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Preface

Philosophy of design of structures has undergone a sea change. Lighter and sleek
structures have replaced bulky and heavy ones thanks to the increased emphasis on
avoiding overly conservative design. These developments have introduced severe
constraints on design methodologies that are currently in practice, which requires
the use of new technologies to monitor the integrity of structures. Structural Health
Monitoring (SHM) is one such technology, which can provide information on the
state of the structure continuously or at periodic intervals.

The importance of SHM technology is demonstrated by the wealth of research
activity and initiatives in this emerging area. The importance of SHM is expected
to grow as new materials such as composites find increasing application in novel
lightweight construction. Laminated composites also offer the opportunity for
sensors to be embedded at the manufacturing stage, which can provide structural
response information with unprecedented detail and therefore can substantially
facilitate the assessment of structural integrity and the monitoring of its
degradation.

SHM technology is a multidisciplinary field which requires a deep under-
standing of materials, sensors and electronics, along with the ability to perform
sophisticated numerical and analytical modeling and signal processing. Each of
these topics is a subject by itself, and writing a single textbook incorporating all
the above aspects is indeed a tall order. Modeling forms an important component
in SHM technology. Simulated data are used in support of the development of new
algorithms for damage detection, or for an improved understanding on the effects
of damage on the response of the structure. The objective of this book is therefore
to present various computational tools which can be used for SHM.

Many of the numerical tasks described in this monograph can be accomplished
through the application of Finite Element (FE) methodologies. The FE method,
although very versatile, is affected by serious limitations when the high frequency
response of structures needs to be evaluated, or when configurations with very
small features need to be discretized. Both of these instances are very common in
the simulation of SHM problems. Alternate methodologies are therefore presented,
such as the Spectral Finite Element method, the bridging multi-scale techniques
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and various simplified damage modeling methods. The choice of the mathematical
model is very critical and dictated by various factors such as damage size, damage
location, frequency content of exciting signals, model sizes, time of computation
etc. In addition, robust and computationally fast damage detection methodologies
that blend well with the chosen mathematical model are needed in order to obtain
fast answers in regards to the damage location and extent. It is to be noted that
many damage detection algorithms in most cases need to work with incomplete
and noise polluted data. All of these computational aspects are necessary to the
understanding of SHM technology and associated process. A book devoted to the
modeling aspects of SHM tries to fill the need of the hour through the joint
expertise in the field of the authors whose work over a decade provides most of the
topics presented here.

This book is organized in modular form with the material is covered in 3 parts.
A basic introduction to the theory of elasticity, composites and wave propagation,
forms the foundations to the topics presented here. This is followed by a chapter on
signal processing issues related to SHM. Two important modeling tools, namely
the Finite Element Method and the Spectral Element Method are covered next,
followed by three chapters on simplified damaged models. A separate chapter on
modeling of piezoelectric actuators and sensors extensively used in the context of
SHM, is given, while the last part is devoted to the description of various damage
detection methodologies.

The material presented can be used to develop a graduate level course on SHM.
While writing this book, we have assumed that the reader has the basic engineering
mechanics and graduate level mathematics background. The book can also serve
as a useful reference material for those working in the areas of structural integrity
and wave propagation.

The completion of a work of this magnitude would not be possible without the
help of many graduate students and collaborators who have worked on the material
presented herein as part of their Doctoral and Masters thesis, and joint projects. Dr.
Gopalakrishnan would like to thank his former graduate students Dr. Roy
Mahapatra, Dr. A. Chakraborty, Dr. Mira Mitra, Mr.. Srikkanth, Mr. Garg and
Mr. Nag. Dr. Ruzzene is very grateful to very bright, focused and committed
co-workers such as Dr. Nicole Apetre, Dr. James Ayers, Dr. Filippo Casadei,
Dr. Manuel Collet, Prof. Stefano Gonella, and Dr. Vinod Sharma whose efforts and
ideas are documented in various parts of this monograph. Last but not the least,
Drs. Gopalakrishnan and Ruzzene deeply thank their wives Anu and Elizabeth for
their continuous patience, understanding and support without which this book
would have not been possible.

Bangalore, India; Atlanta GA, USA S. Gopalakrishnan
October 2010 M. Ruzzene
S. Hanagud
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Introductory Concepts in Structural
Health Monitoring



Chapter 1
Introduction

1.1 Overview on Structural Health Monitoring

Structural Health Monitoring (SHM) defines the process of assessing the state of
health of a structure and of predicting its remaining life. Successful development
and implementation of the SHM process involves the understanding of diverse
disciplines such as sensor technology, materials technology, modeling aspects and
computing technology. This book specifically focuses on the presentation of
computational techniques which support the SHM process. The integration of
effective simulation tools in SHM, in general requires the thorough understanding
of the overall process. This chapter is therefore devoted to providing a general
overview of SHM. Specifically, the chapter begins with definition of some of the
commonly used terminologies in the health monitoring studies, which will be
followed by a section on the various available health monitoring techniques. The
role of simulation is introduced next, along with a general presentation of the
content of the book.

1.1.1 Why Do We Need Structural Health Monitoring?

All man-made structures (machines bridges and aircrafts) have finite life spans and
begin to degrade as soon as they are put into service. Processes such as corrosion,
fatigue, erosion, wear and overloads degrade them until they are no longer fit for
their intended use. Depending on the value of a structure, the cost of repairing it
and the consequences of it failing, a number of actions can be taken

e Wait until the structure breaks and dispose of it (low sticker price relative to the
repair cost, low criticality)

e Wait until the structure breaks and repair it (high sticker price relative to the
repair cost, low criticality)

S. Gopalakrishnan et al., Computational Techniques for Structural Health Monitoring, 3
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-284-1_1,
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e Examine it at periodic intervals and determine whether or not remedial action is
needed (high criticality).

Many engineering structures, such as ships, bridges, aircraft, buildings, fall in to
the latter category. The consequences of a critical aircraft component failing in
flight or of a bridge collapsing are such that regular inspections are performed by
skilled engineers to assess the health of structures and systems. This inspection
process is necessary, costly and usually finds no faults. It is also subject to human
error, meaning that some unnecessary maintenance is performed and some faults
go undetected. Examples of on-line machine health monitoring exist for rotating
machinery and for machine tools, where the goal is to assess and compensate for
tool wear. However, there are no equivalents for evaluating the health of most
engineering structures.

Structural design has undergone a sea change, where stringent restrictions are
placed on the design variables to produce lightweight structures having very high
structural integrity. Such structures are normally shape-optimized to guarantee
their resistance to sustain the design loads. However, they are more vulnerable to
small and medium size damages such as horizontal, vertical or inclined cracks,
corrosion in metallic structures, and delamination, fibre breakages or matrix cracks
in the case of composites. These damages severely affect the structural integrity,
which needs constant monitoring.

SHM has the objective of providing the tools for the constant or periodic
monitoring of critical structural assets in order to determine the need for remedial
action, and to prevent catastrophic failures. SHM has therefore potential appli-
cation in many disciplines including aerospace, mechanical and civil engineering
[10, 60]. The basic idea in SHM is to provide the structure of interest with sensing
and analysis capabilities and to enable monitoring and evaluation to be carried out
periodically or continuously, and autonomously. SHM potentially offers increased
safety, since faults cannot grow to a dangerous level, avoids the vagaries of human
behavior, and reduces ownership costs by replacing pre-planned precautionary
servicing with targeted, responsive maintenance. Because the potential benefits of
this embodiment of SHM are huge, a great amount of research is in progress
worldwide into developing and improving systems that bring some degree of
“self-awareness” to man-made structures [10, 38, 39, 51].

The benefits of SHM include:

1. to allow an optimal use of the structure, a minimized downtime, and the
avoidance of catastrophic failures;

2. to give the designer an improvement in his products; and

3. to drastically change the work organization of maintenance services. This is
achieved by replacing the scheduled and periodic maintenance inspection with
performance-based (or condition-based) maintenance (long term) or at least
(short term) by reducing the present maintenance labor. In particular dis-
mounting of parts with no hidden defect can be avoided and human
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involvement can be minimized which consequently reduces labor, downtime
and errors, and thus improves safety and reliability.

1.1.2 Basic Elements of SHM Systems

An SHM system comprises of both hardware and software elements. The hardware
elements are essentially the sensors and the associated instrumentation, while the
software components consist of damage modeling and damage detection algo-
rithms. A general vision for SHM is to develop structures featuring network of
sensors, which periodically and continuously provide data. Sensors may be active
or passive, whereby passive sensors such as strain gauges only receive (or sense)
signals, while the active sensors both receive (or sense) and transmit (or actuate)
signals. Commonly used active sensors include Poly Vinyle Dy Floride (PVDF)
sensors piezoceramic sensors (made from Lead Zirconate Titanate, commonly
called PZT sensors) or fiber optics sensors. There are also instances of TERFE-
NOL-D, a type of magnetostrictive material, being used as an active sensor in
SHM applications [55]. The data given out by the sensor depends on the type of
sensors used. For example, if the sensor used is fibre optic sensor, (which works on
the principle that the change in the strain condition in the structure, induces the
change in the wavelength of the light spectrum), the output is essentially the strains
or strain histories. On the other hand, if the sensors used is PZT or PVDF type, the
output given by these sensors are essentially the voltage histories across the
sensors. Voltage histories needs to be post processed to obtain quantities such as
displacements, velocities or accelerations. More recently, non-contact sensors have
become popular as they completely avoid wiring and direct contact with the
surface. The most commonly used non-contact sensor is theScanning Doppler
Laser Vibrometer (SDLV). With no need for wiring and other connections, the
region to be monitored can be chosen depending upon the level and location of
excitation. The advantage of such measurements is that region-by-region moni-
toring is possible, which is crucial for determining local effects caused by defects.

SHM essentially has two components, namely the Diagnosis and the Prognosis.
Diagnosis aims to give, at every moment during the life of a structure, a procedure to
determine the state of the constituent materials of the different parts, and of the full
assembly of these parts constituting the structure as a whole. Hence, the diagnosis
procedure will notify the onset of damages such as cracks, its location and its extent.
The diagnosis procedure can be further divided into two categories, namely the
passive diagnosis and the active diagnosis. Passive diagnosis is based on distributed
passive sensor measurement (such as strain gauges) to diagnose the state of struc-
tures. These methods provide limited information for estimation of damages. Active
diagnosis, on the other hand, is based on actuator induced sensor measurements and
as such unlimited information could be generated to diagnose the state of the
structures. Active diagnosis SHM system can be built using smart sensors and
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actuators. The prognosis procedure will involve computation of the severity of the
crack in terms of fracture mechanics parameters, and its residual life.

Considering only the diagnosis function, one can think of SHM as a new and
improved way of performing Non destructive evaluation. This is partially true, but
SHM is much more. It involves the integration of sensors, possibly smart mate-
rials, data transmission, computational modeling, and processing ability inside the
structures. This makes it possible to reconsider the design of the structure and the
its lifetime management.

In summary, an SHM system encompasses the following components:

The structure on which the SHM system will be placed.
Sensors, which can be of contact or non-contact type.
Data Acquisition systems.

Signal Processing.

Damage modeling and damage detection algorithms.
Data transfer and storage mechanisms.

Data handling and management.

e 6 o o o o o

SHM is therefore an essentially multi-disciplinary subject requiring thorough
understanding of mechanics, materials and electronics. An alternate way of
looking at SHM is a discipline combining the following four subjects [60] (see
Fig. 1.1):

Condition based monitoring

Non Destructive Evaluation (NDE) technologies
New modeling methods

New sensor technologies

Fig. 1.1 Elements of
structural health monitoring
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Most of current practices followed in the maintenance of structural systems is
time based. For example, an aircraft, after flying certain number of hours are retired
to the hangar for thorough inspection. These inspections often need complete dis-
assembly of components in order to subject them NDE inspections. This inspection
based on schedules approach is time consuming and mostly driven by the fear of
failure rather than a real necessity. If the fear factor is reduced by significant
amounts, progress can be made towards an inspection based on demand approach,
i.e. monitor only when it is absolutely necessary. This a process is also known as
Condition Based Monitoring, or Condition Based Maintenance (CBM). The CBM
concept is based on the notion that a sensing system on the structure monitors the
integrity and notifies the operator when damage is detected. Life-safety and
economic benefits associated with such a philosophy will only be realized if the
monitoring system provides sufficient warning such that the corrective action can be
taken before the damage evolves to a failure level. The trade-off associated with
implementing such a philosophy is that it requires a sophisticated monitoring
hardware to be deployed on the system along with a sophisticated data analysis
procedure which interrogates the measured data.

NDE methods as Fig. 1.1 suggests, represent a subset of the overall SHM
process. In classical NDE, a trigger is provided from a device that is external to the
structure under examination and the data is measured, which will then be post-
processed to asses the state of the structure. With the increase in the use of
laminated composites in structural systems, it is now possible to embed these
triggering devices called actuators into the host structure, which in many cases can
also be used for sensing, say deformations, temperature, pressure, etc. In order to
keep pace with the rapid changes in materials technologies, which can be suc-
cessfully exploited in the SHM, new NDE methodologies are also needed to
replace the conventional ones. One such method is the application of the SLDV as
illustrated in the later part of this chapter.

Two other areas, which are paramount to the success of SHM are Sensor
Technologies and Modeling Methods. The success of SHM depends on the ability
of the number of sensors mounted on the structure to measure accurate data. The
sensor performance is measured by its sensitivity. With the rapid advances made in
the materials technologies, it is possible today to design a sensor material that can
give high sensitivity. PZT and PVDF sensors are those which evolved from the
advancement of material technologies, have higher sensitivity compared to the
conventional strain gauges. More recently, Micro Electro-mechanical Systems
(MEMS) based sensors have become quite popular as sensing device in the SHM
systems. These sensors are not only minute, but are also quite cheap as compared
to the conventional strain gauges. The advancement of the silicon technology has
given great fillip to this development. Other most extensively used sensor for SHM
is the Fiber Optic Sensors. Currently they are used in many aircrafts for load
monitoring, which is one of the important part in the SHM process. Yet another
area of rapid progress is that of wireless sensors. The range of effectiveness of
these sensors is an important aspect that needs to be carefully evaluated when



8 1 Introduction

considering the use of these type of sensors. Extensive applications of wireless
sensors to bridge SHM is being pursued in the civil engineering domain.

Modeling is a critical part in the SHM process. The measured data as such does
not say where the flaws are or what type flaw the structure has. These data need
post-processing through robust mathematical tools that convert the measured data
into meaningful quantities that help to not only locate the flaws, but also quantify
their severity. Common modeling techniques employ the Finite Element Method
(FEM), which is quite versatile in its ability to model complex geometries.
However, when the flaw sizes are small, it is necessary to trigger a signal that has
very high frequency content. At higher frequencies, the wavelengths are very small
and it is necessary that the mesh sizes used in the FEM be comparable to wave-
length. Typical recommendations suggest the use of at least 8—10 elements per
wavelength of deformation for accurate capturing of wave phenomena and their
interaction with defects. Hence, FEM requires the use of very fine mesh for such
problems, which results in enormous computation time to get accurate results.
Computational aspects of SHM in regards to FEM can be found for example in
[17]. Methods like FEM are not quite suitable when the flaw sizes that requires
determination, are small. The suitable mathematical model for such problems is
the one based on wave propagation methods and the most common among them is
the Spectral Finite Element Method (SFEM) [18].

Modeling has two components, namely the flaw modeling and the damage
detection algorithms. In metallic structures, the commonly occurring flaws are the
horizontal/vertical or inclined cracks, which are in some cases through the
thickness cracks. The second kind flaw in metallic structure is corrosion. Although
the corrosion types are many, modeling pitting corrosion is much simpler com-
pared to other types of corrosion. Hence, simplified mathematical models for these
types of flaws are required. If the structure is made from laminated composites, the
failure modes are many as compared to metallic structures. The commonly
occurring failure modes in composites are the Delaminations, Fibre Breakage,
Matrix Cracks and Debonds. In addition, these structures are prone to large
moisture absorbtion due to large porosity that creeps in during manufacturing.
Hence, one needs simplified mathematical models to represent these failure modes.

The second aspect of modeling is in devising efficient damage detection
algorithms that can blend with the chosen mathematical models. The damage
detection algorithm should be able to work with incomplete and noise polluted
data. Most damage detection methods requires the data from a structure in both the
undamaged (baseline) and damaged configuration. By comparing the responses
between the two, one can infer the state of the structure. This approach is not a
practical one. The hosts of sensors embedded or surface mounted in a structure can
give enormous amount of data. Not all such data will be useful, which requires a
thorough screening. Data reduction and data cleaning methods need to be devel-
oped to eliminate the data that are not useful and/or noisy.

The above discussions make evident how modeling plays a huge part in the
success of an SHM system. Significant advances have been made in the modeling
aspects of SHM. However, to the authors’ best of knowledge, there are no books
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available that address the modeling aspects in relation to SHM. This book is
essentially oriented in this direction.

1.1.3 Levels of Structural Health Monitoring

SHM is an inverse problem wherein the flaws in the structure is characterized
using the measured data for some known input. Hence, SHM can be thought as a
system identification problem. As mentioned earlier, SHM is classified into two
categories, namely the Diagnosis and Prognosis. Through diagnosis, one can
determine the presence of a flaws, their location, and their extent along with the
possibility of looking at the delaying the propagation of flaws in the structure.
The prognosis part uses the information of the diagnosis part and determines the
remaining life of the structure. Hence the SHM can be broadly divided into fol-
lowing five levels [10].

Level 1: Confirming the presence of damage

Level 2: Determination of location and orientation of the damage
Level 3: Evaluation of the severity of the damage

Level 4: Possibility of controlling or delaying the growth of damage
Level 5: Determining the remaining life in the structure (prognosis).

Level 1 SHM can be achieved by monitoring certain properties of the structure
over time. Properties such as strain energy, fundamental natural frequency, phase
information, stiffness reduction are some of the parameters, which can provide
answers in regards to the presence of damage. The most extensively used method
to confirm the presence of damage is by monitoring the natural frequencies. As
damage reduces the stiffness, it induces changes in the natural frequencies. By
comparing the baseline fundamental frequency with the fundamental frequency of
the damaged structure, one can confirm the presence of damage. This is possible
only when the damage can induce significant stiffness changes in the structure.
Small damages such as delamination in composites, induces negligible stiffness
change, which causes only negligible variations in the first few modal frequencies.
This means one has to monitor higher order modes, which is often difficult to do.
Wave propagation based techniques can be considered as effective alternatives for
small or early damage detection.

Level 2 SHM is an order more difficult than Level 1 SHM. Here, from the
known input and the measured output, it is necessary to determine the location of
the flaw and possibly its extent and orientation. A simple way to perform this
action is to trigger a signal experimentally that has high frequency content and
measure the output at some location. The output will have an additional wave
reflection from the flaw. Knowing the speed of the medium and the time of arrival
of the reflected pulse, we can locate the flaw location. However, in many cases,
due to number of boundary reflections, it is not possible to clearly identify the
reflections due to the flaw accurately. In addition, the measured response itself may
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be noise polluted, which makes identification of reflection due to a flaw extremely
difficult. Hence, we need detection algorithms that does not suffer from the above
problems. This is one of the primary focus of this book, wherein we develop
algorithms, which converts the measured response into certain quantifying num-
ber, whose value indicates the status of the structure in regards the presence of the
damage. The notable aspect of such algorithm is that these do not require baseline
responses for damage detection.

After the damage is predicted at Level 2 stage, it is necessary to determine the
severity of the damage. This forms the Level 3 SHM. If the damage is a crack, then
we need to estimate the Stress Intensity Factor (SIF) or Strain Energy Release Rate
(SERR) of the crack. If the SIF or SERR reaches its threshold values, then the
crack will start growing. SIF is not a easily measurable quantity. In addition, in
most cases, the measured output in SHM studies will be in the form of voltage
histories given out by PZT type sensors. In order to asses the crack severity, it is
necessary to correlate the voltage histories with the crack parameters such as SIF
or SERR. This is indeed a tall order.

If the located crack is quite severe (SIF being greater than the SIF threshold),
then immediate measures should be taken to arrest the growth of cracks. This is a
part of Level 4 activity of SHM. The method adopted to delay or arrest the growth
of flaw such as cracks are quite different for metallic or composite structures. In
composite structures, delamination, can grow really fast. For such structures, the
common method adopted is to reinforce the damaged area with a patch. Such patch
repair delay the growth of the crack and probably can arrest it for low magnitude
loads. This book does not address the Level 4 aspect of SHM. Level 5 SHM is
closely associated with Level 4 SHM, wherein the estimation of fracture param-
eters are used to perform fatigue life analysis to determine the remaining life of the
structure. The analysis here is mostly statistical. This by itself is a major subject,
which is not covered in this book.

In summary, the scope of SHM is quite broad, requires understanding of many
disciplines. In this book, we will not focus on all of these. The main focus here is
to address the necessary computational tools required to post-process the measured
data in order to locate and quantify the flaws present in the structure.

1.1.4 State-of-Art and Technological Needs

SHM can also be classified differently, especially in the context of aircraft health
monitoring, namely on-line SHM and off-line SHM. In on-line SHM, the host of
sensors is on-board the aircraft to provide outputs during its flight. The recorded
data needs to be post processed to assess the state of the structures. This is indeed
quite challenging. In off-line SHM, the aircraft is monitored when it is in the
hanger. The enabling technologies required for each of these are quite different and
these are summarized in the next two sub-sections.
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1.1.4.1 On-Line SHM

The concept of on-line SHM can be represented as in Fig. 1.2, which shows a
multitude of sensors used to monitor operating and material conditions during the
in flight and/or ground operations, e.g. aircraft during taxiing or refueling. The
sensors systems are networked and they communicate with each other. The vehicle
maintains a neural system that can indeed be compared to the human nervous
system which evaluates and diagnoses the compromises that the structures need
to make that may affect its structural integrity during service. The system also
posts requisite actions to be taken either through repair or replacement of the
damaged part.

Sensor systems could be used as local monitoring systems to identify crack
initiation and/or growth at critical locations or could be used to monitor entire
structural components and subassemblies. Fiber-optic sensors can provide further
support. Acoustical systems, based on guided waves technology, can also be
efficiently applied. The most significant difference to conventional nondestructive
technologies is that, with the maturity of the composite structures technologies, all
sensor systems can be permanently installed (integrated) into the structure. Sensor
systems based on piezoelectric materials are currently favored due to the high level
of maturity attained in their manufacturing. It is of utmost importance to ensure
that the embedded sensors do not impact the structural integrity of the structure.
Structures made from composite materials are highly suitable for embedding of
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Fig. 1.2 Concept of on-line structural health monitoring
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piezoelectric sensors, which allows the entire embedded part to develop sensory
properties.

Acquired data are locally available and also can be transmitted to external
systems and/or monitoring stations using wireless communication. The acquired
data have to be pre-processed, typically by sensor integrated signal processors,
prior to performing final data analysis, which is usually done at a relay station or at
the monitoring station. Many modeling tools need to be developed that can be used
for modeling of NDE techniques and the structure under investigation and thus
permit for an integrity assessment of complex installations and systems in real-
time. To successfully develop and apply such SHM technologies, it is required that
the technical and scientific progress in various areas of expertise are vigorously
investigated and exploited. New measurement techniques, based on traditional
NDE methods, are required to provide information and data about material
characteristics, material alterations and material discontinuities. The efficiency of
such systems is largely dictated by the ability to apply the constantly evolving
developments in the computational and data storage technologies. The longevity
and reliability of such sensor platforms is currently an unsolved problem. SHM
systems will become a commercial success if low-cost sensor systems can be
applied in a simple manner, which requires new ideas and concepts for the
packaging of integrated circuits assemblies, including polymer electronics. New
data acquisition and signal processing techniques, such as Acoustic Tomography or
Random Acoustic Noise Technique (RANT), must be developed. Both techniques
utilize noise emissions and operating noise for component reconstruction and flaw
detection, similarly to passive radar systems.

Programming of individual network nodes is time-consuming, manpower
intensive and costly. Therefore, new networking concepts, allowing the automated
integration of sensor systems need to be developed. Telemetric techniques to
facilitate data transfers between individual nodes, SHM systems and the outside
world are some of the enabling technologies that require development. In addition,
new ideas to supply adequate power for such systems are also needed. Efficient,
powerful battery systems, promising several years of lifetime are some of the
critical technologies. Piezoelectric or magneto-inductive energy harvesting sys-
tems, thermoelectric generators or other power generation methods are also
important technologies that will be extremely useful in the development of energy
efficient power systems. Passive systems, receiving energy from external sources
or through magnetic field irradiation are also promising alternatives.

Data evaluation and disposition of results will be a key aspect. The acquired
signals have to provide all information necessary to assess the integrity of the
structure under consideration and to predict residual operational lifetime or dictate
the replacement of the monitored part or component.
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1.1.4.2 Off-Line SHM

A SHM system that does not require real-time data and operates when the platform
in question, say an aircraft, is not in operation is normally referred to as off-line
SHM. It is quite well known that maintenance costs of an aircraft is a major
contributor to the operating costs and it increases as the aircraft ages. Off-line
SHM systems are required to reduce the maintenance costs of an aircraft through
reduction in the maintenance time so that either the frequency of maintenance can
be decreased or the structures can be designed with reduced factors of safety. The
need for the off-line SHM will be clear if we look at Figs. 1.3 and 1.4, which show
the action and manpower distribution for a typical commercial aircraft. From these
two figures, it is quite clear that inspection accounts for significant manpower
costs, which can be substantially reduced by using off-line SHM. Hence, there is a
real need to pursue off-line SHM activities vigorously.

The critical technologies required for off-line SHM are quite similar to the on-
line SHM and hence not repeated here. Although the off-line SHM does not require
telemetry technology, significant efforts are still required in the areas of devel-
opment of modeling and damage detection methodologies. One of the critical areas
that is very useful for reduced maintenance is the development of non-contact
measurement techniques such as Scanning Laser Doppler Vibrometer. Such a
system can be used to monitor a large area in a very short period. However, post
processing such large data requires data mining and data reduction methodologies
coupled with a very robust mathematical model to represent the damage and
detection algorithms.

Most active interrogation systems require a trigger signal provided by the
actuator system. The frequency content of the trigger signal to be provided to the
system is inversely proportional to the size of the flaw, that is, smaller the flaw
size, larger will be the frequency content of the trigger signal. For predicting
cracks of nano-meter size, trigger signal of very short duration (of the order of
pico-secs, having frequency content in the order Tera-Hertz range) is required. The
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development of systems that can trigger such a high frequency content signal is
still an open research objective.

More advanced NDE techniques are required for off-line SHM. One of the area
that requires development is the pulse-echo eddy current system. Although con-
ventional eddy current methodology is well known, its application is very limited
in materials that are conducting. With increased use of composites in aircraft
construction, which is a non-conducting material system, development of pulse
echo eddy current, which works according to a totally different methodology, will
be very helpful. However, such a development should be adaptable to SHM.

From the above discussions, it is clear that in order to incorporate SHM at the
design stage itself, certain critical technological needs and challenges are required
to be addressed or realized. Some of them are hardware-related, while others are
software-related. The entire SHM process depends on how well one understands
the measured data. Many times, these data may be incomplete or noise polluted.
Hence development of computational tools to analyze the data is the key to the
success of SHM.

1.2 Dynamics-Based Structural Health Monitoring

Dynamics-based SHM techniques assess the state of health of a structural com-
ponent on the basis of the detection and analysis of its dynamic response. Such
techniques can be classified on the basis of the type of response being considered
for the investigations, on the frequency range of interrogation, and on the modality
used to excite the component.

SHM techniques are also classified as “passive” if the component does not need
an external source of excitation dedicated to the SHM system, as opposed to
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“active” techniques whereby excitation is provided with the purpose of generating
a response which can effectively indicate the presence of damage. Passive tech-
nique are reviewed in the next sub-section, while this section is devoted to the
presentation of various active inspection methods.

1.2.1 Passive SHM

A well known passive technique is Acoustic Emission (AE), which has become a
common non-destructive evaluation tool for various structural applications, and
has been considered effective particularly for the investigation of damage propa-
gation in composites. AE systems are based on sensors which are designed to
detect acoustic events associated with the occurrence and propagation of damage.
A typical example of such events is the acoustic signature associate with fiber
breakage in composites. The sensors operate at their own resonance frequency to
maximize their sensitivity, and generate signals which are subsequently analyzed
through a software tool which computes various metrics such as response ampli-
tude, time-of-flight and decay rate, and classifies them to define a recognizable
pattern which may be associated with damage. Inspections performed through AE
are in general very local in nature, such that AE is generally recognized as an NDE
tool, rather than an SHM one. For this reason, and because several books, technical
manuals, and scientific papers describe in detail the fundamentals of AE inspec-
tion, its drawbacks and advantages, as well as its various fields of application,
further discussion of the method is considered as beyond the scope of the current
book.

Other passive techniques are based on the analysis of the dynamic response to
environment excitation. Typical examples are bridges excited by passing traffic,
buildings under wind and ground motion excitation, or airplane wings under
aerodynamic loads. Most analysis techniques are based on the extraction of the
physical properties of the system, as contained for example in its modal param-
eters, and in the evaluation of changes and discontinuities caused by damage.
Ambient loads are generally non-deterministic, and it is commonly assumed that
they can be described as stochastic processes such as a white random noise. This
allows the application of signal processing procedures which separate the sto-
chastic part of the response, from the deterministic component associated with the
behavior of the structure. One of such technique is the Random Decrement
Technique (RDT), which is frequently used to estimate cross correlation functions
and free response decays [25]. From the cross-correlation functions it is convenient
to estimate modal properties such as natural frequencies, damping ratios and mode
shapes, through system identification tools and modal analysis procedures. The
estimated properties can be then analyzed and monitored to assess the presence,
the location and the severity of damage. An overview of such tools is presented
later in this book (Chap. 10). Recently, a similar process has been applied for the
analysis of elastic diffuse fields, associated with the propagation of elastic waves in
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geometrically complex structures. The presence of structurally complex features
such as rivets holes and stiffeners in fact causes scattering, multiple reflections and
mode conversion of mechanical perturbations propagating within the structure.
The resulting elastic diffuse fields, which may be generated either actively or
passively by ambient excitation, are characterized by complicated waveforms and
randomized elastic energy distribution within the structure, denoted as “diffuse
fields”. Fully diffuse wavefields are often defined as ones that are globally equi-
partitioned, with all normal modes having uncorrelated amplitudes with equal
mean squares [12, 57, 58]. Diffuse fields in structures have an apparent random
nature and are thus generally discarded in conventional SHM systems. However,
recent theoretical and experimental studies have demonstrated that the elastic
response, as defined for example by the local Green’s function or by an equivalent
of the impulse response function, can be estimated from the cross-correlation of
elastic diffuse fields recorded between a pair of sensors [24, 47, 59], which con-
tains the coherent, that is, not randomized, component of the response. In prin-
ciple, the cross-correlation of diffuse fields provides the means to perform SHM
without a local source, since the extracted coherent responses between the sensors
are similar to those obtained from conventional measurements between a source
and receiver pair. Several experimental studies have demonstrated the feasibility
of extracting estimates of the Green’s function (or of the impulse response) from
cross-correlations of acoustic or elastic diffuse fields or from ambient noise records
in applications relevant to seismology [49], underwater acoustics [43, 45], civil
engineering [13], low-frequency (<5kHz) flexural properties identification of
hydrofoils [46], high frequency ultrasonics (Mhz) [22, 59] and guided wave
measurements (kHz) [47].

1.2.2 Classification of Inspection Techniques Based on Frequency
Range of Analysis

The discussion above makes it apparent how SHM techniques operate over a broad
spectrum of frequencies which spans from the low frequency vibrational response
of the structure to the ultrasonic regimes in the mega Hertz range. Fatigue and
damage generation and progression in fact are processes consisting of a series of
interrelated events that span large scales of space and time. Hence, the analysis of
damage evolution needs to be accompanied by appropriate interrogation methods
capable of monitoring damage progression over these scales, such that the pro-
gression of damage starting from the characterization of its precursors, moving
ahead to quantifying its location, type and extent, and finally investigating its
effects at the component and structural levels can be followed. If dynamics-based
monitoring with elastic waves and mechanical vibrations is considered, the spatial
and temporal scales can be related to the frequency and time span of interrogation.
The obvious relationship is that the sensitivity of detection decreases as the
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inspection frequency decreases. Specifically, when the component is excited at
frequencies close to its main natural modes of vibration, it will undergo a response
which can be considered as “global”. As the frequency of inspection is increased,
the response becomes more localized around the excitation region, and the
recorded behavior becomes more sensitive to small local variations. Such local
variations include macroscopic single cracks or clusters, which can be typically
detected by low-to-medium frequency guided and bulk ultrasonic waves, and
microscopic cracks, material nonlinearities or dislocations pile-ups as detected by
nonlinear ultrasonic methods. A global view of SHM envisions the spatial reso-
lution and types of damage which can be detected to span a continuum from the
local and microscopic to the global and macroscopic. A schematic representation
of the classification of SHM techniques on the basis of frequency range of inter-
rogation and corresponding size of detectable defects is found in Fig. 1.5. Another
obvious correlation is between the spatial range of inspection, i.e. the dimensions
of the portion of the structure inspected at anyone time, and the frequency of the
response to be analyzed.

The broad frequency range covered by the various SHM techniques suggests
the challenges associated with the development of proper modeling tools, which in
principle should allow simulations and damage interpretation processes to occur
over the entire frequency spectrum. As this is clearly not feasible, the need is for
dedicated techniques which can be used for high frequency analysis and wave
propagation problems up to the MHz regime. Some of these techniques will be
presented in this book.

