

Embedded Android

Karim Yaghmour

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Embedded Android
by Karim Yaghmour

Revision History for the :
See http://oreilly.com/catalog/errata.csp?isbn=9781449308292 for release details.

ISBN: 978-1-449-30829-2
1317666851

http://oreilly.com/catalog/errata.csp?isbn=9781449308292

Table of Contents

Preface . vii

1. Introduction . 1
History 1
Features and Characteristics 2
Development Model 4

Differences With "Classic" Open Source Projects 5
Feature Inclusion, Roadmaps, and New Releases 6

Ecosystem 7
A Word on the Open Handset Alliance 7

Getting "Android" 8
Legal Framework 9

Code Licenses 9
Branding Use 12
Google's Own Android Apps 13
Alternative App Markets 13
Oracle v Google 13

Hardware and Compliance Requirements 14
Compliance Definition Document 15
Compliance Test Suite 18

Development Setup and Tools 19

2. Internals Primer . 21
App Developer's View 21

Android Concepts 22
Framework Intro 25
App Development Tools 27
Native Development 27

Overall Architecture 28
Linux Kernel 29

Wakelocks 30

iii

Low Memory Killer 31
Binder 32
Anonymous Shared Memory (ashmem) 33
Alarm 34
Logger 35
Other Notable Androidisms 37

Hardware Support 38
The Linux Approach 38
Android's General Approach 39
Loading and Interfacing Methods 40
Device Support Details 42

Native User-Space 43
Filesystem layout 44
Libraries 45
Init 47
Toolbox 48
Daemons 49
Command-Line Utilities 50

Dalvik and Android's Java 50
Java Native Interface (JNI) 52

System Services 53
Service Manager and Binder Interaction 55
Calling on Services 57
A Service Example: the Activity Manager 57

Stock AOSP Packages 57
System Startup 59

3. AOSP Jumpstart . 63
Getting the AOSP 63
Inside the AOSP 65
Build Basics 68

Build System Setup 68
Building Android 69

Running Android 73
Using ADB 75
Mastering the Emulator 79

4. The Build System . 85
Comparisons With Other Build Systems 85
Architecture 87

Configuration 88
envsetup.sh 91
Directive Definitions 95

iv | Table of Contents

Main Make Recipes 96
Cleaning 98
Module Build Templates 98
Output 102

Build Recipes 104
The Default droid Build 104
Seeing the Build Commands 105
Building the SDK for Linux and MacOS 105
Building the SDK for Windows 106
Building the CTS 106
Building the NDK 108
Updating the API 109
Building a Single Module 110
Building Out of Tree 110

Basic AOSP Hacks 112
Adding an App 112
Adding a Native Tool or Daemon 113
Adding a Native Library 114
Adding a Device 115
Adding an App Overlay 120

Table of Contents | v

Preface

Android's growth is phenomenal. In a very short time-span, it has succeeded in be-
coming one of the top mobile platforms in the market. Clearly, the unique combination
of open source licensing, aggressive go-to-market, and trendy interface is bearing fruit
for Google's Android team. Needless to say, the massive user uptake generated by An-
droid has not gone unnoticed for handset manufacturers, mobile network operators,
silicon manufacturers, and app developers. Products, apps and devices "for," "com-
patible with," or "based on" Android seem to be coming out ever so fast.

Beyond its mobile success, however, Android is also attracting the attention of yet
another, unintended crowd: embedded systems developers. While a large number of
embedded devices have little to no human interface, a substantial number of devices
which would traditionally be considered "embedded" do have user interfaces. For a
goodly number of modern machines, in addition to pure technical functionality, de-
velopers creating user-facing devices must also contend with human-computer inter-
action (HCI) factors. Therefore, designers must either present users with an experience
they are already familiar with or risk alienating users by requiring them to learn a lesser
known or entirely new user experience. Before Android, the user interface choices
available to the developers of such devices were fairly limited and limiting.

Clearly, embedded developers prefer offering users an interface they are already familiar
with. Although that interface might have been window-based in the past—and hence
a lot of embedded devices were based on classic window-centric, desktop-like or desk-
top-based interfaces—Apple's iOS and Google's Android have forever democratized
the use of touch-based iPhone-like graphical interfaces. This shift in user paradgims
and expectations, combined with Android's open source licensing, have created a
ground-swell of interest for Android within the embedded world.

Unlike Android app developers, however, developers wanting to do any sort of platform
work in Android, including porting or adapting Android to an embedded device, rap-
idly run into quite a significant problem: the almost total lack of documentation on
how to do that. So, while Google provides app developers with a considerable amount
of online documentation and while there are a number of books on the topic, such as
O'Reilly's Learning Android, embedded developers have to contend with the minimal-
istic set of documents provided by Google at http://source.android.com. Embedded de-

vii

http://source.android.com

velopers seriously entertaining the use of Android in their system were essentially re-
duced to starting with Android's source code.

The purpose of this book is to remedy to that situation and enable you to embed An-
droid in any device. You will therefore learn about Android's architecture, how to nav-
igate its source code, how to modify its various components, and how to create your
own version for your particular device. In addition, you will learn how Android inte-
grates into the Linux kernel and how to leverage Android's Linux heritage. For instance,
we will discuss how to take "classic" Linux components such as glibc and BusyBox and
package them as part of Android. Along the way, you will learn day-to-day tips and
tricks, such as how to use Android's repo tool and integrate with or modify Android's
build system.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

viii | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Embedded Android by Karim Yaghmour
(O’Reilly). Copyright 2011 Karim Yaghmour, 9781449308292.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | ix

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449308292

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x | Preface

http://www.oreilly.com/catalog/9781449308292
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

Putting Android on an embedded device is a complex task involving an intricate un-
derstanding of its internals and a clever mix of modifications to the Android Open
Source Project (AOSP) and the kernel on which it runs, Linux. Before we get into the
details of embedding Android, however, let's start by covering some essential back-
ground that embedded developers should factor in when dealing with Android, such
as Android's hardware requirements and the legal framework surrounding Android and
its implications within an embedded setting. First let's look at where Android comes
from and how it's developed.

History
The story goes* that back in early 2002 Google's Larry Page and Sergey Brin attended
a talk at Stanford about the development of the then-new Sidekick phone by Danger
Inc. The speaker was Andy Rubin, Danger's CEO at the time, and the Sidekick was one
of the first multi-function, Internet-enabled devices. After the talk, Larry went up to
look at the device and was happy to see that Google was the default search engine. Soon
after, both Larry and Sergey became Sidekick users.

Despite its novelty and enthusiatic users, however, the Sidekick didn't achieve com-
mercial success. By 2003, Rubin and Danger's board agreed it was time for him to leave.
After trying out a few things, Rubin decided he wanted to get back into the phone OS
business. Using a domain name he previously-owned, android.com, he set out to create
an open OS for phone manufacturers. After investing most of his savings on the project
and having received some additional seed money, he set out to get the company funded.
Soon after, in August 2005, Google acquired Android Inc. with little fanfare.

* Coinciding with Android's initial announcement in November 2007, the New York Times ran an article
entitled "I, Robot: The Man Behind the Google Phone" by John Markoff giving an insightful background
portrait of Andy Rubin and his career, and, by the same token, providing a lot of insight on the story behind
Android. This section is partly based on that article.

1

Between its acquisition and its announcement to the world in November 2007, Google
let little to no information out about Android. Instead, the development team worked
furiously on the OS while deals and prototypes were being worked on behind the
scenes. The initial announcement was made by the Open Handset Alliance (OHA), a
group of companies unveiled for the occasion with its stated mission being the devel-
opment of open standards for mobile device and Android being its first product. A year
later, in September 2008, the first open source version of Android, 1.0, was made
available.

Several Android versions have been released since then, and the OS's progression and
development is obviously more public. As we will see later, though, much of the work
on Android continues to be done behind closed doors. Table 1-1 provides a summary
of the various Android releases and the most notable features found in the correspond-
ing AOSP.

Table 1-1. Android Versions

Version Release date Codename Most notable feature(s) Open source

1.0 September 2008 Unknown Yes

1.1 February 2009 Unknown Yes

1.5 April 2009 Cupcake On-screen soft keyboard Yes

1.6 September 2009 Donut Battery usage screen and VPN
support

Yes

2.0, 2.0.1, 2.1 October 2009 Eclair Exchange support Yes

2.2 May 2010 Froyo Just-In-Time (JIT) compile Yes

2.3 December 2010 Gingerbread SIP and NFC support Yes

3.0 January 2011 Honeycomb Tablet form-factor support No

3.1 May 2011 Honeycomb USB host support and APIs No

4.0 December 2011 (projected) Ice-Cream Sandwich Merged phone and tablet form-
factor support

Yes (projected)

Features and Characteristics
Google advertizes the following features about Android:

Application framework
The application framework used by app developers to create what is commonly-
referred to as Android apps. The use of this framework is documented online at
http://developer.android.com and in books like O'Reilly's Learning Android.

Dalvik Virtual Machine
The clean-room bytecode interpreter implementation used in Android as a re-
placement for the Sun Java VM. While the latter interprets .class and .jar files,

2 | Chapter 1: Introduction

http://developer.android.com

Dalvik interprets .dex files. These files are generated by the dx utility using
the .class files generate by the Java compiler part of the JDK.

Integrated browser
Android includes a WebKit-based browser as part of its standard list of applica-
tions. App developers can use the WebView class to use the WebKit engine within
their own apps.

Optimized graphics
Android provides its own 2D graphics library but relies on OpenGL ES for its 3D
capabilities.

SQLite
This is the standard SQLite database found at http://www.sqlite.org and made
available to app developers through the application framework.

Media support
Android provides support for a wide range of media formats through StageFright,
its custom media framework. Prior to 2.2, Android used to rely on PacketVideo's
OpenCore framework.

GSM telephony support
The telephony support is hardware dependent and device manufacturers must
provide a HAL module in order to enable Android to interface with their hardware.
HAL modules will be discussed in the next chapter.

Bluetooth, EDGE, 3G, and WiFi
Android includes support for most wireless connection technologies. While some
are implemented in Android-specific fashion, such as EDGE and 3G, others are
provided in the same as in plain Linux, as in the case of Bluetooth and WiFi.

Camera, GPS, compass, and accelerometer
Interfacing with the user's environment is key to Android. APIs are made available
in the application framework to access these devices, and some HAL modules are
required to enable their support.

Rich development environment
This is likely one of Android's greatest assets. The development environment avail-
able to developers makes it very easy to get started with Android development. A
full SDK is freely available to download along with an emulator, an Eclipse plugin,
and a number of debugging and profiling tools.

There are of course a lot more features that could be listed for Android, such as USB
support, multitasking, multi-touch, SIP, tethering, voice-activated commands, etc., but
the previous list should give you a good idea of what you'll find in Android. Also note
that every new Android release brings in its own new set of features. Check the Platform
Highlights published with every version for more information on features and enhance-
ments.

Features and Characteristics | 3

http://www.sqlite.org

In addition to its basic feature-set, the Android platform has a few characteritics that
make it an especially interesting basis for embedded use. Here's a quick summary:

Broad app ecosystem
At the time of this writing there were 200,000 apps in the Android Market. This
compares quite favorably to the Apple App Market's 350,000 apps and ensures
that you have a large pool to choose from should you want to prepackaged appli-
cations with your embedded device.†

Consistent app APIs
All APIs provided in the application framework are meant to be forward-compat-
ible. Hence, custom apps you develop for inclusion in your embedded system
should continue working in future Android versions. In contrast, modifications
you make to Android's source code are not guaranteed to continue applying or
even working in the next Android release.

Replaceable components
Because Android is open source, and as a benefit of its architecture, a lot of its
components can be replaced outright. For instance, if you don't like the default
app Launcher (home screen), you can write your own. More fundamental changes
can also be made to Android. The GStreamer‡ developers, for example, were able
to replace StageFright, the default media framework in Android, with GStreamer
without modifying the app API.

Extendable
Another benefit from Android's openness and its architecture is that adding sup-
port for additional features and hardware is relatively straightforward. You just
need to emulate what the platform is doing for other hardware or features of the
same type. For instance, you can add support for custom hardware to the HAL by
adding a handful of files.

Customizable
If you'd rather use existing components, such as the existing Launcher app, you
can still customize them to your liking. Whether it be tuning their behavior or
changing their look and feel, you are again free to modify the AOSP as needed.

Development Model
When considering whether to use Android, it's crucial that you understand the rami-
fications its development process may have on any modifications you make to it or any
dependencies you may have towards its internals.

† Bare in mind that you likely need to enter into some kind of agreement with an app's publisher before you
can package that app. The app's availability in the Android Market doesn't imply the right for you as a 3rd
party to redistribute it.

‡ GStreamer is the default media framework in the Gnome desktop environment.

4 | Chapter 1: Introduction

Differences With "Classic" Open Source Projects
Android's open source nature is one of its most trumpeted features. Indeed, as we've
just seen, many of the software engineering benefits that derive from being open source
apply to Android.

Despite its licensing, however, Android is unlike most open source projects in that its
development is mostly done behind closed doors. The vast majority of open source
projects, for example, have public mailing lists and forums where the main developers
can be found interacting with each other, and public source repositories providing
access to the main development branch's tip. No such thing can be found for Android.

This is best summarized by Andy Rubin himself: “Open source is different than a com-
munity-driven project. Android is light on community-driven, somewhat heavy on
open source.”

Whether we like it or not, Android is mainly developed within Google by the Android
development team and the public is not privy to either internal discussions or the tip
of the development branch. Instead, Google makes code-drops every time a new version
of Android ships on a new device, which is usually every 6 months. For instance, a few
days after the Samsung Nexus S was released in December 2010, the code for the new
version of the Android it was running, 2.3/Gingerbread, was made publicly available
at http://android.git.kernel.org/.

Obviously there is a certain amount of discomfort within the open source community
with the contined use of the term "open source" within the context of project whose
development model contradicts the standard modus operandi typically associated with
open source projects, especially given Android's popularity. The open source com-
munity has not historically been well served by projects that had adopted a similar
development model.

Political issues asside, though, Android's development model means that as a developer
your ability to make contributions to Android is limited. Indeed, unless you become
part of the Android development team at Google, you will not be able to make contri-
butions to the tip of the development branch. Also, save for a handful of exceptions,
you will unlikely be able to discuss your enhancements one-on-one with the core de-
velopment team members. However, you are still free to submit enhancements and
fixes to the AOSP code dumps made available at http://android.git.kernel.org/.

The worst side-effect of Google's approach is that you have absolutely no way to get
inside information about the platform decisions being made by the Android develop-
ment team. If new features are added within the AOSP, for example, or if modifications
are made to core components, you will find out how such changes are made and how
they impact changes you might have made to a previous version only by analyzing the
next code dump. Furthermore, you will have no way to find out the underlying re-
quirement or restriction or issue that justified the modification or inclusion. Had this

Development Model | 5

http://android.git.kernel.org/
http://android.git.kernel.org/

been a true open source project, a public mailing list archive would exist where all this
information, or pointers to it, would be available.

That being said, it's important to remember how significant a contribution Google is
making by distributing Android under an open source license. Despite its awkward
development model from an open source community perspective, it remains that Goo-
gle's work on Android is a godsend for a large number of developers. Plus, it has ac-
complished one thing no other open source projects was ever able to: create a massively
successful Linux distribution. It would, therefore, be hard to fault Android's develop-
ment team for their work.

Furthermore, it can easily be argued that from a business and go-to-market perspective
a community-driven process would definitely knock the wind out of any product an-
nouncements Google would attempt to release, making it impossible to create "buzz"
around press announcements and the like since every new feature would be developed
in the open. That is to say nothing of the non-deterministic nature of community-driven
processes that can see a group of people take years to agree on the best way to implement
a given feature set. And, simply based on track record, Android's success has definitely
benefited from Google's ability to rapidly move it forward and generate press interest
based on releases of cool new products.

Feature Inclusion, Roadmaps, and New Releases
In brief, there is no publicly available roadmap for features and capabilities in future
Android releases. At best, Google will announce ahead of time the name and approx-
imate release date of the next version. Usually, you can expect a new Android release
to be made in time for the Google I/O conference, which is typically held in May, and
another release by year end. What will be in that release, though, is anyone's guess.

Typically, however, Google will choose a single manufacturer to work with on the next
Android release. During that period, Google will work very closely with that single
manufacturer's engineers to ready up the next Android version to work on a targeted
upcoming flagship device. During that period, the manufacturer's team is reported to
have access to the tip of the development branch. Once the device is put on the market,
the corresponding source code dump is made to the public repositories. For the next
release, they choose another manufacturer and start over.

There is one notable exception to that cycle: Android 3.x/Honeycomb. In that specific
case, Google has not released the source code to the corresponding flagship product,
the Motorola Xoom, and all indications suggest that that code may never be publicly
available. The rationale in this case seems to be that the Android development team
essentially forked the Android code-base at some point in time in order to start working
on getting a tablet-ready version of Android out ASAP based on market timing prerog-
atives. Hence, in that version, very little regard was made to preserving backward com-
patibility with the phone form-factor. And given that, Google did not wish to make the
code available to avoid fragmentation of its platform. Instead, at the time of this writing,

6 | Chapter 1: Introduction

plans are that both the phone and tablet form factor support will be merged into the
upcoming Android 4.0/Ice-Cream Sandwich release.

Ecosystem
As of June 2011:

• 400,000 Android phones are activated each day, up from 300,000 in December
2010 and 200,000 in August of that same year.

• The Android Market contains arond 200,000 apps. In comparison, the Apple App
Store has 350,000 apps.

• More than a third of all phones sold in the US are based on Android.

Android is clearly on the upswing. In fact, Gartner predicted in April 2011 that Android
would hold about 50% of the smartphone market by 2015. Much as Linux disrupted
the embedded market about a decade ago, Android is poised to make its mark. Not
only will it flip the mobile market on its head, eliminating or sidelining even some of
the strongest players, but in the embedded space it is likely going to become the de-
facto standard UI for a vast majority of user-centric embedded devices.

An entire ecosystem is therefore rapidly building around Android. Silicon and system-
on-chip (SoC) manufacturers such as ARM, TI, Qualcomm, Freescale, NVidia and TI
have added Android support for their products, and handset and tablet manufacturers
such as Motorola, Samsung, HTC, Sony-Ericsson, LG, Archos, DELL, ASUS, etc. ship
an ever-increasing number of Android-equipped devices. This ecosystem also includes
an increasing number of diverse players, such as Amazon, Verizon, Sprint and
Barnes&Nobles, creating their own application markets.

Grass-roots communities and projects are also starting to sprout around Android, even
though it is developed behind closed doors. Some of those efforts follow in the footsteps
of phone modders, which essentially rely on hacking the binaries provided by the man-
ufacturers to create their own modifications or variants, while others have a more open
source tint to them, relying on the Android sources to create their own forks or addi-
tions. The xda-developers.com online forum, for instance, is traditionally frequented
by modders, while the cyanogenmod.com site hosts an Android fork which modifies
the Android sources to provide additional features and enhancements. Other Android
forks include Replicant (http://replicant.us), which aims at replacing as many of the
Android components with Free Software as possible, and MIUI (http://en.miui.com/),
which provides some cool UI hacks.

A Word on the Open Handset Alliance
As I mentioned earlier, the OHA was the initial vehicle through which Android was
first announced. It describes itself on its website as "... a group of 82 technology and
mobile companies who have come together to accelerate innovation in mobile and offer

Ecosystem | 7

http://replicant.us
http://en.miui.com/

consumers a richer, less expensive, and better mobile experience. Together we have
developed Android™, the first complete, open, and free mobile platform."

Beyond the initial announcement, however, it is unclear what role the OHA plays. For
example, an attendee at the "Fireside Chat with the Android Team" at Google I/O 2010
asked the panel what privileges were confered to him as a developer for belonging to a
company which is part of the OHA. After asking around the panel, the speaker essen-
tially answered that they didn't know because they aren't the OHA. Hence, it would
appear that OHA membership benefits are not clear to the Android development team
itself.

The role of the OHA is further blurred by the fact that it does not seem to be a full-time
organization with board members and permanent staff. Instead, it's just an "alliance."
In addition, there is no mention of the OHA within any of Google's Android an-
nouncements, nor do any new Android announcements emanate from the OHA. In
sum, one would be tempted to speculate that Google likely put the OHA together
mainly as a marketing front to show how much industry support there was for Android,
but that in practice it has little to no bearing on Android's development.

Getting "Android"
There are two main pieces required to get Android working on your embedded system:
an Android-compatible Linux kernel and the Android Platform.

As of this writing, you cannot use a "vanilla" kernel from kernel.org to run the Platform.
Instead, you need to either use one of the kernels available within the AOSP or patch
a "vanilla" kernel for it to be Android-compatible. Unfortunately, while a few attempts
have been made to merge the Android modifications into the mainline kernel, these
efforts haven't yet succeeded. It is expected that, in the long term, the pending issues
will be resolved and the mainline kernel will support Android "out of the box." For the
time being, however, we must contend with the fact Android-compatible kernels are
essentially forks of the mainline and will continue being so for the foreseable future.

The Android Platform is essentially a custom Linux distribution containing the user-
space packages which make up what is typically called "Android." The releases listed
in Table 1-1 are actually Platform releases. We will discuss the content and architecture
of the Platform in the next chapter. For the moment being, keep in mind that a Platform
release has a similar role to standard Linux distributions such as Ubuntu or Fedora. It's
a self-coherent set of software packages that, once built, provides a specific user expe-
rience with specific tools, interfaces, and developer APIs.

8 | Chapter 1: Introduction

While the proper term to identify the source code corresponding to the
Android distribution running on top of an Android-compatible kernel
is "Android Platform," it is commonly referred to as "the AOSP"—as is
the case in fact throughout this book—even though the Android Open
Source Project proper, which is hosted at http://android.git.kernel.org/,
contains a few more components in addition to the Platform, such as
sample Linux kernel trees and additional packages that would not typ-
ically be downloaded when the Platform is fetched using the usual
repo command.

Hacking Binaries
Lack of access to Android sources hasn't discouraged passionate modders from actually
hacking and customizing Android to their liking. For example, the fact that Android
3.x/Honeycomb isn't available hasn't precluded modders from getting it to run on the
Barnes&Noble Nook. They achieved this by retrieving the executable binaries found
in the emulator image provided as part of the Honeycomb SDK and used those as-is
on the Nook, albeit forfeiting hardware accelaration. The same type of hack has been
used to "root" or update versions of various Android components on actual devices for
which the manufacturer provides no source code.

Legal Framework
Like any other piece of software, Android's use and distribution is constricted by a set
of licenses, intellectual property restrictions, and market realities. Let's look at a few of
these.

Code Licenses
As we discussed earlier, there are two parts to "Android": an Android-compatible Linux
kernel and an AOSP release. Even though it is modified to run the AOSP, the Linux
kernel continues to be subject to the same GNU GPLv2 license that it has always been
under. As such, remember that you are not allowed to distribute any modifications you
make to the kernel under any other license than the GPL. Hence, if you take a kernel
version from android.git.kernel.org and modify it to make it run on your system, you
are allowed to distribute the resulting kernel image in your product only so long as you
abide by the GPL and, therefore, make the sources used to create the image, including
your modifications, available to recipients under the terms of the GPL.

The kernel also includes a notice by Linus Torvalds in its COPYING file in its sources
that clearly identifies that only the kernel is subject to the GPL and that applications
running on top of it are not considered "derived works." Hence, you are free to create

Legal Framework | 9

http://android.git.kernel.org/

applications that run on top of the Linux kernel and distribute them under the license
of your choice.

These rules and their applicability are generally well understood and accepted within
open source circles and by most companies that opt to support the Linux kernel or use
it as the basis for their products. In addition to the kernel, a large number of key com-
ponents of Linux-based distributions are typically licensed under one form or another
of the GPL. The GNU C libary (glibc) and the GNU compiler (GCC), for example, are
licensed under the LGPL and the GPL respectively. Important packages commonly used
in embedded Linux systems such as uClibc and BusyBox are also licensed under the
LGPL and the GPL.

Not everyone is comfortable with the GNU GPL, however. Indeed, the restrictions it
imposes on the licensing of derived works can pose a serious challenge to large organ-
izations, especially given geographic distribution, cultural differences amongst the var-
ious locations of development sub-units, and the reliance on external subcontractors.
A manufacturer selling a product in North America, for example, might have to deal
with dozens, if not hundreds, of suppliers to get that product to the market. Each of
these suppliers might deliver a piece which may or may not contain GPL'd code. Yet
the manufacturer whose name appears on the item sold to the customer will be bound
to provide source to GPL components regardless of which supplier originated them. In
addition, processes must be put in place to ensure engineers that work on GPL-based
projects are abiding by the licenses.

When Google set out to work with manufacturers on their "open" phone OS, therefore,
it appears that very rapidly it became clear that the GPL had to be avoided in as much
as possible. In fact, other kernels than Linux were apparently considered, but Linux
was chosen because it already had strong industry support, particularly from ARM
silicon manufacturers, and because it was fairly well isolated from the rest of the system,
so that its GPL licensing would have little impact.§

It was decided, though, that every effort would be made to make sure that the vast
majority of user-space components would be based on licenses that did not pose the
same logistical issues as the GPL. That is why the vast majority of the components
created by Google for the AOSP are published under the Apache License 2.0 (a.k.a.
ASL) with some key components, such as the Bionic library and the Toolbox utility,
licensed under the BSD license. Some classic open source projects are also incorporated,
mostly as-is, into the AOSP within the external/ directory. The assumption is that their
distribution in binary form should not pose any problems since they aren't meant to be
typically customized by the OEM (i.e., no derived works are expected to be created)
and are readily available for all to download at android.git.kernel.org, thereby comply-
ing, if applicable, with the GPL's requirement that redistribution of derivative works
contibue being made under the GPL.

§ See this LWN post by Brian Swetland, a member of Android's kernel development team, for more information
on the rationale behind these choices.

10 | Chapter 1: Introduction

http://lwn.net/Articles/446371/

Unlike the GPL, the ASL does not require that derivative works be published under a
specific license. In fact, you can choose whatever license best suits your needs for the
modifications you make. Here are the relevant portions from the ASL (the full license
is available at http://www.apache.org/licenses/):

• "Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, ir-
revocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form."

• "... You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License."

Furthermore, the ASL explicitly provides a patent license grant, meaning that you do
not require any patent license from Google for using the ASL-licensed Android code.
It also imposes a few "administrative" requirements such as the need to clearly mark
modified files, to provide recipients with a copy of the ASL license, to preserve NO-
TICE files as-is, etc. Essentially, though, you are free to license your modifications under
the terms that fit your purpose. The BSD license that covers Bionic and Toolbox allows
similar binary-only distribution.

Hence, manufacturers can take the AOSP and customize it to their needs while keeping
those modifications proprietary if they wish, so long as they continue abiding by the
rest of the provisions of the ASL. If nothing else, this dimishes the burden of having to
implement a process to track all modifications in order to provide those modifications
back to recipients who would be entitled to request them had the GPL been used in-
stead.

Adding GPL-licensed components
Although every effort has been made to keep the GPL out of Android's user-space in
as much as possible, there are cases where you may want to explicitly add GPL-licensed
components to your Android distribution. For example, you want to include either
glibc of uClibc which are two POSIX-compliant C libraries—in contrast to Android's
Bionic which is not—because you would like to run pre-existing Linux applications on
Android without having to port them over to Bionic. Or you may want to use BusyBox
in addition to Toolbox since the latter is much more limited in functionality that the
former.

These additions may be specific to your development environment and may be removed
in the final product or they may be permanent fixtures or your own customized An-
droid. No matter which avenue you decide on, whether it be plain Android or Android

Legal Framework | 11

http://www.apache.org/licenses/

with some additional GPL packages, remember that you must follow the licenses' re-
quirements.

Branding Use
While being very generous with Android's source code, Google controls most Android-
related branding elements more strictly. Let's take a look at some of those elements and
their associated terms of use. For the official list along with the official terms, have a
look at http://www.android.com/branding.html.

Android Robot
This is the familiar green robot seen everywhere around all things Android. Its role
is similar to the Linux penguin and the permissions for its use are similarly per-
missive. In fact Google states that it "can be used, reproduced, and modified freely
in marketing communications." The only requirement is that proper attibution be
made according to the terms of the Creative Commons Attribution license.

Android Logo
This is the set of letters in custom typeface that spell out the letters A-N-D-R-O-I-
D and that appear during the device and emulator bootup, and on the android
.comwebsite. You are not authorized to use that logo under any circumstance.

Android Custom Typeface
This is the custom typeface used to render the Android logo and its use is as re-
stricted as the logo.

"Android" in Official Names
As Google states, "the word 'Android' may be used only as a descriptor, 'for An-
droid'" and so long as proper trademark attribution is made. You cannot, for in-
stance, name your product "Foo Android" without Google's permission. As the
FAQ for the Android Compatiblity Program (ACP), which we will cover later in
this chapter, states: "... if a manufacturer wishes to use the Android name with
their product ... they must first demonstrate that the device is compatible." Brand-
ing your device as being "Android" is therefore a privilege which Google intends
to police. In essence, you will have to make sure your device is compliant and then
talk to Google and enter into some kind of agreement with them before you can
advertize your device as being "Foo Android."

