594-tb1503.jpg
Table 15.3 Selected Useful GDB Commands

Command Used for

help Lists the main GDB command groups. You also can use help <command> to get information about a
specific command.

po An abbreviation for “print object.” Runs the des cr 1 pt 1 on method on a specified object and
displays the result in the console.

backtrace Prints a backtrace to the console. The output is similar to a crash backtrace, but it lists events and
messages before the current breakpoint.

setvariable Evaluates any expression and assigns it to a variable. You also can change the GDB prompt with set
prompt <string>.

print Lists the result of evaluating any expression.

info symbol <address> Gives you information about the symbol at memory location <address>.

info task Displays a list of threads and gives a status summary of each.

info breakpoints Lists the current breakpoints with status information and a hit count for each.

OEBPS/images/9781118007594-fg0724_fmt.jpeg
K X

v _Sent Events
Z {:Vievcon(roller.h P O Pk o)
7 Editing Changed [o}
// Created by Richard Wentk on 23/ Editing Did Begin o
11/2010. Editing Did End o
// Copyright 2010 Skydancer Media Touch Cancel (o]
5 Ltd. ALl rights reserved. e)
‘Touch Down Repeat o
#import <UIKit/UIKit.h> :“""’“’:‘:’ 8
FocsirO7ag
@interface IBViewController : ‘Touch Drag Inside [o}
UIViewController { — “Touch Drag Outside (0]
3 > — ‘Touch Up Inside [e)
lo—— ‘Touch Up Outside (o]
@end Value Changed [e]
v Outlets
‘New Referencing Outlet (&)
cing Outlet
‘New Referencing Outlet Collection (a]

([l Objects =

0

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when...

rre

(a]a) ek el]
Q

\
N

OEBPS/images/9781118007594-fg0721_fmt.jpeg
@
L

> | [h]1BViewCo...) No Selection | B}

IBViewController.h
18

// Created by Richard Wentk on 23/
11/2010.

// Copyright 2018 Skydancer Media
Ltd. ALl rights reserved.

1"

#import <UIKit/UIKit.h>

@interface IBViewController :
UIViewController {

@end

(Mliobes ¥

7' Text View - Displays multiple lines
= | of editable text and sends an action
GZiZ | message to a target object

Web View - Displays embedded
web content and enables content
navigation.

View - Displays maps and

OEBPS/images/9781118007594-fgb106_fmt.jpeg
™ Wolfjpg

M Glass Lozenge

[. 7y y
Refracti.. emm— 470

™ OpTile +[-]

SCale e — 2 81
Angle cmm—— 227 |
Width e 4

OEBPS/images/9781118007594-fg0810_fmt.jpeg
806
»)(m) [BG

M0 A=w=8

e Simulat... 7 | | =

(.

Build IB: Failed | 25/11/2010 at 03:20

No Issues

=)

= [a)iz)y O =} (1

| < » | |IB)[|Resources) | |IBViewController.xib) | en)| |View I=] n !;_Q';' o
vy B T —— ¥ Custom Class
L 1 target, i05 SDK 4.2) Placeholders O
v (] Classes File's Owner Class | UIView O
L] 1AppDelegate.h @ First Responder =] X Mdenilty,
| IBAppDelegate.m _— ™ == Label | Xcode Specific Label
| IBViewController.h

|| I8ViewController.m
» (L] Other Sources
v (] Resources

|| IB-Info.plist

| InfoPlist.strings

|| MainWindow.xib

S ——

" (] Frameworks
» (] Products

% Objects

__ Label - This is off
. Button - CHANGE IT

This fis off

| CHANGE IT

+ | 0REQ

xEBWLe -
Object ID 6

D U\ v =

[CEES lvons scavential navigaton...

=

| Table View - Displays data in

ist
| of plain, sectioned, or grouped rows.

Table View Cell - Defines the
attributes and behavior of cells (rows)
in a table view.

Image View - Displays a single |
image, or an animation described by

an array of images. |

CEIS

Text View - Displays multiple lines
of editable text and sends an action
message to a target object when...

| Web View - Displays embedded
web content and enables content
navigation.

Map View - Displays maps and
provides an embeddable interface to
navigate map content.