1.2.3 Vibration-Based Techniques

Low-frequency interrogation corresponding to vibration-based techniques typi-
cally involves the entire structural component, with its boundary conditions, so
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that an indication of damage can be related to the presence of a defect anywhere
within the structure. For example, a local reduction in stiffness affects the natural
frequencies, and in principle can be detected by a single sensor mounted anywhere
on the structure under consideration. For this reason, vibration-based techniques
are usually considered as “global” tools. Their global nature, and the relative ease
with which modal properties can be extracted through active modal testing or
operational modal analysis performed using ambient loads, have promoted the
development of several vibration-based techniques for damage identification.
Another important aspect associated with the analysis and monitoring of modal
parameters is related to their immediate relation to the overall performance of the
structure. Knowledge of the modal properties and their relation with the loading
configuration is an important step in the design of a component, and significant
variations of the modal properties in most circumstances can be directly related to
a degradation in performance which dictates the need for maintenance, repair or
replacement of the part. An overview of vibration-based techniques for SHM can
be found in [10], and is also given later in this book (Chap. 10). The general trend
that can be identified from an analysis of the state-of-the-art suggests that natural
frequencies in general are not very sensitive damage indicators, and therefore
cannot be used for early damage indication. Mode shapes, and more importantly,
their spatial derivatives, representing quantities such as modal curvatures and
powerflows [50], are instead effective at detecting small damages, and at directly
providing their location. The drawback of such an analysis however resides in the
need for a large number of sensors to obtain the spatial resolution required to fully
characterize the modes and to accurately compute their spatial derivatives. Such a
drawback can be partially mitigated by the use of Scanning Laser Doppler Vib-
rometers (SLDVs), which easily map the dynamic operational shapes of a structure
with very favorable spatial resolutions in a timely fashion. The use of SLDVs
however does not favor the vision of the implementation of an on-line SHM
approach capable of periodic or continuous monitoring of the structure through an
embedded system of sensors and actuators as represented schematically in
Fig. 1.2. SLDVs are however very valuable tools to support the development of
novel SHM techniques as indicated in parts of this book, and, more importantly, to
enable the integration of vibration monitoring with inspections performed at higher
frequencies such as with guided waves as discussed in the next section. Such
integration is essential in order to combine the global nature of vibration-based
methods, with the sensitivity of wave-based inspections, and to effectively
implement a “global-to-local” (or a “local-to-global”) approach to structural
health assessment. Merging and integration of various SHM techniques is still an
active area of research, which holds many promises towards the practical appli-
cation of several of the concepts discussed in this book.
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1.2.4 Guided Waves Inspection

The application of guided waves (GWSs) as inspection tools for SHM is receiving
attention of a large number of researchers. The most attractive feature of GWs is
their ability to travel long distances in plate and shell-like structures, which makes
the inspection of large areas possible. Complicating factors are the multi-modal
and dispersive natures of GWs signals, which require the development of proper
interpretation tools. The objective is the extraction of relevant features from the
recorded response, which may be related to damage. In this regard, proper signal
processing algorithms are essential features of GW-based SHM techniques.
Overviews of signal processing strategies used for GW interpretation and damage
measure formulation can be found in [42, 36, 52]. Time Frequency Transforms
(TFTs) are well-suited for the analysis, decomposition and de-noising of GW
signals, which are typically non-stationary. Short Time Fourier Transforms (STFT)
[31], Wigner—Ville Distributions (WVD) [34, 37], and, more recently, the Hilbert-
Huang Transform (HHT) [31, 48] are examples of various techniques used to
observe the propagation of various modes, to separate reflections from incident
waves and to formulate associated damage measures. The Wavelet Transform
(WT) in its various forms is a very important and versatile tool, used extensively
for denoising, as well as for feature extraction and selection [52]. The discrete
wavelet decomposition is applied for example in [41] as part of a feature extraction
and automatic classification framework developed for GW inspection of pipes. The
STFT is applied in [19] to select and isolate the first symmetric mode (Sp), known
for being particularly sensitive to crack-type damages, and to formulate an asso-
ciated damage index. In [33], a network of sensors is used to construct GW
tomograms for anisoptropic composite plates. The approach accounts for attenu-
ation in the composite material by using the energy of the earliest wave signals as
the reconstruction parameter, and by normalizing the wave energy of the defective
sample with respect to that of the undamaged one. For quantitative comparisons
between tomograms, a parameter f is introduced as the ratio of the considered
values in the defect-free region to that of the defective region of a tomogram.

Higher dimensional Fourier Transforms (FTs), transforming the signal in the
wavenumber/frequency domain, are also used to identify wave modes and to
investigate mode conversion phenomena caused by crack-like damages [1].
Examples of numerical investigations of mode conversion phenomena can be
found in [4]. Recently, two-dimensional and three-dimensional FTs have been
applied as tools to decouple incident and reflected waves and to filter out the
incident component from the recorded signals [44]. The experimental application
of this concept is enabled by the application of the SLDV, which easily provides
the spatial measurement resolution needed to perform FTs in the spatial domain. A
damage measure based on this concept is currently in the works. The SLDV was
also used in [53] to investigate maximum amplitudes of low frequency Lamb
waves propagating in plate structures. Amplitude reductions and sudden increases
across the defect were considered as indicators of damage.
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As in [41], signal processing tools are often combined with tools that are able to
classify the identified signal features and relate them to damage type and extent.
The most common technique for pattern recognition is certainly the use of NNs.
Examples of their application for GW in SHM can be found in [54], where
spectrographic features from Lamb wave signals in the time-frequency domain
were used to construct a damage parameters database, through which a NN was
then trained for its successive use for identification of delaminations in quasi-
isotropic composite laminates. A multi-layer perceptron (MLP) neural network is
used in [29] as part of a novelty detection method. The technique is applied to a
thin, isotropic plate, where GWs are sequentially transmitted and captured by eight
piezoelectric patches bonded to the plate to act both as sensors and actuators.
Scattering waveform responses representing normal and damaged conditions are
transformed into a set of novelty indices that are fed as inputs to the NN incor-
porating the MLP architecture to compute and predict the damage location on the
plate.

1.2.5 Ultrasonics and Nonlinear Ultrasound

Ultrasonic inspection is a well-known NDE tool, which provides local, detailed
damage information. Its effectiveness to detect a broad range of damage types is
well proven by a vast scientific literature and by its broad range of applications.
Like AE, ultrasonic inspection as an NDE tool will not be covered in this book.
However, it is useful to include it as part of the potential integration with SHM
tools such as vibration-based and guided-wave based techniques, which thus far
have not shown the same level of accuracy and sensitivity, but which potentially
allow more frequent inspections. In this perspective, ultrasonic techniques may be
considered for confirmation of damage information obtained from a SHM system,
and for its subsequent detailed characterization. This process could lead to sig-
nificant reductions in time and costs, by limiting the ultrasonic inspections to parts
where the indication of the presence of damage derives from information obtained
from an on-board SHM system.

An important relation to be made is between the loading history of the part
under consideration, damage that can be detected by an SHM system, and its
progression from the precursors to its propagation to a detectable level. Such
relation can be investigated again through the integration of the SHM approach
with an NDE process such as nonlinear ultrasound, which is capable of tracking
the accumulation of fatigue and development of defects at the micro-structural
level. Nonlinear ultrasound measures elastic and plastic nonlinearities in a material
through the analysis of ultrasonic wave distortions in the forms of harmonic
generation corresponding to a tonal input. The acoustic nonlinear parameter pro-
vides a quantitative measure of wave distortion as its value can be directly related
to the amplitude of the harmonics multiples of the input frequency. The magnitude
of the nonlinear parameter is also directly dependent on the crystalline structure of
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the solid [8, 30], and on the presence of defects. Hence, measurement of the
amplitude of higher harmonics’ amplitudes allows direct measurement of the
nonlinear parameter and the establishment of a direct relation with the accumu-
lation of micro-structural defects such as dislocations pile-up resulting from fati-
gue loading [8]. The direct relation between amplitude of the higher harmonics,
and presence as well as severity of defects at the micro-structural level has made
nonlinear ultrasound a very important material characterization tool, which has
been widely applied in metals. The transition to an NDE-type application for
fatigue tracking as suggested in [20, 30], and its application in conjunction with
SHM tools represents a very interesting prospect to gain full understanding of the
process of damage growth. The extension of the study to composite materials, with
specific relation to allowable defect sizes can be of significant importance towards
the optimization of composite structural designs, the understanding of composite
structure degradation and fatigue, and the definition of proper acceptance levels for
manufacturing defects to avoid overly conservative design specifications.

1.3 Sensing and Actuation Strategies

This section presents an overview of common sensing and actuation strategies for
SHM. Focus is placed the techniques devoted to based inspection, where a sig-
nificant amount of research is being conducted towards the development of effi-
cient excitation of wave modes which are most sensitive to damage, the need for
interrogating specific directions in a structure, and the ability to steer elastic
waves, so that a large area of a structure can be interrogated. An important aspect
of a SHM system is certainly sensing, for which the possibility of having
embedded sensors is of great relevance. In this regard, fiber optic sensors are of
primary importance: the basic principle of their operation is presented Sect. 1.3.2,
together with an overview of piezoelectric actuation and sensing strategies for
SHM as described in what immediately follows. Finally, SLDVs as SHM tools will
be briefly introduced.

1.3.1 Piezoelectric Actuators and Sensors

Probably the most common approach for the generation and sensing of guided
elastic waves is the use of piezoelectric patches. The direct and inverse piezo-
electric effects makes piezoelectric materials ideal sensors and actuators, which
can be used for guided-wave tomography in a pitch-catch configuration, whereby a
receiver captures a signal from a transmitter, or in a pulse-echo mode, where the
same component acts both as a transmitter and as a receiver.

Detailed accounts of the application of piezoelectric materials for guided wave
excitation are presented in monograph form in [15]. Piezoelectric patches have
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been used extensively to excite guided waves by exploiting shear actuation, or a
longitudinal actuation mode. Schematic of actuation configurations using piezo-
electric patches and stacks in shear and longitudinal mode are shown in Fig. 1.6.
The shear actuation mode is very convenient since it simply requires direct
bonding of the patch onto the surface, while the longitudinal actuation mode
requires a backing to provide enough reaction and facilitate the coupling between
the piezo and the underlying structure.

An important issue that needs to be considered is the need for evaluating the
optimal matching, or tuning, of the piezo with the excited structure, so that optimal
generation of waves is achieved. This aspect is widely discussed in [15]. In here, it
is sufficient to indicate that critical parameters define the relation between the
dimensions of the patch, the wavelength of the excited wavemode and the cor-
responding tuning frequency. Figure 1.7 shows the variation of the output
amplitude as a function of frequency corresponding to a patch actuated in shear on
a plate. The plot clearly shows that the amplitude of the displacement generated by
the actuator varies significantly with frequency, and that different maxima are
achieved for the Ay and the Sy mode, indicating the possibility of tuning the
frequency of excitation to preferentially generate one mode or the other.

Another important parameter is the actuator/sensor shape which can lead to
directional excitation and sensing. Solid, individual patches typically do not lead
to strong directivity, however, it is well known that arrays of patches [14, 16], as
well as properly shaped piezoelectric actuators can lead to strong directional
characteristics and can provide the ability to direct waves in specific directions
through electronic or spatial phasing of the array components. Some of these
aspects are discussed in Chap. 8.

Recently, more complex piezoelectric configurations have been considered to
improve the coupling conditions, to optimize tuning and to obtain directivity. The
application of piezo-composites of the kind shown in Fig. 1.8, can lead to novel
actuation and sensing configurations, and could be exploited for directional
sensing and actuation.
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Fig. 1.8 Examples of piezoelectric composites: 1-3 piezoelectric composites feature piezoelec-
tric rods embedded in a polymer matrix (a), 2-2 piezoelectric composites feature piezoelectric
sheets laminated between polymer sheets (b)

Significant attention has been devoted to the use of Macro Fiber Composite
(MFC) patches for various applications including SHM. The MFC patch is an
innovative actuator produced by Smart Material Corporation and originally
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developed at NASA Langley Research Center. The design consists of rectangular
piezo ceramic rods sandwiched between layers of adhesive and electroded poly-
imide film as shown in Fig. 1.9. The film contains interdigitated electrodes that
transfer the applied voltage directly to and from the ribbon shaped rods. This
assembly enables in-plane poling, actuation, as well as sensing in a sealed, durable,
ready-to-use package. When embedded in a surface or attached to flexible struc-
tures, the MFC provides distributed solid-state deflection and vibration control
capabilities as well as the ability to measure strains. Two types of MFC transducer
exist. A first types uses the 31 piezoelectric effect in the ceramic rods by applying a
through-the thickness voltage as described in Fig. 1.9. The second configuration
exploits the 33 piezoelectric effect by applying a longitudinal voltage through
interdigitated electrodes (Fig. 1.10).

In light of the introduction of actuators/sensors of complex shapes and func-
tionalities of particular importance is the accurate estimation of guided wave
generation through surface mounted or embedded piezoelectric patches or wafer
transducers [14—16]. Accurate models can provide the basis for the selection of
geometry, dimensions, and excitation bandwidth suitable for the excitation of
specific modes and the detection of specific damage types. A common approach is
based on the solution of the wave equation in the spatial Fourier domain [56]. This
technique is applied to the analysis of waves generated by several actuator con-
figurations generating plane and crested waves in isotropic structures in [14, 15],
where it is shown how the size of the actuator is a very important parameter for
tuning the excitation to a specific frequency and wave mode. These results, which
are limited to one-dimensional (1D) wave propagation, are extended to the 2D
analysis of crested waves propagation in plates in [35], where an analytical model
allows the investigation of the effects of the in-plane shape of the piezo-patch. The
formulation of [35] relies on the solution of the 3D equations of elasticity with the
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Fig. 1.9 Macro fiber composite (MFC) transducers (Smart Material Corporation)
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stress field generated by the surface bonded piezo as boundary conditions. The
analytical derivations assume simplified expressions for such stress distributions,
which allow the analytical derivations of the plate response, but may lead to
inaccurate estimations of tuning frequencies and directionality, specifically at high
frequencies. In particular, the approximation that piezoelectric stresses are con-
centrated on the boundaries of the patch leads to neglecting the shear lag phe-
nomena associated with the presence of a bonding layer [26], which results in the
inaccurate estimation of the tuning conditions for actuation [23]. The development
of general procedures to couple actuation through surface mounted piezo-patches
and underlying structure and to accurately capture the generated wavefield still
represents a significant challenge to the SHM research community. Capturing
details of the actuation, while being able to simulate the propagating wavefield can
easily lead to FE models that are very large and computationally costly. Semi-
analytical solutions of the kind proposed in [35] are very convenient, but rely on
simplifying assumptions, which may reduce the accuracy of the simulations.
Proper coupling between a coarser FE model of the structure and a locally refined
model of the actuator is certainly a goal to be achieved in the near future to provide
the accuracy required for model-based design of a guided wave-based SHM
system.

1.3.2 Fiber Optics Sensors

Fiber Optic Sensors (FOS) are one of the most widely used sensors in the context
of SHM due to the simplicity of their use. In fiber optic sensing, the response to
external influence is deliberately enhanced so that the resulting change in optical
radiation can be used as a measure of the external perturbation. In the area of
communication, the signal passing through a fiber is already modulated, while in
sensing, the fiber acts as a modulator. It also serves as a transducer and converts
measurands like temperature, stress, strain, rotation or electric and magnetic
currents into a corresponding change in the optical radiation. Since light is char-
acterized by amplitude (intensity), phase, frequency and polarization, any one or
more of these parameters may undergo a change. The usefulness of the fiber optic
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sensor therefore depends upon the magnitude of this change and the ability to
measure and quantify the same reliably and accurately.

The advantages of fiber optic sensors are freedom from EMI, wide bandwidth,
compactness, geometric versatility and economy. In general, FOS is characterized
by high sensitivity when compared to other types of sensors. It is also passive in
nature due to the dielectric construction. Specially prepared fibers can withstand
high temperature and other harsh environments. In telemetry and remote sensing
applications, it is possible to use a segment of the fiber as a sensor gauge while a
long length of the same or another fiber can convey the sensed information to a
remote station. Deployment of distributed and array sensors covering extensive
structures and geographical locations is also feasible. Many signal processing
devices (splitter, combiner, multiplexer, filter, delay line etc.) can also be made of
fiber elements thus enabling the realization of an all-fiber measuring system.

1.3.2.1 FOS Classification

There are a variety of ways the FOS can be classified. These are as follows:

o Classification based on Modulation and Demodulation process: Based on
modulation or demodulation, an FOS can be called as an infensity (amplitude),
phase, or frequency or a polarization sensor. Since detection of phase or fre-
quency in optics calls for interferometric techniques, the latter are also termed as
interferometric sensors. From a detection point of view, the interferometric
technique implies heterodyne detection/coherent detection. On the other hand
intensity sensors are basically incoherent in nature. Intensity or incoherent
sensors are simple in construction, while coherent detection (interferometric)
sensors are more complex in design, however they offer better sensitivity and
resolution.

e Classification based on the application of FOS: FOS can also be classified on
the basis of their application such as physical sensors (e.g. measurement of
temperature, stress, etc.), chemical sensors (e.g. measurement of PH content,
gas analysis, spectroscopic studies, etc.), and bio-medical sensors (inserted via
catheters or endoscopes which measure blood flow, glucose content and so on).
Both the intensity types and the interferometric types of sensors can be con-
sidered in any of the above applications.

o Classification based on mode of sensing: In this classification there are two
types of FOS, namely Extrinsic and Intrinsic sensors . In the former, sensing
takes place in a region outside of the fiber and the fiber essentially serves as a
conduit for the to-and-fro transmission of light to the sensing region efficiently
and in a desired form. On the other hand, in an intrinsic sensor, one or more of
the physical properties of the fiber undergo a change as mentioned in the first
item above.
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1.3.2.2 Basic Components of a FOS

A fiber optic sensor in general will consist of a source of light, a length of sensing
(and transmission) fiber, a photo detector, demodulator, processing and display
optics and the required electronics. In a fiber-optic sensing system, the emitter and
the receiver share a single housing. The fiber-optic cable that is connected to the
amplifier allows the sensor to reach areas inaccessible to standard photoelectric
sensors. The sensor emits, receives, and converts the light energy into an electrical
signal. Fiber-optic cable consists of a plastic or glass fiber surrounded by a layer of
cladding material (see Fig. 1.11). The difference in densities between these two
components enables the cables to act in accordance with the principle of total
internal reflection.

1.3.2.3 Principle of Operation

The FOS works on the principle of total internal reflection, which states that all the
light striking a boundary between two media will be totally reflected. That is, no
light energy will ever be lost across the boundary. This principle pertains only
when the following two conditions are met:

e The critical angle is less than the angle of incidence for the particular combi-
nation of materials. The materials in this case are the core and the cladding of
the optical fiber.

e The light is in the denser medium and approaching the less dense medium. The
cladding material is less dense than the core material, and as a result has a lower
refractive index.

As long as these two conditions are satisfied, the principle of total internal
reflection applies whether the fiber-optic cable is bent or straight (within a defined
minimum bend radius). The amount of literature pertaining to FOS is quite large.
In this section, we will describe only two important Extrinsic FOS that find
extensive applications in SHM, that is, Extrinsic Fabry-Perot interferometric
(EPFI) FOSand Fiber Bragg Grating (FBG) FOS.

Fig. 1.11 Schematic of a Cladding
typical optical fiber used in
FOS

Core
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1.3.2.4 Fabry-Perot Interferometric FOS

A schematic of the EFPI sensor is shown in Fig. 1.12. EPFI is an extrinsic sensor
that works on the principle of multi reflection Fabry-Perot interference between the
two reflected mirror as shown in Fig. 1.12. This sensor is made using single mode
optical fiber and a multi mode fiber as reflectors. These two fibers are inserted and
fused into a quartz capillary tube of larger diameter. The ends of the capillary tube
is glued with epoxy to avoid weak fusion points.

In this FOS, a cavity is created between two parallel reflectors and this cavity is
perpendicular to the optical fibers. When an external load is applied, the cavity
length changes, which can be measured using CCD spectrometer. If Ad is the
change in the cavity length, and L is the gauge length (or the length between two
fusion points in a capillary), then the strain on the sensor is given by ¢ = Ad/L.
The strains change in the presence of the crack or change in the loading and hence
this measure can be used effectively used in SHM studies.

1.3.2.5 Fiber Bragg Grating FOS

Some optical fibers, especially those made by doping germanium are highly
photosensitive when a light of a specific wavelength are incident on them. That is,
the refractive index of the fiber change permanently when these fibres are exposed
to light of a specific wavelength. A uniform FBG has a segment of optical fiber
containing periodic modulation of refractive index. The principle of operation of
FBG sensor is shown in Fig. 1.13.

Normally FBG is fabricated on a germanium doped single mode optical fiber
using ultraviolet laser source of range 240-248 nm. Many fabrication method can
be adopted, such as interferometric method, phase mask method etc. The length of
gratings are normally in the range of 1-20 nm. When the input light is incident on
the grating, some parts of it is reflected, while the others are transmitted. The
principle on which the FBG works is based on the changes in the measured
reflective signal, which is the center wavelength of the back reflected light from
the Bragg Grating. This depends on the effective refractive index of the core and
the periodicity of the grating. Knowing the grating periodic spacing o and effective
refractive indexres, the Bragg wavelength is given by

)hb = }’eff5 (11)
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Fig. 1.13 Principle of operation of fiber bragg grating of FOS

Hence the wavelength will shift with the change in the effective refractive index
or the spacing of the grating. Such changes can be caused when the grating area is
subjected to mechanical or thermal load. If A¢ is the change in mechanical strain
due to a mechanical load, and AT is the change in temperature due to thermal load,
then these changes can be related to the Bragg wavelength change as

Alp =ale+ AT o= A(1 —p.) P = Ap(0a + ap) (1.2)

where p, is the strain-optic constant, o, is the thermal expansion coefficient of the
fiber and op is the thermal optic coefficient of the fiber. Measurement of the
changes in the Bragg wavelength is paramount in the SHM studies for either load
monitoring or damage detection.

1.3.3 Laser Vibrometer

Scanning Laser Doppler Vibrometers are convenient tools for the detailed mea-
surement of dynamic deformed shapes of structures. Based on the evaluation of the
doppler shift between a reference and a reflected Laser beam, SLDVs can con-
veniently measure the response over a fine grid of measurement points. The grid
can be selected and modified by the user such that global operational shapes, or
local vibration patterns in a region of interest can be captured. The non-contact
nature of the measurement is a very important feature, together with the extremely
large bandwidth over which dynamic measurements can be performed. Current
SLDVs can detect motion at frequencies which span the 0.1 Hz up to 20 MHz
regimes, a bandwidth that cannot be achieved with sensing devices such as
accelerometers.
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The use of SLDV has initially been dedicated to modal analysis purposes, while
more recently it has been extended to SHM. The fine spatial resolution of the
measurements in fact allows the accurate application of vibration-based techniques
relying on the evaluation of the modal curvatures of panel structures, as discussed
in [50]. As previously mentioned, the SLDV was also employed in [53] to
investigate maximum amplitudes of low frequency Lamb waves propagating in
plate structures. Amplitude reductions and sudden increases across the defect were
considered as indicators of damage. The high frequency capabilities of SLDVs
have also made the detection and analysis of propagating wavefield a practical and
viable procedure for damage detection and characterization [28, 44, 50]. Time-
domain measurements of transient wavefield using the SLDV require the gener-
ation of a pulse at each grid point in order to record the corresponding response.
Phase information is retained by triggering the excitation signal through a low
frequency signal, which also defines the scanning rate. A schematic of a typical
set-up considered for wavefield measurement is shown in Fig. 1.14.

Upon completion of measurements at all grid points, the recorded responses are
post-processed to obtain full images of the propagating wavefield within the region
of inspection. The data are organized in 3D arrays u(x,y,?), which define the
velocity component aligned with the Laser beam at the considered location and
time instant. Examples of snapshots of recorded wavefield images in an aluminum
plate with several artificial defects are presented in Fig. 3.28. The visualization of
the detected wavefields clearly shows waveforms propagating out from the source,
and interacting with structural discontinuities, where they are converted, reflected
and diffracted. Signals scattered from defects however are typically much smaller
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Fig. 1.14 Schematic of experimental set-up for wavefield detection using a SLDV system
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in amplitude than incident waves, and additional processing is required to effec-
tively identify, localize and possibly characterize damage. To this end, several
procedures for incident wave removal have been proposed in recent years [27, 44].
Such procedures, which operate either in the time domain [27], or in the fre-
quency/wavenumber domain [44] have the objective of removing the wave gen-
erated by the transducer to obtain a residual wavefield which contains only the
contributions of small scatterers such as defects. Some of these techniques will be
presented in detail later in this book (Chaps. 3 and 10) (Fig. 1.15).

1.4 Modeling and Simulation Techniques for SHM

The focus of this book is to address the computational aspects related to SHM.
Hence, it is appropriate at this point of time to discuss the importance of modeling
and the various available simulation techniques in the context of SHM.

1.4.1 The Importance of Modeling in Structural Health
Monitoring

Section 1.1.2 discussed how modeling forms the major part of the SHM process.
In this respect, SHM can be thought out as a system identification problem. It is
well known that the solution of the system identification problem is not straight
forward and often very difficult. In many cases, these problems do not have a
unique solution. This is because the solutions depend on a large number of
parameters whose effects on output is not known. Most system identification
problem requires determination of the System Transfer Function or Frequency
Response Function (FRF), which requires sound mathematical models for its
determination. In the context of SHM, the damage modes of metallic structures are
quite different when compared to that of composites. In fact, damage in composites
is an order of magnitude more complex and difficult to understand than in metallic
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structures. Hence, it is necessary to develop computational models for various
damage types in structures. The choice of appropriate computational mathematical
models depends on the size of damage that needs to be predicted. If the damage
sizes are quite large compared to the dimension of the structure, then models based
on Finite Element Method, Finite Difference method etc. may be sufficient.
However, when the damage sizes are very small, one needs very small duration
input pulse (of the order of usecs or lower) having very high frequency content.
For such cases, wave propagation based method, that never imposes any constraint
on the frequency content, is required. Spectral Finite Element (SFE) is one of those
methods that falls under this category. Next important aspect is the damage
detections algorithms to predict and locate the damage and determine its orien-
tation and extent. These are the first two levels of SHM that we discussed earlier in
Sect. 1.1.3. The damage prediction algorithm should be able to complement the
chosen mathematical model and must be able to predict the damage location with
incomplete and noisy measured data. In addition to these, in many large structures,
the number of measured data will be enormously large and all of these data may
not be useful for damage prediction. Hence, methods to reduce the data to a
suitable set that can give meaningful information is required. This requires sig-
nificant mathematical and regressional analysis of the measured signals. Hence,
from the above discussion, the importance of modeling in SHM is quite clear.
All mathematical models are represented by Partial Differential Equations
(PDEs), which are derived based on assumptions on the behavior of the field
variables. Most PDE’s encountered in SHM are either of hyberbolic or elliptic
type. In both cases, analytical solutions are quite difficult to obtain, therefore
numerical techniques need to be applied. Some of the numerical techniques
transform the governing PDE’s into a weak form, which is the integral represen-
tation of the governing equation and it is obtained using Variational Principles. In
the weak form, the dependent field variable is weighted with a function and the
resulting expression, when integrated by parts over the domain, will convert the
PDE’s into an integral form that is amenable to numerical solution. The choice of
the weights determines the type of the numerical method. This procedure is called
the Weighted Residual Technique (WRT) and more details of this method can be
found in [55]. In the next few subsections, we will describe a few numerical
techniques, many of which can be derived from WRT, for the solution of PDE’s.

1.4.2 Finite Difference Techniques

This method can be directly derived from the weak form of the governing equation
and using WRT, where the dependent variable is weighted by a weighting function
represented by Dirac Delta function. This will convert the governing PDE to a
difference equation in terms of the values of the dependent variable over a domain
called the cell. The essential and natural boundary conditions at the cell interface
with the other cells are enforced, which gives a set of algebraic equations, using
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which the unknown nodal values are obtained. This method is extensively used
in the solution of fluid dynamic problems and the details of this method can be
found in [2].

The above explained procedure, which results in the Central Difference Finite
Difference Scheme that is only second order accurate. Higher order accurate dif-
ference schemes are also highly reported in the literature. The details of some of
these methods are given in [5]. The method has two sub categories, namely method
and implicit methods. In explicit method, the size of cell (also called the step size)
is very critical for the solution accuracy. That is, the explicit methods such as
central difference scheme, have a constraint placed on the step size. When the step
sizes are larger than the critical value, the solution diverges. However, the solution
process mandates that the value at the present step is dependent only on the values
preceding the current step and hence at every step, we need to solve only an
algebraic equation. In the implicit method, the value of an unknown dependent
variable also depends on the value preceding the current step and also values ahead
of the current step. Hence, we need to solve matrix system of equations at every
step. The main advantage is that this method does not have a constraint on the
step size.

In the context of SHM, cell sizes are very critical. If the size of the damage is
very small, then the SHM process requires a signal having very high frequency
content to be applied to the system. At these high frequencies, the wavelengths are
very small and hence the cell sizes need to be compatible to the wavelength of the
response of the structure. Typically 8-20 cells should span each wavelength.

1.4.3 Finite Element Method

The Finite Element Method is the most versatile of all the available modeling
methods because of its ability to model complex geometries by piecing together
the information available over a small domain called an “element”. Hence, FEM
needs a mesh (which is the collection of elements) of the domain of interest and
over each element, the variation of the field variable (say displacements) is
assumed. These assumed variation are then converted to the nodal quantities
(nodal displacements). These are then substituted into the weak form of the diff-
erential equation and a system of matrix algebraic equations are obtained in the
case of static analysis or ordinary differential equations in the case of time-
dependent problems. This process gives the stiffness matrix for static analysis
problems and the stiffness and mass matrices for time dependent problems. The
static system of equations are solved using the standard algebraic equation solver,
while the time dependent equations are solved by converting the coupled set of
differential equations into difference equations using the procedures outlined in
Sect. 1.4.2. More details are available in many classic text books on FEM [5, 9,
40] can also be derived directly from the WRT, wherein the weight function and
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the displacement variation over each element, are same. This aspect is discussed
in [55].

From the SHM point of view, the approach has the same limitations of the finite
difference method, that is, mesh sizes have to be very small for modeling small
damages. The relationship between the mesh sizes and the frequency content of
excitation and the effects of choosing large mesh sizes are discussed in [17]. The
details of the application of this method to SHM problems is discussed in Chap. 4.

1.4.4 Boundary Element Method

In the Boundary Element method (BEM), the governing PDEs over the domain of
interest are converted into two components, one containing the integral over the
domain surface and the second component is a volume integral over the domain.
Such a splitting is possible using the Stokes Theorem [21]. The solution of the
second component comprising of the volume integral is obtained considering the
Green’s function for a point load on an infinite space, which is standard for most
problems. This solution is called the Fundamental Solutions. The first component
of the PDE, namely the boundary integral on the surface of the domain are solved
via standard FEM. This process reduces the dimensionality of the problem by one,
that is a 2D problem become 1D and a 3D problem becomes a 2D problem.
However, the main disadvantage of this method is that the fundamental solutions
are available only to some select problems. Analyzing non-linear problems are
very difficult. The details of this method can be found in [6].

There is a great advantage of using BEM to SHM problems. This is because, the
internal part of the domain of interest need not be modeled. However, if a crack or
some damage is present in the structure, they form the part of the boundary. As in
the other two methods, the mesh sizes for the boundary should be small enough to
be comparable to the wavelength of the input signal. As such there is not much
reported in the literature on the application of BEM to SHM problems.

1.4.5 Spectral Finite Element Method

The Spectral Finite Element Method (SFEM) was initially conceived by Beskos
and Narayan [7]. This was later popularized by Doyle and co-workers [11]. The
spectral element method is essentially a finite element method formulated in the
frequency domain. However, their methods of implementation are quite different.
The basic differences between SFEM and FEM are highlighted in the following
paragraph.

FEM is based on an assumed polynomial for displacements. These assumed
displacement polynomials are forced to satisfy the weak form of the governing
differential equation, which yields two different matrices, namely the stiffness
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matrix and the mass matrix. These elemental matrices are assembled to obtain
global stiffness and mass matrices. The assembly process ensures equilibrium of
forces between adjacent elements. This procedure will give the discretized form of
the governing equation, given by [M]{ii} + [C]{u} + [K]{u} = {F(r)}, where [M]
and [K] are the global mass and stiffness matrix and {ii}, {&t} and {u} are the
acceleration, the velocity and the displacement vector, respectively. Matrix [C] is
the damping matrix, which is normally obtained from the combination stiffness
and mass matrix as [C] = «[K] + f[M], where o and f are the stiffness and the
mass proportional damping factors, and the damping scheme is called the pro-
portional damping scheme. There are two methods of solving the above matrix
differential equation, namely the Direct Time Integration and the Mode Super-
position Method. The mode superposition method of solution cannot be used for
wave propagation analysis. This is because, the solution requires extraction of all
the higher order eigen modes, which is computationally prohibitive. The preferred
solution method is the time marching scheme, where two different strategies are
available, namely the explicit methods and the implicit methods. These were
discussed in Sect. 1.4.2. For wave propagation and highly transient dynamics
problems, explicit methods are normally preferred. In the time marching scheme,
the solution process takes place over a small time step AT. The solution of the
dynamic equations will give displacement, velocity and acceleration histories. The
solution process is repeated for N time steps until the total time T = NAT is
reached. The solution time is directly proportional to the number of degrees of
freedom in the model, which is usually very high for wave propagation problems.

SFEM on the other hand uses in most cases the exact solution to the wave
equation in the frequency domain as its interpolating function. One can see, unlike
the polynomials in the case of FEM, here, we need to deal with complex expo-
nentials as the interpolating functions. The exact solution will have wave coeffi-
cients corresponding to the incident and reflected wave components. If one wants
to model an infinite domain, then the reflected components can be dropped from
the interpolating functions. This gives what is called the throw-off elementsfor-
mulation. This is a great advantage that SFEM has over FEM. Using the inter-
polating functions for the displacement, the dynamic element stiffness matrix is
formulated. One can formulate this stiffness matrix as in the case of conventional
FEM, using the weak form of the governing equations. This approach will involve
complex integration. Alternatively, one can formulate the dynamic stiffness matrix
using stress or force resultant expressions. This method is normally suitable since
it does not involve complex integration. The basic steps involved in the analysis
using SFEM are as follows. First, the given forcing function is transformed to the
frequency domain using the forward Fast Fourier Transform (FFT). In doing so,
we need to choose the time sampling rate and number of FFT points to decide on
the analysis time window. Care should be taken to see that the chosen window is
good enough to avoid what are called wraparound problems [18]. The FFT output
will yield the frequency, the real and imaginary part of the forcing function, which
are stored separately. Over a big frequency loop, the element dynamic stiffness
matrix is generated, assembled and solved as in the case of conventional FEM.
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However, these operations have to be performed at each sampled frequency. This
does not pose a major computational hurdle since the problem sizes are many
orders smaller than conventional FEM. The solution process is first performed for
a unit impulse, which directly yields the FRF. The FRF is then convolved with the
load to get the required output in the frequency domain. This output is then
transformed to the time domain using the inverse FFT.

There are many advantages that SFEM gives over conventional FEM. The
SFEM can give results in both the time and frequency domain in a single analysis.
Obtaining the FRF is a big advantage of the SFEM. This enables one to solve
inverse problems such as the force or the system identification problems in a
straightforward manner. Since many damping properties are frequency dependent,
damping in structures can be treated more realistically. Visco-elastic analysis can
be performed without much alteration of the spectral element code. Since the
approach gives the FRF first, responses to different loading can be obtained using a
single analysis. In summary, SFEM is a method in which the FFT algorithm is an
essential part and gives problem sizes many orders smaller than conventional
FEM. SFEM for isotropic waveguides are dealt in [11] and for composites and
inhomogeneous structures in [18].

Formulation of the spectral elements requires determination of the spectrum
(the variation of wavenumber with frequency) relations and the dispersion rela-
tions (speed with frequency). The procedure to determine these for certain
waveguides will be given in the next chapter.The complete details of SFEM is
discussed in Chap. 5.