"Droid" in Official Names
You may not use "Droid" alone in a name, such as "Foo Droid" for example. For
some reason the author hasn't yet entirely figured out, "Droid" is a trademark of
Lucasfilm. Achieve a Jedi rank you likely must before you can use it.

"Android" in Messaging
It is permitted to use "Android" "... in text as a descriptor, as long as it is followed
by a proper generic term (e.g. "Android™ application")." And here too, proper
trademark attribution must be made.

12 | Chapter 1: Introduction

http://www.android.com/branding.html

Google's Own Android Apps
While the AOSP contains a core set of applications which are available under the ASL,
"Android"-branded phones usually contain an additional set of "Google" applications
that are not part of the AOSP, such as the "Android Market", YouTube, "Maps and
Navigation", Gmail, etc. Obviously, users expect to have these apps as part of Android,
and you might therefore want to make them available on your device. If that is the case,
you will need to abide by the ACP and enter in agreement with Google, very much in
line with what you need to do to be allowed to use "Android" in your product's name.
We will cover the ACP shortly.

Alternative App Markets
Though the main app market is the one hosted by Google and made available to users
through the "Android Market" app installed on "Android"-branded devices, other play-
ers are leveraging Android's open APIs and open source licensing to offer their own
alternative app markets. Such is the case of online merchants like Amazon and
Barnes&Noble, as well as mobile network operators such as Verizon and Sprint. There
is, in fact, nothing to the author's knowledge that precludes you from creating your
own app store. There is even at least one open source project, FDroid Repository (http:
//f-droid.org/repository/), that provides both an app market application and a corre-
sponding server backend under the GPL.

Oracle v Google
As part of acquiring Sun Microsystem, Oracle also acquired Sun's intellectual property
(IP) rights to the Java language and, according to Java creator James Gosling,‖ it was
clear during the acquisition process that Oracle intended from the onset to go after
Google with Sun's Java IP portfolio. And in August 2010 it did just that, filing suit
against Google, claiming that it infringed on serveral patents and commited copyright
violations.

Without going into the merits of the case, it's obvious that Android does indeed heavily
rely on Java. And clearly Sun created Java and owned a lot of intellectual property
around the language it created. In what appears to have been an effort to anticipate any
claims Sun may put forward against Android, nonetheless, the Android development
team went out of its way to make the OS use as little of Sun's Java as possible. Java is
in fact comprised mainly of three things: the language and its semantics, the virtual
machine that runs the Java bytecode generated by the Java compiler, and the class
library that contains the packages used by Java applications at run time.

‖ See Gosling's blog postings on the topic at http://nighthacks.com/roller/jag/entry/the_shit_finally_hits_the and
http://nighthacks.com/roller/jag/entry/quite_the_firestorm for more details.

Legal Framework | 13

http://f-droid.org/repository/
http://f-droid.org/repository/
http://nighthacks.com/roller/jag/entry/the_shit_finally_hits_the
http://nighthacks.com/roller/jag/entry/quite_the_firestorm

The official versions of the Java components are provided by Oracle as part of the Java
Development Kit (JDK) and the Java Runtime Environment (JRE). Android, on the
other hand, relies only the Java compiler found in the JDK. Instead of using Oracle's
Java VM, Android relies on Dalvik, a VM custom-built for Android, and instead of
using the official class library, Android relies on Apache Harmony, a clean-room re-
implementation of the class library. Hence, it would seem that Google did every rea-
sonable effort to at least avoid any copyright and/or distribution issues.

Still, it remains to be seen where these legal proceedings will go. And it likely will take
a few years to get resolved. In the interim, however, it appears that the judge presiding
over the case wants to get the matter resolved in earnest. In May 2011, he ordered
Oracle to cut its claims from 132 down to 3 and ordered Google to cut their prior art
references down from several hundreds to 8. According to Groklaw,# he even seems
to be asking the parties whether "they anticipate that a trial will end up being moot."

Another indirectly related, yet very relevant, development is that IBM joined Oracle's
OpenJDK efforts in October 2010. IBM had been the main driving force behind the
Apache Harmony, which is the class library used in Android, and its departure pretty
much ensures the project has become orphaned. How this development impacts An-
droid is unknown at the time of this writing.

Incidently, James Gosling joined Google in March 2011.

Hardware and Compliance Requirements
In principle, Android should run on any hardware that runs Linux. Android has in fact
been made to run on ARM, x86, MIPS, SuperH, and PowerPC, all architectures sup-
ported by Linux. A corrolary to this is that if you want to port Android to your hardware,
you must first port Linux to it. Beyond being able to run Linux, though, there are few
other hardware requirements for running the AOSP, apart from the logical requirement
of having some kind of display and pointer mechanism to allow users to interact with
the interface. Obviously, you might have to modify the AOSP to make it work on your
hardware configuration, if you don't support a peripheral it expects. For instance, if
you don't have a GPS, you might want to provide a mock GPS HAL module, as the
Android emulator does, to the AOSP. You will also need to make sure that you have
enough memory to store the Android images and a sufficiently powerful CPU to give
the user a decent experience.

In sum, therefore, there are few restrictions if you just want to get the AOSP up and
running on your hardware. If, however, you are working on a device that must carry
"Android" branding or must include the standard Google-owned applications found
in typical consumer Android devices such as the Maps or Market applications, you
need to go through the ACP that I mentioned earlier. There are two separate yet com-

#See the full analysis here: http://groklaw.net/article.php?story=2011050505150858.

14 | Chapter 1: Introduction

http://groklaw.net/article.php?story=2011050505150858

plementary parts to the ACP: the Compliance Definition Document (CDD) and the
Compliance Test Suite (CTS). Even if you don't intend to participate in the ACP, you
might still want to take a look at the CDD and the CTS, as they give a very good idea
about the general mindset that went into the design goals of the Android version you
intend to use.

Every Android release has its own CDD and CTS. You must therefore
use the CDD and CTS that match the version you intend to use for your
final product. If you switch Android releases mid-way through your
project, because for instance a new Android release comes out with cool
new features you'd like to have, you will need to make sure you comply
with that release's CDD and CTS. Keep in mind also that you need to
interact with Google to confirm compliance. Hence, switching may in-
volve jumping through a few hoops and potential product delivery de-
lays.

The overarching goal of the ACP, and therefore the CDD and the CTS, is to ensure a
uniform ecosystem for users and application developers. Hence, before you are allowed
to ship an "Android"-branded device, Google wants to make sure that you aren't frag-
menting the Android ecosystem by introducing incompatible or crippled products.
This, in turn, makes sense for manufacturers since they are benefiting from the com-
pliance of others when they use the "Android" branding. For more detail about the
ACP, have a look at http://source.android.com/compatibility/.

Note that Google reserves the right to decline your participation in the
Android ecosystem, and therefore be able to ship the "Android Market"
app with your device and use the "Android" branding. As stated on their
site: "Unfortunately, for a variety of legal and business reasons, we aren't
able to automatically license Android Market to all compatible devices."

Compliance Definition Document
The CDD is the policy part of the ACP and is available at the ACP URL above. It specifies
the requirements that must be met for a device to be considered compatible. The lan-
guage in the CDD is based on RFC2119 with a heavy use of "MUST," "SHOULD,"
"MAY," etc. to describe the different attributes. Around 25 pages in length, it covers
all aspects of the device's hardware and software capabilities. Essentially, it goes over
every aspect that cannot simply be automatically tested using the CTS. Let's go over
some of what the CDD requires.

This discussion is based on the Android 2.3/Gingerbread CDD. The
specific version you use will likely have slightly different requirements.

Hardware and Compliance Requirements | 15

http://source.android.com/compatibility/

Software

This section lists the Java and Native APIs along with the web, virtual machine and
user interface compatibility requirements. Essentially, if you are using the AOSP, you
should readily conform to this section of the CDD.

Application Packaging Compatibility

This section specifies that your device must be able to install and run .apk files. All
Android apps developed using the Android SDK are compiled into .apk files, and these
are the files that are distributed through the Android Market and installed on users'
devices.

Multimedia Compatibility

Here, the CDD describes the media codecs (decoders and encoders), audio recording,
and audio latency requirements for the device. The AOSP includes the StageFright
multi-media framework, and you can therefore conform to the CDD by using the AOSP.
However, you should read the audio recording and latency sections, as they contain
specific technical information that may impact the type of hardware or hardware con-
figuration your device must be equipped with.

Developer Tool Compatibility

This section lists the Android-specific tools that must be supported on your device.
Basically, these are the common tools used during app development and testing: adb,
ddms, and monkey. Typically, developers don't interact with these tools directly. In-
stead, they usually develop within the Eclipse development environment and use the
Android Development Tool (ADT), plugin which takes care of interacting the lower-
level tools.

Hardware Compatibility

This is probably the most important section for embedded developers as it likely has
profound ramifications on the design decisions made for the targeted device. Here's a
summary of what each subsection spells out.

Display and Graphics

• Your device's screen must be at least 2.5" in physical diagonal size.

• Its density must be at least 100dpi.

• Its aspect ratio must be between 4:3 and 16:9.

• It must support dynamic screen orientation from portrait to landscape and vice-
versa. If orientation can't be changed, it must support letterboxing since apps
may force orientation changes.

• It must support OpenGL ES 1.0 though it may omit 2.0 support

16 | Chapter 1: Introduction

Input Devices

• Your device must support the Input Method Framework, which allows devel-
opers to create custom on-screen, soft keyboards.

• It must provide at least one soft keyboard.

• It can't include a hardware keyboard that doesn't conform the API.

• It must provide "HOME," "MENU," and "BACK" buttons.

• It must have a touchscreen, whether it be capacitive or resistive.

• It should support independent tracked points (multi-touch) if possible.

Sensors
While all sensors are qualified using "SHOULD," meaning that they aren't com-
pulsory, your device must accurately report the presence or absence of sensors and
must return an accurate list of supported sensors.

Data Connectivity
The most important item here is an explicit statement that Android may be used
on devices that don't have telephony hardware. This was added to allow for An-
droid-based tablet devices. Furthermore, the document says that your device
should have hardware support for 802.11x, Bluetooth, and NFC. Ultimately, your
device must support some form of networking that permits a bandwidth of
200Kbits/s.

Cameras
Your device should include a rear-facing camera and may include a front-facing
one as well.

Memory and Storage

• Your device must have at least 128MB for storing the kernel and user space.

• It must have at least 150MB for storing user data.

• It must have at least 1GB of "shared storage," essentially meaning the SD card.

• It must also provide a mechanism to access shared data from a PC. In other
words, when the device is connected through USB, the content of the SD card
must be accessible on the PC.

USB
This requirement is likely the one that most heavily demonstrates how user-centric
"Android"-branded devices must be, since it essentially assumes the user owns the
device and therefore requires you to allow users to fully control the device when
it's connected to a PC. In some cases this might be a show-stopper for you, as you
may not actually want or may not be able to have users connect your embedded
device to a user's PC. Nevertheless, the CDD says that:

• Your device must implement a USB client which would be connectable through
USB-A.

Hardware and Compliance Requirements | 17

• It must implement the Android Debug Bridge (ADB) protocol as provided in
the adb command over USB.

• It must implement USB mass storage, thereby allowing the device's SD card to
be accessed on the host.

Performance Compatibility

Although the CDD doesn't specify CPU speed requirements, it does specify app-related
time limitations that will impact your choice of CPU speed. For instance:

• The Browser app must launch in less than 1300ms.

• The MMS/SMS app must launch in less than 700ms.

• The AlarmClock app must launch in less than 650ms.

• Relaunching an already running app must take less time than the original launch.

Security Model Compatibility

Your device must conform to the security environment enforced by the Android ap-
plication framework, Dalvik, and the Linux kernel. Specifically, apps must have access
and be submitted to the permission model described as part of the SDK's documenta-
tion. Apps must also be constrained by the same sandboxing limitations they have by
running as separate processes with distinct UIDs in Linux. The filesystem access rights
must also conform to those described in the developer documentation. Finally, if you
aren't using Dalvik, whatever VM you use should impose the same security behavior
as Dalvik.

Software Compatibility Testing

Your device must pass the CTS, including the human-operated CTS Verifier part. In
addition, you device must be able to run specific reference applications from the An-
droid Market.

Updatable Software

There has to be a mechanism for your device to be updated. This may be done over-
the-air (OTA) with an offline update via reboot. It also may be done using a "tethered"
update via a USB connection to a PC, or be done "offline" using removable storage.

Compliance Test Suite
The CTS comes as part of the AOSP, and we will discuss it in Chapter 10. The AOSP
includes a special build target that generates the cts command-line tool, the main in-
terface for controling the test suite. The CTS relies on adb to push and run tests on the
USB-connected target. The tests are build on to the JUnit Java unit testing framework
and exercise different parts of the framework, such as the APIs, Dalvik, Intents, Per-

18 | Chapter 1: Introduction

missions, etc. Once the tests are done, they will generate a .zip file containing XML files
and screen-shots that you need to submit to cts@android.com.

Development Setup and Tools
There are two separate sets of tools for Android development: those used for application
development and those used for platform development. If you want to set up an ap-
plication development environment, have a look at Learning Android or Google's online
documentation. If you want do platform development, as we will do here, your tools
needs will vary, as we will see later in this book.

At the most basic level, though, you need to have a Linux-based workstation to build
the AOSP. In fact, at the time of this writing, Google's only supported build environ-
ment is 64-bit Ubuntu 10.04. That doesn't mean that another Ubuntu version won't
work or that you won't be able to build the AOSP on a 32-bit system, but essentially
that configuration reflects Google's own Android compile farms configuration. An easy
way to get your hands dirty with AOSP work without changing your workstation OS
is to create an Ubuntu virtual machine using your favorite virtualization tool. I typically
use VirtualBox, since I've found that it makes it easy to access the host's serial ports in
the guest OS.

No matter what your setup is, keep in mind that the AOSP is about 4GB in size, un-
compiled, and that it will grow to about 10GB once compiled. If you factor in that you
are likely going to operate on a few separate versions, for testing purposes if for no other
reason, you rapidly realize that you'll need tens of GBs for serious AOSP work. Also
note that on what is fairly recent machine at the time of this writing (dual-core high-
end laptop), it takes about an hour to build the AOSP from scratch. Even a minor
modification may result in a 5 min run to complete the build. You will therefore also
likely want to make sure you have a fairly powerful machine when developing Android-
based embedded systems.

Development Setup and Tools | 19

CHAPTER 2

Internals Primer

As we've just seen, Android's sources are freely available for you to download, modify,
and install for any device you choose. In fact, it is fairly trivial to just grab the code,
build it, and run it in the Android emulator. To customize the AOSP to your device
and its hardware, however, you'll need to first understand Android's internals to a
certain extent. So we'll get a high-level view of Android internals in this chapters, and
get the opportunity in later chapters to dig into parts of internals in greater detail,
including tying said internals to the actual AOSP sources.

The discussion in this book is based on Android 2.3.x/Gingerbread.
Although Android's internals have remained fairly stable over its lifetime
up to the time of this writing, critical changes can come unannounced
thanks to Android's closed development process. For instance, in 2.2/
Froyo and previous versions, the Status Bar was an integral part of the
System Server. In 2.3/Gingerbread, the Status Bar was moved out of the
System Server and now runs indepedently from it.*

App Developer's View
Given that Android's development API is unlike any other existing API, including any-
thing found in the Linux world, it's important to spend some time understanding what
"Android" looks like from the app developers' perspective, even though it's very differ-
ent from what Android looks like for anyone hacking the AOSP. As an embedded
developer working on embedding Android on a device, you might not have to actually
deal directly with the idiosyncracies of Android's app development API, but some of
your colleagues might. If nothing else, you might as well share a common linguo with

* Some speculate that this change was triggered because some app developers were doing too
many fancy tricks with notification that were haing negative impacts on the System Server, and
that the Android team hence decided to make the Status Bar a separate process from the System
Server.

21

app developers. Of course, this section is merely a summary, and I recommend you
read up on Android app development for more in-depth coverage.

Android Concepts
Application developers must take a few key concepts into account when developing
Android apps. These concepts shape the architecture of all Android apps and dictate
what developers can and cannot do. Overall, they make the users' life better, but they
can sometimes be challenging to deal with.

Components

Android applications are made of loosely-tied components. Components of one app
can invoke/use components of other apps. Most importantly, there is no single entry
point to an Android app: no main() function or any equivalent. Instead, there are pre-
defined events called intents that developers can tie their components to, thereby ena-
bling their components to be activated on the occurrence of the corresponding events.
A simple example is the component that handles the user's contacts database, which
is invoked when the user presses a Contacts button in the Dialer or another app. An
app therefore can have as many entry points as it has components.

There are four main types of components:

Activities
Just as the "window" is the main building block of all visual interaction in window-
based GUI systems, activities are the building block in an Android app. Unlike a
window, however, activities cannot be "maximized," "minimized," or "resized."
Instead, activities always take the entirety of the visual area and are made to be
stacked up on top of each other in the same way as a browser remembers web-
pages in the sequence they were accessed, allowing the user to go "back" to where
he was previously. In fact, as described in the previous chapter, all Android devices
must have a "BACK" button to make this behavior available to the user. In contrast
to web browsing, though, there is no button corresponding to the "forward"
browsing action; only "back" is possible.

One globally defined Android intent allows an activity to be displayed as an icon
on the app launcher (the main app list on a phone.) Because the vast majority of
apps want to appear on the main app list, they provide at least one activity that is
defined as capable of responding to that intent. Typically, the user will start from
a particular activity and move through other end up creating a stack of activities
all related to the one they originally launched; this stack of activities is a task. The
user can then switch to another task by clicking the HOME button and starting
another activity stack from the app launcher.

Services
Android services are akin to background processes or daemons in the Unix world.
Essentially, a service is activated when another component requires its services and

22 | Chapter 2: Internals Primer

typically remains active for the duration required by its caller. Most importantly,
though, services can be made available to components outside an app, thereby
exposing some of that app's core functionality to other apps. There is usually no
visual sign of a service being active.

Broadcast Receivers
Broadcast receivers are akin to interrupt handlers. When a key event occurs, a
broadcast receiver is triggered to handle that event on the app's behalf. For instance,
an app might want to be notified when the battery level is low or when "airplane
mode" (to shut down the wireless connections) has been activated. When not han-
dling a specific event for which they are registered, broadcast receivers are other-
wise inactive.

Content Providers
Content providers are essentially databases. Usually, an app will include a content
provider if it needs to make its data accessible to other apps. If you're building a
Twitter client app, for instance, you could give other apps on the device access the
tweet feed you're presenting to the user through a content provider. All content
providers present the same API to apps, regardless of how they are actually imple-
mented internally. Most content providers rely on the SQLite functionality inclu-
ded in Android, but they can also use files or other types of storage.

Intents

Intents are one of the most important concepts in Android. They are the late-binding
mechanisms that allow components to interact. An app developer could send an intent
for an activity to "view" a web page or "view" a PDF, hence making it possible for the
user to view a designated HTML or PDF document even if the requesting app itself
doesn't include the capabilities to do so. More fancy use of intents is also possible. An
app developer could, for instance, send a specific intent to trigger a phone call.

Think of intents as polymorphic Unix signals that don't necessarily have to be prede-
fined or require a specific designated target component or app. The intent itself is a
passive object. It's its contents (payload), the mechanism used to fire it along with the
system's rules that will gate its behavior. One of the system's rules, for instance, is that
intents are tied to the type of component they are sent to. An intent sent to a service,
for example, can only be received by a service, not an activity or a broadcast receiver.

Components can be declared as capable of dealing with given intent types using filters
in the manifest file. The system will thereafter match intents to that filter and trigger
the corresponding component at runtime. An intent can also be sent to an explicit
component, bypassing the need to declare that intent within the receiving component's
filter. The explicit invocation, though, requires the app to know about the designated
component ahead of time, which typically applies only when intents are sent within
components of the same app.

App Developer's View | 23

Component Lifecycle

Another central tenant of Android is that the user should never have to manage task
switching. Hence, there is no task-bar or any equivalent functionality in Android. In-
stead, the user is allowed to start as many apps as he wants and "switch" between apps
by clicking HOME to go to the home screen and clicking on any other app. The app
he clicks may be an entirely new one, or one that he previously started and for which
an activity stack (a.k.a. a "task") already exists.

The corrollary to, or consequence of, this design decision is that apps gradually use up
more and more system resources as they are started, which can't go on forever. At some
point, the system will have to start reclaiming the resources of the least recently used
or non-priority components in order to make way for newly-activated components. Yet
still, this resource recycling should be entirely transparent to the user. In other words,
when a component is taken down to make way for new one, and then the user returns
to the original component, it should start up at the point where it was taken down and
act as if it was waiting in memory all along.

To make this behavior possible, Android defines a standard lifecycle components. An
app developer must manage her components' lifecycle by implementing a series of call-
backs for each component that are triggered by events related to the component life-
cycle. For instance, when an activity is no longer in the foreground (and therefore more
likely to be destroyed than if it's in the foreground), its onPause() callback is triggered.

Managing component lifecycles is one of the greatest challenges faced by app devel-
opers, because they must carefully save and restore component states on key transi-
tional events. The desired end result is that the user never needs to "task switch" be-
tween apps or be aware that components from previously-used apps were destroyed to
make way for new ones he started.

Manifest File

If there has to be a "main" entry point to an app, the manifest file is likely it. Basically,
it informs the system of the app's components, the capabilities required to run the app,
the minimum level of the API required, any hardware requirements, etc. The manifest
is formatted as an XML file and resides at the top-most directory of the app's sources
as AndroidManifest.xml. The apps' components are typically all described statically in
the manifest file. In fact, apart from broadcast receivers, which can be registered at
runtime, all other components must be declared at build time in the manifest file.

Processes and Threads

Whenever an app's component is activated, whether it be by the system or another app,
a process will be started to house that app's components. And unless the app developer
does anything to overide the system defaults, all other components of that app that
start after the initial component is activated will run within the same process as that
component. In other words, all components of an app are comprised within a single

24 | Chapter 2: Internals Primer

Linux process. Hence, developers should avoid making long or blocking operations in
standard components and use threads instead.

And because the user is essentially allowed to activate as many components as he wants,
several Linux processes are typically active at any time to serve the many apps con-
taining the user's components. When there are too many processes running to allow
for new ones to start, the Linux kernel's Out-Of-Memory (OOM) killing mechanisms
will kick in. At that point, Android's in-kernel OOM handler will get called and it will
determine which processes must be killed to make space.

Put simply, the entirety of Android's behavior is predicated on low-memory conditions.

If the developer of the app whose process is killed by Android's OOM handler has
implemented his components' lifecycles properly, the user should see no adverse be-
havior. For all practical purposes, in fact, the user should not even notice that the
process housing the app's components went away and got recreated "automagically"
later.

Remote Procedure Calls (RPC)

Much like many other components of the system, Android defines its own RPC/IPC†

mechanism: Binder. So communication across components is not done using the typical
System V IPC or sockets. Instead, components use the in-kernel Binder mechanism,
accessible through /dev/binder, which will be covered later in this chapter.

App developers, however, do not use the Binder mechanism directly. Instead, they must
define and interact with interfaces using Android's Interface Definition Language (IDL).
Interface definitions are usually stored in an .aidl file and are processed by the aidl tool
to generate the proper stubs and marshalling/unmarshalling code required to transfer
objects and data back and forth using the Binder mechanism.

Framework Intro
In addition to the concepts we just discussed, Android also defines its own development
framework, which allows developers to access functionality typically found in other
development frameworks. Let's take a brief look at this framework and its capabilities.

User Interface
UI elements in Android include traditional widgets such as buttons, text boxes,
dialogs, menus, and event handlers. This part of the API is relatively straight-for-
ward and developers usually find their way around it fairly easily if they've already
coded for any other UI framework.

All UI objects in Android are built as descendants of the View class and are organized
within a hierarchy of ViewGroups. An activity's UI can actually be specified either

† Inter-Process Communication

App Developer's View | 25

statically in XML (which is the usual way) or declared dynamically in Java. The UI
can also be modified at runtime in Java if need be. An activity's UI is displayed
when its content is set as the root of a ViewGroup hierarchy.

Data Storage
Android presents developers with several storage options. For simple storage
needs, Android provides shared preferences, which allows developers to store key-
pair values either in a data-set shared by all components of the app or within a
specific separate file. Developers can also manipulate files directly. These files may
be stored privately by the app, and therefore inaccessible to other apps, or made
readable and/or writeable by other apps. App developers can also use the SQLite
functionality included in Android to manage their own private database. Such a
database can then be made available to other apps by hosting it within a content
provider component.

Security and Permissions
Security in Android is enforced at the process level. In other words, Android relies
on Linux's existing process isolation mechanisms to implement its own policies.
To that end, every app installed gets its own UID and GID. Essentially, it's as if
every app is a separate "user" in the system. And as in any multi-user Unix system,
these "users" cannot access each others' resources unless permissions are explicitely
granted to do so. In effect, each app lives in its own separate sandbox.

To exit the sandbox and access key system functionality or resources, apps must
use Android's permission mechanisms, which require developers to statically de-
clare the permissions needed by an app in its manifest file. Some permissions, such
as the right to access the Internet (i.e. use sockets), dial the phone, or use the
camera, are predefined by Android. Other permissions can be declared by app
developers and then be required for other apps to interact with a given app's com-
ponents. When an app is installed, the user is prompted to approve the permissions
required to run an app.

Access enforcement is based on per-process operations and requests to access a
specific URI,‡ and the decision to grant access to a specific functionality or resource
is based on certificates and user prompts. The certificates are the ones used by app
developers to sign the apps they make available on the Android Market. Hence,
developers can restrict access to their apps' functionality to other apps they them-
selves created in the past.

The Android development framework provides a lot more functionality, of course, than
can be covered here. I invite you to read up on Android app development elsewhere or
visit developer.android.com for more information on 2D and 3D graphics, multi-media,
location and maps, Bluetooth, NFC, etc.

‡ Universal Resource Indentifier.

26 | Chapter 2: Internals Primer

App Development Tools
The typical way to develop Android applications is to use the freely available Android
Software Development Kit (SDK). This SDK, along with Eclipse, its corresponding
Android Development Tools (ADT) plugin, and the QEMU-based emulator in the SDK,
allow developers to do the vast majority of development work straight from their
workstation. Developers will also usually want to test their app on real devices prior to
making it available on the Android Market, as there usually are runtime behavior dif-
ferences between the emulator and actual devices. Some software publishers take this
to the extreme and test their apps on several dozens of devices before shipping a new
release.

Even if you aren't going to plan to develop any apps for your embedded system, I highly
suggest you set up the development environment used by app developers on your
workstation. If nothing else, this will allow you to validate the effects of modifications
you make to the AOSP using basic test applications. It will also be essential if you plan
on extending the AOSP's API and therefore create and distribute your own custom SDK.

To set up an app development environment, follow the instructions provided by Google
at the developer kit site just mentioned, or have a look at the book Learning Android
(O'Reilly).

Native Development
While the majority of apps are developed exclusively in Java using the development
environment we just discussed, certain developers need to run some C code natively.
To this end, Google has made the Native Development Kit (NDK) available to devel-
opers. As advertized, this is mostly aimed at game developers needing to squeeze every
last possible bit of performance out of the device their game is running on. And as such,
the APIs made available within the context of the NDK are mostly geared towards
graphics rendering and sensor input retrieval. The infamous Angry Birds game, for
example, relies heavily on code running natively.

Another possible use of the NDK is obviously to port over an existing codebase to
Android. If you've developed a lot of legacy C code over several years (a common sit-
uation for development houses that have created applications for other mobile devices),
you won't necessarily want to rewrite it in Java. Instead, you can use the NDK to compile
it for Android and package it with some Java code to use some of the more Android-
specific functionality made available by the SDK. The Firefox browser, for instance,
relies heavily on the NDK to run some of its legacy code on Android.

As I just hinted, the nice thing about the NDK is that you can combine it with the SDK
and therefore have part of your app in Java and parts of your app in C. That said, it's
crucial to understand that the NDK gives you access only to a very limited subset of
the Android API. There is, for instance, no way to presently send an intent from within
C code compiled with the NDK; the SDK must be used to do it in Java instead. Again,

App Developer's View | 27

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/ndk/index.html

the APIs made available through the NDK are mostly geared towards game develop-
ment.

Sometimes embedded and system developers coming to Android expect to be able to
use the NDK to do platform-level work. The word "native" in the NDK can be mis-
leading in that regard, because the use of the NDK still involves all of the limitations
and requirements that I've said to apply to Java app developers. So, as an embedded
developer, remember that the NDK is useful for app developers to run C code that they
can call from their Java code. Apart from that, the NDK will be of little to no use for
the type of work you are likely to undertake.

Overall Architecture
Figure 2-1 is probably one of the most important diagrams presented in this book, and
I suggest you find a way to bookmark its location as we will often refer back to it, if not
explicitly then implicitely. Although it's a simplified view—and we will get the chance
to enrich it as we go—it gives a pretty good idea of Android's architecture and how the
various bits and pieces fit together.