Scroll View - Provides a mechanism
to display content that is larger than
the size of the application’s window.
.
Date Picker - Displays multiple
if Is 10 allow users to

Vi

OEBPS/images/9781118007594-fg1408_fmt.jpeg
lo:alGinBelegne n

LocalGitAppDelegate.m

V]
@ [h [A]
// LocalGi: // LocalGit
b | @ |m MyClass.m D | n 7
n @ project.pbxproj o 17 Cre.ted by Richard Wentk on 81 /1 Created by Richard Wentk on 01
I e Sk s] Copvedant 2011 Skyd Medi Copveiant 2011 sk Med
/7 Copyright 2011 Skydancer Media // Copyright 2011 Skydancer Media
> O [xcuserdata Ltd. AlL rights reserved. Ltd. AlL rights reserved.
1" 1"
i #import "LocalGitAppDelegate.h" #import "LocalGitAppDelegate.h"
@implementation @implementation
LocalGitAppDelegate LocalGitAppDelegate
@synthesize window; @synthesize window;
- (void) - (void)
applicationDidFinishLaunching: applicationDidFinishLaunching:
(NSNotification %) (NSNotification *)
‘ aNotification aNotification
// Insert code here to // Insert code here to
initialize your initialize your
lgglic tion application
£ 4 ‘commen S ¥
to test SCM
3 @end
@end
A note for the first commit
+ ORE S - 1]

OEBPS/images/9781118007594-fg1319_fmt.jpeg
A
L em— Y 4 (E[=EXm) (@-searchApps
@D Genres
iPhone, iPod touch, and iPad Apps 10 Apps ()
=l R
NEWS — o 1 -
BBC News Google Earth iBooks Mocha VNC Lite MoonPhase -... Mrmr OSC co... Quick Graph Remote Deskt...
News Travel Books Business Utilties Productivity Education Business
STORE
€ s s osc [l 3
sQ Ping
Purchased TouchOSC Twitter
=) Purchased on iPhone Music Social Networking
DEVICES iPhone and iPod touch Apps 25 Apps
» [iPhone Y-
SHARED

£} Home Sharing

GENIUS - 16 BURGER
% Genius BT Exchanges eBay Mobile Graphing Calc... haplome 1Can Has Che...
Lifestyle Lifestyle Education Music Entertainment
PLAYLISTS
£ iTunes D)
= i iPhone 4
£ 90's Music Oblique
£ Music Videos e —
£% My Top Rated iNietzsche iPhone 4 Case... iTunes Conne... Kitten Escape Labyrinth Lite... Met Office We... Oblique Strate...
» Entertainment Lifestyle Business Games Games Mus\c Weather Music

4 Recently Added
4# Recently Played
£ Top 25 Most Played

19 Updates Available @ Get More Apps ©

+ 2 2 @ 35 apps

OEBPS/images/9781118007594-fg1522_fmt.jpeg
Ve cmn’.‘:pi:.nﬁn—thvnd
1BViewController viewD.
[1 -[UIviewController view]
2 -[IBAppDelegate applicat.

333 -(uiApplication _calliniti
[15 uApplicationMain
16 main

_ Thread 2
* ¥ com.apple libdispatch-man...

» ¥ Thread 3
» ¥ Thread 4

» ¥ Thread 5 WebThread

Running IB on iPhone Simulator

- (void)didReceiveMemoryWarning {
// Releases the view if it doesn't have a superview.
[super didReceiveMemoryWarningl;

// Release any cached data, images, etc that aren't in use.

[
- (void)viewDidUnload { 3
// Release any retained subviews of the main view. ¥

© 1 2 & & | 4B ¥ Thread 1[I0 -(IBViewController viewDidLoad]
All Output + Clear) (10| N JEND
(gdb) help =

List of classes of commands:

aliases —— Aliases of other commands
breakpoints —- Making program stop at certain points
data —— Examining data

files —- Specifying and examining files

internals —- Maintenance commands

obscure —— Obscure features

running -- Running the program
stack —— Examining the stack
status -- Status inquiries

support - Support facilities
tracepoints —— Tracing of program execution without stopping the program
user-defined —- User-defined commands

Type "help" followed by a class name for a list of commands in that class.