1.4.6 Perturbation Techniques

The application of perturbation techniques for the simulation of the dynamic
behavior of damaged structure is presented in detail in this book (Chap. 7). The
approach leads to efficient computations, which can predict the interaction of
propagating waves with damage, or the changes in the modal properties of the
structure under consideration. The basic idea consists in expressing damage as a
small reduction in thickness, or generally geometry, or a small variations in the
mechanical properties (Young’s modulus, density). Through a small parameter &,
straightforward expansions are performed so that a set of perturbation equations is
obtained. The £° equation corresponds to the undamaged system, while higher
order terms introduce the effects of damage as variations with respect to the
damage state. Of note is the fact that all the equations in the perturbation set have
the same kernel, so that the same solution scheme can be conveniently applied.
Damage appears as part of the forcing term in the higher order equations. Various
solution methods have been used in conjunction with the perturbation technique,
with the SFEM having a predominant role due to the savings in computational
times it affords. The application of the perturbation technique has also been used
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for the solution of nonlinear problems, as a result of a nonlinear stress—strain
relationship as typically considered in nonlinear ultrasound. The expansion in
terms of a small parameter leads to a set of linear equations which again can be
solved either analytically, or using a discretization tool such as SFEM. Additional
details are provided in Chap. 7, together with a number of examples, which show
the generality of the perturbation approach for the simulation of wave—damage
interaction.

1.5 Organization of the Book

This book is organized in three parts spread over ten chapters. The first part, which
has three chapters, introduces the reader to some basic concepts in SHM. The need
for SHM, the entire SHM process and the importance of modeling in SHM, is
discussed. In Chap. 2, all the necessary theoretical background in theory of elas-
ticity, composites and wave propagation is reviewed. These subjects are necessary
to understand the material presented in this book. Chapter 3 presents the signal
processing techniques, the understanding of which is crucial in handling many
transient signals normally associated with SHM. Part-1I of the book focuses on the
computational and simulation techniques associated with SHM. This part is spread
over six chapters. Both conventional finite element method and spectral finite
element method and their associated damage models are reviewed. In Chap. 4,
finite element method in the context of SHM is presented. Here, different ways of
modeling flaws and the various issues associated with FE modeling are presented.
In Chap. 5, spectral finite element method as a modeling tool is presented, wherein
the formulation of elements for different 1D waveguides and some 2D waveguides
are presented. Chapters 6 and 7 essentially address the formulation of simplified
damage models required for SHM simulation. The damage models covered in
these chapters include the modeling of different damage modes in composites such
as delaminations, fibre breaks, pitting corrosion, material degradation and notch
type damages. Chapter 8 addresses the modeling aspects of piezoelectric sensors/
actuators used in SHM. Chapter 9 presents a multi-scale method formulated
according to the bridging multi-scale technique. The chapter is followed by III,
wherein different algorithms for damage detection and quantification are pre-
sented. Chapter 10 illustrates some of the damage detection algorithms based on
vibration and wave propagation responses, which is followed by Chap. 11, wherein
the use of soft computing tools such as the Genetic Algorithm and Artificial Neural
Networks and their utility in damage detection are addressed.

The material presented in this book is comprehensive and covers all compu-
tational aspects associated with SHM. The book will serve as a useful reference
text for graduate students and practicing engineers. The book can also be used to
develop a gradate level course in SHM. The reader of the book is expected to have
some knowledge in strength of materials, basic finite element method and the first
course in Engineering mathematics.
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Chapter 2
Fundamentals Concepts in Elasticity,
Mechanics and Wave Propagation

2.1 Introduction

One of the fundamental concepts involved in the mathematical modeling is to first
generate the governing differential equation of the system. There are two general
ways of doing this. In the first method, the system is broken at the continuum level
and the 3D state of stress acting on block are written. Writing the equilibrium
equation of this free body essentially gives the equation governing the system. 2D
and 1D approximations can further be obtained from the 3D equations of motion
by converting the stresses into stress resultants through integration of the equation
of motion in the directions where the condensation of the dimension is desired.
The method described above is the theory of elasticity procedure of obtaining the
governing equation. One can see that, in this method, one has to deal with tensors
and vectors. This chapter will give the complete bird’s eye view on this subject.

An alternate way of generating the governing equations is by energy methods,
wherein the minimization of an energy functional yields the desired governing
equations along with the associated boundary conditions. This is the most widely
used method in techniques (see Chap. 4), where obtaining an approximate solution
to the governing equation is the main goal.

2.2 Basic Concepts in Elasticity
2.2.1 Description of Motion

Consider a body undergoing deformation to some applied loading (see Fig. 2.1). Let
u" be its position at time ¢ = 0 (undeformed configuration) and u' its position at time
t. The motion of the body can be expressed in terms of the Eulerian coordinates

0.0 0
u=u(x",y,z,1) (2.1)
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Fig. 2.1 Undeformed and
deformed configuration of a
body

which is normally used to represent fluid in motion, or the Lagrangian coordinates:
0 0
u® = u’(x,,2,1) (2.2)

where quantities are expressed in terms of the initial position vector #° and time 7.
In here and in the following, bold lower case letters denote vectors, while bold
capitals denote matrices.
Due to the above definitions, the evaluation of material derivative differ. In the

Eulerian frame of reference, the derivative of u(x°,y°,7°, 7) is given by

du Ou

- _= 2.3
dt ot (23)
while in the Lagrangian frame, the derivative of u°(x,y, z,¢) is given by
du Ou n Oudx  Oudy Oudz Ou n Ou i Ou i Ou (2.4)
di ~ or " oxdr " Oydr | Ozdr  or  Fax T "oy TV '

where v, vy, and v, are the convective velocity in the three material directions.

The motion of a particle is defined in terms of its coordinates attached to the
particle. Displacement is for example defined as the shortest distance traveled
when a particle moves from one location to the other. If the position vectors of two
points are r; and r;, the displacement vector u is given by

u=ry—ri = (xi+yj+ k) — (xii +yi1j+ k)
In other words, the displacement vector can be written as

u=(x—x)i+y-n)jt2-uk (2.5)

Deformation is defined as the comparison of two states, namely the initial and the
final configuration. The deformation gradient is a concept extensively used in the
theory of elasticity, which relates the behavior of the neighboring particles. Consider
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Fig. 2.2 Deformation of
neighboring points

points Py and Pj,, which at time # = 0 are at a distance dr® = dx% + &' + dk
(Fig. 2.2). At time ¢, the two points move to locations P and P’, so that the new
distance is denoted dr = dxi + dyj + dzk. The location of P’ with respect to P is
given by r +dr = (x + dx)i + (y + dy)j + (z + dz2)k.
Consider the first term in the vector, namely (x + dx). Expanding this term in
Taylor series with respect to variables corresponding at time ¢ = 0, gives
Ox Oox

ox o 0 0
x—i—dx:x—i—@dx +6_y°dy +a—z()dz (2.6)

which gives the following relation along with analogues for the other components:

Ox Ox Ox
dx = —dx® + —dy’ + —d7°
x o0 x +6y0 y +6z° Z
Wy .0, W 0, 0
dy = —d —d —d.
Y= o™ +ay0 Y +azo ¢
0z g 0z, 0z
dz = —d —d —d.
T 0™ +ay0 Y +@zo ¢

In tensorial notation, these expressions can be written as:

Ox;
dri = 2 i,j=1,2,3 (2.7)
%)
where x; = x,x, = y,x3 = Z.
Similarly, the motion of particles at time ¢ = 0 can be expressed in terms of the
current time ¢ as

)
iy, ij=1,2,3 (2.8)
Xj

0 =
xl a

The quantities Ox;/Ox) and Ox{ /0x; are the deformation gradients and they form
the basis of description of any deformation state.
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When expanded and written in the matrix form Egs. 2.7 and 2.8 become

dr = Jodr®
o ox Ox
dx w0 o0 9P dx® 2.9
d _ | o 9 oy AP ( . )
y Tl 0 9P Y
dz o o oz || d°
N a0 0 P N
and,
0 __
dr’ = Jdr
n® A’
dx° ox Oy )z dx
0 ' 0 d (2 10)
dy =% 3 oz y
a2’ o o | | dz

ox Qy 0z

The matrices J and J, are the Jacobian matrices. Since the deformation is
continuous, the determinant of the Jacobian matrices must not equal to zero. Since
no region of finite volume can be deformed into a region of zero or infinite volume,
it is required that the following conditions are satisfied

0<Jop<oo, 0<J<o0 (2.11)

where J = det[]J],Jo = det[Jo]. The above condition is very useful to verify that
the deformation is physically possible. The above relations, allow the expres-
sion of the deformation of a line, an area or a volume in a straightforward
manner.

2.2.2 Strain

Strain is a measure of relative displacement among particles within a body, which
is essential ingredient for the description of the constitutive behavior of materials.
There are three different measures of strain, which can be described on a specimen
of initial and final length Ly and L according to the following three definitions:

1. Engineering Strain:

L—Ly, AL
&= = —
Ly Ly
2. True Strain:
., AL AL

T Tt AL
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3. Logarithmic Strain:
L
" / dl (L)
=[] —=Inl—
l Ly
L

According to three definitions above, the final Length L can be written in terms
of the engineering strain:

L=Ly+AL=Ly+ Loe = Lo(1+¢)
the true strain:

StL() L()
L= AL = L =
Lo+ T (=&

and the logarithmic strain:
L = Lyexp(e")
The three strain measures are related by the following expressions

R
T 14é

Strain measures are normally established by considering the change in the
distance between two neighboring material particles. Consider two material par-
ticles having coordinates (x°,y°,7%) and (x° + dx®,y° + dy°, 2% + dz°). After the
motion, these particles will have the coordinates (x,y,z) and (x + dx,y + dy,
Z+dz). The initial and final distances between these neighboring particles are
given by

8[

¢ =1In(1 +¢)

(dr)? = (dx°)* + (dy°)* + (d°)? (2.12)
dr* = (dx)* + (dy)* + (dz)* (2.13)
Substituting Eq. 2.9 in Eq. 2.13 gives:
dr* = dr”dr = dr® J1 Jodr® (2.14)
In the event that deformation, dr? is different from (dr°)*. That is
dr* — dr} = dr® T Jodro — dr” dr® = 2dr" Eodr® (2.15)
where Eg = J0Jo — I
The above measure gives the relative displacements between the two material

particles, which is insensitive to rotations. If the Eulerian frame of reference is
used, then the relative displacement is given by
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dr* — (dr®)* = dr"dr — ar" J" Jdr

2.16
= 2dr' Edr (2.16)

where E=1-]"].
In Egs. 2.15 and 2.16, the matrices Ey and E are the Lagrangian and Eulerian
strain tensors. In tensorial form, they are given by

1( Ox,, Ox,,
Ey == =——+ —0i 2.1
01/ 2 (ax? a_X,‘JO 51]) ( 7)
1 o0 ax0

The physical significance of Eo, and Ej; can be established by considering a line

element of length dr’ = dx°. The extension of the line element per unit length Ey,
is given by

_dr— dr°
o dr
dr* —dr® = 2Eo”dr02

Ey, or dr=(1+ Ey)dr

(2.19)

Combining the above, we can establish the relationship between Ey, and Ejy,, as

1

Eo,, = Ey, + EE(%] or Ep, =/1+2E, —1 (2.20)
Expanding the right hand term by binomial expansion, we get
1 1
E = (1+Ey, —EE(Z)” +-)—1~E, —EE&I (2.21)

For small Ey,,, Ey, = Ey,,, so that Ey,, can be interpreted as an elongation per unit
length only when the extension is very small. Similarly, we can write

E()2 =14+ 2E()22 -1, E()3 =14+ 2E()33 -1 (222)

2.2.3 Strain-Displacement Relations

In most of the analysis methods to follow, it is customary to deal with the dis-
placement and displacement gradients rather than deformation gradients. If u,v
and w are the three displacements in the three coordinate directions. Hence, we can
write

x=x"4u, y=y"+v, z="+w (2.23)
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The derivatives of these can be written as

ox Ou dy Ov 0z 0w
a0 T T A0 a0 a0 w0 e
Ox Ou 0y ov 0z 0w
R T
Ox ou Qy Ov 0z ow
20 Y Al

In tensorial form, we can write the above equations as

Ox, Ou
B S 2.24
Y * (2.24)
Similarly, one can write
o w9 v dw
ox ox’ o  ox ox  ox
0 o oo oo
dy oy dy oy dy Oy
SV R
o0z 07 9oz d7 97 0z
In tensorial form, the above equations become
ox? Ou
=_m ., — —= 2.2
ax,- 51m ax,» ( 5>

where, J;; is the kronecker delta. Substituting Eqs. 2.24 and 2.25 in the Lagrangian
and Eulerian strain tensors (Eq. 2.18), we get after some simplification

E 1 [aui Ou;  Ouyy Gum]
0 =530 T30 A0 A0
2|00 Ox;  Ox; Ox; (2.26)
_ 1[0w;  Ow;  Ouy, Ou,
v 2 an axi ax,- ax]'

The first two terms in the above two equations represent the linear part of the
strain tensors, while the last term represents the nonlinear part. Both these tensors
are symmetric. When the displacement gradients are very small, we can neglect
the nonlinear part of in above tensors. Thus, infinitesimal strain components have
direct interpretations as extensions or change of angles. Further, the magnitudes of
the strains are very small compared to unity, which means that deformations are
very small.

In this book, we will mostly consider the linear part of the strain—displacement
relations and in addition, we will assume that the deformations are very small
compared to the characteristic dimension of the structure. This will make x? = X;.
In other words, all the problems in this text book will be formulated in the
Lagrangian frame of reference.
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2.2.4 Stress

Strains (deformations) are normally caused by forces or moments exerted on the
continuum or through contacts. Contact forces are normally referred to as surface
tractions as they occur on the surface of the continuum. The different types of
forces or moments can be extrinsic, mutual or contact type, depending upon the
way these act on a body. Extrinsic forces act outside the body under consideration.
Examples are gravity load, magnetic loads etc. Mutual forces arise within the
body. The most general type of forces is of contact type which generate stress or
pressure.

To explain the concept of stress, let us consider a small surface element of area
AA in the deformed configuration (Fig. 2.3). The forces and moments should be
acting in this small elemental area such that they cancel each other, or in other
words, the elemental area should be in equilibrium. These forces can be thought of
as contact forces although they act inside a body. Let n be a unit vector perpen-
dicular to the surface of the elemental area and let Af be the resultant force exerted
on the surface element AA. In the limiting case of AA becoming very small, one
can define the traction as follows:

o _df . Af

=aA = AMax (227)

The above limit is possible due to the assumption that the material is contin-
uous. This traction vector describes a unit of force per unit area acting on the
surface. The superscript (n) remind the reader that the traction vector is dependent
on the orientation of the area. To give explicit representation of traction vector, let
us consider the elementary cube shown in Fig. 2.4 showing the components of the
traction vector on the three faces of the cube. Considering n = i:

(0 =i+ d0j + {0k

Fig.. 23 A sgction of an y af i
arbitrary continuum 1

N2
@D




2.2 Basic Concepts in Elasticity 49

b

Fig. 2.4 Stress cube with (/)
stress vectors and outward 4
unit normal
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k
Similarly for n =j and n = k:
9 =19+ 10 + Dk
% = Wi 4 10j 4 B
X y z

The above definition can be simplified by introducing a second order tensor
oij = t}’), which describes the direction of traction and its plane of application.

That is, in the x — z plane, 0., = t,(f), Oy = tgi), Oy = t)(ck). Hence, the projections of

the traction vector £ on the faces are the normal stress components oy, oy, and
0., while projections perpendicular to outward normal n are the shear stress
COMPONENLS Gy, Gyz, Oz, Oyx, Ozy AN 0.

The matrix containing all the nine stress components g is called the Cauchy’s
Stress Tensor, which is a symmetric tensor, i.e. 6;; = 0j;.

Next, we can establish the relation between the traction vector £ and the outward
normal n. For this purpose, consider the arbitrary surface of a tetrahedron shown in
Fig. 2.5.

On the faces perpendicular to the reference axes, the components of the three
stress vectors are denoted by the corresponding stress components ¢; on the

Fig. 2.5 Stresses acting on y
an arbitrary surface of a
tetrahedron
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plane on which they are acting. For example, the stresses acting on the face
normal to x-axis are denoted as oxx, oxy and oxz.

The equilibrium of the tetrahedron requires that the resultant force acting on it
vanishes. Imposing equilibrium along the x-direction gives

tdA — 0. dA, — 0y dA, — 0, dA; + bpdV =0 (2.28)

where b, is the x-component of the body force vector b. Here ¢, is the x-component of
the traction vector, dA,, dA,, and dA, are the areas of the face perpendicular to the
coordinate axes x, y, and z axes, while dA is the area of the inclined surface ABC.
Also, dV = (1/3)hdA is the volume of the tetrahedron, where 4 is the smallest
distance from any point to the inclined surface ABC. The outward normal vector can
be written in terms of unit vectors along the three reference directions as
n = nd + nyj + n:k. The elemental areas dA; can now be written in terms of
components of unit normal vector as

dA, =ndA, dA, =n,dA, dA,=n.dA (2.29)
Substituting Eq. 2.28 in Eq. 2.29 and letting dA — 0, we get the traction—stress

relation in the x-direction as
e = Oxelly + Oylly + O, (2.30)

Similarly, traction—stress relation in the y and z directions can be written as

ty = Oxyly + Oyyhy + O,

t; = Ox iy + Oy Ny + 0N,
The above equations can be written in tensorial form as
I = ojn; (231)

which is valid for any outward normal vector and in any coordinate system. Hence,
it can be concluded that the state of stress in a body is completely known if the
stress tensor ¢j; is given. In other words, given any surface and associated unit
normal vector n, it is possible to determine a traction vector acting on that surface
if the stress tensor is known.

2.2.5 Constitutive Relations

Constitutive relations relate the stresses developed with the strains through a
material matrix. The constitutive relations are normally established under certain
assumptions. These can be summarized as the following:

1. The stress at a point depends on geometric changes that take place in the
immediate vicinity.

2. There are no history effects. The present state of stress will give the strain.
Hence the presence of material nonlinearity is generally assumed negligible.
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3. The structure under loading will bounce back to its original shape upon load
removal.

4. Temperature changes only cause a change in shape or volume but otherwise do
not directly affect the stresses.

5. The material is homogeneous. That is, the material properties are not a function
of spatial coordinates.

6. Displacements and strains are small.

The constitutive model is normally referred to as Hooke’s Law. It is based on
the assumption that for an elastic body, the stress depends only on deformation and
not on the history of deformation. This can be mathematically expressed as

oy = fij(ey) (2.32)

Expanding the above term by Taylor series about the initial configuration (t = 0),
we get

aflﬁ/’(o)} o

1[0%£:(0
o = f;(0) + [ don +—[ﬁ

2 88k18mn} b 7 (233)

If the assumption of zero initial stress is true, then we require ;; = 0 when ¢; = 0.
This condition leads to f;; = 0. The second term in Eq. 2.33 is the linear term and
all other terms in the expression are nonlinear. Retaining only the linear term due
to small strain assumption, we can write Eq. 2.33 as

ojj = C[jk[Sk[ with Cijkl = |:afalj—(o):| (234)

Eki

The Eq. 2.34 is called the Hooke’s Law, which states that the stress tensor is
linearly related to the strain tensor through a fourth order tensor called the
Constitutive Matrix.

The term in Eq. 2.34 Cjj is a fourth order tensor of elastic constants, which are
independent of either stress or strain. The tensorial quality of the constants Cyy
follows the quotient rule, according to which for a fourth order tensor, it should have
3* = 81 elements. Due to symmetry of the stress tensor (04 = 0j;), we should have
Ciju = Cjiny. Further more, since the strain tensor is also symmetric (e = &), we
have Cyi; = Cyji. Under these conditions, the fourth order tensor Cy; will have only
36 independent constants. Hence, the total number of elastic constants cannot
exceed 36, since the maximum independent elements in the stress and strain tensors
are only six each. With these reductions, the generalized Hook’s law can be written
in the matrix form as

Oxx Cii Cnn Ciz Cu Ci5 Cig Exx

Oyy Cy Cyn Cp Cu Cs Cy Eyy

oz _ |G Cn Gz Gy GCis Cie| ) ez (2.35)
Tyz Cy Cin Ciz Cyu Cy5 Cye Vyz '

Txz Csi Cso Cs3 Csq Css Csg Vxz

Tay Co1 Coo Coz Coa Cos Cos| \ 7ay
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where all the 7’s represent the shear stresses in their respective planes, while all the
y’s are the corresponding shear strains. For most elastic solids, the number of
elastic constants can further be reduced by exploiting the material symmetry about
different reference planes.

2.2.6 Elastic Symmetry

A material having all the 36 unknown material constant is said to be anisotropic
(Triclinic System). However, if the internal composition of a material possesses
symmetry of any kind, then symmetry can also be observed in the elastic prop-
erties. The presence of symmetry reduces the number of independent constants.
Such simplification in the generalized Hooke’s law can be obtained as follows. Let
x, ¥, and z define the original coordinate system of the body. Let x’,y" and Z’ be a
second coordinate system, which is symmetric to the first system in accordance
with the form of elastic symmetry. Since the directions of similar axes of both
systems are equivalent with respect to elastic properties, the equations of the
generalized Hooke’s law will have the same form in both coordinate systems and
the corresponding constants should be identical.

2.2.6.1 Monoclinic System: One Elastic Symmetric Plane

Suppose the material system is symmetric about the z-axis, the second coordinate
system x’, ¥’ and 7' can be described by the following base unit vectors.

€l :{17070}7 6’2:{0,1,0}, 832{0707_1}

Using this, we can construct a transformation matrix with base vectors as columns
of the transformation matrix. For the above case, the transformation matrix and the
stress tensor in primed coordinate system becomes

1 0 O
T=10 1 0
0 0 -1
which gives:
Oxx Txy —0xz
o =T'6T=| 1, 0y —Tp
—O0x Ty Oz

Similarly, transforming the strains in the primed coordinate gives

; Exx ’))xy —&xz
& = Y yxX 8}‘}‘ -7 vz
—Exx -7 zy &2z
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so that:
¢ =C¢

Using the above relations, the constitutive law in the original coordinate system
becomes

O Cu Chr Ci —-Cy —Ci5 Cg Exx
Oyy Cy Cx Cy —Cu —Cs Cyp &yy
oz | _ | O C Cy3 —Cy —GCs  Cx &z
Tyz —Cqy1 —Cpp —Cy5 Cyy Cy5  —Cye Vyz
Txz —Cs1 —Csp —Cs3 Csg  Css  —Csg Vxz
Tay Ce1 Coo Cozs —Coa —Cg  Ces Vay

Comparing the above matrix with the general matrix (Eq. 2.35) leads to the
conclusion C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 =0. Hence, the
material matrix for a monoclinic system becomes

Ch Cp Ciz O 0 Cis
Cp Cn Cz 0 0 OCx
Cz Cs Gs 0 0 Gy
0 0 0 Cyu Cyi5 O
0 0 0 Csi5 GCs5 O
Cie Cxs G 0 0 Cg

(2.36)

Hence, in the case of monoclinic system, 13 independent constants requires to be
determined to define the material matrix.

2.2.6.2 Orthotropic System: Three Orthogonal Planes of Symmetry

The most common example of the orthotropic system is the lamina of a laminated
composite structure, which is dealt in a later part of this chapter.

Here, the original coordinate system of the body is perpendicular to the three
planes. The orthotropy assures that no change in mechanical behavior will be
incurred when the coordinate directions are reversed. Following the procedure
described for the monoclinic system, the material matrix for an orthotropic system is
given by

Ch Cnp Ci3 O 0 0
Ch Cpn Cyn 0 0 0
Ci Cpn G O 0 0
0 0 0 Cyu O 0 (2.37)

0 0 0 0 GCs O
0 0 0 0 0 Ces

The number of elastic constants that requires to be determined is 9. The rela-
tionship of these constants with the elastic constants can be found in [6].
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2.2.6.3 Isotropic System: Infinite Plane of Symmetry

This is the most commonly occurring material system for structural materials. For
this case, every plane is a plane of symmetry and every axis is an axis of sym-
metry. It turns out, there are only two elastic constants that requires to be deter-
mined and the material matrix is given by

Ch Cn Cp 0 0 0

Ch Cn Cn 0 0 0

C Cn Cn 0 0 0

0 0 0 XCu-Cu) 0 0 (2.38)
0 0 0 0 5(Ci = Cn) 0

0 0 0 0 0 HCi = Cpp)

where
Cii=442G, Cpp=1

The constants A and G are the Lamé constants. The stress—strain relations for
isotropic materials are usually expressed in the form

Gkkéij (239)

A
U[j = }»Skkél’j + 2G8ij, 2G8U = Uij — W—ZG

Note that except for isotropic materials, the coefficients are given with respect to a
particular coordinate system.

In practice, the elastic constants for an isotropic material are the Bulk Modulus K,
Young’s Modulus E, and Poisson’s ratio v. They are related to the Lamé constants
and are defined as follows:

1 A
K=-31+2G = 2.40
334120), v=5056) (2.40)
other relationships among the constants are:
vE E E
I)=ron—— G=—— K=—— " 2.41
(1+v)(1—=2v) 2(1+v) 3(1—2v) (2.41)

2.3 Governing Equations of Motion and the Solution Methods

There are a number of ways to derive the governing differential equation of a
continuum. The most common method is to draw the free body diagram of an
isolated volume of the continuum and establish the equilibrium of forces in all the
three coordinate directions to get the required governing equations. However, here
we will use Newton’s second law of motion for not only deriving the governing
equation, but also establish the symmetry of the Cauchy’s stress tensor.
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Fig. 2.6 Arbitrary small Y
volume under the action of

iikbxs

g1

z

Consider a body of density p and volume V as shown in Fig. 2.6. Let the body
be subjected to a surface traction ¢ =ti+t,j+tk and the body force
b=0>bi+b,j+bk.

Applying Newton’s laws to the elemental volume shown in Fig. 2.6 gives:

/ tdA + / pbdV = / piidV (2.42)
A \4 \%4

/xxtdAJr/x prdV:/x X pidV (2.43)
A 4 4

Here, ¢ is the traction vector on the boundary surface of area A. In tensor notation,
these equations can be rewritten as

A 1% Vv

/Siijjtde—F/SiijjbkpdV: /Sijkxj‘,{)likdv
A \4 \4

(2.44)

Here, ¢ is the permutation tensor used to represent a cross product of any two
vectors. Using Eq. 2.31 in Egs. 2.44, and using the Divergence theorem [7]

/ 1dA = / GyinydA = / aaap’dv

we get

b

/ pu,} av

v

/ { (&ijkxj0opr) + peijexibr — psykxjuk} av
v

(2.45)
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The first term in the second equation can be written as

0 aopk
a—%(xjapk) =0oj + xfan

Using the above equation in Eq. 2.45, we can get the governing equilibrium
equation as

66,,;

o + pb; = pit, with guox =0 (2.46)

P
While the first equation gives the governing differential equation of a continuum in
terms of stresses, the second equation states that Cauchy’s stress tensor gy is
symmetric, that is o; = g;;. The above equations will form the heart of many
analysis, which will be reported later in this book. It is also worth mentioning that
out of nine stress components in the Cauchy’s stress tensor, only 6 are indepen-
dent, which is the result of the symmetry of the tensor. The derived equations of
equilibrium are valid for both small and large deformation analysis.

2.3.1 Solution Procedures in Linear Theory of Elasticity

The theory developed in the last subsections form the basis of the field equations in
theory of elasticity. In this subsection, these are reformulated to make them
convenient for solving boundary value problems. The fundamental assumptions
adopted here are the following:

1. All the deformations are small

2. The constitutive relations are linear. For metallic structures, the material
behavior can be idealized as isotropic. However, for composite structures, the
material behavior is assumed anisotropic

In 3D elasticity, there are 15 unknowns, namely six stress components, six
strain components and three displacements. Hence, for a complete solution, we
require 15 equations, which come from three equations of equilibrium (Eq. 2.46),
six stress—strain relations (Eq. 2.34) and six strain—displacement relations
(Eq. 2.26). In addition, boundary conditions on the surface S must be satisfied.
Such conditions can be in the form of prescribed displacements u; and prescribed
surface tractions #; = o;n;.

Historically, there are two different solution philosophies, one based on assuming
displacement as basic unknown, while the other approach considers stresses as
unknowns. In the former, the compatibility of displacements is ensured as we begin
the analysis with displacement as basic unknowns. However, the equilibrium is not
ensured and hence they are enforced in the solution process. In the latter, since the
stresses are basic unknowns, the equilibrium is ensured and the compatibility is not
ensured and must be hence enforced during the solution process.
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2.3.1.1 Displacement Formulation: Navier’s Equation

In this approach, the displacements are taken as the basic unknowns, that is, at
each point, there are three unknown functions u, v, and w. These must be deter-
mined under the constraint that the stresses corresponding to them are equilibrated,
or in other words, by enforcing equilibrium. For this, the stresses are first
expressed in terms of displacements. That is, first the strains are expressed in terms
of displacements using strain—displacement relations (Eq. 2.26) and these are later
converted to stresses. For isotropic solids, these can be written as

Ou;  Ouj Ouy
- ) J—0;; 24
G(@xj + ax[> + axkéj (2.47)

Substituting this in the equilibrium equation (Eq. 2.46), we get

2 2
0 uy; +(A+G)6u

G + pbi =0 (2.48)

axkéxk ax,axk

These are the Navier’s equations with three displacements as unknowns.
The equations must satisfy the following boundary conditions in terms of
displacements.

On S,: u; Specified
On S : /lgzkn, (gﬁ + gif)nj =1; Specified

Note that the traction boundary conditions are a set of inhomogeneous differential
equations. These are very difficult to solve directly. The most common way to
solve the above equation is to express the displacement field into scalar potential
(¢) and vector potential (H) using Helmholz’s theorem [3]. The displacement
field, take the following form

oo OHy OH;

— + g— 2.4
Ox; + G ox;’ axk (2:49)

u; =

where, &; is the permutation symbol. If the body force is absent, then the Navier’s
equations can be expressed as

d
(A+ 2G)aV2<D + GeyV?H =0 (2.50)

This equation will be satisfied if
V?® = constant, V?H = constant (2.51)

Thus the problem reduces to solving a set of Poisson’s equations in terms of
potentials, which are easier to solve than the original Eq. 2.48. The displacements
are later obtained from Eq. 2.49. Note that the above procedure of solving using
Helmholtz decomposition is valid only for structures with Isotropic material
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properties. For anisotropic materials, a different approach is required, which is
explained in the later part of this chapter.

2.3.1.2 Stress Formulation: Beltrami-Mitchell Equations

In this approach, the stresses are assumed as basic unknowns. That is, at each point
in a body, there are six unknown functions, namely oy, Gyy, 0z, Txy, Ty; and 7.
These stresses obviously have to satisfy the equilibrium equations. However, there
are only three equations of equilibrium. The rest of the conditions come from the
requirement that the strains must be compatible.

The assumed stress field can be converted into strain using the generalized
Hooke’s law, which in turn can be converted to the displacement field using
strain—displacement relationships. In doing so, we get six independent partial
differential equations for displacements with prescribed strains ¢;. For arbitrary
values of ¢;, there may not exist a unique solution for the displacement field.
Hence, for getting the unique solution for displacements, it is necessary to place
some restriction on the strains ¢;. By differentiating twice the strain displacement
relations (Eq. 2.26), we get

0% :l Ou; n 0 u; (2.52)
Oxx0x; 2\ Oxj0x;Ox;  Ox;OxOx;

Interchanging the subscripts and some manipulation lead to the following relation

628,'j azskl _ 628ik _ 623j, -0 (253)
OxxOx;  Ox;0x;  Ox;Ox;  Ox;Oxg

There are 81 equations in the above relation, out of which some are identically
satisfied and some of them are repetitions. Only six equations are nontrivial and
independent in expanded notation, these equations are the following

e _ 0 sy L O Doy Pey _ Veu N ey,
0yoz oOx\ Oox Oy 0Oz Oxdy  0y? Ox?
Oty _ 0 Bew | Doy | B ey _ ey N e,
0z0x 9y\ Oy 0z x Oydz 02 0y?
%, 0 (_agxy ey, asxz> Fey O N ey,

Ox0y T\ oz ox dy 0zox 2 0z

(2.54)

These six relations are collectively known as compatibility equations.

The general solution procedure in stress formulation is as follows. We first
transform the strains into stresses using Hooke’s law (for isotropic solids), which is
of the form

1+ v

Sij = Taij — EO'kké,'j
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By substituting for strains in the compatibility equation (Eq. 2.55) and with some
simplification (that is by using equations of equilibrium), we get

62‘7111' 1 3o v Oby, 0b; 0b;
0x Ox - (1 + v) Ox;0x; * (1 - v)pé)_xké’j + p(a_xj+5_x1> =0 (2.55)

The stress field should satisfy the above equation along with the equilibrium
equations in order to be admissible. In addition, it has to satisfy the traction and
displacement boundary conditions.

2.3.2 Plane Problems in Elasticity

The 3D equations and their associated boundary conditions are extremely difficult
to solve and solution exists only for very few problems. Hence, in most cases some
approximations are made to reduce the complexity of the problem. One such
simplification is to reduce the dimensions of the problem from three to two. This
can be made for plane stress and plane strain problems, respectively.

If a plate in x—y plane is thin along the z-direction, then the stress perpendicular
to the plane of the plate (g,,) can be neglected. In addition, the corresponding shear
in x—z and y-z planes (t,, and t,;) can also be assumed zero. In the process, the
equations get simplified considerably. Following are the equations required for the
solution of plane stress problem:

o Equations of equilibrium:

00, Oty o*u Ot Qo o%v
x> oy TETP wm Tay DTPe

o Strain—displacement relations:

Ou ov ou Ov

gxx_a_x7 Syy—a> ny:a_y+a_x

o Stress—Strain relations: This is obtained by inserting 6, = 0,7,, = 0,7, =0 in
the generalized Hooke’s law (Eq. 2.34) and solving the resulting equation after
substituting for strains in terms of displacements. After substitution, we get

g —L 67M+V@ g —L @_’_V% T = G
T —-v)\ox oy, Y (-v)\oy  ax) Y Yy

o Compatibility Condition: If one has to use stress based approach for the solution,
then only one compatibility equation requires to be enforced, which is given by
2 2 2
07y _ 0% Oy
oxdy  0y? Ox?
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Note that, although the normal stress ., is zero in the plane stress case, the
normal strain ¢, is non zero and its value can be computed from the 3D consti-
tutive law.

The second type of reduction is called the plane strain reduction, where the
body is assumed rigid in the perpendicular to the plane of loading, that is the
strains & = & = &; = 0. The resulting simplified 3D constitutive model and
equations can be solved to get the stress—strain relations, as was done for the plane
stress case.

2.4 Introduction to Theory of Composites

Composite materials are obtained by combining two or more materials at the
macro scale to obtain a useful structural material. Although these materials at the
microscopic scale can be inhomogeneous, they can be considered homogeneous at
the macroscopic level. These materials possess the qualities of each of the
constituents and the choice of constituents depends on the specific application.
These materials are normally preferred due to their light weight, high strength, and
high corrosion resistance properties. The two normal constituents of a composite
material are the fiber and the matrix. Depending upon how they are bound
together, different types of composite materials can be obtained. Owing to the
difference in the constitutive behavior of these two constituent materials, the
constitutive model of the compound material is normally anisotropic. Composites
can be classified into three different categories, namely fibrous composites,
particulate composites and laminated composites. In this book, we will mainly
deal with laminated composites and hence will be discussed below.

