

 [image: First Edition]

 Design and Prototyping for Drupal

Dani Nordin

Editor
Julie Steele

Editor
Meghan Blanchette

Copyright © 2011 Dani Nordin

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Design and
 Prototyping for Drupal, the image of a large claw crab, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

Introduction

If you’re reading this book, you’re probably a web designer who has
 heard of Drupal, wants to get started with it, and may have even tried it
 out a couple of times. And you might be frustrated because even if you’re
 used to code, Drupal has thrown you a major learning curve that you hadn’t
 expected. And just when you think you’ve gotten a basic site together, now
 you have to figure out how to make it look right—and
 the whole process starts over again.
Yep, I’ve been there too. That’s why I wrote this book.
This book is for the solo site builder or small team that’s itching
 to do interesting things with Drupal, but needs a bit of help
 understanding how to set up a successful Drupal project. It’s for the
 designer who knows HTML and CSS, but doesn’t want to have to learn how to
 speak developer in order to parse Drupal documentation. Most importantly,
 this book is for those who want to use Drupal to make their vision a
 reality, but need help working their minds around the way that Drupal
 handles design challenges.
What I present here are not recipes for specific use cases; although
 recipes can be useful, experience has shown there’s rarely just one way to
 accomplish an objective in Drupal. Rather, what I’m offering is context: a
 way of understanding what Drupal is and how it works, so that you can get
 over the hump and start figuring things out on your own. Over the course
 of this series of books, I’ll help you understand:
	How to plan and manage Drupal projects successfully (in the
 Planning and Managing
 Drupal Projects guide)

	How to more effectively create visual design for Drupal by
 understanding what Drupal is spitting out (in Design and Prototyping
 for Drupal)

	How to break down your design layouts to turn them into Drupal
 themes (in Design and Prototyping
 for Drupal)

	How to get started with version control, Drush, and other
 ninja-developer Drupal Magick that can make your life much easier
 working with Drupal (in Drupal Development
 Tricks for Designers)

In This Volume

In this second volume, Design and Prototyping for
 Drupal, we’ll start digging into the practical design
 challenges that Drupal presents, and look at some strategies for dealing
 with them. You will learn:
	Strategies for sketching, wireframing and designing effective
 layouts for Drupal

	How to break down a Drupal layout to understand its basic
 components, and where those components are coming from within
 Drupal

	An introduction to working with layout grids and the 960 grid
 system to facilitate efficient wireframing, layout and
 theming

	The basics of Drupal’s theming layer, including what to look
 for in a base theme, and how to create a subtheme to hold your
 customizations

	Strategies for managing the markup that Drupal produces,
 including the markup that comes from Views, the powerful module that
 helps organize and display the content in your Drupal site

	An introduction to LessCSS, which can help you organize your
 CSS and theme your site more efficiently

A Quick Note on Nomenclature

Before we continue, it’s important to make a distinction between
 visual design and theming.
 While many themers can design and vice versa, visual design (as defined
 in this guide) is the act of creating a set of visual
 standards that will control the way the site looks. This
 could involve something as simple as picking out colors and font choices
 for the site, and creating some standards for laying out type, boxes,
 etc. More often, it involves creating visual mockups in a program such
 as Fireworks or Photoshop.
Theming, on the other hand, is the process of implementing those
 visual standards across the site’s template files, using HTML, CSS, and
 PHP. While theming can (and sometimes does) happen without visual
 design, design is what truly brings the message home to the client’s
 audience. When well constructed, and implemented by talented themers, a
 site’s visual design is an important factor in whether the site meets
 the client’s business objectives.
Theming, as a distinctive job description, seems relatively unique
 to the Drupal universe. While many other CMSs include some idea of a
 theme layer—“theme” being defined as a set of customizable templates
 through which content is displayed—with many CMSs, designers either
 appropriate an existing theme to create their design, or they hand
 finished design comps off as either images or HTML files to a developer,
 who integrates those files into the website’s structure. While this can
 also be done in Drupal, it’s not advised; Drupal’s theme layer has a
 level of complexity to it that makes simply modifying an existing theme
 problematic. For this reason, many Drupal designers will turn to themers, also
 called “Front-End Developers,” to help them implement their designs,
 particularly if they include any kind of fancy stuff.

A Note on Code

One thing I must emphasize about the Drupal design process is that
 it often involves getting into code—but not always. As mentioned before,
 many excellent Drupal designers never touch a line of code; however,
 those designers always have developers who help them implement
 their designs. If you want to design for Drupal but don’t
 have access to developers, well, you’re going to need to learn code and
 site building in Drupal. There’s no way around it if you want to do good
 work.
The good news, however, is that’s part of what you’ll learn about
 in this book. While I’m not going to provide you with a recipe for a
 generic promotional site, or guidance on how to install Drupal, what I
 will do is show you how I figured out some of the stickier design and
 implementation challenges for a couple of real world projects, which
 will give you an insider’s look at what it’s like to design and
 prototype in Drupal.

But Dani, I’ve Never Even Installed Drupal Before; What Do I
 Do?

This guide assumes that you’re at least somewhat familiar with
 Drupal, particularly Drupal 7. If you’ve never worked with Drupal at
 all, you might find some of the examples confusing. If you need to get
 started working in Drupal from the ground up, I recommend checking out
 NodeOne’s excellent “Learn Drupal 7” training series. The series,
 located at http://nodeone.se/blogg/learn-drupal-7-sceencast-series-summed-up,
 will walk you through the basics you need to get started building your
 own site. Don’t worry; I’ll wait for you.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Design and Prototyping for Drupal by Dani Nordin
 (O’Reilly). Copyright 2012 Dani Nordin, 978-1-449-30550-5.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/0636920020295

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

About the Reviewers

Todd Ross Nienkerk, Four Kitchens
 co-founder, has been involved in the web design and publishing industries
 since 1996. As an active member of the Drupal community, Todd regularly
 speaks at Drupal events and participates in code sprints all over the
 world. As a member of the Drupal.org Redesign Team, Todd helped
 spearhead the effort to redesign Drupal.org and communicate a fresher, more
 effective Drupal brand. He is also a member of the Drupal Documentation
 Team and has chaired tracks for DrupalCon Copenhagen 2010, DrupalCon
 Chicago 2011, and DrupalCon Denver 2012. Todd is currently serving as the
 DrupalCon global chair for all design, user experience, and theming
 tracks.
Tricia Okin is a designer based
 and working in Brooklyn since 2001 and founded papercut in 2004. papercut
 was resurrected in early 2009 by Tricia after realizing she wanted to make
 good work with tangibility & purpose. She also realized she couldn’t
 and would rather not do it alone in a design vacuum. From there, Tricia
 called on the best resources she could find and mustered up a gang of wily
 collaborators with as much passion for being their own bosses as she
 has.
For nearly two decades, Jenifer
 Tidwell has been designing and building user interfaces for a
 variety of industry verticals. She has experience in designing both
 desktop and Web applications, and currently designs and develops websites
 for small businesses. She recently worked on redesigning the interface for
 Google Books. Before that, as a user interface designer at The MathWorks,
 Jenifer was instrumental in a redesign of the charting and visualization
 UI of MATLAB, which is used by researchers, students, and engineers
 worldwide to develop cars, planes, proteins, and theories about the
 universe. Jenifer blogs about UI
 patterns and other design-related topics at http://designinginterfaces.com/blog.

Acknowledgments

To be honest, I’m still amazed at being given the chance to write
 this book. It had been swirling around in my mind for a while, and I
 consider it one of life’s happier coincidences that I happened to get the
 opportunity to write about Drupal in not one, but two major books this
 year.
A brief list of thanks to the folks who have helped me in various
 capacities to help this book see the light of day:
My intrepid editors, Julie Steele and Meghan Blanchette, for giving
 me the opportunity to write the book, and for helping me make sense of
 O’Reilly’s lengthy style guide. Also thanks to Laurel Ruma for making the
 introduction to Julie so I could actually sell this
 crazy idea.
Todd Nienkerk of Four Kitchens (fourkitchens.com) helped me
 understand how the ideas I’ve used in really tiny teams apply to the work
 of larger teams; his feedback as a reviewer (as indicated by the many
 times I quote him throughout this text), was invaluable.
Tricia Okin of Papercut (papercutny.com) was instrumental in
 helping me deconstruct what my readers would need. She also provided a
 tremendous real-world example for the book in the form of the
 Urban Homesteaders Unite project. Her commentary
 throughout this process, as well as her wicked sense of humor and
 willingness to actually learn Drupal, has been a constant source of
 awesome.
Various colleagues and professional acquaintances, in and out of the
 Drupal community, who were kind enough to let me interview them: Greg
 Segall of OnePica, Richard Banfield of Fresh Tilled Soil, David Rondeau of
 inContext Design, Todd Nienkerk, Jason Pamental, Amy Seals, Mike Rohde,
 Ryan Parsley, Leisa Reichelt and Andrew Burcin.
Claudio Luis Vera, for introducing me to Drupal, and being a mentor,
 collaborator, and commiserator for the last several years. Also, Ben
 Buckman of New Leaf Digital, who has been one of the guiding forces behind
 my passion to bring Drupally knowledge—particularly Drush, Git and other
 stuff—to my fellow designers.
Finally, I want to thank the niecelet, Patience Marie Nordin, for
 giving me someone to be a role model to, and my husband, Nicolas Malyska,
 for being the most supportive partner anyone can hope for.

Part I. Getting Started: Some Stuff to
 Consider

Chapter 1. Design for Drupal: Basic Concepts

At the most recent Drupal Design Camp in Boston,[1] Drupal founder Dries Buytaert mentioned in his keynote speech,
 “I make designers write PHP. And produce horrible code. You guys should hate
 me.”
While this announcement got a big laugh from attendees at the camp,
 Dries wasn’t completely joking. Creating effective design for Drupal
 requires a willingness to acquire some technical knowledge. If you’ve ever
 thought of using Drupal as a “quick” or “cheap” way to build a website, and
 you’ve experimented with it at all, you’ve already learned that you were
 dead wrong in that assumption.
But, if you’re willing to build on your design skills, learn some
 basic principles, and apply them to an interesting and rapidly growing
 technology, you might find yourself very happy working with Drupal. And
 believe it or not, the Drupal community will love you for it; the last
 couple of years in particular has seen a renaissance of talented designers
 who are not only doing beautiful work in Drupal, but they’re showing others
 how to do it as well. If you want proof, look no further than the impressive
 collection of videos from Boston’s most recent Drupal Design Camp, which you
 can find at http://ttv.mit.edu/collections/drupal:1922.
Blatant plug for the Drupal design community aside, let’s move on to
 some basic principles of creating design for Drupal. To recap from the
 Planning and
 Managing Drupal Projects guide, visual design (defined
 here primarily as creating the look and feel for a given site), often comes
 either after or alongside the technical implementation phase of a Drupal
 project. See Figure 1-1 for
 a reminder.
[image: An overview of the Drupal site planning and design process. See how Technical Implementation and Visual Design go together? That’s important.]

Figure 1-1. An overview of the Drupal site planning and design process. See how
 Technical Implementation and Visual Design go together? That’s
 important.

This is important for a couple of reasons:
	Focusing on visual design later in the process helps clients focus
 on information hierarchy, content and structure in the early
 phases—which is especially important for content-rich or
 interaction-driven sites.

	As mentioned in the Planning and Managing
 guide, having actual content and structure for the site at least
 somewhat established prior to starting visual design gives you a better
 idea of where you’re starting from—which makes it easier to create
 layouts that are both visually attractive and feasible to
 implement.

This last piece—feasible to implement—is one of
 the core challenges to working in Drupal, and where many visual designers
 end up going crazy. Whether we want it to or not, Drupal has ways it likes
 to do things—a fact that is true with any web-based framework (yes, even
 WordPress). By understanding and respecting how Drupal likes to do things,
 it’s easier to develop design patterns that allow you to design more
 efficiently, while maintaining your creativity.
The presentation Don’t Design Websites, Design Web
 SYSTEMS!,[2] first presented by Todd Nienkerk and Aaron Stanush of Four
 Kitchens at DrupalCon Copenhagen, illustrates this point perfectly. Working
 with design agency Thinkso Creative to implement a complex Drupal site for
 Expeditiary Learning, the Four Kitchens team started with a series of visual
 designs, site maps and wireframes that Thinkso had put together. All of
 these provided an excellent design direction for the Four Kitchens team, but
 because some design elements had been created before Thinkso had chosen
 Drupal as its platform, several of the elements had to be reconsidered and
 restructured in order to avoid significant delays or cost impacts in
 production.
Does this mean that you should know you’re designing for Drupal before
 you start the discovery and user experience phase of a site? Not always.
 Some projects, particularly ones that involve a high level of user
 interaction or complexity, can benefit from a platform-agnostic approach in
 the early phases. What’s more important to this process is flexibility:
 knowing that your designs may have to adapt once you get into technical
 implementation. This need to adapt is also a key reason that designers
 should get to know Drupal. By having even a basic understanding of what’s
 happening “under the hood,” you can adapt quickly, and avoid the nightmare
 that eventually befalls every talented web designer: well-meaning
 implementers who destroy your design to make it fit their framework.
The process for creating an effective Drupal design often depends on
 the nature of the team and their development strategy. Some Drupal designers
 focus primarily on aesthetics and layout and give their designs to the
 developers to implement; other designers prefer to do a little bit of
 everything, moving from layout to Views configuration to theming as the
 project progresses, and working with developers to handle the trickier bits
 of functionality they want to develop.
As you’ll probably notice by the time you finish the book, I’m in the
 latter camp. For me, design for Drupal is about creating a vision, sketching
 out the possibilities, and moving quickly into prototyping to test the
 assumptions that I make during the design process. Prototyping early—whether
 with paper, in a program like Axure or Balsamiq Mockups, or directly in
 Drupal—helps me make sure that I’m not creating something that will be
 impossible to implement. It also helps me remain vigilant about all the
 little things that need to be considered when designing for in a Drupal
 site, including:
	404 and 403 pages

	Error messages and content administration links on individual
 pages

	User profile pages

	Form elements, including the user login block

	The look of block quotes, tables and other things that might be
 inserted into the content

	Pages for individual content categories, or for social areas of
 the site

Because we’re working in a dynamic framework, any of these pieces
 might pop up at some point in your user’s journey through the site—and it’s
 a safe bet that all of them will. Taking the time to create design that
 integrates these components with your overall look and feel is part of
 helping your site look thoughtfully designed and not “Drupally.”
The design phase of a Drupal project typically happens in four
 stages:
	Ideation
	During ideation, you’re generating ideas for layout, usually in
 rapid-fire format. Options for ideation include style tiles (sometimes
 called mood boards), and sketches of wireframes or grid
 layouts.

	Wireframing
	Wireframes are basic, component-level mockups of your site’s
 pages. While it’s very possible (and increasingly popular) to sketch
 wireframes with pencil and paper and use those to discuss architecture
 and content priorities to the client, other options include Adobe
 Fireworks or Balsamiq Mockups. You can also use a program like Axure
 RP for wireframing, which allows you to prototype multiple pages
 within the same document, annotate functionality on the wireframes,
 and output a functional specification for developers with the click of
 a button. If you're doing UX work with clients who plan on developing
 in-house, this can be extraordinarily useful.

	Design comps
	During layout, you’re starting to lay in real content and
 images, and organize content on the page. Some teams, like San
 Francisco’s Chapter Three, use a hybrid wireframe/design process
 called “greyboxing” as a way to more rapidly iterate design; others
 prefer to keep wireframes and design comps as separate components of
 the design process. See Chapter 5 for more on
 greyboxing.

	Iteration and client signoff
	During iteration, wireframes and designs are discussed, debated,
 and tweaked until the team agrees that it’s ready.

Ideally, iteration happens throughout the entire process, with the
 final result being a set of visual designs that’s been agreed on by the team
 and signed off by the client as “this is what we’re going for.” Each stage
 feeds the next; ideation gives you the ideas for wireframes, which inform
 the designs, etc.
In theory, all of these pieces would happen in turn, and the final
 designs would be handed over to the implementation team for turning into a
 Drupal site. In practice, many teams go straight from wireframes into
 prototyping, and add visual design as a final layer. Others go straight into
 visual design and then work on implementing those designs in Drupal. As long
 as you have a solid discovery and information architecture phase to back up
 your design choices, either approach can work; the important part is having
 an understanding of what it will take to implement your design choices, and
 collaborating with your team to make sure that you’re designing things that
 can be implemented.
If you’re working solo, it’s also vital to know what pieces of the
 puzzle are beyond the scope of your abilities; having a developer you can
 call when you need some extra help getting something to work can save you
 money and headaches down the line.
About the Case Studies

Throughout this book, we’ll be focusing on two real-world projects.
 While this can make it challenging to “follow along at home,” for those
 who like to work that way, I have two reasons for this decision:
	I’m working on them currently, and I enjoy being able to do two
 things at once;

	Focusing on projects like these, as opposed to a single project
 made up for the book, gives you the chance to see how these ideas work
 in the real world, with all the frustrations and moments of unexpected
 joy that happen in real projects.

In Part II,
 we’ll mostly be using my portfolio site, tzk-design.com, as an
 example. This project is currently in the process of being redesigned as I
 refocus my studio, and it gives me a chance to walk you through the actual
 process of sketching and creating layouts for a relatively simple
 site.
The second project, Urban Homesteaders Unite
 (UHU), is being developed by myself and a colleague, Tricia
 Okin of Brooklyn, NY’s Papercut (http://papercutny.com). The site was originally conceived
 as part of Tricia’s MFA thesis (as such, layouts were already created),
 and I’ve been working with her to expand upon that original idea and turn
 it into reality.
The goal of UHU is to connect urban homesteaders, e.g., people into
 gardening, food preservation, and other city-hippie pursuits, through
 home-based events, blog posts and connecting with other homesteaders in
 their neighborhood. This lets me get into deeper areas of Drupal
 trickiness such as Views relationships and working with user profiles (cue
 evil laughing).
Through these projects, I can show you a typical Drupal design
 process—from ideation and sketches to prototyping and applying our look
 and feel to the site’s theme. Let’s get started!

[1] http://boston2011.design4drupal.org/

[2] You can get the slide deck at http://fourkitchens.com/presentations.

Chapter 2. The Drupal Designer’s Toolkit

While every designer has their own set of applications and supplies
 that they use for everyday design and prototyping work, certain tools just
 seem to be particularly useful when working in Drupal. The following is the
 toolkit that I use for most of my work. Although the last two applications
 (Coda and Less.app) are Mac-specific, the others are available for Mac or
 PC.
Balsamiq Mockups

Balsamiq (http://balsamiq.com/products/mockups) is a relatively
 small, but robust, Adobe Air application that helps you create UI mockups
 incredibly quickly. The program itself contains many of the standard
 elements you’d expect in a web mockup (text boxes, headlines, video or
 image comps, etc.), but it’s all done in a simple, cartoonish style that
 helps clients and the design team focus on what’s important in the early
 stages of a project—content organization and hierarchy. Stephanie at
 Fusion by Top Notch Themes also put together a handy mockup of
 Drupal-specific components, which you can download here: http://fusiondrupalthemes.com/story/100325/easier-wireframing-drupal-components-balsamiq-mockups.
 I’ve used it extensively for some of the examples in this book. Figure 2-1 shows the entire set
 of components.
[image: A set of standard Drupal components, for your rapid wireframing needs. Courtesy of the fine folks at Fusion by Top Notch themes.]

Figure 2-1. A set of standard Drupal components, for your rapid wireframing
 needs. Courtesy of the fine folks at Fusion by Top Notch themes.

In the Resources section of this book’s website (http://drupalfordesignersbook.com/resources), I’ve also
 uploaded a copy of this document (as a .bmml file). For those using the
 960 grid system to more efficiently iterate wireframes and design mockups
 (see Chapter 6 for more info), the
 master download from 960.gs contains Balsamiq mockup elements for 12, 16,
 and 24 column layouts.

Fireworks

Many designers prefer to use Photoshop or Illustrator for mocking up
 screen layouts. Although both of these can be very useful (I used
 Illustrator for years before switching to Fireworks), Fireworks (http://www.adobe.com/products/fireworks.html) has both of
 them beat for a few key reasons:
	Share layers among pages
	A key component to the magic of Fireworks’ multiple pages
 feature is the ability to share layers (think Photoshop or
 Illustrator Layers) among several pages in your file. So your
 header, which is consistent from page to page, can be set up as a
 single layer, then shared to every page in your document. Change
 that header once, and every page is changed. Genius! You can also
 export individual layers as images, which is useful for logos,
 backgrounds and other elements that you need to transfer from design
 comp to an image in your theme.

	Multiple pages
	With Fireworks, you can include multiple pages for the same
 site in one layout. You can also share layers among different pages.
 Why is this valuable? Consider this: in most design projects, you
 might have several pages that you need to lay out for a given
 design. However, certain elements (such as your grid, or your
 navigation menu) don’t necessarily change from page to page. If you
 created all of these layouts in Photoshop or Illustrator, and had to
 make changes to the navigation, you’d have to modify each
 one of those files in turn. With Fireworks, you can
 change one layer in your file, export it to PDF, and automatically
 you’d see your changes across all the documents.

	PDF Export with clickable goodness
	Speaking of multiple pages, you can export your entire
 document as a multi-page PDF, and use Fireworks’ Web Layer to create
 clickable hot-spots to navigate to other pages, show rollover
 states, and more. The bonus? All of this can be exported into your
 PDF—meaning that your client can click around the PDF as if it was a
 prototype of their website.

	Symbols
	Symbols are Fireworks’ way of collecting elements that are
 standard in a given document. The beauty of working with symbols is
 being able to create a symbol, place it, and then quickly edit it
 when your design changes. Change the symbol, and wherever it appears
 in your document, the symbols change.

	Styles
	If you’re used to InDesign, you already know what styles are.
 Styles are standard ways of styling elements in your design, which
 can be altered and changed at will—and everything you’ve applied
 that style to will change along with it. This is especially useful
 when working with the greyboxing method, which we’ll explain in
 Chapter 5.

	Use the same application for wireframing and design
	One of the best reasons for using Fireworks over other
 technologies is that it can be used for everything from wireframes
 to prototyping to design, all within the same file. You can also
 export individual layers to images from within Fireworks, which can
 save a bunch of time in theming, when compared to the usual process
 of slicing up large layouts in Photoshop or Illustrator. The fact
 that Fireworks handles vectors (like Illustrator)—but treats them as
 raster (like Photoshop)—also makes it easier to tweak individual
 shapes without risking a loss of fidelity.

Much like the set of Drupal components that were created for
 Balsamiq Mockups (see above), you can also find Fireworks templates for
 commonly used Drupal elements, courtesy of San Francisco’s Chapter Three.
 In the Resources section of the Drupal for Designers
 site, you’ll find both the Chapter Three Fireworks template, and the
 Greybox template. You can also learn about the Fireworks templates here:
 http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach.
 If you prefer to create your own, head over to Chapter 7, where I walk
 through the process of creating my own Fireworks template for
 Drupal.

Coda

Coda (http://panic.com/coda) is a relatively
 inexpensive (under $100) application for coding websites. Not only does it
 allow you to code your pages and upload them in the same screen, it also
 has the ability to connect to Terminal on your remote server from within
 the application, which is useful when you’re running shell commands, like
 Drush or Git. Most importantly, Coda’s Clips library allows you to keep
 commonly used code snippets in one place and insert them into your HTML
 simply by double-clicking. This is extraordinarily useful for
 theming.
If you’re working with a team over the same network, you can also
 use Bonjour to collaborate with other Coda users in your team. Through the
 network, you can edit someone else’s code (or let them edit yours), save
 the files, and watch the changes happen in front of you.

LessCSS and Less.app

Less (http://incident57.com/less; which you’ll
 read about in Part III of this book) is a CSS framework that allows
 you to more efficiently create CSS. In addition to allowing you to set
 variables and “mixins” for colors, fonts, etc. directly in your
 stylesheets that can be called anywhere else in the stylesheets, it allows
 you to nest styles within each other. For example, a simple navigation
 menu might look like this:
ul#navigation { list-style: none; display: inline; }
ul#navigation > li { list-style: none; float: left; margin-right: 1em;
 border-right: 1px solid gray; }
ul#navigation > li a { padding: 3px 0; color: black; text-decoration: none;}
ul#navigation > li a:hover { color: white; background: black;
 text-decoration: underline; }
In Less, you’d style it thus:
ul#navigation {
 list-style: none; display: inline;

 > li {
 list-style: none;
 float: left;
 margin-right: 1em;
 border-right: 1px solid gray;
 padding: 3px 0;

 a {
 padding: 3px 0; color: black;
 text-decoration: none;
 }

 a:hover {
 color: white; background: black;
 text-decoration: underline;
 }
 }
}
When this code is compiled, it will compile into the same code as
 the first example, but you get to save yourself some typing and keep all
 your code for a given element organized in one place. This is especially
 useful when working in Drupal, as you’ll often find yourself customizing a
 much larger amount of CSS for any given area of a site—from a particular
 page, to a block, to the entire sidebar. You’ll read more about the
 awesomeness that is Less CSS in Chapter 15.
Ordinarily, you would compile your Less code using a small
 Javascript file either on your site’s server, or directly in your template
 files. While this is one way of doing it, it forces a load on the server
 that you may not want, and it could mess you up if your user is in a
 browser that doesn’t have Javascript enabled. Yes, it does happen
 sometimes. This is where Less.app comes in. It’s a tiny Mac application
 that sits open while you work, and “watches” any folder that you put into
 it for changes to .less files. As you’re working, every time you save the
 file, Less.app will compile your Less code for you into a .css file,
 allowing you to more efficiently see what you’re doing. Figure 2-2 is a screenshot of
 the app, which is available at http://incident57.com/less.
[image: The handy Less.app “watches” any folder that you drag into it and compiles your LessCSS into CSS as you work]

Figure 2-2. The handy Less.app “watches” any folder that you drag into it and
 compiles your LessCSS into CSS as you work

Part II. Design and Layout

Chapter 3. Sketch Many, Show One

Like many designers, when doing a logo design for a client, I’ll often
 sketch many different options, and then refine the 3–4 most effective
 options to show the client. This works because the client feels that they
 have a choice among several good options, but they aren’t overwhelmed with
 decisions. It also works because they know I’ve carefully vetted each
 option, and decided that any of them can work equally well.
Given this approach to branding work, it would make sense that we
 would want to give the client a few different options for their website’s
 layout or information architecture, and work with the client to choose the
 best option. In my experience, this approach fails for some very important
 reasons:
	It keeps conversation focused on visuals,
 not content or organization of information. I cannot
 emphasize this enough: the early stages of creating a website should be
 focused on content and communication priorities, not on visual
 ones. While visual communication is also an important part of
 the web design process, those conversations are best had after you’ve
 already established your content hierarchies, and seen how real content
 flows through your site.

	There’s a lot more to decide in a web
 layout than there is in a logo design. A logo, while
 essential to an effective brand, is a relatively small part of the
 overall identity of an organization. As such, the decision of which logo
 to choose is often a relatively quick one, and the client’s focus is
 exclusively on this one image. With a web layout, there are many more
 variables to pay attention to. Does the navigation make sense? Have we
 covered everything that should (and shouldn’t) be on this page? Throwing
 aesthetic decisions into the mix too early in the game prevents
 stakeholders from focusing on these other questions, which can hinder
 the user experience of the site.