Type "help" followed by command name for full documentation.

Command name abbreviations are allowed if unambiguous.

(gdb) backtrace

#0 -[IBViewController viewDidLoad] (self=0x4b4Be@d, _cmd=0x43649e) at /Volumes/Developer/+ X4/IB/Classes/
IBViewController.m:33

#1 0x000c@65e in -[UIViewController view] ()

in -[IBAppDelegate application:didFinishl i ions:] (sel b
at /Volumes/Developer/+ X4/IBIClasses/IBAppBe\egake.n 26
in —[U!Apphcnunn _callInitializati URL: payl
e in -[UIApplication _r :payload: launchOri ion:st Style:statusBarHidden:] ()

#5 0x0001fdb2 in -[UIApplication handleEvent:withNewEvent:] ()

#6 0x00018202 in - [UIApplication sendEvent:] ()

#7 0x0001d732 in _UTApplicationHandleEvent ()

#8 0x0101ca36 in PurpleEventCallback ()

8064 in _CFRUNLOOP_IS, CALLING_BIJT_TO_A_SDURCEI_PERFDRN_FUNCTIBN_ 0
7 in __CFRu

N -)

in CFRunLoopRun ()

OEBPS/images/9781118007594-fg1329_fmt.jpeg
Running BuildSettings on iPhone S|mula(nr

- BuildSettings ‘Build Phases
S] target, i0S SDK 4.2 PRO.J[:Tnasm Summary Info Build Settings | = | Build Rules R
ui ngs
¥ 0 TRRGETS v Target Dependencies (1 item)
h| BuildSettingsAppDelegate.h 7 A Framework - =
) Buil 4 i\ i 5y A Framework (BuildSettings)
~ MainWindow.xib
[h| BuildSettingsViewController.h
|m] BuildSettingsViewController.m P
~ BuildSettingsViewController.xib
Supporting Files v Compile Sources (4 items) — —
v (L] A Framework Name
v (] Supporting Files [m] main.m __.in BuildSettings/
[h| A_Framework-Prefix.pch m] m ..in
|c| DoNothing.c m) BuildSetti ontroller.m __in
|h] DoNothing.n [c) DoNothing.c ._.in A Framework/
» (] Frameworks
» (L] Products chamimal
¥ Link Binary With Libraries (4 items) %]
libA Framework.a Required 5
& UIKit.framework Required 5
& Foundation.framework Required 5
W CoreGraphics.framework Required 5
+ - Drag to reorder frameworks
v Copy Bundle Resources (3 items) [x]
| InfoPlist.strings _..in BuildSettings/en.Iproj/
:“ MainWindow.xib ...in BuildSettings/en.lproj/
4 Buil i ontroller.xib _in /enlprol Add Copy Files
L+ -1 Add Run Script
[» Run Script Add Copy Headers
Add Target ‘Add Build Phase
Y
+ ORE® = 2 & & |BuildSettings

OEBPS/images/9781118007594-fg0607_fmt.jpeg
8006 Getting Started with ics and a

uu + Uhnps://dzvelnpzr.apple,com y/ios/ Y i /GS_Graphics_iPhone/ir & | [Q~ apple developer

D iOS Reference Library

Introduction

Overview
iOS has several frameworks for graphics and animation:
= UIKit contains a library of Objective-C classes that provide user interface controls and 2D drawing. You also use UIKit to animate the user
interface.

= Core Graphics is a C-based API for drawing vector graphics, bitmap images, and PDF content. (Note that Quartz 2D is the term used for the 2D
drawing engine, while Core Graphics is the name of the framework. These two terms are often used as synonyms.)

= The Core Animation Objective-C APl adds smooth motion and dynamic feedback to the user interface.
= OpenGL ES is the mobile version of OpenGL for high-performance 2D and 3D drawing on mobile devices. It is a subset of the OpenGL APl on

the desktop and is designed to be compact and efficient. The OpenGL ES framework includes EAGL, an Objective-C based API that provides
support for integrating OpenGL ES rendering with Core Animation layers and UIKit views.

You use UIKit to perform typical graphics operations in your user interface, such as drawing images, setting colors, and filling rectangles. It is also
what you use for transformations (moving, scaling, rotating), to transition smoothly from one view (or screen) to another, and to animate content in a
view or layer.

