

 [image: First Edition]

 Deploying OpenStack

Ken Pepple

Editor
Meghan Blanchette

Editor
Mike Loukides

Copyright © 2011 Ken Pepple

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. The image of a Tenrec
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

This book is aimed at developers, technologists, and system
 administrators eager to understand and deploy cloud computing infrastructure
 projects based upon OpenStack software. It is intended to provide the reader
 with a solid understanding of the OpenStack project goals, details of
 specific OpenStack software components, general design decisions, and
 detailed steps to deploy OpenStack in a few controlled scenarios. Along the
 way, readers would also learn common pitfalls in architecting, deploying,
 and implementing their cloud.
Intended Audience

This book assumes that the reader is familiar with public
 Infrastructure as a Service (IaaS) cloud offerings such as Rackspace Cloud
 or Amazon Web Services. In addition, it demands an understanding of Linux
 systems administration, such as installing servers, networking with
 iptables, and basic virtualization technologies.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Deploying OpenStack by Ken Pepple (O’Reilly).
 Copyright 2011 Ken Pepple, 978-1-449-31105-6.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9781449311056

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

In general, I would like to thank the entire OpenStack community
 that gathers on the #openstack IRC channel, mail aliases, and forums. The
 help and encouragement from hoards of people I might never meet
 face-to-face has been of immeasurable value. Thank you.
More specifically, I would like to thank many people for their help
 both in the past and the present that led me to this place:
	A special thanks to Josh Kearney for collaborating with me on my
 first Nova blueprint, as well as technically reviewing this
 book.

	Jay Pipes, for walking me through my first halting few commits
 and his leadership of Glance.

	Vishvananda Ishaya, for generally being a fountain of cloud
 knowledge and for his technical leadership of the Nova project.

	Anne Gentle, for spearheading the awesome OpenStack wiki and
 documentation.

	The people at Cloudscaling, who have been helping customers
 around the world deploy OpenStack clouds. A special thanks to
 Francesco Paolo and Andrew Shafer for their support.

	Brian Pepple, for his technical review of the book, as well as
 his introduction to open source development.

	Diego Parrilla and the team at StackOps, for access to their
 distribution and for their technical review of the book.

	The fine people at Spark and Associates, especially Joon Lee,
 Nick Lee, and Sung Park.

	Shlomo Swidler, for insights into cloud infrastructures at
 levels above where I usually contemplate.

	Dan Sanderson, who unlocked the riddle of using Scrivener,
 DocBook, Python, and subversion in harmony for me.

	All the great people that I worked with at Sun Microsystems over
 the years, especially Dr. James Baty, Jason Carolan, John Stanford,
 SeChang Oh, Bonghwan Kim, Richard Qualls, Scott Radeztsky, Brad
 Vaughan, Ken Buchanan, Jeff McIver, Edward Wustenhoff, Neeladri Bose,
 Bill Walker, and Gary Kelly. Many of them were pioneering dynamic
 infrastructures long ago and profoundly influenced my thinking along
 the way.

Finally, but certainly not least, thanks to my amazing partner,
 Shelley, for her love and support.

Chapter 1. The OpenStack Project

The OpenStack project has been created with the audacious goal of
 being the ubiquitous software choice for building cloud infrastructures. In
 just over one year, it has gone from an idea to start collaborating to being
 the most talked-about project in open source. In this chapter, we will
 examine the project’s goals, history, and how you can participate in its
 future.
What Is the OpenStack Project ?

The OpenStack Project aims to create an open source cloud computing
 platform for public and private clouds aimed at scalability without
 complexity. Initially focusing on Infrastructure as a Service (IaaS)
 offerings, the project currently encompasses three components:
	OpenStack Compute: Software to orchestrate, manage, and offer
 virtual machines. The software for this is called “Nova.”

	OpenStack Object Store: Software for the redundant storage of
 static objects. The software for this is called “Swift.”

	OpenStack Image Service: Provides query and storage services for
 virtual disk images. The software for this is called “Glance.”

One of the defining core values behind the project is its embrace of
 openness with both open standards and open source code. OpenStack has been
 released under the Apache 2.0 license. If you are unfamiliar with the
 license, you should review the full license
 or skip to the layman’s
 terms. In addition, OpenStack promotes open standards through the
 OpenStack API.
The OpenStack project began through the work of two organizations:
 Rackspace Hosting (a large US hosting firm) and NASA (the US Space agency)
 decided to join forces and release their internal cloud object storage and
 cloud compute code bases (respectively) as a common open source
 project.
These releases were the basis for OpenStack Object Storage (“Swift”)
 and OpenStack Compute (“Nova”) projects. After the first release, another
 project (named “Glance”) was added to handle image storage. Currently,
 these are the only official components of the OpenStack project.

Releases

The code was first posted in July of 2010, and the first release
 (nicknamed “Austin”) was released to the public in November 2010.
 Following a short three-month development cycle, the second release
 (codenamed “Bexar” but pronounced “Bear”) debuted in February 2011,
 followed by “Cactus” in April, 2011.
Note
Release names are decided by popular vote by the community of
 developers from a pool of city names near the site of the next OpenStack
 Developers Summit. For example, The Diablo release was named after
 Diablo, California, which is (somewhat) near Santa Clara, California,
 the site of the 2011 Spring OpenStack Developer Summit. In late June
 2011, the developers choose the name “Essex” for the fifth release of
 OpenStack. Essex, Massachusetts is about 30 miles north of Boston, the
 announced site for the Fall 2011 OpenStack Developers Summit.

Table 1-1 shows OpenStack releases and
 the corresponding software versions.
Table 1-1. OpenStack Releases
	Release	Date	Versions
	Austin	October 21, 2010	 OpenStack Nova
 2010.1
 OpenStack Swift
 1.1.0

	Bexar	February 3, 2011	 Nova 2011.1

 Glance
 0.1.7
 OpenStack Swift
 1.2.0

	Cactus	April 15, 2011	 OpenStack Nova
 2011.2
 OpenStack Glance
 2011.2
 OpenStack Swift
 1.3.0

	Diablo	September 22, 2011 (proposed)	To be determined
	Essex	To be determined	To be determined

You can always see a list of all (past and future) releases at
 http://wiki.openstack.org/Releases.

Community

Much is made of the large community aspect of OpenStack, and with
 great reason: the community was created by end users (cloud service
 providers and large enterprise) with the active participation of large
 computing vendors and many other open source projects. In less than a
 year, OpenStack has become arguably the largest open source cloud
 project.
At the end of June 2010, the OpenStack community boasted 217
 registered developers and 80 contributing companies. These 217 registered
 developers have been very active. In just the month of June 2010,
 OpenStack Compute (Nova) had 1,382 commits by 65 people, OpenStack Object
 Storage (Swift) had 101 commits by 12 people, and OpenStack Image Registry
 (Glance) had 164 commits by 12 people.
The OpenStack community is extremely active and maintains many
 outlets for information about the project:
	Forums for active discussions on all OpenStack projects are
 located at http://forums.openstack.org/.

	The OpenStack wiki is hosted at http://wiki.openstack.org/StartingPage and is updated
 almost daily with new information.

	The official documentation for each of the OpenStack project
 releases is available at http://docs.openstack.org/.

	Mailing lists for OpenStack are detailed at http://wiki.openstack.org/MailingLists. Each of the
 lists are targeted to different audiences and have different volumes
 of email.

	Launchpad is the current home for source control and project
 management and is located at https://launchpad.net/nova. In the future, the codebase
 may be moving to http://github.com/.

	Blog posts from OpenStack developers and prominent community
 members are aggregated at http://planet.openstack.org/.

	Active, real-time discussion about OpenStack projects are held
 on IRC on the #openstack (general OpenStack discussions) and
 #openstack-dev (developer-oriented OpenStack discussion) on Freenode
 at irc://freenode.net/. As noted in the
 documentation, “This is usually the best place to ask questions and
 find your way around. IRC stands for Internet Relay Chat and it is a
 way to chat online in real time. You can also ask a question and come
 back to the log files to read the answer later.” The logs are
 available at http://eavesdrop.openstack.org/irclogs/.

Chapter 2. Understanding Swift

Swift is the oldest and probably the mature project within OpenStack.
 It is the underlying technology that powers Rackspace’s
 Cloud Files™ service. While it only interacts tangentially with Nova
 (as shown in Chapter 3), it is still important
 in the overall scheme of understanding OpenStack.
Swift aims to provide a massively scalable and redundant object store
 conceptually similar to Amazon’s S3 service. To provide this scalability and
 redundancy, it writes multiple copies of each object to multiple storage
 servers within separate “zones.” Zones are a logical grouping of storage
 servers that have been isolated from each other to guard against failures.
 The level of isolation is up to the cloud operator; they can be isolated on
 differing servers (ability to lose individual servers), different racks
 (ability to lose entire rack), different sections of the data center, or
 even different data centers. Each choice provides a different level of
 isolation and cost.
Caution
Many beginners assume that Swift will take the place of their file
 server and that they will be able to easily mount volumes on their
 desktops to access their files. This is not the case. Swift is an object
 store, not a file server. While these sound similar, there are important
 differences. Object stores simply save files in logical groupings (called
 “containers” in Swift parlance) via a RESTful protocol. They do not
 provide a true filesystem, nor are they accessible through standard file
 sharing protocols like NFS (Network File System, the standard for UNIX),
 CIFS (Common Internet File System, the standard for Windows), or AFS
 (Appleshare Files System, the standard for Mac OS X). To access your
 files, you will need to use a the Swift API client. These are described
 later in this chapter.

Swift is configurable in terms of how many copies (called “replicas”)
 are written, as well as how many zones are configured. Current best
 practices call for three replicas written across five zones. As the number
 of replicas is less than or equal to the number of zones, Swift tries to
 balance the writing of objects to storage servers so that the write and read
 load is distributed. This is illustrated in Figure 2-1.
[image: Swift Replicas And Zones]

Figure 2-1. Swift Replicas And Zones

Architecture

The logical view of Swift can be divided into two logical parts:
 presentation and resource. The major components, data stores, and
 interactions are illustrated in Figure 2-2.
[image: Swift Logical Architecture]

Figure 2-2. Swift Logical Architecture

Presentation

Swift accepts end user requests via swift-proxy processes. swift-proxy accepts incoming end user
 requests; optionally authorizes and authenticates them; then passes them
 on to the appropriate object, account, or container processes for
 completion. It can optionally work with a cache (memcached[1]) to reduce authentication, container, and account calls.
 swift-proxy accepts requests via the
 OpenStack API on port 80. There is also an optional middleware to
 support the Amazon S3 protocol.

Authentication

Swift handles authentication through a three-step process:
	User authenticates through the authentication system (or
 middleware within swift-proxy)
 and receives a unique token (which is an operator-customizable
 string). This step is only required if the user doesn’t possess a
 valid token. Tokens are valid for an operator-configurable time
 limit (Rackspace Cloud Files™ uses a 24-hour timeout).

	User issues a second request to Swift (directly to swift-proxy), passing the token along with
 the request in the HTTP headers.

	swift-proxy validates the
 token and responds to user request with the help of swift-account, swift-container, and/or swift-object.

Swift authentication can be implemented through WSGI middleware or
 as a separate system. For most installations, the WSGI middleware option
 will be more straightforward. However, some enterprises might find the
 separate system approach easier to integrate to their current
 authentication scheme. Swift ships with sample authentication code
 called swauth, which stores the
 authentication database within Swift itself.

Resource

Swift manages a number of information sources through three
 processes that fulfill requests from swift-proxy. These three daemons are:
	swift-account, which
 manages a sqlite3 database of accounts defined with the object
 storage service.

	swift-container manages
 another sqlite3 database, but contains a mapping of containers
 (analogous to buckets in Amazon’s S3) within the object store
 service.

	swift-object, a mapping of
 actual objects (i.e., Files) stored on the storage node.

Each of these processes are responsible for fulfilling requests
 from the proxy node, as well as auditing their own mappings (database
 consistency) and replicating any inconsistent information to other nodes
 in the ring.

[1] Memcached is a free and open-source in-memory key-value store
 for caching small pieces of data.

Chapter 3. Understanding Glance

Glance is the newest OpenStack service. First debuting in the Bexar
 release, Glance provides a catalog service for storing and querying virtual
 disk images. Glance has been designed to be a standalone service for those
 needing to organize large sets of virtual disk images. However, when used
 along with Nova and Swift, it provides an end-to-end solution for cloud disk
 image management.
Architecture

There are three pieces to Glance architecture: glance-api, glance-registry, and the image store. As you can
 probably guess, glance-api accepts API
 calls, much like nova-api, and the
 actual image blobs are placed in the image store. The glance-registry stores and retrieves metadata
 about images. The image store can be a number of different object stores,
 including Swift. Figure 3-1 illustrates Glance’s
 logical architecture.
[image: Glance Logical Architecture]

Figure 3-1. Glance Logical Architecture

glance-api is similar in
 functionality to nova-api, in that it
 accepts incoming API requests and then communicates with the other
 components (glance-registry and the
 image store) to facilitate querying, retrieving, uploading, or deleting
 images. By default, glance-api listens
 on port 9292.
Caution
In the Cactus release, Glance lacks authentication and
 authorization, making it unsuitable for direct end user usage except in
 tightly controlled environments. The best way to use this is “behind”
 Nova, where nova-api authenticates
 and authorizes requests for uploading, querying, and using virtual disk
 images.