2.4.1 Theory of Laminated Composites

Laminated composites have found extensive use as aircraft structural materials due
to their high strength-to-weight and stiffness-to-weight ratios. Their popularity
stems from the fact that they are extremely light-weight and the laminate con-
struction enables the designer to tailor the strength of the structure in any required
direction depending upon the loading directions to which the structure is subjected.
In addition to aircraft structures, they have found their way into many automobile
and building structures. Apart from having better strength, stiffness and lower
weight, they have better corrosion resistance, and sometimes thermal and acoustic
insulation properties than metallic structures.

The laminated composite structure consists of many laminas (plies) stacked
together to form the structure. The number of plies or laminas depends on the
strength that the structure is required to sustain. Each lamina contains fibers oriented
in the direction where maximum strength is required. These fibers are bound
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together by a matrix material. The laminated composite structure derives its strength
from the fibers. The commonly used fibers are made of Carbon, Glass, Kevlar and
Boron. The most commonly used matrix material is the epoxy resin. These materials
are orthotropic at the lamina level while at the laminate level, they exhibit highly
anisotropic properties. The anisotropic behavior results in stiffness coupling, such as
bending—axial-shear coupling in beams and plates, bending—axial—torsion coupling
in aircraft thin-walled structures, etc. These coupling effects make the analysis of
laminated composite structures very complex.

2.4.1.1 Micromechanical Analysis of a Lamina

A lamina is a basic element of a laminated composite structure, constructed from
fibers that are bound together by the matrix resin. The strength of the lamina, and
hence the laminate, depends on the type of fiber, their orientation and also the
volume fraction of fiber in relation to the overall volume of lamina. Since the
lamina is a heterogeneous mixture of fibers dispersed in a matrix, determination of
the material properties of the lamina, which is assumed to be orthotropic in
character, is a very involved process. The method used in the determination of
lamina material properties is called the micromechanical analysis [6].

Hence, the objective of micromechanics is to determine the elastic moduli of a
composite material in terms of the elastic moduli of the constituent materials,
namely the fibers and the matrix. Thus, the property of a lamina can be expressed as

Ql] = Qlj(Efa Em7 Vs Vi, ‘/fa Vm)7 (256)

where E, v and V are the elastic moduli, Poisson’s ratio and the volume fraction
respectively, and f and m subscripts denote the fiber and the matrix, respectively.
The volume fraction of fiber is determined from the expression: V; = (volume of
fiber)/(total volume of lamina) and the volume fraction of the matrix is given by
Vi =1~ Vy.

There are two basic approaches for the determination of material properties of
the lamina. They can be grouped under the following heads: (1) the strength of
materials approach and (2) the theory of elasticity approach. The first method gives
an experimental way of determining the elastic moduli. The second method gives
upper and lower bounds on the elastic moduli and not their actual values. In fact,
there are many papers available in the literature that deal with the theory of
elasticity approach to determine the elastic moduli of a composite. In this section,
only the first method is presented. There are many classic textbooks on composites
such as [6, 17] that cover these approaches in detail.

2.4.1.2 Determination of Material Properties of a Lamina

The material properties of a lamina are determined by making some assumptions
concerning the behavior of its constituents. The fundamental assumption is that the
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fibers are strong and hence are the main load bearing member, and the matrix is
weak and its main function is to protect the fibers from severe environmental
effects. Also, the strains in the matrix and the fiber are assumed to be the same.
Hence, a plane section before the application of bending stress remains plane after
bending. In the present analysis, we consider a unidirectional, orthotropic com-
posite lamina to derive expressions for the elastic moduli. In doing so, we limit our
analysis to a small volume element, small enough to show the microscopic
structural details, yet large enough to represent the overall behavior of the com-
posite lamina. Such a volume is called the representative volume (RV). A simple
RV is a fiber surrounded by matrix as shown in Fig. 2.7. First, the procedure for
determining the elastic modulus E; is given. In Fig. 2.7, the strain in the
one-direction is given by ¢ = AL/L, where this strain is felt both by the matrix
and the fiber, according to the assumption stated earlier. The corresponding
stresses in the fiber and the matrix are given by

gr = Ef817 Oy = Lyéq. (257)

Here Ef and E,, are the elastic modulus of the fiber and the matrix respectively.
The cross-sectional area A of the RV is made up of the area of the fiber A; and the
area of the matrix A,,. If the total stress acting on the cross-section of the RV is gy,
then the total load acting on the cross-section is

P = G]A = E]S]A = GfAf + GmAm. (258)
From the above expression, we can write the elastic moduli in the one-direction as
A

A
&:@f+&1' (2.59)

The volume fraction of the fiber and the matrix can be expressed in terms of areas
of the fiber and the matrix as

Vi =As/A, V,=A,/A (2.60)
Using Eq. 2.60 in Eq. 2.59, we can write the modulus in the one-direction as

Ey = EfVs + Ep V. (2.61)



2.4 Introduction to Theory of Composites 63
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Equation 2.61 is the well known rule of mixtures for the equivalent modulus of the
lamina in the direction of the fibers.

The equivalent modulus E; of the lamina is determined by subjecting the RV to
a stress g, perpendicular to the direction of the fiber as shown in Fig. 2.8. This
stress is assumed to be the same in both the matrix and the fiber. The strains in the
fiber and matrix due to this stress are given by

& = O'z/Ef, Em = O'z/Em. (262)

If & is the depth of the RV (see Fig. 2.8), then this total strain ¢; is distributed as a
function of the volume fraction as

&h = (Vfo + Vmsm)h. (263)

Substituting Eq. 2.62 in Eq. 2.63, we get

) ()
0y = Vi—+ V,—. 2.64
& fEf + E, ( )
However, we have
() (4]
=Eeo=E|V—+V,—/—|. 2.65
) 282 2( fEf + Em> ( )

From the above relation, the equivalent modulus in the transverse direction is
given by

EfEm

=g (2.66)

E,

The major Poisson’s ratio vy, is determined next as follows. If the RV of width W
and depth 4 is loaded in the direction of the fiber, then both strains & and ¢, will be
induced in the 1 and 2 directions. The total transverse deformation d;, is the sum of
the transverse deformation in the matrix and the fiber and is given by

oy = 5hf + Ohm- (2.67)
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The major Poisson’s ratio is also defined as the ratio of the transverse strain to the
longitudinal strain and expressed as

Vip = —& /8. (2.68)
The total transverse deformation can also be expressed in terms of the depth & as
5;, = —h82 = /’lV1281. (269)

Following the procedure adopted for the determination of the transverse modulus,
the transverse displacement in the matrix and the fiber can be expressed in terms of
its respective volume fraction and the Poisson’s ratio as

5]1.)(' = hvafglv 5hm = hVyvmer. (270)

Using Eqgs. 2.69 and 2.70 in Eq. 2.67, we can write the expression for the major
Poisson’s ratio as

viz = Ve Vr + v Vi (2.71)

By adopting a similar procedure to that used in the determination of the transverse
modulus, we can write the shear modulus in terms of the constituent properties as

G/Gyp

G =t
? T VG + VuGy

(2.72)

The next important property of the composite that requires determination is the
density. For this, we begin with the total mass of the lamina, which is the sum of
the masses of the fiber and the matrix. That is, the total mass M can be expressed in
terms of the densities (pf and p,,) and the volume fractions (Vy and V,,) as

M =My + My, = piVy + 0 Vi (2.73)
The density of the composite lamina can then be expressed as

_M _pVitpnVm

v % (2.74)

Once the properties of the lamina are determined, then one can proceed to perform
a macro mechanical analysis of the lamina to characterize the constitutive model
of the laminate.

2.4.1.3 Stress—Strain Relations for a Lamina

Determination of the overall constitutive model for a lamina of a laminated
composite constitutes the macro mechanical analysis of composites. Unlike the
micro-mechanical study, where the composite is treated as a heterogeneous mix-
ture, here the composite is presumed to be homogeneous and the effects of the
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constituent materials are accounted for only as an averaged apparent property of
the composite. The following are the basic assumptions used in deriving the
constitutive relations:

e The composite material is assumed to behave in a linear (elastic) manner. That
is, Hooke’s law and the principle of superposition are valid.

e At the lamina level, the composite material is assumed to be homogeneous and
orthotropic. Hence the material has two planes of symmetry, one coinciding
with the fiber direction and the other perpendicular to the fiber direction.

e The state of the stress in a lamina is predominantly plane stress.

Consider the lamina shown in Fig. 2.9 and its principal axes, denoted as
1-2—-3. Axis 1 corresponds to the direction of the fiber and axis 2 is the axis
transverse to the fiber. The lamina is assumed to be in a 3D state of stress with six
stress components given by {a11, 022, 33, 723, T13, T12 } . For an orthotropic material
in a 3D state of stress, nine engineering constants require to be determined. The
macromechanical analysis will begin from here. The stress—strain relationship for
an orthotropic material is given by [6]

11 Siu S S35 0 0 0 o11
£ Si2 S» S»3 0 0 0 022
g3 | _ [Si3 S3 S5 0 0 O 033
))23 o 0 0 0 S44 0 0 T23 ’ (275>
Y13 0 0 0 0 S5 O 13
Y12 0 0 0 0 0 S@@ T12

Here, Sj; are the material compliances. Their relationship with the engineering
constants is given in [6]. The Poisson’s ratio v;; for the transverse strain in the jth
direction when the stress is applied in the ith direction is given by

V,j = —SJ']'/Sii. (276)

The above condition is for oj; = ¢ and all other stresses equal to zero. The
complaint matrix is symmetric, that is, S; = Sj;. This condition enforces the fol-
lowing relationship among Poisson’s ratios:

Fig. 2.9 Principal axes of a
lamina
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=z (2.77)

Hence, for a lamina under a 3D state of stress, only three Poisson’s ratios
namely viy,vp3 and v3j, need to be determined. Other Poisson’s ratio can be
obtained from Eq. 2.77.

For most of our analysis, we assume the condition of plane stress. Here, we
derive the equations assuming that conditions of plane stress exist in the 1—2 plane
(see Fig. 2.9). However, if one has to do an analysis of a laminated composite
beam, which is essentially a 1D member, the condition of plane stress will exist in
the 1—3 plane and a similar procedure to derive the constitutive relation may be
followed as outlined below.

For the plane stress condition in the 1-2 plane, we set the following stresses
equal to zero in Eq. 2.75, g33 = 13 = 113 = 0. The resulting constitutive model
under plane stress conditions can be written as

&1 1/E,  —vp/E; 0 o1
en o= |—va/Ex  1/E 0 on g (2.78)
Y12 0 0 1/Giz Ti2

Note that the strain &33 also exists, which can be obtained from the third con-
stitutive equation

£33 = 813011 + 523022. (2.79)

This equation indicates that Poisson’s ratios vi3 and v,3 should also exist. Inverting
Eq. 2.78, we can express the stresses in terms of the strains:

o11 Onu O O 11
02 =0 On O &2 ¢, (2.80)
T12 0 0 Oss Y12

where Qj; are the reduced stiffness coefficients, which can be expressed in terms of
the elastic constants as

E; E,

Qu=—" 0n=v101, On=—"-— 0s=Gn (2.81)
1 —viovy 1 —vi2v1

2.4.2 Stress—Strain Relation for a Lamina with Arbitrary
Orientation of Fibers

In most cases, the orientation of the global axes x—y which are geometrically
natural for the solution of the problem, do not coincide with the lamina principal
axes, previously designated as 1—2 axes. The lamina principal axes and the global
axes are shown in Fig. 2.10. A small element in the lamina of area dA is taken and
the free body diagram is shown in Fig. 2.11.
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Consider the free body A. Summing all the forces in the 1-axis direction, we get

011dA — 0y (cos 0dA)(cos 0) — ayy(sin OdA)(sin 0)

— Tyy(sin 0dA)(cos 0) — T,y (cos OdA)(sin 0) = 0. (282)
On simplification, the above equation can be written as
G = Oy COSZ 0+ Oyy sin 0 + 27,y sin O cos 0. (2.83)
Similarly, summing all the forces along the 2-axis (free body A) gives
T12dA — 0y (cos 0dA)(sin 0) — oy, (sin 0dA)(cos 0) (2.84)

— T,y (sin 0dA)(sin ) — 1,y(cos 0dA)(cos 0) = 0.
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Simplifying the above equation, we get
Tjy = —0x sin 0 cos 0 + o,y sin O cos 0 + rxy(cos2 0 — sin 0). (2.85)

Following the same procedure and summing all the forces in the two-direction in
the free body B, one can write

Gy = Gy sin’ 0 + Oyy cos? 0 — 27,y sin Ocos 0. (2.86)

Equations 2.83, 2.85 and 2.86 can be written in matrix form as

011 C2 Sz 2CS O xx
onp=| 8 ¢ -5 |{ oy, (2.87)
12 —CS CS (C*=8%) ]| | 1wy

where C = cos 6,8 = sin 0. The equation above can be rewritten as:
012 = To-xfy

The strains in the 1—2 axis, can be transformed to the x—y axis by a similar
transformation. Note that for the same transformation to hold, the shear strains are
divided by 2. Accordingly:

&1 cc s 2CS Exx
ep p=| S C*  -2CS &y (2.88)
o -CS Cs (2= | 3

or
812 = Tsxfy

Inverting Eqgs. 2.87 and 2.88, we can express the stresses and strains in global
coordinates as

Oy = T710'1_2 (289)
and
ey = T ¢, (2.90)

The actual strain vectors in both 1—2 and x—y axes & _, and &,_, are related to
g1 and &._, through a transformation matrix:

g1 2 =Re -

& y=Re,_,

where

SO~
oO—=O
NOO

] (2.91)
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The constitutive equation of a lamina in its principal directions (Eq. 2.80) can
be written as

61> = Q¢g|_». (2.92)
Substituting Eqs. 2.87, 2.88 and 2.91 in Eq. 2.92, gives
To,_, = QR¢|_» = QRT¢,_, = QRTR '¢,_, (2.93)
The constitutive relation in the global x—y axes can now be written as
6.y=0Q¢ ,=T 'QRTR '¢,_, (2.94)

Here the matrix Q is fully populated. Hence, although the lamina in its own
principal direction is orthotropic, in the transformed coordinate, it represents a
completely anisotropic behavior, that is the normal stresses are coupled to the
shear strains and viceversa. The elements of Q are given by

011 = 011C* +2(012 + 2066)S°C* + O S*,

012 = (Q11 + O — 4066)S*C* + Q12 (S* + CY),

O16 = (Q11 — Q12 — 2066)SC* + (Q12 — Q22 + 20Q66)S°C,
02 = 011" +2(Q12 + 2066)S*C* + 00 C*,

02 = (Q11 — Q12 — 2066)S°C + (Q12 — Q22 + 2Q66)SC,
Os6 = (Q11 + 02 — 2012 — 2066)S°C* + Qgs(S* + C*)

(2.95)

which gives the constitutive equation of a lamina under plane stress in the 1-2
plane.

2.5 Introduction to Wave Propagation in Structures

A structure, when subjected to dynamic loads, will experience stresses of varying
degree of severity depending upon the load magnitude and its duration. If the
temporal variation of load is of long duration , the intensity of the load felt by
the structure will usually be of lower severity and such problems falls under the
category of structural dynamics. For these problems, there are two parameters
which are of paramount importance in the determination of its response, namely
the natural frequency of the system and its normal modes (mode shapes). The total
response of structure is obtained by the superposition of the normal modes. Large
duration of the load makes it low on the frequency content, and hence the load will
excite only the first few modes. Hence, the structure could be idealized with fewer
unknowns (which we call as degrees of freedom, a terminology which is normally
used in structural dynamics). However, when the duration of the load is small,
stress waves are set up, which starts propagating in the medium with a certain
velocity. Hence, the response is necessarily transient in nature and in the process,
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many normal modes will get excited. Hence, the model sizes will be many orders
bigger than what is required for structural dynamics problem. Such problems come
under the category of wave propagation. The key factor in wave propagation is the
velocity, level of attenuation of the response and its wavelength. In addition, phase
information is one of the important parameters.

Since wave propagation is a multi-modal phenomenon, the analysis becomes
quite complex when the problem is solved in the time domain. This is because the
problem by its very nature is associated with high frequency content. Hence, anal-
ysis methods based on the frequency domain highly suited for such problems. That
is, all the governing equations, boundary conditions and the variables are trans-
formed to the frequency domain using any of the integral transforms available. The
most common transformation for transforming the problem to the frequency domain
is the Fourier Transforms, although, more recently Wavelet Transform is also
becoming popular. This transform has the discrete representation and hence it is
amenable to numerical implementation, which makes its use attractive in wave
propagation analysis. By transforming the problem into frequency domain, the
complexity of the governing partial differential equation is reduced by removing the
time variable out of the formulation, thus making the solution of the resulting ODE
(in the 1D case) much simpler than the original PDE. In wave propagation problems,
two parameters are very important, namely the wavenumber and the speeds of the
propagation.

2.5.1 Spectral Analysis

Spectral analysis is a means to ascertain the wave type and its behavior in a
system represented by a governing PDE by obtaining its local wave behavior,
which is different for different waveguides. The spectral analysis give two
important wave characteristics, namely the spectrum and the dispersion relation.
Spectral analysis uses Discrete Fourier Transform (DFT), to represent a field
variable (say displacement) as a finite series involving a set of coefficients,
which require to be determined. Spectral analysis enables the determination of
two important wave parameters, namely the wavenumbers and the group speeds.
These parameters are required to understand wave propagation in a given
medium or waveguide. These parameters enable us to know whether the wave
mode is a propagating or evanescent (attenuated) mode. If the wave is propa-
gating, the wavenumber expression will let us know whether the wave is
non-dispersive (that is, the wave retains its shape as it propagates) or dispersive
(when the wave changes its shape as it propagates). In this sub section, we give a
brief outline of spectral analysis for second- and fourth-order systems. Additional
details can be found in [3].

The starting point of spectral analysis is the governing differential equation.
Consider a second-order partial differential equation given by
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u  ou  u
— + b—=c— 2.96
‘e “or (2:96)
where, a, b, ¢ are known constants and u(x, t) is the dependent field variable, x is
the spatial variable and ¢ is the temporal variable. We first approximate or trans-
form the above PDE to frequency domain using the DFT, which gives

=

u(x, 1) =Y ity (x, w,)e (2.97)

n

Il
=}

where, o, is the circular frequency and N is the total number of frequency points
used in the approximation. Here # is the frequency-dependent Fourier transform of
the field variable. Substituting Eq. 2.97 into Eq. 2.96, gives:

d*i,  di,

b
“ dx? + dx

+carti, =0,n=0,...,N — 1. (2.98)

From the above equation, we see that a partial differential equation is reduced to
a set of ordinary differential equation (ODE) with the time variation removed and
frequency introduced as a parameter. The summation is omitted in the above
equation for brevity. Equation 2.98 is a constant coefficient ODE, which has a
solution of the type it,(x, w) = A, where A, is some unknown constant and k is
called the wavenumber. Substituting the above solution in Eq. 2.98, we get the
following characteristic equation to determine k

bj 2
<k2 ey %)An —0. (2.99)
a a

The above equation is quadratic in k and has two roots corresponding to two
modes of wave propagation. These two modes correspond to the incident and
reflected waves. If the wavenumbers are real, then the wave modes are called
propagating modes. On the other hand, if the wavenumbers are complex, then the
wave modes are evanescent modes. These are given by

bj [—b?  cw?
ki) =—=+1\/— Ly 2.100
127 2 4a? + a ( )

Different wave behavior is possible depending upon the values of a, b, and c. The

behavior also depends on the numerical value of the radical \/cw?/a — b? /4a?. Let
us consider a simple case of b = 0. The two wavenumbers are given by

c c
k1 = Wy—, k2 = —Wy—. (2101)

a a
From the above expression, we find that the wavenumbers are real and hence they
are propagating modes. The wavenumbers are linear functions of frequency w. At
this point, we would like to introduce two important wave parameters that will
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determine the wave characteristics, namely the phase speed c, and group speed c,.
They are defined as

Wy, dw,
=——— = . 2.102
P T Real(k) ¢ dk (2.102)
For the wavenumbers given in Eq. 2.101, the speeds are given by
Cp =g = (2.103)
c

We find that both group and phase speed are constant and equal. When
wavenumbers vary linearly with frequency o and the phase speed and the group
speed are constant and equal, then the wave, as it propagates, retains its shape.
Such waves are called Non-dispersive waves. Longitudinal waves in elementary
rods are of this type. If the wavenumber varies in a non-linear manner with respect
to frequency, the phase and group speeds will not be constant with frequency. That
is, each frequency component travels with different speed and as a result, the wave
changes its shape as it propagates. Such waves are called dispersive waves.

Next, let us again consider Eq. 2.100 with all the constants nonzero. The
wavenumber no longer varies linearly with frequency. Hence, one can expect
dispersive behavior of the waves and the level of dispersion depends upon the
numerical value of the radical. We will investigate this aspect in a little more
detail. There can be the following three situations:

1. b?*/4a* > co?/a
2. b?/4a* <cw?/a and
3. b*/4a* = ca)?/a

Let us now consider Case 1. When b*/4a® > cw?/a, then the radical is a
complex number and hence all the wavenumbers are complex. This implies that
the wave modes are non-propagating and they attenuated rapidly in space. For
Case 2, where b*/4a*> <co?/a, the value of the radical will be positive and real.
Hence the wavenumber has both real and imaginary parts. Waves having this
feature are attenuated as they propagate. The phase and group speeds for this case
are respectively given by

cp =20 = On (2.104)

k  \Jew?]a—b?[4a®
@:a\/cwﬁ/a—bz/%zz‘ (2.105)

dk cw,

Cg:

It is quite obvious that these are not the same and hence the waves could be
dispersive in nature. One can get back the non-dispersive solution by substituting
b = 0in Eq. 2.105. Now, let us see Case 3 where the value of the radical will be zero
and hence the wavenumber is purely imaginary indicating that the wave mode is a
damping mode. The interesting point here is to find the frequency of transition at
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which the propagating mode becomes evanescent or a damping mode. This can be
obtained by equating the radical to zero. Thus the transition frequency cy is given by

b
2 ac

Once the wavenumbers are determined, the solution to the governing wave
equation (Eq. 2.98) in the frequency domain can be written as (for b = 0)

Wy =

(X, 0,) = Ape ™ £ Bk, =, \/g (2.106)

In the above equation A, represents the incident wave coefficient while B,
represents the reflected wave coefficient.

It is clearly seen how the values of the constants in the governing differential
equation play an important part in dictating the type of wave propagation in a
given medium. Now let us consider a fourth-order system and study the wave
behavior in such systems. Consider the following governing partial differential
equation of motion:

4 2
A%-FBW—F Caa—:; =0. (2.107)
Here w is the field variable, and A, B, C are known constants. The above equation
is similar to the equation of motion of a beam on elastic foundations. Let us now
assume the spectral form of solution for the field variable, which is given by

N
wix, 1) = Wa(x, ). (2.108)

n=0

Using Eq. 2.108 in Eq. 2.107, the PDE is transformed to an ODE as

d*w,

A
dx*

— (Cw? — B)w, = 0. (2.109)

Again, this equation is an ODE with constant coefficients and it has solutions of
the form 1, = A,¢**. Using this solution in Eq. 2.109, we get the characteristic
equation for the wavenumber, which is given by

K —pt=0, p'= (chﬁ—g). (2.110)

The above is a fourth-order equation corresponding to four wave modes, two of
which are for the incident wave and the other two are for the reflected wave. Also,
the type of wave is dependent upon the numerical value of C wi /A —B/A. Let us
now assume that Cw?>/A > B/A. For this case, the solution of Eq. 2.110 will give
the following wavenumbers:

ki = ﬁa ky = 7ﬁa k3 :]:87 ky = 7][3 (2111)
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In the above equation, k; and k, are propagating modes while k3 and k4 are the
evanescent modes. From the above equations, we find that the wavenumbers are
non-linear functions of frequency and hence waves are expected to be dispersive in
nature. Also, using the above expression, we can find the phase and group speeds
for the propagating modes using Eqs. 2.102 and 2.103, respectively.

Next, consider the case when Ca)ﬁ /A <B/A. For this case, the characteristic
equation and hence the wavenumbers are given by

+pt=0 (2.112)
L, R
N P SRR M

1 1 1 1
e e R R v e
From the above equation, we see a completely different wave behavior. The
wavenumbers have both real and the imaginary parts and hence all the modes will
attenuate as they propagate. Also, the initial evanescent mode, after a certain fre-
quency, becomes a propagating mode, giving a completely different wave behavior.
The frequency at which this transition takes place is called the cut-offfrequency. The
expression for the cut-off frequency can be obtained if we equate Cw? /A — B/A to
Z€ero, giving Wey-off = v/B/C. We can see that when B = 0, the cut-off frequency
vanishes and the wave behavior is similar to the first case, i.e., it will have two
propagating and two evanescent modes.
The solution of the fourth-order governing equation in the frequency domain
(Eq. 2.109) can be written as

Wa(x, 0,) = Ape 7P 4 Be P 4 C, e + De™. (2.115)

(2.114)

As in the previous case, A, and B,, are the incident wave coefficients and C,, and
D, are the reflected wave coefficients. These can be determined based on the
boundary conditions of the problem.

From the above discussion, we see that spectral analysis gives us a deep insight
into the wave mechanics of a system defined by its governing differential equation.
The direct output of spectral analysis are the spectrum relations, which define the
wavenumber variation with frequency, and the dispersion relations, which relate
phase and group speed and frequency. The determination of spectrum relations is
required for the development of spectral finite elements for different waveguides,
which is explained in Chap. 5.

2.6 Characteristics of Waves in Anisotropic Media

An important characteristic that separates waves in anisotropic media from the
isotropic media counterpart is the direction of energy flow i.e. group velocity [11].
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For isotropic material, the incident and reflected waves are purely longitudinal,
which are called (P) or (S)waves. In two-dimensional (2D) media, for example, if
the wave vector is given by k = (k,, k), the direction cosines of the normal to the
wavefront would be (ki,k,) and (—ky,k,) for P and S wave, respectively. How-
ever, the situation is much more complex in the anisotropic case, where the wave
directions are material property dependent and they can no longer be thought of as
purely P or S waves. They are called the quasi-P wave and the quasi-S wave
(Waves in vertical direction is called QSV waves and the waves in the horizontal
direction is called QSH waves). In this case, the three waves (in three Cartesian
coordinate directions) are coupled, and in order to identify them, one needs to
solve a sixth-order characteristic polynomial equation. Thus, the simplified anal-
ysis for the isotropic case based on the Helmholtz decomposition (possible by
virtue of uncoupled P and S motions), is not practical in the anisotropic case. The
wave velocity and direction in anisotropic material can be obtained from the
governing equation and the plane wave assumption. The governing equation for a
general homogeneous anisotropic media is

aﬂik

e piti, ik = Ciktméom, (2.116)

where the constitutive matrix Cyy,, is symmetric with respect to £ and m. For the
plane wave assumption, the displacement field is given by

U; = Aol mmen—ct) (2.117)

where n,, are the direction cosines of the normal to the wavefront and «; are the
direction cosines of particle displacement. Substitution of the assumed form in the
governing equation results in an eigenvalue problem for the phase velocity c as

(Cim — pc?0im)otm =0, Ty = Cigmniny, (2.118)

where I, is called the Christoffel symbol, and Eq. 2.118 is the Chirstoffel equation.
Solving Eq. 2.118, the wave phase velocity and the wave directions are obtained.

2.7 Governing Equations for Beams and Plates

There are different methods of obtaining the governing wave equation for a given
waveguide. Here, we resort to using energy methods. This is because, energy
methods through Hamilton’s principle, will not only give the required wave
equation, but also the associated force boundary conditions. We make the fol-
lowing assumptions:

1. The structure is assumed to behave linearly and the deformations are assumed
to be small.

2. The structural material is assumed to behave linearly.

3. Material is homogenous.
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Developing the governing equations from Hamilton’s Principle requires the
energy associated with the motion, namely the strain energy and the kinetic energy
to be expressed in terms of displacements. For this, some assumptions on the
displacement field are made based on the physics of the problem.

In this section, we derive the governing equations for beams and plates using
Hamilton’s theorem [2, 18]. The governing equations are derived assuming
structures are laminated composites. The equations for their isotopic counter parts
can be deduced from the composites equations by substituting the appropriate
reduction in the composites constitutive model.

2.7.1 Governing Equation for an Elementary Beam

The Elementary Beam Theory (EBT) is also called Euler—Bernoulli Beam Theory.
The predominant motions are the transverse displacement, w(x,7), the axial dis-
placement #°(x,¢) and the slope ¢(x,t), which is derived from the transverse
displacement as ¢(x,t) = dw/dx. Note that in the laminated composites, the axial
motion and transverse motions are coupled due to the unsymmetric ply sequence.
However, in the case of isotropic beams, the axial and bending motions are
uncoupled. The deformation field for EBT is given by

u(x,y,2,1) = u’(x,1) = 2w(x, 1), wix,y,2,1) = w(x,1) (2.119)

where u” and w are the axial and transverse displacement of the reference plane. In
the above equation z is the distance measured in the thickness direction from the
reference plane. The layer-wise constitutive law is defined as

Oxx = Qllaxxa (2120)

where oy, and ¢, are the stress and strain in the X direction. The expression for
Q11 as a function of ply fiber angle 0 is given by the first of Eq. 2.95. That is

011 = 0y cos* 0+ 0y sin* 0 + 2(Q12 + 2046 sin’ 0 cos® 0), (2.121)

where Qj; are the orthotropic elastic coefficients for the individual composite ply
and these values in terms of lamina properties are given in Eq. 2.81 The strain
energy and the kinetic energy are defined as

1 1 .
§= 5/ Oundy, I'= E_/ p("‘gz + W2)dl), (2.122)

where () denotes derivative with respect to time and p is the layer-wise density.
Applying Hamilton’s principle, the governing differential equations are
obtained, and can be expressed as
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pAu" —Alluoaxx +B11W7xxx: 07 (2123)
pAW - Blluovcxx +D11W7XXX)(: 0 (2124)

and the force boundary conditions are obtained as

A’ —Biw, = Ny, (2.125)
Bi1ut’ x =D1iWiopn = Vi, (2.126)
—B U’ +Dy W, = M, (2.127)
where
+h/2
[A11,B11,Dy1] = / O [1,z,2%]bdz, (2.128)
—hn/2

h is the depth of the beam, b is the layer width and A is the cross-sectional area of
the beam. N,,V, and M, are the axial force, shear force and bending moment,
respectively. The governing differential Eqs. 2.123 and 2.124 represent a system
of coupled linear PDEs. Note that when By, is zero, that is when the ply stacking
sequence is symmetric, the axial and transverse motion gets uncoupled.

2.7.2 Governing Differential Equation for a Higher Order Beam

In higher order beams, higher order effects are introduced by considering the
shear deformation and lateral contraction. If shear deformation alone is con-
sidered, then such a theory is called the First Order Shear Deformation Theory
(FSDT) as first introduced in [15]. In FSDT, the plane sections remain plane
assumption of the elementary beam is violated and as a result the slopes are not
derived from the transverse displacements. This also introduces a shear strain in
the model. The introduction of lateral contraction in the isotropic rod model was
first done by Mindlin and Herreman [10]. Introduction of lateral contraction
introduces an additional motion in the form of transverse displacement. The
direction of motion of the lateral contraction is shown in Fig. 2.12. The dis-
placement field for the axial and transverse motion based on FSDT and lateral
contraction is given by

u(x,y,z,t) = u’(x,t) — z¢p(x, 1), w(x,y,z,t) = w(x,t) + 2 (x, 1) (2.129)

where u and w are, respectively, the axial and transverse displacements at a
material point. u’ and w’ are the beam axial and transverse displacement of the
reference plane. ¢ is the curvature-independent rotation of the beam cross-section
about the Y-axis. } = ¢, is the contraction/elongation parallel to the Z-axis.
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section in the YZ plane and
degrees of freedom

Fig. 2.12 Beam cross- T Z
?Y

Following conventional notation [12], the constitutive model for an orthotropic
laminated composite beam can be expressed as

Oxx Ql 1 QIB 0 Exx
Oz ¢ = |03 O3 _0 &z - (2.130)
Txz 0 0 QSS Vxz

Using Hamilton’s principle and Egs. 2.129 and 2.130, the governing wave
equations can be obtained as

Su : Iit® — I — At e +B11 e —A13t e = 0, (2.131)

O = Ly + Lo + Ap3u® . —Bi3oe +As3th — Bss(Wyw —hyr) — Dssth o = 0,

(2.132)
Sw : o+ Iy — Ass(Worx =) — Bssi e = 0, (2.133)
8¢ : hp — Lii® — Ass(w.x —) — Bsshx +B111t° e —D11 e +B13x = 0.
(2.134)
The four associated force boundary conditions are
A =B +AisY =Ny, Bss(wyx—¢) + Dssiy, = Ox, (2.135)

Ass(Wx —@) + Bssy . = Vo, —Byu’, +D11¢, —Bisy = M,. (2.136)

The stiffness coefficients which are functions of individual ply properties, ply
orientation etc. and integrated over the beam cross-section, can be expressed as

Zitl
[Aj By, Dy] = Z/ 0;[1,2,2°]bdz, (2.137)
d Zi

which is a slightly generalized form of Eq. 2.128. The coefficients associated with
the inertial terms can be expressed as
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Zit1

o, Iy, 1] = Z/ p[l,2, 2]bdz. (2.138)
iy

In Egs. 2.137 and 2.138, z; and z;;; are the Z-coordinate of bottom and top
surfaces of the ith layer and b is the overall width of the beam. It can be noticed that
for asymmetric ply stacking, all four modes; axial, flexural, shear and thickness
contraction, are coupled with each other. This makes the problem cumbersome to
solve accurately using an analytical approach for all boundary conditions. Note that
we can recover the elementary beam equations by substituting Ass == oo and
L, = 0.

2.7.3 Governing Equations for a Composite Plate

Here, we will use the Classical Plate Theory (CLPT) to derive the equation of
motion for a laminated composite plate. The plate is symbolized with three
motions, namely the in-plane motions u(x,y, ) and v(x,y,7) and the out-of-plane
motion w(x,y,?). In addition, the plate can support two slopes in the in-plane
directions, namely ¢, and ¢,, which as in the case of elementary beam, are derived
from transverse displacement.