When you need more powerful 2D drawing capabilities, use the Core Graphics framework. It's the workhorse for drawing vector graphics, lines,
shapes, patterns, gradients, images, and even PDF documents. The higher-level frameworks, such as UIKit, use Core Graphics.

Core Animation is the programming interface that the UIKit framework uses for layering and transitions in its classes. Most of the time you won't
need to use Core Animation directly. Use it if your application requires fine-grained control over animations.

You use OpenGL ES to develop games or other applications that require the ad d graphics iliti ided by the GPU.

The Basics

To understand the basics about how drawing works in iOS, read the following chapters in View Programming Guide for iOS:

« >l

= Read “Windows and Views" to get an understanding of such things as the view hierarchy, the native coordinate system for iOS, and the
i .

OEBPS/images/9781118007594-fg1611_fmt.jpeg
B Statistics ¢) Object Summary

#Living #Transitory | Overall Bytes | #Overallw|# Allocations (Net / Overall)

Graph Category Live Bytes |

® * Al Allocations * 1.06 MB 9130 0 1.06 MB
O Malloc 16 Bytes 48.23K8 3087 0 48.23 KB
OAIl Objects Created O Malloc 32 Bytes 50.75 KB 1624 0 50.75 KB
® Created & Still Living O CFstring 43.45KB 1410 o 43.45KB
O Created & Destroyed O Malloc 8 Bytes 4.80 KB 614 0 4.80 KB
Call [Malloc 48 Bytes 13.31 KB 284 o 13.31 K8
W () CFstring (store) 73.94 KB 263 0 73.94 KB
e b Thomacd [0 CrBasicHash 9.48KB 209 0 9.48KB
O invert Call Tree () CrBasicHash (value-st... 16.16 KB 174 0 16.16 KB
Hide Missing Symbols () Malloc 64 Bytes 9.69 KB 155 0 9.69 KB
ide System Libraries (O Malloc 96 Bytes 14.25 KB 152 0 14.25KB
how Obj-C Only [0 CrBasicHash (key-store) 13.73KB 119] 13.73KB
Flatten Recursion 8 2‘:::‘ DB i‘:: 2 :: g I—gﬁ ﬁ:

= ay § {
: m“ﬂ:ﬁm [Malloc 1.00 KB 54.00 KB 54 0 54.00 KB
[0 Malloc 160 Bytes 7.34KB 47 0 7.34K8
(O CFArray (store-deque) 4.19 KB 40 0 4.19KB
() CrBasicHash (count-s... 784 Bytes 38 [784 Bytes
[CFRunLoopSource 4.05 KB 37 0 4.05KB
[0 Malloc 128 Bytes © 4.25 KB 34 (1] 4.25KB
[Malloc 144 Bytes 4.50 KB 32 0 4.50KB
) CFMachPort 1.81 KB 29 o 1.81KB
() NsObject 448 Bytes 28 0 448 Bytes
O CFURL L.17KB 25 o 1.17 K8
() Malloc 304 Bytes 6.23 KB 21 0 6.23 KB
[Malloc 4.00 KB 76.00 KB 19 0 76.00 KB
M1 Malloc 112 Rvtes 2 NDRKR 19 n 2 NR KR

NI -

OEBPS/images/9781118007594-fg0403_fmt.jpeg

OEBPS/images/9781118007594-fg0314_fmt.jpeg
[SpitView - SpltView.xcodeproj

Running SpltView on iPad Simulatos — T —
SpitView | iPad 4. - . il agd @Eca

No Iss

Solioimi i0S Simulator - iPad / iOS 4.3 (8F190)
n @ A [spitview
PROJECT Sui
I spitview i0S Application Tz
SpltView -
h) SpitViewAppDelegate.h TARGETS y =
m! SpltViewAppDelegate.m A
MainWindow.xib
h) DetailViewController.h
m| DetailViewController.m
DetailView.xib
h| RootViewController.h
m| RootViewController.m
(] Supporting Files
(] Frameworks
(] Products

content goes here

App lcon

Launch Images.