Because of these concerns, I recommend a “sketch many, show one”
 approach to wireframes and design comps. With this approach, you sketch a
 bunch of different options for a web layout—usually the home page and at
 least one interior page—and pick the one that works best according to the
 project’s goals to refine and present to the client.
This approach can be very successful, especially for clients who tend
 to focus on too many things at once. However, there’s a caveat: whenever you
 present work in this fashion, it’s important to reassure the client that
 you’re showing them one approach based on what your research suggests will
 work best, and that this approach is open to change based on the client’s
 objectives and preferences. Also, although clients have rarely needed it, I
 also leave room in my contracts for a complete shift in direction, if the
 client feels strongly that the solution we’ve come up with doesn’t fit their
 needs.
Although some designers bristle at the idea of only showing one layout
 option, I’ve found that this approach works well for a number of
 reasons:
	It keeps the conversation focused (which becomes more important as
 projects gain complexity)

	It moves you and the client through the process more efficiently,
 so you can move into prototyping more quickly

	It shows confidence in your approach, which can give the client
 confidence in your team

Perhaps most importantly, by presenting one design that can be
 iterated upon, you’re making it easier on stakeholders and the production
 team by focusing your efforts in one direction, rather than trying two or
 three directions to see which one fits. Additionally, if your process
 includes a solid IA and UX phase prior to the visual design phase (which it
 should), showing one layout tells the client that you’ve had a lot of time
 to get to know their brand.
Ideation: Methods and Madness

A growing number of designers, including Milwaukee-based Mike Rohde
 (interviewed below) have started showing their early sketches to clients,
 as a way to present truly low-fi wireframes and keep the discussion
 focused on user experience and not visual design. In practice, I’ve found
 that the success of this approach often depends on the client and the rest
 of the project team. With some clients and developers, I toss out a quick
 sketch in my journal, show it to them, and they get it completely. With
 others, unless it’s mocked up in a pixel-perfect Fireworks or Photoshop
 document, you spend more time defending your choice to sketch on paper
 than you do discussing potential design approaches.
Whether you build out your wireframes in software or keep them
 strictly paper-based, the point of sketches is to come up with as many
 ideas as possible, get rid of the ones that don’t work, and pare it all
 down to the one or two best ideas you generated, and then talk those
 through with your stakeholders. Lately, I’ve been starting my sketches
 with the six-up templates from UX firm Adaptive Path (http://www.adaptivepath.com/ideas/sketchboards-discover-better-faster-ux-solutions;
 also see Figure 3-1) to
 help force myself to come up with more than one or two options for a given
 page. Having to create six small sketches at a time helps move you past
 the obvious choices, and often, I’ll find that one of my later options
 works even better than my first instinct.
[image: This six-screen sketch sheet, available from Adaptive Path’s website, makes it easy to sketch multiple ideas for a page before refining the most effective concept]

Figure 3-1. This six-screen sketch sheet, available from Adaptive Path’s
 website, makes it easy to sketch multiple ideas for a page before
 refining the most effective concept

Once I’ve worked out a couple of ideas on the six-up template (or
 just created a bunch of thumbnails in my journal), I’ll choose the one
 that seems to work best and work it into a
 larger sketch, either using a sheet from the Browser Sketch Pad
 from uistencils.com,
 or mocking up a quick wireframe in Balsamiq Mockups (see Figure 3-2).
[image: Using Balsamiq Mockups to refine one of the earlier pencil sketches. This mockup is based on a 12-column, 960-pixel grid, ala 960.gs]

Figure 3-2. Using Balsamiq Mockups to refine one of the earlier pencil
 sketches. This mockup is based on a 12-column, 960-pixel grid, ala
 960.gs

From the Trenches: Mike Rohde, UI Designer and
 Illustrator
Mike Rohde is a UX/UI Designer from Milwaukee who is known, among
 other things, as the illustrator for 37Signals’ book “Rework.” As a
 designer who works on a variety of complex interaction challenges
 ranging from websites to multi-platform applications, Mike uses pencil
 sketches extensively in his creative process, and considers them an
 essential component of client communication.
Dani: When you do interface work, you show your clients
 hand-drawn sketches. How do you find that that has served you as you do
 UX work, whether it’s Drupal or any other platform?
Mike: I’ve found that sketches work really well for helping to
 make a quick transition from idea to a concept that the client can
 really get their head around. There’s a level where you can [verbally]
 say “yes, well it’ll do this, and we can make it do that,” and if
 they’re not a web developer or even a designer, they often can’t picture
 what that thing will look like when you describe it. In fact, it might
 become more confusing to them as they’re trying to envision it. The
 other danger is that you describe it and they have one idea, then when
 you show it to them, it’s actually a different idea than what they had
 envisioned.
The challenge when you go straight to a finished project—let’s say
 you invest a lot of time and energy creating a prototype—and you haven’t
 gotten very good information, or the client hasn’t been as forthcoming
 as you’d like—you may have invested a lot of time and energy in creating
 a prototype that isn’t going to work for the client, and you’ll have to
 start over. Hand-drawn sketches provide something in between. You can do
 it to many different degrees; I’ve done everything from incredibly loose
 sketches that I’ve shown along with a little description and received
 approval on to very detailed wireframe-type sketches.
It varies depending on the client and what I wanted to show, but
 it’s been very effective. One of the main things I’ve noticed about
 sketches is that clients aren’t so afraid of them. One of the things
 that happens with wireframes, mockups or prototypes—or anything that
 feels like it’s at some level of “finished”—is that clients will
 sometimes feel that there’s too much progress and they’re afraid to say
 something. They won’t say so directly, but they might feel like “I can’t
 really criticize it because they’ve already spent so much time on it.”
 But that lack of up-front feedback ends up coming out in the end, and at
 the back end of the project we end up noticing things, and needing more
 changes, which are more expensive to implement. By giving them a sketch,
 you can head them off on some issues and let them feel like they can
 have some input because, you know, it’s just a pencil sketch. I can
 criticize that—they’ll just do another one right?
Dani: When you look at a wireframe that’s been done in
 Fireworks, it’s often easy for the client to critique like, “oh, is that
 really going to be the font?” I imagine that, with sketches, there’s a
 lot less of that. You’re really focused on “this is the hierarchy of
 information on this screen”—which is really what you want to be talking
 about in the wireframe stage.
Mike: I think it comes down to setting expectations. Many times
 when I do sketch work, I’ll work with Basecamp, and upload a scan of a
 sketch that I’ve done, with a pretty detailed description of what they
 can expect to happen and what my thoughts are. If it’s a combination of
 notes and a sketch itself, I’ll very often include notes like “this will
 do that” with an arrow pointing to a button that will do such and such
 or so and so. But then I’ll provide a description. And then when I speak
 to the client, I’ll talk to them on the phone and point to parts of the
 sketch, and we can even go in and mark the sketch up during an in-person
 meeting (See Figures 3-3, 3-4, and 3-5).
What that does is bring them into the process of decision making
 and understanding. I think that if I prepare them and say, “look, this
 is a very high-level sketch of the broad idea that we’re going for—we’re
 not going to show fonts or colors or any of those things,” then it seems
 to work pretty well. Again, I think it’s a question of setting
 expectations that happens with every kind of design that we do. Whether
 it’s sketches or mockups, and then explaining your process.

[image: An early sketch concept wireframe for Pear Note on the iPad. Image credit: Mike Rohde, rohdesign.com/usefulfruit.com]

Figure 3-3. An early sketch concept wireframe for Pear Note on the iPad.
 Image credit: Mike Rohde, rohdesign.com/usefulfruit.com

[image: Rough concept sketches for the Pear Note iPad icon and menus. These were created to explore some ideas with Chad (iPad developer) before jumping back to Photoshop for mockups. I explored all kinds of ideas and shared them with Chad. We discussed further and then I created final mockups which Chad used for reference in the final development of the app. Image credit: Mike Rohde, rohdesign.com/usefulfruit.com]

Figure 3-4. Rough concept sketches for the Pear Note iPad icon and menus.
 These were created to explore some ideas with Chad (iPad developer)
 before jumping back to Photoshop for mockups. I explored all kinds of
 ideas and shared them with Chad. We discussed further and then I created
 final mockups which Chad used for reference in the final development of
 the app. Image credit: Mike Rohde, rohdesign.com/usefulfruit.com

[image: Here are two detailed wireframe-like concept sketches, used to explore ideas for working out the Pear Note for iPad interface details. In the end the app was simplified a bit from these sketches, focusing on core features for v1 (audio and text). Image credit: Mike Rohde, rohdesign.com/usefulfruit.com]

Figure 3-5. Here are two detailed wireframe-like concept sketches, used to
 explore ideas for working out the Pear Note for iPad interface details.
 In the end the app was simplified a bit from these sketches, focusing on
 core features for v1 (audio and text). Image credit: Mike Rohde, rohdesign.com/usefulfruit.com

Once I’ve mocked up my wireframe, I’ll use what I’ve mocked up to
 validate the concepts about content priorities, navigation, etc., that we
 established in the information architecture/UX phase with the client and
 design team. For personal projects, or projects where there’s a piece of
 the interaction that I am still trying to understand, I may also go
 straight into a prototype, either in a program like Axure or in Drupal, so
 I can make sure what I’m thinking of is feasible and show clients the real
 interaction we’re trying to create. Prototyping, whether I’m doing it
 myself or with a developer’s help, also helps me work out areas of the
 content that may require special treatment, like videos or content that
 needs to be formatted a certain way. I’ll also use this opportunity to
 start collecting images, type treatments, and color options in a series of
 style tiles, which I’ll start showing to the client after we’ve
 established the information priorities. We’ll talk about style tiles in
 the next chapter.

Chapter 4. Using Style Tiles to Explore Design
 Ideas

A style tile (sometimes called a mood board) is a
 simple collection of images, fonts, colors and other inspiration to inform
 your design. The important difference between a sketch or layout concept and
 a style tile is its lack of structure; while a layout comp is meant to
 represent an entire page, a style tile is best kept simple. In a style tile,
 you collect elements that make sense for the project, shuffle them around,
 and see how they work. Style tiles are also meant to be works in progress;
 while the hope is that layout comps will only reach the client when they’re
 in good enough condition to be close to final, a series of style tiles can
 be shown to a client at early stages of the project, to gauge aesthetic
 preferences and make sure you’re on the same wavelength. They’re also great
 for fleshing out ideas, or keeping track of visual stories for future
 projects. Figures 4-1 and 4-2 are style tiles for the redesign of my
 studio website, currently in progress.
[image: An initial style tile for tzk-design.com]

Figure 4-1. An initial style tile for tzk-design.com

[image: A second style tile, with a different feel to it. After considering the two, I decided to build on the approach in this one, which I refine in]

Figure 4-2. A second style tile, with a different feel to it. After considering
 the two, I decided to build on the approach in this one, which I refine in
 Chapter 7

As you can see, this isn’t a complete layout as much as a visual
 exploration of fonts, colors, and treatments for different areas of the
 site. When it comes down to theming the site, I might end up doing something
 entirely different—but at the very least, I’m developing a sense of the mood
 that I’m trying to create, and working out how the different types of images
 I will need to show will be displayed, how headlines should be treated,
 etc.
Style tiles can be created at any stage of a project. They’re
 especially good for exploring ideas early on, while you’re wireframing, as a
 way to collect your thoughts about visual solutions before you are ready to
 explore them with the client. The most important thing to note about them,
 particularly if you plan on discussing them with clients, is that
 style tiles should not look like a web page. Their
 purpose is to explore visual elements and treatments, not to create a layout
 for the website.
The benefit of showing style tiles instead of design layouts is
 similar to the benefit of starting a discussion with sketches instead of a
 more formalized wireframe:
	It’s fast
	A set of style tiles can take as little as 1–3 hours to put
 together, often even less. They’re also much easier and more efficient
 to iterate than full design comps; rather than fleshing out these
 ideas in full designs that then have to be iterated again and again,
 you can use style tiles to quickly identify a set of visual guidelines
 that will guide the overall look and feel of a site quickly and
 cheaply. In fact, I’ve sometimes ended up doing style tiles while
 doing research or information architecture for a client project,
 throwing ideas into a Fireworks file as ideas come up.

	It’s modular
	Because you’re using the style tiles to explore visual
 approaches rather than to set up a specific set of layouts for a given
 section of the site, style tiles fit in very well with the modularity
 of the Drupal design process. In some cases, you can even start
 theming based on style tiles instead of having to do full layout
 comps.

	It brings the client into the conversation
	This increases their confidence in your approach, and lets them
 see the design process happening in front of them. Having the client
 involved in the conversation at an early stage in the process helps
 them feel like they have “ownership” of the design, which increases
 the likelihood that they’ll approve the proposed design when you’re
 ready to finalize the look and feel of the site.

	It helps keep the conversation focused
	By walking the client through a set of style tiles, rather than
 a complete layout, you can keep the conversation focused on
 aesthetics, rather than content and placement—which, ideally, will
 have already been settled by the time you’ve started discussing the
 style tiles. This helps keep everyone focused on the visuals at the
 time when you’re actually supposed to be focused on the
 visuals.

What you’re doing, in essence, is setting up a series of stylistic
 conventions to be used across the site’s various elements. This can help you
 save time by letting you go straight from wireframe to implementation, using
 the style tiles to guide the theming process, rather than creating design
 layouts that dictate the design of a specific page, but can’t necessarily be
 carried over to the other pages.
Once you’ve iterated your style tiles to the point where you and the
 client agree that you’ve found the best visual approach, you have a choice
 in how to proceed. If you’ve already started getting some content into a
 development site (which you ideally will by this point), you can start
 applying these standards across your site’s theme, and give clients the
 chance to see how these visuals will play out with real content. If you’re
 still working out issues with specific types of content, or special areas of
 the site, you may want to start working the style tiles into full design
 comps, preferably with examples of real content from the client’s
 site.
Whether you go to theming straight from your style tiles or you go
 from style tiles to full design comps, it’s important to consider not just
 the basics, like headers, paragraphs, and sidebar boxes, but to think
 holistically about the types of content and functionality that you’re going
 to be building. In Chapter 5, Design Layout: Covering All Your Bases, we’ll look at some of the elements that
 should be considered when designing for a Drupal implementation.

Chapter 5. Design Layout: Covering All Your Bases

Once you’ve established a visual direction with style tiles and you’re
 ready to get into design comps (or start theming), you want to make sure
 you’re considering all of the elements you may end up dealing with in the
 process of creating a Drupal site. For example, how do you want to treat
 block quotes? Tables of data? What about pagers for list pages? The
 following is a brief list of the elements you should consider when creating
 your style tiles, adapted from San Francisco Drupal firm Chapter Three’s
 excellent blog post, Design for Drupal—a Template
 Approach:[3]
	Header text and links

	Footer text and links

	H1 - H5 tags

	Body

	Link

	Unordered List

	Blockquote

	Image Styles

	Code snippets in text

	Admin Tabs (the View/Edit/etc. tabs listed on pages for logged-in
 users)

	Secondary Admin Tabs (the links listed under admin tabs)

	Collapsible Field Sets and Accordions

	Headers and typography for blocks

	“More” button

	“Read More” link/button

	Form elements and labels

	Tags

	Pagination for Views listings

	Tables

	Error Messages

	Status Messages

	Warning Messages

	Help Messages

	Blog post titles

	Author and post date information

	Breadcrumbs

While you don’t have to style every last element within a style tile,
 it’s useful to keep them in the back of your mind while playing around with
 ideas. In fact, you may even consider doing two style tiles for a given
 project: one for front-facing pages (i.e., what the user sees) and another
 for client-facing (i.e., site editors, etc.) pages.
Once you’ve gone over the style tiles with your client, and you’re
 confident that the visual approach you’ve decided on will work for them,
 it’s time to start looking at the layout of your pages. As with the mood
 board elements mentioned above, the key here is to make sure you’ve got your
 bases covered. While it’s not necessary to try to create a design comp for
 every single page in your Drupal implementation, there are certain pages
 that will show up over and over again in your layouts, and it’s useful to
 set a visual standard for each of these types of pages. When creating your
 design layouts, be sure to consider the following types of pages:
	Single node page, with one sidebar

	Single node page, with two sidebars

	Single node page, with no sidebars

	Blog listing, with pagination

	Single blog page, with comments

	User profile pages

	Category pages

	Groups pages (if applicable)

	404 and 403 pages

	Contact forms

	And finally, the home page

If you’re working in Fireworks (see Chapter 2 for the various
 reasons why you should be), the good news is that you can collect all of
 these pages into one document, use Hotspots to create links among the
 various pages, and export the whole thing as a multi-page PDF that your
 client can then click around to see the flow of their website.
If you want to get a head start on your design layouts, Chapter Three
 has created a multi-page Fireworks file you can download to get started. The
 file, available at http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach,
 has the following pages already created:
	News/Blog page

	News/Blog page with sidebar

	Basic Node Page + Typography

	Basic Node Page w/sidebar

	News/Blog Views

	Admin Login w/tabs

	Admin: Collapsible Boxes

	Admin: Table

	Contact Us

	Profile Page

	Error Message

While a couple of the pages (such as the admin areas) aren’t something
 you typically need to worry about with Drupal 7 theming, they’re extremely
 useful for Drupal 6 projects, where the admin theme is often the same as the
 site’s theme. You also want to make sure that you consider things like admin
 links on individual pages, the site’s log in page, and profile pages, which
 don’t use the Drupal admin theme. In a couple of chapters, I’ll walk you
 through the process of creating your own Fireworks template, using the
 example of the new version of tzk-design.com,
 currently in development.
Greyboxing: An In-Between Option

While it’s often tempting to go straight from wireframes to design
 layouts, in some cases an interaction that you’re trying to create is
 complex enough that it makes sense to take a step in between. Other times,
 you might find yourself dealing with a very tight deadline for a project,
 and you need to move from wireframe to design more quickly than you would
 normally—but you still want to make sure that the client’s attention stays
 focused on content and information priorities before you jump straight
 into colors and fonts.
One alternative to going straight from wireframes to design is
 greyboxing, a process outlined by Chapter Three’s Floor Van Herreweghe in
 her blog post “Designing in the Grey” (http://www.chapterthree.com/greyboxing) and a recent
 presentation at Drupal Design Camp in Boston (http://boston2011.design4drupal.org/sessions/art-wireframing-using-greybox-model-visualize-user-experience).
 Greyboxing is, in essence, a middle step between wireframes (simple
 layouts with placeholders/blank boxes for content) and design layouts
 (which are often meant to represent the ultimate design of the site’s
 pages). It gives you an opportunity to design while you’re wireframing,
 but it also gives you the opportunity to move from wireframe to design
 sooner than you would in a traditional wireframe-to-layout design process,
 which is useful for projects that require a very strict timeline.
The idea is that you already have a sense—through your sketches—of
 what the content for the page is going to be, and you’ve already got an
 idea of some different visual approaches for the page, which you
 incorporated into your style tiles. But you’re not quite ready to fully
 take the leap into full-on design mode—for example, if there are content
 issues the client still needs to settle on. The important thing to note
 here is that greyboxing does not replace sketching;
 rather, it gives you an interim step in the process before you get to a
 complete design. For example, Figure 5-1 is an example of a
 page layout for our Urban Homesteaders Unite site, created using the
 greyboxing technique.
[image: This Event page has been laid out using the greyboxing technique. Note that some visual standards have already started to be set, images have placeholders connected to them, but everything is still in varying shades of grey]

Figure 5-1. This Event page has been laid out using the greyboxing technique.
 Note that some visual standards have already started to be set, images
 have placeholders connected to them, but everything is still in varying
 shades of grey

In projects with very tight deadlines, greyboxing can also be a way
 to go from sketches into a starting point for your layout while
 maintaining the client’s attention on content organization and flow rather
 than color preferences. In her session at Design for Drupal Camp, Van
 Herreweghe used an example from a project that only allowed three weeks
 for the entire design phase; going into greyboxing quickly allowed her to
 quickly set a visual standard, and then evolve the visual standard with
 colors, fonts, etc. as the layout gets closer to what it should be. This
 is another benefit to using Fireworks for this process; Fireworks allows
 you to set up Styles (similar to InDesign’s Styles palette), which you can
 simply edit to change all instances of a given element within your
 document. This means that you can start with your greybox layout, then
 change the styles to create the final design.
Another thing that can help you make your layout decisions more
 efficiently is working with a grid framework; in the next chapter, we’ll
 discuss 960.gs, one of my favorites.

[3] http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach

Chapter 6. Working with Layout Grids

We can think of grids, therefore, as a springboard for creativity.
 They lay a foundation through which a designer can create solutions to
 problems large and small, and in doing so help readers, users, and
 audiences find that which all humans seek: a sense of order within
 disorder.[4]

As you may have noticed from the series of semi-transparent rectangles
 overlaying a few of the examples in this book, I use grid systems fairly
 often in my work. There are several different grid systems available for
 websites, many created for specific projects by developers who decided to
 give their work back to the design community. This chapter will focus on the
 one I’ve been using for years, 960.gs. 960 is certainly not the only option
 for a grid system; however, it is one that has received a lot of attention
 and support in the Drupal community. The 960 grid system (960.gs), developed
 by Nathan Smith, is incorporated into both the NineSixty (drupal.org/project/ninesixty)
 and Omega (drupal.org/project/omega)
 Drupal themes, and the 960 grid generator (grids.heroku.com/)
 allows you to create your own version of the 960 grid by setting a column
 number, width, and gutter width (Figure 6-1).
[image: Nathan Smith’s lovely 960.gs is a good starting place for working with grids in your web design. If you want to try your hand at a custom grid, he even includes a custom CSS generator]

Figure 6-1. Nathan Smith’s lovely 960.gs is a good starting place for working
 with grids in your web design. If you want to try your hand at a custom
 grid, he even includes a custom CSS generator

Why Use a Grid?

Grids have been a standard part of the practice of graphic design
 for decades. In addition to providing much-needed structure in a layout,
 grids also serve to make information easier for us to process. When
 confronted with any layout—whether it’s a printed brochure or a
 website—our eyes struggle first to instill some sort of order to what
 we’re seeing. When we’re confronted with a chaotic layout, particularly
 when an element in that layout is just slightly misaligned with an element
 near it, we focus more on the misalignment than the message or content of
 the piece. Grids, then, give us the ability to create that order, and to
 make it easier for the people accessing our content to pay attention to
 what’s important about the page. See Figure 6-2 for an
 example.
Additionally, and particularly in regards to layout for the web,
 having a grid system helps create a set of known constraints that can help
 you focus your design solutions. As the logistics of implementing our
 solutions for the web continue to grow more complex, the structure
 provided by different grid systems gives you one less thing to worry about
 when implementing your layout.
This means that you can iterate on a design more quickly. Rather
 than thinking of elements on a page in terms of pixel widths, which can
 range from 100px to 960px or more, a grid system allows you to think of
 things in terms of how many columns it takes up. This is remarkably useful
 in terms of efficiency; instead of kvetching about whether a sidebar
 should be 200px or 234px wide, for example, and spending your time worried
 about padding and floating, etc.—you can tweak things simply by changing
 the sidebar’s class from 2 columns to 3 columns wide.
[image: Elements that are just slightly misaligned can create distraction for users]

Figure 6-2. Elements that are just slightly misaligned can create distraction
 for users

[4] Vinh, Khoi. Ordering Disorder: Grid Systems in Web
 Design, p. 13

Grids in Wireframing

Working with a grid system also makes wireframing more efficient. I
 find that a well-constructed grid even facilitates sketching ideas; having
 a grid right there on the page makes it easier to consider issues of
 hierarchy, proportion and overall layout without second-guessing yourself.
 The classic 960 grid uses 12 or 16 columns; however, a 24 column grid was
 recently added, which has been built into the Omega theme. Personally, I
 prefer the 24-column layout (see Figure 6-4); it has enough
 columns to be very flexible (for example, you can have either three or
 four columns of content in a given region), but not so many that it’s hard
 to figure out how many to use for a given element. Figure 6-3, a very early
 wireframe for my personal site, uses a 12-column grid. In Figure 6-4, I’ve revised the
 wireframe to use a 24-column grid.
[image: This quick wireframe for the “About” page of my website refresh uses a 12-column grid]

Figure 6-3. This quick wireframe for the “About” page of my website refresh
 uses a 12-column grid

[image: Switching to a 24-column grid gives me a bit more flexibility; I can fit a bit more on the page, but still keep things organized]

Figure 6-4. Switching to a 24-column grid gives me a bit more flexibility; I
 can fit a bit more on the page, but still keep things organized

Grids in Theming

There are several base themes available for Drupal that have the
 960.gs grid built right into them. You will learn more about two of them,
 NineSixty (drupal.org/project/ninesixty)
 and Omega (drupal.org/project/omega)
 in Chapter 10, Working with Base Themes;
 however, several base themes are available that incorporate 960.gs in
 their styles. Two other options available for Drupal 7 are:
	Panels 960gs (drupal.org/project/panels_960gs)
	This is an HTML5-based theme that incorporates the 960 grid
 system with Panels (drupal.org/project/panels),
 a module that allows you to create customized drag-and-drop layouts
 for multiple purposes. Panels is a module created by the Earl Miles,
 the creator of Views. I can’t say I’ve ever used this theme, as I
 don’t tend to use Panels in my sites; however, for those who use
 Panels regularly, it seems like a great option.

	Sky (drupal.org/project/sky)
	Developed by Jacine Luisi of Gravitek Labs, Sky isn’t so much
 a base theme as it is a nice, basic theme with sensible defaults.
 It’s also Color module enabled, which means that you can easily
 change the default color scheme of the theme in your site’s
 Appearance settings. I used this theme for a project I worked on in
 early 2011; while many of the defaults seemed very sensible, I found
 there were a large number of overrides needed in order to customize
 it to the level I needed for the project.

Aside from the ones listed, just about any base theme can be
 adjusted to incorporate the 960 grid system. Simply download the
 appropriate grid from 960.gs (either the standard grid, or a custom grid
 of your own wicked devising, using the custom grid generator), load the
 CSS files into your subtheme, and add their names to your subtheme’s
 .info file. Then, sketch your layout using the grid,
 and incorporate those grid values into your subtheme’s template files, or
 use the Block Class module to add a custom grid value (represented as a
 class, like “grid-2”) to a block in your theme. See Chapter 14 for a description of
 the Block Class module.

Anatomy of a Grid Layout

960 (and many other grid systems) work like this: you start with
 your container width. The
 container is just that; it contains your grid
 columns. Regardless of the number of columns (12, 16, or 24), in each
 container div, you’ll have a series of <divs> inside the containers,
 each of which has a certain column width, denoted by the class
 grid-[number]. So, for
 example, let’s say I have a layout like Figure 6-5, with a 12-column
 grid, a content area of 6 columns and 2 sidebars of 3 columns each.
[image: A sample grid-based layout, using a 12-column grid]

Figure 6-5. A sample grid-based layout, using a 12-column grid

If I was building that out in code, it might look like this:
<div id="page" class="container-12">
 <div id="header" class="container-12">
 </div>
 <div id="middle" class="container-12">
 <div id="content" class="grid-6 alpha">
 <p>Some text goes here</p>
 </div>
 <div id="sidebar-first" class="grid-3">
 <p>some text goes here</p>
 </div>
 <div id="sidebar-second" class="grid-3">
 <p>some text goes here</p>
 </div>
 </div>
 <div id="footer" class="container-12">
 Etc. Etc. Etc.
 </div>
</div>
As you can see, each of the horizontal sections of our
 layout—header, middle and footer—is given a container class, while each vertical section in
 our layout gets a grid class with a
 number corresponding to the number of columns we want the section to
 have.
In addition to the grid values, 960.gs also has push and pull
 classes that will apply negative or positive margins to a given layout in
 order to give you a content-first layout (helping search engines and
 screen readers better deal with your site’s content) while maintaining the
 aesthetic we want. For example, let’s say that we want that first sidebar
 to show up on the left side of the page instead of after the content area,
 but we still want to keep the sidebar’s content showing up after the
 content area in our markup. In our “middle” section, we could adjust our
 markup thus:
<div id="middle" class="container-12">
 <div id="content" class="grid-6 push-3">
 <p>Some text goes here</p>
 </div>
 <div id="sidebar-first" class="grid-3 pull-3">
 <p>some text goes here</p>
 </div>
 <div id="sidebar-second" class="grid-3">
 <p>some text goes here</p>
 </div>
</div>
There’s also a prefix and
 suffix class for adding space between
 elements; for example, if you wanted to put some air in between the
 content area and the second sidebar, you could change the markup like
 this:
<div id="middle" class="container-12">
 <div id="content" class="grid-6 push-3 suffix-1">
 <p>Some text goes here</p>
 </div> <div id="sidebar-first" class="grid-3 pull-6">
 <p>some text goes here</p>
 </div>
 <div id="sidebar-second" class="grid-2">
 <p>some text goes here</p>
 </div>
</div>
It may sound a bit complicated, but as long as all the numbers in
 your grid add up to the width of your container, you’re all set. Here’s a
 quick checklist for doing the math:
	Push and
 pull values should match the widths of the
 elements with which they’re being swapped. If our content area above
 (grid-6) needs to swap places with
 our first sidebar (grid-3), the
 sidebar should have a class of pull-6, and our content area should have a
 class of push-3.

	Prefix and suffix values add to your column total. So
 if you have a 12-column grid, and your content area has a width of
 grid-5 and a suffix of suffix-1, you have exactly 6 columns left in
 your grid. This is especially noticeable when wireframing, and it’s
 also one of the reasons I like 24-column grids.

From the Trenches: Todd Nienkerk, Four Kitchens
Four Kitchens is a Drupal shop in Austin, TX, that specializes in
 helping clients create large-scale websites. They also run DrupalCamp
 Austin, a yearly Drupal event, and they co-created and co-maintain
 Pressflow, a specialized Drupal distribution optimized for large-scale
 implementations. Todd is a vocal advocate of 960.gs, and gives
 presentations on the system at Drupal events around the country.
Dani: Why do you love grids?
Todd: My own reason is the one
 that I perhaps don’t hype enough in the talks I give about grid design,
 but it’s a constraint that frees me. Just as a painter would first
 choose a palette, or limit the size of the canvas—you impose a limit on
 what you design, because then you can innovate within those
 constraints.
If you have not only a blank canvas, but a blank canvas of any
 size, or shape, or orientation, how do you even start, really? Whatever
 you’re creating, you have to make that first decision. A grid is like
 that first decision. What’s even better about it is that it’s a first
 decision that’s kind of already made for you; you don’t have to feel
 like, “Oh, did I screw up?” You’re rarely going to say, “I picked a
 width of 920 pixels for my website. I hope I don’t regret this in a
 year.”
Typesetting is a really good analogy for this kind of thing,
 because it’s why grids were developed back in the day. You had to create
 grids to set your type, because you couldn’t build actual typesetting
 machines for each book. You had to develop something that you could
 reuse from one book to another.
Using a grid allows you to say, “my content is going to be
 somewhere in this range,” and now I have fewer decisions to make.
 Consider the paradox of choice; if you have too much choice, you’re
 going to freeze up and maybe not make any decision whatsoever. But if
 you have a limited number of choices—for example, 12 columns to work
 with—you can configure them in a finite way, and it’s easier to make
 decisions about that configuration. You can have 12 1-column spaces, you
 can have 1 12-column space, you can have 3 4-column spaces, etc. It’s
 actually freeing, because it limits your choices, and you can propel the
 process forward. You get beyond that first stage of existential, “what
 am I going to do with this giant blank canvas of infinity?” and create a
 starting point from which you can move forward.
Dani: Knowing that I have a certain amount of structure
 helps me come up with ideas more quickly, because I know the language of
 the grid. I frequently do wireframes where I specify “grid-5,” “grid-7,”
 etc. One of the things I love about 960 is that, if a column suddenly
 appears way too wide, you could just move down a number on the grid
 class, and it’s done. Boom. Resized. There’s none of this thing you have
 to do with Zen, where you have to change values in four different
 stylesheets.
Todd: Yes, the ease of use of a
 grid system—and I don’t think this is exclusive to 960, but I think that
 960 does it best in terms of setting the tone for this kind of thing—is
 that changing stuff, and visualizing the markup and CSS is orders of
 magnitude simpler. It’s no longer about “is this 127 pixels?” or “what’s
 my negative margin here?” It’s a shortcut, or shorthand; if I’m working
 in a 16-column grid, I know that a single column is 40 pixels wide, and
 it has a margin-right and margin-left of 10 pixels. I know that
 academically. But when I’m in the zone, and I just need to move things
 around, and I need to rapidly iterate and prototype, I don’t want to be
 thinking about, “why did my layout break? Why did this object flow to
 the next row?”
With the grid, I can simply look at the numbers and say, “all of
 these numbers add up to 12; I’m done.” If I decide one thing is too
 wide, and I want to make it 1 column shorter, I just have to add a
 column somewhere else and I’m done. Thinking of widths in terms of
 columns, rather than pixels, is a huge time-saver. How often have we had
 to do a web design with a calculator app open? Why not create the math
 up front, and never have to think about it again?