The glance-registry process
 stores and retrieves metadata about images. The version that ships with
 Glance is only considered a reference implementation, as most large
 installations will want a customized version for their service. The
 reference version uses sqlite3 to store the metadata and the Glance API
 for communications. By default, glance-registry listens on port 9191.
The Glance database contains only two tables: Image and Image
 Property. The image table represents the image in the datastore (disk
 format, container format, size, etc.), while the Image Property table
 contains custom image metadata. While the image representation and image
 metadata is stored in the database, the actual images are stored in image
 stores.
Image stores are the storage places for the virtual disk image and
 come in a number of different options. The currently supported image
 stores are shown in Table 3-1.
Table 3-1. Glance Image Store Options
	Image Store	Description
	Fileystem	Stores, deletes, and gets images from a filesystem
 directory specified in the configuration file (filesystem_store_datadir option). This
 could be a filesystem on a shared drive (e.g.,
 NFS).

	HTTP	Retrieves images from a URL. This is a read-only
 image store option. Images will need to be saved to the URL via
 another mechanism.

	Swift	Stores, deletes, and gets images from a Swift
 installation. Requires several configuration options in glance.conf.

	S3	Deletes or gets images (but not stores) from Amazon’s
 S3 service.

Each of these options have their own strengths and weaknesses.
 However, most large installations will use Swift, while smaller
 installations will probably gravitate to the simplicity of the filesystem
 option with a shared NFS server. The S3 or HTTP image stores are probably
 only useful for referencing publicly available images.
With this overview of Glance, it should now be clear how Glance
 provides the “glue” between Swift and Nova. Figure 3-2 shows the interactions between OpenStack
 projects for virtual disk image storage and retrieval.
[image: OpenStack Image Ecosystem]

Figure 3-2. OpenStack Image Ecosystem

Image Support

Glance supports a wide array of virtual disk and container formats.
 Virtual disks are analogous to a physical server’s boot drives, only
 condensed into a file. Different virtualization technologies support
 different disk formats. Glance supports the disk formats shown in Table 3-2.
Table 3-2. Glance Supported Disk Formats
	Disk Format	Notes
	Raw	Unstructured disk format
	VHD	Most common format supported by most OpenStack
 virtualization technologies except KVM.
	VMDK	Format popularized by VMware.
	qcow2	QEMU image format, native format for KVM and QEMU.
 Supports advanced functions.

	VDI	Virtual disk image format originated by Oracle VM
 VirtualBox.

	ISO	Archive format for optical disks.
	AMI, ARI, AKI	Amazon machine, ramdisk, and kernel images
 (respectively). See more information at the Amazon
 EC2 User Guide.

Glance also supports the concept of container formats, which
 describes the file format and contains additional metadata. Glance
 supports two container formats as well as the absence of a container
 format (bare), as shown in Table 3-3.
Table 3-3. Glance Container Formats
	Container Format	Notes
	OVF	An open standard for distributing one or more virtual
 machine images. Read more about this standard at http://www.dmtf.org/standards/ovf.

	aki, ari, ami	Amazon kernel, ramdisk, or machine image
 (respectively). Read more about these container formats at Amazon
 EC2 User Guide.

	Bare	No container for this image.

API Support

The Glance API is a simple REST API for querying image metadata or
 storing or retrieving actual images. Data is returned as a JSON-encoded mapping (query) or binary
 (image retrieval). Below is an example of querying Glance using curl for details on all images:
$ curl http://localhost:9292/images
{"images":
 [{"name": "natty-uec",
 "container_format": "ami",
 "disk_format": "ami",
 "checksum": "b420e097baf54cd32af5970b3f0cb93b",
 "id": 6,
 "size": 1476395008}]
}
In this example, Glance shows that there is only one image in the
 registry.
Caution
The List Images and List Images Detail calls can return huge
 amounts of data for large image stores, as no record filtering exists in
 this version of Glance.

The Glance API calls are detailed in Table 3-4.
Table 3-4. Glance API Calls
	Action	API Call	Description
	Store Image	POST /images	Stores the image and then returns the metadata created
 about it
	Download Image	GET /images/
 ID	Retrieves image specified by
 ID
	Update Image	PUT /images/
 ID	Update image metadata or actual data specified by
 ID
	Delete Image	DELETE /images/
 ID	Delete image specified by
 ID
	List Images	GET /images	Return id, name, disk_format, container_format, checksum,
 and size of all images
	List Images Detail	GET
 /images/detail	Return list (with all metadata) of all images
	Image Details	HEAD /images/
 ID	Return all metadata for image specified by
 ID

The full API documentation can be viewed at the online
 documentation website.

Installation

If you are on Ubuntu 11.04 or later, Glance can be installed with a
 simple apt-get:
$ sudo apt-get install glance python-glance-doc
Note
Glance requires a large number of dependencies.

Once installed, it needs to be started with the glance-control utility.
$ sudo glance-control all start
Glance is now ready for uploading and querying of virtual disk
 images. The glance index command shows
 all virtual disk images currently in Glance.
$ glance index
No public images found.
As you can see from the example above, Glance is currently empty.
 Let's put a image into it. The glance-upload command puts an image record into
 the glance-registry and stores the data
 file in the image store. It requires a the disk format and container
 format as a minimum set of arguments. In this example, the virtual disk is
 formatted as an AMI from the Ubuntu
 Enterprise Cloud image repository.
$ glance-upload natty-server-uec-amd64.img natty-uec --disk-format ami \
 --container-format ami
Stored image. Got identifier: {u'checksum': u'b420e097baf54cd32af5970b3f0cb93b',
 u'container_format': u'ami',
 u'created_at': u'2011-07-06T00:54:23.600181',
 u'deleted': False,
 u'deleted_at': None,
 u'disk_format': u'ami',
 u'id': 6,
 u'is_public': True,
 u'location': u'file:///var/lib/glance/images/6',
 u'name': u'natty-uec',
 u'properties': {u'type': u'raw'},
 u'size': 1476395008,
 u'status': u'active',
 u'updated_at': u'2011-07-06T00:55:01.901066'}
Now that an image has been uploaded, Glance should show it via the
 glance index command.
$ glance index
Found 1 public images...
ID Name Disk Format Container Format Size
-- ---------- ------------ -------------------- --------------
6 natty-uec ami ami 1476395008
The glance show command is able
 to show details about the newly uploaded image.
$ glance show 6
URI: http://0.0.0.0/images/6
Id: 6
Public: Yes
Name: natty-uec
Size: 1476395008
Location: file:///var/lib/glance/images/6
Disk format: ami
Container format: ami
Property 'type': raw
This image is now available for use.

Chapter 4. Understanding Nova

Nova seeks to provide a framework for the large-scale provisioning and
 management of virtual compute instances. Similar in functionality and scope
 to Amazon’s EC2 service, it allows you to create, manage, and destroy
 virtual servers based on your own system images through a programmable
 API.
Nova Architecture

Nova is architected as a distributed application with many
 components, but the majority of these are custom-written Python daemons of
 two varieties:
	Web Server Gateway Interface (WSGI)[2] applications to receive and mediate API calls

	Worker daemons to carry out orchestration tasks

However, there are two essential pieces of the architecture that are
 neither custom written nor Python-based: the messaging queue and the
 database. These two components facilitate the asynchronous orchestration
 of complex tasks through message passing and information sharing. Piecing
 this all together we get a picture like Figure 4-1.
[image: Nova Logical Architecture]

Figure 4-1. Nova Logical Architecture

This complicated diagram can be summed up in three sentences:
	End users who want to use Nova to create compute instances call
 nova-api with OpenStack API or EC2
 API requests.

	Nova daemons exchange information through the queue (actions)
 and database (information) to carry out these API requests.

	Glance is a completely separate service that Nova interfaces
 through the Glance API to provide virtual disk imaging
 services.

Now that we’ve seen the overview of the processes and their
 interactions, let’s take a closer look at each component.
API

The nova-api daemon is the
 heart of Nova. You may see it illustrated on many pictures of Nova as
 API and “Cloud Controller.” While this is partly true, cloud controller
 is really just a class (specifically the CloudController in nova/api/ec2/cloud.py) within the nova-api daemon. Its primary purpose is to
 accept and fulfill incoming API requests.
To accept and fulfill API requests, nova-api provides an endpoint for all API
 queries (accepting requests using either the OpenStack API or the Amazon
 EC2 API), initiates most of the orchestration activities (such as
 running an instance), and also enforces some policy (mostly quota
 checks). For some requests, it will fulfill the entire request itself by
 querying the database and then returning the answer. For more
 complicated requests, it will pass messages to other daemons through a
 combination of writing information to the database and adding messages
 to the queue.
By default, nova-api listens on
 port 8773 for the EC2 API and 8774 for the OpenStack API.

Scheduler

The nova-scheduler process is
 conceptually the simplest piece of code in Nova: it takes a virtual
 machine instance request from the queue and determines where it should
 run (specifically, which compute server host it should run on). In
 practice, however, this will grow to be the most complex piece, as it
 needs to factor in the current state of the entire cloud infrastructure
 and apply complicated algorithms to ensure efficient usage. To that end,
 nova-scheduler implements a pluggable
 architecture that lets you choose (or write) your own algorithm for
 scheduling. Table 4-1 details the current
 scheduler choices.
Table 4-1. Nova Schedulers
	Scheduler	Notes
	Simple	Attempts to find least loaded host.
	Chance	Chooses random available host from service table. This is
 the default scheduler.
	Zone	Picks random host from within an availability
 zone.

To illustrate how simple nova-scheduler can be, here is the relevant
 code from the chance scheduler class in nova/schedule/chance.py:
class ChanceScheduler(driver.Scheduler):
 """Implements Scheduler as a random node selector."""

 def schedule(self, context, topic, *_args, **_kwargs):
 """Picks a host that is up at random."""

 hosts = self.hosts_up(context, topic)
 if not hosts:
 raise driver.NoValidHost(_("Scheduler was unable to locate a host"
 " for this request. Is the appropriate"
 " service running?"))
 return hosts[int(random.random() * len(hosts))]
As you can see from above code sample, the schedule method simply
 chooses a random host from the array of hosts that are currently known
 to be “up.”

Compute Worker

The nova-compute process is
 primarily a worker daemon that creates and terminates virtual machine
 instances. The process by which it does so is fairly complex, but the
 basics are simple: accept actions from the queue and then perform one or
 a series of virtual machine API calls to carry them out while updating
 state in the database. An example of this would be nova-compute accepting a message from the
 queue to create a new instance and then using the libvirt library to start a new KVM
 instance.
There are a variety of ways that nova-compute manages virtual machines. The
 most common is through a software package called libvirt. This is a toolkit (API, daemon, and
 utilities) created by Red Hat to interact with the capabilities of a
 wide range of Linux virtualization technologies. While libvirt may be the most common, nova-compute also uses the Xen API, vSphere
 API, Windows Management Interface, and others to support other
 virtualization technologies.
One of strengths of Nova is its wide support for virtualization
 technologies. The virtualization technologies supported in the current
 release version of Nova are detailed in Table 4-2.
Table 4-2. Virtualization Support in Nova
	Virtualization Product	Supported	Interface	Support Notes
	Kernel Virtual Machine (KVM)	Yes	libvirt	Most popular technology for small scale
 deployments. Arguably the easiest to deploy and configure.
 Supports advanced operations such as live migration and
 resize.

	Xen	Yes	libvirt	Most popular (along with XCP/XenServer) technology
 for larger scale and production deployments.

	Citrix XenServer	Yes	XenAPI	Citrix’s commercial version of Xen-based
 virtualization product. Supports advanced
 features.

	Xen Cloud Platform (XCP)	Yes	XenAPI	The open source version of Citrix XenServer
 available under the LGPL, GPL, Q Public License v1. Supports
 subset of XenServer features.

	VMware ESX / ESXi / vSphere	Yes	vSphere API	Most popular enterprise virtualization platform.
 See the OpenStack
 VMware documentation for full information and
 restrictions when using this option.

	VMware vSphere	No	 	

	User Mode Linux	Yes	libvirt	Generally considered a lower performance
 virtualization option, UML runs each guest as a regular process
 in user space.

	Microsoft Hyper-V	Yes	Windows Management Instrumentation (WMI)	Hyper-V is Microsoft’s hypervisor-based
 virtualization technology.

	QEMU	Yes	libvirt	Provides the basis for most Linux-based
 virtualization technologies (such as KVM and
 Virtualbox).

	Linux Containers (LXC)	Yes	libvirt	LXC is an operating system-level partitioning
 technology that allows for running multiple isolated servers
 (containers) in a single kernel. LXC does not actually
 virtualize the server. Instead, it provides a virtual
 environment with its own process space. While this doesn’t
 provide the same level of isolation (as every partition shares
 the common kernel), it may provide some advantages in I/O
 performance.

	Oracle VM VirtualBox	No	 	

Virtualization Technology describes some
 important considerations that should be taken into account when choosing
 your virtualization technology.