If you are familiar with some form of Linux development, the first thing that should
strike you is that beyond the Linux kernel itself, there is little in that stack that resembles
anything typically seen in the Linux or Unix world. There is no glibc, no X Window

Figure 2-1. Android's architecture

28 | Chapter 2: Internals Primer

System, no GTK, no BusyBox, and so on. Many veteran Linux and embedded Linux
practitioners have indeed noted that Android feels very alien. Though the Android stack
starts from a clean slate with regards to user-space, we will discuss how to get "legacy"
or "classic" Linux applications and utilities to coexist side-by-side with the Android
stack.

The Google developer documentation presents a different architectural
diagram from that shown in Figure 2-1. The former is likely well suited
for app developers, but omits key information that must be understood
by embedded developers. For instance, Google's diagram and developer
documentationthere offer little to no reference at the time of this writing
to the System Server. Yet, as an embedded developer, you need to know
what that component is, because it's one of the most important parts of
Android and you might need to extend or interact with it directly.

This is especially important to understand because you'll see Google's
diagram presented and copied in several documents and presentations.
If nothing else, remember that the System Server is rarely if at all exposed
to app developers and that the bulk of information out there is aimed
at app developers, not developers doing platform work.

Let's take a deeper look into each part of Android's architecture, starting from the
bottom of Figure 2-1 and going up. Once we are done covering the various components,
we'll end this chapter by going over the system's startup process.

Linux Kernel
The Linux kernel is the center-piece of all distributions traditionally labeled as "Linux,"
including mainstream distributions such as Ubuntu, Fedora, and Debian. And while
it's available in "vanilla" form from the Linux Kernel Archives, most distributions apply
their own patches to it to fix bugs and enhance the performance or customize the
behavior of certain aspects of it before distributing it to their users. Android, as such,
is no different in that the Android developers patch the "vanilla" kernel to meed their
needs.

Android differs from standard practice, however, in relying on several custom func-
tionalities that are significantly different from what is found in the "vanilla" kernel. In
fact, whereas the kernel shipped by a Linux distribution can easily be replaced by a
kernel from kernel.org with little to no impact to the rest of the distribution's compo-
nents, Android's user-space components will simply not work unless they're running
on an "Androidized" kernel. As I had mentioned in the previous chapter, Android kenels
are, in sum, forks from the mainline kernel.

Although it's beyond the scope of this book to discuss the Linux kernel's internals, let's
go over the main "Androidisms" added to the kernel. You can get information about

Linux Kernel | 29

http://kernel.org

the kernel's internals by having a look at Robert Love's Linux Kernel Development, 3rd
ed. and starting to follow the Linux Weekly News (LWN) site. LWN contains several
seminal articles on the kernel's internals and provides the latest news regarding the
Linux kernel's development.

Note that the following subsections cover only the most important Androidisms. An-
droid-ified kernels typical contain several hundred patches over the standard kernel,
often to provide device-specific functionality, fixes and enhancements. You can use
git to do an exhaustive analysis on the commit deltas between one of the kernels at
http://android.git.kernel.org and the mainline kernel they were forked from. Also, note
that some of the functionality that appears in some Android-ified kernels, such as the
PMEM driver for instance, is device-specific and isn't necessarily used in all Android
devices.

Wakelocks
Of all the Androidisms, this is likely the most contentious. The discussion threads
covering its inclusion into the mainline kernel generated close to 2,000 emails and yet
still, there's no clear path for merging the wakelock functionality.

To understand what wakelocks are and do, we must first discuss how power manage-
ment is typically used in Linux. The most common use case of Linux's power manage-
ment is a laptop computer. When the lid is closed on a laptop running Linux, it will
usually go into "suspend" or "sleep" mode. In that mode, the system's state is preserved
in RAM but all other parts of the hardware are shut down. Hence, the computer uses
as little battery power as possible. When the lid is raised, the laptop "wakes up" and
the user can resume using it almost instantaneously.

That modus operandi works fine for a laptop and desktop-like devices, but it doesn't
fit mobile devices such as handsets as well. Hence, Android's development team devised
a mechanism that changes the rules slightly to make them more palatable to such use
cases. Instead of letting the system be put to sleep at the user's behest, an Androidized
kernel is made to go to sleep as soon and as often as possible. And to keep the system
from going to sleep while important processing is being done or while an app is waiting
for the user's input, wakelocks are provided to... keep the system awake.

The wakelocks and early suspend functionality are actually built on top of Linux's
existing power management functionality. However, they introduce a different devel-
opment model, since application and driver developers must explicitely grab wakelocks
whenever they conduct critical operations or must wait for user input. Usually, app
developers don't need to deal with wakelocks directly, because the abstractions they
use automatically take care of the required locking. They can, nonetheless, communi-
cate with the Power Manager Service if they require explicit wakelocks. Driver devel-
opers, on the other hand, can call on the added in-kernel wakelock primitives to grab
and release wakelocks. The downside of using wakelocks in a driver, however, is that

30 | Chapter 2: Internals Primer

http://lwn.net
http://android.git.kernel.org

it becomes impossible to push that driver into the mainline kernel, because the mainline
doesn't include wakelock support.

The following LWN articles describe wakelocks in more detail and ex-
plain the various issues surrounding their inclusion into the mainline
kernel:

• Wakelocks and the embedded problem

• From wakelocks to a real solution

• Suspend block

• Blocking suspend blockers

• What comes after suspend blockers

• An alternative to suspend blockers

Low Memory Killer
As I mentioned earlier, Android's behavior is very much predicated on low-memory
conditions. Hence, out-of-memory behavior is crucial. For this reason, the Android
development team has added an additional low memory killer to the kernel that kicks
in before the default kernel OOM killer. Android's low-memory killer applies the pol-
icies described in the app development documentation, weeding out processes hosting
components that haven't been used in a long time and that are not high-priority.

This low memory killer is based on the OOM adjustments mechanism availalble in
Linux that enables the enforcement of different OOM kill priorities for different pro-
cesses. Basically, the OOM adjustments allow user space to control part of the kernel's
OOM killing policies. The OOM adjustments range from -17 to 15, with a higher
number meaning the associated process is a better candidate for being killed if the
system is out of memory.

Android therefore attributes different OOM adjustment levels to different types of
processes according to the components they are running, and configures its own low
memory killer to apply different thresholds for each category of process. This effectively
allows it to preempt the activation of the kernel's own OOM killer—which only kicks
in when the system has no memory left—by kicking in when the given thresholds are
reached, not when the system runs out of memory.

The user-space policies are themselves applied by the init process at startup (see
“Init” on page 47), and readjusted and partly enforced at runtime by the Activity
Manager Service, which is part of the System Server. The Activity Manager is one of
the most important services in the System Server and is responsible, amongst many
other things, for carrying out the component lifecycle presented earlier.

Linux Kernel | 31

http://lwn.net/Articles/318611/
http://lwn.net/Articles/319860/
http://lwn.net/Articles/385103/
http://lwn.net/Articles/388131/
http://lwn.net/Articles/390369/
http://lwn.net/Articles/416690/

Have a look at the Taming the OOM killer LWN article if you'd like to
get more information regarding the kernel's OOM killer and how An-
droid builds on it.

Binder
Binder is an RPC/IPC mechanism akin to COM under Windows. Its roots actually date
back to work done within BeOS prior to Be's assets being bought by Palm. It continued
life within Palm and the fruits of that work were eventually released as the Open-
Binder project. Though OpenBinder never survived as a stand-alone project, a few key
developers who had worked on it, such as Dianne Hackborn and Arve Hjønnevåg,
eventually ended up working within the Android development team.

Android's Binder mechanism is therefore inspired by that previous work, but Android's
implementation does not derive from the OpenBinder code. Instead, it's a clean room
rewrite of a subset of the OpenBinder functionality. The OpenBinder Documenta-
tion remains a must-read if you want to understand the mechanism's underpinings and
its design philosophy.

In essence, Binder attempts to provide remote object invocation capabilities on top of
a classic OS. In other words, instead of re-engineering traditional OS concepts, Binder
"attempts to embrace and transcend them." Hence, developers get the benefits of deal-
ing with remote services as objects without having to deal with a new OS. It therefore
becomes very easy to extend a system's functionality by adding remotely-invocable
objects instead of implementing new daemons for providing new services, as would
usually be the case in the Unix philosophy. The remote object can therefore be imple-
mented in any desired language and may share the same process space as other remote
services or have its own separate process. All that is needed to invoke its methods is its
interface definition and a reference to it.

And as you can see in Figure 2-1, Binder is a conerstone of Android's architecture. It's
what allows apps to talk the System Server and it's what apps use to talk to each others'
service components, although, as I mentioned earlier, app developers don't actually
talk to the Binder directly. Instead, they use the interfaces and stubs generated by the
aidl tool. Even when apps interface with the System Server, the android.* APIs abstract
its services and the developer never actually sees that Binder is being used.

32 | Chapter 2: Internals Primer

http://lwn.net/Articles/317814/
http://www.angryredplanet.com/~hackbod/openbinder/
http://www.angryredplanet.com/~hackbod/openbinder/

Though they sound semantically similar, there is a very big difference
between services running within the System Server and services exposed
to other apps through the "service" component model I introduced in
“Components” on page 22 as being one of the components available to
app developers. Most importantly, service components are subject to
the same system mechanics as any other component. Hence, they are
lifecycle-managed and run within the same priviledge sandbox associ-
ated as the app they are part of. Services running within the System
Server, on the other hand, typically run with system priviledges and live
from boot to reboot. The only things these two types of services share
together are: a) their name, b) the use of Binder to interact with them.

The in-kernel driver part of the Binder mechanism is a character driver accessible
through /dev/binder. It's used to transmit parcels of data in between the communicating
parties using calls to ioctl(). It also allows one process to designate itself as the "Con-
text Manager." The importance of the Context Manager along with the actual user-
space use of the Binder driver will be discussed in more detail later in this chapter.

Anonymous Shared Memory (ashmem)
Another IPC mechanism available in most OSes is shared memory. In Linux, this is
usually provided by the POSIX SHM functionality, part the System V IPC mechanisms.
If you look at the ndk/docs/system/libc/SYSV-IPC.html file included in the AOSP, how-
ever, you'll discover that the Android development team seems to have a dislike for
SysV IPC. Indeed, the argument is made in that file that the use of SysV IPC mechanisms
in Linux can lead to resource leakage within the kernel, opening the door in turn for
malicious or misbehaving software to cripple the system.

Though it isn't stated as such by Android developers or any of the documentation within
the ashmem code or surrounding its use, ashmem very likely owes part of its existence
to SysV IPC's shortcomings as seen by the Android development team. Ashmem is
therefore described as being similar to POSIX SHM "but with different behavior." For
instance, it does reference counting to destroy memory regions when all processes re-
ferring to them have exited and will shrink mapped regions if the system is in need of
memory. It will also enable memory regions to be shrunk in case the system is under
memory pressure. "Unpinning" a region allows it to be shrunk, whereas "pinning" a
region disallows the shrinking.

Typically, a first process creates a shared memory region using ashmem and uses Binder
to share the corresponding file descriptor with other processes with which it wishes to
share the region. Dalvik's JIT code cache, for instance, is provided to Dalvik instances
through ashmem. A lot of System Server components, such as the Surface Flinger and

Linux Kernel | 33

the Audio Flinger, rely on ashmem, though not directly but through the IMemory§ in-
terface.

Alarm
The alarm driver added to the kernel is another case where the default kernel func-
tionality wasn't sufficient for Android's requirements. Android's alarm driver is actually
layered on top of the kernel's existing Real-Time Clock (RTC) and High-Resolution
Timers (HRT) functionalities. The kernel's RTC functionality provides a framework
for driver developers to create board-specific RTC functions, while the kernel exposes
a single hardware-independent interface through the main RTC driver. The kernel HRT
functionality, on the other hand, allows callers to get woken up at very specific points
in time.

In "vanilla" Linux, application developers typically call the setitimer() system call to
get a signal when a given time value expires.‖ The system call allows for a handful of
types of timers, one of which, ITIMER_REAL, uses the kernel's High-Resolution Timer
(HRT). This functionality, however, doesn't work when the system is suspended. In
other words, if an application uses setitimer() to request being woken up at a given
time and then, in the interim, the device is suspended, that application will get its signal
only when the device is woken up again.

Separately from the setitimer() system call, the kernel's RTC driver is accessible
through /dev/rtc and enables its users to use an ioctl(), among other things, to set an
alarm that will be activated by the RTC hardware device in the system. That alarm will
fire off whether the system is suspended or not, since it's predicated on the behavior or
the RTC device, which remains active even when the rest of the system is suspended.

Android's alarm driver cleverly combines the best of both worlds. By default, the driver
uses the kernel's High-Resolution Timer (HRT) functionality to provide alarms to its
users, much like the kernel's own built-in timer functionality. However, if the system
is about to suspend itself, it programs the RTC so that the system gets woken up at the
appropriate time. Hence, whenever an application from user space needs a specific
alarm, it just needs to use Android's alarm driver to be woken up at the appropriate
time, regardless of whether the system is suspended in the interim.

From user-space, the alarm driver appears as the /dev/alarm character device and allows
its users to set up alarms and adjust the system's time (wall time) through ioctl() calls.
There are a few key AOSP components that rely on /dev/alarm. For instance, Toolbox
and the SystemClock class, available through the app development API, rely on it to set/
get the system's time. Most importantly, though, the Alarm Manager service part of the

§ IMemory is an internal interface available only within the AOSP, not to app developers. The closest class
exposed to app developers is MemoryFile.

‖ For more information, see the setitimer()'s man page.

34 | Chapter 2: Internals Primer

System Server uses it to provide alarm services to apps that are exposed to app devel-
opers through the AlarmManager class.

Both the driver and Alarm Manager use the wakelock mechanism wherever appropriate
to maintain consistency between alarms and the rest of Android's wakelock-related
behavior. Hence, when an alarm is fired, its consuming app gets the chance to do
whatever operation is required before the system is allowed to suspend itself again, if
need be.

Logger
Logging is yet another essential component of any Linux system, embedded ones in-
cluded. Being able to analyze a system's logs for errors or warnings either in post-mor-
tem or in real-time can be vital to isolate fatal errors, especially transient ones. By de-
fault, most Linux distributions include two logging systems: the kernel's own log, typ-
ically accessed through the dmesg command, and the system logs, typically stored in
files in the /var/log directory. The kernel's log usually contains the messages printed
out by the various printk() calls made within the kernel, either by core kernel code or
by device drivers. For their part, the system logs contain messages coming from various
daemons and utilities running in the system. In fact, you can use the logger command
to send your own messages to the system log.

With regard to Android, the kernel's logging functionality is used as-is. However, none
of the usual system logging software packages typically found in most Linux distribu-
tions is found in Android. Instead, Android defines its own logging mechanisms based
on the Android logger driver added to the kernel. syslog relies on sending messages
through sockets, and therefore generates a task switch. It also uses files to store its
information, therefore generating writes to a storage device. In contrast, Android's log-
ging functionality manages a handful of separate kernel-hosted buffers for logging data
coming from user-space. Hence, no task-switches or file writes are required for each
event being logged. Instead, the driver maintains circular buffers where it logs every
incoming event and returns immediately back to the caller.

Because of its light-weight and efficient design, Android's logger can actually be used
by user-space components at run-time to regularly log events. In fact, the Log class
available to app developers more or less directly invokes the logger driver to write to
the main event buffer. Obviously, all good things can be abused and it's preferable to
keep the logging light, but still the level of use made possible by exposing Log through
the app API along with the level of use of logging within the AOSP itself would have
likely been very difficult to sustain had Android's logging been based on syslog.

Figure 2-2 describes Android's logging framework in more detail. As you can see, the
logger driver is the core building block on which all other logging-related functionality
relies. Each buffer it manages is exposed as a separate entry within /dev/log/. However,
no user-space component directly interacts with that driver. Instead, they all rely on
liblog which provides a number of different logging functions. Depending on the func-

Linux Kernel | 35

tions being used and the parameters being passed, events will get logged to different
buffers. The liblog functions used by the Log and Slog classes, for instance, will test
whether the event being dispatched comes from a radio-related module. If so, the event
is sent to the "radio" buffer. If not, the Log class will send the event to the "main" buffer
whereas the Slog class will send it to the "system" buffer. The "main" buffer is the one
whose events are shown by the logcat command when it's issued without any param-
eters.

Both the Log and EventLog classes are exposed through the app development API, while
Slog is for internal AOSP use only. Despite being available to app developers, though,
EventLog is clearly identified in the documentation aas mainly or system integrators,
not app developers. In fact, the vast majority of code samples and examples provided
as part of the developer documentation use the Log class. Typically, EventLog is used
by system components to log binary events to the Android's "events" buffer. Some
system components, especially System Server-hosted services, will use a combination
of Log, Slog, and EventLog to log different events. An event that might be relevant to
app developers, for instance, might be logged using Log, while an event relevant to
platform developers or system integrators might be logged using either Slog or
EventLog.

Figure 2-2. Android's logging framework

36 | Chapter 2: Internals Primer

Note that the logcat utility, which is commonly used by app developers to dump the
Android logs, also relies on liblog. In addition to providing access functions to the
logger driver, liblog also provides functionality for formatting events for pretty printing
and filtering. Another feature of liblog is that it requires every event being logged to
have a priority, a tag, and data. The priority is one of verbose, debug, info, warn, or
error. The tag is a unique string that identifies the component or module writing to
the log, and the data is the actual information that needs to be logged. This description
should in fact sound fairly familiar to anyone exposed to the app developpment API,
as this is exactly what's spelled out by the developer documentation for the Log class.

The final piece of the puzzle here is the adb command. As we'll discuss later, the AOSP
includes an Android Debug Bridge (ADB) daemon that runs on the Android device and
that is accessed from the host using the adb command-line tool. When you type adb
logcat on the host, the daemon actually launches the logcat command locally on the
target to dump its "main" buffer and then transfers that back to the host to be shown
on the terminal.

Other Notable Androidisms
A few other Androidisms, in addition to those already covered, are worth mentioning,
even if we don't cover them in as much detail.

Paranoid Networking
Usually in Linux, all processes are allowed to create sockets and interact with the
network. Per Android's security model, however, access to network capabilities
has to be controlled. Hence, an option is added to the kernel to gate access to socket
creation and network interface administration based on whether the current proc-
ess belongs to a certain group of processes or possesses certain capabilities. This
applies to IPv4, IPv6, and Bluetooth.

RAM Console
As I mentioned earlier, the kernel manages its own log, which you can access using
the dmesg command. The content of this log is very useful, as it often contains
critical messages from drivers and kernel subsystems. On a crash or a kernel panic,
its content can be instrumental for post-mortem analysis. Since this information is
typically lost on reboot, Android adds a driver that registers a RAM-based console
that survives reboots and makes its content accessible through /proc/last_kmsg.

Physical Memory (pmem)
Like ashmem, the pmem driver allows for sharing memory between processes.
However, unlike ashmem, it allows the sharing of large chunks of physically-con-
tiguous memory regions, not virtual memory. In addition, these memory regions
may be shared between processes and drivers. For the G1 handset, for instance,
pmem heaps are used for 2D hardware acceleration. Note, though, that pmem isn't
used in all devices. In fact, according to Brian Swetland, one of the Android kernel

Linux Kernel | 37

development team members, it was written to specifically target the
MSM7201A's# limitations.

Hardware Support
Android's hardware support approach is significantly different from the classic ap-
proach typically found in the Linux kernel and in Linux-based distributions. Specifi-
cally, the way hardware support is implemented, the abstractions built on that hard-
ware support, and the mindset surrounding the licensing and distribution of the re-
sulting code are all different.

The Linux Approach
The usual way to provide support for new hardware in Linux is to create device drivers
that are either built as part of the kernel or loaded dynamically at runtime through
modules. The corresponding hardware is thereafter generally accessible in user-space
through entries in /dev. Linux's driver model defines three basic types of devices: char-
acter devices, devices that appear as a stream of bytes, block devices (essentially hard
disks), and networking devices. Over the years, quite a few additional device and sub-
system types have been added, such as for USB or MTD devices. Nevertheless, the APIs
and methods for interfacing with the /dev entry corresponding to a given type of device
have remained fairly standardized and stable.

This, therefore, has allowed various software stacks to be built on top of /dev nodes to
either interact with the hardware directly or expose generic APIs that are used by user
applications to provide access to the hardware. The vast majority of Linux distributions
in fact ship with a similar set of core libraries and subsystems, such as the ALSA audio
libraries and the X Window System, to interface with hardware devices exposed
through /dev.

With regard to licensing and distribution, the general "Linux" approach has always
been that drivers should be merged and maintained as part of the mainline kernel and
distributed with it under the terms of the GPL. So, while some device drivers are de-
veloped and maintained independently and some are even distributed under other li-
censes, the consensus has been that that isn't the preferred approach. In fact, with
regard to licensing, non-GPL drivers have always been a contentious issue. Hence, the
conventional wisdom is that users' and distributors' best bet to get the latest drivers is
usually to get the latest mainline kernel from http://kernel.org. This has been true since
the kernel's early days and remains true despite some additions having been made to
the kernel to allow the creation of user-space drivers.

#The MSM7201A is the G1's processor.

38 | Chapter 2: Internals Primer

http://kernel.org

Android's General Approach
Although Android builds on the kernel's hardware abstractions and capabilities, its
approach is very different. On a purely technical level, the most glaring difference is
that its subsystems and libraries don't rely on standard /dev entries to function properly.
Instead, the Android stack typically relies on shared libraries provided by manufactur-
ers to interact with hardware. In effect, Android relies on what can be considered a
Hardware Abstraction Layer (HAL), although, as we will see, the interface, behavior
and function of abstracted hardware components differ greatly from type to type.

In addition, most software stacks typically found in Linux distributions to interact with
hardware are not found in Android. There is no X Window System, for instance, and
while ALSA drivers are sometimes used—a decision left up to the hardware manufac-
turer who provides the shared library implementing audio support for the HAL—access
to their functionality is different from that on standard Linux distributions.

Figure 2-3 presents the typical way in which hardware is abstracted and supported in
Android, and the corresponding distribution and licensing. As you can see, Android
still ultimately relies on the kernel to access the hardware. However, this is done
through shared libraries that are either implemented by the device manufacturer or
provided as part of the AOSP.

One of the main features of this approach is that the license under which the shared
library is distributed is up to the hardware manufacturer. Hence, a device manufacturer
can create a simplistic device driver that implements the most basic primitives to access
a given piece of hardware and make that driver available under the GPL. Not much
would be revealed about the hardware, since the driver wouldn't do anything fancy.
That driver would then expose the hardware to user-space through mmap() or ioctl()
and the bulk of the intelligence would be implemented within a proprietary shared
library in user-space that uses those functions to drive the hardware.

Android does not in fact specify how the shared library and the driver or kernel sub-
system should interact. Only the API provided by the shared library to the upper layers
is specified by Android. Hence, it's up to you to determine the specific driver interface
that best fits your hardware, so long as the shared library you provide implements the
appropriate API. Nevertheless, we will cover the typical methods used by Android to
interface to hardware in the next section.

Where Android is relatively inconsistent is the way the hardware-supporting shared
libraries are loaded by the upper layers. Remember for now that for most hardware
types, there has to be a .so file that is either provided by the AOSP or that you must
provide for Android to function properly.

No matter which mechanism is used to load a hardware-supporting shared library, a
system service corresponding to the type of hardware is typically responsible for loading
and interfacing with the shared libary. That system service will be responsible for in-
teracting and coordinating with the other system services to make the hardware behave

Hardware Support | 39

coherently with the rest of the system and the APIs exposed to app developers. If you're
adding support for a given type of hardware, it's therefore crucial that you try to un-
derstand in as much detail as possible the internals of the system service corresponding
to your hardware. Usually, the system service will be split in two parts, one part in Java
that implements most of the Android-specific intelligence and another part in C whose
main job is to interact with the hardware-supporting shared library and other low-level
functions.

Loading and Interfacing Methods
As I mentioned earlier, there are various ways in which system services and Android in
general interact with the shared libraries implementing hardware support and hardware
devices in general. It's difficult to fully understand why there is such a variety of meth-
ods, but I suspect that some of them evolved organically. Luckily, there seems to be a
movement towards a more uniform way of doing things. Given that Android moves at
a fairly rapid pace, this is one area that will require keeping an eye on for the forseeable
future, as it's likely to evolve.

Figure 2-3. Android's "Hardware Abstraction Layer"

40 | Chapter 2: Internals Primer

Note that the methods described here are not necessarily mutually exclusive. Often a
combination of these is used within the Android stack to load and interface with a
shared library or some software layer before or after it. I'll cover specific hardware in
the next section.

dlopen()-loading through HAL
Applies to: GPS, Lights, Sensors, and Display

Some hardware-supporting shared libraries are loaded by the libhardware library.
This library is part of Android's HAL and exposes hw_get_module(), which is used
by some system services and subsystems to explicitly load a given specific hard-
ware-supporting shared library (a.k.a. a "module" in HAL terminology*).
hw_get_module() in turn relies on the classic dlopen() to load libraries into the
caller's address space.

Linker-loaded .so files
Applies to: Audio, Camera, Wifi, Vibrator, and Power Management

In some cases, system services are simply linked against a given .so file at build
time. Hence, when the corresponding binary is run, the dynamic linker automat-
ically loads the shared library into the process's address space.

Hardcoded dlopen()s
Applies to: StageFright and Radio Interface Layer (RIL)

In a few cases, the code invokes dlopen() directly instead of going through
libhardware to fetch a hardware-enabling shared library. The rationale for using
this method instead of the HAL is unclear.

Sockets
Applies to: Bluetooth, Network Management, Disk Mounting, and Radio Interface
Layer (RIL)

Sockets are sometimes used by system services or framework components to talk
to a remote daemon or service that actually interacts with the hardware.

Sysfs entries
Applies to: Vibrator and Power Management

Some entries in sysfs (/sys) can be used to control the behavior of hardware and/
or kernel subsystems. In some cases, Android uses this method instead of /dev
entries to control the hardware.

/dev nodes
Applies to: Almost every type of hardware

Aguably, any hardware abstraction must at some point communicate with an entry
in /dev, because that's how drivers are exposed to user-space. Some of this com-

* Not to be confused with loadable kernel modules, which are a completely different and unrelated software
construct, even though they share some similar properties.

Hardware Support | 41

munication is likely hidden to Android itself because it interacts with a shared
library instead, but in some other cases AOSP components directly access device
nodes. Such is the case of input libraries used by the Input Manager.

D-Bus
Applies to: Bluetooth

D-Bus is a classic messaging system found in most Linux distributions for facili-
tating communication between various desktop components. It's included in An-
droid because it's the prescribed way for a non-GPL component to talk to the GPL-
licensed BlueZ stack—Linux's default Bluetooth stack and the one used in Android
—without being subject to the GPL's redistribution requirements; D-Bus itself be-
ing dual-licensed under the Academic Free License (AFL) and the GPL. Have a
look at http://dbus.freedesktop.org for more information about D-Bus.

Device Support Details
Table 2-1 summarizes the way in which each type of hardware is supported in Android.
As you'll notice, there is a wide variety of combinations of mechanisms and interfaces.
If you plan on implementing support for a specific type of hardware, the best way
forward is to start from an existing sample implementation. The AOSP typically in-
cludes hardware support code for a few handsets, generally those which were used by
Google to develop new Android releases and therefore served as flagship devices.
Sometimes the sources for the hardware support are quite extensive, as was the case
for the Samsung Nexus S (a.k.a. "Crespo", its code-name).

The only type of hardware for which you are unlikely to find publicly-available imple-
mentations on which to base your own is the RIL. For various reasons, it's best not to
let everyone be able to play with the airwaves. Hence, manufacturers don't make such
implementations available. Instead, Google provides a reference RIL implementation
in the AOSP should you want to implement a RIL.

Table 2-1. Android's hardware support methods and interfaces

Hardware System Service Interface to user-space HW support Interface to HW

Audio Audio Flinger Linker-loaded libaudio.so Up to HW manufacturer, though
ALSA is typical

Bluetooth Bluetooth Serv-
ice

Socket/D-Bus to BlueZ BlueZ stack

Camera Camera Service Linker-loaded libcamera.so Up to HW manufacturer, some-
times Video4Linux

Display Surface Flinger HAL-loaded gralloc module /dev/fb0 or /dev/graphics/fb0

GPS Location Man-
ager

HAL-loaded gps module Up to HW manufacturer

Input Input Manager Native library Entries in /dev/input/

42 | Chapter 2: Internals Primer

http://dbus.freedesktop.org

Hardware System Service Interface to user-space HW support Interface to HW

Lights Lights Service HAL-loaded lights module Up to HW manufacturer

Media N/A, StageF-
right frame-
work within
Media Service

dlopen on libstagefrighthw.so Up to HW manufacturer

Network interfa-
cesa

Network Man-
agement Serv-
ice

Socket to netd ioctl() on interfaces

Power Manage-
ment

Power Manager
Service

Linker-loaded libhardware_legacy.so Entries in /sys/android_power/
or /sys/power/

Radio (Phone) N/A, entry-
point is teleph-
ony Java code

Socket to rild, which itself does a
dlopen()on manufacturer-provided .so

Up to HW manufacturer

Storage Mount Service Socket to vold System calls

Sensors Sensor Service HAL-loaded sensors module Up to HW manufacturer

Vibrator Vibrator Service Linker-loaded libhardware_legacy.so Up to HW manufacturer

Wifi Wifi Service Linker-loaded libhardware_legacy.so Classic wpa_supplicantb

a This is for Tether, NAT, PPP, PAN, USB RNDIS (Windows). It isn't for Wifi.
b The wpa_supplicant is the same software package used on any Linux desktop to manage Wifi networks and connections.