But What About All These Presentational Classes? There Must Be a
 Better Way!

While 960.gs offers a ton of flexibility, and can make constructing
 a page more efficient, it must be acknowledge that it adds a fair amount
 of code to your site—not only the CSS files that construct the grid, but
 also the presentational classes needed to set up page defaults (grid-x, push-x, etc.). For those who pride themselves on
 fully semantic code (organized by hierarchy, presentation well separated
 from content, etc.), this can be a major annoyance. What if there was
 another option—an option that could set up a grid for you without all
 those annoying extra CSS classes?
Currently, there is one option: Susy (susy.oddbird.net/).
 Susy is billed as a way to make “unobtrusive grids for designers.” Susy
 allows you to create custom grids using Compass and Sass (command-line CSS
 tools; see http://compass-style.org/), without any
 presentational classes showing up in your markup. While Susy looks very
 powerful, there are some caveats to its awesomeness:
	It requires knowledge of the command
 line. You’ll need to install a Ruby gem in order to install
 the Susy plugin, and you’ll also need the command line to start a new
 project and to compile your CSS once you’ve set your
 definitions.

	It requires knowledge of Compass and
 Sass. Compass and Sass are, as mentioned earlier,
 command-line CSS tools. They are similar to LessCSS, which you will
 read about later in this book, but instead of using Javascript to
 compile your CSS, they do everything through the command line.

	You need to do math. Lots of
 math. In order to plan out and define your grid, you’ll
 need to do some advanced planning and set up the math for your
 grid.

I’m not saying that any of these things are deal-breakers; over the
 years, I’ve actually gotten somewhat cozy with the command line, and I was
 one of those obnoxious kids who did math for fun. However, the power of
 Compass, Sass, and Susy come with pretty steep learning curves; every
 designer will have their own take as to how much of that learning curve
 they’re willing (or have time) to take on. For those who are interested in
 using Compass, but aren’t ready for the command line just yet, there is a
 reasonably priced ($7) app available for both Mac and Windows that will
 compile your Compass for you. I don’t know if it also works with Susy, but
 it’s worth a try.

The New CSS Grid Layout module: The Future Is Now

With all this talk of grid systems for the web, the future looks
 promising. An actual CSS Grid Layout module is, as of this writing, in
 editor’s draft at the w3c (http://dev.w3.org/csswg/css3-grid-align/). The CSS Grid
 Layout module will allow you to define a basic grid in the top of your
 CSS, and position your elements directly within the grid.
For example, let’s go back to Figure 6-5 and see how we’d
 construct that grid with this new module.
[image: Revisiting our 12-column layout from earlier]

Figure 6-6. Revisiting our 12-column layout from earlier

The first thing we’d want to do is define our grid container. We’ll
 call that #page in our CSS. Since most
 of our widths are actually grid-3 (in 960.gs terms), we can probably get
 away with doing 4 columns instead of 12. We’ll also need three rows: one
 for the header, one for the middle, and one for the bottom:
#page {
 display: grid;
 grid-columns: 1fr 1fr 1fr 1fr;
 grid-rows: 130px auto auto;
}
The “fr” in the grid-columns is shorthand for “fractions;” it’s a
 percentage of the overall grid.
This will set up our grid with four equal columns and three rows,
 both of which automatically size vertically. Now, we want to start setting
 up the rest of our page. We’ll start by styling our header:
#header {
 grid-column: 1; /* location of the element */
 grid-column-span: 4; /* width of the element, in column spans */
 grid-row: 1; /* location of the element */
}
From there, we’ll work on our second row; we’ll call our first
 element article, and the second
 sidebar-1 and sidebar-2.
#article { grid-column: 1; grid-column-span: 2; grid-row: 2; }
#sidebar-1 { grid-column: 3; grid-column-span: 1; grid-row: 2; }
#sidebar-2 { grid-column: 4; grid-column-span: 1; grid-row: 2; }
Finally, we’ll work on our bottom section. We’ll call these postscript-1 through postscript-4.
#postscript-1 { grid-column: 1; grid-column-span: 1; grid-row: 3; }
#postscript-2 { grid-column: 2; grid-column-span: 1; grid-row: 3; }
#postscript-3 { grid-column: 3; grid-column-span: 1; grid-row: 3; }
#postscript-4 { grid-column: 4; grid-column-span: 1; grid-row: 3; }
As you can see, this new module is fairly easy when compared to Susy
 above—especially in terms of defining your grids and placing information.
 However, this specification is currently only available in the IE10
 Platform Preview, which means that you can’t actually use it right now.
 And that paradoxically, there’s something that IE is ahead of the curve
 on. I’ll give you a moment to absorb that.

Going Deeper: CSS Layout and Grid Systems

Although it’s hard to feel that CSS as a layout engine has found its
 way yet, there’s a lot to be hopeful for. People are working hard around
 the world to find options that work in multiple browsers, and new options
 are turning up all the time. If you want to learn more about grids and CSS
 layout, the following resources might prove useful:
	Vinh, Khoi. “Ordering Disorder: Grid Principles for Web Design.”
 New Riders, 2011.

	Gasston, Peter. “The Future of CSS Layouts.” .net Magazine.
 August 3, 2011. http://www.netmagazine.com/features/future-css-layouts.

	Boulton, Mark. “Rethinking CSS Grids.” From Mark Boulton’s blog,
 August 8, 2011. http://www.markboulton.co.uk/journal/comments/rethinking-css-grids

	The w3c’s editor’s draft for CSS Grid Layout: http://dev.w3.org/csswg/css3-grid-align/

	Official documentation on Compass: http://compass-style.org/

	Official documentation on Sass: http://sass-lang.com/

	The Grid System. Online resource about grids in both print and
 web design. http://www.thegridsystem.org/

	Design by Grid. Articles, tutorials and resources for grids in
 web design: http://www.designbygrid.com/

	The Golden Grid System. I haven’t played with this yet, but it
 looks very promising for responsive grid-based layout: http://goldengridsystem.com/

	The 1140 grid, designed by Andy Taylor. Another option for
 adaptive layout, which starts at 1140px wide and reflows columns down
 to mobile: http://cssgrid.net/

	The Square Grid, designed by Avraham Cornfeld: http://thesquaregrid.com/. This is a framework based on
 35 equal-width columns. Laura Scott of PingV Creative has also
 incorporated this grid into a Drupal theme, available at http://drupal.org/project/squaregrid.

Chapter 7. Setting up Fireworks Templates for Drupal

While the Fireworks templates provided by Drupal firm Chapter
 Three[5] can provide an excellent starting point for your layouts, you
 may find that having a predetermined set of styles and pages inhibits your
 creativity. Even if something’s all in Helvetica and isn’t meant to be a
 final layout, it can be easy to get caught up in other priorities, and let
 the defaults do the heavy lifting. Additionally, while the templates provide
 a good set of default areas that you’ll want to consider for 90% of your
 Drupal implementations, every project is unique enough that it makes sense
 to put some thought into how you want to set up your layouts rather than
 depending on what another design team has done.
Below, I’ll outline a simple process for creating your own custom
 Fireworks templates. This process assumes that you have a basic knowledge of
 how to use Fireworks; if you haven’t used it before and need to learn it,
 Lynda.com has a
 Fireworks CS5 training course (see http://www.lynda.com/Fireworks-CS5-tutorials/essential-training/59962-2.html),
 and the Adobe Classroom in a Book series has an
 excellent book on Fireworks (http://www.amazon.com/Adobe-Fireworks-CS5-Classroom-Book/dp/0321704487).
 The book Adobe Fireworks CS4 How-To’s: 100 Essential
 Techniques (http://www.amazon.com/Adobe-Fireworks-CS4-How-Tos-Techniques/dp/0321562879/ref=sr_1_2?s=books&ie=UTF8&qid=1315255117&sr=1-2) deals with the previous version of Fireworks,
 but still provides an excellent introduction to using the software.
For the purposes of this overview, I’ll focus on setting up a layout
 for tzk-design.com, my
 personal site.
Step One: Setting Up the Grid

The first step to efficiently setting up a layout is to start with
 the basics. What are the basic content areas of the page? How will body
 text and headlines be dealt with? What about links, lists, etc.? These are
 collected onto a sample page, and styles are set so they can be reused
 elsewhere.
We’ll start with the page grid. Since I’m using the Omega theme to
 set up this site, I’ll be starting out with the standard 960 24-column
 grid. Each piece of the grid is 30px wide, colored pink at 20%
 transparency, and placed with a 10px gutter between each piece. That’ll be
 a layer in my document called “24-column grid,” which I’ll place at the
 top of my layers and share with all other pages in my document. Figure 7-1 shows how my layout
 looks after I’ve set up the grid.
[image: After setting up the 24-column grid, we already have a layer set up for our Fireworks template]

Figure 7-1. After setting up the 24-column grid, we already have a layer set
 up for our Fireworks template

[5] Available at http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach
 and http://www.chapterthree.com/greyboxing.

Step Two: Setting Up the Header

Now that I have my grid in place, I want to take a bit of time
 thinking through how the navigation will be organized and setting up some
 type defaults. For that, I’ll create a new layer called “header” and bring
 in my logo, the navigation links and other elements. I can bring these in
 directly from my style tiles (see Chapter 4, Using
 Style Tiles to Explore Design Ideas).
With the navigation, I may want to play around with the format of
 links, text, colors, etc.—but I want to be able to change them across the
 board when I make edits. For this, I’ll convert the navigation to a symbol
 called “navigation” (do this by selecting the navigation elements, right
 clicking, and selecting “Convert to Symbol” from the contextual menu).
 I’ll also set up some Styles for the navigation, including the type format
 for links in their on and off state, and a style for the background of the
 on state. Figure 7-2
 shows what my Layers and Styles palettes look like when I’m done.
[image: Our new navigation, straight from the mood board we created earlier]

Figure 7-2. Our new navigation, straight from the mood board we created
 earlier

Once we’ve created the navigation, we want to make sure that we
 label our new layer “Header” and share it to all pages in our document.
 I’ll also add a small “Accepting work in:” status message (see Figure 7-3) in
 the upper-right corner, which will be brought in as a block when I build
 the site.
[image: Our header is starting to take shape]

Figure 7-3. Our header is starting to take shape

Step 3: Single Node Page

Now that we have our header in place, we should probably think about
 how type will look. For this, we’ll start with a single node page, which
 will give us an opportunity to figure out a variety of different type
 defaults.
The focus of a single node page should be on the legibility of the
 content on the page. I want to avoid a line length that’s too long, so
 I’ll keep my content area at a width of 12 columns, which is about half
 the page. It’s important to test out a couple of different types of copy
 that could appear in a given text sample, so I’ll include a secondary
 heading, a pullout quote (which I’ll convert into a symbol) and some
 sample body copy. I also want to make sure I plan for titles that might go
 long, so I’ll set my h1 as a two-line title to see how it looks. Finally,
 each element in my sample copy will have its styles saved in the Styles
 palette:
	h1: the page title

	p: the body copy

	h2: the secondary title underneath the first paragraph

	blockquote: the pullout quote. The entire block quote is pulled
 out from the main flow of the text and saved as a symbol

Figure 7-4 shows
 where we are with our sample node page.
[image: Setting up a sample node page to set up our content styles]

Figure 7-4. Setting up a sample node page to set up our content
 styles

Right now, we’re assuming that this page has no sidebar; this means
 that we’re going to end up with a lot of extra space on the right side of
 the content unless we come up with some sensible margins. Looking at our
 grid again, I see that the logo is set as a 2-column wide image; let’s
 move the content 2 columns to the right to align with the left edge of the
 navigation. We’ll also make the content area wider: 14 columns instead of
 12. While I’m at it, I’ll create a footer for the page, repeating the
 three dotted lines I used below the navigation to create a balance to the
 page, and creating new styles called “footer p” and “footer a” for the
 Footer text. Figure 7-5 shows where I’ve
 landed.
[image: Our finished node page]

Figure 7-5. Our finished node page

Now that we have an idea of what a node page looks like without a
 sidebar, it’s easy enough to copy this page and use it to create a second
 template with one sidebar, and another with two sidebars.

Step 4: Single Node Pages with Sidebars

The point of starting off your template with a node page that
 doesn’t have sidebars is this: you will inevitably have a page
 like this somewhere on your site. And many designers,
 well-meaning as they are, end up forgetting this and assume there will be
 1–2 sidebars on the page. As Drupal’s default behavior reflows the text to
 fill the entire page when there are no sidebars, this results in these
 pages having long and drastically uncomfortable line lengths.
That said, it’s safe to assume that most pages will have at least
 one sidebar, and that the sidebars will contain different types of blocks,
 for example:
	A list of node titles or categories

	Static text or images

	A tag cloud or something similar

	Callout boxes, like a contact form or customer
 testimonial

Therefore, while I’m working on my node pages, I should also take a
 look at how these different types of sidebar blocks will be styled, and
 how I’ll set up both one- and two-sidebar layouts. I’ll use my two-sidebar
 layout as my blog post page, and set up a “recent entries” block, tag
 cloud, and “about the blog” description block. Because presentations end
 up being a large part of my work, I’ll also put a “recent presentations”
 block in the right sidebar, with images. This will give me the opportunity
 to create styles for other blocks that include images. Figure 7-6 shows the
 result.
[image: Our two-sidebar layout contains the info we need, but leaves plenty of room for the blog post, which is the focus of the page]

Figure 7-6. Our two-sidebar layout contains the info we need, but leaves
 plenty of room for the blog post, which is the focus of the page

Creating the sidebars gives me an opportunity to set up a few more
 styles, including “sidebar h2” (for block titles), “date callout” for the
 blog post date and presentation date, “tag cloud” for the links in the
 cloud, and “a” for links. Note the style names: each style’s name is
 related to a piece of the theme that’s going to be styled with CSS
 later.
Another thing to note here is the placement of blocks: since I’m
 using Omega as my base theme, viewing my layout on a smaller screen, such
 as a tablet in portrait mode or a smartphone screen, will cause the blocks
 to the right of my content area to float underneath the content in the
 order they appear. As such, I want to make sure that the blocks are placed
 in order of importance: first the “about” section, then post tags, then
 recent entries, and finally, presentations. As I build this out, the
 priorities may change, but for now, this looks good.
Once we have a two-sidebar page done, it’s easy enough to do a
 one-sidebar page. I’ll start by duplicating my two-sidebar layout and
 removing the right sidebar. Then I’ll make the right sidebar just a little
 bit wider, which will help it fill out more of the page. If we look at
 Figure 7-7, we’ll see
 where we’ve gotten with that layout.
[image: Our one-sidebar layout is much less cramped compared to the two-sidebar layout, but is mostly useful when there are just a few things that go on the page aside from content]

Figure 7-7. Our one-sidebar layout is much less cramped compared to the
 two-sidebar layout, but is mostly useful when there are just a few
 things that go on the page aside from content

Note
One of the great things about working in Fireworks—although this
 is also true of Illustrator and Photoshop—is the ability to easily show
 and hide layers. In my Fireworks document, I can toggle my grid on to
 quickly size elements, then toggle it off to see how the overall page
 looks.

Step 5: Create the Other Pages

Now that I have my basic page structure down, it’s time to start
 looking at the other pages in my site. Working with the styles I’ve
 already created (and creating new ones as I need to), I’ll create the
 following pages in my layout:
	Blog listing, with the sidebars as used in my two-sidebar
 layout

	Category page, based on the blog listing page

	Project page, with associated images and text

	Project listing, with images and a brief project
 description

	Contact page

	A 404 (page not found) and 403 (access denied) page

	The home page, with associated blocks and callout areas

This should cover most of the pages that I will be setting up in the
 Drupal implementation, and give me more than enough to work with. Many of
 the pages will feed each other—for example, my blog listing page will
 start with my two-sidebar layout, and change the listing, and then the
 category page will follow from that. However, the project pages, being
 highly image/case study focused, will require special treatment, including
 putting some thought into how I’m going to organize the projects, and how
 they should be displayed. This is where having the real content comes in
 handy; because I know that the content I’m dealing with in this section is
 highly visual, I realize that my needs for this particular page will be
 different than my needs for the blog pages. Figures 7-8 through 7-10 show the approximate layouts that I’ve
 created.
[image: Our project page, with images]

Figure 7-8. Our project page, with images

[image: The blog listing, with pager]

Figure 7-9. The blog listing, with pager

[image: The project listing, grouped into the types of projects I typically work on]

Figure 7-10. The project listing, grouped into the types of projects I
 typically work on

Step 6: Step Up the Visuals

Up until this point, with the exception of the logo and header, I’ve
 purposely kept the visuals pretty low-key. The purpose of this first phase
 of design is to focus on the grid and the structure of the page, similar
 to what I’d do in the wireframing stage. Once I have those standards set,
 though, it’s time to start adding some more interesting visuals to the
 page.
The first piece is to start adding color. I’ve already created my
 color palette and chosen my fonts in the style tiles I created earlier
 (see Chapter 4), so I’ll
 start by making my headers brown, and setting them in Impressum, the font
 I’ve chosen for the headers. I’ll do this by selecting the post title on
 any page, restyling it with my new color and font, selecting it, and then
 choosing “Redefine Style” from the Styles palette (see Figure 7-11). Once the style is
 redefined, any instance of that style will have the new attributes I have
 chosen.
[image: Redefining our H1 style. If we look on our pages once the style is redefined, we’ll notice that everything has been restyled now]

Figure 7-11. Redefining our H1 style. If we look on our pages once the style
 is redefined, we’ll notice that everything has been restyled now

After I’ve defined my headers, I’ll redefine the styles for the
 other elements of my page using the same process. Add a few flourishes,
 and we’re looking pretty darn good. Figures 7-12, 7-13, and 7-14 show some of my completed pages with
 the new styles.
Now we have a layout that we can start putting into Drupal. In
 addition to understanding the basic page structure, we’ve also started
 setting up some typographic styles that will guide our design, which will
 help us make more efficient CSS to code our theme.
[image: New blog post page with styles applied. As you can see, I’ve started to set some visual standards; for example, links in orange and green for subtitles, etc.]

Figure 7-12. New blog post page with styles applied. As you can see, I’ve
 started to set some visual standards; for example, links in orange and
 green for subtitles, etc.

In the next section of the book, we’ll start looking at how to
 prototype a site for Drupal. For the purposes of the next section, we’ll
 focus on a different project, called Urban Homesteaders Unite. This
 project, which I’m collaborating on with my friend Tricia Okin of
 Papercut, will allow us to get into some much more interesting design
 challenges, including working with complex Views relationships and
 customizing profile pages.
[image: The project page looks even better, borrowing from the blog page’s titles]

Figure 7-13. The project page looks even better, borrowing from the blog
 page’s titles

[image: The project list stays pretty simple, but doesn’t need the banner around the title of the page]

Figure 7-14. The project list stays pretty simple, but doesn’t need the banner
 around the title of the page

Part III. Prototyping, Theming, and Managing your Markup

Chapter 8. Paper Prototyping

While prototyping in the browser is useful when you’re starting to
 imagine how a given function or section of a site might work out, it’s also
 a lot of work. If you’re not sure about a given bit of design logic, or how
 a certain piece of the user flow will work out, it could take a lot of time
 and energy to try to prototype the interaction in Drupal—and if you end up
 realizing that the solution you’ve created has usability problems, or is
 best done another way, it can be frustrating to “throw away” all the work
 you did.
One way to deal with this uncertainty is by using paper prototypes.
 Paper gives you the flexibility to move things around when they don’t work,
 or to try out complex interactions, in a way that doesn’t require you to
 throw a bunch of time into code. It also has the benefit of being extremely
 portable, and it lets you try out ideas on the fly. By showing a paper
 prototype to a user and having them show you how they would go about
 completing a given task, you get quick access to usability problems that
 crop up in your designs. Most importantly, once you discover those problems,
 you can get more information about why the problems occurred, and
 make changes to your prototype on the fly.
This is the single most important point about paper prototyping. Where
 a usability test involving a piece of software or a website that’s already
 been built can reveal usability issues that you have to tackle later, in the
 iteration process, paper prototypes let you find the mistakes and fix them
 in front of the user. Each time you fix something, you
 get a little bit closer to something that works; and you save yourself a
 whole lot of headaches and code when it comes time to build things.
When to Use a Paper Prototype

While conceivably, a paper prototype could be used for any
 application, including a corporate website, they tend to be most useful
 when the interaction you’re trying to create for a user has a bit of
 complexity to it. Examples include:
	Shopping carts

	Sites in which content categorization is a primary part of the
 navigation (e.g., higher ed websites, or e-commerce
 applications)

	Sites that require some type of form entry (log in screens,
 checkout screens, etc.)

Working with mobile layout (whether you’re making a website or an
 application) is an especially good application of paper prototypes; since
 the experience of a mobile site needs to be much more concentrated, paper
 prototypes can help identify which tasks or information are most important
 to users, and where the frustration patterns come in.

Fidelity

The level of fidelity in a paper prototype can range from printouts
 of screen layouts or wireframes to hand drawn interfaces. No matter what
 level of fidelity you end up with, the point is to get something that a
 user can start interacting with, and being able to show them the
 interactions that are taking place while they’re doing them.

Creating a Paper Prototype

The best place to start is the sketches you’ve already made—whether
 they’re in a notebook, or done in a program like Fireworks or Balsamiq
 Mockups. In a YouTube example of a paper prototype test from Blue Duck
 Labs for a kid’s educational website (http://youtu.be/9wQkLthhHKA), the examples are mocked up
 from screen wireframes; in another example from South African UX designer
 Werner Puchert (http://youtu.be/y4Wwnt9KIjg), each
 aspect of the prototype is sketched by hand. What you decide depends on
 where you are in the project and what you’re comfortable with. At the
 least, the prototype should have:
	A place to start. This could
 be the home page; it could be a specific section of the site you’re
 focusing on.

	Somewhere to go. Each paper
 prototype should be focused on a specific set of tasks, so make sure
 that your prototype includes each screen related to that task.

	An indication of what happens when you
 go there. This is the most important part. In a paper
 prototype, you’re trying to assess the interaction that’s happening,
 and make sure that users understand how it is meant to work. Most
 importantly, users should be able to understand how it works
 without you having to tell them.

The last point is one of the key benefits of keeping paper
 prototypes low-fidelity. If, for example, a user clicks on a button you
 weren’t expecting them to click on, you need to be able to show them the
 interaction that will happen when they click on it. If you’re keeping to
 low-fi prototypes, it’s much easier to sketch out the interaction on a new
 piece of paper or a Post-It than it is to anticipate every possible
 interaction in a given flow for the purposes of a prototype. Or worse—to
 try making a quick mockup of a new screen in code to print out while the
 user is waiting. That way leads chaos.

Walking Through the Prototype

It’s hard to demonstrate in words exactly how to walk through the
 prototype with a potential user. In the interview with David Rondeau of
 InContext Design (see From the Trenches: David Rondeau, inContext Design), he walks through
 the process that his team uses for working with paper prototypes; however,
 the following videos can also give you a good visual demonstration of a
 variety of paper prototype techniques:
	Animating Paper Prototypes: blog post plus video from UK
 designer Chris Neale: http://e102.co.uk/?p=3

	Example Usability Test, from Blue Duck Labs: http://youtu.be/9wQkLthhHKA

	Low-Fi Web Prototype II, by Werner Puchert: http://youtu.be/y4Wwnt9KIjg

	A few examples from Drupal UX designer Roy Scholten:
	http://www.youtube.com/user/royscholten#p/u/1/7VOkLzD3yDs

	http://www.youtube.com/user/royscholten#p/u/10/Yn0ZgKf74xM

	http://www.youtube.com/user/royscholten#p/u/9/Z0UZkkvDTCM

From the Trenches: David Rondeau, inContext Design
David Rondeau is the Design Chair at InContext Design, a user
 experience design firm based in Concord, MA (http://www.incontextdesign.com). InContext created the
 Contextual Design process, which is taught at universities all over the
 world. Paper prototypes are a significant part of the Contextual Design
 process, meaning that David and his colleagues use them as part of every
 project.
Dani: What is it that you love so much about paper
 prototypes? Why do they work so well for you?
David: Paper prototypes are
 critical for allowing you to validate the structure, basic functions,
 and the flow of your design, before having to code anything. It works
 because it’s paper, so it’s easy to make. There’s not a ton of time and
 overhead involved; people can argue that they can do HTML just as fast,
 but I don’t believe it. Besides, any time you start using a specific
 tool, you start getting bogged down in details.
Dani: So walk me through the Contextual Design
 process.
David: In a typical project, we
 might go out and do 12–30 interviews with people, who are the users of
 whatever kind of product it is that we’re looking at. We consolidate the
 data, put it all up on a wall, and then we do what we call “walking the
 wall.” We’ll walk along the wall, looking at all this data, for a couple
 of hours, to prime our brains so we understand the user’s problems—what
 they do, what works for them, what doesn’t. Then we have our
 brainstorming session, which we call “visioning.”
In visioning, we tell the story of what the future would be based
 on what we now know. It’s wide, it’s broad, and we come up with all
 kinds of cool things that will support the user in ways that haven’t
 been done yet. Once we have that vision, that’s when the second half of
 the project starts.
That’s part of the process of using paper prototypes. You have a
 bunch of ideas, grounded in data. Even with all that data, and with
 clients in the room who understand the domain, you’re still never going
 to get everything right. Ever. I’ve been doing design for 20 years, this
 type of design for 11, and I still have yet to see a perfect first-round
 paper prototype. There’s always something that’s not quite right.
Dani: I think that’s one of the things that makes paper
 prototypes so useful. Your first couple of options are never quite
 right. When you jump straight into code, or even Fireworks, you’re
 tempted not to “waste” the time you just spent.
David: It’s not something you
 feel like you can just throw away. If you’ve ever read Bill Buxton’s
 book, Sketching User Interfaces, this is one of the
 key things he talks about. What makes something a sketch is that it can
 be thrown away. Paper prototypes, then, are basically sketches that you
 have the user do their work in.
Dani: I have heard the argument that users just don’t
 get paper prototypes. These folks
 believe the only way you can really show an interaction is to show users
 something that looks the way that it’s going to look.
David: Well, I’ve been doing
 them for 11 years, and I can tell you that they work. If someone’s
 suggesting that they don’t work, that often means a) they don’t
 understand how to use them, and b) they’re trying to test the wrong
 level of interaction design.
The other reason paper is good is that it’s easy to change, and it
 allows you to co-design in the moment, with the user. The point of the
 prototype isn’t just to validate your ideas, it’s to come back with a
 prototype that’s been changed to support the user’s work practice. In
 interviews, a user might say, “Oh, I need it to do this thing,” and we
 didn’t put it in the design. Draw some buttons on the prototype, add
 another piece of paper, and put it in front of the user, and say,
 “Okay—let’s try to use this.” You can’t do that in HTML.
 Once you’ve committed something to code, it’s too
 much work to change it. The user isn’t going to sit there and wait for
 you to make changes to HTML.
Dani: It gives you that chance to validate what you’re
 thinking and say, “does this even work for the people who have to use
 it?” before you start throwing things into code.
David: I think it’s all about
 using your time wisely. If you think about design, you don’t start
 designing the look of the buttons right away. You have to understand
 what the system is supposed to do—what are the core functions, what are
 the key places that you’re supposed to go to, and how do you move
 between those places? Now you have an idea, now, let’s go see if this
 idea actually works for the people that I want to buy this thing.
Dani: So you do all the research, and now you’re at a
 point where you have to make a design from that research. Now you’re
 going to start sketching out the interface, looking at the different
 options. Do you start with just one paper prototype and test that, or do
 you try a couple of options?
David: No, we always test one.
 The caveat is that there may be some parts in that one that we want to
 test a couple of options for; but we typically do no more than
 two.
Dani: How do you test it?
David: It’s a two hour
 interview, usually two people go into it. One person runs the
 interview/prototype, the other takes notes, since it’s too hard to do
 both at the same time. We’ll go to the person’s work, because their
 office is where they do all their work, it’s where they might have cheat
 sheets, notes, people that they talk to to help them get their work
 done—things you’d never find out if you met them in a Starbucks. They
 also need to have their computer, because they may need to access their
 work so they can reference things, etc.
We go in, talk to them for a little while and ask questions for
 the first 15 minutes or so: what’s their work? What do they do? Mind
 you, these are usually people that we’ve already interviewed in our
 initial research. We already understand their “work;” what we’re looking
 for is hooks—real instances of work they just finished or need to do—so
 we can have them re-do that work in the prototype.
Once we find those hooks, we’ll stop and introduce them to the
 paper prototype. We’ll give them a brief intro to the prototype, but we
 don’t give specific details or show them how to use it. We’ll say
 something like, “okay, you were talking about this specific piece of
 work [the hook] that you do; how would you do that here?” Then we give
 them a marker or a pen, and tell them “this is your new mouse; this is
 your new keyboard,” and tell them that they can “click” wherever they
 want on the paper, and then we’ll show you what happens.
Dani: Are there any pitfalls to testing the prototype
 with users?
David: One of the key things
 you don’t want to do is what we call a “demo,” which is more like
 putting it in front of someone and showing them what it does—“Isn’t my
 baby beautiful? Don’t you love it?” If you do that, you can’t be sure
 they will give you an honest answer. They’ll tell you what they think,
 which is not always what they need. So if you get them grounded in a
 real case of their actual work that they’ve done or that they need to
 do, then you can talk to them about why they need something. You get the
 why, not just the what.
Often, we’ll be going through the paper prototype, and they’ll see
 some other piece of information or functionality, and they’ll say, “Oh,
 what does that do?” We’ll say, “I don’t know; why don’t you click on it
 and we’ll find out.” They click on it, and say, “I could use that.” We
 could just capture that as a validation of one of our concepts—but it’s
 not really a validation because we don’t understand why they want it. So
 we always ask why, or better yet, offer a hypothesis to the user and let
 them react to it. If you’re wrong, they’ll tell you, and if you’re
 right, you’ll be able to tell right away.
If you say, “Oh—do you need that for this kind of a thing?”
 they’ll either say, “Uh... yeah...” and you ask, “When was the last time
 you did that?” and they say, “I don’t know... six months ago, maybe?”
 that’s really a “No.” But if they say, “I did that twice last week,”
 we’ll ask more questions. “What did you need? What did you do?”
You want to give them the ability to tell you, but you can’t ask
 too many open-ended questions, because the users—being nice people—want
 to please you, so they’ll make stuff up if they think that’s what you
 want to hear. So if I say, “Do you want that because you need it for X,”
 this isn’t made-up stuff, right? They can say, “No, that’s stupid. I
 never do that,” or they go, “Yeah, yeah, that’s exactly what I
 need.”