Volume Worker

As you can gather by the name, nova-volume manages the creation, attaching,
 and detaching of persistent volumes to compute instances (similar in
 functionality to Amazon’s
 Elastic Block Storage). It can use volumes from a variety of
 providers such as iSCSI or AoE. Table 4-3
 shows the current volume provider options.
Table 4-3. Nova Volume Provider Options
	Volume Provider	Notes
	AoE	High performance layer 2 Ethernet technology that
 encapsulates SATA commands in Ethernet frames. Supported on
 Linux through the AoE Tools
 package, specifically the vblade program.
	iSCSI	A commonly used IP-based encapsulation of SCSI commands.
 This is supported by most modern operating systems, but the Nova
 implementation only currently supports Linux through with this
 implementation. This driver does support CHAP for
 authentication.
	Solaris iSCSI	Supports Solaris-hosted iSCSI volumes and uses ZFS
 commands. Solaris server must be prepared by following the
 instructions in the nova/volume/san.py file.
	Sheepdog	An open-source, distributed storage system specifically
 designed for QEMU/KVM installations that is developed by NTT
 Laboratories. More information is available at http://www.osrg.net/sheepdog/.
	RBD	RADOS block device (RBD) driver to interact with Ceph, a
 distributed file system based on a reliable and scalable
 distributed object store. As stated on http://ceph.newdream.net/ the wiki, “Ceph is
 under heavy development, and is not yet suitable for any uses
 other than benchmarking and review.”
	LeftHand	A driver for interacting with HP Lefthand SAN solutions
 (as of now known as “HP P4000 SAN Solutions”). Unlike other
 providers mentioned above, this provider does not run directly
 on the SAN hardware. Instead, it accesses it via SSH commands.

Network Worker

The nova-network worker daemon
 is very similar to nova-compute and
 nova-volume. It accepts networking
 tasks from the queue and then performs system commands to manipulate the
 network (such as setting up bridging interfaces or changing iptables rules).
Nova defines two different types of IP addresses for an instance:
 Fixed IPs and Floating IPs. These can be broadly thought of as private
 IPs (fixed) and public IPs (floating). Fixed IPs are assigned on
 instance startup and remain the same during their entire lifetimes.
 Floating IPs are dynamically allocated and associated to a domain to
 allow outside connectivity.
To support the assignment and connectivity of fixed IPs, Nova
 supports three networking managers:
	Flat is the most basic network manager. Each new instance is
 assigned a fixed IP address and attached to a common bridge (which
 must be created by the administrator). IP configuration information
 must be “injected” (written into the new instance virtual disk
 image) to configure the instance.

	FlatDHCP builds upon the Flat manager by providing DHCP
 services to handle instance addressing and creation of
 bridges.

	VLAN supports that most features. In this mode, nova-network creates a VLAN, a subnet, and
 a separate bridge for each project. Each project also receives a
 range of IP only accessible within the VLAN.

Of these three network managers, VLAN is the most featured, Flat
 is the most barebones (but flexible), and FlatDHCP strikes a nice
 balance between the two.

Queue

The queue provides a central hub for passing messages between
 daemons. This is currently implemented with RabbitMQ today, but theoretically
 could be any AMPQ
 message queue supported by the Python ampqlib and carrot libraries.
Nova creates several types of message queues to facilitate
 communication between the various daemons. These include: topics queues,
 fanout queues, and host queues. Topics queues allow messages to be
 broadcast to the number of particular class of worker daemons. For
 example, Nova uses these to pass messages to all (or any) of the compute
 or volume daemons. This allows Nova to use the first available worker to
 process the message. Host queues allow Nova to send messages to specific
 services on specific hosts. For example, Nova often needs to send a
 message to a specific host’s compute worker to take action on a
 particular instance. Fanout queues are only currently used for the
 advertising of the service capabilities to nova-scheduler workers.
Here is an example of the queues created in RabbitMQ for a simple
 all-in-one node installation:
$ sudo rabbitmqctl list_queues
Listing queues ...
scheduler_fanout_15b1731c5ac34aae8970369911f04542 0
volume 0
volume_fanout_e42438faedb84ab8aad8d85e29916424 0
compute_fanout_38a37d3dc7564b66a5a540a1e222b12b 0
compute.cactus 0
volume_fanout_d62eb016a76341f4899c91d5a8fbb0a9 0
volume_fanout_dcaebd5edb3045ff8b86636040d34071 0
volume.cactus 0
network_fanout_64b9cb80b2c34c7a8da983219c787147 0
compute 0
network_fanout_362393151e7c465a8e3ed003ac6dbc1b 0
compute_fanout_74165ee38c9d4c1ea1003ccd88a91c22 0
scheduler 0
network.cactus 0
network 0
scheduler_fanout_9444b4c8d5d6497b9b5e2df4eca33b0d 0
scheduler.cactus 0
As you can see from the example, topic, fanout, and host queues
 have been created for each service (nova-scheduler, nova-compute, nova-volume, nova-network).

Database

The database stores most of the configuration and run-time state
 for a cloud infrastructure. This includes the instance types that are
 available for use, instances in use, networks available, and projects.
 Table 4-4 details all the tables in the
 current Nova database scheme.
Table 4-4. Nova Database Schema
	Table Name	Description
	migrate_version	Stores current version of the database schema as
 well as other migration-related info. Only used internally and
 by developers during upgrades.

	migrations	Used for running host-to-host
 migration.

	auth_tokens	Maps Authorization tokens (for all API
 transactions) to actual users (via the user id
 field).

	certificates	Mappings for user, projects, and x509 certificates
 files

	networks	Information pertaining to networks defined in Nova.
 Includes IP addressing, VLAN, and VPN
 information.

	compute_nodes	Capabilities (vcpus, memory, etc.) and state (vcpus
 used, memory used, etc.) of each compute node.

	projects	Information about projects, including project
 manager.

	console_pools	Pool of consoles on the same physical
 node.

	quotas	Quota overrides for particular projects. This is
 discussed further in Quotas.

	consoles	Console session for an instance.

	export_devices	Shelf and blade information used primarily with the
 AoE volume driver.

	security_group_rules, security_groups and
 security_group_instance_association	Represent security groups and their associated
 rules.

	fixed_ips and floating_ips	Associates the fixed and floating IP addresses to
 instances.

	services	Listing off registered services (nova-scheduler, nova-compute and so on) and their
 current state. The updated_at field is used to determine if a
 given service is considered healthy or not.

	instance_actions	Lists guest VM’s actions and
 results.

	user_project_association, user_project_role_association
 and user_role_association	Maintains relationship among users, projects, and
 roles.

	instance_metadata	Metadata key/value pairs for an instance that is
 used during instance startup.

	instance_types	Specifications (vCPUs, RAM, etc.) of flavors or
 instances types that users can use in this cloud. Described in
 much greater detail in Instance Types and Flavors.

	instances	Representation of virtual machine
 instances.

	users	Representations of users.

	iscsi_targets	Mapping of iSCSI targets, hosts, and
 volumes.

	volumes	Representation of volumes in the
 cloud.

	key_pairs	Public key pairs for SSH.

	zones	Represents a child zone of this zone. Only used in
 advanced configurations.

Nova supports a wide range of databases, including popular
 open-source stalwarts like MySQL
 and PostgreSQL. For more
 information on choosing an appropriate database for Nova, see Database.

[2] WSGI is a Python standard specification that defines the
 communications between web and application servers.

Chapter 5. Obtaining Nova

Nova is distributed from several sources in many different packaging
 formats. As it is a relatively new project, it lacks the installation ease
 and universal portability of more established open source projects like
 Apache Web Server. As such, it is not easily installable on every operating
 system distribution without significant administrative configuration. In
 this chapter, we will help you decide which version of the OpenStack code
 base is best suited to your deployment needs and show you how to obtain that
 version in your preferred packaging.
Nova Versions and Packaging

As Nova is a fast-moving and relatively young project, we need to
 make some decisions about the codebase that we want to use. There are two
 major decisions here:
	What version do we want to use?

	What form of packaging do we want to use to deploy Nova?

To adequately answer these questions, you need to ask yourself two
 tough questions:
	How proficient am I with Python development, system
 administration, and Linux packaging?

	How much stability am I willing to sacrifice to get the latest
 features?

To answer the proficiency question, you will need to honestly
 examine your skills across not just programming, but also system
 administration. If you don’t utilize the packaged versions of Nova, you
 will need to understand how Python applications are built and their
 dependent packages. If you want to use newer, non-production versions of
 the code, it is possible that you will run into bugs that you will need to
 troubleshoot or fix yourself. On the systems administration side, Nova has
 heavy dependencies of Linux networking and virtualization support. As
 stated earlier in the book, it is mostly a control framework for virtual
 machines, storage, and networks. To apply its advanced configurations or
 options, you will need to understand the trade-offs you will be making.
 Rules of thumb for classifying skill level could be as follows:
	Basic
	Relatively unskilled in Python programming, but has basic
 system administration skills in Linux virtualization (specifically
 KVM) and networking (understanding of iptables and ifconfig).

	Proficient
	Beginner skills in Python (can read code, perhaps written
 basic Python scripts). Competent system administration skills, with
 advanced knowledge of key areas such as virtualization (perhaps
 deployed Xen or VMware at their company), storage (usage of iSCSI),
 and networking (understanding of VLANS and advanced
 switching).

	Expert
	Well-versed in Python, including working with large
 open-source Python projects, knowledge of popular libraries
 (SQL-Alchemy, amqplib, etc.), and experience with WSGI applications.
 Advanced system administration skills such as writing libvirt
 templates, defining new iptables
 or ebtables rules, and
 administering message queuing software.

As noted earlier in the book, Nova is a rapidly moving project that
 changes daily. Having said that, there are still regular releases, as with
 any normal software project. For the purposes of this book, we will look
 at three possible code releases that you might want to deploy:
	Release
	This is the last “released” version of the codebase and is
 analogous to a product release. Released versions of the code are
 the most tested and polished versions of OS. Release versions are
 suitable for production environments. Releases are referred to by
 their version number or their release name. For example, “2011.2” or
 “Cactus” was the third release of Nova.

	Milestone
	Between release versions, milestone versions are produced.
 These let leading-edge users familiarize themselves and test
 upcoming releases. Milestones are usually fairly stable, but
 probably only suitable for test and development environments.
 Milestones are referred to by the name of the upcoming release and
 the milestone number (such as “Diablo-3”).

	Trunk
	Trunk refers to the most current version of the source code.
 After every update to the official Nova codebase (called a “commit”)
 from any developer on the project, trunk is updated. This is the
 most volatile, least-tested, but most up-to-date release of the
 code. On many workdays, the trunk will get updated multiple times.
 Trunk is only recommended for users who are actively developing
 Nova. Trunk versions of the code are referred to by their Launchpad
 commit revision number (or “revno”).

Note
At the time of this writing (July 6th, 2011), the release version
 of Nova was “Cactus,” or 2011.2; “Diablo-3” was the current milestone
 version; and trunk was at revno 1245.

Table 5-1 provides some guidance on which
 version and packaging format you’ll be most successful at deploying
 depending on your proficiency and desired environment.
Table 5-1. Choosing Your Nova Version and Packaging
	 	Production	Proof of Concept / Test	Development
	Basic	Product (Release-based)	N/A	N/A
	Proficient	Package (Release-based)	Package (Milestone-based)	N/A
	Expert	Source (Release-based)	Source (Milestone-based)	Source (Trunk-based)

Several of the cells within this table have been labelled “N/A” to
 indicate that these choices are not advised for the complexity of
 installation and skill level of the installer.

Distributions

Several companies are providing Nova as the basis of their
 distributions. For most people, this would be the equivalent of choosing
 Ubuntu or Red Hat Linux distributions instead of compiling their own Linux
 kernels. Distributions can provide installers, custom documentation,
 tested configurations, and support. For most people, distributions provide
 the quickest and easiest path from bare metal servers to working Nova
 deployments.
StackOps

StackOps offers “a complete, ready-to-use OpenStack distribution
 verified, tested and designed to reach as many users as possible thanks
 to a new and simple installation process.” It is produced by a company
 of the same name.
The StackOps Distro installs on bare metal[3] (or virtual machine) via CD or USB drive and is based on a
 Ubuntu Linux Server 10.04 LTS. It features a “Smart Installer” that
 creates deployments with default settings in three different modes:
 single node, dual node, and multi node. The installer will also let you
 add more nodes to an existing installation.
With a focus on ease of installation and excellent documentation,
 this is an ideal choice for those looking to evaluate or test Nova. You
 can download or learn more about this distribution at http://www.stackops.com/.
Later in this book, we use StackOps to install and configure a
 single-system Nova deployment.

Citrix “Project Olympus”

Citrix has created “Project Olympus,” which aims to provide a
 “tested, certified and supported version of OpenStack” along with a
 “cloud-optimized version of XenServer.” While this is not yet a released
 project, you can learn more details and sign up for the early access
 program at http://deliver.citrix.com/projectolympus. It is slated
 for general availability later in 2011.

[3] In this instance “bare metal” refers to a server without an
 operating system already installed.