©

Add Target

i % | Sphview

OEBPS/images/9781118007594-fg0311_fmt.jpeg
Loading

Choose a template for your new project:

| ios

L
optcaon A\ $ -
Framework & Library

Other
Cocoa Application Cocoa-AppleScript
& MacOs X Application

Application
Framework & Library
Application Plug-in
System Plug-in
Other

< C

Core Data

Core Foundation
Core Services rol
Foundation

~line tool written in C.

Cormvons

OEBPS/images/9781118007594-fg1008_fmt.jpeg
Organizer - Devices
Devices Repositories Projects Archives Documentation
LIBRARY

. Developer Profile Screenshot 2010.08.12 18.16....
[] Provisioning Profiles 12 August 2010

Orange

03:55 =

Software Images

i Save as Default Image
ice Logs G
e Open Image with Finder
Screenshot 2010.08.1; Reveal Image in Finder

DEVICES 12 August 2010

iPhone e Delete Screenshot

4.2.1 (8C148)

(1] Provisioning Profiles Screenshot 2010.09.12 03.55....

4 Applications 12 September 2010

8 Console

. Device Logs

@ Screenshots Screenshot 2010.09.12 03.55.

e 12 September 2010

iPhon

4.1(8B117)

. Device Logs
 Screenshots
g P
4.1(88B117)
" Device Logs
Screenshots

Compare | Difference }) =O
Remove Export Save as Launch Image

Show Tolerance

OEBPS/images/9781118007594-fg0902_fmt.jpeg
(| Resources
| 1B~Info.plist
| | InfoPlist.strings
| MainWindow.xib
| 1BViewController.xib

+ | OREQ)

o

Running IB on iPhone Simulator

Project @1

IBAppDelegate.m
18

// Created by Richard Wentk on 23/11/2018.
// Copyright 2010 Skydancer Media Ltd. All rights reserved.

#import “IBAppDelegate.h”
#import “IBViewController.h"

@implementation IBAppDelegate

|
@synthesize window;
@synthesize viewController;

- (BOOL)application: (UIApplication *)application
didFinishLaunchingithOptions: (NSDictionary *)launchOptions {10}

- (void)applicationWillTerminate: (UIApplication *)application {

// Save data if appropriate.

- (void)dealloc {
[window releasel;

[viewController releasel;
{super deallocl;

@end

No Quick Help

D (s = |

Code Snippet Library (=S

dealloc Method -
Used for releasing memory that is not|
needed for an object once it is...

-~

}

Core Data: Basic Fetch - This

{} ‘ allows you to fetch an entity from a

managed context.

Reusable UlTableView Cell -
‘ Used for reusing UlTableView cells to |
improve performance.

executing a block after a set amount

‘ GCD: Dispatch After - Used for
of time.

\H‘ C Block typedef - Used for

defining a block as a type.

when there is code that needs to do

‘ Objective-C Finally Block - Used
cleanup after an exception.

Core Data: Fetch with Sorting -

} {} ‘ This will fetch managed objects in a

specific order

GCD: Dispatch Once - Used for
‘ executing code once through the
lifetime of the object, such as for a...

S

OEBPS/images/9781118007594-fg1316_fmt.jpeg
No issues were found in “uSha".
*“uSha" has passed validation and may be submitted to the App Store.

OEBPS/images/9781118007594-fg0813_fmt.jpeg
18
L 1 target, iOS SDK 4.2
v (] Classes

LB

moq »

9 Placeholders

Running IB on iPhone Simulator

File's Owner
| IBAppDelegate.h @ First Responder
| 1BViewController.h W Objects

| IBViewController.m
» (] Other Sources

% flip.png

| | 1B-Info.plist

| InfoPlist.strings.

| MainWindow.xib

| | 1BViewController.xib
» (] Frameworks
» (] Products.