Other Types of Prototypes

While paper prototypes are useful when you’re working with users
 face to face, sometimes, that’s not an option. How do you rapidly create a
 prototype you can test remotely without having to jump into Drupal
 development?
Enter an entire world of digital prototyping software. With these
 applications, once you get over the initial learning curve, you can create
 hotspots in your layouts, link them to other pages in your prototype, and
 mimic a wide range of responses to user inputs. You can test the
 prototypes in person, or use screen sharing/recording software like
 Silverback (http://silverbackapp.com/) to test your
 work with people from their own computers.
If you’re already using Adobe Fireworks for creating your wireframes
 or design layouts (see Chapter 7), you can
 incorporate Hot Spots in your Fireworks layouts to link areas of the
 layout with other pages in your layout, and export the file as a clickable
 prototype. Other options for clickable prototypes include:
	Axure
	Axure (http://www.axure.com/) is a
 desktop program for Mac and Windows, favored by a number of UX
 designers. The program also has a number of specialized widgets (UX
 symbols and images) available for free on their website for
 customizing your prototypes. In addition to being able to create a
 complete clickable prototype in one document, Axure also allows you
 to easily create user flows (to show task flows for specific
 screens) and include them in the prototype. It also allows you to
 annotate any area of the prototype with notes on functionality,
 requirements, etc.—and output a detailed functional specification in
 Word with the click of a button. If you're working with a team to
 implement your designs, the time savings you get from specification
 export alone are invaluable.

	Justinmind
	Another multiplatform desktop option. Justinmind (http://www.justinmind.com/) and Axure both come with
 a hefty pricetag—$495–$600.

	AppSketcher
	Another desktop choice, with a price tag under $200 (http://www.appsketcher.com/).

	HotGloo
	HotGloo (https://www.hotgloo.com/) is a
 web-based service available for a monthly subscription depending on
 how much you use the service.

	Pencil Project
	Pencil Project (http://pencil.evolus.vn/en-US/Home.aspx) is a plugin
 for Firefox that will let you build prototypes from within the
 browser itself. It’s also one of the few free options for digital
 prototyping I’ve come across.

Chapter 9. Breaking Down a Layout for Drupal
 Implementation

The two most important parts of working in Drupal, in terms of
 creating and implementing layouts for a given page, are figuring out where
 the content in a given layout is coming from and how to manage the code that
 Drupal is creating. This is, arguably, the biggest difference between
 building sites in Drupal and building them with HTML. Whereas it’s fairly
 straightforward to mock up a page in HTML once you have an idea of what it
 should look like, everything that goes into your Drupal site comes from
 somewhere in the site’s database; your code simply tells Drupal how to
 render the content it pulls from that database.
Content in a Drupal layout can come from any number of places.
Nodes

Any individual piece of content, in Drupal terms, is called a
 “node,” and it’s displayed using a file called
 node.tpl.php. If you’re dealing with the layout of a
 single page and are only concerned with how the actual page content is
 displayed, you’re likely dealing with
 node.tpl.php.
While node.tpl.php can help you control certain
 aspects of how Drupal displays individual nodes—for example, if you want
 to move the page title, or change the markup that controls the node’s
 container—if your content type has custom fields, as many content types
 do, you’ll want to manage those in the Manage Display
 tab, available by going into the admin area for your content type. From
 there, you can manage how fields are organized on the page, how and if
 their labels are displayed alongside the field, and even the format of the
 field display. For more information on managing content types and fields,
 check out the Planning and
 Managing Drupal Projects guide. The Practical Example
 in Chapter 12 also
 includes an example of setting up custom fields for a content type.

Blocks

Blocks are, essentially, little bits of content that you can put
 anywhere you want to in your Drupal page. A block can come from
 anywhere—not only can you create your own blocks through the blocks
 administration screen (Structure→Blocks), but many
 modules, such as Views and Drupal’s Menu system, create blocks for you
 that you can then place on your site. A good rule of thumb is this: if
 something’s going into a sidebar or footer, or it’s not part of the main
 content, it’s likely coming from a block.

Views

Views helps you create lists of content to put in various places on
 your site. As you will see in the practical examples in Chapters 12 and 13, I used Views to create a custom “Who’s
 Hosting” block for my Event page, with user profile
 information based on a User reference field. I also used it to create a
 block of related events for the sidebar, and a list of categories for
 events with associated images. Views works by setting up your defaults
 (what Views is pulling out of the database) and parsing it into different
 displays depending on your needs. Anywhere you have a list of content, you
 likely have a View.
For example, Figure 9-1 shows the home page
 of our site for Urban Homesteaders Unite.
[image: Our rough homepage mockup for UHU, with annotations]

Figure 9-1. Our rough homepage mockup for UHU, with annotations

If I break this down according to the numbers that I’ve annotated on
 my layout, I’ll see:
	1, 2, 4, 5, 6, 7, and 8 are all blocks.

	2, 7, and 8 are blocks built with Views.

	There’s no actual node content on the home page.

	3 is a menu, and comes from the Menu core system.

There’s no hard and fast way to know exactly where a bit of content
 is coming from on the page (for example, depending on the regions in your
 theme, block #6 could actually be coming in as content from the home page;
 I’m creating it as a block because it’s easier to theme that way), but
 there’s a few things that it’s safe to assume:
	Anything that is in the menu bar comes from the menu
 system.

	Anything that looks like a list of content, users, or taxonomy
 terms comes from Views displays.

	Anything that is contained within its own little box on the page
 is likely a Block.

Once you have an idea of where content comes from, it’s easier to
 figure out how you’re going to put things into Drupal. Even if you’re just
 creating a layout for someone else to implement, knowing how things are
 going to be implemented, and learning the design patterns that Drupal
 gives you will make your job infinitely easier.
Remember: an important part of good design is understanding the
 constraints that you’re dealing with, and how much you can stretch against
 those constraints. You’ll hear this from me several times before this book
 is done, but trust me: going with Drupal, rather than
 against it, will take you far. And you can still do
 gorgeous design. Really.

Chapter 10. Working with Base Themes

Back when I was using WordPress to build most of my sites, the process
 of theming (i.e., applying the look and feel to a website) was relatively
 simple. I’d mock up the design that I was thinking about, head over to
 wordpress.org, and
 find a theme that had the same basic structure as the site I was designing.
 Then I’d hack apart the files, customizing it with my own CSS and images.
 Changing the HTML output was pretty simple as well; as long as I could pick
 out the few bits of PHP code that were making the site render content and
 not mess with them too much, it wasn’t a big deal to customize container
 names or change the format of a given page.
When I did my first Drupal site, back when Drupal 6 was still
 relatively new, I thought the process would be about the same. I mocked up
 my template, went to drupal.org, and started
 searching for a contributed theme that looked sort of like what I was going
 for. Then I started trying to customize it according to what I’d mocked
 up.
I cried my way through that first site. And drank more coffee than I
 care to talk about.
As I started to chat with other designers about this problem, I
 realized I wasn’t alone. Drupal’s theme layer is impressive, flexible, and
 powerful; it’s also confusing as hell until you get used to it. The biggest
 layer of confusion is this: while in WordPress, it’s generally fine to
 download a theme package and start hacking it up to customize it, you don’t
 want to do that in Drupal. Why? Because Drupal keeps tabs on that theme
 file, and includes it in any updates you make to your site’s code. This
 means that any customizations you make will be gone as
 soon as you update the code. All of them. Really.[6]
The other problem with hacking themes directly is making sense of the
 code. While some themes allow you to make any customizations you need
 directly in the template files (files that end with
 tpl.php), many advanced themes put most of their theme
 overrides directly into template.php, a set of PHP
 functions that controls various aspects of the way Drupal renders the page.
 In fact, I’ve seen themes where everything—including how 960 grid classes
 are rendered—is thrown into template.php. This means
 that, unless you’re really cozy with
 PHP and don’t mind spending your time writing theme functions, you’ll be
 lost the moment you try to customize a theme.
This is where choosing a good base theme comes in handy. A
 base theme, in Drupal terms, is a theme that contains
 minimal styling, a good number of templates (.tpl.php
 files) that you can duplicate into your child theme and customize, and
 renders code in a way that you can customize via CSS. The base theme,
 ideally, handles most of the heavy lifting in terms of rendering the page
 layout, and setting reasonable defaults for font sizes, form elements, and
 the like. By creating a child theme derived from this
 base, you create all your customizations in a separate set of files within
 the /sites/all/themes folder, which keeps your custom
 code safe—and helps you debug issues without having to worry about the base
 theme getting wrecked. It also has the key benefit of letting someone else
 (the theme maintainer) worry about updates to the theme; since your
 customizations will mostly involve CSS and the occasional
 .tpl.php file, they won’t often be completely borked by
 security updates.
How to Choose a Base Theme

Choosing a base theme is often a matter of personal preference.
 Drupal.org offers
 quite a few to choose from, and every site builder has their favorite.
 Whichever you choose, make sure that your base theme:
	Has a way of dealing with code and CSS files that makes sense to
 you
	If you’ve never worked with Drupal themes before, it might
 seem like none of them are organized in ways that make sense;
 however, some themes are more confusing than others. For me, I
 prefer to avoid themes that throw all of the page rendering
 information into functions in template.php; while I don’t mind
 dealing with some PHP, I also avoid themes that separate each aspect
 of the page into separate CSS files that you have to sort through
 (I’m looking at you, Zen).

	Spits out relatively clean code
	You aren’t always going to be able to find the ultimate,
 beautiful semantic markup that you might want from a base theme, but
 you can at least get close. If you can’t get exactly the code you
 want out of your base theme, there are a couple of modules that can
 help; check out Chapter 14 for
 examples.

	Has enough tpl.php files that you can customize the code easily
 if you need to
	At the very least, a good base theme should have its own
 version of page.tpl.php,
 block.tpl.php, and
 node.tpl.php available for you to customize.
 You may not need to customize it in your child theme, but having it
 there is incredibly useful for the possibility that you will need
 to.

Whichever base theme you select, you’ll want to save into
 /sites/all/themes and enable it in your
 Appearance settings (Figure 10-1).
[image: The Appearance settings page (Appearance) lets you enable themes in your Drupal site, and set the default theme for your particular site]

Figure 10-1. The Appearance settings page (Appearance) lets you enable themes
 in your Drupal site, and set the default theme for your particular
 site

It’s very likely that you’ll end up trying out a few base themes
 before you settle on one you like. On the recommendation of a few friends
 in the Drupal community, I tried Zen (drupal.org/project/zen)
 a few times before realizing that I couldn’t make sense of it. After
 giving up Zen, I switched to the NineSixty base theme (drupal.org/project/ninesixty),
 which is based on the 960 grid system (960.gs). NineSixty was, and still
 is, one of my favorites to work with; the grid system gives me the ability
 to quickly make layout adjustments, and the code is cleaner than many base
 themes that I’ve worked with, particularly once I started creating my own
 starter kit with most of the extraneous <divs> deleted.
However, in the last year or so, as HTML5 and responsive design has
 become more of a priority, I’ve started experimenting with Omega (drupal.org/project/omega).
 Omega is an HTML5-based theme with three versions of the 960.gs grid at
 the ready and a completely responsive layout (which resizes according to
 your browser window.) While it’s not without its stuff to figure out
 (including a whole lotta template.php), one of my
 favorite things about Omega is the ability to customize the grid for each
 section of the site. For example, on Urban Homesteaders Unite, I use a
 12-column grid on the header, but a 16-column grid in the Content region,
 which gives me a bit more flexibility in the layout.
Another nice thing about Omega is the ability to update my page
 defaults through a GUI in the theme settings page (Figure 10-2). This frees me to
 experiment with different layouts as I need to, without having to search
 through code and tweak grid numbers here and there. I don’t know if it’s
 faster than tweaking code directly, but it’s certainly a bit more
 idiot-proof.
[image: Updating the Content region defaults in Omega’s snazzy region settings GUI]

Figure 10-2. Updating the Content region defaults in Omega’s snazzy region
 settings GUI

[6] All. Of. Them.

Other Base Themes to Try

Now that I’ve given you my favorites, here are some other base
 themes to try, based on recommendations from friends in the Drupal
 community:
	Square Grid (drupal.org/project/squaregrid)
	Square Grid, created by PingV Creative’s Laura Scott, uses the
 Square Grid framework (mentioned in the chapter on using grids) as a
 base. This 35-column layout gives you quite a bit of flexibility in
 organizing your site’s blocks and columns, and like Omega, it also
 takes mobile-first layout into consideration.

	Tao (drupal.org/project/tao)
	Tao is a base theme that simply resets a lot of Drupal’s
 default page rendering behavior. The goal of it is to sit back and
 let your subtheme do its job. It does assume a focus on
 preprocessors (i.e., setting up things in template.php), which might
 mean that you have to deal with a lot of PHP and theme functions,
 but it also provides many advantages, such as sensible code to start
 working with.

	Mothership (drupal.org/project/mothership)
	This theme does what it can to strip out many of the extra
 <divs> and classes that tend to plague Drupal’s way of
 displaying data. This gives you the ability to start your theme with
 a clean slate, and creates nice, semantic markup. It even helps you
 get rid of the crazy extra code that Views can tend to spit out.
 We’ll chat about that a bit more in Chapter 13, which is all
 about managing the code that Views gives you.

	Zen (drupal.org/project/zen)
	If you spend any time in the Drupal community, frankly, you’re
 going to hear a lot of people recommending Zen. In fact, it’s such a
 common base theme that many people who start working with Drupal
 start out working with the Zen theme, often on the recommendation of
 a developer they know. As you might have guessed from my comments
 above, I’m not a huge fan of Zen, but I include it because you’ll
 probably hear about it at some point. One thing it does well is
 produce well-ordered code; unfortunately, it suffers from many extra
 <div> tags, and multiple CSS files that handle different
 aspects of page layout, which can be confusing for new themers.

Creating a Child Theme

Once you’ve got your base theme downloaded and set up, you have to
 set up a child theme to put all your customizations into. Some themes,
 such as Zen and Omega, come with a set of starter kits that you can simply
 copy into your /sites/all/themes folder and rename;
 with other themes, you may have to copy the files you need manually into a
 new folder. To start with, all child themes should contain three
 files:
	A blank
 template.php file, which will eventually hold any
 theme functions that you decide to put into it. Note that this file
 should be blank initially; copying the
 template.php file from your base theme will cause
 errors when you try to access your site.

	A THEMENAME.info file, which you can copy
 from the base theme.

	A styles.css (or something similar) file,
 which will be referenced in your theme’s .info
 file and contain all of the CSS customizations for your child
 theme.

If you plan on overriding any of the base theme’s
 tpl.php files, you can also copy those into your
 child theme. However, generally, I avoid doing that unless I need to
 create a new template region, or change the base theme’s grid
 layout.
To create your child theme, you’ll start by modifying the theme’s
 .info file. The .info file
 defines the page regions, CSS and Javascript files that your theme will
 use. For example, here’s part of the content of the
 .info file that comes with Omega’s HTML5 starter
 kit:[7]
name = Omega
description = Omega extends the Omega theme framework with some additional features and makes them availabe to its subthemes. This theme should not be used directly, instead choose one of the Omega or Alpha starterkits.
core = 7.x
engine = phptemplate
screenshot = screenshot.png
version = 3.x
base theme = alpha

; REGIONS
; REQUIRED CORE REGIONS
regions[page_top] = Page Top
regions[page_bottom] = Page Bottom
regions[content] = Content

; END REQUIRED CORE REGIONS
regions[user_first] = User Bar First
regions[user_second] = User Bar Second
regions[branding] = Branding
regions[menu] = Menu
If you’ve copied your base theme’s .info file
 into your child theme’s folder, you can generally delete everything in the
 “stylesheets” and “scripts” sections. The information on whatever
 regions your base theme has identified, however, must
 stay where they are. Regions are specific areas on the page where you can
 place content—usually through the Blocks administration
 (Structure→Blocks or, if you’re using the Context
 module [drupal.org/project/context],
 through the Context administration). There’s a couple of things you need
 to remember when modifying your .info file:
	As mentioned before, any regions your base theme has defined
 should stay in the file. Any regions that
 are set up in your child theme’s template files, but aren’t listed in
 its .info file, could break your theme.

	Themes have two names: the Machine Name and the Human-Friendly
 Name. Machine Names are always written in lowercase, with underscores
 instead of spaces (i.e, my_awesome_theme), while Human Friendly Names
 can have uppercase letters, spaces, etc. (i.e., My Awesome
 Theme).

	The top bit of information (name, description, core version,
 engine, etc.) should stay at the top of the page. These are required
 by Drupal to make the theme work. Most of it should stay the same as
 what’s in your base theme, with the exception of the name and
 description.[8]

	Additionally, you want to include base
 theme = MACHINE_NAME underneath the top set of descriptive
 information. In the Omega example above, you can see that Omega is
 using a theme called Alpha as its base theme; if you were creating a
 child theme from Omega, you would change that text to base theme = omega. Likewise, if you were
 creating a child theme based on NineSixty, which doesn’t have its own
 base theme, you’d add base theme =
 ninesixty to your child theme’s .info
 file.

Once you’ve updated the descriptive information and identified the
 base theme that you’re working with, you want to include any stylesheets
 or Javascript files that you want to include in your theme.
For example, here’s the updated .info file for
 my Urban Homesteaders Unite theme (which was created with the HTML5
 starter kit that comes with Omega):
name = Urban Homesteaders Unite
description = Custom Starter Kit for Urban Homesteaders Unite.
core = 7.x
engine = phptemplate
screenshot = screenshot.png
base theme = omega

; REQUIRED CORE REGIONS
regions[page_top] = Page Top
regions[page_bottom] = Page Bottom
regions[content] = Content

; OPTIONAL STYLESHEETS
css[mobile.css][name] = Mobile Styles
css[mobile.css][description] = Your custom CSS for the mobile version of your website (mobile first).
css[mobile.css][options][weight] = -89

css[styles.css][name] = Main Styles
css[styles.css][description] = Your main custom CSS file.
css[styles.css][options][weight] = 10
From there, you should be able to enable your theme through the
 Appearance menu, set it as the default, and plug away
 at your styles.css file (Figure 10-3).
[image: Setting our theme defaults]

Figure 10-3. Setting our theme defaults

[7] If you’re interested in trying out Omega, it’s recommended that
 you work with one of the starter kits that come with the theme
 instead of trying to copy the one that comes with
 Omega itself. Omega’s .info file is copious and
 full of interesting settings that don’t need to be copied into your
 child theme.

[8] If you want to learn more about what goes into a theme’s
 .info file, check out http://drupal.org/node/171205, which has a complete
 list of the types of information you can put in there.

Other Things You Should Know About Base Themes

Now that you’ve gotten the hang of editing your theme’s
 .info file and making a child theme, there are a
 couple of other things that you should bear in mind when working:
Clear the Theme Registry!

Any time you add a new element to your .info
 file—whether it’s to add a new region to your page, or add a new
 stylesheet (for example, I sometimes like to add a separate stylesheet
 for the navigation on sites with complex navigation styles),
 you must clear your theme registry. Sometimes, for
 really sticky issues, you can also try clearing all of the caches. You
 can clear all caches by going into
 Configuration→Performance and pressing the “Clear
 all Caches” button. If you’re feeling super nerdy, you can also use the
 command drush cc all to clear the
 caches from within Drush, the command line tool for Drupal. We’ll
 discuss Drush in the next book, Drupal
 Development Tricks for Designers (cue evil
 laughing).
Note
You don’t have to clear the cache every time you do something
 simple, like changing the CSS in your theme; but if you make a change
 and nothing happens, clearing the cache will often help.

Working with Regions

Regions are Drupal’s way of laying out containers for content in a
 given theme. Many themes, such as Bartik and Omega, come with a copious
 volume of regions—all with odd names like “Triptych,” “Postscript,” and
 “Preface”—for your block organization pleasure. This is, in fact, one of
 the things you want in a base theme—the more regions you have, even if
 you use none of them, the more flexibility you have in your layout. The
 trick is to understand what the regions mean, and to use your layout to
 guide where you put things.
In Drupal 6, your theme’s regions would be overlaid directly in
 the Blocks administration screen. In Drupal 7, things are different. If
 you look at your Blocks administration screen
 (Structure→Blocks), you’ll see this link:
 “Demonstrate block regions (theme name)” (Figure 10-4).
[image: If you go into Blocks administration, you’ll see a link that will let you show the theme’s associated regions]

Figure 10-4. If you go into Blocks administration, you’ll see a link that
 will let you show the theme’s associated regions

If you click that link, you’ll see a page that shows all the
 regions you have available in your theme (Figure 10-5).
[image: Theme regions for our Omega theme]

Figure 10-5. Theme regions for our Omega theme

As you can see, there’s a lot to work with here; however, it’s not
 always easy to remember which region is where, or how things are going
 to show up. For that reason, I tend to keep either a print or a sketch
 of my theme’s regions in my project file as I’m working. If I lose track
 of something, I just refer to my printout, and I’m good to go.

Please, Tell Me More!

We’ve really just scratched the surface of working with Base themes
 in Drupal 7. If you’re itching (and I just know that you are) to learn
 more, check out http://drupal.org/node/225125, where
 the lovely folks in the Drupal community have running documentation on how
 to create a subtheme, with commentary. You can also add comments and
 questions to the documentation page, simply by logging in with your
 Drupal.org account.

Chapter 11. Prototyping in the Browser

Some designers, like independent designer and web strategist Jason
 Pamental (thinkinginpencil.com)
 interviewed below, prefer to do site prototyping directly in the browser.
 For Pamental, doing things this way gives you the opportunity to see things
 as they actually behave in the browser, rather than mocking things up in
 Photoshop or Fireworks only to spend hours explaining to clients why the
 designs changed once they were implemented in Drupal.
The trick to this approach, however, is not falling into the trap of
 simply decorating on top of what Drupal gives you—but rather, as Todd
 Nienkerk suggests in his Drupalcon session, Don’t Design Websites,
 Design Web SYSTEMS!,[9] letting Drupal’s default behavior simply provide a guide your
 design decisions.
When a site doesn’t require a lot of complex interaction (for which I
 do paper- or Axure-based prototypes) I’m a big fan of the “sketch, quickly
 wireframe, then start prototyping in Drupal” approach. Being able to see how
 the interactions I’m designing can be implemented in Drupal helps me make
 smarter decisions about layout and functionality, because it helps me make
 sure that what I’m proposing can actually be done. In practice, it often
 looks like this:
	I’ll create a bunch of sketches for possible page layouts,
 interactions, etc. and choose 1–2 to start wireframing.

	I’ll create wireframes for the 1–2 best options, and talk them
 over with the project team.

	I’ll work those wireframes into some kind of (non-Drupal)
 prototype, so the project team can see how the interactions should
 work.

	Those will be iterated until we figure out the best solution for
 what we’re dealing with.

	I’ll either start working on prototyping my assumptions in Drupal,
 or I’ll work with the team’s developer to start prototyping right away
 while I work on the next area of functionality/content that needs
 fleshing out.

This is also one of the key reasons why I break up work plans into
 specific functional areas of the site. It helps me focus the team’s energy
 on getting one specific area working before we go too deeply into the next
 area. This approach can be called many things; some think of it as Agile
 (from the software programming methodology), others call it Lean (from the
 Lean Startup concept).[10] I tend to think of it as a Lean hybrid; the point is less
 about getting a Minimum Viable Product up and running within a couple of
 weeks, and more about being able to quickly get your head around the various
 complexities of a project, create a bunch of hypotheses to test based on
 your research, and start seeing how those hypotheses play out as quickly as
 you can.
From the Trenches: Jason Pamental, independent web
 strategist
Dani: You’ve mentioned to me that you prefer to prototype
 in the browser, rather than in layout comps or sketches. Can you talk a
 bit more about that?
Jason: The main reason is that,
 when you prototype in the browser, you can see what it really looks like.
 It doesn’t matter what tricks you have in Photoshop, it’s never going to
 translate exactly into how a web page will behave. So, over the years,
 I’ve started to see that, if you have a good base theme, or a handle on
 writing HTML, you get to a place much faster where you can actually
 explore behavior—especially when you’re putting it right into a content
 management system. So you can explore more of the real life of a website
 quickly, rather than trying to mock up every different state of an interaction.
Dani: How do you ideate something like that—do you go
 straight to code, or do you start with sketches, and then move to code
 later?
Jason: In terms of the actual
 design process, there’s always work that goes on in Photoshop or
 Illustrator. But oftentimes, that comes after a prototype’s been built. We
 tend to have this “sandbox” version of a website, that’s been built out
 with all of the main pages, and some of the default users there already.
 It’s really quick to play with things, and think about “How am I going to
 search?” and “How am I going to play with these things?” Once it’s time to
 go into the look and feel, you have all the real stuff there to play with.
 Even as you’re opening Photoshop or Illustrator, you know the real things
 that you have to be concerned with—the buttons, navigation elements, and
 the real content on a page, etc.
But even with that, there’s pages and pages of sketches, notes and
 things like that from early on in the process, especially for something
 complicated.
Dani: The flow that I’ve been moving towards lately is
 sketch, maybe wireframe a couple of pages, but then start prototyping in
 Drupal quickly so I can see how things are falling, and how something’s
 going to be implemented. The question I always ask myself is: how much of
 that workflow is based on the fact that I’m a team of 1–3, as opposed to
 being one piece of a larger team? I notice with larger teams, they do
 often have more clearly defined roles, so there’s not as much concern
 about whether you specifically can implement something, but more about
 whether it can be implemented by the team. Have you had experience with
 that?
Jason: I’ve worked on teams of
 varying sizes, from just me to managing a group of 3–5 people to being a
 creative director at a company in Boston with 30 developers and a team of
 6 designers. I’ve never been a big fan of having a person for every
 possible task and isolating the work that they’re doing. It’s never seemed
 to work well.
Especially with a platform like Drupal at your disposal—even doing
 the site for CVS/CareMark, which is a pretty significant project, it was
 still a team of 5–6 core people. There was a designer, there was a
 researcher and information architect, there was me and a couple of
 developers who were helping me. That was pretty much it.
Dani: That’s one of the benefits of Drupal. There’s so
 much that’s built for you that it’s easier to make big websites with fewer
 people. I don’t think it makes it any less complicated, but I do think it
 allows you to focus on more important parts of the experience than what
 the code is going to look like.
Jason: Exactly, and that’s one of
 my favorite things about it. It lets you be a team that is iterative and
 reactive far more easily than when you have each person in their own
 separate role. I keep thinking of these companies that push development
 offshore, or to a partner company, where you have this enforced wall
 between design and architecture. Maybe there’s some prototyping, but the
 real development happens somewhere else. In those cases, there’s no way to
 just sit down with someone and discuss something, and then react to it
 right away.
Dani: While you’re prototyping in the browser, do you find
 that there are any moments where you find yourself leaning on Drupal’s
 defaults a bit too heavily?
Jason: That’s an easy trap to
 fall into. Because you know something works, so you put your attention to
 something else, and it’s not necessarily that it works in the best way. I
 think that’s a constant challenge, and not one that’s so difficult to
 overcome if you work smartly. One of the things that I have enjoyed about
 the process of working on the platform we’ve built for SchoolYard is that
 there’s a common base point we’re starting with. Every project, we get to
 smooth off more of those rough corners.
I think that when you build up this set of defaults—this set of
 modules that you always use, this point from which you always start the
 process—it lets you build up these layers of sophistication. You can start
 building all these little things that add up to a much more refined
 experience. That’s where taking the time to get to know the platform and
 just look for stuff and see what’s out there—every time you do another
 project, it just gets better and better.
Dani: How do you document that?
Jason: In part, it’s frozen in
 this starter kit website that I start from every time I start a new
 project. Periodically I’ll go in there and update the modules, and every
 time I see something interesting I make sure I throw it in there.
That, and blog posts. I do a lot of that. If I figure out some weird
 challenge, I take notes in Evernote as I figure it out, I make sure I copy
 down all the steps, and I add in all the things that I have found, and I
 stick it up on my blog.

[9] Check out the slide deck at http://fourkitchens.com/presentations.

[10] For more information on the Lean Startup movement, check out
 http://theleanstartup.com/.

Chapter 12. Practical Example #1: Using Views to Enhance a Layout

By now, we’ve had a chance to look at sketching and wireframing
 designs, creating style tiles and layouts to explore design directions, and
 different options for prototyping and iterating on those designs. So what
 happens when you’re dealing with a design that’s already been created, and
 you’re getting ready to put it into Drupal? Understanding how Drupal
 stitches pages together can help you find the holes in implementation, and
 even help you improve the original layout. As an example, let’s take this
 single event page created by Tricia for the Urban Homesteaders Unite site,
 as shown in Figure 12-1.
[image: Original design comp for an individual event page on Brooklyn Homesteaders Unite]

Figure 12-1. Original design comp for an individual event page on Brooklyn
 Homesteaders Unite

The original layout for this page, created before the project was
 going to be built in Drupal, was inspired by the way that Eventbrite.com
 displays events. At first glance, this page would be pretty easy to build in
 Drupal.
But what if we could make it even better?
To do that, we need to consider a couple of things based on the
 overall vision for the site (a way to get urban homesteaders together for
 different events), and the way that Drupal will be organizing the site’s
 content:
	Each event is created by a user of the site who is also the host
 of the event.