Nova Packages

For most competent system administrators, package installation is
 the preferred method of software installation. Like products or
 distributions, packages provide for easy and quick installations. However,
 unlike distributions, package installations tend to require more
 individual pieces (and dependencies) and do not provide assistance with
 configuration. On the other hand, they do provide more flexibility in that
 the administrator can pick and choose the pieces they would like to
 install. The sections below outline the methods to obtain packages for
 many of today’s popular server operating systems.
Launchpad Ubuntu Packages

The source of all Nova packages is the code repository at
 Launchpad. If you want to closely follow the codebase, you should
 configure your system to obtain its packages from the PPA repositories
 at Launchpad.
Note
Personal Package Archives (PPAs) is a Launchpad feature that
 builds Ubuntu packages from a user’s hosted source code and then
 distributes them to the public. OpenStack has taken advantage of this
 automated feature to produce several different repositories of Nova
 packages, each containing different snapshots of Nova code. We’ll talk
 about the Nova PPAs later, but you can learn more about creating your
 own PPAs at https://help.launchpad.net/Packaging/PPA.

Release

If you want to run the latest release of Nova (2011.2 or
 “Cactus”) on Ubuntu, you can use the personal project archives (PPA)
 at Launchpad. You can enable packages from the PPAs by executing the
 following commands:
$ sudo apt-get install python-software-properties
$ sudo add-apt-repository ppa:openstack-release/2011.2
$ sudo apt-get update

Note
Replace the 2011.2 part of
 the add-apt-repository command above with any other OpenStack
 release designation to use that release. For example, you can access
 the “Bexar” packages with the sudo
 add-apt-repository ppa:openstack-release/2011.1
 command.

These releases are production quality.

Milestone

You can install slightly newer (which might provide additional
 functionality and bugs) by using development milestones that are
 released approximately every four weeks. You can enable those PPAs
 with the following commands:
$ sudo apt-get install python-software-properties
$ sudo add-apt-repository ppa:nova-core/milestone
$ sudo apt-get update

Note
You can access the current development milestone schedule on
 the OpenStack Wiki.
 For example, the current “Diablo” milestone schedule is located at
 http://wiki.openstack.org/DiabloReleaseSchedule.

These packages are not production quality. They should be used
 for testing and development.

Trunk

Just as you can get the last release or milestone packages, you
 can also get the latest trunk code as packages. This is the same
 command-line process as the release or milestone packages but
 specifies the trunk repository:
$ sudo apt-get install python-software-properties
$ sudo add-apt-repository ppa:nova-core/trunk
$ sudo apt-get update

Caution
As stated earlier in this chapter, trunk changes very rapidly
 and is the least stable of all the packages. It is prudent to review
 current bug reports on Launchpad before upgrading your packages on
 trunk, unless you’re actively trying to reproduce bugs.

These packages are not production quality and should only be
 used for development.

Ubuntu Distribution Packages

Ubuntu recently made the decision to include OpenStack (Nova,
 Glance, and Swift) as part of the official Ubuntu 11.04 “Natty” release.
 These packages are the latest release (2011.2 “Cactus”) at the time of
 Ubuntu 11.04 debut. You’ll find these packages in the Ubuntu universe
 repository. They can be installed just like the Launchpad
 packages.

Red Hat Enterprise Linux Packages

A consulting company named Grid Dynamics provides Nova
 and Glance RPM packages for Red Hat Enterprise Linux. However, there are
 some differences between these packages and the Ubuntu versions. These
 are summarized as:
	The packages use libguestfs instead of NBD for qcow2 image
 support.

	Network injection code (configuration of the instances’
 networking) was patched for a new path (/etc/sysconfig/network-scripts) and
 template.

	Only KVM hypervisor has been tested.

Complete instructions and links to the development repositories
 can be found via the RHEL Packaging
 page on the OpenStack wiki or by going to their build page
 directly at http://yum.griddynamics.net/.

Fedora Packages

Another consulting company called Mirantis provides Nova Fedora
 packages based on the Red Hat Enterprise Linux packages. They provide
 both Cactus release and trunk packages.
Instructions for installing these RPMs and configuring them with a
 kickstart script are available at the Mirantis
 blog.

Microsoft Windows

It is unlikely that you will be able to fully install Nova on
 Microsoft Windows. Microsoft Windows lacks many of the Nova-supporting
 Python libraries and is not supported by Nova orchestration features
 (which are mostly Linux operating system commands). While Microsoft
 Windows is not suitable for the core Nova daemons, Microsoft
 Hyper-V is supported as a compute host.
For more information on using Hyper-V as a virtualization
 technology on your compute hosts, be sure to consult the Hyper-V development wiki
 page.

Source Code

Source code gives you access to the rawest, most flexible, and most
 up-to-date versions of Nova. However, that flexibility requires the most
 proficiency on the part of the end user to install, configure, and deploy.
 To gather Nova in source code format, you will need a few special tools,
 some knowledge of Python development, and a bit of patience.
The Nova source code can either be downloaded as a compressed
 tarball or via the bazaar source control system. Unless you already happen
 to develop with bazaar, it is easier to just download as the tarball. All
 the releases are available at https://launchpad.net/nova/+download. Instructions for
 installing from source are available on the OpenStack wiki “Install
 From Source” article.

Chapter 6. Planning Nova Deployment

As Nova supports a wide range of technologies, configurations, and
 designs, it will be important to make a number of architectural and design
 decisions before looking to deploy it. This section guides you through the
 most important ones before you begin.
Deployment of Nova can be painless with good planning. However, Nova
 does have a lot of moving parts, so it’s good to understand an overview of
 what is trying to be accomplished before you start installing software.
 Figure 6-1 illustrates the preferred workflow
 for installing, configuring, and launching your first instance on
 Nova.
[image: Nova Installation Workflow]

Figure 6-1. Nova Installation Workflow

This is a three-step process:
	Planning Nova Deployment to decide on deployment scenario,
 finalize key design choices, and ensure hardware meets
 requirements

	Installing Nova to get the software, prerequisites, and
 configurations onto the servers

	Using Nova to prep the system for your initial users

Note
This book covers the infrastructure for clouds. As such, it is out
 of scope of the book to describe everything that you will want to do with
 your cloud instance once you have it running.

At each phase of the installation, we will make sure to test the
 results of our actions. Without these tests, it is very easy to get to the
 last steps and find out you need to start over again due to error in an
 early phase.
Virtualization Technology

As you can see from the earlier discussion of Nova’s architecture,
 there are ample choices for virtualization products. I will not go into
 all the factors about the appropriate virtualization technology to choose
 here, but if you have an installed base of hypervisors, that will need to
 be factored into your cloud platform choice.
Caution
Nova requires all compute hosts within a zone to use a single
 virtualization technology. For example, you cannot mix VMware-based
 compute hosts with KVM-based compute hosts. They will all need to be one
 or the other. This may change in future releases.

Unless you already have extensive experience with particular
 virtualization technology, most people will gravitate toward either KVM or
 a Xen-based solution (Xen/XCP/XenServer). Each has its own
 advantages:
	KVM ships with most operating systems and is easy to install and
 configure. It has arguably the best support within Nova (supporting
 advanced Nova features like live migration) and is easy to get support
 on, as it is used widely in the community. However, many people feel
 that it has greater overhead (especially in I/O) and doesn’t support
 some high-end virtualization like memory ballooning.

	Xen-based solutions, on the other hand, excel at performance and
 have been used in some of the largest clouds in the world. It is
 rumored to power Rackspace’s compute cloud, Amazon’s EC2, and GoGrid’s
 cloud. However, this comes at the price of complexity, as they are
 much more challenging to install, configure, and maintain for people
 inexperienced with enterprise virtualization products.

The general rule of thumb at the current time is to configure KVM
 for small or non-production deployments but use a Xen-based technology for
 large-scale production installations.

Authentication

Nova can authenticate against a number of sources. By default, it
 will use the local configuration database (the one specified by the
 --sql_connection flag) for this.
 However, the current version of Nova also supports LDAP for
 authentication. LDAP authentication requires significantly more setup.
 Setup help is available for OpenSSH, OpenLDAP, Sun’s LDAP, and OpenDJ. For
 more information about setting up these options, consult the nova/auth/ directory in the Nova source.

API

Nova features a pluggable architecture for API support. The current
 Nova incarnation supports:
	OpenStack API 1.0 (with preliminary OpenStack 1.1 API
 support)

	Amazon EC2 API

Many customers will probably request the mostly compatible EC2 API
 interface, which supports about 90% of Amazon’s current implementation.
 However, the OpenStack API (especially the 1.1 version) will probably be
 the more widely implemented version in the long run, as it is an open API
 not controlled by a single company.
While there is no technical requirement to pick one API over the
 other, it will be confusing to your users if they need to use both. Very
 few users tools or libraries will support both and allow them to switch on
 an API by API call basis.

Scheduler

There are many choices for your scheduler. As stated earlier, this
 is a conceptually simple, but vitally important part of your deployment.
 The scheduler places instances (virtual servers) onto specific compute
 hosts. While this may not be vitally important if you only have one or two
 compute nodes, it is absolutely critical once you start to grow. Most
 installations will start with the simple scheduler and then write their own
 scheduler as they grow. If writing your own scheduler is not feasible for
 your installation, the next version of Nova (“Diablo”) will feature more
 choices.

Image Service

Images can be a management headache for many installations. While
 using Glance along with Swift is the clear choice for larger
 installations, its management overhead and additional configuration
 complexity may be too much for smaller deployments. In these cases,
 nova-objectstore is probably the best
 alternative.
Caution
Even if you choose Glance as your image catalog, you may still
 need the nova-objectstore on your
 machine. For emulation of the Amazon EC2 AMI uploading and bundling
 semantics, Nova uses the nova-objectstore as a temporary holding space
 for various pieces of the AMI. Only once all the pieces have arrived are
 they assembled and transported into Glance.

Database

As stated earlier, Nova uses a Python library called SQL-Alchemy for database
 abstraction and access. As such, Nova can theoretically support any
 database product that SQL-Alchemy supports. However, in practice, there
 are only three with any level of testing and support within the Nova
 community:
	sqlite3
	While sqlite3 is the default database for development and
 testing, it is unsuitable for production installation due to
 scalability, availability, and performance concerns.

	MySQL
	MySQL is far and away the most popular database for Nova
 production deployments. It is also arguably easiest to setup with
 Nova, and almost all of the documentation assumes you are using it.
 It should be the default choice for most users.

	PostgreSQL
	PostgreSQL is a distant third in usage within the Nova
 community. However, there is a dedicated group using it and it does
 possess many advantageous features for use in large-scale production
 sites. Users with strong experience in deploying and tuning
 PostgreSQL may find this an attractive option.

Assuming that you are looking for a production deployment, the
 decision for database product should come down to PostgreSQL or MySQL.
 Unless you have significant experience with PostgreSQL, MySQL will be a
 better choice, as all documentation is written with MySQL in mind and
 there is a larger support community.

Volumes

Volume storage design should be treated with particular care, as it
 is one of the few components of Nova that stores non-ephemeral data. Most
 large installations will look at using either the SAN or iSCSI options for
 this, as it allows them to utilize enterprise-class hardware and software
 for greater availability and redundancy. However, specialized
 installations (especially high-performance computing or research) may try
 the less production-ready drivers (RDB or Sheepdog) if their data
 survivability is not paramount.

Chapter 7. Installing Nova

With the basics and theory behind us, it is time to get hands-on with
 Nova and install the code on a server. In this chapter, we will walk through
 the installation and configuration of Nova on a single node with both the
 StackOps distro and Ubuntu packages. You’ll get a feeling for the
 complexities of implementing your design choices in actual usage. While
 these installations will be only single nodes, they will contain the entire
 array of OpenStack software and features.
Installing Nova with StackOps

As we described back in StackOps, StackOps
 provides a distro for OpenStack with a bare metal installer. The bare
 metal installer automates most of the installation and configuration
 tasks, leaving very little command line or configuration file editing for
 the administrator. It will install an operating system, necessary software
 packages, and Nova configuration files for us.
Caution
Installing StackOps will overwrite any operating system on your
 server. It is not intended to overlay Nova onto already installed
 servers.

Since our purpose is to get some hands-on experience with Nova, we
 will be installing a single node that runs all the services. As StackOps
 is a full distribution, it makes many of the cloud design choices for us.
 The single node installation has made the following design choices:
	nova-api supporting both the
 OpenStack API and EC2 API

	nova-objectstore (instead of
 Glance) for an image service

	nova-volume with iSCSI
 volumes

	nova-network using FlatDHCP
 manager (configurable)

	MySQL for our database

	RabbitMQ for the messaging queue

	nova-compute using KVM or UML
 for virtualization

	MySQL database for authentication

	nova-scheduler chance
 (default) scheduler

If you have any problems following along with the installation, you
 can find more detailed documentation at the StackOps Documentation
 Site.
Check StackOps Requirements

StackOps has a very basic set of requirements for a minimal
 installation as you can see in Table 7-1.
 While these minimal requirements will get the system installed and
 running, you will be constrained in the number of virtual machines that
 you can launch. At the base 2GB of RAM, you might only be able to launch
 a single small instance.
Table 7-1. Minimal StackOps Configuration
	Component	Specification
	CPU	Intel or AMD x64
	RAM	2GB
	Disk	1 x 30GB Drive
	NIC	1 x 1GbE

As you can see, this minimal configuration should be able to be
 satisfied by most desktops or servers bought within the last few
 years.
Of course, the minimal requirements are only useful for a proof of
 concept or experimental system, but it fits perfectly for our needs. A
 more appropriately configured system could be used as a production
 system. The baseline for this would be as shown in Table 7-2.
Table 7-2. Baseline StackOps Configuration
	Component	Specification
	CPU	2 x Intel/AMD x64
	RAM	32GB
	Disk	2 x 2TB SATA RAID 1 Drives
 2 x 32GB
 SAS/SSD/SATA RAID 1 Drives

	NIC	2 x 1GbE

For the purposes of this book, we will be installing on a very
 small server system called an HP ProLiant MicroServer™. While the exact
 model is irrelevant, it does show that StackOps and Nova can be
 installed on relatively inexpensive and modestly configured hardware
 (The MicroServer retails for under $400 in the United States). The test
 server specifications are shown in Table 7-3.
Table 7-3. StackOps Test Server Specifications
	Component	Specification
	CPU	AMD Athlon II Neo 36L Dual Core (64 Bit CPU running
 at 1.4 Mhz)

	RAM	4GB
	Disk	1 x 250GB SATA Drive
	NIC	2 x 1GBE

Download StackOps

The StackOps Distro is available free from their community website
 at http://www.stackops.org/. It comes in several
 versions and two formats (CD or USB stick image). For the purposes of
 this book, we will be using version 0.2.1 -
 Build 112 (stackops-0.2.1-b112-d20110517), which is based on
 the Nova “Cactus” release. Once you have downloaded the software, burn
 it to a CD or transfer it to your USB stick (depending on which image
 you downloaded).