The assumed displacement field for a plate as per CLPT, is given by

U(x,y,z,t) = u(x,y,t) — z0w/ox,

V(x,y,z,t) = v(x,y,t) — zOw/ Dy,

W(x,y,z,t) = w(x,y,1),
where, u, v and w are the displacement components of the reference plane in the X,
Y and Z directions, respectively and z is measured downward positive along the

out-of-plane direction.
The associated non-zero strains are

Exx Ou/dx —z0%w/0x?
&y ¢ = Ov/dy +4 —0*w/0y? p={e}+{a}, (2.139)
Exy Ou/0y + Ov/0x —270%w/0x0y

where &, and ¢,, are the normal strains in the X and the Y directions, respectively
and &y, is the in-plane shear strain. The corresponding normal and shear stresses
are related to these strains by the relation

O xx Ql 1 Q 12 0 Exx
Oy ¢= Q2 On 0 &y ¢ (2.140)
Oxy 0 0 Q66 Exy

where QU are the elements of the anisotropic constitutive matrix. As before, the
expressions for Q;; in terms of the elastic constants and ply-angles are given by
Eq. 2.81. The force resultants are defined in terms of these stresses as
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NXX O-xx MXX O-xx
Ny b = / Gy pdA, My, % = / 2 oy BdA. (2.141)
Nyy A \ Ox M,y A Oxy

Substituting Egs 2.140 and 2.139 in Eq. 2.141, the relation between the force
resultants and the displacement field is obtained as

Ny Ay Ap 0 [Bii B, 0

Nyy = |Ap Axn 0 {bo} + | Biz Bax 0 {81}, (2142)
NoJ [0 0 Ag] 0 0 B

M By Bz 0 [Diy D O

Myy = | B, Bxn 0 {&o} + [ D1y Dan 0 {81}, (2143)
My) [0 0 Bel 0 0 De

where the elements A;;, B;j and Dj; are defined by Eq. 2.137.
The kinetic energy (7) and the strain energy (U) are defined in terms of the
displacement field and stresses as

T=(1)2) / p(U° + V2 + W)V, (2.144)
\4
U=(1/2) /(axxsxx + Oyyeyy + Oryny)dV. (2.145)
|4

Applying Hamilton’s principle, the governing equations can be written in terms of
these force resultants as

ON,,/0x + ON,, /0y = Lii — I,0W/0x, (2.146)
ON,y,/0x + ON,, /0y = I,V — I,0w /0y, (2.147)
0" M., /Oxx 4 207 M, /oxy + 0*M,, /dyy = I — L (0% /dxx + 0% /dyy)
+ 1;(0it/0x + 0v/dy),
(2.148)
where the mass moments Iy, /; and I, are given by Eq. 2.138.
The governing equations can be further expanded in terms of the displacement

components. However, because of their complexity, they are not given here and
can be found in [12]. The associated boundary conditions are

Nxx = Ny + nyny; va = Nyn, + ]Vyyl’ly, (2149)
Mxx = —-Myn, — Mxyny, (2150)

V =(0M,, /0x + 20M,y /0y — Lit + L3V /dx)n,

2.151
+(0M,y /Ox + 20M,, /0y — IV + 1,0 /0y)n,, ( )



2.7 Governing Equations for Beams and Plates 81

where N,, and Nyy are the applied normal forces in the X and Y direction, M,, and
M,, are the applied moments about the ¥ and X axes and V is the applied shear
force in the Z direction. By expressing the strains and curvature in terms of
displacements, we can write the governing equations for a plate.

2.8 Spectrum and Dispersion Relations

As mentioned earlier, the two important characteristics of wave propagation that are
very significant from the SHM point of view are the spectrum and dispersion rela-
tions, respectively. Spectrum relations are obtained by plotting the different wave-
numbers of the system with frequency. If the variation is a straight line, then the
wavenumbers are linearly related to the frequency signifying that the waves are non
dispersive and the group speeds do not depend on the frequency. Non dispersive
waves do not change their shape as they propagate. This property is very useful in
SHM since the reflections, if any coming from the damage of the structure, can be
clearly identified from the time history plots if the group wave speeds are known. On
the other hand, if the wavenumber has a nonlinear relation with frequency, then such
waves are called dispersive waves and for these waves, at each frequency, their
group speeds are different. These waves change their wave profiles as they propa-
gate. Handling dispersive signals is more difficult. The wavenumber and group
speeds for different 1D general waveguides were discussed earlier in Sect. 2.5.1.

In this section, we derive the spectrum and dispersion relations for a few specific
waveguides. We saw in Sect. 2.5.1 that the wavenumber characteristic equation of
one dimensional (1D) waveguides is a polynomial expression, the order of which is
defined by the type of motion the waveguide can support. These equations can get
more complicated due to the presence of stiffness or inertial coupling as is found in
laminated composite structures. Hence, to solve such polynomial equation of very
high order, we explain two different methods in this section.

2.8.1 Efficient Computation of the Wavenumber and Wave
Amplitude

The constitutive relation and the displacement field in an laminated composite
material give rise to both stiffness and inertial coupling, which poses great diffi-
culty in wavenumber and wave vector computation. This is due to the increased
order of the polynomial of the characteristic equation. The conventional method of
wavenumber and coefficient computation (see Sect. 2.5.1) is not adequate to tackle
this situation and there is a need to improve the existing formalism. The devel-
opment towards this end started with the elementary composite beam [13], which
needs a sixth-order polynomial to be solved for wavenumber computation. The
wavenumbers were computed numerically, where the Newton—Raphson method
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was used. The rest of the roots were expressed in terms of this real wavenumber.
The coefficient vectors were evaluated analytically. The situation becomes com-
plicated in the first-order shear deformable beam [14], where the wave matrix has a
size of 3 x 3, although the spectrum relation is still a sixth-order polynomial. As
was done before, the spectrum relation was solved numerically by tracking the real
roots first using the NR algorithm, and wave amplitude vectors were evaluated
analytically. It must be noted that computation of the wave vectors requires the
solution of a system of matrices of size N, — 1 x N, — 1, where N, is the number
of different motions the waveguide can support. The situation becomes too difficult
to handle in the 3D beam model, where N, = 6. This model gives rise to 6 x 6
wave matrix and as a result, it generates a 12th-order polynomial, which
is required to be solved at each frequency. The solution of this equation is
not possible using conventional quadratic solvers that was reported earlier in
Sect. 2.5.1 or using the Newton—Raphson algorithm. As mentioned earlier, the
characteristic equation is a polynomial in the wavenumber k and the problem can
be formulated as a standard polynomial eigenvalue problem (PEP) of finding
nonzero v and k such that

W(k)y = (Zp: k’A,-)v =0 (2.152)

where
A[ c CN‘,XN.,V c CN‘,XI

and where p is the order of the PEP. Each A; depends upon the material properties,
frequency and wavenumber. Two different strategies are given here to solve the
PEP.

2.8.1.1 Method 1: The Companion Matrix and the SVD Technique

In the first method, it is noted that the desired eigenvalues are the latent roots,
which satisfy the condition det(W(k)) = O [8]. Further, if &; is any such root, then
there is at least one non-trivial solution for v, which is known as the
latent eigenvector. To find the latent root, the determinant is expanded in a
polynomial p(k), and solved by the companion matrix method, where the fol-
lowing matrix is formed:

0 L0 - 0
0 0o 1 :

Lip)= | : : ST (2.153)
0 0 0 1

—Um —p—1 s T O
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where p(2) is given by
p(A) ="+ 2" o, (2.154)

One of the many important properties of the companion matrix is that the
characteristic polynomial of L(p) is p(k) itself [9]. Thus, the eigenvalues of L(p)
are the roots of p(k), which are obtained readily using any standard subroutine,
e.g., LAPACK (xGEEV group).

Once the eigenvalues are obtained, they can be used to obtain the eigenvectors.
To do so, it is to be noted that the eigenvectors are the elements of the null space of
W (k) and the eigenvalues make this null space non-trivial by rendering W (k)
singular. Hence, computation of the eigenvectors is equivalent to computation of
the null space of a matrix. To this end, the singular value decomposition (SVD)
method is most effective. Any matrix A € C"*" can be decomposed in terms of
unitary matrices U and V and diagonal matrix § as A = USV*, where H denotes
the Hermitian conjugate [4]. Also, S is the matrix of singular values. The columns
of the unitary matrix V that correspond to zero singular values (zero diagonal
elements of §) are the elements of the null space of A. The SVD again can be
performed by any standard subroutine (e.g. XGESVD group of LAPACK)

2.8.1.2 Method 2: Linearization of PEP

In this method, the PEP is linearized as

Az = ABz (2.155)
with
A,B e CPNPNy
and where
r0 I 0 - 0 7 1
O 0 I - 0 I
A=| |, B= . :
: : : I I
40 —-A1 Ay - A, —Ap
(2.156)
The relation between x and z is given by z = (x7, 7, ..., /"~ 'xT)", while B'A is

a block companion matrix of the PEP. The generalized eigenvalue problem of
Eq. 2.155 can be solved by the QZ algorithm, the iterative method, the Jacobi—
Davidson method or the rational Krylov method. Each one of these has its own
advantages and deficiencies, however, the QZ algorithm is the most powerful
method for small to moderate sized problems, and is employed in the subroutines
available in LAPACK (xGGEV and xGGES group).
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In both of these methods, an eigenvalue solver is employed, where for the QZ
algorithm, the cost of computation is ~30n® and an extra ~ 16n> for eigenvector
computation (n is the order of the matrix). Since, the order of the companion
matrix in the second method is three times that of the first method, the cost is 27
times more, which is significant as this computation is to be performed N x M
times.

The PEP admits N, x p eigenvalues and p eigenvectors. If both Ay and A, are
singular, the problem is potentially ill-posed. Theoretically, the solutions might not
exist or might not be unique. Computationally, the computed solutions may be
inaccurate. If one, but not both, Ag and A,, is singular, the problem is well posed,
but some of the eigenvalues may be zero or infinite, and caution should be
exercised in rejecting those roots.

There are advantages and disadvantages of both methods. In the first method,
the determinant of the wave matrix needs to be formed, which for large N, is too
difficult to obtain. In this case, resorting to the second method is advantageous as it
obviates the necessity for obtaining the lengthy expressions for «; in Eq. 2.154.
However, in the second method, there is no control over the eigenvalues, as we
might be interested sometimes in separating the forward propagating wavenum-
bers (for the formulation of throw-off elements). In this case, the first method is the
only option.

2.8.2 Spectrum and Dispersion Relation for an Elementary Beam

The first step in constructing the spectrum and dispersion relation is to transform
the governing differential equation to the frequency domain using DFT, which
would normally lead to an ordinary differential equation with constant coefficient.
In the present case, the governing differential equations are given by Egs. 2.123
and 2.124. The DFT on the field variables u° and w is given by

N

N
Wi t) = i(x, )" =Y (e ), (2.157)

n=1 n=

—_

wx, ) =Y Wlx, w,)e" =) (e ) el (2.158)

M-
M=

n=1

When the above transform is substituted in the governing equation, the gov-
erning PDE’s will become a set of ODE’s with the time ¢ removed from the
governing equation and the frequency w introduced as a parameter. The resulting
ODE’s are of constant coefficients type and have complex exponentials as solu-
tions. When the exponential solutions are substituted in the transformed ODE’s,
we get a characteristic equation for the computation of wavenumber k, which can
be transformed into PEP, which is given by
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0 0 0 —jB
k4 e . Jb11
0 Dy PLiBu 0

An O —pAw? 0 7 0
515 o 1 el {0}
0 0 0 —pAa? | | W, 0

This equation is of the form given in Eq. 2.152, which can be recast in the form
given by Eq. 2.153 or 2.155. Using the companion matrix method outlined in
Sect. 2.8.1.1, we can determine the wavenumbers and the group speeds. Once the
solutions k, and the pairs {it,, w, } are obtained for each p, the explicit form of the
solution is

(2.159)

n R m i
{” @ } Zc { ! }ejk"‘x. (2.160)
Ww(x, wy)

We will now plot the spectrum and dispersion relations. The main objective
here is to bring out the effect of coupling on wave behavior. The maximum
axial-flexural coupling that one gets from such natural ply-stacking is when the
cross-plies and 0° plies are stacked in separate groups. A generalization of the
effect of axial-flexural coupling gives some valuable insights, when the spectrum
relation (Fig. 2.13) and dispersion relation (Fig. 2.14) are studied. The bending—
axial coupling is characterized by a factor r:B%l/DHAU. An AS/3501-6
graphite—epoxy plies (thickness of each layer 1.0 mm) with three stacking
sequences [010](r = 0.0),[05/30,/605](r = 0.312) and [05/90s](r = 0.574) are
considered. In Fig. 2.13, it can be observed that, corresponding to axial mode
(Mode 1) and flexural modes (Mode 2 and 3), the wavenumbers increase in
magnitude for increasing coupling. However, this increase in Mode 2 (propagating
component) is more than that in Mode 3 (evanescent component). Fig. 2.14 also
shows the variation of group speed C, = dw/dk; normalized with the parameter

Fig. 2.13 Spectrum relation
for various axial-flexural
couplings




86 2 Fundamentals Concepts in Elasticity, Mechanics and Wave Propagation
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¢, = \/E/p. From these plots, it is clear that the axial speed is reduced by more
than 26% due to the presence of asymmetry arising from cross-ply stacking in
groups. Also at around 50 kHz, the flexural speed of propagation is reduced by
42% for maximum coupling.

2.8.3 Spectrum and Dispersion Relation for a Higher
Order Beam

The governing Equation for a higher order beam is given by Eqs. 2.131-2.134. As
before, the governing equations are transformed to frequency domain using DFT,
where the displacement field, {u} = {u’,,w, ¢}(x,1), can be written as

N N

w=> {i,w,p}x)e ™ = "a(x)e (2.161)

n=1 n=1

where w), is the circular frequency at the nth sampling point and N is the frequency
index corresponding to the Nyquist frequency in DFT.

Substituting the assumed solution of the field variables in Eqs. 2.131-2.134, a
set of ODEs is obtained for u(x). Since, the ODEs have constant coefficients, the
solution is of the form @ye 7%, where k is the wavenumber and #, is a vector of
unknown constants, i.e., #y = {uo, ¥,, wo, ¢, }. Substituting the assumed form in
the set of ODEs, a matrix—vector relation is obtained which gives the following
characteristic equation

Wiig = 0 (2.162)
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where W is
Allkz—lowﬁ jA13k 0 Ila)ﬁ—Bnkz
—jA13k —k,Izwﬁ + Asz + Dssk? —Ilwi + Bssk? —jBssk + jB13k
0 —Ilwﬁ + B55k2 A55k2 — IO(,!)% —jAssk
Loy, — Bik? JBssk — jBi3k JAssk —bL? + Dy 1k* + Ass

(2.163)

In this case, we use the method based on linearization of PEP outlined in
Sect. 2.8.1.2. According to the previous discussion, in this case, the order of the
PEP, p =2 and N, (size of the W) is 4. Thus, there are eight eigenvalues alto-
gether, which are the roots of the polynomial (called the spectrum relation
obtained from the singularity condition of W as

Q1K + Qk® + O3k* + Quk® + 05 = 0. (2.164)

The spectrum relation suggests that the roots can be written as +k;, =ky, £k3
and +k4.

Before solving this eighth-order characteristic equation (obtained by setting the
determinant of the PEP equal to zero), one can obtain an overview of the number
of propagating and evanescent modes as follows. By substituting w, = 0 in the
characteristic equation and solving for k;, it can be shown that for the uncoupled

case (B; = 0)
JAZ, — Aj A
k(0)..6 =0, k(0)7,8 ==+ HATD:SB (2.165)

This implies that six zero roots starting at w, = 0 correspond to the axial, flexural
and shear modes, whereas the two nonzero roots must be the wavenumbers asso-
ciated with the contractional mode. Here, it is to be noted that ¢, = 0 for elementary
Beam theory and FSDT for the 3D orthotropic constitutive model is reduced to plane
stress model with respect to the XY plane. However, in the presence of thickness
contraction, ¢,, # 0, which requires a plane-stress model in the XZ plane reduced
from a 3D constitutive model. This produces a slight difference in the values of Ass
compared to that in FSDT. However, almost all the conventional fiber reinforced
composites used as structural material have Q;; > Qi3, Q33 > Qy3, which implies
that the nonzero roots in Eq. 2.165 must be imaginary at and near w, = 0. Therefore,
we have two evanescent (one forward and one backward) components in the con-
tractional mode in the low frequency regime. Next, by substituting k; = 0 in
Eq. 2.164 and solving for w,, we get the cut-off frequencies as

Ass Azz
cutott = 0,0,0,0, , . 2.166
Deuroft \/12(1_s§) \/12(1_,@) (2.166)

This shows that initially there are two forward propagating modes(one axial, one
flexural), two backward propagating modes (one axial and one flexural), two
evanescent flexural modes (forward and backward) and two additional evanescent
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Fig. 2.15 Nature of
wavenumber dispersion in
axial (kp), flexural (k3), and
shear (kg) with cut-off and
contraction (kg) with cut-off;
‘0’, graphite—epoxy AS/3501
[0],, composite; ..., glass—
epoxy [0],, composite; Total
thickness # = 0.01 m
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Fig. 2.16 Nature of
wavenumber dispersion in
axial, flexural and shear
modes for different stiffness
and material asymmetries;
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locations of cut-off frequency
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contractional modes (forward and backward) for @, > 0. The shear mode starts
propagating after the cut-off frequency corresponding to Ass in Eq. 2.166. The
contractional mode starts propagating later, since Azz > Ass.

In Fig. 2.15, the wavenumber dispersion is plotted for AS/3501 graphite—epoxy
and glass—epoxy [0],, composite beam with total thickness 7 = 0.01 m. Material
properties are taken from [12]. Note that the graphite—epoxy has very high ratio
E11/G13 (=20) and moderate stiffness Ey; =~ 144 GPa. On the other hand, the
glass—epoxy has very low ratio E;;/G;3 (~6) and very low stiffness
Ei; = 54 GPa. For both of these materials, the plot in Fig. 2.15 shows that the
propagating components before the cut-off frequency in contraction are similar to
those in Fig. 2.16 in the absence of the variable . Also the wavenumber asso-
ciated with the evanescent components in contractional mode before the cut-off
frequency is much higher than that due to shear, and therefore decays rapidly.
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Hence, below the cut-off frequency in contraction (which is always much higher
than shear cut-off since A33 > Ass for a composite), change in the response due to
addition of the contractional mode is negligible.

When the thickness contraction term s is neglected in the displacement field,
and subsequently in the wave equations, the characteristic equation is a sixth-order
polynomial in k. Again, the PEP framework is used to obtain the wavenumber and
hence, the group speeds.

In Fig. 2.16, the dispersion of wavenumbers corresponding to axial, flexural
and shear modes are shown. An AS/3501-6 graphite—epoxy beam cross-section
with depth 2z = 0.01 m is considered. Beside this, to study how the wave packets
travel at different frequencies, the group speeds ¢, = Re[dw,/dk;| in the axial,

flexural and shear modes are plotted in Fig. 2.17, where ¢y = /Ay /Iy is the
constant phase speed in axial mode. From these two plots, only one cut-off fre-
quency appears, above which the shear mode starts propagating, which is other-
wise an evanescent component contributing to the flexural wave. Figure 2.17
shows that the higher the stiffness coupling (higher value of r) the higher the group
speed of the shear wave above the cut-off frequency. At the same time, the group
speed of the longitudinal wave drastically falls well before the cut-off frequency.
The flexural mode remains least affected by both stiffness and mass coupling, and
remains almost non-dispersive above the cut-off frequency.

2.8.4 Spectrum and Dispersion Relation for an Anisotropic Plate

Here, we begin with the governing differential equation, derived earlier
(Egs. 2.146-2.148). These force resultant differential equations are first written in
terms of displacement using force resultant displacement relationship. These dif-
ferential equations are functions of two spatial variables x and y. By assuming that
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the second spatial variable, that is, y extends to infinity, we eliminate this variable
from the governing equation by taking an additional transform in this direction.
This process introduces an additional wavenumber in the horizontal direction.
Instead of using DFT for the second transform in the y directions, Fourier Series
can be conveniently employed for the ease of applying the loading boundary
conditions [5]. Hence, the solution for the three dependent variables (displace-
ments u(x,y,),v(x,y,t) and w(x, y,t)) is given by

N-1 M
cos(M,) | —jont
u(x,y, 1) ;; {Sm " }e , (2.167)
N-1 M .
vy, ) =) i Sin(1,9) | g—jons (2.168)
, n=0 m=1 COS y) ’
N-1 M

w(x,y,1) > i {‘;’If ))}efwn’, (2.169)

n m=1

Il
o

where again the cosine or sine dependency is chosen based on the symmetry or
anti-symmetry of the applied load about the X axis and #,, is the horizontal
wavenumber corresponding to mth spatial mode. Substituting Eqgs. 2.167-2.169 in
the governing differential equations, a set of ODEs is obtained for the unknowns
it(x), v(x) and Ww(x). Since these ODEs have constant coefficients, their solutions
can be written as ite /% Je~** and we /%, where k is the wavenumber in the X
direction, yet to be determined and u,v and w are the unknown constants.
Substituting these assumed forms in the set of ODEs, a PEP is posed to find (v, k),
such that,

Wk = (k*Ay + A3 + KPAy + kA +Ag)v =0, v #0, (2.170)

where A; € C¥*3, k is an eigenvalue and v is the corresponding right eigenvector.
The matrices A; are

—Agei2, + Low? 0 0
A() = 0 —Azzﬂ%n + Ioa)i —3227’],3,, + I] (U,%?]m ,
0 _3221131 + Il wﬁnm _D22’7§1 + IO(A)% + 12(’03’11211
(2.171)
0 —jfm(Ar12 + Ags)  —jnn(Bia + 2Beg) + jl 0
A= JMn(Ar2 4 Ass) 0 0
Jjiy,(Bi2 + 2Bgs) — jL o} 0 0

(2.172)
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—Aq 0 0
Ay = 0 —Agg —nm(Bl2 + 2B66) s (2173)
0 —1,,(Bi2 +2Bss)  —1%(2D12 + 4Dgs) + Lw?
0 0 —jB;
As=|0 0 0 | (2.174)
JjBii 0 0
0 0 0
As=]0 0 0 | (2.175)
0 0 —Dy

It can be noticed that Ay is singular, thus the lambda matrix W (k) is not regular [9]
and admits infinite eigenvalues [16].

The PEP is solved by the methods described before. In this case, the spectrum
relation is a quartic polynomial in m, where m = k2,

p(m) =m* + Cym® + Cym* + Csm + Cy, G €C, (2.176)

which generates a companion matrix of order 4. In both the methods of wave-
number computation described earlier, an eigenvalue solver based on QZ algo-
rithm is employed. The polynomial governing the wavenumbers (Eq. 2.176) is
solved by considering a graphite—epoxy (AS/3501) plate of 10 mm thickness. Two
different ply-stacking sequences are considered, one symmetric [050] and the other
asymmetric [05/90s]. The ¥ wavenumber, ,, is fixed at 50 for all the wavenumber
computations. The real and imaginary part of the wavenumbers are shown in
Figs. 2.18 and 2.19, respectively. The points in the abscissa marked 1, 2 and 3
denote the cut-off frequencies and they are at 3, 13.7 and 21 kHz. Two roots are
equal before point 1, and they are denoted by k; ». Thus, before point 1, there are
only four non-zero real roots (%k;,) and eight non-zero imaginary roots

Fig. 2.18 Real part of 200
wavenumbers, symmetric
sequence

Wavenumber, imaginary part, [l/m]

- 10

-150F

=200
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Fig. 2.19 Imaginary part of 150 T r . r .
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(£ki 2, £ks and *ky). After point 1, one of the k; » becomes pure real and another
one becomes pure imaginary and there is only an imaginary root at high frequency.
These roots correspond to the bending mode, w. It can be further noticed that
before point 1, these wavenumbers (k;,) simultaneously possess both real and
imaginary parts, which implies these modes are attenuated while propagating.
Thus, there exist inhomogeneous waves in anisotropic composite plate [1]. The
points marked 2 and 3 are the two cut-off frequencies, since the roots k3 and ky4
become real at this point from their imaginary values. These roots correspond to
the in plane motion, i.e., # and v displacements.

Next, the asymmetric ply-sequence is considered (Figs. 2.20 and 2.21), for
which the wavenumber pattern remains qualitatively the same. The cut-off fre-
quencies are at 5.3, 13.8 and 60 kHz, where the first one corresponds to the
bending mode and the last two correspond to the in-plane motion. In comparison to
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Fig. 2.21 Imaginary part of 250
wavenumbers, asymmetric
sequence
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symmetric ply-stacking, it can be said that the first and the third cut-off frequencies
are of higher magnitude than their symmetric counterparts and the rate of incre-
ment is higher in the third cut-off frequency. Further, the magnitudes of all
wavenumbers are increased. Significantly, at higher frequency, the third wave-
number k3 has lower magnitude than the bending wavenumbers (one of k; ) as
opposed to the symmetric case. Similar trends are visible in the imaginary part of
the wavenumbers, where the magnitude is higher in all cases (almost double) than
the imaginary wavenumbers of the symmetric sequence. Thus attenuation of the
propagating modes is comparatively higher in the asymmetric case.

The cut-off frequencies can be obtained from Eq. 2.176 by letting k = 0 and
solving for w,. The governing equation for the cut-off frequency becomes

aowg + alwi + agwﬁ 4+a3 =0, (2177)
where a; are material property and wavenumber #,, dependent coefficients given as
ap = 2L + I — LIT1, (2.178)

a; = —I2Dyn* — IP(Ax + Ass)* — L' (Ass + Az) + Agel* I3 + 21.Boon,l,,

(2.179)

ap = *10352’76 + Agsl* Anal + Assh°I.D2y — 2A661° Bl (2.180)
+ LARN® Doy + Agsii®Anal,

ay = Agsn® (—ApDyy + BL). (2.181)

When Eq. 2.177 is solved for different 7,,, the variation of the cut-off fre-
quencies with #,, can be obtained. This variation is given in Fig. 2.22. As shown in
the figure, variation of the cut-off frequency for the bending mode ), , follows a
non-linear pattern, whereas the other two increase linearly. Although not evident
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Fig. 2.22 Variation of cut-off frequency with 1,

from this figure, close inspection reveals that the pattern for w; is the same for
both symmetric and asymmetric cases. Since it is the magnitude of A, that has not
changed with ply-angle, it can be concluded that w; is proportional to the ratio of

\/A12/p. Further, there is no variation in w; , for changing ply-stacking, whereas,
for wy, the effect is maximum. Thus, with the help of this figure, the location of the
points 1-3 in Fig. 2.18, 2.19, 2.20 and 2.21 can be explained.
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Chapter 3
Signal Processing Techniques

3.1 Integral Transforms

It is customary in SHM studies to handle time signals of varying complexity,
which requires manipulation and fine tuning for their use in damage prediction.
In many cases, these actions are effective if performed in the frequency domain.
In addition, SHM studies involve using signals of high frequency content and
require methods for wave propagation analysis. There are a number of different
methods available to transform a time signal into the frequency domain. Advan-
tages and disadvantages as well as issues concerning these different transforms are
described in the following sections.

3.1.1 Fourier Transforms

A time signal can be represented in the Fourier (frequency) domain in three
possible ways, namely the Continuous Fourier Transform (CFT), the Fourier
Series (FS) and the Discrete Fourier Transform (DFT). In this section, only brief
descriptions of the above transforms are given. The reader is encouraged to refer to
[13] for more details.

3.1.1.1 Continuous Fourier Transforms

Consider any time signal F(¢). The inverse and the forward CFTs, normally
referred to as the transform pair, are given by
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1 oo R l . oo l
F() = 5 / Flo)ed™do,  Flo) = / F(d)e™ar, (3.1)
T
where o is the angular frequency and j (2 = —1) is the complex number. F (w) is

necessarily complex and a plot of the amplitude of this function against frequency
will represent the frequency content of the time signal. As an example, consider a
rectangular time signal of pulse width d. Mathematically, this function can be
represented as

F(t)=F, —dj2<t<d/2

. (3.2)
=0 otherwise.

This time signal is symmetrical about the origin. If this expression is substituted in
Eq. 3.1, we get

F(w) = Fod{M}. (3.3)

wd/?2

The CFT for this function is real only and symmetric about w = 0. The term
inside the curly brace is called the sinc function. Also, the value of the CFT at
o = 0 is equal to the area under the time signal.

Now the pulse is allowed to propagate in the time domain by an amount f.
Mathematically such a signal can be written as

F(l‘) =Fy t<t<ty+d
=0 otherwise. (3.4)

Substituting the above function in Eq. 3.1 and integrating, gives

F(ow) = ng{isin(i(:;% 2)}e—fw<f0+d/2>. (3.5)

The above CFT has both real and imaginary parts. These are plotted in Fig. 3.1.
From Eqgs. 3.3 and 3.5, we see that the magnitude of both these transforms are the
same, however, the second transform has phase information built in it. That is, we
see that the propagation of the signal in the time domain is associated with the
change of phase in the frequency domain. Wave propagation problems are always
associated with phase changes, which occur as the signal propagates. Based on the
CFT, one can also determine the spread of the signal in both the time and fre-
quency domain. For this, one has to look at the frequencies at which the CFT is
zero. This occurs when

. (Und wnd 2n7r 47'C
s1n7 =0, =nm, Oor W, =— W) — W =Aw=—
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Fig. 3.1 Continuous Fourier transforms for various pulse width

That is, if the spread of the signal in the time domain is d then the spread in the
frequency domain is Aw = 4n/d. Here, Aw represents the frequency bandwidth.
Hence, a Dirac delta function, which has infinitesimal width in the time domain,
will have infinite bandwidth in the frequency domain.

3.1.2 Fourier Series

Both the forward and the inverse CFT require mathematical description of the time
signal as well as their integration. In most cases, the time signals are point data
acquired during experimentation. Hence, what we require is the numerical rep-
resentation for the transform pair (Eq. 3.1), which is called the DFT. The DFT is
introduced in detail in the next section. The Fourier Series (FS) is in between the
CFT and the DFT, wherein the inverse transform is represented by a series, while
the forward transform is still in the integral form as in CFT. That is, one still needs
the mathematical description of the time signal to obtain the transforms.
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The FS of a given time signal can be represented as

_ %y Y 4 b, sin( 2
F(t) = 5 + ; [a,, cos (ZnnT> + b, sin (27rnT)} (3.6)
where
2 r 2 r 2
:—/F cos( )dt ,1:—/F sin( m)dr. (3.7)
T T
0 0

Equation 3.6 corresponds to the inverse transform of the CFT, while Eq. 3.7
corresponds to the forward transforms of the CFT. Here T is the period of the time
signal, i.e., the discrete representation of a continuous time signal F'(), introduces
periodicity of the time signal. The FS given in Eq. 3.6 can also be written in terms
of complex exponentials, which can give one-to-one comparison with CFT. That
is, Egs. 3.6 and 3.7 can be rewritten as

1 N @, o,
F(t)zZ;(an—b )elnt ZFa
) 1 T 5 (3.8)
Fn = E(an - bn) = ?/F(l)ei'iw”rdl‘, W, = %

0

Because of enforced periodicity, the signal repeats itself after every T seconds.
We can now express the time signal in terms of the fundamental frequency as

ZF e/27mf0t ZF e]ﬂ(Uot (39)

From Eq. 3.9, it is clear that, unlike in CFT, the transform given by FS is discrete
in frequency. To understand the behavior of FS as opposed to the CFT, the same
rectangular time signal used earlier is again considered here. The FS coefficients
(or transform) are obtained by substituting the time signal variation in Eq. 3.8.
This is given by

- Fy |:sin(nnd/T):| efj(z(]+d/2)2nn/T. (310)

n— ? (nmd/T)

The plot of the transform amplitude obtained from the CFT and the FS are
shown in Fig. 3.2. The figure shows that the values of the transform obtained
by FS at discrete frequencies fall exactly on the transform obtained by CFT.
The figure also shows the transform values for different time periods 7. We see
from the figure that the larger the time period, the closer are the frequency
spacings. Hence, if the period tends to infinity, the transform obtained by FS will
be exactly equal to the transform obtained by CFT.
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Fig. 3.2 Comparison of Fourier series with continuous Fourier transforms

3.1.3 Discrete Fourier Transform

The DFT is an alternative way of mathematically representing the CFT in terms of
summations. Here, both the forward and inverse CFT given in Eq. 3.1 are repre-
sented by summations. This will completely do away with all complex integration
involved in the computation of CFT. In addition, it is not necessary to represent the
time signals mathematically and the great advantage of this is that one can use the
time data obtained from experiments. Numerical implementation of the DFT is
done using the well-known FFT algorithm.

We begin here with Eq. 3.8, which is the FS representation of the time signal.
The main objective here is to replace the integral involved in the computation of
the Fourier coefficients by summation. For this, the plot of time signal shown in
Fig. 3.3 is considered.

The time signal is divided into M piecewise constant rectangles, whose height is
given by F,,, while the width is AT = T /M. We derived earlier that the continuous
transform of a rectangle is a sinc function. By rectangular idealization of the
signal, the DFT of the signal will be the summation of M sinc functions of width
AT. Hence the second integral in Eq. 3.8 can be written as
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Fig. 3.3 Time signal A
discretization for DFT F(t)
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[ (w,AT/2) } Z (3.11)

Let us now look at the sinc function in Eq. 3.11. Its value depends on the width of
the rectangle AT. That is, as the width of the rectangle becomes smaller, the
term inside the bracket of Eq. 3.11 tends to unity. This happens for all values of
n<M. It can easily be shown that for values of n > M, the values of the transform
is approximately equal to zero. Hence, the DFT transform pairs can now be
written as

1 N—1 ~ ) 1 N—1 ~ ]
F, = F(ty) =5 Fnd =25 Fe™t
n=0 n=0 (3.12)

F _ F wn Z ON lFme —jont, ZF —j2nnm/N

The periodicity of the time signal is necessary for DFT as we begin from the FS
representation of the time signal. Now, we can probe a little further to see whether
the signal has any periodicity in the frequency domain. For this, we can look at the
summation term in Eq. 3.11. Hypothetically, let us assume n > M. Hence, we can
write n = M + n. Then, the exponential term in the equation becomes

e /Ontm — om0t — oMoty A0t _ o —j2T =0l N0

Hence, the summation term in Eq. 3.11 becomes

M—1
AT E ’ F, e m@otn,
m=0
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This term shows that the above summation has the same value when n = n. For
example, if M = 6, then the value of the summation for n = 9, 11, 17 is same as
the value for n = 3, 5, and 11, respectively. Two aspects are very clear from this
analysis. First, n > M is not important, and second, there is forced periodicity in
both the time and frequency domain in using DFT. This periodicity occurs about a
frequency where the transform goes to zero. This frequency can be obtained if one
looks at the sinc function given in Eq. 3.11. That is, the argument of the sinc
function is given by

©nAT = mnAT = ™
2 M
where, we have used the relation AT = T/M.

Here, we see that the sinc function goes to zero when n = M. It is at this value
of n that the periodicity is enforced and the frequency corresponding to this value
is called the Nyquist frequency. As mentioned earlier, this happens due to the time
signal being real only and the transform beyond the Nyquist frequency is the
complex conjugate of the transform before this frequency. Thus, N real points are
transformed to N/2 complex points. Knowing the sampling rate AT, we can
compute the Nyquist frequency from the expression

1
fNyquist = AT (313)

There are a number of issues in the numerical implementation of the DFT, which
are not discussed here. However, the reader is encouraged to consult [13] to get
more information on these aspects.