	Each user will have their own profile, with contact information, a
 brief bio, and a link to things they’ve done on the site.

	Given these two things, what if, rather than having users repeat
 their contact information as part of each event, you could pull it
 directly from the host’s user profile? This would allow potential
 attendees put a face to the event, and learn more about the person who’s
 about to teach them this stuff?

This is the type of situation where getting things into Drupal early
 makes the most sense. The greybox comp in Figure 12-2 shows a rough idea of
 what we’re going to put together.
[image: A new mockup for the Event page, taking into account the ability to automatically feed in the host’s bio information]

Figure 12-2. A new mockup for the Event page, taking into account the ability to
 automatically feed in the host’s bio information

By starting to prototype this directly in Drupal, we can work out the
 kinks in our design early, before they cause problems later on.
But I’m Not a Developer—What if I Don’t Want to Code?

Admittedly, much of this approach requires a certain willingness to
 work directly in Drupal, which may (and usually does) mean touching code.
 The bad news is that if you want to build sites in Drupal, but you don’t
 want to figure out how to deal with the code, you essentially have two
 options:
	Partner up with a good
 developer. You can meet them all over the place, from local
 Drupal meetups to online at groups.drupal.org.
 Occasionally, you can even find Drupal developers on Twitter simply by
 asking a question with the hashtag #Drupal. If you’re feeling brave
 and super-nerdy, you can also check out Drupal folks on various IRC
 channels.[11]

	Don’t create the site. I’m
 serious. If you don’t want to deal with code, and you aren’t willing
 to pay a developer, you shouldn’t be doing things in Drupal. Many
 folks don’t want to hear this, but it’s the truth.

This said, if you’re willing to learn, and you don’t mind spending a
 bit of time messing around, you’ll find that prototyping directly into
 Drupal isn’t without its headaches, but it’s often easier than you may
 have thought. In some cases, it doesn’t even require you to step into code
 at all.
Here’s how I set up the configuration for this crazy-awesome event
 page in Drupal 7.

[11] IRC: Internet Relay Chat. Used heavily by Drupal developers
 to have conversations and give each other help in real-time. I
 have no idea how it works or how to get set up on it, but if you
 meet a nice developer, he or she will often be more than happy to
 show you.

Step 1: Create the “Event Categories” Taxonomy Vocabulary

Taxonomy, for those who haven’t learned a lot of DrupalSpeak™, is
 how Drupal categorizes content. Each taxonomy vocabulary is a set of
 categories, or tags, that you can apply to one or several types of
 content. In previous versions of Drupal, you could create vocabularies as
 you needed them, by creating a vocabulary and selecting which content
 types the vocabulary could be associated with. This was easier in some
 respects, but could turn complicated as new content types were
 added.
In Drupal 7, taxonomy vocabularies are treated very differently.
 Rather than creating the vocabulary after the content type, you create it
 before you create the fields for a content type, and
 then add a “term reference” field that points back to the vocabulary
 within your content type.
We’ll start by creating a vocabulary. In the administration panel,
 we choose Structure→Taxonomy, and select the
 Add vocabulary option (see Figure 12-3). We’ll name our new
 vocabulary “Event Categories” and hit Save.
[image: See that little + next to “Add vocabulary?” You’ll see that a lot on Drupal admin screens. Wherever you see it, it allows you to add something to whatever section you’re in]

Figure 12-3. See that little + next to “Add vocabulary?” You’ll see that a lot
 on Drupal admin screens. Wherever you see it, it allows you to add
 something to whatever section you’re in

Once we’ve created our vocabulary, we’ll add terms by clicking the
 add terms link. Once you’re done adding terms, you
 can choose list terms to see the terms you’ve
 created. Figure 12-4 shows
 the terms that I included in my Event Categories
 vocabulary.
[image: All of the terms that we created for our event categories. Note that they come from the homepage mockup listed at the beginning of the chapter]

Figure 12-4. All of the terms that we created for our event categories. Note
 that they come from the homepage mockup listed at the beginning of the
 chapter

After we’ve created our taxonomy vocabulary, it’s time to create the
 Event content type.

Step 2: Create the Event Content Type

Creating a content type starts the same as creating a taxonomy
 vocabulary. This time, you’ll select Structure→Content
 Types from the admin menu and click the Add content
 type link.
When creating a content type in Drupal 7, it’s important to remember
 each of the steps involved in creating them:
	Set up the field’s default settings, then click the
 Save and Add Fields button to add fields.

	Add any fields you need in your content type, then click the
 Manage Fields tab to manage how fields are
 displayed.

	Use the Manage Display area to set up how
 fields are displayed in different contexts (for example, “teaser”
 content vs. a single page entry).

This last bit about Manage Display is the one
 that can trip you up if you aren’t careful. Because Drupal depends on
 content, and the structure of that content can change during site implementation—more fields are added or
 removed, new categories are decided on, etc.—you may find yourself
 periodically going back and forth and adjusting the content types you’ve
 created on your site. This is especially true of complex implementations,
 but it can happen just as easily on a small corporate site. A helpful way
 to remember it is this: Manage Fields controls where
 fields show up when you’re creating new content, while Manage
 Display controls how they show up when that content is
 displayed.
Figure 12-5 shows what
 the Manage Fields screen looks like after setting up
 the Event content type.
[image: Our Manage Fields configuration screen, with all the fields from our Event content type]

Figure 12-5. Our Manage Fields configuration screen, with all the fields from
 our Event content type

We won’t get into a tutorial on creating fields here; if you’ve
 never created a content type or added fields before, Sweden’s NodeOne has
 an excellent series of screencasts that covers the basics of creating
 basic sites in Drupal 7 (http://dev.nodeone.se/en/learn-drupal-7-with-nodeone).
 I will point out a couple of things, however:
	The Cost field is set up as an Integer
 field with a prefix of “$” and a suffix of “USD,” so when rendered, it
 will show as “$10 USD.”

	The Audience Capacity field is also an
 Integer field, with a suffix of “ guests,” so when rendered, it will
 show as “12 guests.”

	The Groups Audience field is a byproduct of
 the Organic Groups module (drupal.org/project/og).
 As we currently have two primary locations for this site’s
 events—Cambridge/Somerville and Brooklyn—each location is set up as
 its own Group. Thus, an event can belong to either the
 Cambridge/Somerville group or the Brooklyn group; it’ll show up on the
 home page of whatever group you’re in.

Now that we have our fields put into the content type, we want to
 manage how they’re being displayed. For this, we’ll need to visit the
 Manage Display tab. Before we do that, however, let’s
 add a test event and check it out to see where we’re starting from. Figure 12-6 shows our starting
 point.
[image: Our new Event page, with minimum styling. Wait—that’s not in the right order!]

Figure 12-6. Our new Event page, with minimum styling. Wait—that’s not in the
 right order!

As we can see, there’s a whole lot that’s out of order right
 now.
	The additional fields are all out of order

	There’s a bunch of stuff showing that we don’t really need, like
 the Groups audience and Published date

So, let’s go back to our content type and make some adjustments to
 the way things display. We’re starting with something like what is shown
 in Figure 12-7.
[image: The Manage Display tab in our Event content type]

Figure 12-7. The Manage Display tab in our Event content type

The first thing we’re going to do is hide some of the things we
 don’t need to see. We’ll start by setting the Format of the
 Groups Audience and Who’s
 Hosting field to Hidden. From there, we’ll
 set the Labels of all the fields (except for About this
 Event) to be Inline instead of
 Above. Then we’ll rearrange the fields in the order
 they need to be in:
	Date and Time

	Location

	Cost

	Bring

	Audience Capacity

	About this Event

Now, the Manage Display settings look as shown
 in Figure 12-8.
Easy, right? Now let’s look at Figure 12-9 to see what it looks
 like in our sample event.
[image: Organizing the fields in our Content Type to better fit our mockup]

Figure 12-8. Organizing the fields in our Content Type to better fit our
 mockup

[image: Getting closer, but it still needs work]

Figure 12-9. Getting closer, but it still needs work

Now, there are a few things that are still missing here. First of
 all, we don’t want to show the author information in the content, and we
 haven’t included an image with the content. This will require a couple of
 steps. First, in our Event content type, we’re going
 to go back to the Edit tab, and uncheck “Display
 author and date information” under Display Settings
 (Figure 12-10).
[image: There’s always something you forget]

Figure 12-10. There’s always something you forget

After we save the content type, we’re going to go back into
 Manage Fields, and add an Image field to the content
 type. Next we’ll go into Manage Display and set up
 the Image field to have a label that’s hidden. We can
 then go back into our published event and add a placeholder image. Now it
 looks like Figure 12-11.
Now we realize another problem: we have to set up image
 styles.

Step 3: Create an Image Style

Image styles are the way Drupal 7 handles resizing and displaying
 images. You can have as many image styles as you like, and the system will
 automatically handle cropping, resizing and maintaining the files for you.
 For our events, we had an event image size of 620px
 wide by 280px tall. To create an image style, select
 Configuration→Image Styles from the Admin screen.
 Click the Add style link to add a new image style.
 I’m going to call the new style grid-8 (as I’m using
 a 12-column grid, and 620px is 8 columns wide; more on grid systems in
 Chapter 6), and set up the style to
 Scale and Crop to 620px by 280px. See Figure 12-12 for an
 example.
[image: Well now, that’s an awfully big image]

Figure 12-11. Well now, that’s an awfully big image

[image: Configuration settings for our Events banner. Calling it something generic, like the column width, allows us to use it universally wherever we need an image that size. Thus, if we create a new content type and want to style it the same way, we’ll be covered.]

Figure 12-12. Configuration settings for our Events banner. Calling it
 something generic, like the column width, allows us to use it
 universally wherever we need an image that size. Thus, if we create a
 new content type and want to style it the same way, we’ll be
 covered.

From there, we go back into the Manage Display
 screen for our Event content type, and click on the
 gear button to the right of the Image field. Select
 our new image style from the Image Style drop-down
 menu and hit Update (see Figure 12-13).
[image: Selecting our new image style]

Figure 12-13. Selecting our new image style

Now, if we refresh the page, we can see our results (Figure 12-14).
Now it’s time to start styling this puppy. After updating the styles
 for field labels, moving stuff around with page titles, and removing those
 blocks from the right sidebar, what we have so far is shown in Figure 12-15.
At this point, we’re getting much closer to what we mocked up (Figure 12-16).
And, the only code we’ve added so far is a bit of CSS in our theme
 to set some text defaults. Now, it’s time to start working on getting the
 rest of this stuff into Drupal. Next up: getting our user data to show up
 on the page.
Note
If it seems like we’re jumping around a bit here, that’s because
 we are. Believe it or not, this is pretty typical in building Drupal
 sites; each component of a site plan will have its own set of needs, and
 will often require going back and adjusting things as you go. This is
 why I always recommend breaking down site plans by specific sections of
 functionality; for more about this, check out the Planning and Managing
 Drupal Projects guide.
Now that we have our Event Node set up, it’s time to move on to
 the next component: the user profile connected to the event.

[image: Look, Ma! It shrunk all by itself!]

Figure 12-14. Look, Ma! It shrunk all by itself!

[image: Getting still closer to our mockup]

Figure 12-15. Getting still closer to our mockup

[image: A quick reminder of where we are headed]

Figure 12-16. A quick reminder of where we are headed

Step 4: Create the User Profile

By default, Drupal gives each user its own profile, which you can
 see by going to site.url/user in your browser. However, there really
 isn’t much to show on this page; for example, Figure 12-17 shows a screenshot of
 my /user page before adding anything to
 it.
[image: Drupal’s core user profile; cute, but not very useful]

Figure 12-17. Drupal’s core user profile; cute, but not very useful

In order to include the contact information and other interesting
 bits that we’ll need to include with the Event page, we’ll need to install
 a module. The Profile2 module (drupal.org/project/profile2)
 is Drupal 7’s answer to Drupal 6’s Content Profile (drupal.org/project/content_profile),
 as well as an interesting replacement for Drupal 7’s core Profile module.
 With Profile2, you can create different “types” of profiles and associate
 them with different roles, add fields, and other useful stuff. For right
 now, we just need the basics: contact information, website, etc. To do
 that, after you install the Profile2 module, you’d choose
 Structure→Profile Types from the admin menu. The
 Profile Types screen will show you a “Main Profile”
 type; that’s what we’re going to choose to start with (Figure 12-18). The Profile2
 module essentially treats profiles as if they are content types, which
 means you can add fields just as you would with a content type.
[image: The profile type screen from Profile2]

Figure 12-18. The profile type screen from Profile2

For our purposes, we’re going to add the following fields, using the
 same basic procedure we used for creating the Event
 content type:
	Phone number

	Website or blog URL

	Bio

	Interests: a Term Reference field that links to the
 Tags taxonomy vocabulary.

	Types of Events: a Term Reference field that links to the
 Event Category vocabulary.

Figure 12-19 shows what it looks
 like when we’re done.
[image: Our finished profile fields]

Figure 12-19. Our finished profile fields

Note
When creating fields, it’s generally a good idea to use the name
 of the content type in the field name, e.g.,
 profile_about. This helps you find the fields
 you’re looking for in other areas, such as Views. The exception to this
 is fields that are used among many content types, such as an Image or
 File field, or some types of taxonomy fields.

Now that I have the fields created, it’s time to populate our test
 users with some profile content. Figure 12-20 shows what my
 profile looks like now that I’ve filled it out a bit.
[image: Hey look! You can see my contact information now!]

Figure 12-20. Hey look! You can see my contact information now!

Step 5: Getting Profile Content into the Event Page

Now that I have an Event content type, and
 additional information in our user profile, I have to figure out how to
 stitch all of this together so that the user’s contact information, etc.
 is actually showing up on our sample Event. There are a few options for
 how we can do this:
	The User Reference module
	This module allows you to create a “User Reference” field into
 a content type, and populate it with content. While we already have
 this in the Event content type, the only option for displaying this
 field is the user’s username as a link to their profile. This isn’t
 what we’re looking for.

	A Related User view
	This option, using Views, is more complex, but gives you the
 most control over how content is output and displayed. For example,
 we have some extra information on the profile, such as Interests and
 Event Types; we really don’t need those to show up on our Event
 page.

	Creating a custom .tpl file
	This option, arguably the most complex, also isn’t very
 sustainable. You’d start by copying node.tpl.php in your theme file and
 calling it node--event.tpl.php.
Note: This assumes that your content type’s machine name is
 event; you can create a custom
 .tpl for any content type by adding --CONTENTTYPE to the
 name of the file. From there, you’d use custom code to manually
 insert the individual fields into the .tpl
 file.

Although the last option can give you a lot of control over the code
 you output, there are several reasons this approach can be challenging.
 For one, it’s code-heavy; if you aren’t familiar with Drupal theme hooks,
 it can take a long time to figure it out. Even if you did figure it out,
 this isn’t the only challenge to the custom template approach. If you
 choose a different theme for the site, or you accidentally delete your
 custom .tpl.php file, the entire page will break, and
 the user information will disappear again.
You also have to consider a bunch of other factors: what if the user
 leaves a field empty? What if you want to change the fields that you show,
 or add a field, etc.? While the code used to
 simply display the content of a field (i.e., <?php <h2><?php print render($content['field_NAME’]);
 ?></h2> ?>) isn’t that complicated once you figure
 it out, it doesn’t take into account whether the field contains data—which
 means that empty fields will still render, and the page will look broken.
 Additionally, you have to add the code every time you add a field to your
 content type.
Given the options, I prefer to use the Views approach. There are a
 couple reasons for this:
	It’s as close as you can get to putting code in a
 .tpl.php file without having to put code in a
 .tpl.php file.

	It’s reusable in other areas of the site. Since much of this
 implementation involves relating data to other data (i.e., user info
 on events, events related by category, etc.) setting up the logic once
 gives you something you can easily clone and relate to other content
 types, pages, etc.

Here’s how I set it up.
Setting Up the View

It took me several tries, and a few frantic Twitter posts, before
 I figured out the best way to create this View. The key, apparently, is
 using Views relationships, which are a complex and mystical art that
 seems to elude even some of the best developers I know. The important
 thing to remember for this example is that you want to set up a view of
 Content/Nodes of the Event content type, NOT a view
 of Users or Profiles. This is where I got stuck; intuitively, you would
 think that Users and Profiles would be basically the same thing, that
 both would be available to a View, and that you could somehow use the
 User Reference field as a way to pull that data into your view. As it
 turns out, that’s sort of what happens, but you have to go about it in
 an odd way.
So, we start by setting up a View, of
 Content of the type Event, and
 we’re going to set up a block with an Unformatted
 List of Fields. Figure 12-21 shows the starting
 screen for my view.
[image: Starting off our view for the host information]

Figure 12-21. Starting off our view for the host information

Once we have our initial setup done, it’s time to start adding
 settings. Here comes the interesting part: if you were, right now, to
 start adding fields to this view, you would only see fields that belong
 to the Event content type. This, however, isn’t
 what we want. What we want is the user information that relates to the
 user we’ve identified in the “Who’s Hosting” field. For this, we need to
 set up a couple of relationships.
Setting up a Views Relationship is fairly simple once you’re used
 to it, but the logic is complicated at first glance. The way to think
 about it is this: when you create a Reference field, whether it’s to a
 node, a user, or anything else, you’re essentially creating a
 relationship between the node that contains the field, and whatever
 you’re referencing. This means that, when I created my “Theories of
 Bacon” event and referenced my Test Host user in the “Who’s Hosting”
 field, I created a relationship between the event and the Test Host
 user. Now, in my View, I can call back that relationship, and Views will
 make all the content and fields of that related thing (in this case, my
 Test Host) available for adding to my View (Figure 12-22).
[image: Setting up our “Who’s Hosting” relationship]

Figure 12-22. Setting up our “Who’s Hosting” relationship

Another trick is this: in Drupal, users and
 profiles are treated as different things. This
 means that, if I set up my view with only the “Who’s Hosting”
 relationship in it, all it will let me include in my view is the default
 user information. In other words, all we can include is the user’s name
 and picture. What about all the fields we added to their user
 profile?
The answer to this is—you guessed it—creating another
 relationship. This time, the relationship is to the Profile connected to
 the user in the “Who’s Hosting” field (Figure 12-23).
[image: Adding the Profile field to our relationships]

Figure 12-23. Adding the Profile field to our relationships

At this point, we can now add all of the fields that we need for
 our block (Figure 12-24).
[image: Adding our fields to the view; now we can place this block and have at it]

Figure 12-24. Adding our fields to the view; now we can place this block and
 have at it

Now that I’ve got the view all saved and ready, if I go to
 Structure→Blocks in my Admin menu, I should see my
 new block all set to put into my Event node. I’m
 going to start by configuring it to show up in Sidebar Second (the right
 sidebar) and only on Event content types (Figure 12-25).
Now, if I go back to my event (Figure 12-26), I should see my
 “About the Host” block, with Test Host’s user info right underneath
 their picture...
[image: Configuring our Who’s Hosting block in the Blocks configuration screen (Structure→Blocks)]

Figure 12-25. Configuring our Who’s Hosting block in the Blocks configuration
 screen (Structure→Blocks)

[image: Our “about the host” block is all set on our Event node...but why isn’t it showing the right user?]

Figure 12-26. Our “about the host” block is all set on our Event node...but
 why isn’t it showing the right user?

...or not.
This is where I got tripped up. Because the Relationship can only
 give you the fields to put in your view; in order to make the view
 select the right user information, you also have to
 work with Contextual Filters.

Step 6: Setting Up the Contextual Filter

In prior versions of Views, Contextual Filters were called
 Arguments. The difference between contextual filters
 and your garden variety Views filter is in its specificity; while you can
 use standard views filters to select global variables, such as the type of
 content or whether it’s published, contextual filters use something on the
 page—usually in the form of some kind of numeric ID, which Drupal attaches
 to nodes, groups, and taxonomy terms—to determine how it filters the
 content.
Here’s the basic idea:
	Figure out which component (field, node ID, group ID, etc.)
 contains the “context” you want to filter on

	Set that up, in a “default” argument

	Publish and prosper

Since we’re basing this view on the “Who’s Hosting” field, my first
 instinct was to create the contextual filter based on that field. However,
 the argument needs a default value to work, and the option that made the
 most sense, User ID from URL, turns up either the
 node’s author or nothing at all, depending on which settings you choose
 (Figure 12-27).
[image: Yeah...okay, no]

Figure 12-27. Yeah...okay, no

After an hour or two of trying different things and banging my head
 against the keyboard, I finally gave up and set up my contextual filter
 with a default value of the node’s author. This, at least, had a value
 that showed up, and I could work on other pieces of the project while I
 stewed over my failure.
It was a couple of days later, when I ran into my friend Jacine
 Luisi of Gravitek Labs in NYC, that I was finally able to figure out the
 issue. Jacine is a front-end developer working on the Drupal 8 HTML5
 initiative (http://groups.drupal.org/node/157339),
 and she’s one of many friends I’ve been lucky to find in the Drupal
 community over the years. In what was meant to be a quick chat over Skype,
 I ended up mentioning this Views issue to her, and she was kind enough to
 spend an hour or so working out the issue I was having. Here’s her
 explanation of how it works:
I was off on what the argument should be, stupidly...because the
 block is totally disconnected from the page content and needs to be
 manually fed the context, which in this case is the node ID.
It needs to grab that from the URL, so I set the argument to
 “Provide default value: Content ID from URL” on the Content: Nid
 field.
So, now it has its context...Then the relationships kick in. There
 are 2 relationships:
The first is on the “Who’s hosting” field. It will use the
 contextual filter (argument) and require that the field for the NID of
 the content we are viewing matches the user specified.
The second is the “User: Profile” which allows the use of the
 other fields you wanted, but wouldn’t be required if all you wanted was
 the user picture and name.

Figure 12-28 shows
 what that configuration looks like.
[image: Our new contextual filter, with the RIGHT default value]

Figure 12-28. Our new contextual filter, with the RIGHT default value

And now, if we save the filter, we can go back to our page, and see
 the result in Figure 12-29.
[image: Our new block, with the all the right info. Whee!]

Figure 12-29. Our new block, with the all the right info. Whee!

Step 7: Setting Up the “Related Events” Block

Now that I have the host info block set up, it’s easy enough to
 create a “related events” view and place the block it creates. The process
 was remarkably similar to what I did with the host information, with the
 following exceptions:
	Instead of configuring our contextual filters by the node ID,
 we’re using the Taxonomy term, from the Event
 Categories vocabulary

	Since this is just pulling fields from the
 Event content type, we don’t need to worry about
 relationships

Figure 12-30 shows
 how that contextual filter was set up.
[image: Contextual Filter settings for our “Related Events” view]

Figure 12-30. Contextual Filter settings for our “Related Events” view

Now, if I go back to my Blocks administration screen
 (Structure→Blocks) and enable the Related
 Events block using the same configuration as I did with the
 About the Host block, I should see a selection of
 related workshops available for theming (see Figure 12-31).
From here, it’s easy to start theming this whole thing so it looks a
 bit closer to our design. After a bit of CSS love, and a bit of Drupal
 tweaking, here’s our updated page in Figure 12-32.
[image: Oh, look! There’s also a Sausage Sunday happening. Neat!]

Figure 12-31. Oh, look! There’s also a Sausage Sunday happening. Neat!

[image: Our Event page, with theming applied. Isn’t that better?]

Figure 12-32. Our Event page, with theming applied. Isn’t that better?

So What Did We Just Do Here?

At this point, you might be wondering why on earth I dragged you
 through all that. The reason is simple: in my experience, unless you’re
 working on a large team where every person has a distinct Thing to Do,
 this is how the process goes. While it’s tempting to put together a stack
 of wireframes, layouts, etc., and hand them off to developers to
 implement, the reality of working with any web-based framework is that
 certain things just work better if you go with the
 system rather than against it. Understanding the
 system by actually creating stuff within Drupal is one of the best ways to
 figure out how to work with it.
This doesn’t mean that you can’t innovate or create design that is
 truly beautiful. But the point of good design isn’t reinventing the wheel;
 it’s partially about incorporating design patterns that have been shown to
 work well, and partially about finding areas where you can improve an
 experience that isn’t optimal. Taking advantage of some of the defaults
 that Drupal gives you isn’t copping out: it’s smart design.

Chapter 13. Practical Example #2: Controlling Views Markup

As we’ve discussed previously, much of the code that Drupal will
 output on any given page may come from Views—whether it’s a page full of
 blog entries, or a block of Taxonomy terms in your sidebar. The beauty of
 this is that it gives you a tremendous amount of flexibility in terms of
 what information you display on the page, and how it gets displayed. The
 challenge, however, is getting your Views output to display in a way
 that:
	Allows you to theme it easily—in other words, it isn’t impossible
 to find out what things are called so you can style them

	Doesn’t make you cringe when you look at the code

In previous versions of Views, the only way to manage the code that
 Views created was to override everything that Views spit out—from creating
 custom tpl.php files to actually rewriting the results
 of Views queries. In Drupal 6, you could use the Semantic Views module
 (drupal.org/project/semanticviews)
 to specifically manage the output of a Views field. While there’s still a
 little bit of rewriting you may have to do in order to create truly semantic
 Views code, the latest versions of Views give you a number of ways to
 control the code that it creates—if you know how to use them.
As an example, let’s take our Event Categories block for the homepage
 of Urban Homesteaders Unite. Figure 13-1
 shows the layout for our home page.
[image: Our mockup for the homepage]

Figure 13-1. Our mockup for the homepage

The first thing we have to figure out is this top box with all the
 pictures in it—technically, it’s a list of Event categories, which is a list
 of Taxonomy terms in the Event Categories vocabulary.
 But how do we associate the terms with a specific image? And how do we make
 each term a different color?
The process, (which, by the way, is much easier in Drupal 7 than it
 was in Drupal 6), goes like this:
	Add an image to the taxonomy term by adding a field to the
 vocabulary itself

	Add a representative image to each term in our Event
 Categories list

	Set up our View to output specific code for the list of terms, and
 give each instance of the term name its own class, which we can then
 theme

Step 1: Associating an Image with a Taxonomy Term

In order for each term in our Event Categories
 vocabulary to have its own image, I first needed to add an image field to
 the vocabulary. To do this, I went into
 Structure→Taxonomy and chose “edit vocabulary” next
 to the Event Categories vocabulary. From there, I
 selected Manage Fields to add my image field (Figure 13-2).
[image: Adding the Image field to our vocabulary]

Figure 13-2. Adding the Image field to our vocabulary

Once I added the field, I went into the Manage
 Display tab for the vocabulary to make sure the label for the
 image stays hidden in the default view for the term. I may decide later to
 change how it’s displayed (or hide it all together), but for now, I’ll
 leave it set to our grid-8 image style
 (Figure 13-3), which we
 created in Chapter 12.
[image: Changing the display of our Image field]

Figure 13-3. Changing the display of our Image field

Now, it’s just a matter of adding an image to the individual terms.
 If I go back to the vocabulary page and click “list terms,” I can now edit
 each category to be associated with the image we’ve chosen for it (Figure 13-4).
[image: Adding an image to our “Canning & Pickling” category]

Figure 13-4. Adding an image to our “Canning & Pickling” category

Once I had an image associated with each term in my Event
 Categories vocabulary, it was time to create my View.

Step 2: Create the Event Categories View

The initial Event Categories view was pretty
 simple. As the goal was simply to give a visual list of taxonomy terms,
 all I needed was a list of taxonomy terms that showed the name of the
 term, linked to the term page itself, followed by the image I’d added to
 each term. Figure 13-5
 shows what my initial settings looked like.
[image: Our initial View settings. Note that we’re looking for “Taxonomy Terms,” not “Content”]

Figure 13-5. Our initial View settings. Note that we’re looking for “Taxonomy
 Terms,” not “Content”

Once I had the view set up, it was time to select the fields I
 needed, and set up my filters. To begin with, I just want to add the
 Image field; Taxonomy Term: Name
 is added by default. I also wanted to limit the terms I showed to just the
 Event Categories vocabulary. Figure 13-6 shows what the
 settings looked like once I was done.
[image: Our block settings page in the View. Now the fun begins!]

Figure 13-6. Our block settings page in the View. Now the fun begins!

Now that we have all of our settings put together, we should be able
 to enable our block via the Blocks administration
 (Structure→Blocks) and see our new view on the home
 page (Figure 13-7).
[image: Well that’s... something.]

Figure 13-7. Well that’s... something.

In order to get this looking correct, we have to start tweaking some
 of our View settings.

Step 3: Update the Field Settings

The first thing that I want to do is make sure that the images are
 displaying at the correct size. For that, I’ll go back into the settings
 for our Image field and set the preferred image style
 to “grid-3_long,” which scales and crops all images to 205px by 180px
 (Figure 13-8). While I’m at it, I’m
 going to go into Style Settings for the field and
 uncheck the box that adds the default classes to the field’s markup.
 This’ll help us get rid of some overhead we don’t need.
Note
Views’ Style Settings are a relatively new,
 and incredibly useful, addition to Views. Although it’s not without its
 bugs (for example, the Views template still wraps every field in its own
 <div> tag), it allows you to control the markup your View creates
 with much more granularity than previous versions of Views. In Drupal 6,
 this level of control over markup can also be achieved using the
 Semantic Views module.

Now that we’ve done that, we also want to make sure each row of our
 View floats next to one another like our design comp. Since we’re using a
 version of the 960 Grid System in our theme (for more info on grid
 systems, check out Chapter 6,
 Working with Layout Grids), all we have to do is add
 a class to our Format settings for each row of the
 View. We’re going to give each row a class of grid-3, which makes each row 3 columns wide, and
 alpha, which removes the left margin
 and helps things float more easily in the container (Figure 13-9).
[image: Customizing our Image field]

Figure 13-8. Customizing our Image field

[image: Setting up some sensible grid settings for our row format]

Figure 13-9. Setting up some sensible grid settings for our row format

Now, if we look at the block on our home page (Figure 13-10), we see that we’re
 starting to get somewhere.
[image: Getting close...I can almost smell it]

Figure 13-10. Getting close...I can almost smell it

But we still have to deal with the term names. The goal is to give
 each name term a different background color; this will require a unique
 class for each term name. How do you do that?