Native User-Space
Now that we've covered the low-level layers on which Android is built, let's start going
up the stack. First off, we'll cover the native user-space environment in which Android
operates. By "native user-space" I mean all the user-space components that run outside
the Dalvik virtual machine. This includes quite a few binaries that are compiled to run
natively on the target's CPU architecture. These are generally started either automati-
cally or as needed by the init process according to its configuration files, or are available
to to be invoked on the command line once a developer shells into the device. Such
binaries usually have direct access the root filesystem and the native libraries included
in the system. Their capabilities would be gated by the filesystem rights granted to them
and wouldn't be subject to any of the restrictions imposed on a typical Android app by
the Android framework because they are running outside of it.

Note that Android's user-space was designed pretty much from a blank slate and differs
greatly from what you'd find in a standard Linux distribution. Hence, I will try in as
much as possible in the following to explain where Android's user-space is different or
similar to what you'd usually find in a Linux-based system.

Native User-Space | 43

Filesystem layout
Like any other Linux-based distribution, Android uses a root filesystem to store appli-
cations, libraries, and data. Unlike the vast majority of Linux-based distributions,
however, the layout of Android's root filesystem does not adhere to the Filesystem
Hierarchy Standard (FHS).† The kernel itself doesn't enforce the FHS, but most soft-
ware packages built for Linux assume that the root filesystem they are running on
conforms to the FHS. Hence, if you intend to port a standard Linux application to
Android, you'll likely need to do some legwork to ensure that the filepaths it relies on
are still valid.

Given that most of the packages running in Android's user space were written from
scratch specifically for Android, this lack of conformity is of little to no consequence
to Android itself. In fact, it has some benefits, as we'll see shortly. Still, it's important
to learn how to navigate Android's root filesystem. If nothing else, you'll likely have to
spend quite some time inside of it as you bring Android up on your hardware or cus-
tomize it for that hardware.

The two main directories in which Android operates are /system and /data. These di-
rectories do not emanate from the FHS. In fact, I can't think of any mainstream Linux
distribution that uses either of these directories. Rather, they reflect the Android de-
velopment team's own design. This is one of the first signs hinting to the fact that it
might be possible to host Android side-by-side with a common Linux distribution on
the same root filesystem. As I said earlier, we'll actually examine this possibility in more
detail later in the book.

/system is the main Android directory for storing immutable components generated by
the build of the AOSP. This includes native binaries, native libraries, framework pack-
ages, and stock apps. It's usually mounted from a separate image from the root filesys-
tem, which is itself mounted from a RAM disk image. /data, on the other hand, is
Android's main directory for storing data and apps that change over time. This includes
the data generated and stored by apps installed by the user alongside data generated
by Android system components at runtime. It too is usually mounted from its own
separate image.

Android also includes many directories commonly found in any Linux system, such
as: /dev, /proc, /sys, /sbin, /root, /mnt, and /etc. These directories often serve similar if
not identical purposes to the the ones they serve on any Linux system, although they
are very often trimmed down, as is the case of /sbin and /etc, and in some cases are
empty, such as /root.

Interestingly, Android doesn't include any /bin or /lib directories. These directories are
typically crucial in a Linux system, containing, respectively, essential binaries and es-

† The FHS is a community standard that describes the contents and use of the various directories within a
Linux root filesystem.

44 | Chapter 2: Internals Primer

http://www.pathname.com/fhs/

sential libraries. This is yet another artefact that opens the door for making Android
coexist with standard Linux components.

There is of course more to be said about Android's root filesystem. The directories just
mentioned, for instance, contain their own hierarchies. Also, Android's root filesystem
contains other directories that I haven't covered here. We will revist the Android root
filesystem and its make-up in more detail in Chapter 5.

Libraries
Android relies on about a hundred dynamically-loaded libraries, all stored in the /sys-
tem/lib directory. A certain number of these come from external projects that were
merged into Android's codebase to make their functionality available within the An-
droid stack, but a large portion of the libraries in /system/lib are actually generated from
within the AOSP itself. Table 2-2 lists the libraries included in the AOSP that come
from external projects, whereas Table 2-3 summarizes the Android-specific libraries
generated from within the AOSP.

Table 2-2. Libraries generated from external projects imported into the AOSP

Library(ies) External Project Original Location License

libcrypto.so and libssl.so OpenSSL http://www.openssl.org Custom, BSD-like

libdbus.so D-Bus http://dbus.freedesktop.org AFL and GPL

libexif.so Exif Jpeg header manipulation
tool

http://www.sentex.net/
~mwandel/jhead/

Public Domain

libexpat.so Expat XML Parser http://expat.sourceforge.net MIT

libFFTEm.so neven face recognition library N/A ASL

libicui18n.so and libicuuc.so International Components for
Unicode

http://icu-project.org MIT

libiprouteutil.so and libnetlink.so iproute2 TCP/IP networking
and traffic control

http://www.linuxfoundation
.org/collaborate/workgroups/
networking/iproute2

GPL

libjpeg.so libjpeg http://www.ijg.org Custom, BSD-like

libnfc_ndef.so NXP Semiconductor's NFC li-
brary

N/A ASL

libskia.so and libskiagl.so skia 2D graphics library http://code.google.com/p/
skia/

ASL

libsonivox Sonic Network's Audio Synthe-
sis library

N/A ASL

libsqlite.so SQLite database http://www.sqlite.org Public Domain

libSR_AudioIn.so and libsrec_jni.so Nuance Communications'
Speech Recognition engine

N/A ASL

Native User-Space | 45

http://www.openssl.org
http://dbus.freedesktop.org
http://www.sentex.net/~mwandel/jhead/
http://www.sentex.net/~mwandel/jhead/
http://expat.sourceforge.net
http://icu-project.org
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.ijg.org
http://code.google.com/p/skia/
http://code.google.com/p/skia/
http://www.sqlite.org

Library(ies) External Project Original Location License

libstlport.so Implementation of the C++
Standard Template Library

http://stlport.sourceforge.net Custom, BSD-like

libttspico.so SVOX's Text-To-Speech speech
synthesizer engine

N/A ASL

libvorbisidec.so Tremolo ARM-optimized Ogg
Vorbis decompression library

http://wss.co.uk/pinknoise/
tremolo/

Custom, BSD-like

libwebcore.so WebKit Open Source Project http://www.webkit.org LGPL and BSD

libwpa_client Library based on wpa_suppli-
cant

http://hostap.epitest.fi/wpa
_supplicant/

GPL and BSD

libz.so zlib compression library http://zlib.net Custom, BSD-like

Table 2-3. Android-specific libraries generated from within the AOSP

Category Library(ies) Description

Bionic libc.so C library

libm.so Math library

libdl.so Dynamic linking library

libstdc++.so Standard C++ library

libthread_db.so Threads library

Corea libbinder.so The Binder library

libutils.so, libcutils.so, libnetutils.so, and libsysutils.so Various utility libraries

libsystem_server.so, libandroid_servers.so, libaudioflinger.so,
libsurfaceflinger.so, linsensorservice.so, and libcameraser-
vice.so

System-services-related libraries

libcamera_client.so and libsurfaceflinger_client.so Client libraries for certain system services

libpixelflinger.so The PixelFlinger library

libui.so Low-level user-interface-related functionali-
ties, such as user input events handling and dis-
patching and graphics buffer allocation and ma-
nipulation

libgui.so Sensors-related functions library

liblog.so The logging library

libandroid_runtime.so The Android runtime library

Dalvik libdvm.so The Dalvik VM library

libnativehelper.so JNI-related helper functions

Hardware libhardware.so The HAL library that provides
hw_get_module() uses dlopen() to load
hardware support modules (i.e. shared libraries

46 | Chapter 2: Internals Primer

http://stlport.sourceforge.net
http://wss.co.uk/pinknoise/tremolo/
http://wss.co.uk/pinknoise/tremolo/
http://www.webkit.org
http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/wpa_supplicant/
http://zlib.net

Category Library(ies) Description
that provide hardware support to the HAL) on
demand.

libhardware_legacy.so Library providing hardware support for wifi,
power-management and vibrator

Various hardware-supporting shared libraries. Libraries that provide support for various hard-
ware components, some of which are loaded
using through the HAL, while others are loaded
automatically by the linker

Media libmediaplayerservice.so The Media Player service library

libmedia.so The low-level media functions used by the Me-
dia Player service

libstagefright*.so The many libraries that make-up the StageF-
right media framework

libeffects.so and the libraries in the soundfx/ directory The sound effects libraries

libdrm1.so and libdrm1_jni.so The DRMb framework libraries

OpenGL libEGL.so, libETC1.so, libGLESv1_CM.so, libGLESv2.so, and egl/
ligGLES_android.so

Android's OpenGL implementation

a I'm using this category as catch-all for many core Android functionalities.
b Digital Rights Management

Init
When the kernel finishes booting, it starts just one process, the init process. This process
is then responsible for spawning all other processes and services in the system and for
conducting critical operations such as reboots. The package traditionally provided by
Linux distributions for the init process uses SystemV init, although in recent years many
distributions have created their own variants. Ubuntu, for instance, uses Upstart. In
embedded Linux systems, the classic package that provides init is BusyBox.

Android introduces its own custom init, which brings with it a few novelties.

Configuration language

Unlike traditional inits, which are predicated on the use of scripts that run per the
current run-levels' configuration or on request, Android's init defines its own configu-
ration semantics and relies mostly on changes to global properties to trigger the exe-
cution of specific instructions.

The main configuration file for init is usually stored as /init.rc, but there's also usually
a device-specific configuration file stored as /init.device_name.rc and device-specific
script stored as /etc/init.device_name.sh, where device_name is the name of the device.
You can get a high degree of control over the system's startup and its behavior by
modifying those files. For instance, you can disable the Zygote from starting up auto-

Native User-Space | 47

http://launchpad.net/upstart
http://busybox.net

matically and then starting it manually yourself after having used adb to shell into the
device.

Global properties

A very interesting aspect of Android's init is how it manages a global set of properties
that can be accessed and set from many parts of the system, with the appropriate rights.
Some of these properties are set at build time, while others are set in init's configuration
files and still others are set at runtime. Some properties are also persisted to storage for
permanent use. Since init manages the properties, it can detect any changes and there-
fore trigger the execution of a set of commands based on its configuration.

The OOM adjustments mentioned earlier, for instance, are set on startup by the
init.rc file. So are network properties. Properties set at build time are stored in the /
system/build.prop file and include the build date and build system details. At runtime,
the system will have over a hundred different properties, ranging from IP and GSM
configuration parameters to the battery's level. Use the getprop command to get the
current list of properties and their values.

udev events

As I explained earlier, access to devices in Linux is done through nodes within the /
dev directory. In the older days, Linux distributions would ship with thousands of
entries in that directory to accomodate all possible device configurations. Eventually,
though, a few schemes were proposed to make the creation of such nodes dynamic.
For some time now, the system in use has been udev, which relies on runtime events
generated by the kernel every time hardware is added or removed from the system.

In most Linux distributions, the handling of udev hotplug events is done by the
udevd daemon. In Android, these events are handled by the ueventd daemon built as
part of Android's init and accessed through a symbolic link from /sbin/ueventd to /
init. To know which entries to create in /dev, ueventd relies on the /ueventd.rc and /
ueventd.device_name.rc files.

Toolbox
Much like the root filesystem's directory hierarchy, there are essential binaries on most
Linux system, listed by the FHS for the /bin and /sbin directories. In most Linux dis-
tributions, the binaries in those directories are built from separate packages coming
from different sites on the net. In an embedded system, it doesn't make sense to have
to deal with so many packages, nor necessarily have that many separate binaries.

The approach taken by the classic BusyBox package is to build a single binary that
essentially has what amounts to a huge switch-case, which checks for the first param-
eter on the command line and executes the corresponding functionality. All commands
are then made to be symbolic links the busybox command. So when you type ls, for

48 | Chapter 2: Internals Primer

example, you're actually invoking BusyBox. But since BusyBox's behavior is predicated
on the first parameter on the command line and that parameter is ls, it will behave as
if you had run that command from a standard Linux shell.

Android doesn't use BusyBox, but includes its own tool, Toolbox, that basically func-
tions in the very same way using symbolic links to the toolbox command. Unfortu-
nately, Toolbox is nowhere as feature-full as BusyBox. In fact, if you've ever used Busy-
Box, you're likely going to be very disappointed when using Toolbox. The rationale for
creating a tool from scratch in this case seems to make most sense when viewed from
the licensing angle, BusyBox being GPL licensed. In addition, some Android developers
have stated that their goal was to create a minimal tool for shell-based debugging and
not to provide a full replacement for shell tools as BusyBox does. At any rate, Toolbox
is BSD licensed and manufacturers can therefore modify it and distribute it without
having to track the modifications made by their developers or making any sources
available to their customers.

You might still want to include BusyBox alongside Toolbox to benefit from its capa-
bilities. If you don't want to ship it as part of your final product because of its licensing,
you could include it temporarily during development and strip it in the final production
release. We'll cover this in more detail later.

Daemons
As part of the system startup, Android's init starts a few key daemons that continue to
run throughout the lifetime of the system. Some daemon, such as adbd, are started on
demand, depending on changes to global properties.

Table 2-4. Native Android daemons

Daemon Description

servicemanager The Binder Context Manager. Acts as an index of all Binder services running in the system.

vold The volume manager. Handles the mounting and formatting of mounted volumes and images.

netd The network manager. Handles tethering, NAT, PPP, PAN, and USB RNDIS.

debuggerd The debugger daemon. Invoked by Bionic's linker when a process crashes to do a postmortem analysis. Allows
gdb to connect from the host.

Zygote The Zygote process. It's responsible for warming up the system's cache and starting the System Server. We'll
discuss it in more detail later in this chapter.

mediaserver The Media server. Hosts most media-related services. We'lll discuss it in more detail later in this chapter.

dbus-daemon The D-Bus message daemon. Acts as an intermediary between D-Bus users. Have a look at its man page for
more information.

bluetoothd The Bluetooth daemon. Manages Bluetooth devices. Provides services through D-Bus.

installd The .apk installation daemon. Takes care of installing and uninstalling .apk files and managing the related
filesystem entries.

keystore The KeyStore daemon. Manages an encrypted key-pair value store for cryptographic keys, SSL certs for instance.

Native User-Space | 49

Daemon Description

system_server Android's System Server. This daemon hosts the vast majority of system services that run in Android.

adbd The ADB daemon. Manages all aspects of the connection between the target and the host's adb command.

Command-Line Utilities
More than 150 command-line utilities are scattered over Android's root filesystem. /
system/bin contains the majority of them, but some "extras" are in /system/xbin and a
handful are in /sbin. Around 50 of those in /system/bin are actually symbolic links to /
system/bin/toolbox. The majority of the rest come from the Android base framework,
from external projects merged into the AOSP, or from various other parts of the AOSP.
We'll get the chance to cover the various binaries found in the AOSP in more detail in
Chapter 5.

Dalvik and Android's Java
In a nutshell, Dalvik is Android's Java virtual machine. It allows Android to run the
byte-code generated from Java-based apps and Android's own system components, and
provides both with the required hooks and environment to interface with the rest of
the system, including native libraries and the rest of the native user-space. There's more
to be said about Dalvik and Android's brand of Java, though. But before we can delve
into that explanation, we must first cover some Java basics.

Without boring you with yet another history lesson on the Java language and its origins,
suffice it to say that Java was created by James Gosling at Sun in the early '90s, that it
rapidly became very popular, and that it was, in sum, more than well established before
Android came around. From a developer perspective, the are two aspects that are im-
portant to keep in mind with regard to Java: its differences with a traditional language
such as C and C++, and the components that make up what we commonly refer to as
"Java."

By design, Java is an interpreted language. Unlike C and C++, where the code you write
gets compiled by a compiler into binary assembly instructions to be executed by a CPU
matching the architecture targeted by the compiler, the code that you write in Java gets
compiled by a Java compiler into architecture-independent byte-code that is executed
at a run-time by a byte-code interpreter, also commonly referred to as a "virtual ma-
chine."‡ This modus operandi, along with Java's semantics, enable the language to
include quite a few features not traditionally found in previous languages, such as re-
flection§ and anonymous classes.‖ Also, unlike C and C++, Java doesn't require you to

‡ This term was less ambiguous when Java came out, because "virtual machine" software such as VMWare
and VirtualBox weren't as common or as popular as they are today. Such virtual machines do far more than
interpret byte-code, as Java virtual machines do.

§ The ability to ask an object whether it implements a certain method.

50 | Chapter 2: Internals Primer

keep track of objects you allocate. In fact, it requires you to lose track of all unused
objects, since it's got an integrated garbage-collector that will ensure all such objects
are destroyed when no active code holds a reference to them any longer.

At a practical level, Java is actually made up of a few distinct things: the Java compiler,
the Java byte-code interpreter—more commonly known as the Java Virtual Machine
(JVM)—and the Java libraries commonly used by Java developers. Together, these are
usually obtained by developers through the Java Development Kit (JDK) provided free
of charge by Oracle. Android actually relies on the JDK for the Java compiler, but it
doesn't use the JVM or the libraries found in the JDK. Instead of the JVM, it relies on
Dalvik, and instead of the JDK libraries, it relies on the Apache Harmony project, a
clean-room implementation of the Java libraries hosted under the umbrella of the
Apache project.

According to its developer, Dan Bornstein, Dalvik distinguishes itself from the JVM by
being specifically designed for embedded systems. Namely, it targets systems that have
slow CPUs and relatively litte RAM, run OSes that don't use swap space, and are battery
powered.

While the JVM munches on .class files, Dalvik prefers the .dex delicatessen. .dex files
are actually generated by postprocessing the .class files generated by the Java compiler
through Android's dx utility. Among other things, an uncompressed .dex file is 50%
smaller than its originating .jar# file. Another interesting factoid is that Dalvik is reg-
ister-based whereas the JVM is stack-based, though that is likely to have little to no
meaning to you unless you're an avid student of VM theory, architecture, and internals.

If you'd like to get more information about the features and internals of
Dalvik, I strongly encourage you to take a look at Dan Bornstein's Goo-
gle I/O 2008 presentation entitled "Dalvik Virtual Machine Internals."
It's about one hour long and available on YouTube. You can also just
go to YouTube and search for "Dan Bornstein Dalvik."

If you'd like to get the inside track on the benefits and tradeoffs between
stack-based VMs versus register-based VMs, have a look at the paper
entitled "Virtual Machine Showdown: Stack Versus Registers" by Shi et
al. in proceedings of VEE'05, June 11-12, 2005, Chicago, IL, p. 153-163.

A feature of Davlik very much worth highlighting, though, is that since 2010 it has
included a Just-In-Time (JIT) compiler for ARM. This means that Dalvik converts apps'
byte-codes to binary assembly instructions that run natively on the target's CPU instead
of being interpreted one instruction at a time by the VM. The result of this conversion

‖ Snippets of code that are passed as a parameter to a method being invoked. An anonymous class might be
used, for instance, as a callback registration method, thereby enabling the developer to visualize the code
handling an event at the same location they invoke the callback registration method.

#.jar files are actually Java ARchives (JAR) containing many .class files, each of which contain only a single class.

Dalvik and Android's Java | 51

http://www.youtube.com/watch?v=ptjedOZEXPM

is then stored for future use. Hence, apps take longer to load the first time, but once
they've been JIT'ed, they load and run much faster. The only caveat here is that JIT isn't
available for any other architecture than ARM. So, in sum, the fastest architecture to
run Android on is, for now, ARM.

As an embedded developer, you're unlikely to need to do anything specific to get Dalvik
to work on your system. Dalvik was written to be architecture-independent. It has been
reported that some of the early ports of Dalvik suffered from some endian issues. How-
ever, these issues seem to have subsided since.

Java Native Interface (JNI)
Despite its power and benefits, Java can't always operate in a vacuum, and code written
in Java sometimes needs to interface to code coming from other languages. This is
especially true in an embedded environment such as Android, where low-level func-
tionality is never too far away. To that end, the Java Native Interface (JNI) mechanism
is provided. It's essentially a call gate to other languages such as C and C++. It's an
equivalent to pinvoke in the .NET/C# world.

App developers sometimes use JNI to call the native code they compile with the NDK
from their regular Java code built using the SDK. Interally, though, the AOSP massively
relies on JNI to enable Java-coded services and components to interface with Android's
low-level functionality, which is mostly written in C and C++. Java-written system
services, for instance, very often use JNI to communicate with matching native code
that interfaces with a given service's corresponding hardware.

A large part of the heavy lifting to allow Java to communicate with other languages
through JNI is actually done by Dalvik. If you go back to Table 2-3 in the previous
section, for instance, you'll notice the libnativehelper.so library, which is provided as
part of Dalvik for facilitating JNI calls.

In later parts of the book, we'll actually get the chance to use JNI to interface Java and
C code. For the moment being, keep in mind that JNI is central to platform work in
Android and that it can be a relatively complex mechanism to use, especially to make
sure you use the appropriate call semantics and function parameters.

Unfortunately, JNI seems to be a dark art reserved to the initiated. In
other words, it's rather difficult to find good documentation on the
topic. There is one authorative book on the topic, The Java™ Native
Interface Programmer’s Guide and Specification by Sheng Liang (Addi-
son-Wesley). You can purchase a copy from your favorite online book-
store, but it's also freely available for download as a PDF. Given how
precious this document is, I suggest you grab a copy in earnest for pos-
terity, just in case it spontaneously evaporates from the net for one rea-
son or another.

52 | Chapter 2: Internals Primer

http://java.sun.com/docs/books/jni/

System Services
System services are Android's man behind the curtain. Even if they aren't explicitly
mentioned in Google's app development documentation, anything remotely interesting
in Android goes through one of about 50 system services. These services cooperate
together to collectively provide what essentially amounts to an object-oriented OS built
on top of Linux, which is exactly what Binder— the mechanism on which all system
services are built—was intended for. The native user-space we just covered is actually
designed very much as a support environment for Android's system services. It's there-
fore crucial to understand what system services exist, and how they interact with each
other and with the rest of the system. We've already covered some of this as part of
discussing Android's hardware support.

Figure 2-4 illustrates in greater detail the system services first introduced in Fig-
ure 2-1. As you can see, there are in fact a couple of major processes involved. Most
prominent is the System Server, whose components all run under the sames process,
system_server, and which is mostly made up of Java-coded services with two services
written in C/C++. The System Server also includes some native code access through
JNI to allow some of the Java-based services to interface to Android's lower layers. The
rest of the system services are housed within the Media Service which runs as media-
server. These services are all coded in C/C++ and are packaged alongside media-related
components such as the StageFright and audio effects.

Note that despite there being only two processes to house the entirety of the Android's
system services, they all appear to operate independently to anyone connecting to their

Figure 2-4. System Services

System Services | 53

services through Binder. Here's the output of the service utility on the Android emula-
tor:

service list
Found 50 services:
0 phone: [com.android.internal.telephony.ITelephony]
1 iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]
2 simphonebook: [com.android.internal.telephony.IIccPhoneBook]
3 isms: [com.android.internal.telephony.ISms]
4 diskstats: []
5 appwidget: [com.android.internal.appwidget.IAppWidgetService]
6 backup: [android.app.backup.IBackupManager]
7 uimode: [android.app.IUiModeManager]
8 usb: [android.hardware.usb.IUsbManager]
9 audio: [android.media.IAudioService]
10 wallpaper: [android.app.IWallpaperManager]
11 dropbox: [com.android.internal.os.IDropBoxManagerService]
12 search: [android.app.ISearchManager]
13 location: [android.location.ILocationManager]
14 devicestoragemonitor: []
15 notification: [android.app.INotificationManager]
16 mount: [IMountService]
17 accessibility: [android.view.accessibility.IAccessibilityManager]
18 throttle: [android.net.IThrottleManager]
19 connectivity: [android.net.IConnectivityManager]
20 wifi: [android.net.wifi.IWifiManager]
21 network_management: [android.os.INetworkManagementService]
22 netstat: [android.os.INetStatService]
23 input_method: [com.android.internal.view.IInputMethodManager]
24 clipboard: [android.text.IClipboard]
25 statusbar: [com.android.internal.statusbar.IStatusBarService]
26 device_policy: [android.app.admin.IDevicePolicyManager]
27 window: [android.view.IWindowManager]
28 alarm: [android.app.IAlarmManager]
29 vibrator: [android.os.IVibratorService]
30 hardware: [android.os.IHardwareService]
31 battery: []
32 content: [android.content.IContentService]
33 account: [android.accounts.IAccountManager]
34 permission: [android.os.IPermissionController]
35 cpuinfo: []
36 meminfo: []
37 activity: [android.app.IActivityManager]
38 package: [android.content.pm.IPackageManager]
39 telephony.registry: [com.android.internal.telephony.ITelephonyRegistry]
40 usagestats: [com.android.internal.app.IUsageStats]
41 batteryinfo: [com.android.internal.app.IBatteryStats]
42 power: [android.os.IPowerManager]
43 entropy: []
44 sensorservice: [android.gui.SensorServer]
45 SurfaceFlinger: [android.ui.ISurfaceComposer]
46 media.audio_policy: [android.media.IAudioPolicyService]
47 media.camera: [android.hardware.ICameraService]
48 media.player: [android.media.IMediaPlayerService]

54 | Chapter 2: Internals Primer

49 media.audio_flinger: [android.media.IAudioFlinger]

There is unfortunately not much documentation on how each of these services operates.
You'll have to look at each service's source code to get a precise idea of how it works
and how it interacts with other services.

Reverse Engineering Source Code
Fully understanding the internals of Android's system services is like trying to swallow
a whale. There are about 85k lines of Java code in the System Server alone, spread across
100 different files. And that doesn't count any system service code written in C/C++.
To add insult to injury, so to speak, the comments are few and far between and the
design documents non-existent. Arm yourself with a good dose of patience if you want
to dig further here.

One trick is to create a new Java project in Eclipse and import the System Server's code
inside that project. This won't compile in any way, but it'll allow you to benefit from
Eclipse's Java browsing capabilities to help in trying to understand the code. For in-
stance, you can open a single Java file, right-click on the source browsing scrollbar area,
and select Folding → Collapse All. This will essentially collapse all methods into a single
line next to a plus sign (+) and will allow you to see the trees (the method names lined-
up one after another) instead of the leaves (the actual content of each method.) You'll
very much still be in a forest, though.

You can also try using one of the commercial source code analysis tools on the market
from vendors such as Imagix, Rationale, Lattix, or Scitools. Although there are some
open source analysis tools out there, most seem geared towards locating bugs, not
reverse-engineering the code being analyzed.

Service Manager and Binder Interaction
As I explained earlier, the Binder mechanism used as system services' underlying fabric
enables object-oriented remote method invocation. For a process in the system to in-
voke a system service through Binder, though, it must first have a handle to it. For
instance, Binder will enable an app developer to request a wakelock from the Power
Manager by invoking the acquire() method of its WakeLock nested class. Before that call
can be made, though, the developer must first get a handle to the Power Manager
service. As we'll see in the next section, the app development API actually hides the
details of how it gets this handle in an abstraction to the developer, but under the hood
all system service handle lookups are done through the Service Manager, as illustrated
in Figure 2-5.

Think of the Service Manager as a YellowPages book of all services available in the
system. If a system service isn't registered with the Service Manager, it's effectively
invisible to the rest of the system. To provide this indexing capability, the Service Man-
ager is started by init before any other service. It then opens /dev/binder and uses a

System Services | 55

special ioctl() call to set itself as the Binder's Context Manager ("A1" in Figure 2-5.)
Thereafter, any process in the system that attempts to communicate with Binder ID 0
(a.k.a. the "magic" Binder or "magic object" in various parts of the code), is actually
communicating through Binder to the Service Manager.

When the System Server starts, for instance, it registers every single service it instanti-
ates with the Service Manager ("A2".) Later, when an app tries to talk to a system service,
such as the Power Manager service, it first asks the Service Manager for a handle to the
service ("B1") and then invokes that service's methods ("B2"). In contrast, a call to a
service component running within an app goes directly through Binder ("C1"), and is
noy looked up through the Service Manager.

The Service Manager is also used in a special way by the dumpsys utility, which allows
you to dump the status of a single or all system services. To get the list of all services,
it loops around to get every system service ("D1"), requesting the nth plus one at every
iteration until there aren't any more. To get each service, it just asks the Service Manager
to locate that specific one ("D2".) With a service handle in hand, it invokes that service's
dump() function to dump its status ("D3") and displays that on the terminal.