In order to see the difference in different transform representation, the same
rectangular pulse is again used here. There are two parameters on which the
accuracy of the transforms obtained by the DFT depends, namely the sampling rate
AT and the time window parameter N. Figures 3.4 and 3.5 show the transform
obtained for various sampling rates AT and time window parameter N.

From the figures, we can clearly see the periodicity about the Nyquist fre-
quency. For a given time window N, the figure shows that the frequency spacing
increases with decreasing sampling rate. Also, the Nyquist frequency shifts to a
higher value. Next, for a given sampling rate AT, the time window is varied
through the parameter N. In this case, the Nyquist frequency does not change.
However, for larger N, the frequency spacing becomes smaller and hence we get
denser frequency distribution.

3.1.4 Wavelet Transforms

The concept of the existence of wavelet-like functions, for example, functions like
the Haar wavelet and Littlewood—Paley wavelet, have been known since the early
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Fig. 3.4 Comparison of FFT and continuous transform for a sampling rate AT = 1 s

part of the century. The present form of wavelets is obtained only after an effort by
many researchers [10, 24] to unify the existing concepts and their development for
general understanding of mathematics of wavelets. Since then, an enormous
amount of work has been devoted to the use of wavelets in various applications
such the solution of PDE’s, approximation theories, signal processing and other
related fields.

The wavelet transform is a tool that cuts up data, functions or operators into
different frequency components with a resolution matched to its scale [11].
In signal analysis, the wavelet transform allows to study the time history in terms
of its frequency content. In this respect, the Fourier transform extracts from the
signals, the details of the frequency content but loses all information on the
location of a particular frequency within the signal. Time localization can
be achieved by windowing the signal and then by taking its Fourier transform.
However, the problem with windowed Fourier transform is that the window
lengths are always the same, irrespective of the frequency components. In contrast,
wavelet transforms allow multiple time resolutions according to the frequency
components. Thus, a signal after windowed Fourier transform is as follows:
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Fig. 3.5 Comparison of FFT and continuous transform for different sampling rates

(TYF) (1) = / F(5)8(s — t)e—""ds (3.14)
The corresponding wavelet transform is given as

(i) = [ rou(*57 )a (3.15)

where the position of the time window is controlled by » and its length is deter-

mined by the scaling parameter a.
Wavelets are a family of functions which are characterized by the translation

and dilation of a single function (). This family of functions is denoted by ; ()
and is given by
lpjk(t) :Zm/zl//(zjt_k)a j,kEZ (316)

where, k is the translation or shift index and j the dilation or scaling index. They
form the basis for the space of square integrable functions L?(R), given by
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chgk (1) € LA(R) (3.17)

The wavelets are derived from scaling function ¢(f) which are obtained by solving
the recursive equation, called dilation or scaling equation given as

= a2t —k) (3.18)
k

The constant coefficients a; are called the filter coefficients and often, like in
Daubechies wavelets, only a finite number of them are non-zero. Similar to the
wavelets, 1; (), the scaling functions ¢;(t) are also obtained from translation

and dilation of ¢(¢) as

0(t) =2"2@(2t—k), jkeZ (3.19)
The scaling function and its translates are orthogonal,
/go(t)go(tJrl)dt =0y l€Z (3.20)
where,
1, /=0
dos =23 3.21
0! { 0, otherwise ( )
A wavelet (1), is orthogonal to the scaling function and is defined by
Y1) = (=1 'ar (2t — k) (3.22)
k
This definition satisfies orthogonality, since
= /Zak(p(Zt Z a1 102t = 1)
k ]
1
= E Z(—] )kakal,k
k
o (3.23)

The set of coefficients a; and (—l)kal_k are a pair of quadrature mirror filters.
The filter coefficients a; defined in Eq. 3.18 are derived by imposing certain
constraints on the scaling functions as follows:

1. In order to uniquely define all scaling functions of a given shape, the area under
the scaling function is normalized to unity,

/ o(t)dt =1 (3.24)
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The above constraint on the scaling function leads to the following condition
on the filter coefficients

> a=2 (3.25)
k

2. For the scaling function and its translate to be orthogonal given by Eq. 3.20, the
filter coefficients have to satisfy the condition

Zakak+2[ = 25071 leZ (326)
k

3. Equations 3.25 and 3.26 are insufficient to determine a unique set of filter
coefficients. In an N coefficient system, they yield a total of N/2 + 1 equations.
The other N/2 — 1 equations are therefore required for a unique solution. For
constructing Daubechies compactly supported wavelets [11], the scaling
functions are required to be able to exactly represent polynomials of order up
to, but not greater than, M. This M determines the order of the Daubechies
scaling function, referred as N, where it is given as N = 2M. The requirement
for approximation of order M is that any function of the form

f(t)2060+061t+062t2+'-'+06M,1lM (327)

can be exactly represented by an expansion of the form

FO) = coplt—k) (3.28)
k

where, c; are the approximation coefficients. The above equation may be translated
into a condition on the wavelet. Taking the inner product of Eq. 3.28 with y(r)
gives

(F0,p(0) =D (ot k). p(1)) =0 (3.29)

k

Thus from Eq. 3.27 we get,

ao/w(t)dﬂroq/np(t)tdtJr---+ocM,1/np(t)tM"dtzO (3.30)

This identity is valid for all o; (j = 0,1,2,...,M — 1). Considering oy = 1 and
all other o; = 0 gives

/I/J(t)tldt:O, 1=0,1,2,...M—1 (3.31)

Thus, the first p moments of the wavelet must be zero. Substituting Eq. 3.22 in
Eq. 3.31 and following certain modifications give
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S (=Dak =0 1=0,1,2,.. .M —1 (3.32)
k

Thus the filter coefficients a;, k = 1,2,...,N — 1 can be determined uniquely
from Eqs. 3.25, 3.26 and 3.32 and are sufficient to construct Daubechies compactly
supported wavelets of different orders N.

Apart from advantages of being capable to perform time—frequency analysis,
possessing orthogonal basis functions with localized supports, which allows finite
domain analysis and imposition of initial/boundary conditions, the most important
property of wavelets is multi-resolution representation of a function. The translates
of the scaling and wavelet functions on each fixed scale j form the orthogonal
subspaces, which given by

V= {2/'/2(,)(% — k) j e Z} (3.33)

W; = {2f/2¢(2fz —k)j € Z} (3.34)
such that V; form a sequence of embedded subspaces
{0},...,C V.,C Vo,C Vp,...,C LAR) (3.35)
and
Vi =V, © W, (3.36)

Let P;(f)(1) be approximation of a function f(¢) in L*(R) using ¢; , (¢) as basis, at a
certain level (resolution) j, then

Pi(f) (1) =) cupiult), k € Z (3.37)
k

where, c; are the approximation coefficients. Let Q;(f)(r) be the approximation of
the function using v, ,(f) as basis, at the same level j.

Qi) = dujut), k€ Z (3.38)
k

where, dj are the detail coefficients. The approximation Pj,(f)(t) to the next
finer level of resolution j + 1 is given by

P () (@) = Pi(f) (1) + Q;(F)(7) (3.39)

This forms the basis of multi resolution analysis associated with wavelet
approximation.
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3.1.5 Wavelet-Based Numerical Solutions of Wave Equations

Interest in wavelets historically grew from the fact that they are effective tools for
numerical solutions of PDEs [4, 14]. The wavelet-based methods can give not only
high accuracy in numerical differentiation but also flexible implementation of
physical boundary conditions. Wavelets are also a great candidate for adaptive and
multi-resolution schemes which help in large computational savings. Dahmen [9]
has provided a review of wavelet techniques for solution of PDEs.

Here, we will review some of the works in wavelets that addresses the solution
of wave equation. Among the several wavelet-based numerical schemes for the
solution of PDEs, quite a large number of such techniques have been developed
specially for solution of wave equations. Wavelets have been used for solution of
1D wave equations in [5, 17, 22]. A method for design of optimal stencils for wave
propagation problems using an intrinsically explicit Galerkin-wavelet formulation
was presented in [22]. Here, the group velocities obtained from the developed
wavelet method were compared with traditional finite-difference technique and the
former method exhibited gain in accuracy and also large computational savings. In
[17], and [7] wavelets with exponential decrease were used for spatial approxi-
mation in 1D wave equations for homogeneous and heterogeneous media. Apart
from this, a 1D finite element based on Daubechies wavelets [20] has been pre-
sented for vibration and wave propagation analysis. In [21], a wavelet-Galerkin
solution of bi-harmonic Helmholtz equation in non-separable two dimensional
geometry is presented. Here Daubechies compactly supported wavelets are used
for approximation in both the spatial direction and the boundary conditions are
imposed through a proposed. wavelet-capacitance matrix method. A wavelet-
based method for numerical simulation of acoustic and elastic wave propagation is
presented in [16] which uses a displacement—velocity formulation. Here, the linear
operators for spatial derivatives are implemented in wavelet bases using an
operator projection technique with nonstandard forms of wavelet transform [8].
This wavelet-based method is applied to the acoustic wave equation with rigid
boundary conditions at both ends in 1D domain and to the elastic wave equation
with a traction-free boundary conditions at a free surface in 2D spatial media.

3.1.6 Comparative Advantages and Disadvantages of Different
Transforms

The Fourier transform is extensively used in wave propagation studies due its
versatility in going back and forth the time and frequency domain through Fast
Fourier Transforms (FFT). Due to induced periodicity both in time and frequency
domain, FFT is always associated with time windows. Hence, if the measured
signal does not die out within the chosen time window, the remaining part of the
signal, will start appearing at the start of the time history, distorting the signal



110 3 Signal Processing Techniques

completely. This problem is quite severe in finite structures where multiple
reflections from the boundaries do not die down within the chosen time window
even in the presence of damping. Such problem, called wraparound, is discussed
in greater detail in the next section. In addition, application of FFT to initial value
problems is not straight forward. The detailed signal analysis using FFT is given
in [13].

Some of the above problems can be effectively solved if one uses compactly
supported Daubechies wavelet transforms. These wavelets provide very fine time
resolutions as they do not assume any periodicity of the signal. A small time
window can provide highly accurate results even for structures of very small
dimensions. In addition, imposition of initial conditions is straightforward. How-
ever, resolution of the wavelet transform in the frequency domain is poor. The
frequency characteristics such as wavenumber and group speeds, are accurate only
up to certain fraction of the Nyquist frequency and this fraction depends on the
order of the Daubechies basis functions. Beyond this frequency, spurious disper-
sion is introduced, giving completely inaccurate estimations. A very high order of
the basis functions is required to get reasonable frequency resolution, which
increases the computational cost. In addition, unlike the Fourier coefficients in
FFT, the wavelet coefficients are coupled, which requires an additional step of
uncoupling them using the standard eigen analysis to perform wave propagation
studies. This also increases the cost of computations. A good account on signal
processing using wavelet transforms is given in [19]. All these issues are further
elaborated in the next section.

3.2 Signal Processing Issues

SHM studies involves handling different input signals of high frequency content.
The measured output signals normally are not readily amenable for direct use in
many damage detection algorithms for predicting the damage location, its extent
and also its severity. The measured signals are normally highly dispersive in
nature, which may be noise polluted. In addition, the complete trace of the signal is
usually not available. Many of these problems are transform dependent. Hence,
there are several signal processing issues that need to be addressed to obtain decent
estimate of damage location. In the next few paragraphs, we discuss a few signal
processing issues that may affect SHM studies.

3.2.1 Wraparound Problems

Transforming signals to the frequency domain using Fourier transforms was dis-
cussed in Sect. 3.1.1 where it was shown that there are three variants of Fourier
Transforms, namely the Continuous Fourier Transform, the Fourier Series, and the
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Discrete Fourier Transforms, respectively. The numerical implementation of DFT
is the Fast Fourier Transform (FFT), which is an extremely powerful technique to
go back and forth time and frequency domain. The FFT implicitly assumes that the
signal is periodic both in the time and frequency domain. Hence, the signal is
associated with a finite time window, that is dictated by the number of FFT points
chosen to sample the signal or by the time sampling rate. It is quite well known
that the dispersive signal traveling in a medium with small attenuation normally
does not die down within the chosen window, no matter how long the time window
is. The trace of the signal beyond the chosen time window will start appearing in
the initial part of the time history thereby completely distorting the time response.
This problem is referred to as wraparound. This is normally noticed when one uses
FFT to sample signals. Such problems do not exist if one uses wavelet transforms.
To understand this problem better, we consider a 1D cantilever bar undergoing
axial motion u(x,?) (Fig. 3.6a) and subjected to a time dependent load P(x,1).
The governing equation for this problem is given by [13]

*u ’u

FA— = pA—
ox? p ox2

(3.40)
In the above equation, E is the Young’s Modulus, A the area of cross section of the
beam and p is the density of the beam. The above equation is transformed into
frequency domain using DFT, which is given by

N .
iy (x, ) el (3.41)

n=1

Substituting Eq. 3.41 in Eq. 3.40, we a set of ordinary differential equation in the
transformed frequency domain, which is given by

&, PA
+ K, =0, K =0 3.42
dx? " ’ EA ( )
The exact solution of above equation is given by
ity (x, ) = Ae ™ + B/™ (3.43)
Fig. 3.6 Wraparound
problem: a a short cantilever }—)
bar subjected to axial load b a A EApL B P(x,t)

short cantilever bar with an
infinite segment attached (a)

8 «—
t{x1) uslx,t) )—) P(x,t)
8 B

A E, Aupy L
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where, k is the wavenumber, A is the incident wave coefficient, and B is the
reflected wave coefficient, which are to be determined from the two boundary
conditions. &, is the FFT of the axial displacement u(x,?) and x is the axial
coordinate. The boundary conditions for the cantilever problem are u#, =0 at
x = 0 and EAdu, /dx = P, at x = L, where P is the FFT of input force P(x, ) and
L is the length of the cantilever bar. Substituting these boundary conditions in
Eq. 3.43, we get

P L

A = —B =
EA2kL cos kL

A (3.44)

Using the values of A and B in Eq. 3.43, we can write the axial displacement in the
transformed Fourier domain as

ity (x, ) = H(w)P (3.45)
The above equation can be written as

L sin kx
"~ EAkLcoskL

The response is obtained by convoluting the transfer function with the input
load. For the response to die down within the chosen time window, it is necessary
that the transfer function be complex. In the present case, the transfer function is
real only as it has sine and cosine functions of @ which has a finite value for all .
Hence, no matter how long the rod member is, the response will never die down
within the chosen time window. This is one of the severe limitations of FFT in
analyzing finite structures.

The total time window T = NAt, where N is the number of FFT points, and At
is the time sampling rate. Hence, the key to avoid wraparound problem is to
increase the time window. This can be done either by increasing the number of
FFT points, increasing the time sampling rate or a combination of these. Note that,
increasing the sampling rate sometime leads to aliasing problems, the conse-
quences of which is explained in the next section. Alternatively, one can add a
small amount damping to the wavenumber to make it complex as k = k(i — jn),
where 7 is a small damping constant. The above methods may still not work for
those systems such as the cantilever rod problem, which gives real transfer
function. For such problems, the signal wraparound is eliminated by using a
different modeling philosophy.

In the finite structure, the energy gets trapped due to repeated reflections from
the fixed boundaries, which causes the signal to wraparound. By allowing some
leakage of the responses from the fixed boundary, one can add some artificial
damping so that good resolution in the time response can be obtained. The
modeling philosophy is shown in (Fig. 3.6b), wherein, the fixed boundary is
replaced by an infinite rod having axial rigidity FA many times higher than that of
the regular rod segment AB. We will now derive the transfer function for this new
system.

H () (3.46)
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Let u;(x, 1) be the solution for the actual cantilever rod AB and let u,(x, ) be
the solution for the infinite segment AC. Let i}, and i, be their respective Fourier
transform. As per Eq. 3.43, the solutions in these two segments can be written as

i1, (x, ) = Ae® + B, For Segment AB of LengthL (3.47)
where
P1Ai
K =
wElAl
lizy(x, ) = Ae 7™, For Segment AC (3.48)
where
z P2A2
k=
szAz

Note that the solution of the infinite bar (Segment AC) does not have any
expression corresponding to the reflected wave. Hence, there are three wave
coefficients that needs to be determined. The three conditions that are necessary for
their determination are obtained as follows. Considering point A as the origin, we
have the following three conditions:

o At x = 0, we have, uy, = uy,
e At x = 0, we have the total force, that is E1A;dui,,/dx + EAzdi, /dx = 0, and
o Atx =L, E)Aydiup,/dx = P, where P is the FFT of the axial force.

Using these conditions in Eqs. 3.48 and 3.49, after simplification, we get the
solution for the finite cantilever bar as

. S [IL(( = B)e ™ + (1 4 B)ei™) Ay [Exp,
tin(x, ) = P 2E A kL(f cos kL + jsinkl) } b= Ay Eip, (3:49)

The term in the brackets in Eq. 3.49 is the transfer function, which has both the
real part as well as imaginary part, indicating that the wave as it propagates, it also
attenuates. That is, if the time window is large enough, the wraparound problems
can be avoided. The level of attenuation can be manipulated by appropriately
choosing f, or in other words the axial regidity E»A, such that the response dies
out within the chosen window. If § = oo, we recover back the fixed bar solution,
which was derived in Eq. 3.45. Also, if we substitute f = 0, we simulate a free-
free bar, whose solution is given by

(3.50)

e w)*IA’ L cos kx
Ml @) = B B A KL sin kL

In this equation, the term inside the brackets is the transfer function, which is again
real, indicating that severe wraparound problems will be encountered if one uses
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FFT to solve the problem. From the above discussion it is clear that if FFT is used
in the wave analysis, then, in order to avoid signal wraparound and have good time
resolution, it is necessary to have an infinite segment of appropriate material
properties be attached to the short finite segment.

It was mentioned earlier that the wavelet transform does not suffer from
wraparound problems since the periodicity assumption is not used in constructing
the transform. Here, we will solve some examples to show the severity of wrap-
around problems in some finite structures. In all these examples, we will use the
results obtained from wavelet transform for comparison. The analysis is performed
using Spectral Finite Element simulation (explained in detail in Chap. 5).

In the first example, we will consider a cantilever beam with a length L = 20
in., width b = 1.0 in., and thickness 4 = 0.01 in. The beam is made of aluminum
having a Young’s Modulus of E = 70 GPa and a density p = 2.7 x 10°> kg/m>.
The beam is loaded by a force P(x, t), whose time history and its FFT are shown in
Fig. 3.7.

The input signal is sampled using a FFT time sampling rate of 1 ps. In order to
bring out the effects of time window on the signal wraparound, the results are
plotted for three different time windows, namely 1,024, 2,048 and 4,096 s,
respectively. The wavelet response is obtained using only 512 points with a time
sampling rate of 1 ps. The order of wavelet basis function used is equal to 8. The
axial velocity response is shown in Fig. 3.8.

Here, the wavenumber is heavily damped by k = k(1 + jn), where a value of
n = 0.5 is used. We see from (Fig. 3.8a), even with such a heavy damping, signal
wraps around for a time window of 1,024 ps. However, when the time window is
increased to 4,096 ps, the wraparound is completely eliminated. Note that the
response obtained via wavelet transform does not suffer from this problem and a
time window of 512 ps is sufficient to get an accurate response.

Next the same beam with similar properties is considered, however,the length
of the beam is further reduced to 10 in. and the load P(x,¢) shown in Fig. 3.7 is

Fig. 3.7 Impact load and !
Fourier transform of the load
(inset)
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Fig. 3.8 Longitudinal tip velocity in rod due to tip axial load fortime window T, a T, = 1,024 ps,
b T, =2,048us and ¢ T,, = 4,096 us dotted lines Wavelet Response, continuous lines FFT
Response

applied transversely. The aim of reducing the length is to amplify the effect of
signal wraparound. In this case the waves generated are dispersive innature and
identifying the wraparound becomes very difficult. The responses are generated
using the spectral finite element formulation. As before, the responses based on
FFT are obtained for three different time windows, namely 1,024, 2,048 and
4,096 s, respectively. The FFT responses are compared with wavelet responses,
which use a time window of 512 ps, withan order of wavelet basis function of
N = 8. the responses are shown in Fig. 3.9. Unlike the axial response case, the
wraparound causes the response to appear right from the initial time. This is the
characteristic of all dispersive systems, where at each frequency, the wave speeds
are different. It is possible to identify the signal wraparound in this example since
we had provided a zero header in our input pulse, which is a necessity if one uses
the FFT to perform wave analysis. As in the axial input case, signal wraparound
vanishes if we use a large time window.
In summary, the following conclusions can be drawn from this study:

1. Wavelet transform based wave analysis does not suffer from signal wraparound
problems. A small time window is sufficient to capture the response and the
wavelet transform provides good time resolution.



116 3 Signal Processing Techniques

(b)

Transverse Velocity (mfs)
Transverse Vebocity (m's)

% 0 0 00 ] 000 0 £ EL0 TH Teasr oo

Timedms)

Transverse Velocity (m/'sh

L'} 400 B0 1200 1600 2006y

Timed nsh

Fig. 3.9 Transverse tip velocity in rod due to tip Transverse load for time window T,
aT, =1024pus,b T, =2,048 us and ¢ T,, = 4,096 us dotted lines Wavelet Response, continues
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2. The time resolution in FFT-based analysis is poor due to severe wraparound
problems caused by the associated finite window size.

3. Signal wraparound in FFT analysis can be removed to certain extent by
increasing the time window, which can be done either by increasing the signal
sampling rate or by increasing the number of FFT points.

4. In analyzing finite structures of small dimensions using FFT, it is required to
add a infinite segment to remove the signal wraparound. In addition, it may be
required to add damping.

3.2.2 Signal Processing of Sampled Waveforms

This section discusses some common problems encountered in handling experi-
mentally measured signals. Experimentally obtained signals are truncated and then
used to perform the Fourier analysis. The quality of the sampled signal depends on
two factors, that is, the signal itself and its time sampling rate. If the time sampling
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rate is not high enough then all high frequency wave components will appear as
low frequency waves as a result of aliasing. If AT is the time sampling rate, the
highest detectable frequency is given by f = 1/2AT. That is, if the highest fre-
quency component of the signal is known, then the sample rate is chosen from the
above expression.

Another problem normally encountered while sampling signals is the Leakage of
the response. This normally happens when the sampled signals have many spectral
peaks. For example, if a spectral peak occurs at say 11, 19 and 23 kHz and the
sampling rate of the signal chosen is such that frequency sampling is only at every
3 kHz, then these spectral peaks will not be captured. The energy associated with
these peak leaks into neighboring frequencies distorting the spectral estimates.

FFT of a signal is always associated with a finite time window. The leakage
problem can be avoided if the signal is contained well within the chosen time
window. In most cases leakage cannot be avoided, that is, it is very difficult to
contain the entire signal within the time window. The type of window determines
the amount of signal leakage. For example, if the window is of rectangular type,
and if the size of the time window is more than (N — 1)AT, then leakage will
certainly be present. If the signal is nearly periodic within the chosen window,
leakage can be minimized and hence the type of window should be such that it
makes the signal nearly periodic in the chosen time window, This can be done by
using a window that will smoothly attenuate the signal at the end of the sampled
time record. However, many windows minimizing leakage also introduce ampli-
tude and frequency error. Some of the commonly used windows are the Hanning
and Gaussian windows.

3.2.3 Artificial Dispersion in Wavelet Transform

It was mentioned earlier that use of wavelet transform for solving wave equation
results in good time resolution and very poor frequency resolution. Due to poor
frequency resolution, the spectrum and dispersion relations derived using wavelet
transform are generally valid only up to a fraction of the Nyquist frequency,
beyond which artificial dispersion is introduced. In this section, we show this
phenomenon for an axial rod. However, this is true for all other waveguides. More
details on this aspect is found in [19].
The governing differential wave equation of an isotropic rod is given as [15]
o%u Ou o%u

A— = pA— (3.51)

EAS Y
o2 o or

where, E, A, n and p are the Young’s modulus, cross sectional area, damping ratio
and density, respectively. Note here that the second term is the force due to viscous
damping and it is added to the formulation to make the rod model more realistic.
Here, u(x, 1) is the axial deformation, which is discretized at N points in the time
window [0#]. Let t=0,1,..., n — 1 be the sampling points, then
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t= Att (3.52)

where, At is the time interval between two sampling points. The function u(x, f)
can be approximated by scaling function ¢(t) at an arbitrary scale as (see
Sect. 3.1.4 for more details on Wavelet transforms)

u(x,t) =u(x,1) =Y w(x)p(t—k), keZ (3.53)

k

where, u;(x) (referred as u; hereafter) are the approximation coefficients at a
certain spatial location x. Substituting Eqs. 3.52 and 3.53 in Eq. 3.51 we get,

d’u A A
EAZ Xo(x— k) —%Zuk(p/(‘c—k) :&Zukwﬁ(f—k) (3.54)
k k

Taking inner product on both sides of Eq.3.54 with ¢(t —j), where j=
0,1,...,n—1 we get,

EA;d uk/ T—k )dr—%Zuk/m’(f—k)m(r—j)dr

k
:%Zuk/q)//(‘c—k)q}(f — j)dr (3.55)
k

Since the translates of scaling functions are orthogonal, we get

/(p(r —k)o(t—j)dt=0 for j#k (3.56)

Using Eq. 3.56, Eq. 3.55 can be written as n simultaneous ODEs

dzu J+N-2
EAd—ZL § (AIQ},( MQ >uk j=0,1,...,n—1 (3.57)
k=j—N+2

where, N is the order of the Daubechies wavelet as discussed in Sect. 3.1.4. Here,
Ql _, and Q2 _, are the connection coefficients defined as

Q= [ /e~ Ro(e - jids (3.58)

Q= / ¢"(t —k)p(t —j)dt (3.59)

For compactly supported wavelets, Q] o sz_k are nonzero only in the interval

k=j—N+2tok=j+ N —2. The details for evaluation of connection coeffi-
cients for different orders of derivative are given in [8].



3.2 Signal Processing Issues 119

The forced boundary condition associated with the governing differential
equation given by Eq. 3.51 is

Ou
FA—=F 3.60
- (3.60)
where, F(x,1) is the axial force applied. F(x,t) can be approximated similarly as
u(x,t) in Eq. 3.53

F(x,f) =F(x,7) = > Fi(x)p(t—k), k€ Z (3.61)
k

Substituting Egs. 3.53 and 3.61 in Eq. 3.60 and taking the inner product with
o(z — j) we get,

EA%:FJ» j=0,1,...,n—1 (3.62)
While dealing with finite length data sequence, problems arise at the bound-
aries. It can be observed from the governing equations given by Eq. 3.57 that
certain coefficients u; near the vicinity of the boundaries (j =0 and j = n — 1) lie
outside the time window [0#] defined by j =0, 1,...,n — 1. Several approaches
like capacitance matrix methods [21], penalty function methods for treating
boundaries are reported in the literature. Here, a circular convolution method is
first adopted assuming periodicity of the solution. The solutions obtained by this
method are exactly similar to those obtained using FFT. Next, a wavelet-based
extrapolation scheme proposed by Amaratunga and Williams [2], is implemented
for solution of boundary value problems. This approach allows treatment of finite
length data and uses polynomial to extrapolate wavelet coefficients at boundaries
either from interior coefficients or boundary values. The method is particularly
suitable for approximation in time for the ease to impose initial values.

Next, we see how we can treat the finite boundaries in wavelets. From Eq. 3.57,
we get n coupled Ordinary Differential Equations (ODEs), which are to be solved
for u;. For numerical implementation, we can deal with only finite sequence. In
other words, u(x, ) and hence u; are only known in the interval [0, #/] and j = O to
j=n—1.In Eq. 3.57 the ODEs corresponding to j =0 to j = N — 2, contain
coefficients u; that lie outside the [0, #7]. Similarly, on the other boundary, for
j=@m—1)—N+2toj=(n— 1) same problem exists.

3.2.3.1 Periodic Boundary Condition

In this approach, the function u(x, ) is assumed to be periodic in time, with time
period tr. Thus, the unknown coefficients on left end are taken as
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U_1 = U1
U_p = Up—2
(3.63)
u*Nﬁ»Z = uanﬁ»Z
Similarly the unknown coefficients on right end, that is, u,, u,11, ..., U4 n—2 are
equal to ug, uy, ..., uy—_a, respectively. With the above assumption, the coupled
ODEs given by Eq. 3.57 can be written in matrix form as
d’u; nA .,  pA ,
— = |=A +=—A j 3.64
{de} <EA Tl ) (3.64)

where, A' and A? are n x n circulant connection coefficient matrices and have
the form

o o, ... o,, ..., ... Q

1 1 1 1

e o ..o e 0 L0
AIZE .1 'o {v+3 . .2 (3.65)

o, oy, ... 0 ..., ...

A? for second order derivative has a similar form. For a circulant matrix A! [12],
the eigenvalues «; are

N=2

o= > Qe j=0,1,...,n-1 (3.66)
k=—N+2
and the corresponding orthonormal eigenvectors v;, j = 0,1,...,n — 1 are
1 .
(), = —me 2 k=0,1,..,n—1 (3.67)

Vn

For A', Q; = —Qﬂp for p=1,2,...,N — 2 and Q) = 0 and we can write o; = i/,
where

z-:—ilviglsm@ j=0,1,...,n—1 (3.68)
“j Atk:l k n ] 9

The spectral element formulation involves eigenvalue analysis. This is done to
diagonalize the matrix in Eq. 3.64 and decouple the ODEs. For periodic boundary
condition, the eigenvalues are known analytically which decreases the computa-
tional cost. The solutions obtained through this scheme are the same as those
obtained using FFT and possess several problems such as signal wraparound due to
the assumed periodicity of the solution.
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3.2.3.2 Non-Periodic Boundary Condition

Here, the boundaries are treated using wavelet extrapolation method for Daube-
chies compactly supported wavelets. The detail of the formulation is given in [2].
Here, a brief outline is presented.

In this method, a polynomial of order p — 1, (p = N/2) is assumed to extrapolate
the values at the boundaries. Since wavelets are here used in time, the unknown

coefficients on the left end (u_y, u_s,...,u_,, ) are extrapolated from the initial
values. The coefficients u,, #,+1, .. ., U,+y—2 on the right end are extrapolated from
the known coefficients ug,_1)_py1, Un—1)—p+2; - - - Un—1-

Assuming polynomial representation of order p — 1 for u in the vicinity of r = 0
and using Eq. 3.53 gives

p—1

u(x,1) =Y wXe(t—k) =Y et (3.69)

k =0

where ¢; are constant coefficients. Taking inner product of both sides of Eq. 3.69
and using Eq. 3.56, we get

p—1

=0

where, ujl- are the moments of the scaling function defined as

,ujl- = / to(t — j)dt (3.71)

and are derived by solving a recursive equation [18].

Solution of Eq. 3.69 to obtain ¢; requires p — 1 initial values of u(x,t) at
=0, 1,...,p — 1 which may be obtained using finite difference schemes.

Next, the values of ¢; obtained in terms of the initial values are substituted back
into Eq. 3.70. Thus the unknown coefficients u;, j = —1, =2,...,—N +2 are
obtained as

Uy e e S co
—1
Uy e L ci
S _ . , (3.72)
-1
U-N+2 Wyp #typ o Wyl Lo

The unknown coefficients at the right end boundary are evaluated assuming the
same polynomial representation and
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p—1
=Y cpl, j=m—-1)-p+1,(n=1)=p+2,..,n-1 (3.73)
=0

Equation 3.73 can be written in matrix form as

:u(lp #1717 s /“L[i;l Cco Un—1)—p+1
0 1 p—1
. u- ceo ML Cq Un—1)—p+2
pri e P = , (3.74)
WO, ot 2t | Len Un—1)

The ¢; obtained are then substituted into Eq. 3.73 forj=n,n+1,...n+N —2

to derive ug,—1)—pt1, Un—1)—p4+25 - - -» Un—1 S

0 1 -1

uy, Ho Ho . 0 Co
0 1 -1

Un+1 H M My €

. = . ) ) . (3.75)
0 1 p—1
Un—1+N-2 Honya Honia oo Hoyeod L7

Finally, these coefficients are substituted in Eq. 3.57 and the system of ODEs can
be written in a matrix form similar to Eq. 3.64 as,

d’u; nA_,  pA_,

It should be noted that though all the formulations are performed with reference
to the governing differential equation for a rod, the connection coefficient matrices
A', A> and T', T'' are problem-independent and depend only on the order of
wavelet, i.e. N.

We see that the wavelet coefficients are highly coupled with each other. In order
to obtain the spectrum and dispersion relations, we need to decouple the equations.
This can be done by performing an eigenvalue analysis. It can be seen from the
above derivations that the wavelet coefficients of first and second derivatives can
be obtained as

{is} = T {w} (3.77)

{iy} = T*{uw} (3.78)
The second derivative can also be written as

{iy;} = T'{i;} (3.79)

Substituting Eq. 3.77 in Eq. 3.79 we get

{ii;} = [T {u;} (3.80)
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Thus though the second order connection coefficient matrices A” and I'> can be
evaluated independently [8], they can also be written as

2

A=A and T2 =[] (3.81)

The above modification is done as this form helps in imposing the initial
conditions for non-periodic solution. Thus the Egs. 3.64 and 3.76 can be written as

(B~ (Bn+ 2 (3.82)
{‘ZZJ} - (gi[rl] +2§[Fl]2>{w} (3.83)

In wavelet transforms, for both periodic and non-periodic boundary conditions,
the reduced ODEs are coupled unlike those in FFT-based analysis. However, the
system of equation can be decoupled by diagonalizing the connection coefficient

matrices I'! and A'. This can be done by eigenvalue analysis of the matrix as
r' =ono! (3.84)

where, @ is the eigenvector matrix of I'! and IT is the diagonal matrix containing
corresponding eigenvalues 1y;. Similar expression holds for A' where ® and IT are
known analytically (Egs. 3.67, 3.66). From Eq. 3.81, I'? can be written as

I’ = or’o! (3.85)

where, T1? is a diagonal matrix with diagonal terms y%. This eigenvalue analysis is

very costly, however, it can be done only once and stored as it is completely
independent of the problem. This makes the computational time comparable to
FFT-based analysis.

The ODEs obtained by decoupling the Eqs. 3.82 and 3.83 can be written as

dzﬁj nA PA L\ . .
where
i =0y (3.87)

Similar steps are followed for decoupling of the coupled ODEs obtained from
periodic boundary condition through eigenvalue analysis of A'. The decoupled
equations will be similar to Eq. 3.86 except that 7; has to be replace by /; and the
eigenvector matrix ® will be of different form given by Egs. 3.66, 3.67. Thus,
decoupling of the Eq. 3.82 (neglecting damping) and using Eq. 3.68 for the
eigenvalues of AL, we get
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d*; A,
U _P2on

o= ekl J =010 (3.88)

Similarly, the force boundary condition given by Eq. 3.62 for both periodic and
non-periodic boundary conditions can be written as

du; ~ .
d—xf:Fj j=0,1,...n—1 (3.89)
where,
F=0'F (3.90)

However, the eigenvector matrix ® used for transforming u; to u;, and similarly F;

to F ; will be of different forms for periodic and non-periodic formulations.