Step 4: Add a Custom Class to Each Taxonomy Term: Name
 Field

The answer is in Tokens, which Views calls
 Replacement Patterns. Tokens are little bits of text,
 usually surrounded by brackets (e.g., [link]), which you can use to replace other
 text. So, for example, I can create a custom class for each instance of
 the Taxonomy Term Name field, by inserting a token
 for the name into the CSS class for that field.
Creating the token was a little bit tricky. The first step is find
 the actual token; to do this, I had to pretend I was rewriting the
 field.
If you click on the name of any field in your Views settings, you’ll
 see a few drop-down areas that let you set up different parameters for the
 field. With the Image field, you already saw the
 Style Settings variable. If you check out the options
 under Rewrite Results (see Figure 13-11), you’ll notice an
 option: “Rewrite the output of this field.” This is highly useful if you
 want to create very specific code from Views. The rewrite options are how
 we’ll create our custom class.
[image: If we choose the option to rewrite the field’s output, there’s a host of things we can do with it]

Figure 13-11. If we choose the option to rewrite the field’s output, there’s a
 host of things we can do with it

In order to find the token I needed to create my new Views class, I
 had to check the option to rewrite the field output. Underneath the
 checkbox, you’ll see a new dropdown called “Replacement Patterns” (see
 Figure 13-12). That will give you a
 list of the replacement patterns you have available.
[image: Our list of replacement patterns]

Figure 13-12. Our list of replacement patterns

Looking at the options (there’s only one, since we’re just loading
 in the term name), I see that [name] is the replacement pattern that I
 want. Now, I can uncheck the option to rewrite the field’s output, and set
 up my Style Settings for the field (Figure 13-13).
[image: Our new and improved Style Settings for the Taxonomy Term: Name field]

Figure 13-13. Our new and improved Style Settings for the Taxonomy Term: Name
 field

Step 5: Style Away

Now, if I go back to my home page and inspect the code Views just
 created, I’ll see what’s highlighted in Figure 13-14.
[image: Hey now—we have a new class name to use in our Name header!]

Figure 13-14. Hey now—we have a new class name to use in our Name
 header!

From there, it’s a simple matter to start putting this together in
 CSS. I work with LessCSS, a CSS framework that allows you to set variables
 for colors, fonts and other CSS attributes, and allows you to nest styles.
 You’ll learn more about that a bit later, in Chapter 15.
Here’s the .less code that I used to style the headings:[12]
/* 1.0 Colors & Fonts

 1.1 Colors */

@gray: #8D8D7D;
@dkgray: #4D4545;
@mdgray: #666;
@ltgray: #999;
@palegray: #ccc;

@red: #D32F00;
@orange: #D17103;
@cyan: #47A7BF;
@dkcyan: #183b44;
@green: #89A155;
@gold: #eeb200;

/* 2.0 Homepage Event Categories block */
#zone-content .homepage-events {
 .views-row {
 margin-bottom: 2em;
 text-align: center; /* center the image in the container */
 overflow: hidden; /* hide the excess when it resizes */
 }

 h3 a {
 font-size: .75em;
 display: block;
 padding: .5em 0;
 color: white;
 text-decoration: none;
 text-align: center;
 }

 .Bikes-Bees-and-More {
 background: @green;
 }

 .Butchery-Meat-amp-Fish {
 background: @red;
 }

 .Canning-amp-Preserving {
 background: @gold;
 }

 .Cooking-Baking-amp-Drinks {
 background: @dkcyan;
 }

 .Crafts {
 background: @cyan;
 }

 .DIY {
 background: @ltgray;
 }

 .Eco-Home-amp-Lifestyle {
 background: @dkgray;
 }

 .Urban-Farming {
 background: @orange;
 }
}
If I go back into my browser and refresh the page, I have something
 that looks like Figure 13-15.
[image: Our finished block. Look how pretty!]

Figure 13-15. Our finished block. Look how pretty!

[12] If you haven’t heard of .less yet, you’re missing out. Check out
 Chapter 15 for an overview, or go to
 http://incident57.com/less to download the
 Less.app for Mac FREE.

So What Did We Just Do Here?

As you can tell from the process that was just illustrated (and our
 first Practical Example in Chapter 12), there’s a lot that
 you can do with Views. But part of working with Views is understanding the
 code it creates and how to manipulate that code to get the results you
 want. Knowing how it works—even if you’re not the one implementing a
 particular site—can make it easier to envision how a given project might
 look in the end, and make it easier to create beautiful layouts that will
 be easier for your team to implement.
Recently, I worked on a massive site overhaul with my friend Claudio
 Luis Vera (@modulist on Drupal.org). Claudio
 was working on wireframes and design layout, while I focused on
 prototyping the site in Drupal 7. During the design process, Claudio kept
 finding himself getting stuck on a particular piece of the design puzzle
 and unable to come up with what a given page should look like—until he
 started thinking in terms of how Views might output the content. Simply by
 understanding what Views would do with the content, he was able to rapidly
 create and iterate designs, and we were able to more easily implement them
 in the prototype—and the final product.
This is the value in having an understanding of Views. It’s not
 always easy to figure out, but once you get the basics down, it’s that
 much easier to get your job done.

Chapter 14. Managing Your Code: Some Modules that Can Help

Once you’ve broken down your layout, settled on your base theme, and
 wrangled your Views code, you can finally start theming your site. But where
 do you get started? How do you find the right selector to apply your CSS to?
 This is where it helps to add a couple of tricks. You can do a lot with
 themes and Views rewrite options in terms of cleaning up the code Drupal
 gives you so you can theme more efficiently. However, there are still issues
 with some of the ways that Drupal outputs code. The following modules can
 help.
Block Class

Block Class (drupal.org/project/block_class)
 is a little module that does something very important: it allows you to
 give any block its own class, independent of what Drupal wants to call it.
 This is useful, for example, when you want to create a block of featured
 content, or even a new class called “green” that you apply to random
 blocks in your theme.
For example, going back to our home page for Urban Homesteaders
 Unite, one of the things that we’re creating is an “about this site” block
 that describes what people can do here. If we look under the hood at what
 Drupal calls this block, we’ll see something akin to Figure 14-1.
[image: See that long list of class names that’s highlighted? That’s our block.]

Figure 14-1. See that long list of class names that’s highlighted? That’s our
 block.

Now, we’ve already got some styling set in this block just from our
 typography defaults. But what if we wanted to add to this—say, make the
 headings a different color, or add a background color to it? Or, in the
 case of our mobile site, hide it completely? Drupal’s default pattern is
 to give every element on the page a bunch of automatic classes based on
 what it is, where it is in the system, and a few other generic factors.
 Which class selector would we point to in order to make sure that we don’t
 accidentally end up styling other blocks as well?
Simply by installing the Block Class module, we can easily add a
 unique class to our block, directly in the Block configuration screen (see
 Figure 14-2).
[image: Adding a custom class to our block]

Figure 14-2. Adding a custom class to our block

This will allow us to customize the styles for that block using the
 .welcome selector, which will help us more quickly
 theme our site. It won’t strip out the gobbledygook that Drupal outputs in
 the first place, but it at least gives us something that we know to be
 unique to that block, and something that’s named somewhat
 logically.

HTML5 Tools and Elements

HTML5 Tools (drupal.org/project/html5_tools),
 which depends on the Elements module, helps you prepare your theme for
 HTML5 by giving you access to HTML5 form elements like <phone>,
 <email>, and other lovelies. It also allows you to use these
 elements directly in your Views.

@font-your-face

This module (drupal.org/project/fontyourface),
 a relatively new discovery for me, gives you an administrative interface
 for browsing web fonts from a variety of sources, including TypeKit,
 FontSquirrel, and more, and implementing them in your site’s theme using
 the @font-face property. This promises
 to make working with web fonts significantly easier; while with certain
 font services, you can download the font files, import their stylesheets
 into your theme’s CSS and work with them that way, the @font-your-face
 module looks especially good for implementing hosted webfonts, such as
 TypeKit and Fontdeck, that don’t necessarily have downloadable fonts that
 you can load into your theme.

Semantic Fields

Formerly called Semantic CCK (drupal.org/project/semantic_fields),
 Semantic Fields (in Development Release as of this writing) helps you do
 exactly what it sounds like: turn your Drupal fields into clean,
 semantic code. The module lets you set up certain default field
 formats through a configuration interface, then apply those formats to a
 given field in your Drupal content type through the Manage
 Display interface. This means that you can, conceivably, turn
 code like this:
<div class="field field-type-filefield field-field-recipe-photo">
 <div class="field-items">
 <div class="field-item odd">

 </div>
 </div>
</div>
To this:

without having to mess with template files or theme
 functions. As a fan of semantic markup, I can’t begin to tell
 you how gleeful this makes me.

Chapter 15. Working with LessCSS

LessCSS (http://lesscss.org/) is a dynamic
 stylesheet language that allows you to code CSS more efficiently. Not only
 does it allow you to create variables with sensible names that you can
 re-use anywhere in your stylesheet, it also allows you to nest CSS
 styles, which is a huge timesaver—especially working in Drupal,
 when you might find yourself styling several different selectors within one
 page or block of the site.
In LessCSS, you’ll create your code in a file with the extension
 .less. Once you’ve created your code, you compile it
 into a .css either using a Javascript call in the
 browser (there’s even a Drupal module for it—drupal.org/project/less),
 or use Less.app (available for Mac at incident57.com/less) to compile it and
 upload the .css file to your server. Generally, I go
 for the latter approach.
Creating Variables

Variables are little bits of code that you can call at will in your
 stylesheet. My favorite use for variables is in picking out colors. For
 example, let’s assume that your site uses a specific shade of brown
 (#572700) in a variety of places throughout the layout. In regular CSS,
 you’d have to input each instance manually, and you’ll more than likely
 have the color written down—with a bunch of other colors used in your
 layout—on a pad somewhere near your desk.
Using LessCSS, you’d define the color once using @brown: #572700; and then call the color
 wherever it appears using color:
 @brown; or background-color:
 @brown;.
This not only allows you to code more quickly overall (no need to
 keep referring to that page of scribbles on your desk every time you need
 to call the color), but it also allows you to change
 colors quickly, if you realize down the line that a particular color just
 wasn’t working out. Instead of having to do a Find and Replace for the
 color’s hex value, you can just change the settings on the @brown variable and save your
 .less file.

The Mighty Mixin

Mixins are similar to variables, in that you call them in much the
 same way. There are three differences between mixins and variables:
	They start with a dot (.) instead of an @ symbol.

	Instead of a general variable that you can call anywhere in your
 syntax, a mixin can only show up as its own line of code.

	Unlike variables, a mixin can combine many lines of code into
 one neat little property that you can plug into your CSS whenever you
 need it.

The syntax for a mixin is exactly like standard CSS, for
 example:
.brown-link {
 a {
 padding: 1em;
 background-color: @brown;
 color: white;
 }

 a, a:hover {
 background-color: @orange;
 color: @brown;
 }
}
The difference is that, instead of having to retype all this code
 whenever you need a brown link in your document, you’d simply call that
 mixin in your code for the area that you’re working on, like so:
#Menu ul>li {
 float: left;
 margin-right: 1em;
 .brown-link;
}
Mixins work best for bits of unwieldy code you use all the time,
 such as font designations, CSS3 variables that require multiple lines of
 code, and anything else you find yourself typing over and over again.
 They’re also good for properties that may change as you work. I set up
 font conventions as mixins in the top of my .less
 file using a generic font stack, and change the font stack when I’ve
 decided which fonts I’m going to use.

Nesting Behavior

The other, and perhaps most important, feature of LessCSS is the
 ability to nest your CSS selectors inside their parent selectors. This not
 only makes your stylesheet shorter and more organized, it helps you
 understand how different selectors relate to each other. You’ll see an
 example of this awesomeness a bit later; first, a note on how LessCSS
 actually gets turned into usable CSS.

Compiling the Code

In order for LessCSS to work on your site, it needs to be compiled
 into regular CSS. If you’re on MacOSX, you can download Less.app, a free
 application that will compile your .less files into
 CSS every time you save the file (http://incident57.com/less). Simply keep the app (see Figure 15-1)
 open while you work, drag your theme’s folder into it, and every time you
 save the file, it will compile your work into a .css file in the theme
 folder.
[image: The handy Less.app “watches” any folder that you drag into it and compiles your LessCSS into CSS as you work]

Figure 15-1. The handy Less.app “watches” any folder that you drag into it and
 compiles your LessCSS into CSS as you work

If you aren’t on Mac (or you’re working in OSX 10.5 or
 earlier—Less.app only works in 10.6 and above), there are other options
 for compiling your .less files:
	The LessCSS Preprocessor module
	This module claims to process any .less
 file that you add to your theme’s .info file
 (http://drupal.org/project/less). I’ve never
 used it before, so I can’t vouch for how well it works; if you do
 have the ability to use Less.app, I’d use that before installing the
 module.

	The Less.js JavaScript
	This JavaScript file (downloadable from http://lesscss.org/ will process your
 .less files directly on the server if you
 include it in your theme’s .info file.

Although both of these are perfectly fine options, I prefer using
 Less.app for one major reason: I hate worrying about my
 JavaScript not running. In an average Drupal installation,
 you’re going to have quite a few .js files running on
 your site just because you installed Core and a couple of modules. Adding
 Less.js to the mix just adds another thing for the server to do when it
 serves up a page, and that adds weight to my site that I don’t want to
 worry about. So if you can, I highly recommend using Less.app.

Working with LessCSS: Organizing Your Stylesheets

Confession: I’m hyper-organized when it comes to my CSS. Everything
 is ordered and numbered, with a table of contents. Call me OCD, but it
 works.
Whether I’m working in straight CSS or Less, every file starts about
 the same. Here, for example, is the table of contents for my Urban
 Homesteaders Unite theme:
/*
Custom styles for Urban Homesteaders Unite
Authors: Dani Nordin, tzk-design.com and Tricia Okin, papercutny.com

Table of Contents

1.0 Colors & Fonts
 1.1 Colors
 1.2 fonts
2.0 CSS3 Behaviors
3.0 Page Defaults
4.0 Navigation Menus
5.0 Drupal Defaults
6.0 Custom
7.0 Typography

*/
This way of organizing your CSS allows you to set up your page
 defaults near the top of the file, and put all your custom stuff at the
 bottom. This helps create a more natural flow as I’m theming; generally,
 I’ll start by theming the Big Stuff (fonts, color standards, etc.), and
 then move into page-level or template-level variables. Note that I do
 include the main page typography at the bottom of the file; this ensures
 that any of my custom typography shows up before my
 global page typography, and get overridden.
Setting Up Color Variables

Before I switched to using LessCSS, I would incorporate color
 values into my table of contents. For example:
Table of Contents

Color Values:
gray: #8D8D7D;
dkgray: #4D4545;
mdgray: #666;
ltgray: #999;
palegray: #ccc;

red: #D32F00;
orange: #D17103;
cyan: #47A7BF;
green: #89A155;
gold: #eeb200;
That way, if I was in the middle of a big theming push, I could
 just do a quick “find” on the color I need by name and copy-paste it
 into what I was theming without having to remember the hex value. Now,
 with Less, I’m able to do the same thing, but instead of writing
 color: #D32F00; in my code, I can
 write color: @red; and Less.app will
 compile it into the CSS I need to make my object’s text red. This means,
 in my styles.less file, I’ll start
 myself off by defining those color variables:
/* 1.0 Colors & Fonts
 1.1 Colors */
@gray: #8D8D7D;
@dkgray: #4D4545;
@mdgray: #666;
@ltgray: #999;
@palegray: #ccc;

@red: #D32F00;
@orange: #D17103;
@cyan: #47A7BF;
@green: #89A155;
@gold: #eeb200;
After defining colors, I’ll define the font mixins. LessCSS allows
 you to use entire bits of code as variables, called
 mixins. This is especially handy when working with
 CSS3 properties like rounded corners and drop-shadows (which usually
 require three lines of CSS). For my font mixins, I’m going to define
 some general defaults, using fonts that my partner Tricia and I have
 decided on:
/* 1.2 Fonts */

.serif-italic {
 font-family: 'ArvoItalic', Georgia, Times New Roman, serif;
}

.headings {
 font-family: 'ArvoRegular', Georgia, Times New Roman, serif;
 font-weight: normal;
}

.serif {
 font-family: Georgia, Times New Roman, serif;
}

.sans {
 font-family: 'PTSansRegular', Helvetica, Arial, san-serif;
}

.sans-italic {
 font-family: 'PTSansItalic', Helvetica, Arial, san-serif;
}

.caption-bold {
 font-family: 'PTSansBold', Helvetica, Arial, san-serif;
}

.caption-regular {
 font-family: 'PTSansCaptionRegular', Helvetica, Arial, san-serif;
}

.narrow-regular {
 font-family: 'PTSansNarrowRegular', Helvetica, Arial, san-serif;
}
The use of the descriptors .serif-italic,
 .serif, and .sans is
 intentional; as the fonts may end up changing during the design phase,
 using generic descriptors like these allows me to change fonts site-wide
 simply by changing the font stack in a few lines of code. Less.app then
 compiles it to what I need. Using a generic name for the mixin also
 allows me to change the font without being tied to the name of the
 original font I chose. Now, let’s say I wanted to change the headings in
 my site. I’d use the .headings variable as a line in my CSS, like
 so:
h1, h2, h3, h4 {
 .headings;
 color: @orange;
}
When Less.app outputs the CSS file, that will translate to:
h1,
h2,
h3,
h4 {
 font-family: 'ArvoRegular', Georgia, Times New Roman, serif;
 font-weight: normal;
 color: #d17103;
}
Brilliant, right? This is why I love using LessCSS. The next step
 is defining any CSS3 mixins I need. For this site, we’re keeping things
 pretty low-key; the only thing we’re really using is rounded corners for
 a few boxes here and there. For that, we’d put this in our code:
/* 2.0 CSS3 Variables */

.round-sm {
 /* all corners */
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
}

.round-lg {
 /* all corners */
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
}
Now, if we wanted to style everything with the class selector
 button to be green with rounded corners, we could
 add the following to our code:
/* Form elements */
.button {
 .serif-italic;

 a {
 color: white!important;
 .round-sm;
 background-color: @green;
 padding: 1em;
 }

 a:hover {
 background-color: @cyan;
 }
}
When it’s compiled into CSS, I’ll have something that looks like
 Figure 15-2.
[image: Our lovely button]

Figure 15-2. Our lovely button

Why This is Awesome (Aside From the Obvious)

Aside from the sheer volume of code you can prevent yourself from
 having to write (your carpal tunnel will thank you), one of the things
 that makes LessCSS especially awesome when you’re working in Drupal is the
 way it helps you organize your CSS according to parent/child
 relationships, which is essential to theming in Drupal.
In most cases, when theming Drupal elements, you’ll be theming
 specific containers—say, all Views of a certain type, or a Featured
 Content block—and everything within those containers. In standard CSS,
 it’s very easy to find yourself losing track of where you are in the
 hierarchy when you start getting into more complex relationships. This is
 especially true with navigation menus, where you have a multitude of
 selectors—and their immediate descendants—to deal with. But with LessCSS’s
 nested styles, you can start from the top down and keep everything in one
 place. For example, here’s the sample code from our
 Event page that we did in Chapter 11, Prototyping in the Browser:
/* 6.2 Event Node */

.field-name-field-event-image {
 margin-bottom: 1em;
}

.about-host {
 .user-picture {
 float: left;
 margin-right: .5em;
 }

 h3 {
 margin: 0; padding: 0;
 }
 .username {
 font-size: 1em; line-height: 1.3em;
 }
}

.related-events {
 .views-row {
 margin: 1em 0;
 padding-bottom: .5em;
 border-bottom: 1px dotted @gray;
 }

 h4 {
 margin: 0; padding: 0;
 }

 .date {
 .sans-italic;
 font-size: .85em;
 }

}
Note that each block—.about-host and
 .related-events—starts off as its own thing, and all
 the elements that lie within those blocks are styled within the block.
 This not only helps you organize your code (no more will you end up with
 that handful of random styles thrown at the bottom of your stylesheet at
 the last minute), but it also helps you actually understand the
 parent-child relationships. Over time, I’ve been able to more easily
 figure out where my best top-level selector is—should I deal with the body
 of a page? The content area? A single block?—and create CSS that gives me
 the look I want to for a specific section of a theme without accidentally
 overriding CSS in other areas of the site.

Working with LessCSS on a Team

While there is much that is awesome about working with LessCSS,
 there is one minor sticking point. If you are working in LessCSS on a
 project that other people are contributing to, each person on
 the team who is touching the CSS of the project must also be working in
 LessCSS.
Although I’ve been able to figure it out with time, this has burned
 me a couple of times. Since LessCSS depends on being able to compile your
 .less files into .css files,
 anyone who wants to add to the styles of a given site needs to update the
 .less file, not the
 .css file, and compile that
 .less file into standard CSS code. If, for example,
 one of your colleagues decides to change or add CSS to the site, and they
 add it into styles.css (like many of us instinctively
 would), the moment that you go back into styles.less
 and make updates, everything your colleague just wrote in
 styles.css would be overwritten when you compiled
 styles.less.
If you’re working on a project with a team—say you and another
 designer are working on a startup, and both of you will be theming the
 site—it’s important to discuss this early on in the project. If possible,
 train them on how to use LessCSS syntax (it’s really easy, once you get
 used to it) and point them to Less.app; if they can’t use Less.app for
 whatever reason, consider adding less.js to your
 theme’s .info file (make sure you download the
 less.js file to a folder called “js” in your theme
 folder as well), and let the server compile it for you.

About the Author
Dani Nordin is the founder and principal designer of the zen kitchen, where you'll find tasty marketing and design ideas with an eco-friendly twist. She has over 10 years of experience designing award-winning work for small to large businesses and non-profits.

OEBPS/httpatomoreillycomsourceoreillyimages957243.png
i (Exact Phrase)

8006 tzk-layout.png : Page 1 @ 100%

% clayoutong : Page 1€ 100% o

Fonaml] Wprevew [2-tp EB4-Up D rase B o

= R T A C N A A Y e e A e oo =
% v et 85 |

® 8> ©2coumaie ®0

ABOUT WORK BLOG | SPEAKING T v = Header @0
w7 [rmasseorne
o Recangie

i Navigaton
i Bumsp
TS Sl ETE

3 Curent Document

o [l

1o % 1 4 o 10001080 100K

NG (ocument)

OEBPS/httpatomoreillycomsourceoreillyimages957227.png
Twitter

Download - CSS, sketch paper, and templates for
‘Acom, Fireworks, Flash, InDesign, GIMP, Inkscape,
Ilustrator, OmniGratfle, Photoshop, QuarkXPress,
Visio, Exp Design. Repository at GitHub.

GRID SYSTEM

Biuelounge MinDock:
Lightweight, cord-free and
‘compact Phone vall
charger.

Big oI’ DOWNLOAD button :)

(((ch‘é”ngelog INTERVIEW ABOUT 960.gs

ADAPT.JS - ADAPTIVE CSS

CUSTOM CSS GENERATOR

VIEW SLIDES ABOUT THE 960 GRID SYSTEM

GRID OVERLAY BOOKMARK

Essence

‘The 960 Grid System is an effort to streamline web
development workflow by providing commonly.
used dimensions, based on a width of 960 pixels.
‘There are two variants: 12 and 16 columns, which
can be used separately o in tandem. Bead more.

Dimensions

‘The 12-column grid is divided into portions that are
60 pixels wide. The 16-column grid consists of 40
pixel increments. Each column has 10 pixels of
‘margin on the left and right, which create 20 pixel
wide gutters between columns. View demo.

Purpose

‘The premise of the system is ideally suited to
rapid prototyping, but it would work equally well
when integrated into a production environment.
‘There are printable sketch sheets, design layouts,
and a CSS file that have identical measurements.

More Columns

For those more comortable designing on a 24-column grid, an altemative.

Source Order

By utiizing the push_XX and pull_XX classes, elements can be rearranged,

version is also included. It consists of columns 30 pixels wide, with 10 pixel
gutters, and a 5 pixel buffer on each side of the container. This keeps text
from touching browser chrome — helpful for devices like the iPhone, where a
* or *I* might be easily missed. View demo.

independent of the order in which they appear in the markup. This allows you
to keep more pertinent info higher in the HTML, without sacrificing precision in
your page layout. For instance, view the source code of this page to see how
the H1 tag has been re-positioned.

lower-case

OEBPS/httpatomoreillycomsourceoreillyimages957263.png
ts: in January 201

RO szour work SPEAKING
KITCHEN

e client Cillum bicycle rights quis commodo, irure echo park excepteur scenester
cam skateboard fugiat nulla marfa before they sold out, Homo anim terry
richardson, enim exercitation keffiyeh quis

Figure 1. Description of Image

MyRole Autenextlevel viral laboris portland stumptown aliquip homo carles do food
truck cliche master cleanse. Raw denim in seitan, velt viral dolore mikshk. 3
wolf moon before they sold out fanny pack DIY. Dolore cilum fixie master
cleanse art party, wayfarers minim labore willamsburg aesthetic. Lomo
proident fanny pack four loko skateboard id. officia dreamcatcher organic
iphone cosby sweater american apparel accusamus Sint quinoa.

ult Gluten-free tofu willamsburg, helvetica ut brooklyn qui mixtape enim trust
fund butcher reprehenderit. Nesciunt DIY officia aute american apparel
Banksy keffiyeh VHS master cleanse leggings voluptate echo park. Cosby
sweater do anim salvia cliche cilum farm-to-table, single-origin coffee
gluten-free craft beer adipisicing readymade sed sustaiable wes anderson.
High lfe dolor sint gluten-free, jean shorts qui delectus carles. Irure american
apparel synth, freegan est dreamcatcher art party fugiat consequat in fanny
packlaboris aliquip single-origin coffee nesciunt. Fixie proident ullamco, wes
anderson whatever tumblr magna sunt retro.

Figure 2. Description of Image

Pigure 3. Description of Image

OEBPS/httpatomoreillycomsourceoreillyimages957305.png
‘ Urban Homesteaders Unite!

Find People Events Learn Share Digital Mag Forums My stuff

Cities Brooklyn Cambridge/Somerville

Home

Search

Masquerade
Ol

Enter the username to
masquerade as.

Theories of Bacon

View Edit Log Devel

a placeholder.
only a placeholder.

Date and Time: Tue, 07/12/2011 - 18:00 - 20:00
Location: 123 Fake Street, Brooklyn NY 11201
Cost: $ 10 USD

Bring: Snacks

Audience Capacity: 12 guests

Category: Butchery: Meat/Fish

About this Event:

Boudin mollit brisket, rump salami esse do officia ground round aliqua occaecat meatball
hamburger laboris enim. Meatloaf deserunt chicken pastrami pariatur pancetta, in officia nulla
proident ball tip irure est cow. Aliquip dolor deserunt et. Consequat laborum aliqua, proident
shankle tail eiusmod rump. Beef drumstick dolor, do ex in veniam corned beef tri-tip magna et.
Enim boudin hamburger chuck, ham hock pork tenderloin pork belly elit. Bee ribs fugiat tail,
voluptate officia pastrami sed pig consectetur.

Jerky adipisicing ham hock, dolore drumstick shoulder rump

i-tip. Pork biltong cillum magna

OEBPS/httpatomoreillycomsourceoreillyimages957267.png.jpg
oo | son &l
Urban Homesteaders Unite o a

What do you want to Learn or share?

Frd oo

= = Share foroms

e > > ke

[——

incididunt ut abors
magna alqua. Utenim ad
minim veniam, quis nosiru

Bowso <@

Lot psum okr it e,

Learn

Consaces s

Take Home

What You Create
ettty h

Host Events

Consactens sapns

et 0 a
s
Share Easily s

Lot s e st e, BK Swappers Larder Swap : st o amas ek Secp ol
consecns wapios 05.22.10 Saturday 20 - 5p o Svst Sy o
O Catugone:Coming s reseg, Cookng g - ©

it 1012y 50

sy

foodeoturst: AT @A s aons

frecoprnli btk

Breadmaking Workshop foeverkmasideie

053010 Suncay 1p-6p ke s

fmm i L L

vous oy ot s
prprtnerie

Composting Work Day

0605.10 Saturday 1p-6p e

Begores o ity

st oy iccrs st sy e
OE ks e

Help Move a Bee Hivel

06.09.10 Wednesday 10a - 3p ‘papercutny: im atending i

Cote e st L s e oo o 10w b

Vb StV Pt

Sausage Sunday June 20101

06.13.10 Sunday 1p- 79

sgorie: By
s Son

VIEW ALL THE HAPPENING EVENTS V

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages957307.png
Cities Brooklyn Cambridge/Somerville
Home

Theories of Bacon

View Edit Log Devel

a placeholder.
only a placeholder.

Date and Time: Tuesday, July 12, 2011 - 6:00pm - 8:00pm
Location: 123 Fake Street, Brooklyn NY 11201
Cost: $ 10 USD

Bring: Snacks

Audience Capacity: 12 guests

Category: Butchery: Meat/Fish

About this Event:

Boudin moliit brisket, rump salami esse do officia ground round aliqua occaecat meatball hamburger laboris enim. Meatioaf deserunt
chicken pastrami pariatur pancetta, in officia nulla proident ball tip irure est cow. Aliquip dolor deserunt et. Consequat laborum aliqua,
proident shankle tail eiusmod rump. Beef drumstick dolor, do ex in veniam comed beef tr-tip magna et. Enim boudin hamburger
chuck, ham hock pork tenderloin pork belly elit. Beef ribs fugiat tail, voluptate officia pastrami sed pig consectetur.