Figure 2-5. Service Manager and Binder interaction

56 | Chapter 2: Internals Primer

Calling on Services
All of what I just explained is, as I said earlier, almost invisible to the user. Here's a
snippet, for instance, that allows us to grab a wakelock within an app using the regular
application development API:

PowerManager pm = (PowerManager) getSystemService(POWER_SERVICE);
PowerManager.WakeLock wakeLock = pm.newWakeLock(PowerManager.FULL_WAKE_LOCK, "myPreciousWakeLock");
wakeLock.acquire(100);

Notice that we don't see any hint of the Service Manager here. Instead, we're using
getSystemService() and passing it the POWER_SERVICE parameter. Internally, though, the
code that implements getSystemService() does actually use the Service Manager to
locate the Power Manager service so that we create a wakelock and acquire it.

A Service Example: the Activity Manager
Although covering each and every system service is outside the scope of this book, let's
have a quick look at the Activity Manager, one of the key system services. The Activity
Manager's sources actually span over 30 files and 20k lines of code. If there's a core to
Android's internals, this service is very much near it. It takes care of the starting of new
components, such as Activities and Services, along with the fetching of Content Pro-
viders and intent broadcasting. If you ever got the dreaded ANR (Application Not
Responding) dialog box, know that the Activity Manager was behind it. It's also in-
volved in the maintenance of OOM adjustments used by the in-kernel low-memory
handler, permissions, task management, etc.

For instance, when the user clicks on a icon to start an app from his home screen, the
first that happens is that the Launcher's* onClick() callback is called. To deal with the
event, the Launcher will then call, through Binder, the startActivity() method of the
Activity Manager service. The service will then call the startViaZygote() method,
which will open a socket to the Zygote and ask it to start the Activity. All this may make
more sense after you read the final section of this chapter.

If you're familiar with Linux's internals, a good way to think of the Activity Manager is
that it's to Android what the content of the kernel/ directory in the kernel's sources is
to Linux. It's that important.

Stock AOSP Packages
The AOSP ships with a certain number of default packages that are found in most
Android devices. As I mentioned in the previous chapter, though, some apps such as

* The Launcher is the default app packaged with the AOSP that takes care of the main interface with the user,
the home screen.

Stock AOSP Packages | 57

Maps, YouTube, and Gmail aren't part of the AOSP. Let's take a look at some of those
packages included by default. Table 2-5 lists the stock apps included in the AOSP,
Table 2-6 lists the stock content providers included in the AOSP, and Table 2-7 lists
the stock IMEs (Input Method Editors) included in the AOSP.

While these are coded very much like standard apps, most won't build
outside the AOSP using the standard SDK. Hence, if you'd like to create
your own version of one of these apps (i.e., fork it), you'll either have to
do it inside the AOSP or invest some time in getting the app to build
outside the AOSP with the standard SDK. For one thing, these apps
sometimes use APIs that are accessible within the AOSP but aren't ex-
ported through the standard SDK.

Table 2-5. Stock AOSP Apps

App in AOSP Name displayed in Launcher Description

AccountsAndSettings N/A Accounts management app

Bluetooth N/A Bluetooth manager

Browser Browser Default Android browser, includes bookmark widget

Calculator Calculator Calculator app

Camera Camera Camera app

CertInstaller N/A UI for installing certificates

Contacts Contacts Contacts manager app

DeskClock Clock Clock and alarm app, including the clock widget

DownloadsUI Downloads UI for DownloadProvider

Email Email Default Android email app

Development Dev Tools Miscellaneous dev tools

Gallery Gallery Default gallery app for viewing pictures

Gallery3D Gallery Fancy gallery with "sexier" UI

HTMLViewer N/A App for viewing HTML files

Launcher2 N/A Default home screen

Mms Messaging SMS/MMS app

Music Music Music player

PackageInstaller N/A App install/uninstall UI

Phone Phone Default phone dialer/UI

Protips N/A Home screen tips

Provision N/A App for setting a flag indicating whether a device was provisioned

QuickSearchBox Search Search app and widget

Settings Settings Settings app, also accessible through home screen menu

58 | Chapter 2: Internals Primer

App in AOSP Name displayed in Launcher Description

SoundRecorder N/A Sound recording appa

SpeechRecorder Speech Recorder Speech recording app

SystemUI N/A Status bar
a This one is activated when a recording intent is sent. It can't be accessed directly by the user.

Table 2-6. Stock AOSP Providers

Provider Description

ApplicationProvider Provider for search installed apps

CalendarProvider Main Android calendar storage and provider

ContactsProvider Main Android contacts storage and provider

DownloadProvidera Download management, storage and access

DrmProvider Management and access of DRM-protected storage

MediaProvider Media storage and provider

TelephonyProvider Carrier and SMS/MMS storage and provider

UserDictionnaryProvider Storage and provider for user-defined words dictionary
a Interestingly, this package's source code includes a design document, a rarety in the AOSP.

Table 2-7. Stock AOSP Input Methods

Input Method Description

LatinIME Latin keyboard

OpenWnn Japanese keyboard

PinyinIME Chinese keyboard

System Startup
The best way to bring together all that we discussed is to look at Android's startup. As
you can see in Figure 2-6, the first cog to turn is the CPU. It typically has a hard-coded
address from which it fetches its first instructions. That address usually points to a chip
that has the bootloader programmed on it. The bootloader then initializes the RAM,
puts basic hardware in a quiescent state, loads the kernel and RAM disk, and jumps
into the kernel. More recent System-on-Chip (SoC) devices, which include a CPU and
a slew of peripherials in a single chip, can actually boot straight from a properly for-
matted SD card or SD-card-like chip. The PandaBoard and recent editions of the Bea-
gleBoard, for instance, don't have any on-board flash chips because they boot straight
from an SD card.

The initial kernel startup is very hardware dependent, but its purpose is to set things
up so that the CPU can start executing C code as early as possible. Once that's done,
the kernel jumps to the architecture-independent start_kernel() function, initializes

System Startup | 59

its various subsystems, and proceed to call the "init" functions of all built-in drivers.
The majority of messages printed out by the kernel at startup come from these steps.
The kernel then mounts its root filesystem and starts the init process.

That's when Android's init kicks in and executes the instructions stored in its /init.rc
file to set up environment variables such as the system path, create mount points, mount
filesystems, set OOM adjustments, and start native daemons. We've already covered
the various native daemons active in Android, but it's worth focusing a little on the
Zygote. The Zygote is a special daemon whose job is to launch apps. Its functionality
is centralized here in order to unify the components shared by all apps and to shorten
their start-up time. init doesn't actually start the Zygote directly; instead it uses the
app_process command to get Zygote started by the Android runtime. The runtime then
starts the first Dalvik VM of the system and tells it to invoke the Zygote's main().

Zygote is active only when a new app needs to be launched. To achieve a speedier app
launch, the Zygote starts by preloading all Java classes and resources that an app may
potentially need at runtime. This effectively loads those into the system's RAM. The
Zygote then listens for connections on its socket (/dev/socket/zygote) for requests to
start new apps. When it gets a request to start an app, it forks itself and launches the
new app. The beauty of having all apps fork from the Zygote is that it's a "virgin" VM
that has all the system classes and resources an app may need preloaded and ready to

Figure 2-6. Android's boot sequence

60 | Chapter 2: Internals Primer

be used. In other words, new apps don't have to wait until those are loaded to start
executing.

All of this works because the Linux kernel implements a Copy-On-Write (COW) policy
for forks. As you may know, forking in Unix involves creating a new process that is an
exact same copy of the parent process. With COW, Linux doesn't actually copy any-
thing. Instead, it maps the pages of the new process over to those of the parent process
and makes copies only when the new process writes to a page. But in fact the classes
and resources loaded are never written to, because they're the default ones and are
pretty much immutable within the lifetime of the system. So all processes directly fork-
ing from the Zygote are essentially using its own mapped copies. And therefore, re-
gardless of the number of apps running on the system, only one copy of the system
classes and the resources is ever loaded in RAM.

Although the Zygote is designed to listen to connections for requests for forking new
apps, there is one "app" that the Zygote actually starts explicitly: the System Server.
This is the first app started by the Zygote and it continues to live on as an entirely
separate process from its parent. The System Server then starts initializing each system
service it houses and registering it with the previously-started Service Manager. One of
the services it starts, the Activity Manager, will end its initialization by sending an intent
of type Intent.CATEGORY_HOME. This starts the Launcher app, which then displays the
home screen familiar to all Android users.

When the user clicks on an icon on the home screen, the process I described in “System
Services” on page 53 takes place. The Launcher asks the Activity Manager to start the
process, which in turn "forwards" that request on to the Zygote, which itself forks and
starts the new app, which is then displayed to the user.

Once the system has finished starting up, the process list will look something like this:

ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 268 180 c009b74c 0000875c S /init
root 2 0 0 0 c004e72c 00000000 S kthreadd
root 3 2 0 0 c003fdc8 00000000 S ksoftirqd/0
root 4 2 0 0 c004b2c4 00000000 S events/0
root 5 2 0 0 c004b2c4 00000000 S khelper
root 6 2 0 0 c004b2c4 00000000 S suspend
root 7 2 0 0 c004b2c4 00000000 S kblockd/0
root 8 2 0 0 c004b2c4 00000000 S cqueue
root 9 2 0 0 c018179c 00000000 S kseriod
root 10 2 0 0 c004b2c4 00000000 S kmmcd
root 11 2 0 0 c006fc74 00000000 S pdflush
root 12 2 0 0 c006fc74 00000000 S pdflush
root 13 2 0 0 c0079750 00000000 D kswapd0
root 14 2 0 0 c004b2c4 00000000 S aio/0
root 22 2 0 0 c017ef48 00000000 S mtdblockd
root 23 2 0 0 c004b2c4 00000000 S kstriped
root 24 2 0 0 c004b2c4 00000000 S hid_compat
root 25 2 0 0 c004b2c4 00000000 S rpciod/0

System Startup | 61

root 26 1 232 136 c009b74c 0000875c S /sbin/ueventd
system 27 1 804 216 c01a94a4 afd0b6fc S /system/bin/servicemanager
root 28 1 3864 308 ffffffff afd0bdac S /system/bin/vold
root 29 1 3836 304 ffffffff afd0bdac S /system/bin/netd
root 30 1 664 192 c01b52b4 afd0c0cc S /system/bin/debuggerd
radio 31 1 5396 440 ffffffff afd0bdac S /system/bin/rild
root 32 1 60832 16348 c009b74c afd0b844 S zygote
media 33 1 17976 1104 ffffffff afd0b6fc S /system/bin/mediaserver
bluetooth 34 1 1256 280 c009b74c afd0c59c S /system/bin/dbus-daemon
root 35 1 812 232 c02181f4 afd0b45c S /system/bin/installd
keystore 36 1 1744 212 c01b52b4 afd0c0cc S /system/bin/keystore
root 38 1 824 272 c00b8fec afd0c51c S /system/bin/qemud
shell 40 1 732 204 c0158eb0 afd0b45c S /system/bin/sh
root 41 1 3368 172 ffffffff 00008294 S /sbin/adbd
system 65 32 123128 25232 ffffffff afd0b6fc S system_server
app_15 115 32 77232 17576 ffffffff afd0c51c S com.android.inputmethod.latin
radio 120 32 86060 17952 ffffffff afd0c51c S com.android.phone
system 122 32 73160 17656 ffffffff afd0c51c S com.android.systemui
app_27 125 32 80664 22900 ffffffff afd0c51c S com.android.launcher
app_5 173 32 74404 18024 ffffffff afd0c51c S android.process.acore
app_2 212 32 73112 17032 ffffffff afd0c51c S android.process.media
app_19 284 32 70336 16672 ffffffff afd0c51c S com.android.bluetooth
app_22 292 32 72752 17844 ffffffff afd0c51c S com.android.email
app_23 320 32 70276 15792 ffffffff afd0c51c S com.android.music
app_28 328 32 70744 16444 ffffffff afd0c51c S com.android.quicksearchbox
app_14 345 32 69708 15404 ffffffff afd0c51c S com.android.protips
app_21 354 32 70912 17152 ffffffff afd0c51c S com.cooliris.media
root 366 41 2128 292 c003da38 00110c84 S /bin/sh
root 367 366 888 324 00000000 afd0b45c R /system/bin/ps

This output actually comes from the Android emulator, so it contains some emulator-
specific artefacts such as the qemud daemon. Notice that the apps running all bare their
fully-qualified package names despite being forked from the Zygote. This is a neat trick
that can be pulled in Linux by using the prctl() system call with PR_SET_NAME to tell
the kernel to change the calling process' name. Have a look at prctl()'s man page if
you're interested in it. Note also that the first process started by init is actually ue-
ventd. All processes prior to that are actually started from within the kernel by subsys-
tems or drivers.

62 | Chapter 2: Internals Primer

CHAPTER 3

AOSP Jumpstart

Now that you have a solid understanding of the basics, let's start getting our hands dirty
with the AOSP. We'll start by covering how to get the AOSP repo from http://android
.git.kernel.org/. Before actually building and running the AOSP, we'll spend some time
exploring the AOSP's contents and explain how the sources reflect what we just saw in
the previous chapter. Finally, we'll close the chapter by covering the use of adb and the
emulator, two very important tools when doing any sort of platform work.

Above all, this chapter is meant to be fun. The AOSP is an exciting piece of software
with a tremendous amount of innovations. Ok, ok, I'll admit it's not all rosy and some
parts do have rough edges. Still, some other parts are pure genius. The most amazing
thing of all obviously is that we can all download it, modify it, and ship our own custom
products based on it. So roll up your sleeves and let's get started.

Getting the AOSP
As I had mentioned earlier, the official AOSP is available at http://android.git.kernel
.org, which sports a Gitweb interface.* When you visit the site, you will see a fairly large
number of git repositories you can pull from that location. Needless to say, pulling each
and every one of these manually would be rather tedious; there are over a hundred.
And, in fact, pulling them all would be quite useless because only a subset of these
projects is needed. The right way to pull the AOSP is to use the repo tool which is
available at the very same location. First, though, you'll need to get repo itself:

$ sudo apt-get install curl
$ curl https://android.git.kernel.org/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

* The web interface for the git tool.

63

http://android.git.kernel.org/
http://android.git.kernel.org/
http://android.git.kernel.org
http://android.git.kernel.org

Under Ubuntu, ~/bin is automatically added to your path when you log
in, if it already exists. So, if you don't have a bin/ directory in your home
directory, create it, then log out and log back in to make it part of your
path. Otherwise, the shell won't be able to find repo, even if you fetch
it as I just showed.

You don't have to put repo in ~/bin, but it has to be in your path. So
regardless of where you put it, just make sure it's available to you in all
locations in the filesystem from the command line.

Despite its structure as a single shell script, repo is actually quite an intricate tool and
we'll take a deeper look at it later. For now, though, consider repo as a tool that can
simultaneously pull from multiple git repositories to create an Android distribution.
The repositories it pulls from are given to it through a manifest file, which is an XML
file describing the projects that need to pulled from and their location. repo is in fact
layered on top of git and each project it pulls from is an independent git repository.

Confusing as it may be, note that repo's "manifest" file has absolutely
nothing to do with "manifest" files (AndroidManifest.xml) used by app
developers to describe their apps to the system. Their formats and uses
are completely different. Fortunately, they rarely have to be used within
the same context, so while you should keep this fact in mind we won't
need to worry too much about it in the coming explanations.

Now that we've got repo, let's get ourselves a copy of the AOSP:

$ mkdir -p ~/android/aosp-2.3.x
$ cd ~/android/aosp-2.3.x
$ repo init -u git://android.git.kernel.org/platform/manifest.git -b gingerbread
$ repo sync

The last command should run for quite some time as it goes and fetches the sources of
all the projects described in the manifest file. After all, the AOSP is about 4GB in size
uncompiled. Keep in mind therefore that network bandwidth and latencies will play a
big role in how long this takes. Note also that we are fetching a specific branch of the
tree, Gingerbread. That's the -b gingerbread part of the third command. If you omit
that part, you will be getting the master branch. It's been the experience of many people
that the master branch doesn't always build or run properly, because it contains the tip
of the open development branch. Tagged branches, on the other hand, mostly work
out of the box.

64 | Chapter 3: AOSP Jumpstart

Inside the AOSP
Now that we've got a copy of the AOSP, let's start looking at what's inside and, most
importantly, connect that to what we just saw in the previous chapter. Feel free to skip
over this section and come back to it after the next section if you're too eager to get
your own custom Android running. For those of you still reading, have a look at Ta-
ble 3-1 for a summary of the AOSP's top-level directory.

Table 3-1. AOSP content summary

Directory Content Size (in MB)

bionic Android's custom C library 14

bootable Reference bootloader and recovery mechanism 4

build Build system 4

cts Comptability Test Suite 78

dalvik Dalvik VM 35

development Development tools 65

device Device-specific files and components 17

external Copy of external projects used within AOSP 854

frameworks Core components such as system services 361

hardware HAL and hardware support libraries 27

libcore Apache Harmony 54

ndk Native Development Kit 13

packages Stock Android apps, providers and IMEs 117

prebuilt Prebuilt binaries, including toolchains 1,389

sdk Software Development Kit 14

system "Embedded Linux" platform that houses Android 32

As you can see, prebuilt and external are the two largest directories in the tree, ac-
counting for close to 75% of its size. Interestingly, both these directories are mostly
made up of content from other open source projects and include things like various
GNU toolchain versions, kernel images, common libraries and frameworks such as
OpenSSL and WebKit, etc. libcore is also from another open source project, Apache
Harmony. In essence, this is further evidence of how much Android relies heavily on
the rest of the open source ecosystem to exist. Still, Android contains a fair bit of "orig-
inal" (or near to) code; about 800MB of it in fact.

To best understand Android's sources, it's useful to refer back to Figure 2-1, which
illustrated Android's architecture in the previous chapter. Figure 3-1 is a variant of that
figure that illustrates the location of each Android component in the AOSP sources.
Obviously, a lot of key components come from frameworks/base/, which is where the

Inside the AOSP | 65

bulk of Android's "brains" are located. It's in fact worth taking a closer look at that
directory and system/core/, in Table 3-2 and Table 3-3 respectively, as they contain a
large chunk of the moving parts you'll likely be interested in interfacing with or mod-
ifying as an embedded developer.

Table 3-2. Content summary for frameworks/base/

Directory Content

cmds Native commands and daemons

core The android.* packages

data Fonts and sounds

graphics 2D graphics and Renderscript

include C-language include files

keystore Security key store

libs C libraries

location Location provider

media Media Service, StageFright, codecs, etc.

native Native code for some framework components

obex Bluetooth Obex

Figure 3-1. Android's architecture

66 | Chapter 3: AOSP Jumpstart

Directory Content

opengl OpenGL library and Java code

packages A few core packages such as the Status Bar

services System services

telephony Telephony API, which talks to the rild radio layer interface

tools A few core tools such as aapt and aidl

voip RTP and SIP APIs

vpn VPN Manager

wifi Wifi Manager and API

Table 3-3. Content summary for system/core/a

Directory Content

adb The ADB daemon and client

cpio mkbootfs tool used to generate RAM disk imagesb

debuggerd debuggerd command covered in Chapter 2

fastboot fastboot utility used to communicate with Android bootloaders using the "fastboot" protocol

include C-language headers for all things "system"

init Android's init

libacc "Almost" C Compiler library for compiling C-like code; used by RenderScriptc

libcutils Various C utility functions not part of the standard C library; used throughout the tree

libdiskconfig For reading and configuring disks; used by vold

liblinenoise BSD-licensed readline() replacement from http://github.com/antirez/linenoise; used by Android's shell

liblog Logting library that interfaces with the Android kernel logger as seen in Figure 2-2; used throughout the tree

libmincrypt Basic RSA and SHA functions; used by the recovery mechanism and mkbootimg utility

libnetutils Network configuration library; used by netd

libpixelflinger Low-level graphic rendering functions

libsysutils Utility functions for talking with various components of the system, including the framework; used by netd and
vold

libzipfile Wrapper around zlib for dealing with zip files

logcat The logcat utility

logwrapper Utility that forks and runs the command passed to it while redirecting stdout and stderr to Android's logger

mkbootimg Utility for creating a boot image using a RAM disk and a kernel

netcfg Network configuration utility

rootdir Default Android root directory structure and content

run-as Utility for running a program as a given user ID

sh Android shell

Inside the AOSP | 67

http://github.com/antirez/linenoise

Directory Content

toolbox Android's Toolbox (BusyBox replacement)
a Some entries have been omitted because they aren't currently used by any part of the AOSP. They are likely legacy components.
b This is used to create both the default RAM disk image used to boot Android and the recovery image.
c This description might not make any sense to you unless you know what RenderScript is. Have a look at Google's documentation for

RenderScript, the relevance of libacc in that context should be clearer.

In addition to base/, frameworks/ contains a few other directories, but they are nowhere
near as fundamental as base/. Likewise, in addition to core/, system/ also includes a few
more directories such as netd/ and vold/, which contain the netd and vold daemons
respectively.

In addition to the top-level directories, the root directory also includes a single Makefile.
That file is however mostly empty, its main use being to include the entry point to
Android's build system:

DO NOT EDIT THIS FILE
include build/core/main.mk
DO NOT EDIT THIS FILE

As you've likely figured already, there's far more to the AOSP than what I just presented
to you. There are, after all, more than 14,000 directories and 100,000 files in 2.3.x/
Gingerbread. By most standards, it's a fairly large project. In comparison, early 3.0.x
releases of the Linux kernel have about 2,000 directories and 35,000 files. We will
certainly get the chance to explore more parts of the AOSP's sources as we move for-
ward. I highly recommend, though, you start exploring and experimenting with the
sources in earnest as it will likely take you several months before you can comfortably
navigate your way through.

Build Basics
So now we have an AOSP, and a general idea of what's inside, so let's get it up and
running. There's one last thing we need to do before we can build it, though. We need
to make sure we've got all the packages necessary on our Ubuntu install. Here are the
instructions based on Ubuntu 11.04. Even it you are using a older or newer version of
some Debian-based Linux distribution, the instructions will be fairly similar. (See also
“Building on Virtual Machines or Non-Ubuntu Systems” on page 72 for other systems
on which you can build the AOSP.)

Build System Setup
First, let's get some of the basic packages installed on our development system. You
might have some of these already installed as part of other development work you've

68 | Chapter 3: AOSP Jumpstart

been doing and that's fine. Ubuntu's package management system will ignore your
request to install those packages.

$ sudo apt-get install bison flex gperf git-core gnupg zip tofrodos \
> build-essential g++-multilib libc6-dev libc6-dev-i386 ia32-libs mingw32 \
> zlib1g-dev lib32z1-dev x11proto-core-dev libx11-dev \
> lib32readline5-dev libgl1-mesa-dev lib32ncurses5-dev

You might also need to fix a few symbolic links:

$ sudo ln -s /usr/lib32/libstdc++.so.6 /usr/lib32/libstdc++.so
$ sudo ln -s /usr/lib32/libz.so.1 /usr/lib32/libz.so

Finally, you need to install Sun's JDK:†

$ sudo add-apt-repository "deb http://archive.canonical.com/ natty partner"
$ sudo apt-get update
$ sudo apt-get install sun-java6-jdk

Your system is now ready to build Android. Obviously you don't need to do this pack-
age installation process every time you build Android. You'll need to do it only once
for every Android development system you set up.

Building Android
We are now ready to build Android. Let's go to the directory where we downloaded
Android and configure the build system:

$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

==
PLATFORM_VERSION_CODENAME=REL

† The OpenJDK and gcj won't do.

Build Basics | 69

PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

Note that we typed a period (.), SPACE , and then build/envsetup.sh. This forces the
shell to run the envsetup.sh script within the current shell. If we were to just run the
script, the shell would spawn a new shell and run the script in that new shell. That
would be useless since envsetup.sh defines new shell commands, such as lunch, and sets
up environment variables required for the rest of the build.

We will explore envsetup.sh and lunch in more detail later. For the moment, though,
note that the generic-eng combo means that we configured the build system to create
images for running in the Android emulator. This is the same QEMU emulator software
used by app developers to test their apps when developing using the SDK on a work-
station, albeit here it will be running our own custom images instead of the default ones
shipped with the SDK. It's also the same emulator that was used by the Android de-
velopment team to develop Android while there were no devices for it yet. So while it's
not real hardware and is therefore by no means a pefect target, it's still more than
sufficient to cover most of the terrain we need to cover. Once you know your specific
target, you should be able to adapt the instructions found in the rest of this book, with
possibly some help from the book Building Embedded Linux Systems, to get your custom
Android images loaded on your device and your hardware to boot them.

Now that the environment has been set up, we can actually build Android:

$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==
Checking build tools versions...

70 | Chapter 3: AOSP Jumpstart

find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
find: `frameworks/base/frameworks/base/docs/html': No such file or directory
find: `out/target/common/docs/gen': No such file or directory
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes)
Header: out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
Header: out/target/product/generic/obj/include/libexpat/expat_external.h
Header: out/host/linux-x86/obj/include/libpng/png.h
Header: out/host/linux-x86/obj/include/libpng/pngconf.h
Header: out/host/linux-x86/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libpng/png.h
Header: out/target/product/generic/obj/include/libpng/pngconf.h
Header: out/target/product/generic/obj/include/libpng/pngusr.h
Header: out/target/product/generic/obj/include/libwpa_client/wpa_ctrl.h
Header: out/target/product/generic/obj/include/libsonivox/eas_types.h
Header: out/target/product/generic/obj/include/libsonivox/eas.h
Header: out/target/product/generic/obj/include/libsonivox/eas_reverb.h
Header: out/target/product/generic/obj/include/libsonivox/jet.h
Header: out/target/product/generic/obj/include/libsonivox/ARM_synth_constants_gnu.inc
host Java: clearsilver (out/host/common/obj/JAVA_LIBRARIES/clearsilver_intermediates/classes)
target Java: core (out/target/common/obj/JAVA_LIBRARIES/core_intermediates/classes)
host Java: dx (out/host/common/obj/JAVA_LIBRARIES/dx_intermediates/classes)
Notice file: frameworks/base/libs/utils/NOTICE -- out/host/linux-x86/obj
 /NOTICE_FILES/src//lib/libutils.a.txt
Notice file: system/core/libcutils/NOTICE -- out/host/linux-x86/obj/NOTICE_FILES/src//lib
 /libcutils.a.txt
...

Now is a good time to go for a snack or watch tonight's hockey game.‡ On a more
serious note, though, your build time will obviously depend on your system's capabil-
ities. On a laptop equiped with a quad-core CORE i7 Intel processor with hyper-
threading enabled and 8GB of RAM, this actua command will take about 20 minutes
to build the AOSP. On an older laptop with a dual-core Centro 2 Intel processor and
2GB of RAM, a make -j4 would take about an hour to build the same AOSP. Note that
the -j parameter of make allows you to specify how many jobs to run in parallel. Some
say that it's best to use your number of processors times 2, which is what I'm doing
here. Others say it's best to add 2 to the number of processors you have. Following that
advice, I would've used 10 and 4 instead of 16 and 4.

‡ It's a Canadian thing, I can't help it.

Build Basics | 71

Building on Virtual Machines or Non-Ubuntu Systems
I often get asked about building the AOSP in virtual machines; most often because the
development team, or their IT department, is standardized on Windows. While I've
seen this work and have put together images to do that myself, your results will vary.
It'll usually take more than twice as much time to build in a VM than building natively
on the same system. So if you're going to do a lot of work on the AOSP, I highly suggest
you build it natively. And yes, this involves having a Linux machine at hand.

An increasing number of developers also prefer MacOS X over Linux and Windows,
including many at Google itself. Hence, the official instructions at http://source.android
.com also describe how to build on a Mac. These instructions, though, tend to break
after Mac OS updates. Fortunately for Mac-based developers, they are many and they
are rather zealous. Hence, you'll eventually find updated instructions on the web or on
the various Google Groups about how to build the AOSP on your new version of MacOS
X. Here's one posting explaining how to build Gingerbread on MacOS X Lion: Building
Gingerbread on OS X Lion. Bear in mind, though, that as I mentioned in Chapter 1,
Google's own Android build farms are Ubuntu-based. If you choose to build on MacOS
X, you'll likely always be playing catch-up. At worst, you can use a VM as in the Win-
dows case.

If you do choose to go down the VM route, make sure you configure the VM to use as
many CPUs as there are available in your system. Most BIOSes I've seen seem to disable
by the default the option for enabling CPU instructions sets allowing mutlitple CPU
virtualization. VirtualBox, for instance, will complain about some obscur error if you
try to allocate more than one CPU to an image while those instruction sets are disabled.
You must go to the BIOS and enable those options for your VM software to be able to
grant the guest OS multiple CPUs.