Install StackOps

Now that we have our CD or USB stick ready, we will go ahead and
 install it on our server. As we decided earlier, we will be installing a
 single node system (everything running on one server) with basic network
 and iSCSI volumes. StackOps makes most of these configuration decisions
 easy for us with their predefined deployment scenarios. All together,
 they offer four deployment scenarios:
	Single Node: All in one deployment.

	Dual Node: One cloud controller node (everything but nova-compute) and one compute node. This
 is the smallest viable production configuration.

	Multi-Node: A four node plus configuration with dedicated
 nova-network, nova-compute, and nova-volume nodes. This is a fairly
 advanced configuration that requires specialized networking.

	Advanced Multi-Node: An upcoming configuration that adds
 monitoring and other options to create a larger scale production
 installation.

We’ll use the “Single Node” scenario for this exercise.
Install Operating System

Your first step in installing your StackOps distro is the
 installation of the operation system, all the necessary prerequisite
 packages, OpenStack packages, and preconfigured nova components. In
 addition, it installs an agent that configures OpenStack for you. When
 you first boot your system with the CD or USB Stick, you’ll be greeted
 with the StackOps splash screen (as seen in Figure 7-1) that resembles most Linux distro
 installations.
[image: StackOps Installation Screen]

Figure 7-1. StackOps Installation Screen

After choosing the “Install StackOps Controller Node,” you’ll be
 led through a number of standard Linux installation screens. They will
 ask you about your language and keyboard layout before installing a
 number of basic components.
After it has completed the basic components installation, it
 will ask you to configure your network settings. Enter your IP
 address, management network IP, netmask, and default gateway address.
 It will then try and contact a public NTP (Network Time Protocol)
 server. If it fails, it will ask you to specify one manually.
Note
StackOps requires that the nodes have static IP addresses, not
 DHCP provided ones.

Since I am putting this server on my home network, I have chosen
 192.168.1.65 as my server node IP address. This is out of my home
 router’s DHCP block so that I won’t have any conflicts. I’ve set the
 gateway address to 192.168.1.254 (my DSL router) and used the normal
 255.255.255.0 netmask.
Once the network has been configured, you will move on to disk
 partitioning. This shows standard Linux disk partitioning
 screens.
Caution
To complete this installation and use nova-volume, you need to have one extra
 empty partition. This can be an extra hard drive in your machine, an
 external hard drive, or extra partition. If you only have only one
 hard drive (like the machine in this example), you should create an
 unused partition in this step. If you don’t, you’ll need an external
 hard drive to complete the install. In my example, I simply plugged
 a 16GB flash drive into the USB port.

After the disk is partitioned and formatted, the base operating
 system and OpenStack packages will be installed. This will take a
 while. When it is finished, pop out the CD or USB stick and reboot the
 machine. It should boot to the command prompt, as shown in Figure 7-2.
[image: StackOps Login Screen]

Figure 7-2. StackOps Login Screen

Now that the machine is up and running, let’s test to make sure
 everything went all right before we move on to configuring our cloud.
 Login to the server as the “root” user with the password “stackops” to
 get a root user prompt. Check to make sure that the StackOps agent is
 running by checking its log file:
more /var/log/nova/installer-agent.py.log
2011-07-04 11:28:14-0700 [-] Log opened.
2011-07-04 11:28:14-0700 [-] Starting server: 2011-07-04 11:28:14.515648
2011-07-04 11:28:14-0700 [-] twisted.web.server.Site starting on 8888

Configure with Smart Installer

With the basic distro successfully installed, it is now time to
 configure the Nova software. StackOps has an agent-based “Smart
 Installer” that guides you through the configuration process, gives
 you intelligent defaults, and then applies the configuration to your
 newly installed server. While we are only using it for a simple
 single-node install here, it will also configure and apply to multiple
 servers according to their role in the deployment scenario.
The first step in running the Smart Installer is to connect a
 web browser to the address shown in the banner of your server’s login
 screen. This should be an address in the form of http://xxx.xxx.xxx.xxx:8888/, where xxx.xxx.xxx.xxx is your server’s IP address.
 Once you connect to that address, you will be redirected to Smart
 Installer login screen.
Note
Your browser will need to have access to the Internet. It acts
 as a middleman between the two, gathering config data from your
 server and transferring to the configuration web application. Your
 server does not need access to the Internet.

The first screen of the Smart Installer will ask you to create
 an account and then login. While creating an account is not a
 necessity, it will allow you to save, edit, and redeploy your
 configurations later. Figure 7-3 shows the
 login screen.
[image: StackOps Smart Installer Login]

Figure 7-3. StackOps Smart Installer Login

Once registered and logged in, the Smart Installer will step you
 through a number of screens to configure your Nova deployment. The
 first screen is the most important: choosing your deployment scenario
 (Figure 7-4). We will be using the “single
 node” scenario.
[image: StackOps Deployment Architecture]

Figure 7-4. StackOps Deployment Architecture

Next, it will help you configure your controller functions
 (nova-api, networks, database,
 queue, etc.) of your installation. The first of these screens will
 review your hardware configuration, as shown in Figure 7-5.
[image: StackOps Smart Installer Hardware Review]

Figure 7-5. StackOps Smart Installer Hardware Review

Once you review the hardware configurations, you can advance to
 the software requirements screen. This is also a read-only screen, and
 after reviewing your server network configuration, you can go on to
 the next screen.
The next screen shows the configuration options for network
 topologies. Since we are using a single-interface test server, we
 don’t need to change anything (it should be preset to your eth0
 interface). In more advanced deployment scenarios, this screen lets
 you assign separate service, storage, and public networks. Advance to
 the next screen.
The next screen is the most important screen of our
 configuration. It shows the global service options. This screen allows
 you to customize the configurations for:
	Database

	Queue

	EC2 API

	S3 repository

	Authentication

	Logging

	Network

Of all these options, the only one that we must edit is the network section. Figure 7-6 shows the networking
 options.
[image: StackOps Smart Installer Global Networking]

Figure 7-6. StackOps Smart Installer Global Networking

Pay close attention these configurations. Misconfiguring this
 step will result in your instances not starting or being unable to be
 reached. Use the following guidelines for these options:
	type: Choose your network manager. We will leave this at
 nova.network.manager.FlatDHCPManager.

	fixed_range: Choose your fixed (private) IP address range.
 It is fine to use the default 10.0.0.0/8 range as long as this
 does not conflict with your current network settings. As I use the
 192.168.1.0/24 range on my internal network, I will leave the
 default.

	network size: Choose the size of your fixed IP range. For
 this single node installation, this is not relevant, but we will
 make it smaller. My test server uses 8.

	floating range: This is the most important entry. Enter the
 range for your floating IPs (public addresses) that are available
 on your network. Since my internal network uses the 192.168.1.0/24
 range, I have configured my router to only give out IP addresses
 in the 192.168.1.1 - 192.168.1.64 range. I decided to have my
 instances use the addresses in the 192.168.1.129 - 192.168.1.134
 range. Consulting my handy subnet calculator, I used 192.168.1.128/29 for this entry.

Caution
This is the most likely place that your installation will go
 wrong. Make sure that you carefully plan and review your entries
 here. If you are in doubt, consult your local network
 administrator.

When you are satisfied with your network options, move on to the
 compute screen. All the options on this screen should be fine for our
 test installation. The only option that you might want to review is
 your libvirt type. This pull-down
 menu lets you choose between QEMU and KVM virtualization. Unless you
 do not have a KVM capable machine, you should leave it on KVM.
The final configuration screen for the Smart Installer is the
 volume options. You may need to change the lvm_device option to the device path for
 your empty partition that you created during the Install Operating System step.
Caution
As the screen says, “Choose a device that you are 100% sure is
 not already in use!” This device will be completely erased. I
 usually use a blank USB stick for this step and choose /dev/sdb1 from the pull-down menu.

With the volume configuration done, you are ready to install
 your configuration to your server, as shown in Figure 7-7.
[image: StackOps Smart Installer Ready To Install]

Figure 7-7. StackOps Smart Installer Ready To Install

Test StackOps Installation

Now that we have finished the installation and configuration,
 let’s make sure that everything is up and running. Log in into your Nova
 server as root with the ’stackops’ password. Once you’ve logged into the
 server, add the Nova binaries to your path.
export PATH=$PATH:/var/lib/nova/bin/
Then check to make sure all the services are up and running with
 the nova-manage command.
nova-manage service list
nova-controller nova-compute enabled :-) 2011-07-07 06:53:05
nova-controller nova-network enabled :-) 2011-07-07 06:52:58
nova-controller nova-scheduler enabled :-) 2011-07-07 06:53:04
nova-controller nova-volume enabled :-) 2011-07-07 06:53:04
As you can see, we’ve used the nova-manage command with the service list arguments to query the database
 and see which services are registered, enabled, and running. The
 “smiley” field (the :-) between the ‘enabled’ and
 last checked in fields) shows that each of the services are healthy. If
 they hadn’t checked in with the database in a while, we would see ‘XXX’
 in their listing. The nova-manage
 command is covered more thoroughly in Chapter 9.

Installing Nova from Packages

For this installation, we will use a slightly more powerful machine.
 This machine is a workstation-class machine with more RAM and a faster
 processor. Please note that we don’t need any more powerful a machine for
 this installation—I simply would like to run more virtual instances. We
 could use the exact same machine as in the StackOps installation
 section.
Table 7-4. Packages Test Server Specifications
	Component	Specification
	CPU	AMD Phenom™ 9550 Quad-Core Processor

	RAM	8GB
	Disk	1 x 1TB SATA Drive
	NIC	2 x 1GBE

Install Base Operating System

We will assume that we are starting with a default Ubuntu 10.10
 server installation. The only software packages that we have installed
 beyond the basics are the “virtual machine host” and “openssh server”
 options. Just as with the StackOps installation, we have installed the
 server with fixed IP addresses and an empty partition for use with
 nova-volume.

Install Nova Packages

Install Prerequisites

Now that we are sure that virtualization works on our single
 machine, let’s complete a few more dependencies for Nova. Install
 RabbitMQ as our message queue by adding the rabbitmq-server package.
Caution
Before installing RabbitMQ, make sure that your hostname is
 set to your correct IP address in your /etc/hosts file. Without this correctly
 entered, RabbitMQ will refuse to start.

$ sudo apt-get install rabbitmq-server
This will drag along a number of packages with it, mainly erlang
 ones. You can check to make sure this is running with the rabbitmqctl:
$ sudo rabbitmqctl status
Status of node rabbit@cactus ...
[{running_applications,[{rabbit,"RabbitMQ","1.8.0"},
 {mnesia,"MNESIA CXC 138 12","4.4.12"},
 {os_mon,"CPO CXC 138 46","2.2.4"},
 {sasl,"SASL CXC 138 11","2.1.8"},
 {stdlib,"ERTS CXC 138 10","1.16.4"},
 {kernel,"ERTS CXC 138 10","2.13.4"}]},
 {nodes,[rabbit@cactus]},
 {running_nodes,[rabbit@cactus]}]
...done.
Install MySQL as your database with the mysql-server package if it is not already
 installed on your server:
$ sudo apt-get install mysql-server
When it asks for your MySQL password, remember to write down the
 password, as we will need it later. With the database server
 installed, let’s create the Nova database.
Note
If you are going to use this database with machines other than
 just this one, you need to edit your /etc/mysql/my.cnf configuration file.
 Specifically, you need to change the bind-address = 127.0.0.1 to bind-address = 0.0.0.0 so that it listens
 on all your network interfaces, not just the loopback.