Jerky adipisicing ham hock, dolore drumstick shoulder rump tri-tip. Pork biltong cillum magna veniam. Duis bacon salami laboris non,
jowl deserunt nostrud enim veniam exercitation pork dolor. Laborum aliqua pork, qui sunt comed beef fugiat duis. Fatback jow!
boudin, laborum est andouille pork proident anim shank. Commodo in tail, sint velit swine strip steak bacon tr-tip pork chop shoulder
quis. Estenim consectetur, eu pork belly quis ex boudin drumstick bacon ullamco commodo excepteur.

OEBPS/httpatomoreillycomsourceoreillyimages957207.png
@ My site name

My s s cvesne

Search

ooy

ferer)

Nested menu

[e [oo T e)
‘Story Title Goes

e 0072412001526 - s
ot bt o s e
O
i seirn ot e st o,

i 12

Stery Title Goes
[T —

e ot Ecr 1 i s ot A o
Prpeey

attacomes stz

‘Story Title Goes.
Wed Q2412001536 - s

o o o e Do e e e gt bt o e
el ot i, Ecate 1 i Tt oot 6
it

et o350 M

Msccant | gt
T cak b s s n e msage 1 s tht i i .

s i sople el ressge. Ther ae senetines ks i thse mssoes.
Stausmesoge, ke when Pge Samethig s been st
Werig essoge sch a5 wen he e spdates fo yur e o thenes.

o > Categey > Semthiog

e
My full node page

st i et st o e e
s vetado v e et It oo

I N
ol ekt A B AN

oo i, et o, e o .

et it st el o it s Ve
Comments

i of the comment
[emm——e—

e ot it i o s
o o s v .

e

Tie of the comment

S ————
o Dottt ey ok

e

Pest new comment
——

| ——

(Bri=em

Sz o e

[o—
S 5013 v

e
Ay 20 oy e

Recent connents

ey

e e
vt e
fr
Ty

P Shapping cart
- s 4950
o ks 1998

S Tot $2957

seusr | e

OEBPS/httpatomoreillycomsourceoreillyimages957351.png
Add new view

Home » Administration » Structure » Views

View name *
EventCaogores Machine name: event_categories [E61)

@ Description
‘Aview ofEvent Gatogoris. Shows up on e Homo Page

‘Show Taxanomy tems ¥ of type [EveniGaisgers ¢ sorted by Unsorsd %

Create a page

@ create a block

Block title
EvontCatogores

Display format
Unlormatiod 1 ¥

tems per page

OEBPS/httpatomoreillycomsourceoreillyimages957343.png.jpg
Urban Homesteaders Unite

What do you want to Learn or share?

Lorem psum dolor it amet
consectotur adipisicing o
sod do ausmod ampor
inciddnt ut abore et doore
magna aiqua. Ut enim ad

min veniam, quis nostud

Browse . <@

Consacens aapng

Learn

consactos 33

Take Home
What You Create

Consactens g

Loon | Suntp

Soscn o o a

Host Events

Lot psum kr st
Consacons wapaes

Share Easily

commacins waped

New Events Coming Up! VIEW ALL

BK Swappers Larder Swap

05.22.10 Saturday 20 - 5p
Catogin:Cannng s esrte Cooing /o
D, Sy

i .51

Breadmaking Workshop

05.30.10 Sunday 1p- 6p
Catngain:Conko Bsngloiss

Vs S0 Up ¥

‘Composting Work Day

06.05.10 Saturday 1p-6p
Cotegais: s Fambe,

Vow StV

Help Move a Beo Hivel

06.08.10 Wednesday 10a - 3p
Coingaes: B, Eues 4 ore

VowsSgntpY

Sausage Sunday June 20101
06.13.10 Sunday 1p-7p
Catogario: oty

Vews59npv

VIEW ALL THE HAPPENING EVENTS V

L5} What Our Users Are Up To...

Hiecian Svas By 07

e
i

P ——

oo e et

S0ty s

BHometeadr: S v
Stz i soaps Aot 522
255m n Grorgoe Wo i s 8803

oy
Dl o sy rconmens?
brestiimeeny

papecutoy: s 7€ |
NG o ogiesdn 10005 41

OEBPS/httpatomoreillycomsourceoreillyimages957223.png.jpg
header

ABOUT

THE ZEN

ol

sidebar treatment

Presentations

Name of Pres.

e

paragraph treatment
This is a headline

‘with a subhead underneath it.

Nulla facils In vel sem. Morbi id urna in diam dignissim feugiat. Proin
molestie tortor eu velit Aliquam erat volutpat. Nullam ultrces,diam
tempus vulputate egestas, eros pede varius leo, sed imperdiet lectus
st ornare odio. Lorem ipsum dolor sit amet, consectetuer adipiscing
et Proin consectetuer velitin dui. Phasellus wisi purus, interdum
vitae, rutrum accumsan, viverra in, velt Sed enim isus, congue non,
tristique in, commodo eu, metus. Aenean tortor mi, imperdiet d,
gravida eu, posuere eu fels

photo treatment

OEBPS/httpatomoreillycomsourceoreillyimages957221.png.jpg
about work | blog presentations

paragraph reatment

This is a headline

‘with a subhead underneath it.

Nulla facils. In vel sem. Morbi id urna in diam dignissim feugiat. Proin sidebar treatment
molestie tortor eu velit Aliquam erat volutpat. Nullam ultrces, diam

tempus ulputate egestas, eros pede varius leo, sed imperdiet lectus
st ornare odio. Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Proin consectetuer velit in dui. Phasellus wisi purus, interdum Presentations

vitae, rutrum accumsan, viverra in, velt. Sed enim risus, congue non,
tristique in, commodo eu, metus. Aenean tortor mi,imperdiet id,
gravida eu, posuere eu, fels.

photo treatment

OEBPS/httpatomoreillycomsourceoreillyimages957341.png
Urban Homesteaders Unite!

‘What new skills do you want to learn or share?
FIND PEOPLE EVENTS LEARN SHARE DIGITALMAG FORUMS MY STUFF
Cities
Home

About the Host

Brooklyn, NY

a placeholder.
only a placeholder.

user@fakeemail.com
555.555.5555
Website(s):

My website

Related Events

Sausage Sunday
07/30/2011 - 6:00pm

DATE AND TIME Tuesday, July 12, 2011 - 6:00pm - 8:00pm
LOCATION 123 Fake Street, Brooklyn NY 11201

WHO'S HOSTING Test Host

COST $ 10 USD

BRING Snacks

AUDIENCE CAPACITY 12 guests

CATEGORY Butchery: Meat/Fish

ABOUT THIS EVENT
Boudin mollit brisket, rump salami esse do officia ground round aliqua occaecat meatball hamburger

Theories of
Bacon
07/12/2011 - 6:00pm

OEBPS/httpatomoreillycomsourceoreillyimages957217.png.jpg
PEAR NUTE 705
o CONCEPTE

il wive voutical
4 equalized civole
Shyaes wake vp

v

f"’t_};,;;\,,qm»)plmwm
s foxAlese civeles?
ot
yHAIE T

OEBPS/httpatomoreillycomsourceoreillyimages957271.png
CONTENT SECTION

» PREFACE ZONE

~ CONTENT ZONE

~ CONFIGURATION

Force equal height for all child elements.
Force equal height for all regions in this zone.

 Provide full width wrapper around this zone
Enabling this feature will give a <div> wrapper around the zone itself, allowing you to theme in elements that
‘appear outside the 960 pixel container zone.

@ Force this zone to be rendered
Enabling this will always render this zone, even if it is empty.

() Customize the region positioning
“This allows you to manipulate the placing of the regions in this zone.

Section Weight ~ Column count Primary Region
Cortent 31 (2 16 Colurws 41 | Gontent |5

Additional zone classes Additional wrapper classes

OEBPS/httpatomoreillycomsourceoreillyimages957321.png
Configure Relationshij

Appears in: node‘event.

Content: Who's hosting (field_who)

Identifier

ekt wno
Edit the administrative label displayed when referencing this relationship form filters, etc.
@ Require this relationship
Enable to hide items that do o contain this relationship
Delta
e

‘The delta allows you to select which item in a multiple value field to key the relationship off of. Select "1" to use the first item, "2" for the
second item, and 5o on. If you select "All', each item in the field will create a new row, which may appear to cause duplicates.

» MORE

Apply (all displays) Cancel Remove

OEBPS/httpatomoreillycomsourceoreillyimages957251.png
THEZEN

NTACT

ABOUT WORK BLOG SPEAKING

This is an h1 headline that
flows to two lines

Published Dete, Year 0 comments
Tags: Lorem, Ipsum, Dolor, Etc

Cillum bicycle rights quis commodo, irure echo park excepteur scenester
skateboard fugiat nulla marfa before they sold out. Homo anim temy richardson,
enim exercitation keffiyeh quis. Aute next level viral, laboris portiand stumptown
aliquip homo carles do food truck cliche master cleanse. Raw denim in seitan,
velit viral dolore mlkshk. 3 wolf moon before they sold out fanny pack DIY.
Dolore cillum fixie master cleanse art party, wayfarers minim labore
willamsburg aesthetic. Lomo proident fanny pack four loko skateboard id,
officia dreamcatcher organic iphone cosby sweater american apparel
‘accusamus sint quinoa.

This is a secondary headline

Gluten-free tofu willamsburg, helvetica ut brooklyn qui mixtape enim trust fund
butcher reprehenderit. Nesciunt DI officia aute american apparel. Banksy
keffiyeh VHS master cleanse leggings voluptate echo park. Cosby sweater o

Text Callout Box

Lomo nulla velt, raw denim
tumbir vegan brooklyn american
‘apparel nisi art party irony
freegan skateboard, Sunt
‘Consequat scenester marfa. Seitan aesthetic:
et, Austin sint wes anderson readymade
freegan salvia fugiat art party.

Contact >>

Presentations

Presentation Title
Dats, Location

Presentation Title
Dats, Location

OEBPS/httpatomoreillycomsourceoreillyimages957253.png.jpg
T - |

This is an h1 headline that
flows to two lines

Tags: Lorem, Ipsum, Dolor, Etc:

The client Gillum bicycle rights quis commodo, irure echo park excepteur scenester
team skateboard fugiat nulla marfa before they sold out. Homo anim terry richardson,
enim exercitation keffiyeh quis.

Figure 1. Description of Image.

MyRole Aute next level vial, laboris portland stumptown aliquip homo carles o food
truck cliche master cleanse. Raw denim in seitan, velit viral dolore mikshk. 3
walf moon before they sold out fanny pack DIY. Dolore cilum fixie master
cleanse art party, wayfarers minim labore williamsburg aesthetic. Lomo proident
fanny pack four loko skateboard id, officia dreamcatcher organic iphone cosby.
Sweater american apparel accusamus Sint quinoa,

Resuts Giuten-free tofu willamsburg, helvetica ut brooklyn qui mixtape enim trust fund
butcher reprehenderit, Nesciunt DIY offiia aute american apparel. Banksy
keffiyeh VHS master cleanse leggings voluptate echo park. Cosby sweater do
anim salvia cliche cilum farm-to-table, single-origin coffee gluten-free craft besr
adipisicing readymade sed Sustainable wes anderson. High lfe dolor sint
gluten-free, jean shorts qui delectus carles. lrure american apparel synth,
freegan est dreamcatcher art party fugiat consequat in fanny pack labors
aliquip single-origin coffee nesciunt. Fixie proident ullamco, wes anderson
whatever tumblr magna sunt retro,

Figure 2. Description of Image.

Figure 3. Description of Image.

" itchen :: PO Box 112,

iatertown MA 02471 - 617,600,514 : contact : Stealing bad, aski

OEBPS/httpatomoreillycomsourceoreillyimages957313.png
Home » Administration » Structure

+ Add profile type + Import profile type

Main profile (Machine name: main) Custom edit managefields managedisplay clone delete export

OEBPS/httpatomoreillycomsourceoreillyimages957291.png
Home » Admnistration » Siucure » Content 19 » vt

Bt o | ko oS | | comeron
@ e

Content s can b sy usin ifernt viewmodes: Tesr, Full comen,Prin S, . Tessrs 3 $hor o ht 5 il used nsts o mulile cntent sl ontent ' iy s when the contes s dislayed n 5 ow
e
e, you an define whch e e shown and hdden whe Evetcotent 5 dsiaved neach view mode, and deine ow the felds re dsplyed i exch view mode

E g Gt
P — —

- = —

- s w—m

i ; e

+ owemanne o T s g -
+ om T [S—— 2
» g o)

4 Audience Capacty vt [S—— £
i

waten

—

swve

OEBPS/httpatomoreillycomsourceoreillyimages957215.png
PEARNITE v jPud- cowcepTs [0FZ Jeloge Feux
Quide Lis () optrral Sequety 7

Wilie
%&v—_@—w
‘QWIEAA 1, . e bote,
o T

Fies > o2 ks Reohape = SeT Py 5 Senole?

=
X m— [Prpwp in-place
W k&—@w'&-\m) «
¥ Cawe add f> e
% He copy/evt = / et (o tike)
=i Wil pasle pipum? —_— Sext ol
& LA N)
—\—1——'—“%‘ ol 4o FewTtoss 17 400 - Bolel
— S e
“ - Hil
Shavs e (5mplencic) Vg WA
shle i cackovs - s [letat.
v Pevls uy - urs, Bel Puppocqp o
(6ol iteaslev) Nt Jeecms
& clsetd (mfo vmdeineatts is Wdolew ° o
N weaghe couton i
apen(suaviy iufo vmcloventt) Tt H A
also see Jtis (ud of iy hovizeutlly » Pt Bees | CHIFT
Tu e DrepBox ibadapy” & > @ Wbl
8 oo a-place Flevase
¥ el | eddmy?
o | (PlanText)

V¥ Opoved

OEBPS/httpatomoreillycomsourceoreillyimages957293.png
Home » Administration » Sructure » Content types » Event

Event o

[l s ko | comernies || comarasiay

Teaser

@ vou setings havebeen saved.

FELD

4 Dateand Time
Location

Cost

ring

Audience Capaciy

Category

LR

About this Event
Hidden
4 Groups audience

4 Who's hosting

» CUSTOM DISPLAY SETTINGS.

save

LaseL

(<riadens)

Toore

(bore %)

FORMAT

iddons

g)

Content items can be displayed using different view modes: Teaser, Full content, Prnt, RSS, etc. Teaser s a short format that i typicaly used in lsts of multple content items. Full contentis
typiclly used when the content s displayed on its own page.

Here, you can define which fieds are shown and hidden when Event content i displayed in each view mode, 3nd define how the fields are displayed in each view mode.

Use the Long format ype
Display ot From and T6 dates
Show 3 value(s) taring wih ariest, ending with atest

1234
Display with prefx and sufx.

123
Display with prefx and sufx.

Show row weights

OEBPS/orm_front_cover.jpg
Drupal for Designers

Design and Prototyping for

O’REILLY*® ’ Dani Nordin

OEBPS/httpatomoreillycomsourceoreillyimages957211.png.jpg
e Mot B

bt LI Mw(\,, :
| Client: V\AJ\

nanor:—VUe

| s finpore = oio
i
I ‘wsmpﬁ)

INFD o wnelledss

| ™ e R

| o ‘C)Wlk 1

\ e
= homstteadus wndi?

OEBPS/httpatomoreillycomsourceoreillyimages957363.png
ure "axonomy term: Name

For " Aldspiays

» NO RESULTS BEHAVIOR

~ REWRITE RESULTS
& Rewrite the output of this field
Enable to override the output of this field with custom text o replacement tokens.

Text

The text to display for this field. You may include HTML. You may enter data from this view as per the "Replacement
patterns" below.

OEBPS/httpatomoreillycomsourceoreillyimages957359.png
Event Categories block: Style options.

For [At dapiys (xceptoveriddon |

Grouping field
TNene- (%)
You may optionally specify a field by which to group the records. Leave blank to not group.

Row class
orid3abha

‘The class to provide on each row. You may use field tokens from as per the "Replacement patterns" used in *Rewrite the output of this
field" for all fields.

Apply (all displays) Cancel

OEBPS/httpatomoreillycomsourceoreillyimages957347.png
Event Categories

Home » Administation » Structure » Taxaromy » Event Categories

Show row welghts

FELD LageL FORMAT

& Image SHador ¥ e mage styie: rd-5
Description Vabe ¥

Hidden

No feld i hicden.

» CUSTOM DISPLAY SETTINGS

Save

OEBPS/httpatomoreillycomsourceoreillyimages957229.png
My My
Awesome Awesome
Layout Layout

aligned not aligned

OEBPS/httpatomoreillycomsourceoreillyimages957287.png
ST " Modules fguration R Nordin

Add content Find content Edit shortcuts

Home » Administration » Structure » Content types » Event

Event o MANAGE FIELDS MANAGE DISPLAY CCOMMENT FIELDS H' CCOMMENT DISPLAY

Show row weights

LABEL NAME FIELD WIDGET OPERATIONS
4 Title title Node module element
4 Category field_category Term reference Check boxes/radio buttons edit delete
4 Dateand Time field_event_date Date Text Field with custom input format edit delete
4 Cost field_event_cost Integer Text field edit delete
4 Bring field_event_bring Text Text field edit delete
4 Audience Capacity field_event_capacity Integer Text field edit delete
4 Location field_event_address Text Text field edit delete
4 About this Event body Long text and summary Text area with a summary edit delete
4 Groups audience group_audience Group Group audience edit delete
4 Who's hosting field_who User reference Autocomplete text field edit delete
4 URLpathsettings path Path module form elements
4 Add new field
field_ ~Selctafedtjpe- |4 Seloctavidget- ¢
Label Field name (a-z, 0-9, Type of data to store. Form element to edit the data

“+ Add existing field

‘Soloct an existing fiid -

‘Solecta vidget-

Label Field to share Form element to edit the data

Save

OEBPS/httpatomoreillycomsourceoreillyimages957261.png
asour work (SRSl SPEAKING

THE ZEN
| | =
Lomo nullaveli. This s a post
Yaw denim Wbl Ty 4 st
vegan brookyn with twollines of
Published Date, Year 0 comments american apparel text
it artparty rony freegan This s a post
“Tags: Lorem, Ipsum, Dolor, Etc skateboard. Sunt consequat with three lines
cenester marfa, Setan oftextgoingina
il bicycle ights quis commodo, e echo park excepteu scenester e T
skateboard fugiat nulla marfa before they sold out. Homo anim terry Pt
richardson, enim exercitation keffieh quis. Aute next level viral,laboris oyl i
portland stumptown aliquip homo carles do food truck ciche master it artp | B
Cleanse. Raw derim in seitan. velt viral dolore mikshi. 3 woll moon before Contact>>
they sold out fanny pack DIY. Dolore cillum fice master cleanse art party.
wayfarers minim labore willamsburg aesthetc. Lomo proident anny pack
four loko skateboard id, offcia dreamcatcher organic iphone cosby sweater B
american apparel accusamus sint quino.
Lomo nulla veli raw denim
. i Presentation Titl
This is a secondary headline wmblr Vegan brookyn Presentation T
Gluten-free tofu wiliamsburg. helvetica ut brooklyn qui mixtape enim trust american apparel IS
fund butcher reprehenderit, Nesciunt DIY officia aute american apparel, art party irony
Banlsy lefiyeh VHS master cleanse leggings voluptate echo park Cosby .
sweater do anim salvia cliche cillum farm-to-table. single-origin coffee reegan skateboard
gluten-free craft beer adipisicing readymade sed sustainable wes anderson
High lfe dolor sint gluten-free. ean shorts qui delectus carles. Inure american
apparel synth, freegan est dreamcatcher art party fugiat consequat in fanny . Recent Comments ~ Presentation Title
pack labors aliquip single-origin coffee nesciunt.Fiie proident ullamco, wes Date, Location
anderson whatever tumblr magna sunt retro. Thisis a post
Thisis a post
with o ines of
i ot
Say something ’
Thisis a post
—] (G oo with three fines
e 8 L S dftextgoingina Presentation Title
Date, Location
Secai
Presentations >
©2011 the zen kitchen : PO Box 112, Watertown MA 02471 617.600.8514 : contact - Stealing bad, asking good

OEBPS/httpatomoreillycomsourceoreillyimages957281.png.jpg
Loon | Sonup.

k Brooklyn Urban e a
Homesteaders Unite.

_ ———
e

i G seatess
T s

oeovgnion Sharo this Event

e EEEEEN

Location
About this Event:

comnato o a0 Har g o Mo

o ooy i e Lot ot gk g o | Rlatad Events -
ot e T o o oo TS St Sk P
T el e o, o FEEET,

Postanew comment -
- e —
Jr— e .

L e

OEBPS/httpatomoreillycomsourceoreillyimages957311.png
Q Ulpydll 1ivilivoltautl o Ullic.
‘What new skills do you want to learn or share?

Find People Events Learn Share DigitalMag Forums My stuff

Cities Brooklyn Cambridge/Somerville

Home

Dani Nordin

View| |Edit| |Shortcuts | | Signups | | Devel

View recent blog entries

Member for
4 weeks 1 day

OEBPS/httpatomoreillycomsourceoreillyimages957289.png
B
Urban Homesteaders Unite!

FindPeople Events Leam Share DigitalMag Forums Mystuff

The block configuration has been saved.

Theories of Bacon
View Edit Log Devel

seareh

Masquerade
5o

Enter the userame to masquerade a.

Tue, 07/12/2011 - 17:56 -~ Dani Nordin

Groups audience:

Brooklyn

Boudin molitbrisket, rump salai esse do offcia ground round aliqua occaecat meatball hamburger laboris enim. Meatioa
deserunt chicken pastrami pariatur pancetta, in offcia nulla proident balltp irure est cow. Aliquip dolor deserunt et.
Consequat laborum aliqua, proident shankle tai eiusmod rump. Beef drumstick dolor, do ex in veniam comed beef ti-tip
magna et. Enim boudin hamburger chuck, ham hock pork tenderloin pork belly elt. Beef rbs fugiat tail, oluptate offcia
pastrami sed pig consectetur.

Jerky adipisicing ham hock, dolore drumstick shoulder rump ti-tp. Pork biltong cillum magna veniam. Duis bacon salami
laboris non, jowl deserunt nostrud enim veniam exercitation pork dolor. Laborum aliqua pork, qui sunt comed beef fugiat
duis. Fatback jowl boudin, laborum est andouille pork proident anim shank. Commodo n tai, sint velit swine stip steak
bacon tr-ip pork chop shoulder quis. Est enim consectetur, eu pork belly quis ex boudin drumstick bacon ullamco commodo
excepteur.

ish

Date and Time:
Tue, 07/12/2011 - 18:00 - 20:00
Cost

OEBPS/httpatomoreillycomsourceoreillyimages957317.png
Dani Nordin

View| |Edit| |Shortcuts| |Signups| |Devel

*s
5"

Groups audience:
Cambridge/Somerville

Brooklyn

Allow me to introduce myself

Phone: 617.600.8514

E-mail Address: dani @tzk-design.com

Website or blog URL: TumblrDesign portiolioBlog
City/State: Watertown, MA

About Me:
Designer and writer from Watertown, MA with a full-blown Thing for Food. Also, I help run this joint.

Types of Events I'm interested in:
Canning & Preserving
Cooking/Baking/Drinks

Eco HomelLifestyle

Urban Farming

What I'm into:
canning
pickling

voga

local food

History

Blog
View recent blog entries

Member for
1 month 23 hours

OEBPS/httpatomoreillycomsourceoreillyimages957239.png

OEBPS/httpatomoreillycomsourceoreillyimages957361.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages957377.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages957247.png
This is an h1 headline that flows

OEBPS/httpatomoreillycomsourceoreillyimages957277.png
UserBar Socond

k Urban Homesteaders Unite!

nding

EidPeogie Events lean Shae DigialMao Foums Mystf Myaccon Logout

HoadorFrst

Hoador Socond

OEBPS/httpatomoreillycomsourceoreillyimages957327.png
CUUTUREGION SETTINGS
Specify in which themes and regions this block is displayed.

Urban Homesteaders Unite (default theme)
Urban e o

Seven (administration theme)
Omega
“Nona O

Visibility settings
Pages.
Notresricied ‘Show block for specific content types
Oasic page
Content types
et O Blog entry
Roles Ocy
Notrestricted
@ event
Users
Mot customizable Ofeed
Ofeed item
0 Forum topic

Show this block only on pages that display content of the gven type(s.If you select no types,there will be no type-specifc limitation.

OEBPS/httpatomoreillycomsourceoreillyimages957257.png.jpg
'm avallable for new projects:

T - |

Projects Client List

Gilum bicycle rights quis commodo, nure echo park excepteur scenester v worked with
skateboard fugiat nulla marfa before they sold out. Homo anim terry richardson, the following
enim exerciation kefyeh quis awesome people:
Gient Name
UX Design and Writing and Branding and Glsittome
- e Gient Name
Strategy Presentations Visual Design ponerins
Contact Me

Project Name Project Name Project Name | I—

comments.

_
w

Project Name Project Name Project Name m

Project Name Project Name Project Name

o201

" itchen :: PO Box 112, Watertown MA 02471 : 617.600.8514 : contact : Stealing bad, asking

OEBPS/httpatomoreillycomsourceoreillyimages957371.png.jpg
Butchery:Meat&Fish

OEBPS/httpatomoreillycomsourceoreillyimages957205.png
Discovery

Define goals
urpose
purp [Map out process

result | User Stories
Project Plan

Visual Design & Theming

Match user experience
purpose to brand expression
Refine from user feedback

result | Completed look & feel
Theme Implementation

User Experience & Architecture

Identify user preferences
purpose 1 Organize Content
Identify & prioritize features

Wireframes

Content Plan/Site Map
result
Functional Matrix

Technical Implementation

Build out functionality
purpose { Refine from user feedback

Identify & address challenges

result | Site ready for staging
User testing and refinement

_—

concurrent

Site Prototyping
Install CMS
purpose { (reate Content Types

Begin Content Entry

Page Wireframes
reslt [Basi((MS

Testing & Launch

Define & fix bugs
purpose { Migrate CMS
Assess next steps

result | Your new site!
Wrapup meeting

OEBPS/httpatomoreillycomsourceoreillyimages957297.png
Name *
vt Nachine name: event (6]

The human-readable name of this content type. This textwillbe displayed as partof the lst n the Add new content page. It s recommended that this name begin with a capital leter and
contain onlyleters, numbers, and spaces. This name must be unique.

Description
Interested in hosting an event? Let's get sarted!

Describe ths content type. The text will b displayed on the Add new content page.

Submission form settings

o 0 Displayauthor and date information.

Author username and publish date will be displayed.

Publishing options
Publihed, romoted to fron page.

Display settings
on' isplay post information

Comment setings.
Open, Threading , 50 comments e
pse

Menu settings

Signup settings

{_Save content type | (_Delete content type |

OEBPS/httpatomoreillycomsourceoreillyimages957333.png
Configure contextual filter: Content: Nid

For Aldspiays ¥

The node ID.

“This display does ot have a source for contextual filters, 50 no contextual filter value will be
available unless you select ‘Provide default’.

WHEN THE FILTER VALUE IS NOT AVAILABLE
O Display all results for the specified field » EXCEPTIONS.
@ Provide default value

Tyee
Gontent ID from URL g
O Hide view
O Display a summary
O Display contents of "No results found”

(0 Skip default argument for view URL

Select whether to include this default argument when constructing the URL for this view. Skipping
default arguments is useful e.g. in the case of feeds.

WHEN THE FILTER VALUE /S AVAILABLE OR A DEFAULT IS PROVIDED

() Override title

OEBPS/httpatomoreillycomsourceoreillyimages957369.png.jpg
Tt ge ur

hbors? Find people near « Clone content
- or meet a new friend
anywhere. Event Categories
Urban Farming Eco Home & Lifestyle Canning & Preserving Butchery: Meat &
rn Fish

n new skills from people
tin your community.

ke Home What
u Create

n bread to sausage to
5, learn how to make

| o) Resources (@) Newwork 0 scrits (§ imetine (33 rofies @ avais [consore Q

cantent cleartixs » Computed Style Os
V<div class="view view-event-categories-second view-id-event_categories_second view-display-id-block view-don-id-1"> v Styles
<div class="vies-content’s e
V<div Class="views-row views-row-1 views-rou-odd views-row-Tirst grid-3 alpha"s
vediv)
<h3 class="Urban-Farning"s
<o href="/nonesteaders/event-categories/urban-farning">Urban Farning</o> Matched CSS Rules
</h> nL, b2, K3, he { sty
</divs font-fanily: *ArvoRegular', G
» <divs_</divs font-weight: norsal;
sgiv> . color: Msv171e:

#page | #section-content | #zone-content-wrapper | #zone-content | éregion-content | div | #block-views-event-categories-second-block _div | div dwv | dv av dv [N

OEBPS/httpatomoreillycomsourceoreillyimages957319.png
Add new view ®

Home » Adminstation » Structure » Views

View name *
oot e Host Machine name: sbout the_host (63

Description

The About h Host boc o Event conon pss

Show Cartert % of type (Eueri %) sorted by [Newsstisi %

O create a page

¥ Create a block

Block title
Roout o Hoat

Display format

Uniormated e) of (e 7]

tems per page

Save & exit Continue & edit

OEBPS/httpatomoreillycomsourceoreillyimages957245.png
% tak-layoutpng' : Single Node Page @ 100%

D Single Node Page

JI (Exact Phras

Z0rginal] lpreview [2-Up E4-Up

ror wo oo srons

THE ZEN

This is an h1 headline that
flows to two lines

Gillum bicycie rights quis commodo, inre echo park excepteur scenester
skateboard fugiat nulla marfa before they Sold out. Homo anim terry richardson,
enim exercitation kefiyeh quis. Aute next level vira, aboris portiand stumptown
aliquip homo carles do food truck cliche master cleanse. Raw denim n eitan,
velitviral dolore mikshk. 3 wolf moon before they Soid out fanny pack DIY.
Dolore cillum fixie master cleanse art party, wayfarers minim labore
willamsburg aesthetic. Lomo proident fanny pack four ko skateboard id,
officia dreamcatcher organic iphone cosby sweater american apparel
accusamus sint quinoa.