There are a few other things to consider regarding the build. First, note that in between
printing out the build configuration and the printing of the first output of the actual
build (where it prints out: "host Java: apicheck (out/host/common/o..."), there will be
a rather long delay where nothing will get printed out, save for the "No such file or
directory" warnings. I'll explain this delay in more detail later, but suffice it to say for
now that during that time the build system is figuring out the rules of how to build
every part of the AOSP.

Note also that you'll see plenty of warning statements. These are rather "normal," not
so much in terms of maintaining software quality, but in that they are pervasive in
Android's build. They usually won't have an impact on the final product being com-
piled. So, contrary to the best of my software engineeering instincts, I have to recom-
mend you completely ignore warnings and stick to fixing errors only. Unless, of course,
those warnings stem from software you added yourself. Then, by all means, make sure
you get rid of those warnings.

72 | Chapter 3: AOSP Jumpstart

http://source.android.com
http://source.android.com
http://groups.google.com/group/android-building/msg/4b9e6168ecae68a5
http://groups.google.com/group/android-building/msg/4b9e6168ecae68a5

Running Android
With the build completed, all you need to do is start the emulator to run your own
custom-built images:

$ emulator &

This will start the emulator window that will boot into a full Android environment as
illustrated in Figure 3-2.

You can then interact with the AOSP you just built very much in the same way as if it
were running on a real device. Since your monitor is likely not a touch screen, however,
you will need to use your mouse as if it was your finger. A single touch is a click and
swipping is done by holding down the mouse button, moving around and letting go of
the mouse button to signify that your finger has been removed from the touchscreen.
You also have a full keyboard at your disposal, with all the buttons you would find on
a phone equipped with a QWERTY keyboard, although you can use your regular key-
board to input text in text boxes.

Despite its features and realism, the emulator does have its issues. For one thing, it
takes some time to boot. It will take longest to boot the first time, because Dalvik is

Figure 3-2. Android emulator running custom images

Running Android | 73

creating a JIT cache for the apps running on the phone. Even later, though, you might
find it heavy, especially if you're in a modify-compile-test loop. Also, the emulator
doesn't perfectly emulate everything. For instance, it traditionally has a hard time firing
off rotation change events when it's made to rotate using F11 or F12 . This issue,
though, is mostly an issue for app developers.

If for any reason you close the shell where you had configured, built, and started An-
droid, or if you need to start a new one and have access to all the tools and binaries
created from the build, you must invoke the envsetup.sh script and the lunch commands
again in order to set up environment variables. Here are commands from a new shell,
for instance:

$ cd ~/android/aosp-2.3.x
$ emulator &
No command 'emulator' found, did you mean:
 Command 'qemulator' from package 'qemulator' (universe)
emulator: command not found
$. build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng] ENTER

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=eng
...
==
$ emulator &
$

Note that the second time we issued emulator, the shell didn't complain that the com-
mand was missing anymore. The same goes for a lot of other Android tools such as the
adb command we're about to look at. Note also that we didn't need to issue any
make commands, because we had already built Android. In this case, we just needed
to make sure the environment variables were properly set in order for the results of the
previous build to be available to us again.

74 | Chapter 3: AOSP Jumpstart

Using ADB
One of the most interesting aspects of the development environment put together by
the Android development team is that you can shell into the running emulator, or any
real device connected through USB for that matter, using the adb tool:

$ adb shell
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
cat /proc/cpuinfo
Processor : ARM926EJ-S rev 5 (v5l)
BogoMIPS : 405.50
Features : swp half thumb fastmult vfp edsp java
CPU implementer : 0x41
CPU architecture: 5TEJ
CPU variant : 0x0
CPU part : 0x926
CPU revision : 5

Hardware : Goldfish
Revision : 0000
Serial : 0000000000000000

This is issued in the same shell where you started the emulator from.

This is the target's shell, and cat is actually running on the "target" (i.e., the
emulator.)

As you can see, the kernel running in the emulator reports that it's seeing an ARM
processor, which is in fact the predominant platform used with Android. Also, the
kernel says it's running on a platform called Goldfish. This is the code-name for the
emulator and you will see it in quite a few places.

Now that you've got a shell into the emulator and you are root, which is the default in
the emulator, you can run any command much like if you had shelled into a remote
machine or a traditional network-connected embedded Linux system. ADB is what
makes this possible and Figure 3-3 illustrates its many components and how they're
connected.

To exit an ADB shell session, all you need to do is type CTRL-D :

CTRL-D
$

This is in the target shell

This is back on the host

When you start adb for the first time on the host, it starts a server in the background
whose job is to manage the connections to all Android devices connected to the host.

Using ADB | 75

That was the part of the earlier output that said that a daemon was being started on
port 5037. You can actually ask that daemon what devices it sees:

$ adb devices
List of devices attached
emulator-5554 device
0000021459584822 device
emulator-5556 offline

This is the output with one emulator instance running, one device connected through
USB, and another emulator instance starting up. If there are multiple devices connected,
you can tell it which device you want to talk to using the -s flag to identify the serial
number of the device:

$ adb -s 0000021459584822 shell
$ id
uid=2000(shell) gid=2000(shell) groups=1003(graphics),1004(input), ...
$ su
su: permission denied

Note that in this case, I'm getting a $ for my shell prompt instead of a #. This means
that contrary to the earlier interaction, I'm not running as root, as can also be seen from
the output of the id command. This is actually a real commercial Android phone, and
my inability above to gain root priviledges using the su command is typical. Hence, my
ability to make any modifications to this device will be fairly limited. Unless, of course,
I find some way to "root" the phone (i.e. gain root access). Unfortunately, device man-
ufacturers have been historically very reluctant for various reasons to give root access
to their devices and have put in a number of provisions to make that as difficult as
possible, if not impossible. That's why "rooting" devices is held up as a holy grail by

Figure 3-3. How ADB's parts are interconnected

76 | Chapter 3: AOSP Jumpstart

many power users and hackers. As of the summer of 2011, though, some manufacturers
such as Motorola and HTC have spelled out a change in policy where they seem to be
intent on making it easier for users to root their devices, with caveats of course. But
this isn't mainstream yet.

You may be tempted to try to root a commercial phone or device for
experimenting with Android platform development. I would suggest
you think this through carefully. While there are plenty of instructions
out there explaining how to replace your standard images with what is
often referred to as "custom ROMs" such as Cyanogenmod and others,
you need to be aware that any false step could well result in your "brick-
ing" the device (i.e. rendering it unbootable or erasing critical boot-time
code). You then have an expensive paper-weight (hence the term "brick-
ing") instead of a phone.

If you want to experiment with running custom AOSP builds on real
hardware, I suggest you get yourself something like a BeagleBoard xM
or a PandaBoard. These boards are made for tinkering. If nothing else,
they don't have a built-in flash chip that you may risk damaging. Instead,
the SoCs on those devices boot straight from SD cards. Hence, fixing a
broken image is simply a matter of unplugging the SD card from the
board, connecting it to your workstation, reprogramming it, and plug-
ging it back to the board.

adb can of course do a lot more than just give you a shell, and I encourage you to start
it without any parameters to look at its usage output:

$ adb
Android Debug Bridge version 1.0.26

 -d - directs command to the only connected USB device
 returns an error if more than one USB device is present.
 -e - directs command to the only running emulator.
 returns an error if more than one emulator is running.
 -s <serial number> - directs command to the USB device or emulator with
 the given serial number. Overrides ANDROID_SERIAL
...
device commands:
 adb push <local> <remote> - copy file/dir to device
 adb pull <remote> [<local>] - copy file/dir from device
 adb sync [<directory>] - copy host->device only if changed
 (-l means list but don't copy)
 (see 'adb help all')
 adb shell - run remote shell interactively
 adb shell <command> - run remote shell command
 adb emu <command> - run emulator console command
...

You can, for instance, use adb to dump the data contained in the main logger buffer:

Using ADB | 77

$ adb logcat
I/DEBUG (30): debuggerd: Sep 10 2011 13:44:19
I/Netd (29): Netd 1.0 starting
I/Vold (28): Vold 2.1 (the revenge) firing up
D/qemud (38): entering main loop
D/Vold (28): USB mass storage support is not enabled in the kernel
D/Vold (28): usb_configuration switch is not enabled in the kernel
D/Vold (28): Volume sdcard state changing -1 (Initializing) -> 0 (No-Media)
D/qemud (38): fdhandler_accept_event: accepting on fd 9
D/qemud (38): created client 0xe078 listening on fd 10
D/qemud (38): client_fd_receive: attempting registration for service 'boot-properties'
D/qemud (38): client_fd_receive: -> received channel id 1
D/qemud (38): client_registration: registration succeeded for client 1
I/qemu-props(54): connected to 'boot-properties' qemud service.
I/qemu-props(54): receiving..
I/qemu-props(54): received: qemu.sf.lcd_density=160
I/qemu-props(54): receiving..
I/qemu-props(54): received: dalvik.vm.heapsize=16m
I/qemu-props(54): receiving..
D/qemud (38): fdhandler_event: disconnect on fd 10
I/qemu-props(54): exiting (2 properties set).
D/AndroidRuntime(32):
D/AndroidRuntime(32): >>>>>> AndroidRuntime START com.android.internal.os.ZygoteInit <<<<<<
D/AndroidRuntime(32): CheckJNI is ON
I/ (33): ServiceManager: 0xad50
...

This is very useful to observe the runtime behavior of key system components, including
services run by the System Server.

You can also copy files to and from the device:

$ adb push data.txt /data/local
1 KB/s (87 bytes in 0.043s)
$ adb pull /proc/config.gz
95 KB/s (7087 bytes in 0.072s)

Again, given its centrality to Android development, I invite you to read up on ADB's
use. We will continue using it throughout the book and introduce more of its func-
tionalities as we go. Keep in mind, though, that ADB can have its quirks. First and
foremost, many have found its host-side daemon to be somewhat flaky. For some rea-
son or another, it sometimes doesn't correctly identify the state of connected devices
and continues to state that they are offline while you try connecting to them. Or adb
might just hang on the command line waiting for the device while the device is clearly
active and able to receive ADB commands. The solution to those issues is almost in-
variably to kill the host-side daemon:§

§ It's actually somewhat interesting that the Android development team felt the need to build such functionality
right into adb. Clearly they were encountering issues with that daemon themselves.

78 | Chapter 3: AOSP Jumpstart

$ adb kill-server

Not to worry—the next time you issue any adb command, the daemon will get auto-
matically restarted. It's unclear what causes this behavior, and maybe this problem will
get resolved at some point in the future. In the mean time, keep in mind that if you see
some odd behavior when using ADB, killing the host-side daemon is usually something
you want to try before investigating other potential issues.

In addition to the command itself, another source of information on adb is the Android
Debug Bridge part of Google's Android Developers Guide. As Tim Bird‖ recommends,
you want to print a copy and put it under your pillow.

Mastering the Emulator
As I said earlier, you can go a long way in platform development by simply using the
emulator. It effectively emulates an ARM target with a minimal set of hardware. We'll
spend some time here going through some more advanced aspects of dealing with the
emulator. As many Android pieces, the emulator is quite a complex piece of software
in and of itself. Still, we can get a very good idea of it capabilities by surveying a few
key features.

Earlier we started the emulator by simply typing:

$ emulator &

But the emulator command can also take quite a few parameters. You can see the online
help by adding the -help flag on the command line:

$ emulator -help
Android Emulator usage: emulator [options] [-qemu args]
 options:
 -sysdir <dir> search for system disk images in <dir>
 -system <file> read initial system image from <file>
 -datadir <dir> write user data into <dir>
 -kernel <file> use specific emulated kernel
 -ramdisk <file> ramdisk image (default <system>/ramdisk.img
 -image <file> obsolete, use -system <file> instead
 -init-data <file> initial data image (default <system>/userdata.img
 -initdata <file> same as '-init-data <file>'
 -data <file> data image (default <datadir>/userdata-qemu.img
 -partition-size <size> system/data partition size in MBs
...

‖ Tim is the maintainer of http://elinux.org, the guy behind the Embedded Linux Conference, the chair of the
Linux Foundation's CE Workgroup, etc. and he's been doing a lot of cool Android stuff at Sony.

Mastering the Emulator | 79

http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/guide/developing/tools/adb.html
http://elinux.org

One especially useful flag is -kernel. It allows you to tell the emulator to use another
kernel than the default prebuilt one found in prebuilt/android-arm/kernel/:

$ emulator -kernel path_to_your_kernel_image/zImage

If you want to use a kernel that has module support, for instance, you'll need to build
your own, because the prebuilt one doesn't have module support enabled by default.
Also, by default, the emulator won't show you the kernel's boot messages. You can,
however, pass the -show-kernel flag to see them:

$ emulator -show-kernel
Uncompressing Linux... done, booting the kernel.
Initializing cgroup subsys cpu
Linux version 2.6.29-00261-g0097074-dirty (digit@digit.mtv.corp.google.com)
(gcc version 4.4.0 (GCC)) #20 Wed Mar 31 09:54:02 PDT 2010
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177
CPU: VIVT data cache, VIVT instruction cache
Machine: Goldfish
Memory policy: ECC disabled, Data cache writeback
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 24384
Kernel command line: qemu=1 console=ttyS0 android.checkjni=1 android.qemud=ttyS1 android.ndns=3
Unknown boot option `android.checkjni=1': ignoring
Unknown boot option `android.qemud=ttyS1': ignoring
Unknown boot option `android.ndns=3': ignoring
PID hash table entries: 512 (order: 9, 2048 bytes)
Console: colour dummy device 80x30
Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 96MB = 96MB total
Memory: 91548KB available (2616K code, 681K data, 104K init)
Calibrating delay loop... 403.04 BogoMIPS (lpj=2015232)
Mount-cache hash table entries: 512
Initializing cgroup subsys debug
Initializing cgroup subsys cpuacct
Initializing cgroup subsys freezer
CPU: Testing write buffer coherency: ok
...

You can also have the emulator print out information about its own execution using
the -verbose flag, thereby allowing you to see, for example, which images files it's using:

$ emulator -verbose
emulator: found Android build root: /home/karim/android/aosp-2.3.x
emulator: found Android build out: /home/karim/android/aosp-2.3.x/out/target/product/generic
emulator: locking user data image at /home/karim/android/aosp-2.3.x/out/target/product
 /generic/userdata-qemu.img
emulator: selecting default skin name 'HVGA'
emulator: found skin-specific hardware.ini: /home/karim/android/aosp-2.3.x/sdk/emulator/skins
 /HVGA/hardware.ini
emulator: autoconfig: -skin HVGA
emulator: autoconfig: -skindir /home/karim/android/aosp-2.3.x/sdk/emulator/skins

80 | Chapter 3: AOSP Jumpstart

emulator: keyset loaded from: /home/karim/.android/default.keyset
emulator: trying to load skin file '/home/karim/android/aosp-2.3.x/sdk/emulator/skins
 /HVGA/layout'
emulator: skin network speed: 'full'
emulator: skin network delay: 'none'
emulator: no SD Card image at '/home/karim/android/aosp-2.3.x/out/target/product/generic
 /sdcard.img'
emulator: registered 'boot-properties' qemud service
emulator: registered 'boot-properties' qemud service
emulator: Adding boot property: 'qemu.sf.lcd_density' = '160'
emulator: Adding boot property: 'dalvik.vm.heapsize' = '16m'
emulator: argv[00] = "emulator"
emulator: argv[01] = "-kernel"
emulator: argv[02] = "/home/karim/android/aosp-2.3.x/prebuilt/android-arm/kernel/kernel-qemu"
emulator: argv[03] = "-initrd"
emulator: argv[04] = "/home/karim/android/aosp-2.3.x/out/target/product/generic/ramdisk.img"
emulator: argv[05] = "-nand"
emulator: argv[06] = "system,size=0x4200000,initfile=/home/karim/android/aosp-2.3.x/out
 /target/product/generic/system.img"
emulator: argv[07] = "-nand"
emulator: argv[08] = "userdata,size=0x4200000,file=/home/karim/android/aosp-2.3.x/out/target
 /product/generic/userdata-qemu.img"
emulator: argv[09] = "-nand"
...

Up to this point, I've used the terms QEMU and emulator interchangeably. The reality,
though, is that the emulator command isn't actually QEMU: it's a custom wrapper
around it created by the Android development team. You can, however, interact with
the emulator's QEMU by using the -qemu flag. Anything you pass after that flag is passed
on to QEMU and not the emulator wrapper:

$ emulator -qemu -h
QEMU PC emulator version 0.10.50Android, Copyright (c) 2003-2008 Fabrice Bellard
usage: qemu [options] [disk_image]

'disk_image' is a raw hard image image for IDE hard disk 0

Standard options:
-h or -help display this help and exit
-version display version information and exit
-M machine select emulated machine (-M ? for list)
-cpu cpu select CPU (-cpu ? for list)
-smp n set the number of CPUs to 'n' [default=1]
-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]
-fda/-fdb file use 'file' as floppy disk 0/1 image
-hda/-hdb file use 'file' as IDE hard disk 0/1 image
...
$ emulator -qemu -...

We saw earlier how we can use adb to interact with the AOSP running within the
emulator, and we just saw how we can use various options to change the way the

Mastering the Emulator | 81

emulator is started. Interestingly, we can also control the emulator's behavior at run-
time by telneting into it. Every emulator instance that starts is assigned a port number
on the host. Go back to Figure 3-2 and check the top-left corner of the emulator's
window. That number up there (5554 in this case) is the port number at which that
emulator instance is listening. The next emulator that starts simultaneously will get
5556, the next 5558, and so on. To get access to the emulator's special console, you
can use the regular telnet command:

$ telnet localhost 5554
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Android Console: type 'help' for a list of commands
OK
help
Android console command help:

 help|h|? print a list of commands
 event simulate hardware events
 geo Geo-location commands
 gsm GSM related commands
 kill kill the emulator instance
 network manage network settings
 power power related commands
 quit|exit quit control session
 redir manage port redirections
 sms SMS related commands
 avd manager virtual device state
 window manage emulator window

try 'help <command>' for command-specific help
OK

Using that console you can do some nifty tricks like redirecting a port from the host to
the target:

redir add tcp:8080:80
OK
redir list
tcp:8080 => 80
OK

From here on, anything accessing 8080 on your host will actually be speaking to what-
ever is listening to port 80 on that emulated Android. Nothing listens to that port by
default on Android, but you can, for example, have BusyBox's httpd running on Android
and connect to it in this way.

The emulator also exposes a few "magic" IPs to the emulated Android. IP address
10.0.2.2, for instance, is an alias to your workstation's 127.0.0.1. If you have Apache

82 | Chapter 3: AOSP Jumpstart

running on your workstation, you can open the emulator's browser and type http://
10.0.2.2 and you'll be able to browse whatever content is served up by Apache.

For more information on how to operate the emulator and its various options, have a
look at the Using the Android Emulator section of Google's Android Developers
Guide. It's written for an app developer audience, but it will still be very useful to you
even if you're doing platform work.

Mastering the Emulator | 83

http://developer.android.com/guide/developing/devices/emulator.html
http://developer.android.com
http://developer.android.com

CHAPTER 4

The Build System

The goal of the past chapter was to get you up and running as fast as possible with
custom AOSP development. There's nothing precluding you from closing this book at
this point and start to dig in and modify your AOSP tree to fit your needs. All you need
to do to test your modifications is rebuild the AOSP, start the emulator again and, if
need be, shell back into it using ADB. If you want to maximize your efforts, however,
you'll likely want some insight on Android's build system.

Despite it being modular, Android's build system is fairly complex and doesn't resemble
any of the mainstream build systems out there; none that are used for most open source
projects at least. Specifically, it uses make in a fairly unconventional way and doesn't
provide any sort of menuconfig-based configuration (or equivalent for that matter.)
Android very much has its own build paradigm that takes some time to get used to. So
pack yourself a good coffee or two, things are about to get serious.

Comparisons With Other Build Systems
Before I start explaining how Android's build system works, allow me to begin by em-
phasizing how it differs from what you might already know. First and foremost, unlike
most make-based build systems, the Android build system doesn't rely on recursive
makefiles. Unlike the Linux kernel for instance, there isn't a top-level makefile that will
recursively invoke subdirectories' makefiles. Instead, there is a script that explores all
directories and subdirectories until it finds an Android.mk file, whereupon it stops and
doesn't explore the subdirectories underneath that file's location. Note that Android
doesn't rely on makefiles called Makefile. Instead, it's the Android.mk files that specify
how the local "module" is built.

Android build "modules" have nothing to do with kernel "modules."
Within the context of Android's build system, a "module" is any com-
ponent of the AOSP that needs to be built. This might be a binary, an
app package, a library, etc. and it might have to be built for the target
or the host, but it's still a "module" with regards to the build system.

85

Another Android specificity is the way the build system is configured. While most of
us are used to systems based on kernel-style menuconfig or GNU autoconf/automake,
Android relies on a set of variables that are either set dynamically as part of the shell's
environment by way of envsetup.sh and lunch, or are defined statically ahead of time in
a buildspec.mk file. Also—always seeming to be a surprise to newcomers—the level of
configurability made possible by Android's build system is fairly limited. So while you
can specify the properties of the target for which you want the AOSP to be built and,
to a certain extent, which apps should be included by default in the resulting AOSP,
there is no way for you enable/disable features as is possible a-la menuconfig. You can't,
for instance, decide that you don't want Wifi support or that you don't want the Lo-
cation Service to start by default.

Also, the build system doesn't generate object files or any sort of intermediate output
within the same location as the source files. You won't find the .o files alongside
their .c source files within the source tree, for instance. In fact, none of the existing
AOSP directories are used in any of the output. Instead, the build system creates an
out/ directory where it stores everything it generates. Hence, a make clean is very much
the same thing as a rm -rf out/. In other words, removing the out/ directory wipes out
anything that was built.

The last thing to say about the build system before we start exploring it in more detail
is that it's heavily tied to GNU make. And, more to the point, versions 3.81 or newer
of it. The build system in fact heavily relies on many GNU make-specific features such
as the define, include, and ifndef directives.

Some Background on the Design of Android's Build System
If you would like to get more insight as to the design choices that were made when
putting together Android's build system, have a look at the build/core/build-sys-
tem.html file in the AOSP. It's dated May 2006 and seems to have been the document
that went around within the Android dev team to get consensus on a rework of the
build system. Some of the information and hypothesis are out of date or have been
obsoleted, but most of the nuggets of the current build system are there. In general, I've
found that the further back the document was created by the Android dev team, the
more insightful it is regarding raw motivations and technical background. Newer docu-
ments tend to be "cleaned up" and abstract, if they exist at all.

If you want to understand the technical underpinnings of why Android's build system
doesn't use recursive make, have a look at the paper entitled "Recursive Make Consid-
ered Harmful" by Peter Miller in AUUGN Journal of AUUG Inc., 19(1), pp. 14-25. The
paper explores the issues surrounding the use of recursive makefiles and explains a
different approach involving the use of a single global makefile for building the entire
project based on module-provided .mk files, which is exactly what Android does.

86 | Chapter 4: The Build System

http://aegis.sourceforge.net/auug97.pdf
http://aegis.sourceforge.net/auug97.pdf

Architecture
As illustrated in Figure 4-1, the entry point to making sense of the build system is the
main.mk file found in the build/core/ directory, which is invoked through the top-level
makefile, as we saw earlier. The build/core/ directory actually contains the bulk of the
build system, and we'll cover key files from there. Again, remember that Android's build
system pulls everything into a single Makefile; it isn't recursive. Hence, each .mk file
you see eventually becomes part of single huge makefile that contains the rules for
building all the pieces in the system.

Why does make hang?
Every time you type make, you witness the aggregation of the .mk files into a single set
through what might seem like an annoying build artifact: the build system prints out
the build configuration and seems to hang for quite some time without printing any-
thing to the screen. After these long moments of screen silence, it then actually starts
proceeding again and builds every part of the AOSP, at which point you see regular
output to your screen as you'd expect from any regular build system. Anyone who's
built the AOSP has wondered what in the world is the build system doing during that
time. What it's doing is incorporating every Android.mk file it can find the AOSP.

If you want to see this in action, edit the build/core/main.mk and replace this line:

Figure 4-1. Android's build system

Architecture | 87

include $(subdir_makefiles)

with this:

$(foreach subdir_makefile, $(subdir_makefiles), \
 $(info Including $(subdir_makefile)) \
 $(eval include $(subdir_makefile)) \
)
subdir_makefile :=

The next time you type make, you'll actually see what's happening:

$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
==
Including ./bionic/Android.mk
Including ./development/samples/Snake/Android.mk
Including ./libcore/Android.mk
Including ./external/elfutils/Android.mk
Including ./packages/apps/Camera/Android.mk
Including ./device/htc/passion-common/Android.mk
...

Configuration
One of the first things the build system does is pull in the build configuration through
the inclusion of config.mk. The build can be configured either by the use of the env-
setup.sh and lunch commands or by providing a buildspec.mk file at the top-level di-
rectory. In either case, some of the following variables need to be set.

TARGET_PRODUCT
Android flavor to be built. Each recipe can, for instance, include a different set of
apps or locales or build different parts of the tree. Have a look at the various single
product .mk files included by the AndroidProducts.mk files in build/target/prod-
uct/, device/samsung/crespo/, and device/htc/passion/ for examples. Values include:

generic
The "vanilla" kind, the most basic build of the AOSP parts you can have.

full
The "all dressed" kind, with most apps and the major locales enabled.

full_crespo
Same as full but for Crespo (i.e. Samsung Nexus S.)

88 | Chapter 4: The Build System

sim
Android simulator (see sidebar.)

sdk
The SDK; includes a vast number of locales.

TARGET_BUILD_VARIANT
Selects which modules to install. Each module is supposed to have a LOCAL_MOD
ULE_TAGS variable set in its Android.mk to at least one of:* user, debug, eng, tests,
optional, or samples. By selecting the variant, you will tell the build system which
module subsets should be included. Specifically:

eng
Includes all modules tagged as user, debug or eng.

userdebug
Includes both modules tagged as user and debug.

user
Includes only modules tagged as user.

TARGET_BUILD_TYPE
Dictates whether or not special build flags are used or DEBUG variables are defined
in the code. The possible values here are either release or debug. Most notably, the
frameworks/base/Android.mk file chooses between either frameworks/base/core/
config/debug or frameworks/base/core/config/ndebug, depending on whether or not
this variable is set to debug. The former causes the ConfigBuildFlags.DEBUG Java
constant to be set to true, whereas the latter causes it to be set to false. Some code
in parts of the system services, for instance, is conditional on DEBUG. Typically,
TARGET_BUILD_TYPE is set to release.

TARGET_TOOLS_PREFIX
By default, the build system will use one of the cross-development toolchains ship-
ped with it underneath the prebuilt/ directory. However, if you'd like it to use an-
other toolchain, you can set this value to point to its location.

OUT_DIR
By default, the build system will put all build output into the out/ directory. You
can use this variable to provide an alternate output directory.

BUILD_ENV_SEQUENCE_NUMBER
If you use the template build/buildspec.mk.default to create your own build-
spec.mk fiile, this value will be properly set. However, if you create a build-
spec.mk with an older AOSP release and try to use it in a future AOSP release that
contains important changes to its build system and, hence, a different value, this

* If you do not provide a value, defaults will be used. For instance, all apps are set to optional by default. Also,
some modules are part of GRANDFATHERED_USER_MODULES in user_tags.mk. No LOCAL_MODULE_TAGS need be
specified for those; they're always included.

Architecture | 89

variable will act as a safety net. It will cause the build system to inform you that
your buildspec.mk file doesn't match your build system.

Android Simulator
If you go back to the menu printed by lunch in “Building Android” on page 69, you'll
notice an entry called simulator. In fact you'll find references to the simulator at a
number of locations, including quite a few Android.mk files and subdirectories in the
tree. The most important thing you need to know about the simulator is that it has
nothing to do with the emulator. They are two completely different things.

That said, the simulator appears to be a remnant of the Android's team early work to
create Android. Since at the time they didn't even have Android running in QEMU,
they used their desktop OSes and the LD_PRELOAD mechanism to simulate an Android
device, hence the term "simulator." It appears that they stopped using it as soon as
running Android on QEMU became possible. It's still there, though, as it can be useful
for building parts of the AOSP for development and testing on developer workstations.

That doesn't mean that you run the AOSP on your desktop. In fact you can't, if nothing
else because you need a kernel that has Binder included and you would need to be using
Bionic instead of your system's default C library. But, if you want to run parts of what's
built from the AOSP on your desktop, this product target will allow you to do so.

Various parts of the code build very differently if the target is the simulator. When
browsing the code, for example, you'll sometimes find conditional builds around the
HAVE_ANDROID_OS C macro.† The code that talks to the Binder is one of these. If
HAVE_ANDROID_OS is not defined, that code will return an error to its caller instead of
trying to actually talk to the Binder driver.

For the full story behind the simulator, have a look at Android developer Andrew
McFadden's response to a post entitled "Android Simulator Environment" on the an-
droid-porting mailing list in April 2009.