$ mysqladmin -u root -p create nova
$ mysqlshow -u root -p
Enter password:
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| nova |
+--------------------+
With the database created, we now need to make an account for
 the user nova. We’ll just use some
 quick SQL statements to grant privileges and set the password before
 we login to make sure we did it correctly.
$ mysql -u root -p -e "GRANT ALL PRIVILEGES ON *.* TO 'nova'@'%' WITH GRANT OPTION;"
Enter password:
$ mysql -uroot -p -e "SET PASSWORD FOR 'nova'@'%' = PASSWORD('nova');"
Enter password:
$ mysql -u nova -p nova
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 56
Server version: 5.1.49-1ubuntu8.1 (Ubuntu)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
This software comes with ABSOLUTELY nova-objectstore WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>
Finally, add a few final prerequisite packages for this specific
 configuration:
$ sudo apt-get install python-greenlet python-mysqldb python-software-properties dnsmasq
The first three are necessary Python libraries and the last one
 will give us DHCP and other services for nova-network.
The final prerequisite is installing and configuring iSCSI for
 nova-volume. This is a two-step
 process: creating the volume group with Linux Volume Manager (LVM) and
 starting iSCSI services. To create the volume group, use the following
 commands (we are using /dev/sde1
 for this simple example):
$ sudo pvcreate /dev/sde1
 Physical volume "/dev/sde1" successfully created
$ sudo vgcreate nova-volumes /dev/sde1
 Volume group "nova-volumes" successfully created
Caution
Your volume group needs to be called nova-volume for nova-volume to recognize it. Volumes will
 not work with another volume group name.

To start iSCSI services, simply make sure that the ISCSITARGET_ENABLE option is set to true in the /etc/default/iscsitarget file and start the
 iscsitarget service:
$ sudo sed -i 's/false/true/g' /etc/default/iscsitarget
$ sudo service iscsitarget start
With these final steps complete, we are done with installing and
 configuring the Nova prerequisites.

Install Nova

Now let’s make sure we’ve added the Launchpad PPAs to our
 configuration:
$ sudo add-apt-repository ppa:openstack-release/2011.2
Executing: gpg --ignore-time-conflict --no-options --no-default-keyring
--secret-keyring /etc/apt/secring.gpg --trustdb-name /etc/apt/trustdb.gpg
--keyring /etc/apt/trusted.gpg --primary-keyring /etc/apt/trusted.gpg
--keyserver keyserver.ubuntu.com --recv 94CA80414F1043F6495425C37D21C2EC3D1B4472
gpg: requesting key 3D1B4472 from hkp server keyserver.ubuntu.com
gpg: key 3D1B4472: public key "Launchpad PPA for OpenStack release team" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
$ sudo apt-get update
Now let’s move onto installing the Nova packages, which will
 drag a few more dependencies with it. Type the following
 command:
$ sudo apt-get install -y nova-common nova-doc nova-api \
 nova-network nova-objectstore nova-scheduler nova-compute \
 python-nova nova-volume unzip
These install lines added most of the packages that you would
 expect (nova-api, nova-compute, etc.), along with a large
 number of dependencies. In addition, the package installation scripts
 have added a system user “nova” and added it to the appropriate
 groups.
It has also set up a minimal configuration file in /etc/nova/nova.conf for you:
$ more /etc/nova/nova.conf
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/var/lock/nova
--verbose
Now let’s make sure that Nova sees all of our services and they
 are running:
$ sudo nova-manage service list
cactus nova-network enabled :-) 2011-07-10 00:04:39.928905
cactus nova-compute enabled :-) 2011-07-10 00:04:40.154642
cactus nova-scheduler enabled :-) 2011-07-10 00:04:40.044152
cactus nova-volume enabled :-) 2011-07-10 00:04:43.540773
Note
Chapter 9 explains the use of
 nova-manage in much greater
 detail.

Since we are seeing all smiley faces, it looks like Nova is
 installed correctly.

Install Glance

Now that we have Nova on the server, let’s install Glance as our
 image service:
$ sudo apt-get install glance python-glance-doc
This installation will use the default configuration, which uses
 sqlite3 for the database.

Configure OpenStack

First, let’s configure it to use our MySQL database that we
 created earlier. To do this, just add the following flag to the
 /etc/nova.conf config
 file:
--sql_connection=mysql://nova:nova@127.0.0.1/nova
This flag contains the driver (“mysql:”), user and password
 separated by a colon (“nova:nova”), the server address or hostname
 (“127.0.0.1”), and the database name (“/nova”). It also optionally
 includes the mysql port number after the hostname or server IP
 address.
We will also set our installation to use KVM for virtualization.
 While this is the default, it is a good practice to explicitly set it
 in the /etc/nova.conf
 file.
--libvirt_type=kvm
Now let’s set Nova to use the Glance installation by adding
 these two options to /etc/nova.conf:
--glance_host=127.0.0.1
--image_service=nova.image.glance.GlanceImageService
With that completed, we’ll move on to configuring the networking
 options. First up is adding the network manager related options to
 /etc/nova.conf:
--network_manager=nova.network.manager.FlatDHCPManager
--fixed_range=10.0.0.0/8
--network_size=8
Now, let’s add our network into the database with the nova-manage command:
nova-manage network create 10.0.0.0/8 1 8
Finally, we will create the floating addresses using a range
 that will not overlap with the StackOps installation.
nova-manage floating create cactus 192.168.1.136/29
With all the /etc/nova.conf
 changes made, we can create the database schema by running the
 nova-manage db commands. First, we will sync the database (create the schema), then
 we will version the database to
 make sure that the schema creation succeeded.
$ sudo nova-manage db sync
$ sudo nova-manage db version
14
And we are done with the configuration. All that is left to do
 now is restart the Nova daemons to pick the new configuration
 options.
$ sudo restart libvirt-bin; sudo restart nova-network; sudo restart nova-compute; \
 sudo restart nova-api; sudo restart nova-objectstore; sudo restart nova-scheduler; \
 sudo restart nova-volume
libvirt-bin start/running, process 22673
nova-network start/running, process 22729
nova-compute start/running, process 22776
nova-api start/running, process 22838
nova-objectstore start/running, process 22846
nova-scheduler start/running, process 22933

Chapter 8. Using Nova

Now that we have a working Nova installation, we need to ready it for
 use by our initial users. This requires us to do some command-line
 configuration on the Nova controller (or the server with the database).
 First, we will add a user, then upload a virtual disk image, launch the
 instance, and finally configure network access for it.
Creating User and Projects

The first step is using our new Nova installation is to create a
 user. This is a multi-step process that uses the nova-manage utility to create a project.
nova-manage user create ken
export EC2_ACCESS_KEY=d77406c3-cea1-45af-bbd9-acfd16ff49e3
export EC2_SECRET_KEY=b9c6ab50-65d7-4185-a1a9-267a2afe30f9
nova-manage role add ken cloudadmin
nova-manage project create book ken
nova-manage project zipfile book ken
The final command in the example will produce a zip-compressed file
 called nova.zip. Now uncompress the credential zip
 file and source the resulting novarc.
 This will set a number of environmental variables needed to access your
 Nova installation with other utilities. If you are creating this user on
 behalf of another user, you will need to give him this zipfile.
unzip nova.zip
Archive: nova.zip
 extracting: novarc
 extracting: pk.pem
 extracting: cert.pem
 extracting: cacert.pem
. ./novarc
While not necessary, you might want to view novarc to find out what environmental variables
 it is setting for you. Remember that you will need to source this file in
 every session if you want to access your Nova deployment. You might want
 to add it to your shell profile to have it automatically sourced on
 login.
more novarc
NOVA_KEY_DIR=$(pushd $(dirname $BASH_SOURCE)>/dev/null; pwd; popd>/dev/null)
export EC2_ACCESS_KEY="d77406c3-cea1-45af-bbd9-acfd16ff49e3:book"
export EC2_SECRET_KEY="b9c6ab50-65d7-4185-a1a9-267a2afe30f9"
export EC2_URL="http://192.168.1.65:8773/services/Cloud"
export S3_URL="http://192.168.1.65:3333"
export EC2_USER_ID=42 # nova does not use user id, but bundling requires it
export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/pk.pem
export EC2_CERT=${NOVA_KEY_DIR}/cert.pem
export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem
export EUCALYPTUS_CERT=${NOVA_CERT} \
euca-bundle-image seems to require this set
alias ec2-bundle-image="ec2-bundle-image --cert ${EC2_CERT} --privatekey \
${EC2_PRIVATE_KEY} --user 42 --ec2cert ${NOVA_CERT}"
alias ec2-upload-bundle="ec2-upload-bundle -a ${EC2_ACCESS_KEY} \
-s ${EC2_SECRET_KEY} --url ${S3_URL} --ec2cert ${NOVA_CERT}"
export NOVA_API_KEY="d77406c3-cea1-45af-bbd9-acfd16ff49e3"
export NOVA_USERNAME="ken"
export NOVA_URL="http://192.168.1.65:8774/v1.0/"

Uploading Images

Before we can launch instances, we need to upload a virtual disk
 image into Nova. There are a number of different images that you can use
 with your Nova installation. You can also make your own images.
For the purposes of our test server setup, let’s use Ubuntu’s
 Enterprise Cloud images. We’ll download the newest Ubuntu Server image for
 use on our cloud.
wget \
>http://uec-images.ubuntu.com/server/releases/natty/release/\
>ubuntu-11.04-server-uec-amd64.tar.gz
Once we have that image, we need to upload it into the Nova image
 store. How we do this varies depending on the image store that we’ve
 chosen. For our StackOps installation (which uses the nova-objectstore), we can use the uec-publish-tarball utility. To use this
 utility, give it the compressed image and container/bucket name (I’ve used
 images as my bucket name for this example).
uec-publish-tarball ubuntu-11.04-server-uec-amd64.tar.gz images
Mon Jul 4 13:25:19 PDT 2011: ====== extracting image ======
Warning: no ramdisk found, assuming '--ramdisk none'
kernel : natty-server-uec-amd64-vmlinuz-virtual
ramdisk: none
image : natty-server-uec-amd64.img
Mon Jul 4 13:25:32 PDT 2011: ====== bundle/upload kernel ======
Mon Jul 4 13:25:34 PDT 2011: ====== bundle/upload image ======
Mon Jul 4 13:26:46 PDT 2011: ====== done ======
emi="ami-6683ba18"; eri="none"; eki="aki-7eea4179";
The emi="ami-6683ba18” part is
 what we are interested in. It is the machine image. We’ll use it later
 when we launch an instance.
Now that we have images, let’s make sure that Nova knows the image
 is available and ready to use. We can check this through the EC2 API with
 the euca-describe-images utility. Make
 sure you’ve sourced your user credentials before executing this
 command.
euca-describe-images
IMAGE aki-7eea4179 images/natty-server-uec-amd64-vmlinuz-virtual.manifest.xml
available public x86_64 kernel
IMAGE ami-6683ba18 images/natty-server-uec-amd64.img.manifest.xml available
public x86_64 machine aki-7eea4179
We can also check for images through the OpenStack API with the
 nova command-line tool.
$ nova image-list
+------------+------+--------+
| ID | Name | Status |
+------------+------+--------+
| 1719908888 | None | ACTIVE |
| 2129281401 | None | ACTIVE |
+------------+------+--------+

Launching Instances

Now that we have a valid user and virtual disk image, we are ready
 to launch our first Nova instance. But before we start spinning up
 instances, we need to make a keypair so that we will be able to log in to
 the new instance via ssh. To create your keypair, use the euca-add-keypair tool:
euca-add-keypair ken > ken.pem
chmod 600 ken.pem
Now that we have the key, let’s launch an instance. Launching an
 instance via the EC2 API requires three arguments: your keypair name (not
 the filename “ken.pem”, just “ken”), the size (although it will default to
 “m1.tiny”), and the machine image name (we’ll use our previously uploaded
 “ami-6683ba18” image):
euca-run-instances -k ken -t m1.tiny ami-6683ba18
RESERVATION r-1pkchwbm book default
INSTANCE i-00000001 ami-6683ba18 scheduling ken (book, None) 0 m1.tiny
2011-07-04T20:28:51Z unknown zone
As you can see from the output from euca-run-instances, our instance has been
 launched and it is currently in the 'scheduling' state. If we wait a few minutes and
 everything goes well, it should progress to the 'running' state. We can check on its progress
 through the EC2 API with the euca-describe-instances command:
euca-describe-instances
RESERVATION r-1pkchwbm book default
INSTANCE i-00000001 ami-6683ba18 10.0.0.2 10.0.0.2 running
ken (book, nova-controller) 0 m1.tiny 2011-07-04T20:28:51Z nova
We can also use the nova utility
 to make the same query through the OpenStack API. With this tool, you are
 looking for the 'ACTIVE' status:
nova list
+----+----------+--------+---------------+------------+
| ID | Name | Status | Public IP | Private IP |
+----+----------+--------+---------------+------------+
| 1 | Server 1 | ACTIVE | | 10.0.0.2 |
+----+----------+--------+---------------+------------+
Note
If your instance never makes it to 'ACTIVE' status or 'running' state after 10 minutes, something has
 mostly likely gone awry. Check the your logs (in this order) for
 nova-api, nova-compute, nova-network, and then nova-scheduler.

Configuring Network Connectivity

With the instance up and running, we now need to configure network
 access to it. This is a two-step process: first, we need to permit traffic
 to the instance, and then we need to associate a public IP address to it.
 Without configuring network access to it, you won’t be able to access it
 from outside of the Nova. In this example, we will permit SSH (TCP port 22) and ICMP traffic to our instance from any IP
 address.
euca-authorize default -P tcp -p 22 -s 0.0.0.0/0
GROUP default
PERMISSION default ALLOWS tcp 22 22 FROM CIDR 0.0.0.0/0
euca-authorize default -P icmp -t -1:-1
GROUP default
PERMISSION default ALLOWS icmp -1 -1
Note
Realize that we’ve only permitted basic access to the instance. If
 you want to communicate with the server beyond ping and SSH, you’ll need to authorize additional
 ports. For example, to allow for web server traffic, you will need to
 authorize TCP port 80.