This is a secondary headline

NG Document)

8> = 24-columngid 0O
°

B v comeniawa

blockquote

Cillum bicyele ight

“This s an L headl

m

®@ > o Header ®o

fswer T Talsal JIGTE]
| E T — i e L

R

OEBPS/httpatomoreillycomsourceoreillyimages957225.png
k Brooklyn Urban

Homesteaders Unite.

Loge | Sonvp

Sexcnaste a

s bt
o St
. 12 o St s, B Y 1400

About this Event:

o i s oo e Susa i s shr o

Post a new comment

f—

About the Host e

KatePayns ipois)
i sssststess
T g com

B0

Share this Event
EEEEEN

Location

Rolated Evonts —

[Er——

[ar——

[Rr—

OEBPS/httpatomoreillycomsourceoreillyimages957337.png
Configure contextual filter: Content: Category (field_category)
For | Aldisplays.

Appears in: nodezevent.

“This display does ot have a source for contextual filters, 50 no contextual filter value will be
available unless you select ‘Provide default.

WHEN THE FILTER VALUE IS NOT AVAILABLE
O Display all results for the specified field » EXCEPTIONS.
@ Provide default value

Type
Taxonomy term 1D from URL | &

0 Load default filter from term page

@ Load default filter from node page, that's
good for related taxonomy blocks

 Limit terms by vocabulary

Vocabularies
O Forums
@ Event Categories
Orags

O Hide view

O Display a summary

O Display contents of "No results found”

(0 Skip default argument for view URL

Select whether to include this default argument when constructing the URL for this view. Skipping | &

default arguments is useful e.g. in the case of feeds. +

Apply (all displays) Cancel Remove

OEBPS/httpatomoreillycomsourceoreillyimages957273.png
Appearance

Home » Adminstation
Set and configure the default theme for your website. Alternative themes are avallable.
+ Install new theme

ENABLED THEMES

Urban Homesteaders Unite 7.x-3.0-betal (default theme)

rg
mega

Alpha 7.x-3.0-rc2

Alpha is the core basetheme for Omega and all its subthemes. It includes the most basic features
of the Omega theme framework. This theme should not be used directly, instead choose one of

b Apha mRE the Omega or Alpha starterkits.

PR TR

OEBPS/httpatomoreillycomsourceoreillyimages957301.png
Home » Adminsration » onfiguration » Medi » e syes

@ Changes o the syl hav been saved.

Preview
original iew actua size) grid-8 (view acwal size)
280px
600px Y
= 6200x
800px
Image style name -
s
“The name s used in URL for generated images. Use only owercase alphanumeric characers, underscores (), and hyphens (1.
T OPERATIONS.
& Saleand cop 620x280 et aelete

& (osecneweien 8 Add

_Update style

Show row weights

OEBPS/httpatomoreillycomsourceoreillyimages957299.png
Urban Homesteaders Unite!

Find People Events Leam Share DigitalMag Forums My stuff

Cities Brooklyn Cambridge/Somerville

Event Theories of Bacon has been updated.

_— Theories of Bacon
Jasguerade Vi Edi Log Devel

e
R e T

This is only a placeholder.

Date and Time: Tue, 07/12/2011 - 18:00 - 20:00
Location: 123 Fake Street, Brooklyn NY 11201
Cost:§ 10 USD

Bring: Snacks

Audience Capacity: 12 guests

Category: Butchery
Aboutthis Event
Boudin moliit brisket, rump salami esse do offcia ground round aliqua occaecat meatball hamburger laboris enim. Meatioaf
deserunt chicken pastrami pariatur pancetta, in officia nulla proident ball tip irure est cow. Aliquip dolor deserunt et
Consequat laborum aliqua, proident shankle tail eiusmod rump. Beef drumstick dolor, do ex in veniam comed beef ti-tip
magna et. Enim boudin hamburger chuck, ham hock pork tenderloin pork belly elit. Beef ibs fugiat tail, voluptate officia
pastrami sed pig consectetur.

OEBPS/httpatomoreillycomsourceoreillyimages957379.png.jpg
Learn more and sign up

OEBPS/httpatomoreillycomsourceoreillyimages957233.png
Dani Nordin

UX Design for the web, and other things

~ About Me ~

My name is Dani Nordin. I'm a UX consultant

What I'm up to

2N with a background in branding, visual design
5 and social entrepreneurship. Oh, and T was an On the Blog Current project
actress for 8 years. sadu pat Working o Drgal fo
ot g2 Desgnes, and creating o
In 2005, 1 created the zen Kichen, o design and branding conmunity fo Urbon
shudio that focused on smart design for saclally concious Bl iar bt Ysn
brands. After sx years of runing the shudi, I eft In 2011 fo = =
pursue other opparfunities, which ncluded independent UX.
consulting, writing a couple of books, and going back to Lesley Maecenas nec afio et ante:
University to finish my degres. Socidunt tenous
in o0 tag2
1 blag, wrie artiles and baoks, and speak abaut desig for
Drupal, UX, and ofher things that nferest me. Im currently
Fiishing up a degree In Design and Sodl Entrepreneurship at
Lestey University, and T clso do independent consutng fr
camparies that need gocd UX.
Presentations Writing Get in Touch
Presentation Name Presentation Name e
Presented ot place. Presented af place " isoes
Designers
OReilly Media ‘What can T do for ya?

<]

Presentation Name

Presented ot pace.

Presentation Name
Presented at ploce

Definitive Guide fo

BZ U sfel]:=iZ|CR[EHO

4

OEBPS/httpatomoreillycomsourceoreillyimages957237.png

OEBPS/httpatomoreillycomsourceoreillyimages957249.png
'm available for new projects: n Janu:

ror wow moa seenews

This is an h1 headline that About Recent Posts
flows to two lines o i masagest

Tnis is post with
Published Duie, Yoar 20 comments vegon bookiyn o of e

: 1, Dolor, american apparel pps s a post with
oo Lo, s, i, B i ar party ooy freegan i ing of txt
skateboard. Sunt consequat goingn arow
scenester marfa. Seitan
aesthetic et, Austin sint wes Presentations
‘anderson readymade freegan
salvia fugiat art party.

Gillum bicycle ights quis commodo, rure echo park excepteur scenester
skateboard fugiat nulla marfa before they Sold out. Homo anim tery richardson,
enim exercitation keffiyeh quis. Aute next level viral, laboris portiand stumptown
aliquip homo carles do food truck cliche master cleanse. Raw denim in seitan,
velit vical dolore miksfk. 3 wolf moon before they soid out fanny pack DIY. Contact>>
Dolore illum fixie master cleanse art party, wayfarers minim labore

willamsburg aesthetic. Lomo proident fanny pack four ko skateboard id,

officia dreamcatcher organic iphone cosby sweater american apparel Tags
‘accusamus sint quinca

Presentation Title
Lomo nulla veiit raw denim Date, Location

This is a secondary headline tumblr Vegan brooklyn
Gluten-free tofu willamsburg, helvetica ut brooklyn qui mixtape enim trust fund american apparel NiSi art
butcher reprehenderit. Nesciunt DIY officia aute american apparel. Banksy party irony freegan

Keffiyeh VHS master cleanse leggings voluptate echo park. Cosby sweater do

OEBPS/httpatomoreillycomsourceoreillyimages957285.png
3

Hello Dani Nordin

My Workb Content (EENENE) Avpeara Peaple ules Configuration Reports Help

Add content Find content

Home » Administration » Structure » Taxonomy

Event Categories ©

Edit shortcuts

usT EDIT MANAGE FIELDS MANAGE DISPLAY

You can reorganize the terms in Event Categories using their drag-and-drop handles, and group terms under a parent
term by sliding them under and to the right of the parent.

+ Add term

NAME

Bikes, Bees and More
Butchery: Meat/Fish
Canning & Preserving
Cooking/Baking/Drinks
Crafts

oIy

Eco Home/Lifestyle

Urban Farming

S

Save Reset to alphabetical

Show row weights
OPERATIONS

edit

edit

edit

edit

edit

edit

edit

edit

OEBPS/httpatomoreillycomsourceoreillyimages957331.png
Home
Theories of Bacon Boutetios
(View!| [ean] [Log] [sanups]| [Dovel aongnow,

e Clone content

OEBPS/httpatomoreillycomsourceoreillyimages957209.png
800 Less Compiler

o B File & Output Minify

o /cssistylesless

Outpur:

o

OEBPS/httpatomoreillycomsourceoreillyimages957219.png
Fle LaF w{
9(”" LR L
V File st =
Seoml —> [E———2]
L
Flesw, .
gewoll Pp—
7=
(et e
Pleay 7| ——— —_—
~ Vieed -
—— e
—> T
& ‘ ® ' =
=1
Qf} 3 Sinss
wiagbe 042 Howri 7ol Play by

o L Z oot
WP NUNO /1= pp (m——————T—

A

[SSRR e —)

[

» YR ——
4 sHe T
° - —
I ==
- (7 — — ™ —
TS Ao - (ol G2l
r— T—— : &l&w«f(, \ad
———
e veeof
[~ wreles P —— Statfrs vleu
e —
o plnfped 'l = — swelio 75

o ST block(yof)

OEBPS/httpatomoreillycomsourceoreillyimages957265.png
available for new project

in January

RO szour work SPEAKING ’

KITCHEN

Projects

Cillum bicycle rights quis commodo, irure echo park excepteur scenester Ive worked with
skateboard fugiat nulla marfa before they sold out. Homo anim terry the following
richardson, enim exercitation keffiyeh quis awesome
people.
: . Client Name
UX Design and Writing and Branding and [_hm: e
Strategy Presentations Visual Design Client Name

Client Name

. Contact

OEBPS/httpatomoreillycomsourceoreillyimages957315.png
ain profile EDiT | maNaGE FIELDs | MANAGE DISPLAY:

Home » Administration » Structure » Profie types » Main profile

@ Your settings have been saved.

Show row weights

LABEL NAME FIELD WIDGET OPERATIONS

% Phone Number field_profile_phone Text Text field edit delete

4 Website or blog URL field_profile_url Link Link edit delete
Text area (muliple

4 About Me field_profile_about Long text . (mulipl edit delete

Autocomplete term
4 WhatI'minto field_profile_interests Term reference ” edit delete
widget (tagging)

Types of Events I'm Check boxes/radio
oo field_profile_eventtypes Term reference et delete
interested in buttons

4+ Add new field

field_ ~Seectated bype- |4 ~Selectaidget - §
Label Field name (a-z, 0-9,) Type of data to store. Form element to edit the data
4 Add existing field
~Select an existing feld - %) [~Soectavidget- |3

Label Field to share Form element to edit the

Save

OEBPS/httpatomoreillycomsourceoreillyimages957309.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages957373.png
The block configuration has been saved.

Find People What skills would you like tolearn or s

New to the neighborhood? View| |Edit| [Log| |Devel
Want to get to know your
neighbors? Find people near Clone content

You - or meet a new friend

from anywhere. EcoHome8Lifestyle Canning8Preserving I

Learn —
R — - i |
Resources (@) Nework O scripts (§f Timetine {2 profites (] Audis [console

V<asite class="grid-3 SUTTIA-T region reglon-sidebar—Tirst™ T0="reglon-sIdebar-TIrst™s
region-inner region-sidebar-first-inner’
Tock block-block —contextual-Uinks-region block-2 block-block-2 odd block-without-title" id="block-block-2">

Elements

<h3>Fing People</h3>
> <po</p>
<h3sLearn</n3>
<p-Learn new skills from people right in your community.</p
<h3=Take Home What You Create</h3>
»no_<inn
= Q #section-content _#20ne-content-wrapper | #zone-content _ #region-sidebar-first_div

div#block-block-2.block.block-block.contextual-links-region.block-2

OEBPS/httpatomoreillycomsourceoreillyimages957349.png
Canning & Preserving

Home » Canning & Presenving

Name *
Gannng & Presenvs
Image
1 B canning.png (369.02 k&) _Remove
Description
B U UG X D@2 Fom L]

Make your own pickles, and preserve the flavors of the season.

Pan:
Disable rich-text
Text format [Fared FIWL &

« Web page addresses and e-m

More information about text formats.

< Allowed HTML tags: <a> <clte> <blockauote> <code> <ol <dl> <dt> <dd> <hl> <h2> <h3> <hd> <caption> <phone> <p>

o Lines and peraaranhs break sutomatically.

OEBPS/httpatomoreillycomsourceoreillyimages957365.png
~ REPLACEMENT PATTERNS

The following tokens are available for this field. Note that due to rendering order, you cannot use fields that
come after this field; if you need a field not listed here, rearrange your fields. If you would like to have the
characters %58 and %5D please use the htm| entity codes '%SB' or '%SD' or they will get replaced with empty
space.

« [name] == Taxonomy term: Name.

OEBPS/httpatomoreillycomsourceoreillyimages957241.png
Opacity 100% |~
v web Layer @l

> 3 24-coumngrid 0

Navigation

Bitmap

sl OETE

@ | Current Document B

so0 e [l

OEBPS/httpatomoreillycomsourceoreillyimages957353.png
Displays

Page | (CIENTERTIRTID) vent Categories: List

~Event Categories Block details

Display name: Event Categories block

Tme
Tidle: Event Categories
FORMAT

Format: Unformatted lst | Settings
Show: Fields | Setings

FIELDS v
Taxonomy term: Name

Fleld: Image

FILTER CRITERIA v

‘Taxonomy vocabulary: Machine name (= Event
Categories)

SORT CRITERIA a0

+Add

BLOCK SETTINGS
Block name: Home Page: Event Categor..
Access: Permission | View published content
HEADER

FOOTER

PAGER

Use pager: Full | Paged, 10 items
More lnk: No

add

add

» Advanced

edit view name/description ~

clone event categories block ~.

OEBPS/httpatomoreillycomsourceoreillyimages957339.png.jpg
L4

Urban Homesteaders Unite!

‘What new skills do you want to learn or share?

Find People Events Learn Share Digital Mag

Brooklyn Cambridge/Somerville

Home

The view Related Events has been saved.

View| |Edit| [Log| [Signups| |Devel

Clone content

a placeholder.
only a placeholder.

Date and Time

Tuesday, July 12, 2011 - 6:00pm - 8:00pm
Location

123 Fake Street, Brooklyn NY 11201
Who's hosting: Test Host

Cost

$10USD

Bring

Forums My stuff

Test Host

Brooklyn, NY
user@fakeemail.com
555.555.5555
Website or blog URL:
My website

Sausage Sunday

Saturday, July 30, 2011 -
6:00pm - 8:00pm

Theories of Bacon

Tuesday, July 12, 2011 -
6:00pm - 8:00pm

OEBPS/httpatomoreillycomsourceoreillyimages957259.png
SPEAKING

CONTACT

@ curr

[] vec noc|asc] sac| s ClearOverides

aBc | ABC | ABC Select Unused Styles

odo, irure echo park excepteur scenester s
. Homo anim terry richardson, enim exercite
land stumptown aliguip homo carles do foc

et () pages

retpor/| [stares

0321704 g Lavens

New Style...
Duplicate Style...
Delete Style

260 M1ABC|ABC A Rename Style...

ABC | ABC |ABC| ABC Redefine Style

Break Link to Style

Style Options...
Load Style...

Import Style Library...
Save Style Library

Large Icon
Help

OEBPS/httpatomoreillycomsourceoreillyimages957213.png
Dani Nordin

UX Design for the web, and other things

~ About Me ~

My name is Dani Nordin. I'm a UX
constlfant with a background in
branding, visual design and social
entrepreneurship. Oh, and T was an
actress for 8 years.

Bio Presentations Books

In 2005, T created the zen kitchen, a design and branding
studio that focused on smart design o socialy conscious
brands. After six years of ruming the stud, T left in
2011 o pursue ather opparturitis, which inchided
ndependent UX cansifing, writing a cauple of bocks, and
going back 1o Lesley University 1o fiish my degree.

X blog, write articles and books, and speak abaut design

for Drupal, UX, ond other things that nferest me. T'm Presentation Nar rupal for
currently fiishing p a degree in Design and Social Presened ot plce Designers
Entrepreneurship ot Lesley University, and plon on faking OReily Media

over the world cher pursing a Master's in Human
Factors at Bentley University in 2012.

OEBPS/httpatomoreillycomsourceoreillyimages957367.png
Configure field: Taxonomy term: Name

For Al displays (oxcept overriaden) | &

‘The taxonomy term name.
() Create a label

Enable to create a label for this field.
) Exclude from display

Enable to load this field as hidden. Often used to group fields, or to use as token in another field.
 Link this field to its taxonomy term page

Enable to override this field's links.

~STYLE SETTINGS
 Customize field HTML.
HTML element
R4
Choose the HTML element to wrap around this field, e.g. H1, H2, etc.
@ Create a CSS class
css class
pame]
You may use token substitutions from the rewriting section in this class.

() Customize label HTML
) Customize field and label wrapper HTML

() Add default classes

Apply (all displays) Cancel Remove

OEBPS/httpatomoreillycomsourceoreillyimages957255.png.jpg
T - |

This Here Blog

This is the title of the blog post
Published Date, Year ;0 comments

Tags: Lorem, Ipsum, Dolor, Etc

Lomo nulla veli, raw denim tumblr vegan brooklyn
american apparel nisi art party irony freegan skateboard.
Sunt consequat scenester marfa. Seitan aesthetic et,
Austin sint wes anderson readymade freegan salvia fugiat
art pary.

More>>

This is the title of the blog post
Published Date, Year -0 comments
Tags:Lorem,lpsum, Dolo,Etc

Lomo nulla velit, raw denim tumbir vegan brooklyn american apparel s art
party irony freegan skateboard. Sunt consequat scenester marfa. Seitan
aesthetic et, Austin sint wes anderson readymade freegan salvia fugiat art
party

More>>

This is the title of the blog post
Published Date, Year -0 comments
Tags:Lorem, fpsum, Dolo, Etc

Lomo nulla veli, raw denim tumbir vegan brooklyn
american apparel nisi art party irony freegan skateboard.
Sunt consequat scenester marfa. Seitan aesthetic et,
Austin sint wes anderson readymade fresgan salvia fugiat
art pary.

More>>

wwor (D 2 5 4 newss

POBox 112

riown MA 02471 - 617.600.8514 : contact : Stealing bad, asking

About
Lomo nula velt,
raw denim tumblr
vegan brookiyn
‘american apparel
nisi art party irony freegan
skateboard. Sunt consequat
Scenester marfa. Seitan
aesthetic et, Austin sint wes
anderson readymade freegan
salvia fugiat art pary.

Contact >>

Tags

Lomo nula velit raw denim
tumblr Vegan brocklyn
american apparel NiSi art
party irony freegan

skateboard

Recent Comments

Thisis apost
This s a post with
twollines of text
This s 3 post with
three ines of text
goinginarow

Recent Posts

Thisis apost

This i a post with
twollines of text

This i 2 post with
three fines of text
goinginarow

Presentations

Presentation Title
Date, Location

Presentation Title
Date, Location

Presentation Title
Date, Location

Seeall
Presentations >>

OEBPS/httpatomoreillycomsourceoreillyimages957303.png
Home » Administration » Structure » Content types » Event

Buent o (o | e | comniies | comeromnn

[IED Teaser

@ Your settings have been saved.

Content items can be displayed using different view modes: Teaser, Full content, Print, RSS, etc. Teaser is a short format that is typically used in lists of multiple
content items. Full contentis typically used when the content is displayed on ts own page.

Here, you can define which fields are shown and hidden when Event content is displayed in each view mode, and define how the fields are displayed in each view

mode.
Show row weights
FIELD LABEL FORMAT
4 Image C<Hdden [Format settings: Image
Image style
s 0
Link image to
Noting | #1
Update Cancel
I « .
+ Dateand Time [Can Dol 1% Do bork Famand 36 daes

Show all value(s) starting

‘carliest, ending with latest

4 Location e Defaut

OEBPS/httpatomoreillycomsourceoreillyimages957295.png
* Urban Homesteaders Unite!

Find People Events Learn Share DigitalMag Forums My stuff

Cities Brooklyn Cambridge/Somerville
Home
Theories of Bacon

View Edit Log Devel
Masquerade Loe

Enter the username to
masquerade as.

Tue, 07/12/2011 - 17:56 - Dani Nordin

Date and Time: Tue, 07/12/2011 - 18:00 - 20:00

Location: 123 Fake Street, Brooklyn NY 11201

Cost:$ 10 USD

Bring: Snacks

Audience Capacity: 12 quests

Category: Butchery: MeatFish

About this Event:

Boudin mollit brisket, rump salami esse do officia ground round aliqua occaecat meatball
hamburger laboris enim. Meatloaf deserunt chicken pastrami pariatur pancetta, in officia nulla
proident ball tip irure est cow. Aliquip dolor deserunt et. Consequat laborum aliqua, proident
shankle tail eiusmod rump. Beef drumstick dolor, do ex in veniam corned beef tri-tip magna et.
Enim boudin hamburger chuck, ham hock pork tenderloin pork belly elit. Beef ibs fugiat tail,
voluptate officia pastrami sed pig consectetur.

Jerky adipisicing ham hock, dolore drumstick shoulder rump tri-tip. Pork biltong cillum magna
veniam. Duis bacon salami laboris non, jowl deserunt nostrud enim veniam exercitation pork dolor.
Laborum aliqua pork, qui sunt comed beef fugiat duis. Fatback jowl boudin, laborum est andouille
pork proident anim shank. Commodo in tail, sint velit swine strip steak bacon tri-tip pork chop
shoulder quis. Est enim consectetur, eu pork belly quis ex boudin drumstick bacon ullamco
commodo excepteur.

OEBPS/httpatomoreillycomsourceoreillyimages957355.png.jpg
What skills would you like to learn or share?

View| |Edit| [Log| |Devel

o Clone content

Event Categories
Urban Farming
Image:

OEBPS/httpatomoreillycomsourceoreillyimages957329.png.jpg
View| |Edit| [Log| |Signups| |Devel

.

Clone content

a placeholder.
only a placeholder.

Date and Time

Tuesday, July 12, 2011 - 6:00pm - 8:00pm
Location

123 Fake Street, Brooklyn NY 11201
Who's hosting: Test Host

Cost

$10USD

Bring

Snacks

Audience Capacity

PR

Dani Nordin
Watertown, MA|
dani@tzk-design.com
617.600.8514
Website or blog URL:
Tumblir

OEBPS/httpatomoreillycomsourceoreillyimages957275.png
‘This page provides a drag-and-drop interface for assigning a
or display regions in the same way, blocks are positioned on a
page. Click the configure link next to each block to configure i

OEBPS/httpatomoreillycomsourceoreillyimages957235.png

OEBPS/httpatomoreillycomsourceoreillyimages957357.png
Configure fiel

For | Aldisplays (except overridder)

: Field: Image

Appears in: nodeevent, taxonomy._term:event_categories. Also known as: Content: Image, Taxonomy term: Image.
() Create a label

Enable to create a label for this field.
() Exclude from display

Enable to load this field as hidden. Often used to group fields, or to use as token in another field.
Formatter
Timage 4
Image style

3 Jong

Link image to
“Nothing [¢

~ STYLE SETTINGS
() Customize field HTML
() Customize label HTML
) Customize field and label wrapper HTML

() Add default classes
Use default Views classes to identify the field, field label and field content.
() Use field template

If checked, field api classes will be added using field.tpl.php (or equivalent). This is not recommended unless your CSS
depends upon these classes. If not checked, template wil not be used.

Apply (all displays) Cancel Remove

OEBPS/httpatomoreillycomsourceoreillyimages957279.png.jpg
: What new skils
Homesteaders Unite. W s bt

kBrooklyn Urban

Breadmaking Workshop

Who's
Host#2: -
Dte: 05,9010 Sunday

Time: 1p-65

Where: Badtors Styvesant

Cost: 50- g snaks.

Max Number o People: 12

Event Adaress: 123 Foka S1. K5, Bro0kn, NY 1201

ing: Kate Payne (rgee)

Emll (rimary): sato@ takodomain com
Emll (Secondary - Optional):

Contact Phone Number: 123.456.76%0
Evont Wobsito: it Takowsbsto com!
Blog: it bradmakinglrat iogepot com

ABYO oo s pry Eviyn mabes e cun i 39 1 et i g i 03 oot
7000 Couta 1o 00 s VA, 8 PO xR S A S5 95
b o cOnAIE O a1 0 10Ot 83 VAR vt o
o o s o, 3 o o 930 008V o e

Mot g sauan st o e st e crsactet, a3 Ve 503352
R 8 sk et A S ot O S Qo

Sign Up Now
Ticket Information

[rsr— e 2w e (@

Ontn s by B
Catogore: Cankng Baking ek
Togn: s oo

e
e

Comments
Post new comment

St

Commu:+

et s r e b o e vt) e e e R S —

OEBPS/httpatomoreillycomsourceoreillyimages957283.png
3 Hello Dani Nordin Log out

Reports Help

My w h tent (GEHUENE) Avpeara e Modules Configuration

Add content Find content Edit shortcuts

Taxonomy o

‘Taxanomy is for categorizing content. Terms are grouped into vocabularies. For example, a vocabulary called *Fruit” would
contain the terms "Apple” and "Banana’

+ Add vocabulary

Show row weights

VOCABULARY NAME OPERATIONS

4 Forums edit vocabulary list terms add terms.
4+ Event Categories edit vocabulary list terms add terms
4 Tags edit vocabulary list terms add terms.

Save

OEBPS/httpatomoreillycomsourceoreillyimages957269.png
Appearance ©

Home » Administration
Set and configure the default theme for your website. Alternative themes are available.

+ Install new theme

ENABLED THEMES

Urban Homesteaders Unite 7.x-3.0-betal (default theme)

Custom Starter Kit for Urban Homesteaders Unite.

Alpha 7.x-3.0-rc3

Alpha is the core basetheme for Omega and all its subthemes. It includes the
most basic features of the Omega theme framework. This theme should not be

Alpha mRE used directly, instead choose one of the Omega or Alpha starterkits.

OEBPS/httpatomoreillycomsourceoreillyimages957323.png
Configure Relationship: User: Profile

For "Aldsplays g

Associated profile via the profile’s user

Relationship
Theid_who | §

Identifier

Prafie
Edit the administrative label displayed when referencing this relationship form filters, etc.

@ Require this relationship
Enable to hide items that do o contain this relationship

» MORE

Apply (all displays) Cancel Remove

OEBPS/httpatomoreillycomsourceoreillyimages957335.png.jpg
.

Brooklyn Cambridge/Somerville

Home

The view Related Host information has been saved.

View| |Edit| [Log| |Signups| |Devel

Clone content

a placeholder.
only a placeholder.

Date and Time

Tuesday, July 12, 2011 - 6:00pm - 8:00pm
Location

123 Fake Street, Brooklyn NY 11201
Who's hosting: Test Host

Cost

$10USD

Test Host

Brooklyn, NY
user@fakeemail.com
555.555.5555
Website or blog URL:
My website

OEBPS/httpatomoreillycomsourceoreillyimages957375.png
'Mission Statement/About’ block -®

Home » Administration » Structure » Blocks

~BLOCK CLASS SETTINGS.

Customize the styling of this block by adding CSS classes.
theme's block.tpl.php file to make the classes appear. See

css class(es)
welcome.

Separate classes with a space.

OEBPS/httpatomoreillycomsourceoreillyimages957231.png
Dani Nordin

UX Design for the web, and other things

~ About Me ~

My name is Dani Nordin. I'm a UX
constlfant with a background in
branding, visual design and social
entrepreneurship. Oh, and T was an
actress for 8 years.

Bio Presentations Books

In 2005, T created the zen kitchen, a design and branding
studio that focused on smart design o socialy conscious
brands. After six years of ruming the stud, T left in
2011 o pursue ather opparturitis, which inchided
ndependent UX cansifing, writing a cauple of bocks, and
going back 1o Lesley University 1o fiish my degree.

X blog, write articles and books, and speak abaut design

for Drupal, UX, ond other things that nferest me. T'm Presentation Nar rupal for
currently fiishing p a degree in Design and Social Presened ot plce Designers
Entrepreneurship ot Lesley University, and plon on faking OReily Media

over the world cher pursing a Master's in Human
Factors at Bentley University in 2012.

OEBPS/httpatomoreillycomsourceoreillyimages957325.png
~Block detail

Display name: Block

e
Tite: Related Events

FORMAT

Format: Unformatted list | Settings

Show: Fields | Settings

FIELDS v
(feld_who) User Picture

(feld_who) User: Name.

(erofie) profie: Cty/State

(Profie) Profile: E-mail Address

(erofie)Profie: Phone

(erofie) Profile: Website or blog URL (Webisite or blog URL)

FILTER CRITERIA i~
Content: Published (Ves)
Conten: Type (= Eveny
SORT CRITERIA s~

Content: Date and Time (desc)

BLOCK SETTINGS
Block name: None

Access: Permission | View pubished content
HEADER

FooTER

PAGER

Use pager: Display a specified number of items |
More link: No

add

a0d

Litem

clone block_~
~ Advanced

CONTEXTUAL FILTERS aad
RELATIONSHIPS s~
Comtent: Wh's hosting

(feld_who) User Profile

NO RESULTS BEHAVIOR s

EXPOSED FORM
Exposed form style: Basic | Settings
OTHER

Machine Name: block

Comment: No comment

Use AIAX: No

Hide attachments in summary: No
Use aggregation: No

Query settings: Settings

Caching: None

s class: None

Theme: Information

Block caching: Do not cache

OEBPS/httpatomoreillycomsourceoreillyimages957345.png
UST | EDIT | MANAGEFIELDS | MANAGE DISPLAY

Event Categories

Home » Administration »Structure » Taxanomy » Event Categories
Show row weights

LABEL NAME FELD WIDGET OPERATIONS
Name name Term name textfield
4 Image fleld_event_image Image image edt delete
Description description “Term description textarea
URL path settings path Path module form elements
Add new field
feld_ ~Sobctatetpe- ~Soctawidget- ¢
Label Field name (a-2, 0-5, Type of daa o stor. Form element o edit the data
Add existing field
~Solctan oxisting ekl a ~Soctawidget- ¢
Label Field to share Form clement to edit the data