In addition to selecting which parts of the AOSP to build and which options to build
them with, the build system also needs to know about the target it's building for. This
is provided through a BoardConfig.mk file which will specify things such as the com-
mand line to be provided to the kernel, the base address at which the kernel should be
loaded, or the instruction set version most appropriate for the board's CPU (TAR
GET_ARCH_VARIANT.) Have a look at build/target/board/ for a set of per-target directories
that each contain a BoardConfig.mk file. Also have a look at the various device/*/TAR
GET_DEVICE/BoardConfig.mk files included in the AOSP. The latter are much richer than
the former because they contain a lot more hardware-specific information. The device
name (i.e. TARGET_DEVICE) is derived from the PRODUCT_DEVICE specified in the prod-
uct .mk file provided for the TARGET_PRODUCT set in the configuration. For example,
device/samsung/crespo/AndroidProducts.mk includes device/samsung/crespo/

† HAVE_ANDROID_OS is only defined when compiling for the simulator.

90 | Chapter 4: The Build System

http://groups.google.com/group/android-porting/msg/9f27c8d072c1b112

full_crespo.mk, which sets PRODUCT_DEVICE to crespo. Hence, the build system looks for
a BoardConfig.mk in device/*/crespo/, and there happens to be one at that location.

The final piece of the puzzle with regard to configuration is the CPU-specific options
used to build Android. For ARM, those are contained in build/core/combo/arch/arm/
armv*.mk, with TARGET_ARCH_VARIANT determining the actual file to use. Each file lists
CPU-specific cross-compiler and cross-linker flags used for building C/C++ files. They
also contain a number of ARCH_ARM_HAVE_* variables that enable others parts of the AOSP
to build code conditionally based on whether a given ARM feature is found in the
target's CPU.

envsetup.sh
Now that you understand the kinds of configuration input the build system needs, we
can actually discuss the role of envsetup.sh in more detail. As its name implies, env-
setup.sh actually is for setting up a build environment for Android. It does only part of
the job, though. Mainly, it defines a series of shell commands that are useful to any sort
of AOSP work:

$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
$ help
Invoke ". build/envsetup.sh" from your shell to add the following functions to your environment:
- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the modules in the current directory.
- mmm: Builds all of the modules in the supplied directories.
- cgrep: Greps on all local C/C++ files.
- jgrep: Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir: Go to the directory containing a file.

Look at the source to view more functions. The complete list is:
add_lunch_combo cgrep check_product check_variant choosecombo chooseproduct choosetype
choosevariant cproj croot findmakefile gdbclient get_abs_build_var getbugreports
get_build_var getprebuilt gettop godir help isviewserverstarted jgrep lunch m mm mmm
pgrep pid printconfig print_lunch_menu resgrep runhat runtest set_java_home setpaths
set_sequence_number set_stuff_for_environment settitle smoketest startviewserver
stopviewserver systemstack tapas tracedmdump

You'll likely find the croot and godir commands quite useful for traversing the tree.
Some parts of it are quite deep, given the use of Java and its requirement that packages
be stored in directory trees bearing the same hierarchy as each sub-part of the corre-
sponding fully-qualified package name.‡ Hence, it's not rare to find yourself 7 to 10
directories underneath the AOSP's top-level directory, and it rapidly becomes tedious
to type something like cd ../../../ ... to return to an upper part of the tree.

‡ For instance, a file part of the com.foo.bar package must be stored under the com/foo/bar/ directory.

Architecture | 91

m and mm are also quite useful since they allow you to, respectively, build from the
top-level regardless of where you are or just build the modules found in the current
directory. For example, if you made a modification to the Launcher and are in packages/
apps/Launcher2, you can rebuild just that module by typing mm instead of cd'ing back
to the top-level and typing make. Note that mm doesn't rebuild the entire tree and,
therefore, won't regenerate AOSP images even if a dependent module has changed. m
will do that, though. Still, mm can be useful to test whether your local changes break
the build or not until you're ready to regenerate the full AOSP.

Although the online help doesn't mention lunch, it is one of the commands defined by
envsetup.sh. When you run lunch without any parameters, it shows you a list of po-
tential choices:

$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_passion-userdebug
 4. full_crespo4g-userdebug
 5. full_crespo-userdebug

Which would you like? [generic-eng]

These choices are not static. Most depend on what's in the AOSP at the time env-
setup.sh runs. They're in fact individually added using the add_lunch_combo() function
that the script defines. So, for instance, by default envsetup.sh adds generic-eng and
simulator:

add the default one here
add_lunch_combo generic-eng

if we're on linux, add the simulator. There is a special case
in lunch to deal with the simulator
if ["$(uname)" = "Linux"] ; then
 add_lunch_combo simulator
fi

envsetup.sh also includes all the vendor supplied scripts it can find:

Execute the contents of any vendorsetup.sh files we can find.
for f in `/bin/ls vendor/*/vendorsetup.sh vendor/*/build/vendorsetup.sh device/*/*/
vendorsetup.sh 2> /dev/null`
do
 echo "including $f"
 . $f

92 | Chapter 4: The Build System

done

The device/samsung/crespo/vendorsetup.sh file, for instance, does this:

add_lunch_combo full_crespo-userdebug

So that's how you end up with the menu we saw earlier. Note that the menu asks you
to choose a combo. Essentially, this is a combination of a TARGET_PRODUCT and TAR
GET_BUILD_VARIANT, with the exception of the simulator. The menu provides the default
combinations, but the others remain valid still and can be passed to lunch as parameters
on the command line:

$ lunch generic-user

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
TARGET_BUILD_VARIANT=user
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

$ lunch full_crespo-eng

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_crespo
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

Once lunch has finished running for a generic-eng combo, it will set up environment
variables described in Table 4-1 in your current shell to provide the build system with
the required configuration information.

Architecture | 93

Table 4-1. Environment variables set by lunch (in no particular order)

Variable Value

PATH $ANDROID_JAVA_TOOLCHAIN:$PATH:$ANDROID_BUILD_PATHS

ANDROID_EABI_TOOLCHAIN aosp-root/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin

ANDROID_TOOLCHAIN $ANDROID_EABI_TOOLCHAIN

ANDROID_QTOOLS aosp-root/development/emulator/qtools

ANDROID_BUILD_PATHS aosp-root/out/host/linux-x86:$ANDROID_TOOLCHAIN:
$ANDROID_QTOOLS:$ANDROID_TOOLCHAIN:$ANDROID_EABI_TOOL
CHAIN

ANDROID_BUILD_TOP aosp-root

ANDROID_JAVA_TOOLCHAIN $JAVA_HOME/bin

ANDROID_PRODUCT_OUT aosp-root/out/target/product/generic

OUT ANDROID_PRODUCT_OUT

BUILD_ENV_SEQUENCE_NUMBER 10

OPROFILE_EVENTS_DIR aosp-root/prebuilt/linux-x86/oprofile

TARGET_BUILD_TYPE release

TARGET_PRODUCT generic

TARGET_BUILD_VARIANT eng

TARGET_BUILD_APPS empty

TARGET_SIMULATOR false

PROMPT_COMMAND \"\033]0;[${TARGET_PRODUCT}-${TARGET_BUILD_VARIANT}] $
{USER}@${HOSTNAME}: ${PWD}\007\"

JAVA_HOME /usr/lib/jvm/java-6-sun

Using ccache
If you've already done any AOSP building while reading these pages, you've noticed
how long the process is. Obviously, unless you can construct yourself a bleeding edge
build farm, any sort of speedup on your current hardware would be greatly appreciated.
As a sign that the Android development team might itself also feel the pain of the rather
long builds, they've added support for ccache. ccache stands for Compiler Cache and is
part of the Samba Project. It's a mechanism that caches the object files generated by the
compiler based on the preprocessor's output. Hence, if under two separate builds the
preprocessor's output is identical, use of ccache will result in the second build not
actually using the compiler to build the file. Instead, the cached object file will be copied
to the destination where the compiler's output would have been.

To enable the use of ccache, all you need to do is make sure that the USE_CCACHE envi-
ronment variable is set to 1 before you start your build:

94 | Chapter 4: The Build System

http://ccache.samba.org/

$ export USE_CCACHE=1

You won't gain any acceleration the first time you run since the cache will be empty at
that time. Every other time you build from scratch, though, the cache will help accel-
erate the build process. The only downside is that ccache is for C/C++ files only. Hence,
it can't accelerate the build of any Java file, I must add sadly. There are about 15,000
C/C++ files in the AOSP and 18,000 Java files. So while the cache isn't a panacea, it's
interesting.

If you'd like to learn more about ccache, have a look at the article titled "Improve col-
laborative build times with ccache" by Martin Brown on IBM's developerWorks' site.
The article also explores the use of distcc, which allows you to distribute builds over
several machines, allowing you to pool your team's workstations caches together.

Of course, if you get tired of always typing . build/envsetup.sh and lunch, all you need
to do is copy the build/buildspec.mk.default into the top-level directory, rename it to
buildspec.mk, and edit it to match the configuration that would have otherwise set by
running those commands. The file already contains all the variables that you need to
provide; it's just a matter of uncommenting the corresponding lines and setting the
values appropriately. Once you've done that, all you have to do is go to the AOSP's
directory and invoke make directly. You can skip envsetup.sh and lunch.

Directive Definitions
Because the build system is fairly large—there are about 40 files in build/core/ alone—
there are benefits in being able to reuse as much code as possible. This is why the build
system defines a large number of directives§ in the definitions.mk file. That file is actually
the largest one in the build system at about 60KB, with about 140 directives on ~1,800
lines of makefile code. Directives offer a variety of functionalities, including file lookup
(e.g., all-makefiles-under and all-c-files-under), transformation (e.g., transform-c-
to-o and transform-java-to-classes.jar), copying (e.g., copy-file-to-target) and
utility (e.g., my-dir.)

Not only are these directives used throughout the rest of the build system's components
and act as its core library, but they're sometimes also directly used in modules' An-
droid.mk files. Here's an example snippet from the Calculator app's Android.mk:

LOCAL_SRC_FILES := $(call all-java-files-under, src)

Although thoroughly describing definitions.mk is outside the scope of this book, it
should be fairly easy for you to explore it on your own. If nothing else, most of the
directives in it are preceeded with a comment explaining what they do. For example:

§ Makefile directives are very much akin to functions in a programming language.

Architecture | 95

http://www.ibm.com/developerworks/linux/library/l-ccache/index.html
http://www.ibm.com/developerworks/linux/library/l-ccache/index.html

###
Find all of the java files under the named directories.
Meant to be used like:
SRC_FILES := $(call all-java-files-under,src tests)
###

define all-java-files-under
$(patsubst ./%,%, \
 $(shell cd $(LOCAL_PATH) ; \
 find $(1) -name "*.java" -and -not -name ".*") \
)
endef

Main Make Recipes
At this point you might be wondering where any of the goodies are actually generated.
How are the various images such as RAM disk generated or how is the SDK put together,
for example? Well, I hope you won't hold a grudge, but I've been keeping the best for
last. So without further ado, have a look at the Makefile in build/core/ (not the top-level
one). The file start with an innocuous-looking comment:

Put some miscellaneous rules here

But don't be fooled. This is where some of the best meat is. Here's the snippet that takes
care of generating the RAM disk for example:

the ramdisk
INTERNAL_RAMDISK_FILES := $(filter $(TARGET_ROOT_OUT)/%, \
 $(ALL_PREBUILT) \
 $(ALL_COPIED_HEADERS) \
 $(ALL_GENERATED_SOURCES) \
 $(ALL_DEFAULT_INSTALLED_MODULES))

BUILT_RAMDISK_TARGET := $(PRODUCT_OUT)/ramdisk.img

We just build this directly to the install location.
INSTALLED_RAMDISK_TARGET := $(BUILT_RAMDISK_TARGET)
$(INSTALLED_RAMDISK_TARGET): $(MKBOOTFS) $(INTERNAL_RAMDISK_FILES) | $(MINIGZIP)
 $(call pretty,"Target ram disk: $@")
 $(hide) $(MKBOOTFS) $(TARGET_ROOT_OUT) | $(MINIGZIP) > $@

And here's the snippet that creates the certs packages for checking OTA‖ updates:

‖ Over-The-Air

96 | Chapter 4: The Build System

Build a keystore with the authorized keys in it, used to verify the
authenticity of downloaded OTA packages.
#
This rule adds to ALL_DEFAULT_INSTALLED_MODULES, so it needs to come
before the rules that use that variable to build the image.
ALL_DEFAULT_INSTALLED_MODULES += $(TARGET_OUT_ETC)/security/otacerts.zip
$(TARGET_OUT_ETC)/security/otacerts.zip: KEY_CERT_PAIR := $(DEFAULT_KEY_CERT_PAIR)
$(TARGET_OUT_ETC)/security/otacerts.zip: $(addsuffix .x509.pem,$(DEFAULT_KEY_CERT_PAIR))
 $(hide) rm -f $@
 $(hide) mkdir -p $(dir $@)
 $(hide) zip -qj $@ $<

.PHONY: otacerts
otacerts: $(TARGET_OUT_ETC)/security/otacerts.zip

Obviously there's a lot more than I can fit here, but have a look at Makefile for infor-
mation on how any of the following are created:

• Properties (including the target's /default.prop and /system/build.prop)

• RAM disk

• Boot image (combining the RAM disk and a kernel image)

• NOTICE files

• OTA keystore

• Recovery image

• System image (the target's /system directory)

• Data partition image (the target's /data directory)

• OTA update package

• SDK

Nevertheless, some things aren't in this file:

Kernel images
Don't look for any rule to build these. There is no kernel part of the AOSP. Instead,
you need to find an Androidized kernel for your target, build it separately from the
AOSP, and feed it to the AOSP. You can find a few examples of this in the devices
in the device/ directory. device/samsung/crespo/, for example, includes a kernel im-
age (file called kernel) and a loadable module for the Crespo's Wifi (bcm4329.ko
file.) Both of these are built outside the AOSP and copied in binary form into the
tree for inclusion with the rest of the build.

NDK
While the code to build the NDK is in the AOSP, it's entirely separate from the
AOSP's build system in build/. Instead, the NDK's build system is in ndk/build/.
We'll discuss how to build the NDK shortly.

CTS
The rules for building the CTS are in build/core/tasks/cts.mk.

Architecture | 97

Cleaning
As I mentioned earlier, a make clean is very much the equivalent of wipping out the
out/ directory. The clean target itself is defined in main.mk. There are, however, other
clean up targets. Most notably, installclean, which is defined in cleanbuild.mk, is
automatically invoked whenever you change TARGET_PRODUCT or TARGET_BUILD_VAR
IANT. For instance, if I had first built the AOSP for the generic-eng combo and then
used lunch to switch the combo to full-eng, the next time I start make, some of the
build output will be automatically pruned using installclean:

$ make -j16
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=eng
...
==
*** Build configuration changed: "generic-eng-{mdpi,nodpi}" -> "full-eng-{en_US,en_GB,
fr_FR,it_IT,de_DE,es_ES,mdpi,nodpi}"
*** Forcing "make installclean"...
*** rm -rf out/target/product/generic/data/* out/target/product/generic/data-qemu/*
out/target/product/generic/userdata-qemu.img out/host/linux-x86/obj/NOTICE_FILES
out/host/linux-x86/sdk out/target/product/generic/*.img out/target/product/generic/*.txt
out/target/product/generic/*.xlb out/target/product/generic/*.zip
out/target/product/generic/data out/target/product/generic/obj/APPS
out/target/product/generic/obj/NOTICE_FILES out/target/product/generic/obj/PACKAGING
out/target/product/generic/recovery out/target/product/generic/root
out/target/product/generic/system out/target/product/generic/dex_bootjars
out/target/product/generic/obj/JAVA_LIBRARIES
*** Done with the cleaning, now starting the real build.

In contrast to clean, installclean doesn't wipe out the entirety of out/. Instead, it only
nukes the parts that need rebuilding given the combo configuration change. There's
also a clobber target which is essentially the same thing as a clean.

Module Build Templates
What I just described is the build system's architecture and the mechanics of its core
components. Having read that, you should have a much better idea of how Android is
built from a top-down perspective. Very little of that, however, permeates down to the
level of AOSP modules' Android.mk files. The system has in fact been architectured so
that module build recipes are pretty much independent from the build system's inter-
nals. Instead, build templates are provided so that module authors can get their mod-
ules built appropriately. Each template is tailored for a specific type of module and
module authors can use a set of documented variables, all prefixed by LOCAL_, to mod-
ulate the templates' behavior and output. Of course, the templates and underlying
support files (mainly base_rules.mk) closely interact with the rest of the build system

98 | Chapter 4: The Build System

to deal properly with each module's build output. But that's invisible to the module's
author.

The templates are themselves found in the same location as the rest of the build system
in build/core/. Android.mk gets access to them through the include directive. Here's an
example:

include $(BUILD_PACKAGE)

As you can see, Android.mk files don't actually include the .mk templates by name.
Instead, they include a variable that is set to the corresponding .mk file. Table 4-2
provides the full list of available module templates.

Table 4-2. Module build templates list

Variable Template What the tem-
plate builds

Most notable use

BUILD_EXECUTABLE executable.mk Target binaries Native commands and daemons

BUILD_HOST_EXECUTABLE host_executable.mk Host binaries Development tools

BUILD_RAW_EXECUTABLE raw_executable.mk Target binaries that
run on bare metal

Code in the bootloader/ directory

BUILD_JAVA_LIBRARY java_library.mk Target Java libaries Apache Harmony and Android
framework

BUILD_STATIC_JAVA_LIBRARY static_java_library.mk Target static Java li-
braries

N/A, few modules use this

BUILD_HOST_JAVA_LIBRARY host_java_library.mk Host Java libraries Development tools

BUILD_SHARED_LIBRARY shared_library.mk Target shared libra-
ries

A vast number of modules, includ-
ing many in external/ and frame-
works/base/

BUILD_STATIC_LIBRARY static_library.mk Target static libra-
ries

A vast number of modules, includ-
ing many in external/

BUILD_HOST_SHARED_LIBRARY host_shared_library.mk Host shared libra-
ries

Development tools

BUILD_HOST_STATIC_LIBRARY host_static_library.mk Host static libraries Development tools

BUILD_RAW_STATIC_LIBRARY raw_static_library.mk Target static libra-
ries that run on bare
metal

Code in bootloader/

BUILD_PREBUILT prebuilt.mk For copying pre-
built target files

Configuration files and binaries

BUILD_HOST_PREBUILT host_prebuilt.mk For copying pre-
built host files

Tools in prebuilt/ and configura-
tion files

BUILD_MULTI_PREBUILT multi_prebuilt.mk For copying pre-
built modules of

Rarely used

Architecture | 99

Variable Template What the tem-
plate builds

Most notable use

multiple but
known type, like
Java libraries or ex-
ecutables

BUILD_PACKAGE package.mk Built-in AOSP apps
(i.e. anything that
ends up being
an .apk

All stock AOSP apps

BUILD_KEY_CHAR_MAP key_char_map.mk Device character
maps

All device character maps in AOSP

These build templates allow Android.mk files to be usually fairly light-weight:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_VARIABLE_1 := value_1

LOCAL_VARIABLE_2 := value_2

...

include $(BUILD_MODULE_TYPE)

Tells the build template where the current module is located.

Clears all previously set LOCAL_* variables that might have been set for other
modules.

Sets various LOCAL_* variables to module-specific values.

Invokes the build template that corresponds to the current module's type.

Note that CLEAR_VARS, which is provided by clear_vars.mk, is very im-
portant. Recall that the build system includes all Android.mk into what
amounts to a single huge makefile. Including CLEAR_VARS ensures that
the LOCAL_* values set for modules preceeding yours are zeroed out by
the time your Android.mk is included. Also, a single Android.mk can
describe multiple modules one after the other. Hence, CLEAR_VARS en-
sures that previous module recipes don't pollute subsequent ones.

Here's the Service Manager's Android.mk for instance (frameworks/base/cmds/service-
manager/):#

LOCAL_PATH:= $(call my-dir)

100 | Chapter 4: The Build System

include $(CLEAR_VARS)

LOCAL_SHARED_LIBRARIES := liblog
LOCAL_SRC_FILES := service_manager.c binder.c
LOCAL_MODULE := servicemanager
ifeq ($(BOARD_USE_LVMX),true)
 LOCAL_CFLAGS += -DLVMX
endif

include $(BUILD_EXECUTABLE)

And here's the one from the Desk Clock app (packages/app/DeskClock/):*

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := DeskClock
LOCAL_OVERRIDES_PACKAGES := AlarmClock
LOCAL_SDK_VERSION := current

include $(BUILD_PACKAGE)

include $(call all-makefiles-under,$(LOCAL_PATH))

As you can see, essentially the same structure is used in both modules, even though
they provide very different input and result in very different output. Notice also the last
line from the Desk Clock's Android.mk, which basically includes all subdirectories'
Android.mk files. As I said earlier, the build system looks for the first makefile in a
hierarchy and doesn't look in any subdirectories underneath the directory where one
was found, hence the need to manually invoke those. Obviously the code here just goes
out and looks for all makefiles underneath. However, some parts of the AOSP either
explicitly list subdirectories or conditionnally select them based on configuration.

The documentation at http://source.android.com used to provide an exhaustive list of
all the LOCAL_* variables with their meaning and use. Unfortunately, at the time of this
writing, this list is no longer available. The build/core/build-system.html file, however,
contains an earlier version of that list and you should refer to that one until up-to-date
lists become available again. Here are some of the most frequently-encountered
LOCAL_* variables:

#This version is cleaned up a little (removed commented code for instance) and slightly reformatted for pretty-
print.

* Also slightly modified to remove white-space and comments.

Architecture | 101

http://source.android.com

LOCAL_PATH
The path of the current module's sources, typically provided by invoking $(call
my-dir).

LOCAL_MODULE
The name to attribute to this module's build output. The actual filename or output
and its location will depend on the build template you include. If this is set to
foo, for example, and you build an executable, the final executable will be a com-
mand called foo and it will be put in the target's /system/bin/. If LOCAL_MODULE is set
to libfoo and you include BUILD_SHARED_LIBRARY instead of BUILD_EXECUTABLE, the
build system will generate libfoo.so and put it in /system/lib/.

LOCAL_SRC_FILES
The source files used to build the module. You may provide those by using one the
build system's defined directives, as the Desk Clock uses all-java-files-under, or
you may list the files explicitly, as the Service Manager does.

LOCAL_PACKAGE_NAME
Unlike all other modules, apps use this variable instead of LOCAL_MODULE to provide
their names, as you can witness by comparing the two Android.mk shown earlier.

LOCAL_SHARED_LIBRARIES
Use this to list all the libraries your module depends on. As mentioned earlier, the
Service Manager depends on liblog instead of this variable.

LOCAL_MODULE_TAGS
As I mentioned earlier, this allows you to control under which TARGET_BUILD_VAR
IANT this module is built.

LOCAL_MODULE_PATH
Use this to override the default install location for the type of module you're build-
ing.

A good way to find out about more LOCAL_* variables is to look at existing An-
droid.mk files in the AOSP. Also, clear_vars.mk contains the full list of variables that
are cleared. So while it doesn't give you the meaning of each, it certainly lists them all.

Also, in addition to the cleaning targets that affect the AOSP globally, each module can
define its own cleaning rules by providing a CleanSpec.mk, much like modules provide
Android.mk files. Unlike the latter, though, the former aren't required. By default, the
build system has cleaning rules for each type of module. But you can specify your own
rules in a CleanSpec.mk in case your module's build does something the build system
doesn't generate by default and, therefore, wouldn't typically know how to clean up.

Output
Now that we've looked at how the build system works and how module build templates
are used by modules, let's look at the output it creates in out/. At a fairly high level, the

102 | Chapter 4: The Build System

build output operates in three stages and in two modes, one for the host and one for
the target:

1. Intermediates are generated using the module sources. These intermediates' format
and location depend on the module's sources. They may be .o files for C/C++ code,
for example, or .jar files for Java-based code.

2. Intermediates are used by the build system to create actual binaries and packages:
taking .o files, for example, and linking them into an actual binary.

3. The binaries and packages are assembled together into the final output requested
of the build system. Binaries, for instance, are copied into directories containing
the root and /system filesystems and images of those filesystems are generated for
use on the actual device.

out/ is mainly separated into two directories, reflecting its operating modes: host/ and
target/. In each directory, you will find a couple of obj/ directories that contain the
various intermediates generated during the build. Most of these are stored in subdir-
ectories named similarly to one the BUILD_* macros presented earlier or serve a specific
complementary purpose during the build system's operation:

• EXECUTABLES/

• JAVA_LIBRARIES/

• SHARED_LIBRARIES/

• STATIC_LIBRARIES/

• APPS/

• DATA/

• ETC/

• KEYCHARS/

• PACKAGING/

• NOTICE_FILES/

• include/

• lib/

The directory you'll likely be most interested in is out/target/product/PRODUCT_DEVICE/.
That's where the output images will be located for the PRODUCT_DEVICE defined in the
corresponding product configuration's .mk. Table 4-3 explains the content of that di-
rectory.

Table 4-3. Product output

Entry Description

android-info.txt Contains the codename for the board for which this product is configured.

clean_steps.mk Contains a list of steps that must be executed to clean the tree, as provided in CleanSpec.mk files by
calling the add-clean-step directive.

Architecture | 103

Entry Description

data/ The target's /data directory.

installed-files.txt A list of all the files installed in data/ and system/ directories.

obj/ The target product's intermediaries.

previous_build_con-
fig.mk

The last build target; will be used on the next make to check if the config has changed, thereby forcing
an installclean.

ramdisk.img The RAM disk image generated based on the content of the root/ directory.

root/ The content of the target's root filesystem.

symbols/ Unstripped versions of the binaries put in the root filesystem and /system directory.

system/ The target's /system directory.

system.img The /system image, based on the content of the system/ directory.

userdata.img The /data image, based on the content of the data/ directory.

Have a look back at Chapter 2 for a refresher on the root filesytem, /system, and /
data. Essentially, though, when the kernel boots, it will mount the RAM disk image
and execute the /init found inside. That binary, in turn, will run the /init.rc script that
will mount both the /system and /data images at their respective locations.

Build Recipes
With the build system's architecture and functioning in mind, let's take a look at some
of the most common, and some slightly uncommon, build recipes. We'll only lightly
touch on the use of the results of each recipe, often because the topic is best discussed
elsewhere, but you should have enough information to get you started.

The Default droid Build
Earlier, we went through a number of plain make commands but never really explained
the default target. When you run plain make, it's as if you had typed:†

$ make droid

droid is in fact the default target as defined in main.mk. You don't usually need to specify
this target manually. I'm providing it here for completeness, so that you know it exists.

† This assumes you had already run envsetup.sh and lunch.

104 | Chapter 4: The Build System

Seeing the Build Commands
When you build the AOSP, you'll notice that it doesn't actually show you the commands
it's running. Instead, it only prints out a summary of each step it's at. If you want to see
everything it does, like the gcc command lines for example, add the showcommands target
to the command line:

$ make showcommands
....
host Java: apicheck (out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes)
for f in ; do if [! -f $f]; then echo Missing file $f; exit 1; fi; unzip -qo $f -d
out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes; (cd out/host/common
/obj/JAVA_LIBRARIES/apicheck_intermediates/classes && rm -rf META-INF); done
javac -J-Xmx512M -target 1.5 -Xmaxerrs 9999999 -encoding ascii -g -extdirs "" -d
out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/classes \@out/host/common/obj
/JAVA_LIBRARIES/apicheck_intermediates/java-source-list-uniq || (rm -rf out/host/common
/obj/JAVA_LIBRARIES/apicheck_intermediates/classes ; exit 41)
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list
rm -f out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/java-source-list-uniq
jar -cfm out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates/javalib.jar build
/tools/apicheck/src/MANIFEST.mf -C out/host/common/obj/JAVA_LIBRARIES/apicheck_intermediates
/classes .
Header: out/host/linux-x86/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/host/linux-x86/obj/include/libexpat/expat.h
Header: out/host/linux-x86/obj/include/libexpat/expat_external.h
cp -f external/expat/lib/expat_external.h out/host/linux-x86/obj/include/libexpat/expat_external.h
Header: out/target/product/generic/obj/include/libexpat/expat.h
cp -f external/expat/lib/expat.h out/target/product/generic/obj/include/libexpat/expat.h
...

Which, to illustrate what I just explained in the previous section, is also the same as:

$ make droid showcommands

As you'll rapidly notice when using this, it generates a lot of output and is therefore
hard to follow. You may, however, want to save the standard output and standard error
into files if you'd like to analyze the actual commands used to build the AOSP:

$ make showcommands > aosp-build-stdout 2> aosp-build-stderr

Building the SDK for Linux and MacOS
The official Android SDK is available at http://developer.android.com. You can, how-
ever, build your own SDK using the AOSP if, for instance, you extended the core APIs
to expose new functionality and would like to distribute the result to developers so they
can benefit from your new APIs. To do so, you'll need to select a special combo:

Build Recipes | 105

http://developer.android.com

$. build/envsetup.sh
$ lunch sdk-eng
$ make sdk

Once this is done, the SDK will be in out/host/linux-x86/sdk/ when built on Linux and
out/host/darwin-x86/sdk/ when built on a Mac. There will be two copies, one a zip file,
much like the one distributed at http://developer.android.com, and one uncompressed
and ready to use.