With traffic permitted to the instance, we now need to assign a
 public address to it. This is also a two-step process: allocate an address
 and then associate it to our instance.
euca-allocate-address
ADDRESS 192.168.1.128
euca-associate-address -i i-00000001 192.168.1.128
ADDRESS 192.168.1.128 i-00000001
nova list
+----+----------+--------+---------------+------------+
| ID | Name | Status | Public IP | Private IP |
+----+----------+--------+---------------+------------+
| 1 | Server 1 | ACTIVE | 192.168.1.128 | 10.0.0.2 |
+----+----------+--------+---------------+------------+
Caution
Public addressing operates differently on Nova than on Amazon EC2.
 EC2 automatically assigns each instance a public and private address
 (floating and fixed addresses in Nova). Nova automatically assigns a
 private address but requires manual allocation of a public
 address.

Accessing Instances

With network access completely configured, we are finally able to
 log in to our instance. Our image has been set up with SSH access secured with our keypair. Use
 SSH with our keypair filename (ken.pem), along with our username (which is
 “ubuntu” for this image) and the public IP address from our last step
 (192.168.1.128 in this example):
ssh -i ken.pem ubuntu@192.168.1.128
Welcome to Ubuntu 11.04 (GNU/Linux 2.6.38-8-virtual x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Tue Jul 5 04:12:18 UTC 2011

 System load: 0.0 Processes: 61
 Usage of /: 41.5% of 1.35GB Users logged in: 0
 Memory usage: 19% IP address for eth0: 10.0.0.2
 Swap usage: 0%

 Graph this data and manage this system at https://landscape.canonical.com/

At the moment, only the core of the system is installed. To tune the
system to your needs, you can choose to install one or more
predefined collections of software by running the following
command:

 sudo tasksel --section server

Last login: Mon Jul 4 23:50:50 2011 from 192.168.1.67
ubuntu@i-00000001:~$
Congratulations! You have installed your cloud, configured it for
 use, and launched your first virtual machine.
At this point, you can deploy your applications and use it as any
 other server. But before we finish, let’s do a few more things.

Attaching Volumes

Let’s create our first volume. This is a straightforward euca-create-volume with the arguments -s 1 (for the size of the volume in gigabytes)
 and -z nova (which is nova as the
 default) for the zone. It will return with the volume name and its status
 (creating). You can check on the status with the euca-describe-volumes.
$ euca-create-volume -s 1 -z nova
VOLUME vol-00000003 1 creating (book, None, None, None)
2011-07-11T00:08:34Z
Caution
Volumes are only currently supported with the Amazon EC2 API. As
 such, you will need to use euca2ools if you want to use volumes with
 your instances.

Once the volume has been created, attach it to a running instance
 with the euca-attach-volume.
euca-attach-volume vol-00000003 -i i-00000004 -d /dev/vdb
VOLUME vol-00000003
euca-describe-volumes
VOLUME vol-00000001 1 nova error (book, nova-controller, None, None)
2011-07-10T22:55:28Z
VOLUME vol-00000002 1 nova error (book, nova-controller, None, None)
2011-07-10T22:57:02Z
VOLUME vol-00000003 1 nova in-use (book, nova-controller,
i-00000004[nova-controller], /dev/vdb) 2011-07-11T00:08:34Z
Volumes will show up as raw devices at /dev/vdb. As with any raw device, you will need
 to make a filesystem on it and then mount it.
$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/vda 1.4G 549M 767M 42% /
devtmpfs 246M 144K 245M 1% /dev
none 247M 0 247M 0% /dev/shm
none 247M 40K 247M 1% /var/run
none 247M 0 247M 0% /var/lock
$ sudo mkdir /volumes
$ sudo mkfs -t ext3 /dev/vdb
$ sudo mount /dev/vdb /volumes
$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/vda 1.4G 549M 767M 42% /
devtmpfs 246M 144K 245M 1% /dev
none 247M 0 247M 0% /dev/shm
none 247M 40K 247M 1% /var/run
none 247M 0 247M 0% /var/lock
/dev/vdb 1008M 34M 924M 4% /volumes
Caution
Volumes may only be attached to one instance at a time. Volumes
 cannot be shared between instances concurrently.

Once you are done using the volume, you can umount the volume as any other. Now that the
 volume is no longer mounted on our instance, we can safely detach it with
 the euca-detach-volume.
$ sudo umount /volumes
ubuntu@i-00000004:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/vda 1.4G 549M 767M 42% /
devtmpfs 246M 144K 245M 1% /dev
none 247M 0 247M 0% /dev/shm
none 247M 40K 247M 1% /var/run
none 247M 0 247M 0% /var/lock
euca-describe-volumes
VOLUME vol-00000003 1 nova in-use
(book, nova-controller, i-00000004[nova-controller], /dev/vdb) 2011-07-11T00:08:34Z
euca-detach-volume vol-00000003
VOLUME vol-00000003
euca-describe-volumes
VOLUME vol-00000003 1 nova available (book, nova-controller, None, None)
 2011-07-11T00:08:34Z
Finally, you can completely destroy the detached volume with the
 euca-delete-volume. This will take a
 while, as the volume will be completely zeroed out to prevent other users
 from seeing this data.
euca-describe-volumes
VOLUME vol-00000003 1 nova available (book, nova-controller, None, None)
 2011-07-11T00:08:34Z
euca-delete-volume vol-00000003
VOLUME vol-00000003
euca-describe-volumes
VOLUME vol-00000003 1 nova deleting (book, nova-controller, None, None)
 2011-07-11T00:08:34Z
euca-describe-volumes
#

Terminating Instances

Instances can be ended with the euca-terminate-instances. It accepts one or more
 instance ids as arguments.
$ euca-describe-instances
RESERVATION r-9puzwes7 book default
INSTANCE i-00000004 ami-6683ba18 10.0.0.2 10.0.0.2 running
ken (book, nova-controller) 0 m1.tiny 2011-07-11T00:10:42Z nova
euca-terminate-instances i-00000004
euca-describe-instances
Caution
Simply shutting down or powering off an instance does not
 terminate it in Nova. You need to actually use the euca-terminate-instances command to release
 their resources. This is different behavior than you may be used to from
 Amazon EC2.

Chapter 9. Administering Nova

Nova has a myriad of configuration options due to its wide support of
 differing technologies, products, and architectures. This section gives you
 an overview of the most important configuration options, as well as
 important administrative commands to bend Nova to your will.
Configuration Files

Nova daemons are given configuration options on startup through a
 set of flags usually set in text file. Traditionally, this file is located
 at /etc/nova.conf. However, these
 flags can also be set directly on the command line or in an alternate
 configuration file that is designated at run time.
Note
To use an alternate configuration file with the a Nova daemon,
 simply make the file path the argument to the --flagfile=/path/to/altnova.conf flag. To pass
 arbitrary flags on the command line, simply include them and they will
 override the values in the configuration file.

The /etc/nova.conf file is a
 very simple format: put each flag on a separate line, with no comments or
 other characters. Here is an example of a minimal /etc/nova.conf file:
--sql_connection=mysql://root:nova@localhost/nova
--auth_driver=nova.auth.dbdriver.DbDriver
--daemonize=1
--fixed_range=172.16.0.0/24
--network_size=32
Caution
One of the weaknesses of Nova is that the /etc/nova.conf does not not support comments.
 All lines in the file are evaluated. As such, it does not include any
 helpful configuration comments that you might see in other open source
 packages.

The most complete list of Nova configuration flags is maintained at
 http://wiki.openstack.org/FlagsGrouping. Please note
 that this last sentence said “most complete,” not “definitive.” The
 definitive source of all configuration flags is the Nova source
 code.

Configuration Tools

Nova administration is accomplished through a tool called nova-manage. Most commands take the form
 nova-manage command subcommand and any necessary arguments. At any
 time, you can see help for nova-manage
 by leaving off any arguments, subcommands, or commands. Here is an example
 of finding help for creating a new user:
$ nova-manage
nova-manage category action [<args>]
Available categories:
 user
 account
 project
 role
 shell
 vpn
 fixed
 floating
 network
 vm
 service
 db
 volume
 instance_type
 image
 flavor
$ nova-manage user
nova-manage category action [<args>]
Available actions for user category:
 admin
 create
 delete
 exports
 list
 modify
 revoke
$ nova-manage user create
Possible wrong number of arguments supplied
user create: creates a new user and prints exports
 arguments: name [access] [secret]
2011-07-15 18:55:13,520 CRITICAL nova [-] create() takes at least 2 arguments (1 given)
Do not worry about the error after the nova-manage user create—it is simply telling you
 that you haven’t supplied the necessary arguments.
Service

Services can be monitored through the nova-manage command on a service or host
 basis. With the service, you can
 either view or actively manage services. For example, you can query a
 host for the services that it currently offers, or simply list all the
 services that are available. This is an essential command for testing or
 troubleshooting your deployment. Below is an example that walks through
 the full array of of service
 subcommands: listing services, enabling and disabling services, and
 describing resources on a host.
nova-manage service list nova-controller nova-compute
nova-controller nova-compute enabled :-) 2011-07-08 22:36:54
nova-manage service disable nova-controller nova-scheduler
nova-manage service list
nova-controller nova-compute enabled :-) 2011-07-08 22:38:04
nova-controller nova-network enabled XXX 2011-07-08 22:38:12
nova-controller nova-scheduler disabled :-) 2011-07-08 22:38:07
nova-controller nova-volume enabled :-) 2011-07-08 22:38:07
nova-manage service enable nova-controller nova-scheduler
nova-manage service list
nova-controller nova-compute enabled :-) 2011-07-08 22:38:24
nova-controller nova-network enabled :-) 2011-07-08 22:38:22
nova-controller nova-scheduler enabled :-) 2011-07-08 22:38:27
nova-controller nova-volume enabled :-) 2011-07-08 22:38:27
nova-manage service describe_resource nova-controller
HOST PROJECT cpu mem(mb) disk(gb)
nova-controller(total) 2 3930 219
nova-controller(used) 0 368 12
nova-controller book 1 512 0
nova-manage service also allows you to update resources
 that are available on a particular host. This is only applies to compute
 hosts.

Quotas

Nova can apply quotas on number of instances, total cores, total
 volumes, volume size, and other items on a per-project basis. Table 9-1 illustrates all quota options, their default
 values, and a brief description.
Table 9-1. Nova Quotas
	Quota Flag	Default Value	Description
	quota_instances	10	number of instances allowed per project
	quota_cores	20	number of instance cores allowed per project
	quota_volumes	10	number of volumes allowed per project
	quota_gigabytes	1000	number of volume gigabytes allowed per project
	quota_floating_ips	10	number of floating ips allowed per project
	quota_metadata_items	128	number of metadata items allowed per instance
	quota_max_injected_files	5	number of injected files allowed
	quota_max_injected_file_content_bytes	10 * 1024	number of bytes allowed per injected file
	quota_max_injected_file_path_bytes	255	number of bytes allowed per injected file path

These default values for all projects are set in the source code
 (nova/quota.py) but can be
 overridden for all projects or individual projects. To override the
 default value for all projects, simply add the appropriate flag with a
 new value to the /etc/nova.conf
 file. For example, to change the total cores available to each project,
 append this line to the /etc/nova.conf file:
--quota_cores=100
It is also possible to adjust quotas on particular projects with
 the nova-manage command. To increase
 the total cores allotted to a mythical “payroll” project, execute the
 following command:
$ nova-manage project quota payroll cores 150
metadata_items: 128
gigabytes: 1000
floating_ips: 10
instances: 100
volumes: 10
cores: 150
Caution
As you may have noticed, the flags for quotas (quota_cores) are different from the nova-manage command keys (cores). Using the flag in nova-manage or the nova-manage keys in /etc/nova.conf will have no effect.

As you can see from the command listing above, we specified the
 project (“payroll”), then the quota key (“cores”), and finally the new
 value. Executing nova-manage project quota
 payroll without a key and value will print out a list of the
 current values for all quotas.

Database

The nova-manage db command is rarely used except for
 troubleshooting and upgrades. It has two subcommands: sync and version. The sync subcommand will upgrade the database
 scheme for new versions of Nova and the version will report the current
 version.
Note
Nova uses a database abstraction library called SQL-Alchemy to
 interact with its database. A complimentary package called sqlalchemy-migrate is used to manage the
 database schema. Inspired by Ruby on Rails’ migrations feature, it
 provides a programmatic way to handle database schema changes. For
 Nova administrators, this only applies when they are upgrading
 versions.