+ | OREQ)

B4 Image View
|__|Label - This is off
|__|Button - CHANGE IT

‘

UlimageView

No Quick Help

D 0 o|[m

] Media Library &) i)

e

OEBPS/images/9781118007594-fg1405_fmt.jpeg
Loading

(T)= m (@+x [} Q
¥ DEVICES
18 Eris T — @ Yy VY% T 2%
| Macintosh HD 25/11/2010
£l iDisk BreakpointTest 26/12/2010
1| Developer a Debugtest 26/12/2010
fonts 24/11/2010
i E‘:::lw’ - M ae= 29/11/2010
s - (2] 1B Custom View 13/12/2010
¥ PLACES {1 18 Lanuage 29/11/2010
Gcnia {1 1B refactored 29/11/2010
(2] Developer {1 1B UlimageView 29/11/2010
Desktop (] MacUnitTest 28/12/2010
£ Main [snapshot Yesterday |
[Documents (2] SnapshotExample Yesterday |
G Pictures [UnitTest 28/12/2010 |
[Movies . |
J3 music 2 |
= v

Source Control: q.Create local git repository for this project

“Xcode will place your project under version control

OEBPS/images/9781118007594-fg0108_fmt.jpeg
|| TangoToken.h

v (] Frameworks

+| OAG Q@

Welcome to Xcode 4

Project (18

TangoViewController.m
// Tango

// Created by Richard Wentk on 28/04/2010.

// Copyright Skydancer Media 2010. All rights
reserved.

#import "TangoViewController.h"

@implementation TangoViewController

@synthesize thisTangoView;

NSTimer *timerl;
NSTimer *timer2;

int splitTime = 10;
unsigned int splitMax = 7;
int timeCount;

unsigned int splitCount;

| /*
// The designated initializer. Override to

perforn setup that is required before the
view is loaded.
- (id)initWithNibName: (NSString *)nibNameOrNil
bundle: (NSBundle *)nibBundleOrNil {
if ((self = lsnpe(initWithNibName:
il bundl i)

{
// Custom initialization

3 return self;
*/

57 Implement loadView to create a view
hlerlrchy programmatically, without using

s (void)lnld\liev {

Y

- (void)viewDidLoad {

[super viewDidLoad];
self.view = (TangoView *)thisTangoView;

< "

TangoViewController.h
7/ Tango

// Created by Richard Wentk on 28/04/2010.

// Copyright Skydancer Media 2018. All rights
reserved.

1"

#import <UIKit/UIKit.h>
#import "TangoView.h"

© @interface TangoViewController :
UIViewController {
TangoView *thisTangoView;
180utlet UISegmentedControl *segment;

@property (nonatomic, retain) IBOutlet
TangoView *thisTangoView;

@end

OEBPS/images/9781118007594-fg0505_fmt.jpeg
v E] Animation Test
1 target, Mac OS X SDK 10.6

| InfoPlist.strings

| MainMenu.xib

A Animation Test.app

+ | ORAF Q

L Animation Test

Welcome to Xcode 4
Project (11

_Inie

v _Identity

// Animation_TestAppDelegate.h
// Animation Test

Group Name | Classes

// Created by Richard Wentk on 22/05/2010.
// Copyright 2010 Skydancer Media Ltd. ALl rights reserved.

#import <Cocoa/Cocoa.h>

@interface Animation_TestAppDelegate : NSObject <NSApplicationDelegate>

Path |_Relative to Group

(&]

Full Path /Volumes/Developer/+
4

NSWindow *window;

@property (assign) IBOutlet NSWindow *window;

@

‘Objective-C class - An Objective-
C class with a header

UlViewController subclass - An
Objective-C view controller subclass

Objective-C NSObject category
- An Ob]m -C category on
NSObject

‘Objective-C protocol - An
Objective-C protocol

Objective-C test case class - An |

Objective-C class containing an
OCUnit test case with a header

C File - A C file with a header file

C++ File - A C++ file with a header
file

a
v

OEBPS/images/9781118007594-fg1624_fmt.jpeg
Allocations

= Rules are evaluated top-to-bottom;
later rules override earlier ones.

Tracking Behavior | === s K1

(Net / Overall)

Record all types except those beginning with'CF |Living # Transitory ~ Overall Bytes
and those beginning with 'Malloc' o‘ o‘ 0 Bytes °

© Al Objects Created
O Created & Still Living T
O Created & Destroyed
D T ———————
O Separate by Category
() Separate by Thread
O Invert Call Tree
 Hide Missing Symbols
0 Hide System Libraries
) Show Obj-C Only
) Flatten Recursion

>-Specific: Data Mining -]