Assuming you had already configured Eclipse for Android development using the in-
structions at http://developer.android.com, you'll need to carry out two additional steps
to use your newly-built SDK. First, you'll need to tell Eclipse the location of the new
SDK. To do so, go to Window→Preferences→Android, enter the path to the new SDK
in the ”SDK Location” box, and click OK. Also, for reasons that aren't entirely clear to
the author at the time of this writing, you also need to go to Window→"Android SDK
and AVD Manager"→"Installed Packages" and click on "Update All..." That will display
a wizard. Reject all the items selected except the first one, "Android SDK Tools, revision
api_level", and click on "Install." Once that is done, you'll be able to create new projects
using the new SDK and access any new APIs you expose in it. If you don't do that second
step, you'll be able to create new Android projects, but none of them will resolve Java
libraries properly and will, therefore, never build.

Building the SDK for Windows
The instructions for building the SDK for Windows are slightly different from Linux
and MacOS:

$. build/envsetup.sh
$ lunch sdk-eng
$ make win_sdk

The resulting output will be in out/host/windows/sdk/.

Building the CTS
If you want to build the CTS, you don't need to use envsetup.sh or lunch. You can go
right ahead and type:

$ make cts
...
Generating test description for package android.sax
Generating test description for package android.performance
Generating test description for package android.graphics
Generating test description for package android.database
Generating test description for package android.text

106 | Chapter 4: The Build System

http://developer.android.com
http://developer.android.com

Generating test description for package android.webkit
Generating test description for package android.gesture
Generating test plan CTS
Generating test plan Android
Generating test plan Java
Generating test plan VM
Generating test plan Signature
Generating test plan RefApp
Generating test plan Performance
Generating test plan AppSecurity
Package CTS: out/host/linux-x86/cts/android-cts.zip
Install: out/host/linux-x86/bin/adb

The cts commands includes its own online help:

$ cd out/host/linux-x86/bin/
$./cts
Listening for transport dt_socket at address: 1337
Android CTS version 2.3_r3
$ cts_host > help
Usage: command options
Avaiable commands and options:
 Host:
 help: show this message
 exit: exit cts command line
 Plan:
 ls --plan: list available plans
 ls --plan plan_name: list contents of the plan with specified name
 add --plan plan_name: add a new plan with specified name
 add --derivedplan plan_name -s/--session session_id -r/--result result_type: derive
 a plan from the given session
 rm --plan plan_name/all: remove a plan or all plans from repository
 start --plan test_plan_name: run a test plan
 start --plan test_plan_name -d/--device device_ID: run a test plan using the specified device
 start --plan test_plan_name -t/--test test_name: run a specific test
...
$ cts_host > ls --plan
List of plans (8 in total):
Signature
RefApp
VM
Performance
AppSecurity
Android
Java
CTS

Once you have a target up and running, such as the emulator for instance, you can
launch the test suite and it will use adb to run tests on the target:

$./cts start --plan CTS
Listening for transport dt_socket at address: 1337

Build Recipes | 107

Android CTS version 2.3_r3
Device(emulator-5554) connected
cts_host > start test plan CTS

CTS_INFO >>> Checking API...

CTS_INFO >>> This might take several minutes, please be patient...
...

Building the NDK
As I had mentioned earlier, the NDK has its own separate build system, with its own
setup and help system, which you can invoke like this:

$ cd ndk/build/tools
$ export ANDROID_NDK_ROOT=aosp-root/ndk
$./make-release --help
Usage: make-release.sh [options]

Valid options (defaults are in brackets):

 --help Print this help.
 --verbose Enable verbose mode.
 --release=name Specify release name [20110921]
 --prefix=name Specify package prefix [android-ndk]
 --development=path Path to development/ndk directory [/home/karim/opersys-dev/
android/aosp-2.3.4/development/ndk]
 --out-dir=path Path to output directory [/tmp/ndk-release]
 --force Force build (do not ask initial question) [no]
 --incremental Enable incremental packaging (debug only). [no]
 --darwin-ssh=hostname Specify Darwin hostname to ssh to for the build.
 --systems=list List of host systems to build for [linux-x86]
 --toolchain-src-dir=path Use toolchain sources from path

When you are ready to build the NDK, you can invoke make-release as follows, and
witness its rather emphatic warning:

$./make-release
IMPORTANT WARNING !!

This script is used to generate an NDK release package from scratch
for the following host platforms: linux-x86

This process is EXTREMELY LONG and may take SEVERAL HOURS on a dual-core
machine. If you plan to do that often, please read docs/DEVELOPMENT.TXT
that provides instructions on how to do that more easily.

Are you sure you want to do that [y/N]
y
Downloading toolchain sources...
Using git clone prefix: git://android.git.kernel.org/toolchain

108 | Chapter 4: The Build System

downloading sources for toolchain/binutils
...

Updating the API
The build systems has safeguards in case you modify the AOSP's core API. If you do,
the build will fail by default with a warning such as this:

You have tried to change the API from what has been previously approved.

To make these errors go away, you have two choices:
 1) You can add "@hide" javadoc comments to the methods, etc. listed in the
 errors above.

 2) You can update current.xml by executing the following command:
 make update-api

 To submit the revised current.xml to the main Android repository,
 you will need approval.

make: *** [out/target/common/obj/PACKAGING/checkapi-current-timestamp] Error 38
make: *** Waiting for unfinished jobs....

As the error message suggests, to get the build to continue, you'll need to do something
like this:

$ make update-api
...
Install: out/host/linux-x86/framework/apicheck.jar
Install: out/host/linux-x86/framework/clearsilver.jar
Install: out/host/linux-x86/framework/droiddoc.jar
Install: out/host/linux-x86/lib/libneo_util.so
Install: out/host/linux-x86/lib/libneo_cs.so
Install: out/host/linux-x86/lib/libneo_cgi.so
Install: out/host/linux-x86/lib/libclearsilver-jni.so
Copying: out/target/common/obj/JAVA_LIBRARIES/core_intermediates/emma_out/lib
 /classes-jarjar.jar
Install: out/host/linux-x86/framework/dx.jar
Install: out/host/linux-x86/bin/dx
Install: out/host/linux-x86/bin/aapt
Copying: out/target/common/obj/JAVA_LIBRARIES/bouncycastle_intermediates
 /emma_out/lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/ext_intermediates/emma_out/lib
 /classes-jarjar.jar
Install: out/host/linux-x86/bin/aidl
Copying: out/target/common/obj/JAVA_LIBRARIES/core-junit_intermediates/emma_out
 /lib/classes-jarjar.jar
Copying: out/target/common/obj/JAVA_LIBRARIES/framework_intermediates/emma_out

Build Recipes | 109

 /lib/classes-jarjar.jar
Copying current.xml

The next time you start make, you won't get any more errors regarding API changes.

Building a Single Module
Up to now, we've looked at building the entire tree. You can also build individual
modules. Here's how you can ask the build system to build the Launcher2 module (i.e.,
the Home screen):

$ make Launcher2

You can also clean modules individually:

$ make clean-Launcher2

If you'd like to force the build system to regenerate the system image to include your
updated module, you can add the snod target to the command line:

$ make Launcher2 snod
==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=generic
...
target Package: Launcher2 (out/target/product/generic/obj/APPS/Launcher2_intermediates/package.apk)
 'out/target/common/obj/APPS/Launcher2_intermediates//classes.dex' as 'classes.dex'...
Install: out/target/product/generic/system/app/Launcher2.apk
Install: out/host/linux-x86/bin/mkyaffs2image
make snod: ignoring dependencies
Target system fs image: out/target/product/generic/system.img

Building Out of Tree
If ever you'd like to build code against the AOSP and its Bionic library but don't want
to incorporate that into the AOSP, you can use a makefile such as the following to get
the job done:‡

Paths and settings
TARGET_PRODUCT = generic
ANDROID_ROOT = /home/karim/android/aosp-2.3.x

‡ This makefile is inspired by a blog post by Row Boat developer Amit Pundir and is based on the example
makefile provided in Chapter 4 of Building Embedded Linux Systems, 2nd ed. (O'Reilly).

110 | Chapter 4: The Build System

http://pundiramit.blogspot.com/2011/08/how-to-build-commom-linux-utils-for.html

BIONIC_LIBC = $(ANDROID_ROOT)/bionic/libc
PRODUCT_OUT = $(ANDROID_ROOT)/out/target/product/$(TARGET_PRODUCT)
CROSS_COMPILE = \
 $(ANDROID_ROOT)/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

Tool names
AS = $(CROSS_COMPILE)as
AR = $(CROSS_COMPILE)ar
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E
LD = $(CROSS_COMPILE)ld
NM = $(CROSS_COMPILE)nm
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
RANLIB = $(CROSS_COMPILE)ranlib
READELF = $(CROSS_COMPILE)readelf
SIZE = $(CROSS_COMPILE)size
STRINGS = $(CROSS_COMPILE)strings
STRIP = $(CROSS_COMPILE)strip

export AS AR CC CPP LD NM OBJCOPY OBJDUMP RANLIB READELF \
 SIZE STRINGS STRIP

Build settings
CFLAGS = -O2 -Wall -fno-short-enums
HEADER_OPS = -I$(BIONIC_LIBC)/arch-arm/include \
 -I$(BIONIC_LIBC)/kernel/common \
 -I$(BIONIC_LIBC)/kernel/arch-arm
LDFLAGS = -nostdlib -Wl,-dynamic-linker,/system/bin/linker \
 $(PRODUCT_OUT)/obj/lib/crtbegin_dynamic.o \
 $(PRODUCT_OUT)/obj/lib/crtend_android.o \
 -L$(PRODUCT_OUT)/obj/lib -lc -ldl

Installation variables
EXEC_NAME = example-app
INSTALL = install
INSTALL_DIR = $(PRODUCT_OUT)/system/bin

Files needed for the build
OBJS = example-app.o

Make rules
all: example-app

.c.o:
 $(CC) $(CFLAGS) $(HEADER_OPS) -c $<

example-app: ${OBJS}
 $(CC) -o $(EXEC_NAME) ${OBJS} $(LDFLAGS)

install: example-app
 test -d $(INSTALL_DIR) || $(INSTALL) -d -m 755 $(INSTALL_DIR)
 $(INSTALL) -m 755 $(EXEC_NAME) $(INSTALL_DIR)

clean:

Build Recipes | 111

 rm -f *.o $(EXEC_NAME) core

distclean:
 rm -f *~
 rm -f *.o $(EXEC_NAME) core

In this case, you don't need to care about either envsetup.sh or lunch. You can just go
ahead and type the magic incatation:

$ make

Obviously this won't add your binary to any of the images generated by the AOSP. Even
the install target here will be of value only if you're mounting the target's filesystem
off NFS; and that's valuable only during debugging, which is what this makefile is
assumed to be useful for. To an extent, it could also be argued that using such a makefile
is actually counter-productive since it's far more complicated than the equivalent An-
droid.mk had this code been added as a module part of the AOSP.

Still, this kind of hack can have its uses. Under certain circumstances, for instance, it
might make sense to modify the conventional build system used by a rather large code
base to build that project against the AOSP yet outside of it; the alternative being to
copy the project into the AOSP and create Android.mk files to reproduce the mechanics
of its original conventional build system, which might turn out to be a substantial
endeavour in and of itself.

Basic AOSP Hacks
You most likely bought this book with one thing in mind: to hack the AOSP to fit your
needs. Over the next few pages, we'll start looking into some of the most obvious hacks
you'll likely want to try. Of course we're only setting the stage here with the parts that
pertain to the build system, which is where you'll likely want to start anyway. The next
chapters will allow to push what we see here much further.

Adding an App
If you would like to add a default app in addition to the stock ones, you'll need to start
by creating a directory for it in packages/apps/. As a starter, try creating a "HelloWorld!"
app with Eclipse and the default SDK; by default all new Android projects in Eclipse
are a "HelloWorld!". Then copy that app from the Eclipse workspace to its destination:

$ cp -a ~/workspace/HelloWorld ~/android/aosp-2.3.x/packages/apps/

You'll then have to create an Android.mk in aosp-rootpackages/apps/HelloWorld to
build that app:

112 | Chapter 4: The Build System

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := $(call all-java-files-under, src)
LOCAL_PACKAGE_NAME := HelloWorld

include $(BUILD_PACKAGE)

Given that we're tagging this module as optional, it won't be included by default in the
AOSP build. To get it to be included, you'll need to add it to the default PRODUCT_PACK
AGES listed in aosp-root/build/target/product/core.mk.

Note that the commands I've shown so far means you're adding the app globally to
all products. That might not be what you're looking for, though. If you want to add
the app to just your product, which you likely should if it's going to be available only
on your device, you should add the app into your product's entry in device/ instead of
packages/apps/. We'll cover how to add your own device shortly.

Adding a Native Tool or Daemon
There are a number of locations in the tree where native tools and daemons are located.
Here are the most important ones:

system/core/ and system/
Custom Android binaries that are meant to be used outside the Android framework
or are stand-alone pieces.

frameworks/base/cmds/
Binaries that are tightly coupled to the Android framework. This is where the Serv-
ice Manager and installd are found, for example.

external/
Binaries that are generated by an external project that is imported into the AOSP.
strace, for instance, is here.

Now that you most likely know where the code generating the binary should go, you'll
also need to provide an Android.mk in the directory containing the code to build that
module:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := hello-world
LOCAL_MODULE_TAGS := optional
LOCAL_SRC_FILES := hello-world.cpp
LOCAL_SHARED_LIBRARIES := liblog

Basic AOSP Hacks | 113

include $(BUILD_EXECUTABLE)

Again, you'll also need to make sure hello-world is also part of the default PRODUCT_PACK
AGES listed in aosp-root/build/target/product/core.mk. And again, what you'd be doing
here is adding that binary to all products. So, much like a custom app, the best location
for your binary may actually be in your product-specific directory in device/.

Adding a Native Library
Like binaries, libraries are typically found in a number of locations in the tree. Unlike
binaries, though, a lot of libraries are used within a single module but nowhere else.
Hence, these libraries will typically be placed within that module's code and not in the
typical locations where libraries used system-wide are found. The latter are typically in:

system/core
Libraries used by many parts of the system, including some outside the Android
framework. This is where liblog is, for instance.

frameworks/base/libs/
Libraries intimately tied to the framework. This is where libbinder is.

external/
Libraries generated by external projects imported in the AOSP. OpenSSL's libssl is
here.

Whether your library best belongs in one of these locations, within another module,
or in your product's device/ entry, you'll need an Android.mk to build it:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := libmylib
LOCAL_MODULE_TAGS := optional
LOCAL_PRELINK_MODULE := false
LOCAL_SRC_FILES := $(call all-c-files-under,.)

include $(BUILD_SHARED_LIBRARY)

Library Prelinking
To reduce the time it takes to load libraries, Android prelinks most of its libraries. This
is done by specifying ahead of time the address location where the library will be loaded
instead of letting it be figured out at run time. The file where the addresses are specifies
is build/core/prelink-linux-arm.map and the tool that does the mapping is called apri-
ori. It contains entries such as these:

core system libraries
libdl.so 0xAFF00000 # [<64K]

114 | Chapter 4: The Build System

libc.so 0xAFD00000 # [~2M]
libstdc++.so 0xAFC00000 # [<64K]
libm.so 0xAFB00000 # [~1M]
liblog.so 0xAFA00000 # [<64K]
libcutils.so 0xAF900000 # [~1M]
libthread_db.so 0xAF800000 # [<64K]
libz.so 0xAF700000 # [~1M]
libevent.so 0xAF600000 # [???]
libssl.so 0xAF400000 # [~2M]
...
assorted system libraries
libsqlite.so 0xA8B00000 # [~2M]
libexpat.so 0xA8A00000 # [~1M]
libwebcore.so 0xA8300000 # [~7M]
libbinder.so 0xA8200000 # [~1M]
libutils.so 0xA8100000 # [~1M]
libcameraservice.so 0xA8000000 # [~1M]
libhardware.so 0xA7F00000 # [<64K]
libhardware_legacy.so 0xA7E00000 # [~1M]
...

If you want to add a custom native library, you need either to add it to the list of libraries
in prelink-linux-arm.map or to set the LOCAL_PRELINK_MODULE to false. The build will
fail if you forget to do one of these.

To use this library, you must add it to the list of libraries listed by the Android.mk file
of whichever binaries depend on it:

LOCAL_SHARED_LIBRARIES := libmylib

You'll also likely need to add relevant headers to an include/ directory located in about
the same location as you put your library so that the code that need to link against your
library can find said headers, such as system/core/include/ or frameworks/base/include/

Adding a Device
Adding a custom device is most likely one of the topmost items (if not the topmost) on
your list if you're reading this book. You'll likely therefore want to bookmark this sec-
tion, as I'm about to show you how to just that. Of course I'm actually only showing
you the build aspects of the work. There are a lot more steps involved in porting Android
to new hardware as we'll see through the rest of the book. Still, adding the new device
to the build system will definitely be one of the first things you do. Fortunately, doing
that is relatively straight-forward.

For the benefit of the current exercise, assume you work for a company called ACME
and that you're tasked with delivering its latest gizmo: the CoyotePad, intended to be
the best platform for playing all bird games. Let's get started by creating an entry for
our new device in device/:

Basic AOSP Hacks | 115

$ cd ~/android/aosp-2.3.x
$. build/envsetup.sh
$ mkdir -p device/acme/coyotepad
$ cd device/acme/coyotepad

The first thing we'll need in here is an AndroidProducts.mk file to describe the various
AOSP products that could be built for the CoyotePad:

PRODUCT_MAKEFILES := \
 $(LOCAL_DIR)/full_coyotepad.mk

While we could've had several products,§ the typical case is to just have one as in this
case, and it's described in full_coyotepad.mk:

$(call inherit-product, $(SRC_TARGET_DIR)/product/languages_full.mk)
$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=
PRODUCT_COPY_FILES +=

PRODUCT_NAME := full_coyotepad
PRODUCT_DEVICE := coyotepad
PRODUCT_MODEL := Full Android on CoyotePad, meep-meep

It's worth taking a closer look at this makefile. First, we're using the inherit-product
directive to tell the build system to pull in other product descriptions as the basis of
ours. This allows us to build on other people's work and not have to specify from scratch
every bit and piece of the AOSP that we'd like to include. languages_full.mk will pull
in a vast number of locales and full.mk will make sure we get the same set of modules
as if we had built using the full-eng combo.

With regard to the other variables:

DEVICE_PACKAGE_OVERLAYS
Allows us to specify a directory which will form the basis of an overlay that will be
applied onto the AOSP's sources, thereby allowing us to substitute default package
resources with device-specific resources. You'll find this useful if you'd like to set
custom layouts or colors for Launcher2 or other apps, for instance. We'll look at
how to use this in the next section.

§ See build/target/product/AndroidProducts.mk for an example

116 | Chapter 4: The Build System

PRODUCT_PACKAGES‖

Allows us to specify packages we'd like to have this product include in addition to
those specified in the products we're already inheriting from. If you have custom
apps, binaries, or libraries located within device/acme/coyotepad/, for instance,
you'll want to add them here so that they get included in the final images generated.

PRODUCT_COPY_FILES
Allows us to list specific files we'd like to see copied to the target's filesystem and
the location where they need to be copied. Each source/destination pair is colon-
separated and pairs are space-separated amongst themselves. This is useful for
configuration files and prebuilt binaries such as firmware images or kernel mod-
ules.

PRODUCT_NAME
The TARGET_PRODUCT, which you can set either by selecting a lunch combo or passing
it as a part of the combo parameter to lunch as in:

$ lunch full_coyotepad-eng

PRODUCT_DEVICE
The name of the actual finished product shipped to the customer. TARGET_DEVICE
derives from this variable. PRODUCT_DEVICE has to match an entry in device/acme/,
since that's where the build looks for the corresponding BoardConfig.mk. In this
case, the variable is the same as the name of the directory we're already in.

PRODUCT_MODEL
The name of this product as provided in the "Model number" in the "About the
phone" section of the settings. This variable actually gets stored as the ro.prod
uct.model global property accessible on the device.

Now that we've described the product, we must also provide some information re-
garding the board the device is using through a BoardConfig.mk file:

TARGET_NO_KERNEL := true
TARGET_NO_BOOTLOADER := true
TARGET_CPU_ABI := armeabi
BOARD_USES_GENERIC_AUDIO := true

USE_CAMERA_STUB := true

This is a very skinny BoardConfig.mk and only ensures that we actually build success-
fully. For a real-life version of that file, have a look at device/samsung/crespo/Board-
ConfigCommon.mk.

‖ Notice the use of the += sign. It allows us to append to the existing values in the variable instead of subtituting
its content.

Basic AOSP Hacks | 117

You'll also need to provide a conventional Android.mk in order to build all the modules
that you might have included in this device's directory:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

ifneq ($(filter coyotepad,$(TARGET_DEVICE)),)
include $(call all-makefiles-under,$(LOCAL_PATH))
endif

It's in fact the preferred modus operandi to put all device-specific apps, binaries, and
libraries within the device's directory instead of globally within the rest of the AOSP as
was shown earlier. If you do add modules here, don't forget to also add them to PROD
UCT_PACKAGES as I explained earlier. If you just put them here and provide them valid
Android.mk files, they'll build, but they won't be in the final images.

Lastly, let's close the loop by making the device we just added visible to envsetup.sh
and lunch. To do so, you'll need to add a vendorsetup.sh in your device's directory:

add_lunch_combo full_coyotepad-eng

You also need to make sure that it's executable if it's to be operational:

$ chmod 755 vendorsetup.sh

We can now go back to the AOSP's root and take our brand new ACME CoyotePad
for a runchase:

$ croot
$. build/envsetup.sh
$ lunch

You're building on Linux

Lunch menu... pick a combo:
 1. generic-eng
 2. simulator
 3. full_coyotepad-eng
 4. full_passion-userdebug
 5. full_crespo4g-userdebug
 6. full_crespo-userdebug

Which would you like? [generic-eng] 3

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=full_coyotepad
TARGET_BUILD_VARIANT=eng

118 | Chapter 4: The Build System

TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
==

$ make -j16

As you can see, the AOSP now recognizes our new device and prints the information
correspondingly. When the build is done, we'll also have the same type of output pro-
vided in any other AOSP build, except that it will be a product-specific directory:

$ ls -al out/target/product/coyotepad/
total 89356
drwxr-xr-x 7 karim karim 4096 2011-09-21 19:20 .
drwxr-xr-x 4 karim karim 4096 2011-09-21 19:08 ..
-rw-r--r-- 1 karim karim 7 2011-09-21 19:10 android-info.txt
-rw-r--r-- 1 karim karim 4021 2011-09-21 19:41 clean_steps.mk
drwxr-xr-x 3 karim karim 4096 2011-09-21 19:11 data
-rw-r--r-- 1 karim karim 20366 2011-09-21 19:20 installed-files.txt
drwxr-xr-x 14 karim karim 4096 2011-09-21 19:20 obj
-rw-r--r-- 1 karim karim 327 2011-09-21 19:41 previous_build_config.mk
-rw-r--r-- 1 karim karim 2649750 2011-09-21 19:43 ramdisk.img
drwxr-xr-x 11 karim karim 4096 2011-09-21 19:43 root
drwxr-xr-x 5 karim karim 4096 2011-09-21 19:19 symbols
drwxr-xr-x 12 karim karim 4096 2011-09-21 19:19 system
-rw------- 1 karim karim 87280512 2011-09-21 19:20 system.img
-rw------- 1 karim karim 1505856 2011-09-21 19:14 userdata.img

Also, have a look at the build.prop file in system/. It contains various global properties
that will be available at runtime on the target and that relate to our configuration and
build:

begin build properties
autogenerated by buildinfo.sh
ro.build.id=GINGERBREAD
ro.build.display.id=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.190849 test-keys
ro.build.version.incremental=eng.karim.20110921.190849
ro.build.version.sdk=10
ro.build.version.codename=REL
ro.build.version.release=2.3.4
ro.build.date=Wed Sep 21 19:10:04 EDT 2011
ro.build.date.utc=1316646604
ro.build.type=eng
ro.build.user=karim
ro.build.host=w520
ro.build.tags=test-keys

Basic AOSP Hacks | 119

ro.product.model=Full Android on CoyotePad, meep-meep
ro.product.brand=generic
ro.product.name=full_coyotepad
ro.product.device=coyotepad
ro.product.board=
ro.product.cpu.abi=armeabi
ro.product.manufacturer=unknown
ro.product.locale.language=en
ro.product.locale.region=US
ro.wifi.channels=
ro.board.platform=
ro.build.product is obsolete; use ro.product.device
ro.build.product=coyotepad
Do not try to parse ro.build.description or .fingerprint
ro.build.description=full_coyotepad-eng 2.3.4 GINGERBREAD eng.karim.20110921.190849 test-keys
ro.build.fingerprint=generic/full_coyotepad/coyotepad:2.3.4/GINGERBREAD
 /eng.karim.20110921.190849:eng/test-keys
end build properties
...

As you can imagine, there's a lot more to be done here to make sure the AOSP runs on
our hardware. But the preceding steps give us the starting point.

Adding an App Overlay
Overlays are a mechanism included in the AOSP to allow device manufacturers to
change the resources provided (such as for apps), without actually modifying the orig-
inal resources included in the AOSP. To use this capability you must create an overlay
tree and tell the build system about it. The easiest location for an overlay is within a
device-specific directory such as the one we just created in the previous section:

$ cd device/acme/coyotepad/
$ mkdir overlay

To tell the build system to take this overlay into account, we need to modify our
full_coyotepad.mk such that:

DEVICE_PACKAGE_OVERLAYS := device/acme/coyotepad/overlay

At this point, though, our overlay isn't doing much. Let's say we want to modify the
Launcher2's default strings. We could then do something like this:

$ mkdir -p overlay/packages/apps/Launcher2/res/values
$ cp aosp-root/packages/apps/Launcher2/res/values/strings.xml \
> overlay/packages/apps/Launcher2/res/values/

120 | Chapter 4: The Build System

You are then free to modify your copy of strings.xml to suite your needs. Your device
will have a Launcher2 that has your custom strings, but the default Launcher2 will still
have its original strings. So if someone relies on the same AOSP sources you're using
to build for another product, they'll still get the original strings. You can, of course,
replace most resources like this, including images and XML files. So long as you put
the files in the same hierarchy as they are found in the AOSP but within device/acme/
coyotepad/overlay/, they'll be taken into account by the build system.

Basic AOSP Hacks | 121

	Table of Contents
	Preface
	
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Introduction
	History
	Features and Characteristics
	Development Model
	Differences With "Classic" Open Source Projects
	Feature Inclusion, Roadmaps, and New Releases

	Ecosystem
	A Word on the Open Handset Alliance

	Getting "Android"
	Legal Framework
	Code Licenses
	Branding Use
	Google's Own Android Apps
	Alternative App Markets
	Oracle v Google

	Hardware and Compliance Requirements
	Compliance Definition Document
	Software
	Application Packaging Compatibility
	Multimedia Compatibility
	Developer Tool Compatibility
	Hardware Compatibility
	Performance Compatibility
	Security Model Compatibility
	Software Compatibility Testing
	Updatable Software

	Compliance Test Suite

	Development Setup and Tools

	Chapter 2. Internals Primer
	App Developer's View
	Android Concepts
	Components
	Intents
	Component Lifecycle
	Manifest File
	Processes and Threads
	Remote Procedure Calls (RPC)

	Framework Intro
	App Development Tools
	Native Development

	Overall Architecture
	Linux Kernel
	Wakelocks
	Low Memory Killer
	Binder
	Anonymous Shared Memory (ashmem)
	Alarm
	Logger
	Other Notable Androidisms

	Hardware Support
	The Linux Approach
	Android's General Approach
	Loading and Interfacing Methods
	Device Support Details

	Native User-Space
	Filesystem layout
	Libraries
	Init
	Configuration language
	Global properties
	udev events

	Toolbox
	Daemons
	Command-Line Utilities

	Dalvik and Android's Java
	Java Native Interface (JNI)

	System Services
	Service Manager and Binder Interaction
	Calling on Services
	A Service Example: the Activity Manager

	Stock AOSP Packages
	System Startup

	Chapter 3. AOSP Jumpstart
	Getting the AOSP
	Inside the AOSP
	Build Basics
	Build System Setup
	Building Android

	Running Android
	Using ADB
	Mastering the Emulator

	Chapter 4. The Build System
	Comparisons With Other Build Systems
	Architecture
	Configuration
	envsetup.sh
	Directive Definitions
	Main Make Recipes
	Cleaning
	Module Build Templates
	Output

	Build Recipes
	The Default droid Build
	Seeing the Build Commands
	Building the SDK for Linux and MacOS
	Building the SDK for Windows
	Building the CTS
	Building the NDK
	Updating the API
	Building a Single Module
	Building Out of Tree

	Basic AOSP Hacks
	Adding an App
	Adding a Native Tool or Daemon
	Adding a Native Library
	Adding a Device
	Adding an App Overlay