To upgrade scheme versions, use the nova-manage db
 sync. This should be rarely used unless you are installing
 from source or upgrading your installation. If there are pending scheme
 migrations, it will apply those to your database. If there are not, it
 will return nothing.
nova-manage db sync
#
To view the database scheme version, use the db version arguments:
nova-manage db version
14
Note
The database version for Cactus is 14

Instance Types and Flavors

Instance types (or “flavors,” as the OpenStack API calls them) are
 resources granted to instances in Nova. In more specific terms, this is
 the size of the instance (vCPUs, RAM, Storage, etc.) that will be
 launched. You may recognize these by the names “m1.large” or “m1.tiny”
 in Amazon Web Services EC2 parlance. The OpenStack API calls these
 “flavors” and they tend to have names like “256 MB Server.”
Instance types or flavors are managed through nova-manage with the instance_types command and an appropriate
 subcommand. At the current time, instance type manipulation isn’t
 exposed through the APIs nor the adminclient.
Note
You can use the flavor
 command as a synonym for instance_types in any of these
 examples.

During installation, Nova creates five instance types that mirror
 the basic Amazon EC2 instance types. To see all currently active
 instance types, use the list
 subcommand:
$ nova-manage instance_type list
m1.medium: Memory: 4096MB, VCPUS: 2, Storage: 40GB, FlavorID: 3, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.large: Memory: 8192MB, VCPUS: 4, Storage: 80GB, FlavorID: 4, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.tiny: Memory: 512MB, VCPUS: 1, Storage: 0GB, FlavorID: 1, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.xlarge: Memory: 16384MB, VCPUS: 8, Storage: 160GB, FlavorID: 5, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.small: Memory: 2048MB, VCPUS: 1, Storage: 20GB, FlavorID: 2, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
Again, and just for emphasis, you could just as easily have used
 the flavor subcommand to get the
 exact same output:
$ nova-manage flavor list
m1.medium: Memory: 4096MB, VCPUS: 2, Storage: 40GB, FlavorID: 3, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.large: Memory: 8192MB, VCPUS: 4, Storage: 80GB, FlavorID: 4, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.tiny: Memory: 512MB, VCPUS: 1, Storage: 0GB, FlavorID: 1, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.xlarge: Memory: 16384MB, VCPUS: 8, Storage: 160GB, FlavorID: 5, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
m1.small: Memory: 2048MB, VCPUS: 1, Storage: 20GB, FlavorID: 2, Swap: 0GB,
RXTX Quota: 0GB, RXTX Cap: 0MB
To create an instance type, use the create subcommand with the following
 positional arguments:
	Memory (expressed in megabytes)

	vCPU(s) (integer)

	Local storage (expressed in gigabytes)

	Flavorid (unique integer)

	Swap space (expressed in megabytes, defaults to zero,
 optional)

	RXTX quotas (expressed in gigabytes, defaults to zero,
 optional)

	RXTX cap (expressed in gigabytes, defaults to zero,
 optional)

The following example creates an instance type named
 “m1.xxlarge”:
$ nova-manage instance_type create m1.xxlarge 32768 16 320 0 0 0
m1.xxlarge created
To delete an instance type, use the delete subcommand and specify the name:
$ nova-manage instance_type delete m1.xxlarge
m1.xxlarge deleted
Note that the delete command
 only marks the instance type as inactive in the database; it does not
 actually remove the instance type. This is done to preserve the instance
 type definition for long running instances (which may not terminate for
 months or years). If you are sure that you want to delete this instance
 type from the database, pass the --purge flag after the name:
$ nova-manage instance_type delete m1.xxlarge --purge
m1.xxlarge purged
Caution
Be careful with deleting instance types, as you might need this
 information later. This is especially true in commercial or enterprise
 environments where you might be creating a bill based off the instance
 type’s name or configuration. Unless you truly need to prune the size
 of your instance_types table, you are much safer to just delete the instance type.

Virtual Machine

Nova also lets you query all the current running virtual machines,
 similar to how the OpenStack API or EC2 API does with their
 tools.
nova-manage vm list
instance node type state launched image
kernel ramdisk project user zone index
i-00000003 nova-controller nova.db.sqlalchemy.models.InstanceTypes object at
0x429c910 launching None 1719908888 2129281401 book ken
None 0
Caution
There is a bug in nova-manage
 vm list in Cactus where it cannot
 properly decipher the instance type (the type field above). This is
 corrected in the upcoming version of the Nova.

nova-manage vm also has an advanced KVM feature called
 live_migration. Live migration allows
 you to move virtual machine instances between hosts if the following
 conditions are met:
	KVM or QEMU is the virtualization technology

	The volume driver is iSCSI or AoE

Live migration is invoked with an instance id and destination host
 as arguments:
nova-manage live_migration i-00000003 new-host
Migration of i-00000003 initiated. Check its progress using euca-describe-instances.

Network

Nova has a trio of nova-manage
 networking commands: network, fixed, and floating. The nova-manage network is the most powerful. It allows you to
 list, create, and delete networks within the Nova database. For
 example:
nova-manage network list
network netmask start address DNS
10.0.0.0/25 255.255.255.128 10.0.0.2 8.8.4.4
The fixed command simply allows
 you to view the fixed IP address mappings to hostname, host, and MAC
 address. Here are the truncated results of the command (it goes on to
 show the every IP address in the mapping):
nova-manage fixed list
network IP address MAC address hostname host
10.0.0.0/25 10.0.0.0 None None None
10.0.0.0/25 10.0.0.1 None None None
10.0.0.0/25 10.0.0.2 02:16:3e:5f:bc:a7 i-00000003 nova-controller
10.0.0.0/25 10.0.0.3 None None None
10.0.0.0/25 10.0.0.4 None None None
10.0.0.0/25 10.0.0.5 None None None
10.0.0.0/25 10.0.0.6 None None None
The floating command is very
 similar to the fixed command except
 that it manipulates public IP addresses. The example below creates a
 floating range and then shows their allocation.
nova-manage float create cactus 192.168.1.128/29
nova-manage float list
cactus 192.168.1.128 None
cactus 192.168.1.129 None
cactus 192.168.1.130 None
cactus 192.168.1.131 None
cactus 192.168.1.132 None
cactus 192.168.1.133 None
cactus 192.168.1.134 None
cactus 192.168.1.135 None

Shell

As purely a troubleshooting command, nova-manage shell allows you to start up a Nova
 environment so that you can issue ad hoc Python commands. You might use
 this to discover your installed version:
nova-manage shell python
Python 2.6.5 (r265:79063, Apr 16 2010, 13:57:41)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from nova import version
>>> version.version_string()
'2011.2'
>>> version.version_string_with_vcs()
u'2011.2-LOCALBRANCH:LOCALREVISION'
>>> exit()
While I have used the basic shell in this example, you can also
 invoke the bpython or ipython shells. nova-manage shell can also be used for more elaborate
 troubleshooting scenarios depending on your Nova internals
 knowledge.

Volumes

The volume command for nova-manage should only be used when
 traditional methods have failed. It supports two subcommands: reattach and delete. While both subcommands are fairly
 self-explanatory, the situations where they are applicable may not
 be.
The delete subcommand should
 only be used when traditional methods of removing it has failed. As an
 example, we will delete a volume that has been marked in the “error”
 state:
euca-describe-volumes
VOLUME vol-00000002 1 nova error (book, nova-controller, None, None)
 2011-07-10T22:57:02Z
VOLUME vol-00000003 1 nova available (book, nova-controller, None, None)
 2011-07-11T00:08:34Z
nova-manage volume delete vol-00000002
euca-describe-volumes
VOLUME vol-00000003 1 nova available (book, nova-controller, None, None)
 2011-07-11T00:08:34Z
Note
This subcommand will not let you delete a volume that is marked
 with the status “in-use” (which would mean that it is attached to an
 instance). You will need to detach the volume from the instance before
 trying this subcommand.

The reattach command allows you
 to reconnect a volume to an instance. Most likely, this will only need
 to be used after a compute host has been rebooted.

About the Author
Ken Pepple is a recognized consultant, author and speaker in the technology industry. Focusing on infrastructure architecture, Ken held technical leadership roles such as Chief Technologist and Technology Director for a variety of organizations within Sun Microsystems and Oracle. While there, he co-authored two books “Consolidation in the Data Center: Simplifying IT Environments to Reduce Total Cost of Ownership” and “Migrating to the Solaris Operating System: The Discipline of UNIX-to-UNIX Migrations” for Prentice Hall PTR. Ken is also a frequent speaker, presenting at conferences including Gartner's Data Centre Summit, TOGAF China, IDC's Asia/Pacific Cloud Computing Conferences and JavaOne. Currently, Ken focused on building cloud computing infrastructure. As part of this work, he has designed clouds for service providers and written code for the OpenStack project. You can catch up on Ken's current work at his blog (http://ken.pepple.info/) or view his author page at Amazon (http://www.amazon.com/Ken-Pepple/e/B004​QQBWJW).

Colophon
The animal on the cover of Deploying OpenStack is
 a Tenrec.
The cover image is from Cassell’s Natural
 History. The cover font is Adobe ITC Garamond. The text font is
 Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
 font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages875433.png
network
type
fixed_range
network size

floating_range

nova.network. manager. FlatDHCPManager +

10.0.0.0/8 -
6 -

—/—

OEBPS/httpatomoreillycomsourceoreillyimages875406.jpg
e
Creating Open Source Clouds

Deploying

O’REILLY* Ken Pepple

OEBPS/httpatomoreillycomsourceoreillyimages875413.png
A
J S3 API/Swift API

\
> ache
/

swift-container

! !

Object Store Container DB AccountDB

OEBPS/httpatomoreillycomsourceoreillyimages875423.png

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages875435.png
Feedback

StackOps Dvws o e

Welcome back ken! | Logout

Support Documentation

Congratulations ken, the node configuration is ready!
You have just configured a node, we are about to install it. Please click on the green button below to continue...

Start deployment now!

©2011 Stackops Technologies. Al rightsreserved. Terms & Conditons.

OEBPS/httpatomoreillycomsourceoreillyimages875417.png
Queries and Uses Images Stores and Retrieves Images
> Glance >

OEBPS/httpatomoreillycomsourceoreillyimages875419.png
OpenStack API

or
Amazon EC2 API

nova-api

/:Aop S:)\‘

| quese database

[N
SO

OEBPS/httpatomoreillycomsourceoreillyimages875431.png
hardware

Name

AMD Athlon(tm) Il Neo N36L Dual-Core Processor

AMD Athlon(tm) Il Neo N36L Dual-Core Processor

Virtualization

RAM Size

Device

Jdevisda

Jdevisdal

Jdevisdaz

Jdevisdas

Jdevidm-0

Jdevidm-1

Jdevisdd

Jdev/sdbl

Interface

etho

dummyo

an

Tyee

Size

250059350016

238787584

1026

249802260480

239633170432

10162798592

8065646592

1007387648

Name

Netktreme BCMS 723 Gigabit thernet PCle

Ethernet interface

Ethernet interface

true

4121686016

Used

1

30332928

Speed

a00

a00

Iboot

Cores

1

Mount Point

Before continuing with the installation process, you must verify
that your hardware can support the architecture selected for
this node. The following parameters will be checked by the
Smart Installer:

* Virtualization: if Virtualization extensions are not enabled or
not exist, then only QEMU emulator will be available. Keep in
mind that there is a huge penalization in performance compared
to KVM, the default hypervisor supported by the Stackops
Distribution. If you think your servers have virtualization
extensions but the Installer cannot detect it, please review the
System BIOS of your servers.

* RAM Size:

fferent architectures and nodes have different
needs of RAM memory. Please check that you have enough RAM
to run the solution.

« Space in disk: different node roles have different needs of
disk space. Please check that you have enough space in your
disk.

o Network interfaces: again the network configuration can
differ in the nodes. Please check that you have enough NICs.

OEBPS/httpatomoreillycomsourceoreillyimages875411.png

OEBPS/httpatomoreillycomsourceoreillyimages875421.png
Planning Nova Deployment

Plan Cloud

Installing Nova

Configure Nova

Using Nova

Add Users and Projects

Upload Images

Configure Access

OEBPS/httpatomoreillycomsourceoreillyimages875429.png
Select your deployment architecture
e [| vt oee | e v e

This s the classic installation if you only want to test
drive the platform. All the components of the Openstack
solution plus others are installed in a single node.
Moreover, the system can be installed in a Virtual
Machine and then QEMU emulator is used instead of KVM
as the default hypervisor. If this is your first approach to
Openstack, then this is your choice.

Keep in mind that you need two network cards to run
your system. Please visit the Single node deployment
documentation for further details.

Start deployment

OEBPS/httpatomoreillycomsourceoreillyimages875425.png
tackOps Openstack Distribution 0.2.1-b112-d20110517

To configure this node, commect to http://192.168.1.10:8888

ova-controller login: _

OEBPS/httpatomoreillycomsourceoreillyimages875415.png
IGIan(e AP

glance-api
glance-registry
Image Store
Database (53, HTTR
Local,Swift)

OEBPS/httpatomoreillycomsourceoreillyimages875427.png
=7\
Sl’ackups n openstack

Stackops is a bare-metal distribution verified, tested and
designed to reach as many users as possible thanks to a new
and simple installation process. You only need to download the
ISO image with the distro and install it on one or more servers.
In a few minutes you will be able to enjoy the power of the
Cloud for your own\!

Stackops uses Openstack plus many other open source
technologies. Openstack is a collection of open source
technologies delivering a massively scalable cloud operating
system. Backed by Rackspace, NASA, Dell, Citrix, Cisco,
Canonical and over 50 other organizations, Openstack, has
grown to be a global software community of developers,
technologists, researchers and corporations.

= LTS

Support Documentation

Username
Password

Forgot your password?