Now we are in a position to perform frequency domain analysis, wherein the
spectrum and dispersion relations can be obtained. For periodic solution, the
wavelet transformation given by Eq. 3.53 can be written as matrix equation [3]

Uo 0 0 0 B N S TS/ P I I 7
U, ol 0 0 .. 0 e Q3 Oy u;
U o o 0 0 cee Q4 Oy u
Pn—2 Pn—3 Pn—g4 ... e e 0 0
_Unfl_ L 0 0 0 B (/) VA S (/5] 0 1 LUun—1]
(3.91)

where Uj, ¢; are the values of u(x,t) and ¢(t) at © = j. For such circulant matrix,
Eq. 3.91 can be replaced by a convolution relation, which can be written as

{U)} ={K}} (3.92)

where, {U;}, {&;} are the FFTs of {U;} and {u;} respectively, and {IN((pj} is the
FFT of {K,} = {0 ¢, @5, ..., 0y_s,...,0}, which is the first column of the scaling
function matrix given in Eq. 3.91. Similarly, in Eq. 3.82, the matrix A is also the
circulant matrix and it can be written as (neglecting the damping)

dzﬁj pA 5 2 .
where, {Kq;} are the FFT of Ko = {Q Q" |,..., Q" .5, .., Q) ,, ..., Q] }, which

is the first column of the connection coefficient matrix A'. Substituting Eq. 3.92 in
Eq. 3.93 we get
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2 ~4 % . ~9 o
{W} = %{Kﬂi'(Uj/K(ﬂj)} (3.94)

or,

LU pA =2
{ — } = 2 Rey-Uj) (3.95)

It can be easily seen that the FFT coefficients K o are equal to the eigenvalues 7/;
of the matrix A' given by Eq. 3.68. Thus Eq. 3.95 can be written as

dej_ PA«2~ .
dxzj = i’ U, j=0,1,...,n—1 (3.96)

It should be mentioned here that, by relating the Eqs. 3.88 and 3.96, it can be
observed that the transformation given in Eq. 3.87 is similar to the FFT for
periodic wavelet formulation.

In FFT-based analysis, the transformed ODEs are of the form

& [71‘ PA 5~ .
dx2 :_awj Uj, j=0,1,...,n—1 (3'97)
where,
2115
Y 3.98
@i nAt ( )

It can be seen that for a given sampling rate At, 4; exactly matches w; up to a
certain fraction of the Nyquist frequency f,,, = 2%1' Thus similar to FFT-based
analysis, the wavelet formulation can be used directly for studying frequency
dependent characteristics like spectrum and dispersion relations but up to a certain
fraction of f,,,. This fraction is dependent on the order of basis and is more for
higher order bases. In Fig. 3.10a, w; and /; are compared with respect to fraction
of fuyq- Unlike 4; which are real, the eigenvalues 7; in the non-periodic solution are
complex. However, from numerical experiments it is seen that the real part of y;
matches 4; which are compared for different order of basis in Fig. 3.10a. The
additional imaginary part of y; are plotted for different bases in Fig. 3.10b. From
this figure, we see that beyond the specified frequency fraction, one can clearly see
artificial dispersion. For example, if we use a toneburst signal, sampled at a fre-
quency which falls beyond this specified fraction, one will see unwanted
responses. This aspect is very crucial for SHM studies, since such signals are
extensively used.This study also helps the determination of the sampling rate
required to avoid artificial dispersion.
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Fig. 3.10 Comparison of wj;,
4; and y; for different order
(N) of basis; a real part and b
imaginary part of y;

3.2.4 Excitation Signals and Wave Dispersion
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SHM studies for detection of damages in structures normally require predefined
dynamic signals that have high frequency content. A common method of detecting
damage is to look for the time of arrival of reflections. Knowing the speeds from
the dispersion curves and the time of arrival of reflections from the crack, one can
predict the location of the crack. The predefined dynamic signal can be triggered
using piezoceramic actuators mounted on the structures, which set up the stress
waves. The stress wave can be non-dispersive or dispersive depending upon the
medium on which it propagates. For example, the stress wave in a bar subjected to
axial load is non-dispersive. That is, the waves to not change its shape as it
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propagates, which results in reflected wave that have the same shape as the inci-
dent wave. This aspect has implications in the SHM studies, as the identification of
defects becomes easy if the shape of the reflected pulse is same as the incident
pulse. In most second order systems such as rods or membranes, waves are non-
dispersive or nearly non dispersive. However, in fourth order systems such as
beams and plates, waves are highly dispersive in nature and hence their shape
changes significantly as they propagate. Dispersion is the result of a frequency-
dependent wave speed, so that typically high frequency components travel very
fast and appear early in the response as opposed to low frequency components. In
such situations, it is necessary to choose a pulse that travels non dispersively even
in a dispersive system. This can happen only when the pulse can inject non zero
energy spread over a very small frequency band. In other words, the type of signal
plays an important role.

The loading can be broad band or Narrow band (Tone Burst). The broad
band loading shown in Fig. 3.7 is a smoothed gaussian pulse having 50 ps
pulse width. The frequency content of the pulse, also shown in the same figure,
have a significant frequency content up to 25 kHz. Hence, all modes up to this
frequency will be excited by this pulse. When this pulse is applied to a axial
bar shown in Fig. 3.6, a non dispersive wave is set up. The axial velocity
response for this pulse is shown in Fig. 3.8c. We can clearly see two inde-
pendent pulses, the first is an incident pulse, and the second is a reflected pulse
from the fixed boundary, which is of same shape as the incident pulse, but
opposite in sign. If the same structure is impacted by the same force trans-
versely, the transverse velocity response obtained is shown in Fig. 3.9c where
the dispersive nature of waves is clearly observed. From the figure, it is not
possible to clearly identify the reflections coming from the fixed boundary.
Such signals are not generally not suitable in SHM studies, especially if the
medium is dispersive.

Next we consider a damaged cantilever composite beam with a through width
delamination and subjected to the tone burst signal of Fig. 3.11.

The tone burst signal is simulated using a sine wave function of the type
f(#) = sin{gr} modulated by a time window such as a Hanning or as Gaussian time
window. The number of zeros in the function can be controlled by adjusting the
value of g within the selected time interval. The FFT response of such a pulse
features a peak at the frequency g, as is seen from Fig. 3.11. This signal is applied
to the damaged beam shown in Fig. 3.12a in the transverse direction, wherein the
wave is highly dispersive in nature. The transverse response is shown in
Fig. 3.12b.

The simulation here is performed using spectral finite element simulations as
explained in Chap. 5. From the figure, we see that the reflections both from the
crack as well as from the boundary are of the same shape which helps clearly
identify the location of the flaw in a dispersive system such as this. Hence,
toneburst signals are the preferred signals in SHM studies in highly dispersive
media.
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Fig. 3.11 Tone burst load sampled at 20 kHz and its Fourier transform (inser)
3.3 Frequency/Wavenumber Analysis

Most of the previous sections in this chapter are devoted to the analysis and
representation of response data in the time and frequency domains. Such analysis
provides important information in regards to the frequency content of the signal,
along with guidelines on the excitation frequencies needed for a specific appli-
cation or medium. The choice of the excitation frequency, or in general of the type
of excitation to be used, has great implications from a practical standpoint, as it is
tightly coupled with the choice of the actuation configuration. From the modeling
perspective, it dictates important modal parameters such as mesh size and time
domain resolution. These aspects are discussed in more detail in Chaps. 4 and 5,
which are devoted to the description of common modeling tools for SHM such as
the Finite Element and the Spectral Finite Element methods.

Along with the time—frequency analysis of the structural response, recent
investigations have relied on the representation of the response in the frequency/
wavenumber domain [1]. Such representation requires the application of the FT in
the time domain and in the spatial domain. The latter can be performed only if
dense measurements along a spatial direction are available. In the following, the
two-dimensional Fourier Transform (2D FT) denotes the result of the application
of the FT in time and along one spatial direction:

i(k, ) = Foplu(x, )] (3.99)

where k denotes the wavenumber. Similarly, the three-dimensional Fourier
Transform (3D FT) considers transforms in time and along two spatial directions:

Ijt(kxakva) = fZD[u(xaya t)] (3100)
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Fig. 3.12 a A damaged beam with through width delamination. b Transverse tip velocity
response

where k,,k, are the cartesian components of the wave vector k = ki + kj.
Extended definitions and examples of 2D and 3D FTs are provided in the fol-
lowing sections.

The ability to map the signals in the wavenumber space relies on the avail-
ability of dense spatial measurements, which are typically denoted as wavefield
data. Experimental wavefield data can be easily obtained through the use of
ultrasonic transducers mounted on scanning stages, or through the application of
Scanning Laser Doppler Vibrometers (SLDVs) (see Sect. 1.3.3), which is
becoming very popular in the field of SHM. The advantages of frequency/wave-
number representations are numerous as summarized below:

1. They effectively separate all components of the wavefield, so that different
wave modes, incident and reflected waves, and mode conversions [6] appear as
decoupled and easily recognizable.

2. Their decoupling capabilities can be used to easily remove incident waves
from the recorded wavefield, so that only reflected waves can be visualized.
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Such visualizations can then be exploited to localize and quantify the damage
that is the source of the reflections.

3. They significantly facilitate the analysis of multi-modal signals such as in the
case of guided wave-based inspections. Multi-modal signals are the result of
the superposition of several modes with different wavenumbers co-existing at
the same frequency. Their superposition complicates the analysis of the
response and its use for imaging purposes. Given the common frequency
content, their separation cannot be performed through filtering procedures
operating in the time—frequency domains, and therefore must rely on the
information provided by different wavenumbers. Mode separation in the fre-
quency/wavenumber domain is very easily achieved through the application of
simple filtering or masking procedures which essentially select portions of the
frequency/wavenumber spectrum of the signal.

4. They provide direct visualization of the dispersion properties of the considered
medium, and therefore can provide the basis for material characterization and
for the estimation of the mechanical properties through the comparison between
experimentally observed dispersion properties and analytical predicted ones.

This section is therefore devoted to the analysis of wavefield data in the
wavenumber/frequency domain as an effective tool for incident wave removal and
mode separation. The concept of incident wave removal is first illustrated on
analytical and numerically simulated data, and then tested on experimental results.
The application of the 3D FT for mode separation is presented next to complete the
overview of this interesting and still rather novel signal processing approach.

3.3.1 Analysis of a One-Dimensional Propagating Wave

The basic concept of frequency/wavenumber analysis is illustrated for a stress
wave in a one dimensional (1D) non-dispersive waveguide. The considered con-
figuration is depicted in Fig. 3.13, and assumes the presence of a discontinuity in
material at location x = xy. The 1D stress in the region x <xj can be expressed as a
sum of incident and reflected stress waves, according to the following expression:

au(x,1) = o (x,1) + 0 (x, 7). (3.101)
where
0 (x, 1) f(t - i) . (3.102)
CL]
and

o (x,1) =g<z+i—2x—°). (3.103)

CL] CL1
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respectively define the incident and the reflected waves. Also in Egs. 3.102 and
3.103, f, g are the functions defining the waves propagating in the considered
media, while ¢;, is the phase velocity in region 1 (see Fig. 3.13). Imposing
velocity and stress interface conditions:

i (7, 0) + a0 (x§7,0) =il (57,0), (3.104)
o (57 1) + o) (7. 1) = o) (x§.1). (3.105)

yields the well-known relationships between the functions f, g:
g(®) = Zf (o) (3.106)

The reflection coefficient # is defined in terms of density p and wave speed ¢, of
the two domains composing the waveguide:

P — PzCLz/Pchl -1

= (3.107)
pacL,/prcr, + 1
In Eq. 3.105, the transmitted stress wave a)(f) is given by:
o (x,1) = Tf (z - i) . (3.108)
CLZ
where the transmission coefficient 7 is defined as:
9~ o 2p2CL2/pchl (3.109)

© pacry/picr, + 1

The propagation of a harmonic stress wave of frequency wg and amplitude Ay is
considered such that:

f(7) = Age™". (3.110)

Accordingly, the stress distribution in the 0 <x <x, region is given by:

i X i X _n*0
ox(x,t) = Ag le]% (t “l) + 2" <t+%l %n

_ AO I:e]'(wotfkgx) + %ej(wol‘+kox72ko)m>:| . (3 1 1 1)

Fig. 3.13 Wave propagation P1, E4 P2, Es
in 1D elastic medium with

material discontinuity \/’\" aéi) (z,t)
\/\/aér) (z,t)

| T T =X
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where ko = wo/cr, is the wavenumber. It is assumed that both spatial and time
information are available for the stress distribution in the domain of interest. Under
this assumption, one can evaluate the two-dimensional Fourier Transform (2D FT)
of a,(x,1):

+oo  +oo

T (k, 0) = / / . (x, 1)e 7O dxy,

Zfzp[ax(x,l‘)]. (3.112)
which for the considered propagating wave is given by:
2, (k, ) = Agd(w — @0)[0(k — ko) + ReZ ™ §(k + ko). (3.113)

where 6 denotes the Dirac delta function. The magnitude of the 2D FT expressed
in Eq. 113 features two peaks in the frequency/wavenumber domain at
o = wy, k = £ky, corresponding to incident and reflected waves (Fig. 3.14a).

3.3.1.1 Incident Wave Removal

The 2D FT effectively separates the two wave components and allows the appli-
cation of simple window functions to filter out one of the components. Upon
filtering, the residual signal can be transformed back through an inverse FT to the
space/time domain for visualization and further processing. This procedure is
particularly useful for damage detection purposes, where reflected components
carry information regarding the presence and the nature of damage. In many
occasions, the reflections are small in amplitude and are often overshadowed by
noise or by the incident wave. This makes the identification of damage, and its
potential characterization difficult. From this perspective, 2D FT-based filtering
represents an attractive approach to separate and highlight the presence of
reflections in a given stress wave. Mathematically, the windowing process can be
simply expressed as a function product between the wave’s 2D FT and a 2D
window function:

20 (k, ) ~ [1 — H(k — ko, & — )| Z,(k, ) (3.114)

where H(k — ko, ® — wp) denotes the window centered at kg, wo. The process is
depicted graphically in Fig. 3.14b and c, which respectively show a Hanning
window overlapped to the signal’s 2D spectrum and the residual signal upon
filtering. The space/time domain approximation of the reflected wave can be
expressed as:

o\ (t,x) = F5p [0 (k, w)] (3.115)

where ;) denotes the inverse 2D FT.
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Fig. 3.14 a Magnitude of 2D
FT of the stress distribution in
the 0 <x <x, region: contour
plot (Solid box highlights
incident wave component,
dashed box highlights
reflected wave component),
b contour plot with
overlapped Hanning window
applied for filtering, and

c residual signal spectrum
upon filtering
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3.3.2 Analysis of 2D Wave Propagation

The previous concept can be extended to the case of waves propagating in a 2D
domain. We first consider a signal composed of a plain harmonic wave propa-
gating in the x > 0 direction, and of a secondary spherical wave generated at
location x;,y, as depicted in Fig. 3.15. The wave may be expressed as:

W()C,y, t) = WP(x,yv t) + Ws(xaya t)
_ Wo[e*j(kxoﬁrkyo)’*wol) + yej(kor+c00172korx)] (3116)

where W, is the amplitude, % is a generic scattering coefficient, and where

ko = wo/co, kv = ko cos Oy, kyo = ko sin Oy, ry = /x2 +y2.
The considered waveform can be represented in the frequency/wavenumber
domain through the application of the 3D FT, defined as:

W ks, ky, ) = F3plw(x, y,1)] (3.117)

+o0o +oo 4o
= / / / w(x, y, 1)e IR gudydr, (3.118)

The 3D FT of the wave signal defined in Eq. 3.123 is given by:

W ke, ky, ) = W, (ky, ky, ) + W(ky, ky, @). (3.119)
where
W, (ky, ky, @) = Wod(w — @0)0 (ks + ko) (ky + kyp). (3.120)
and
Wi(ky, ky, ) = WoLe 2k §(k — ko)d(w — o), ky >0 (3.121)

Figure 3.16a shows the displacement distribution w(x,y,t) over the considered
domain at a specific instant of time, while Fig. 3.16b shows a cross section of the
magnitude of the 3D FT evaluated at frequency wg. The plane wave component

Fig. 3.15 Wave propagation
in a 2D elastic medium:
interaction between plane and
spherical waves
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appears as a peak located at coordinates k, = —k, k, = —k,o, while the spherical

wave appears as a semicircular contour limited to the k, > 0 half-plane. While the
presence of the spherical wave as part of the considered displacement distribution
is very evident in the wavenumber domain, it appears completely overshadowed
by the plane wave component in the spatial displacement distribution of Fig. 3.16a.
As discussed in the case of 1D wave propagation, the plane wave component can be
conveniently removed through the simple application of a window function centered
at the peak corresponding to the wavenumbers k, = —ky9, k, = —k,0, so that the 3D
FT of the spherical wave can be approximated as:
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W (ky, ky, ) =~ [1 — H(ky — kyo ky — kyo, @)W (ky, ky, ) (3.122)

where H(k, — ky, ky — kyo, ») is the considered window function. The result of the
filtering process is to isolate the spherical wave, which can then be visualized
separately from the overall measured response. The spatial distribution of the
filtered signal and the corresponding 3D FT at frequency o are shown in
Fig. 3.17a and b. The analysis of the residual signal displayed in Fig. 3.17a allows
the identification of location and potentially the characterization of the charac-
teristics of the secondary wave source.
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Similar results can be illustrated by considering the interaction between two
spherical waves according to the configuration depicted in Fig. 3.18. The wave, in
this case can be expressed as:

W()C,y7l) :Wsl(x7y,t) +W32(xay7t), (3123)
— Wo[e—j(kur—wut) + yej(korﬁ—wgt—Zkors)} (3124)

and the corresponding 3D FT is given by:

W(ky, ky, ) = Wy (ke, ky, @) + Wi (ky, ky, 0). (3.125)

where
Wi (ky, ky, ) = Woo(lk| + ko)o(w — wp), ke >0 (3.126)
W (ke ky, 0) = Wo L e 7507 5(|k| — ko)d( — ay). (3.127)

The spatial distribution at a given instant of time and 3D FT at w = w are
shown in Fig. 3.19, for a case where ¥’ = 0.1. Again, the presence of the secondary
spherical wave is evident from the spectral representation of the signal, but hard to
identify from the spatial distribution plot. The application of the window function to
eliminate the primary wave can be replaced by the elimination of the part of the 3D
spectrum corresponding to k, > 0. This portion of the spectrum in fact contains all
information regarding waves propagating in the x > 0O direction, and therefore,
given the configuration depicted in Fig. 3.18, includes the primary wave.

Removal of the negative part of the spectrum can be done through the evalu-
ation of the Hilbert Transform (HT) of the signal in terms of the x coordinate. This
operation can be expressed mathematically as follows:

W%))(xvyvt) = %X[W(xayv t)] (3.128)

where ', denotes the HT performed in terms of the x coordinate. The result of
this filtering process is presented in Fig. 3.20a and b, which respectively show the
spatial distribution at a given instant of time and the 3D FT spectrum evaluated at
wyo. The residual signal as in the previous case, clearly shows the presence of the
secondary wave and the location of its origin. In a practical setting, the excitation

Fig. 3.18 Wave propagation
in a 2D elastic medium:
interaction between two
spherical waves
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Fig. 3.19 a Snapshot of (a) 1
interaction between two
. 08|
spherical waves, b
corresponding 3D FT at 06}
W = o |
04}
2y
E o
~s
02F
04
06 |
08
A 05 15
(b)
200 -
150
100
E "
=}
8 o
o
=100
150
200 -
300 200 100 [) 100 200 300

k, [rad/m]

signal generated to interrogate the state of health of the structure can be considered
as a primary wave, while the secondary wave can be associated to any damage or
in general to any discontinuity in the structure. As the primary wave is selected for
optimal excitation of the desired wave modes, one can consider it as fully known.
As in the cases considered above, the nature of the filtering procedure can be
selected on the basis of the type of excitation signal used for inspection.

3.3.3 Numerical Examples: Wave Propagation in a Damaged Rod

The configuration considered in the first set of simulations is depicted in Fig. 3.21.
The rod, which has a length L = 1 m, thickness 2 =5 cm, and it is made of
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aluminum (E = 7.1 x 10'° N/m?, p = 2,700 kg/m?), is excited at its free end by a
5-cycle sinusoidal tone burst at 50 kHz. The rod is discretized using 160 bar finite
elements, and its response is computed through numerical integration of the
equation of motion using Newmark’s method. The simulation is performed over a
time interval which corresponds to the time required for the injected pulse to reach
the clamped end of the rod. The applied perturbation propagates and interacts with
a damage located at xp = L/2, modeled as a thickness reduction corresponding to
hp/h = 0.9 occurring over one element of the considered mesh. The response at a
specific point (x = 3/4L) plotted in (Fig. 3.22a), in which a main pulse, corre-
sponding to the injected wave, and a smaller, secondary, pulse corresponding to
the reflection caused by damage. The 2D FT of the rod response is shown in
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Fig. 3.21 Configuration for
simulation of wave
propagation in a damaged rod

Fig. 3.22 a Time response
of damaged rod at x = 3/4L,
and b corresponding 2D FT
representation
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(Fig. 3.22b), which highlights the presence of the main pulse propagating along
the x > 0 direction, and of the reflected pulse. This pulse has lower amplitude, and
it is characterized by the same frequency, and appears in the k<0 region of the
wavenumber/frequency domain. Again, the 2D representation effectively separates
incident and reflected wave components, and allows effective filtering of the
main wave. A 2D Hanning window is applied to isolate the reflected wave, and to
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obtain the frequency/wavenumber spectrum shown in Fig. 3.23b. The residual
space—time domain signal can be then reconstructed through inverse FT trans-
formation, as discussed in the previous section. The residual signal at x = 3/4L
shown in (Fig. 3.23) demonstrates the effectiveness of the windowing procedure in
removing the main propagating pulse, while leaving the reflected response cor-
responding to damage.

This filtering procedure can be also applied to reduce the effects of noise in the
data. (Fig. 3.24a) shows for example the rod response at the considered location
when a random noise is added to the simulated data. The noise, which has an
amplitude corresponding to 10% of the signal root mean square (RMS) value,
hides almost completely the reflected signal thus making any damage identification
very difficult. A narrow band filter can be applied on the filtered signal to eliminate
the effect of noise and highlight the reflected signal. A 2D window (Hanning) can
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be easily applied to the frequency/wavenumber spectrum of the residual signal
Fig. 3.23b in order to act as a narrow band filter and to mitigate the effects of
background noise. The comparison of the estimated residual signal reconstructed
with and without narrow band filtering in the frequency/wavenumber domain is
presented in Fig. 3.24b and c, to demonstrate how narrow band filtering mitigates
the disturbances due to noise and allows visualizing the damage signature.

3.3.4 Numerical Examples: Wave Propagation
in a Homogeneous Medium

The propagation of elastic waves in a homogeneous medium is again considered to
perform a validation example. The Mass Spring Lattice Model (MSLM) presented
in [25] is used to simulate the propagation of elastic waves in the considered
homogeneous medium. The goal of the simulations is to test the frequency/
wavenumber domain filtering process as applied to simulated 2D wave propaga-
tion data. The domain in Fig. 3.25 has dimensions L, = 0.5 m and L, = 0.25 m
and it is discretized using a 200 x 100 lattice. Damage is modeled as a 30%
reduction in stiffness over the length L of the simulated damage. More sophis-
ticated damage models for such damages is presented in Chap. 6. In the first
configuration depicted in (Fig. 3.25a), damage is located at yp = 0.125 m, xp =
0.235 m, and has a length Lp = 2.5 cm, while the configuration of Fig. 3.25b
features two longitudinal damages respectively located at yp, = 0.125 m, xp, =
0.160 m, and at yp, = 0.125 m, xp, = 0.375 m of length Lp, = 1.5 cm and Lp, =
2.5 cm. The domain is excited by an imposed displacement applied at xg = 0.25
m, yg = 0, varying as a 5-cycle sinusoidal tone burst of frequency fy = 100 kHz.
Results for the first damage configuration are shown in Fig. 3.26. Specifically
Fig. 3.26a, displays a snapshot of the propagating wave at a time instant corre-
sponding to approximately #y = 0.77, where T, denotes the total simulation time,
here selected as the time required for the induced wave to reach the top edge of the
domain. The time snapshot of Fig. 3.26a shows the main pulse with small traces of
scattering corresponding to damage. The cross section of the domain response
evaluated at f = fy shown in Fig. 3.26b effectively decomposes the main wave
propagating along y > 0 from the reflected wave traveling in the opposite direc-
tion. In this situation, the negative part of the spectrum can be easily removed to
isolate the scattered wave corresponding to damage. This can be effectively done
through the application of the Hilbert Transform along one of the spatial direc-
tions. Specifically, the reflected wave w(")(x,y, ) can be estimated as:

w (x,y,1) &= W (x,y,1) = Ay [w(x, y,1)]. (3.129)

where ', denotes the Hilbert Transform evaluated in terms of the y coordinate.
The results of this process are shown in Fig. 3.26c and d which respectively
present a snapshot at 1 = ¢y of the reconstructed time response upon filtering, and
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the corresponding cross section of the 3D FT at f;. Given the approximation of the
reflected wave w(")(x,y,1), an effective visualization of presence and location of
damage can be obtained through simple means such as the representation of the
RMS distribution of the reflected signal defined as:

T 2

s () = / (W) (x,y, 1))t (3.130)
0

The RMS distribution corresponding to the filtered response of the domain with a
single damage is shown in Fig. 3.26e, while results for the domain with the two
damage sites are shown in Fig. 3.27, which indicates how the technique can
effectively provide indications of the presence of multiple damages.

3.3.5 Frequency/Wavenumber Filtering for Mode Separation

The frequency/wavenumber analysis of full wavefield data can be also effectively
applied for the separation of individual wave modes resulting from guided waves
excitation of the structures under consideration. The theory concerning Lamb
waves is explained in Chap. 5. This section illustrates the additional information
and processing that can be performed through the straightforward application of
multi-dimensional FTs, and knowledge of the dispersion properties of the medium.

Experiments performed on a bonded aluminum plate illustrate typical experi-
mental full wavefield data obtained using an SLDV. The SLDV records the time
domain response of the structure over a pre-selected grid of points. The data are
then organized in 3D arrays u(x, y, t), which define the velocity component aligned


http://dx.doi.org/10.1007/978-0-85729-284-1_5

3.3 Frequency/Wavenumber Analysis

a T y b
@, (b)
150
025,
100
02
50
E ]
3 0 =
- N
=50 -
100
150
0 005 01 015 02 025 03 035 04 045 05 250 200 150 .00 S0 0 S0
Hml k, [rad/m]
(d)
150
100
— 50
1 £
=
.so.
a0
-150
O 005 01 045 02 025 03 035 04 045 05 250 200 150 400 50 O
mj
*m) k. [radim]
(€) osl
025
B.ZI-
Eots) )
04}
005
o
005 |

0 005 01 015 02 025 03 035 04 045 05

¥[m]

145

100 150 200 250

100 150 200 250

Fig. 3.26 a Snapshot of propagating wave in 2D domain with single damage, b corresponding
3D FT at the excitation frequency fy = 100 kHz, ¢ snapshot of filtered wave, d corresponding 3D
FT at fy = 100 kHz, and e RMS distribution of reflected signal

with the laser beam at the considered location. Examples of snapshots of recorded
wavefield images are presented in Fig. 3.28. The 3D data arrays u(x,y, ) contain a
wealth of information which can be used for structural characterization, and
subsequent evaluation of the structural properties of the component under inves-
tigation, or for the evaluation of its structural integrity. As indicated earlier,
structural characterization and health assessment can be effectively performed by
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Fig. 3.27 a Snapshot of propagating wave in 2D domain with two damages, b corresponding 3D
FT at the excitation frequency fy = 100 kHz, ¢ snapshot of filtered wave, d corresponding 3D FT
at fo = 100 kHz, and e RMS distribution of reflected signal d

analyzing the response of the specimen in the frequency/wavenumber (o — k)
domain, where dispersion information on the structure is visualized, and where the
separation of multiple wave components and modes is conveniently performed.
The wave vector k = k,i + kyj is here intended as having two components ki, ky,
which are resolved along a Cartesian frame defined over the measured surface, and
identified by the unit vectors i, j. Under this hypothesis, a 3D FT can be performed
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Fig. 3.28 Snapshots of wavefields measured on a bonded aluminum plate using a SLDV system

to represent the response in a 3D domain defined by the wave vector components
ky, k, and frequency w.

Frequency/wavenumber analysis of experimentally recorded wavefield data
typically requires that the time domain waveform data u(x,y,f) are windowed over
a spatial region of interest to obtain:

uw(xayat) :u(-xayat)wl(xay,t) (3131)

where u,,(x,y,) denotes the response of the specimen over a spatial region of
interest and time interval defined by the spatial-temporal window w;(x,y, ). The
selection of the region may be driven by practical considerations, as dictated for
example by the need to investigate and characterize the wavefield in portions of
the structure where structural discontinuities are present by construction or where
damage is expected to occur. In addition, the need for spatial windowing is
required if incident wave removal through 3D filtering must be performed. In this
case, the window must exclude the source from the region under consideration so
that the incident wave is associated with a main direction of propagation. It is in
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fact important that the incident (outgoing) wave occupies only half of the wave-
number plane, and correspondingly that reflected (incoming) waves are located in
the other half. This allows differentiating and decoupling incident and reflected
waves in the wavenumber domain when decomposed in terms of the cartesian
components of the wave vector k., k,. Temporal windowing prevents the effect of
boundary reflections from obscuring other reflections due to the presence of
scatterers within the specimen, and minimizes leakage errors.

The windowed waveform data u,(x,y,r) is transformed to the w,k,,k,
domain by

Uw(wakkay) = 973D[”w(xayv t)] (3132)

where  3p is the 3D FT. Frequency—wavenumber domain data U,,(w, k,, ky) are
subsequently filtered in the frequency/wavenumber domain through a second
window function W>(w, ky, k) to obtain:

Uy (@, ke, ky) = U0, ke, ky ) Wa (0, ke, ky) (3.133)

where U, (w, ky, ky) is the filtered response. The selection of the frequency/
wavenumber window W, depends on whether incident wave removal and/or mode
separation need to be performed. Referring to the bonded aluminum plate
experiments, the analysis considers the region of the plate highlighted in Fig. 3.29,
which does not include the source, as discussed above, and where the plate
thickness is constant.

The response over the considered region is evaluated through a temporal-spatial
window function which is defined by:

Wl(-x?yvt) = wx(x)wy(y)w,(t) (3134)

where we (&) defines the one-dimensional window applied along the generic
coordinate ¢. A tapered-cosine window (Tukey window) is considered for all three
directions. Its expression is

Fig. 3.29 Wavefield

u(x,y,t =to) at to =43 us
and detail of the region
considered for the subsequent
analysis

x [m]
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0 &= Col >w
w(E) =41 ) 0<|é — &) <om (3.135)
0.5+ 0.5 cos[r52]  ow<[xi — &|<w

where &, and 2w respectively denote the center and the width of the window, while
o is a parameter that defines the shape of the window. Specifically, for o = 1 the
window becomes a rectangular window, while « = 0 leads to a Hanning window.
The Tukey window is particularly convenient in this case as it allows the flexibility
needed to avoid that information near the edges of the considered spatial and
temporal domains is lost upon windowing, while reducing truncation distortions
and leakage errors associated with a sharp triangular window. In this case, a trial
and error procedure has led to the selection of o = 0.25 for all the three windows
defined in Eq. 3.134). The windowed response u,,(x,y, ) is transformed using a
3D FT to obtain U, (ky, ky, ).

Cross sections of the resulting three-dimensional function are presented in
Fig. 3.30. Specifically, Fig. 3.30. a shows contours of the amplitude of the 3D FT
|Uy (ky, ky, )| evaluated at the frequency wy of maximum response, which in this
case is wy; = 1.36 x 10° rad/s. The map clearly characterizes the modal content of
the plate response, as well as the directions of wave propagation of the various
modes. In this case, the family of contours associated with smaller wavenumbers
corresponds to the first symmetric mode Sy, while a second group of contours is
associated with the first asymmetric mode Ag. The generation of Ay as well as Sy
modes is given in Chap. 5. It is interesting to note how the Sy mode propagates
approximately as a spherical wave, with a stronger wave vector component along
the y (vertical) direction. In contrast, the Ay mode propagates at an angle with
respect to the vertical direction, possibly as a result of asymmetry of the transducer
which manifests itself mostly on the Ay mode. Figure 3.30a also shows an
arrow which identifies the wave vector k), of maximum amplitude, which is
expressed as:

Ky = kg, i+ ky, (3.136)
Ky = kpr(cos Opd + sin Opr) (3.137)

where the angle

-1 kYM

0y = tan [ kxM]

identifies the direction of the wave vector associated with the maximum response
amplitude. In this case, k,, ~ 0 and k,,, ~ 284 rad/m, with 0y = 90°.

Figure 3.30b shows the cross section of the 3D FT evaluated in the direction of
kys, here denoted denoted as |U,,(k,0y,)|. The contour plots of Fig. 3.30b
reproduce the dispersion relations of the plate in the frequency/wavenumber range
corresponding to the excitation provided by the transducer. This representation
therefore provides the means for the experimental evaluation of the dispersion
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properties of the specimen, which can be used for structural characterization
purposes and for the validation of numerical models. For the case of a flat alu-
minum plate as here considered, the dispersion properties are well known and can
be found through analytical procedures as described for example in [23]. The
analytical dispersion relations are superimposed to the experimental ones also in
Fig. 3.30b, where they are represented as solid lines. In addition, dashed lines
show the upper and lower bounds of the filtering window W (kx, ky, w) applied to
separate the individual modes. The considered window selected to isolate for
example the Sy mode can be expressed as follows:

0 k() = ks, ()] <2w()
Wz(kxak)H (,U) - 05 + 05 CcOS {W] |k(CO) —_ kso((D)| > ZW(CU)
(3.138)
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where k = [k? + kyz]l/ *. Equation 3.138 defines a Hanning window of width 2w,

centered at the wavenumber kg, corresponding to the mode to be extracted from
the overall response. At each value of frequency w, the center of the window can
be estimated analytically from known dispersion relations, or through the evalu-
ation of the ridge of the associated dispersion branch. The width of the window can
generally vary as a function of frequency, so that W, may be designed to act also as
a band-pass filter. The width of the window in this case has been arbitrarily chosen

Fig. 3.31 a Snapshot of
AWI at t = 37 ps,

b corresponding Ap mode and
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mode separation
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to vary linearly with frequency within the 0 — 2 x 10° rad/s range, thus capturing
most of the energy of the recorded response.

Upon mode separation, the response corresponding to the individual modes can
be transformed in the spatial/temporal domain so that single-mode propagation can
be observed. Examples of results from this procedure are presented in Fig. 3.31
which compare snapshots of the original response, with those corresponding to the
isolated Ay and Sy modes. The images clearly show the effectiveness of the sep-
aration procedure, which allows the selectively investigation of the scattering
properties of the individual modes when interacting with defects or structural
discontinuities, the estimation of their sensitivities to specific damage types, and
the identification of mode conversion phenomena. Of note for example is the fact
that in the image for the Ap mode (Fig. 3.31b), two scatterers appear as secondary
sources of Ay waves as a result of the conversion of the S, mode.

A final step in the filtering procedure may involve the removal of the incident
wave, according to the procedures outlined in the previous section. A first, simple
analysis evaluates the RMS value of the residual response. Results for the plate
under consideration are presented in Fig. 3.32, which compares the RMS value
corresponding to the scattered Ay and Sy modes. The two figures clearly highlight
the presence and the location of two scatterers and show their different scattering
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behaviors, with the one located at (—0.05,—0.01) clearly producing significant
stronger Sy reflections.
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Chapter 4
Application of the Finite Element Method
in SHM

4.1 Overview and Basic Principles

Proper mathematical models are required to post-process the measured output
to predict the damage location and its extent. Some of the commonly used
mathematical models are the finite difference methods (FDM), finite element
methods (FEM), spectral finite element methods (SFEM) and boundary element
methods (BEM). These were briefly discussed in Chap. 1. Among them, FEM
is the most versatile and powerful method due to its ability to model complex
geometries.

FEM is a powerful numerical technique to solve problems governed by partial
differential equations over complex domains. It is normally adopted to solve
forward problems in structures, that is, for a given a loading (input), one can easily
determine the deformations the structures undergo (output). Structural health
monitoring however requires estimating the state of the structure from the mea-
sured output (deformation, velocities, acceleration, voltages etc) for a given pre-
defined input (force) [5]. Hence, SHM falls under the realm of system
identification problem. Such problems are also called the inverse problems.

In this chapter, we will not outline the procedure of FEM as such since many
classic texts are already available in this area. That is, it is assumed that the reader
has enough knowledge of different type elements, generation of stiffness and mass
matrices, convergence criteria, modeling for distributed loads etc. We will instead
focus on those aspects of FEM that are relevant to SHM, which include creating
damaged FE models, choosing the appropriate mesh sizes and its relation to
damage size and frequency content of the input etc.

One of the key aspects of performing SHM studies under a FE environment is
the modeling of the damages in general, and cracks in particular. Many researchers
have used different methods under FE environment to model flaws. For example,
Yang et al. [18] used FEM to study the Lamb wave propagation in composite
plates. Powar and Ganguli [12] used FEM to model matrix cracks in composites
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beam and study the performance of a rotating helicopter blade. FEM was used to
obtain crack parameters in [4]. A new method to model cracks under FE frame-
work using Heaviside function is proposed in [6]. Many researchers have used FEs
to model cracks to perform fracture mechanics study and the related literature is
too large to be covered here. In this chapter, we instead introduce three different,
simplified ways to model damages. The discussed methodologies can be adopted
to simulate vibration and wave propagation characteristics of damaged structures
with the purpose of generating numerical responses which can then be used in
support of the development of SHM techniques. One of the important objectives of
such simplified models is primarily to be able to accurately reproduce the effects of
damage in the considered frequency range, rather than to precisely model the
structure of the damage, its geometry, and its shape from a fracture mechanics
perspective. Relevant effects from an SHM standpoint include frequency shifts,
mode and curvature shapes distortions, and reflections, diffractions, scattering and
mode conversion in wave propagation regimes. The ability to reproduce these
observed behaviors with the required accuracy drives the selection of the mesh size
and of the simplified models to be used to represent damage. The choice of mesh
size and time step are critical to the achievement of such accuracy, as discussed in
this chapter. Simplified damage models as here illustrated complement the for-
mulations presented in Chaps. 6, 7, and 8.

Modeling issues and strategies for the simulation of damage are discussed in
metallic and composite structures, where different types of damage are encoun-
tered. Generally speaking, FE modeling of composites is an order of magnitude
more complex than that of isotropic materials, particularly due to the presence of
complex stiffness and inertial coupling. In addition, there is a variety of failure
modes in composites in contrast to metallic structures. Common failure mecha-
nisms include the delamination of the plies, fiber breakage and matrix cracks. In
built-up composite structures, debonds are also a common type of failure. Accurate
and efficient modeling of these types of flaws is crucial for the development of
proper detection tools. The most common way of modeling flaws such as cracks in
FEM is to introduce duplicate nodes along the crack front which have same nodal
coordinates but different node number. This procedure ensures discontinuity in the
medium arising due to the presence of the crack. One of the important differences
in the response behavior of the cracked structure as compared to the uncracked
structures is the presence of the phenomenon of mode conversion [2, 16] present in
the former. If such a phenomenon can be built using simpler models, one can use
such models effectively in SHM studies. One approach is kinematics-based,
whereby the cracked structure is considered as a series of multiply connected
waveguides. By enforcing kinematic relationship among the nodes of the wave-
guides, one can eliminate the intermediate nodes of the frame structure, thereby
obtaining a FE model with built in damage. References [11, 17] use such models
under the spectral finite element environment to study the wave propagation
responses in a delaminated beams and in beams with fibre breakage as also
explained in detail in Chap. 6.
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4.2 Modeling Issues in FEM

Although modeling flaws such as cracks or delamination is well documented in
finite elements (which is addressed in the next section), the stress singularity near
the crack tip, requires very fine mesh near the crack tip even for a static loading,
which makes the model sizes enormously large. If the loading is dynamic, the
mesh sizes required will be even and it depends on the frequency content of the
predefined input.

Frequency content of the predefined input is yet another parameter that should
be carefully chosen depending upon the flaw sizes. When the flaw sizes are larger
compared to dimension of the structure, then even static loading is sufficient.
However, such flaws will be visible to the naked eye and as such SHM tech-
niques is not needed. However, if the flaws sizes are reasonably small compared
to the smallest dimension of the structure, then one requires that the predefined
input loading be dynamic in nature and the frequency content could be of the
order of few hundred Hertz. Such low frequency content problem comes under
the category of structural dynamics. On the other hand, if the flaw sizes are very
small, then the frequency content of predefined input signal should be of the
order of few hundred kilo Hertz. These problems come under the category of
wave propagation. The main difference between these two is that the latter is a
multi-modal phenomenon, wherein phase information of the responses becomes
very important. Cracks in structures acts like a boundary and results in a very
small impedance mismatch at the crack boundary, which will induce reflections
for a high frequency input signal. These reflected signals can be effectively used
to characterize, predict, and locate the cracks in a structure and also its extent.
Hence, the choice between the structural dynamics or wave propagation analysis
to be adopted depends upon the frequency content of the input signal, which in
turn depends on the flaw size. All these will have a bearing on the mesh sizes to
be chosen for the FE analysis.

Now, two questions needs to be answered. That is, what should be the mesh size
for a given input loading? and what should be the frequency content of the input
signal for a given flaw size? For a given input loading, the mesh sizes to be chosen
such that they are comparable to the wavelength. When the frequency content of
the signal is high, the wavelengths are very small and hence the mesh sizes have to
be small, which in turn increases the problem sizes enormously. To determine the
mesh sizes, first the predefined input signal is transformed into frequency domain
using FFT and a plot of the amplitude and the frequency will give the frequency
content of the signal. Let us denote this by w(rad/s). If ¢ is the wave speed of the
given wave mode obtained from the dispersion relations of waveguide in question,
then the wavelength A is given by

21cy
A=— 4.1
; (4.1)
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Typically, the mesh sizes should be such that nearly 10 elements should cover a
wavelength although in some cases 8-10 elements may be sufficient. In other
words it should of the order of /10 [9]. If the mesh sizes are larger than what is
given in Eq. 4.1, then, the mesh boundaries will start reflecting the input signal
thereby giving erroneous indication of the presence of the crack. Mesh sizes
depends on the speeds of the medium in which the signal is propagating. In order
to make this statement clear, let us consider two mediums, namely aluminum and
composites. The speed of a compressional wave in composites is approximately
3,850 m/s, while in aluminum it is 6,000 m/s. Let these medium be subjected to an
input pulse having a frequency content of 50 kHz. From Eq. 4.1, the wavelengths
in composites is about 77 mm, while in aluminum, it is about 120 mm. Hence, for
a given input, composites require a denser mesh.

Now the second question that needs an answer is related to the frequency
content of the predefined input signal for a given flaw size. The requirement here is
for the such a signal to induce an impedance mismatch at the crack boundary and a
wave reflection. In order for this to happen, wavelengths should be comparable
to the flaw sizes. For example, we will again consider the same example
considered previously, that is, the aluminum and the composite structure with
damage. The wave speeds in composite is approximately 3,850 m/s, while in
aluminum it is 6000m/s. Let us assume that both these medium have a small crack
of 20 mm size. Eq. 4.1 can be rewritten as

€o

= (4.2)
where f is the frequency in Hertz and a is the size of the flaw. From Eq. 4.2,
substituting the speeds of the composite and aluminum medium, we see that, for
inducing a reflection from the damage in composites, the frequency content of the
input signal should be 192.5 kHz, while in aluminum medium, the frequency
content of the predefined input signal should be 300 kHz. In addition, if the signal
needs to travel non-dispersively, then one can create a tone burst signal created
using a sine wave of above calculated frequencies. From the above discussion, it is
clear that the frequency content of the input pulse and the mesh size is highly
dependent upon the medium in which the waves are propagating.

The success of this analysis requires that the speed of the medium is known.
Calculation of speeds especially for dispersive system is an involved process. This
was discussed in detailed in Sect. 2.8. The procedure outlined in this section can be
adopted to obtain the group speeds. Since the dispersive media group speeds are
dependent on frequency, a question arises is on the frequency at which speeds need
to be calculated in order to determine the mesh size according to Eq. 4.1.
To answer this question, let us consider the dispersion plot of a composite beam
for different ply orientation shown in Fig. 2.14. The plot shows the group speeds
for axial and bending wave for different ply orientation of a laminated composite
beam. The parameter r is the bending-axial coupling factor [8] for the beam.

The speeds are normalized with the axial speed in an isotropic rod (co = v/E/p).
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The three horizontal lines are the axial wave speeds for three different ply
orientations. One can clearly see that the axial speeds are constant for all fre-
quencies and hence they are non-dispersive. The figure also shows three non linear
curves for bending waves for three different ply orientations. These waves are
highly dispersive in nature and hence their speeds are different at different fre-
quencies. If the input signal is broadband, then the choice of wave speed to be used
in Eq. 4.1 becomes difficult. In such cases, modulated signals are very useful since
their active energies are band limited over a small frequency band. One such
modulated signal also called the tone burst signals is shown in Fig. 4.1. This signal
is created using a sine wave of frequency 50 kHz and modulated using a Hanning
window. The FFT amplitude of this signal is superimposed in Fig. 2.14 along with
the dispersion plots. Through this superposition, the wave speeds corresponding to
50 kHz can be easily computed for various propagating modes and this value can
be used in Eq. 4.1 for calculating the wave speeds. It can be seen from Fig. 2.14.
that the frequency spectrum of the input signal also peaks at 50 kHz, which is its
modulated frequency. That is, such a pulse will excite modes only those lying very
close to 50 kHz, while all other modes do not participate in the response. As a
result, the group speeds of the wave is a function of only a small set of frequencies
close to the modulated frequency, which forces the response to be non-dispersive
even in a dispersive medium.

An alternative way of fixing the mesh sizes is by looking at the stiffness of the
structure. It is well known that the presence of a flaw reduces the stiffness of the
structure. This stiffness reduction depends on the size of the flaw. If the flaw size is
small, it causes insignificant change of the stiffness of the structure and hence
insignificant change in the first few natural frequencies of the structure. However,
for large flaw sizes, stiffness change is significant and hence the modal frequen-
cies. This is shown in Fig. 4.2. for a laminated composite beam of 20 cm length
with two different delamination sizes, where the bending stiffness is plotted as a
function of frequency. For a delamination of 1 cm, one can hardly notice any
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changes up to 20 kHz frequency and only modes beyond this frequency may get
excited for the given loading, while for a delamination of 5 cm, one can see that
the frequency change happens at 3 kHz. That is, for small flaw sizes, only higher
modes get excited and hence to capture all higher modes accurately, one needs
very fine mesh. Hence, for such small flaw sizes, modal methods are not suitable,
and one needs wave propagation analysis.

Accuracy of the response to high frequency input depends on the density of the
FE mesh. For a reasonably dense mesh, the wave response predicted may be
accurate, however may show period error. To reinforce these ideas better, let us
consider a simple aluminum rod of 2.0 m length and 0.01 m? cross section, with
Young’s Modulus E = 70 GPa and a density p = 2600 kg/m>. The wave speeds in
the aluminum can be calculated from the formula ¢y = \/E/p = 5189 m/s. This
rod is subjected to the input signal shown in Fig. 4.3. (inset), which has a fre-
quency content of 46 kHz. From Eq. 4.1, the wavelength can be calculated, which
is equal to 0.11 m. In order to capture the wave behavior accurately, at least 10
elements per wavelength are required, that is an element length of 10.0 mm.
Hence, for a length of 1.0 m, at least 100 1D finite elements are required for
modeling. Fig. 4.4, shows the axial wave responses at the cantilever tip for dif-
ferent number of elements. We have used 250 1D rod elements to get a fully
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Fig. 4.3 High frequency
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converged solution, which shows an initial pulse at round 100 ps and a reflected
pulse from the boundary at around 420 ps. Fig. 4.4. also shows (in the inset) the
period error when the mesh sizes are inadequate. Inadequate FE mesh for a high
frequency input pulse results in mass or inertial distribution not being accurate. As
a result, the wave speeds predicted by FE analysis will be highly inaccurate
resulting in period error. In addition, if the mesh sizes are much smaller than what
is required, then the mesh boundaries will act as a fixed boundary and start
reflecting responses from these boundaries. These are clearly seen in Fig. 4.4. for
very coarse mesh density. Hence, for very high frequency content input pulse,
which is normally the case for most SHM problems, fine mesh is an absolute
necessity.
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4.3 Damage Modeling Using FEM

Materials such as composites have many modes of failures. Among the different
failure modes, delaminations, and fibre breakages are important modes of failure.
These failure modes correspond to horizontal and vertical cracks in metallic
structures. This section outlines some of the methods adopted to model the above
failure modes in composites and metallic structures under FE environment. These
methods can be classified as

1. Stiffness Reduction Method (SRM)

2. Duplicate Node Method (DNM), and

3. Kinematics Based Method (KBM) A description of each method is provided
below

4.3.1 Stiffness Reduction Method

It is quite well known that the presence of flaw causes a reduction of stiffness in a
structure. A simple way of modeling flaws is to incorporate the stiffness loss in the
region of the flaw by modifying the materials properties P (where P can signity,
Young’s modulus, shear modulus, density etc.) to aP where o < 1. The concept is
demonstrated in Fig. 4.5, where Fig. 4.5a shows the actual model of a laminated
beam with a through width delamination and Fig. 4.5b presents the equivalent
stiffness-reduced model. This procedure can be adopted to model any number of
flaws in the structure. One main drawback of this approach is its inability to predict
mode conversion. In [9], such a model was however used to perform SHM studies
on large civil structures.

Fig. 4.5 Modeling of flaws (a) Delamination
using stiffness reduction
method: a delaminated beam, 5
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4.3.2 Duplicate Node Method

A better way of modeling cracks in FE is to completely model the entire crack
front. This can be performed in the following way. Modeling can be done using
either the 1D beam element or with the 2D plane stress/strain finite elements using
the concept of duplicate nodes. In the case of beams, the modeling of a flaw such
as a delamination is done by keeping the two nodes in same place, one for the
elements above the flaw and other below it. This is shown in Fig. 4.6a. Here,
elements 1 and 2 are at the left part of the flaw, while elements 8 and 9 are to the
right part of the flaw. All other elements are in the flawed zone, either above or
below the flaw. The zone below the flaw is modeled with elements 3—7 and above
by elements 10—14. The flaw is modeled through proper nodal connectivity of
these elements. That is, for a healthy zone, element 1 is connected with nodes 1
and 2; and element 9 is connected with nodes 9 and 10. All of these nodes are in
the mid-plane of the corresponding beam elements. For element below the flaw,
say, element 3, is connected with nodes 3 and 4, where nodes 3 and 4 are not on
the mid plane of the element. This may create high bending-stretching coupling,
which is the objective of the modeling process to induce mode conversion. Sim-
ilarly, for element above the delamination, element 10 is connected through nodes
3 and 11, where nodes 3 and 11 are not in the mid plane of this element. As
mentioned earlier, nodes 4 and 11 are in the same place and not connected with
any direct element. These are termed as duplicate nodes. Similarly, (nodes 5 and
12), (nodes 6 and 13) and (nodes 7 and 14) nodes are the duplicate nodes. In the
flaw zone, the lower part of the elements connects with nodes 4, 5-7 and upper
parts of the elements connect nodes 11-14. If these nodes are merged with their
corresponding duplicate nodes, the beam will be healthy. In addition, with these
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duplicate nodes, different kinds of contact or gap elements can be used in finite
element analysis to prevent inter penetration of the crack front.

Similar procedures can be adopted in modeling a flaw using 2D plane stress (or
strain) elements, which are shown in Fig. 4.6b using duplicate nodes. The figure is
self explanatory. Extending of this procedure to model fibre breakages and mul-
tiple delaminations in composites is quite similar and straightforward.

4.3.3 Kinematics Based Method

This method is very useful for modeling delaminations, fibre breakage, and
multiple delaminations in 1D beam type of structures and has lot of similarities to
DNM method explained in the previous subsection. More details can be found in
Chap. 6 and in references [11, 17, 14]. The approach involves enforcing kine-
matics to the nodes surrounding the flaw through two techniques: rigid links
between the FE nodes that share flaw are used, or enforcing actual displacement
constraints corresponding to the beam displacement field. Thus far, the KBM
method has only been applied to model delaminations and fibre breakages in 1D
laminated composite structures, and it is limited to through-width straight-line
cracks.

The main idea behind this modeling approach is to cut the beam structure into
multiple elements (domains) along the crack front. The stiffness and mass matrices
for each of the sub domains is generated. The intermediate nodes away from the
crack front arising due to this splitting are then connected to the nodes along the
crack front through rigid links in order create a coupling between the axial and
transverse displacements. The procedure for modeling delaminations and fibre
breakage are quite different and hence described separately.

4.3.3.1 Modeling of Horizontal Crack or Delamination

Here, let us consider a composite beam with a through width delamination, the
dimensions of which are shown in Fig. 4.7a. This delaminated beam is split into
base laminates and sub-laminates as shown in Fig. 4.7b. The equivalent beam
model with eight nodes, make up this delaminated beam. Each sub-domain
(element) is indicated by a number within a circle. Let each node support three
degrees of freedom namely the axial deformation u, the transverse deformation
w and the slope ¢ and they are represented by a vector u;, where i represents the
domain (element) of interest. Note that between nodes 4 and 7 lies the through
width delamination. It is assumed that there is no contact action between the sub-
laminates at the plane of delaminations and the cross sections are perfectly straight
at the interfaces. The connections between the nodes 3—4, 4-5, 6-7 and 7-8 are
made with the help of the rigid links to simulate the bending-axial coupling. This
model does not take care of crack tip stress singularity as it is not of importance in
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Fig. 4.7 a Original (a) Delamination
delaminated beam,

b Splitting of the damaged
beam into base and sub
laminates and ¢ equivalent
beam models 2h,
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the context of damage detection. A similar approach can be adopted when the
laminated composite structures has multiple delaminations. Some examples on use
of this model in the context of SHM, is given in the next section.

4.3.3.2 Modeling of Vertical Crack or Fibre Breakage

Let us consider a beam with a fibre breakage represented in Fig. 4.8a. The split up
model is shown in Fig. 4.8b and the beam model representation is shown in
Fig. 4.8c. We assume that there exists a distributed dynamic contact at the crack
surfaces and the crack surface remains perfectly straight. The nodes along the left
and right side of the crack are connected by rigid links to simulate bending-axial
coupling behavior. That is, nodes 9-8, 8-5, 5-7, 10-6, 611 and 11-12 are con-
nected by rigid link. Unlike the previous case of delamination, there is a hanging
interface between nodes 3 and 4, which are connected by a non-linear spring to
simulate the distributed dynamic contact. The spring constant has to be chosen in
such a manner that this simplified beam model simulates the actual waveguide
behavior at high frequencies. As before, the effects of crack tip stress singularity is
here ignored. Examples of applications of this model are given in the next section.
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Fig. 4.8 a Original beam
with fibre breakage, b
splitting of the damaged
beam into base and sub
laminates and ¢ equivalent
beam models

4.4 Numerical Examples

The choice of the model entirely depends upon the level of sophistication required
for the analysis. The next sub-sections describe numerical examples related to
static, free vibration and wave propagation analysis in the context of SHM using
the models described above.

4.4.1 Static and Free Vibration Analysis of a Damaged Cantilever
Beam Using DNM

Here two different studies are performed. In the first case, the results from the two
different DNM models (1D beam and 2D plane stress models) are compared to see
the effectiveness of each of these models for SHM studies. In the next case, the
results from the DNM and the KBM based models are compared.

A unidirectional 12-layer laminated composite beam of total depth of 1.8 mm
and a length of 500 mm is considered. A through width delamination is
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symmetrically placed with respect to both top and bottom and the sides. The
lamina is assumed to be orthotropic with the Young’s Modulus in the two per-
pendicular directions being equal to 181 and 10.3 GPa, respectively. The shear
modulus Gy, is assumed equal to 28 GPa. The FE model details are as shown in
Fig. 4.6, while Table 4.1 gives the percentage increase in the tip deflection due to
the damage for a tip unit load. From the results, we find that the agreement
between the two DNM models is closer for large delaminations.

Next, free vibration study is performed to assess the performance of the two
different DNM models and these are plotted in Fig. 4.9. Both the models (beam
and 2D) show more or less similar results. When the delamination is 10% of the
length of the cantilever, the 15th natural frequency reduces 20% compared to the
corresponding frequency of the healthy beam. Similarly, for 90% delamination,
the first natural frequency reduces 29%, second natural frequency reduces 40% and
third natural frequency reduces 72%. From these studies, it is quite clear that beam
DNM beam models can give comparable results with the plane stress DNM
models. This has implications in SHM studies as beam models can give sub-
stantially smaller problem sizes, which is one of the key requirements for SHM
simulations.

In the next exercise, the static analysis is performed using DNM (plane stress
model) and KBM model on a metallic cantilever beam of length 635 mm, width
25.4 mm, depth 25.4 mm, with Young’s Modulus of beam assumed to be 70 GPa,
and Shear Modulus of 27 GPa. The results are generated for a given crack length
of L/10 located at different location along and across the beam. The DNM model
has 100 elements with due care taken to have finer mesh near the crack tip. The
KBM model has only four elements as shown in Fig. 4.7c. The beam is subjected
to a load of 5,000 N. The results of these two models are tabulated in Table 4.2.

From Table 4.2, it is clear that the four element KBM model is able to capture
quite accurately the damaged behavior of the cantilever metallic beam. This again
results in substantial reduction in problem sizes. However, most SHM problem
requires high frequency content loads for damage detection, which needs wave
propagation analysis. This is addressed in the next subsection.

Table 4.1 Comparison of Delamination Beam DNM model Plane stress DNM model

static results for two different (%) (% increase in (% increase in
DNM models tip deflection) tip deflection)

10 0.39 0.08

20 0.91 0.61

30 2.35 2.03

40 5.15 4.80

50 9.77 9.37

60 16.63 16.24

70 26.13 25.75

80 38.90 38.32
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Table 4.2 Comparison of static results for DNM and KBM models for different crack locations
Location of the crack of size L/10 Tip deflection based on  Tip deflection based %

in the cantilever beam Plane stress DNM Model on 4 element KBM  difference
(mm) (mm)
Crack located symmetrically both 1.78 x 10~* 1.804 x 10~* 1.37
length wise and depth wise
Crack located symmetrically 1.778 x 10~ 1.90 x 1074 5.92

lengthwise and 17.78 mm
from the bottom

Crack located symmetrically 1.786 x 10~ 1.77 x 1074 1.02
depth wise and 228.6mm from
the fixed end

Crack located symmetrically 1.773 x 107* 1.84 x 1074 3.78
depth wise and 342.9 mm from
the fixed end

4.4.2 Response Analysis of a Cantilever Composite Beam
with Different Damage Types

The aim of this numerical example is to bring out the differences in the responses
predicted by the three different damage models, namely DNM 2D plane stress
model, SRM and KBM model, respectively. Here, we consider a delaminated AS/
3505-6 graphite epoxy composite cantilever beam of length 800 mm and the beam
is subjected to an impact load shown in Fig. 4.3.

Two different damage types, namely the delamination and fiber breakage, both
of which are of 20 mm size is considered on this beam, which are symmetrically
placed as shown in Fig. 4.10. The beam with 20 mm delamination is modeled by
DNM model, while the beam with 20 mm fiber breakage is modeled using KBM
model. The results from these are compared with the 1D beam FE model with
stiffness reduced by 50% in the small region close to the damage. The main
objective of this example is to not only to compare the responses predicted by
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Fig. 4.10 a Basic model
showing the damage 1. SRM
model with 50% stiffness
reduction in the cracked 0.8 m
region, 2. Delamination
modeled using DNM,
3. vertical surface breaking é

crack modeled using KBM
———— 039m —.I I_

with a spring constant of
2em

1 x 107 of Oy,

(a) Model taken for comparison

(1) Material Degradation
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(3) Top Surface - Breaking Crack

these models, but also to look at the possibility of substituting the detailed KBM
model with SRM model for SHM analysis.

The damage is modeled as a horizontal crack (delamination) using DNM
model, where in a total of 3500 2D triangular elements are used. The vertical crack
or the fiber breakage is modeled using KBN method, while the SRM model is
obtained from the healthy beam 2D model by reducing the stiffness (composite
modulus Q) by around 50%. The input force has a frequency content of 44 kHz.
For this force, with a wave speed of 3850 m/s, it requires nearly 320 beam
elements. However, this simulation is performed using 500 elements for the SRM
and DNM models, respectively. The hanging interface in case of the KBM model
of the spring is simulated with a spring constant of 1 x 1073 times the Q;;, where
Q)1 is the composite stiffness property (See Chap. 2, Sect. 2.4.1.3 for details). The
different beam configuration with the associated damages is shown in Fig. 4.10
and the transverse response histories is shown in Fig. 4.11. From the figure, we can


http://dx.doi.org/10.1007/978-0-85729-284-1_2
http://dx.doi.org/10.1007/978-0-85729-284-1_2

172 4 Application of the Finite Element Method in SHM

Fig. 4.11 Comparison of 002 —
. No Damage
wave propagation responses — Material Degradaion
for different models 0.018 = Delaminaion H
— Top Surface crack
0.016+ 1
0.014
)
E
> oonz: 1
Q
o
< 0.001
:
Z 0.008F ]
=
&
[t
0.006 - 4
0.004
0.002 1

Time (ms)

clearly see that each of these models pick up the reflection from the damage at
around 0.5 ms and the responses show very little change between different damage
types for same size and location. Hence, it can be concluded that SRM model,
which is the easiest to model, can indeed be used to get the response estimates on a
damages structure. However, if one needs to further predict the location and extend
of damage, more local models such as the DNM method may be required.

4.5 Finite Element Modeling Suggestions

All the examples shown in this chapter dealt with 1D waveguides. This is because,
the modeling concepts outlined are better understood with 1D waveguides.
However, most practical structures are either two or three dimensional in nature.
Here we outline some suggestions for modeling flaws in a general 3D structure.

1. The procedure for deciding mesh sizes and the frequency content of the
input signal for 2 and 3D structures outlined in this chapter. However, as
mesh size obtained from Eq. 4.1 should be applied for all the dimension of
the structure.

2. For modeling 1D, straight line cracks for SHM studies, KBM method is
sufficient for damage detection purpose. However, a more detailed DNM
models will be required if one needs to perform life estimation studies.

3. Deriving finite elements based on KBM is not straightforward and hence this
method is seldom used in 2 or 3D structures with flaws. However, for certain



4.5 Finite Element Modeling Suggestions 173

crack orientations, some cracks functions are derived, which captures the mode
coupling aspects in 2D structures. These functions can be readily incorporated
into the finite element formulation, to obtain a simplified damage model. This is
outlined in [1].

4. If the frequency content of the signal is large, that is if the mesh sizes are very
small, then we seldom use a graded mesh as used in static analysis of a cracked
structure. We normally choose very small but equal mesh sizes as dictated by
Eq. 4.1.

5. All the examples demonstrated the use of various modeling methods for either
perfectly horizontal or perfectly vertical cracks, which are normally the case in
composites. However, in metals, the commonly occurring cracks are inclined in
nature. For such structures with inclined cracks, normally DNM method is
used, although SRM method can also be employed. However, for matrix
cracking type in damages, where the determination of the location is not that
important, SRM method is ideally suited

4.6 Modeling Pitfalls in FEM for SHM and Their Remedies

One of the fundamental objectives of SHM is to rapidly obtain the state of the
structure. It was mentioned earlier that the FE model sizes depend on the size of
the flaw. For very small flaw sizes, the frequency content of the signal should be
large, which leads to enormously large problem, which take many hours to obtain
the solution. This is one of the bottlenecks in SHM modeling.

Unlike in a beam, wherein most damages are through width, single dimension
crack, in most 2 and 3D structures, the damages will have an area. For modeling
these type flaws, DNM method is ideal, although the mesh sizes will be very large.
One way to reduce the size of model is to adopt, reduced order FE models.
Reduced order FE models will have only few nodes retained, which correspond to
either sensor locations or the locations where forces are applied, while all other
nodes are condensed out. For static analysis, simple static condensation as outlined
in [3] is sufficient. For dynamic loading, there are many reduced order models are
available, which are outlined in [15]. Procedure to model and its application to
SHM studies are reported in [13].

Spectral FEM [8] can model very long structure with very limited model sizes
irrespective of the frequency content of the input signal. However, modeling
arbitrary geometries in Spectral FEM is practically not possible. The solution to
such problems is to marry these two methods. For example, in the region very
close to the crack, FE modeling can be used and in the region far away from the
crack, spectral FEM could be used. This is because, SFEM can model long and
straight edge surface with only one element. Such an approach was adopted [7] to
model cracks in isotropic beams. Alternatively, a new finite element formulation
based on partition of unity [10], which can be used to model the zone near the
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crack and far away, one can use spectral element enrichment functions. Such a
method will be very useful for SHM analysis of large scale structures.

A complete SHM analysis requires modeling of flaws, their detection from the
measured responses, its location, its extent and its severity. Today, many general
purpose modeling tools such as NASTRAN, ANSYS, ABAQUES, ALGOR, etc.
are available for modeling cracks using any of the above methods described in this
chapter and also for assessing its severity. Some of these software can also perform
optimization studies to decide on the number of sensors required and their loca-
tions. However, most of these tools cannot perform SHM centric analysis as these
do not have the other components of SHM, namely the damage detection algo-
rithms and the signal processing algorithms. Since SHM concepts are built in the
design of today’s civil, aerospace, mechanical, and ship structures, the need of the
hour is to develop SHM centric FE software that integrates many different modules
and new modeling concepts. Such an effort will go a long way towards taking
SHM development to a higher level.
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Chapter 5
Spectral Finite Element Method

5.1 The Need for Spectral FEM in SHM

Spectral Finite Element Method (SFEM) is an effective tool to solve wave prop-
agation problems. In essence, it can be considered as a FE method formulated in
the frequency domain. Before we explain what this method is all about, the
question that need to be answered is on the relevance of SFEM as an effective
computational tool for SHM.

Previous chapters have widely documented how the assessment of the presence
of small size damage requires the support of mathematical models that can effi-
ciently capture the high frequency response of damaged structures. In other words,
the development of a wave propagation-based is essential to the development of
diagnostic tools for SHM.

The history of the study of wave propagation dates back several centuries. An
account of these developments can be found in [13]. However, analysis of wave
propagation by SFEM is a relatively new approach. The SFEM is based on the
application of integral transforms [22]. Examples are the extensive use of Fourier
or Wavelet transforms. For instance, the application of the continuous Fourier
transform (CFT) to the solution of wave propagation problems is a standard
approach as seen in early work [21]. Similarly, for certain boundary and initial
value problems, Wavelet transforms (WT) are very useful [3].

We will now briefly outline the procedures involved in the formulation of
SFEs based on FFT and WT, respectively. Following are two references that
give details on Fourier transform based SFEM. While the initial development of
this method is given in [9], the reader is advised to refer to [12] to get more
advanced applications of SFEM in wave propagation analysis, SHM and active
control of structures.

S. Gopalakrishnan et al., Computational Techniques for Structural Health Monitoring, 177
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-284-1_5,
© Springer-Verlag London Limited 2011
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5.1.1 General Formulation Procedure: Fourier Transform
Based SFEM

The use of integral transforms involves performing an inverse transform (recon-
structing the signal), which is very difficult to do in an exact analytical manner.
Consequently, many approximate and asymptotic schemes have been developed.
These are quite adequate for studying the far-field behavior, e.g. for seismological
studies. However, for structural wave propagation in general and SHM in partic-
ular, these schemes are not sufficient because of heavy loss of information caused
by the reflection of the interacting stress waves at numerous boundaries. Further,
analytical transforms are feasible only if the functions to be transformed are rel-
atively simple, which is not the case for most practical problems. Thus, the
absence of a suitable inversion technique arrested the growth of CFT based
methods and paved the way for the DFT, which is an approximation of the integral
involved in CFT. These aspects were discussed in Chap. 3.

The development of SFEM had to wait for the re-invention [14] and publication
of a FFT algorithm, popularly known as the Cooley Tukey algorithm [7], which
revolutionized signal processing. The SFEM, conceived by Doyle [9], is a DFT
based wave propagation analysis tool, where the DFT is performed by a FFT
algorithm. The unknown variable, a scalar or a vector, can be a function of space
and time, and is approximated as

N-1
u(x,y,z,t) = Z a(x,y,z, wp)e ot P =1, (5.1)
n=0
where N is the number of FFT points. w, is the discrete circular frequency, which
is related to the time window T by

Wy = nAw = —= = (5.2)

In the equations above, At is the sampling rate and oy is the highest frequency
captured by Ar. The frequency content of the load decides N and consideration of
the wrap-around problem or aliasing problem decides Aw. More details on the
associated problems were discussed in Chap. 3.

Representation of the unknown variable in Eq. 5.1, removes one dimension from
the system, i.e., the time ¢ so that frequency enters as a parameter. If the structure is a
1D idealization, then the governing PDE reduces to an ODE. The ODE has constant
coefficients for most cases where the material properties does not vary spatially.
Variable coefficients ODE’s arise for cases when the material inhomogeneity in the
structure is in the direction of wave propagation and also for circular waveguides.
For a constant coefficient ODE, the exact solution can be found for any order of the
equation. SFEM employs this exact solution as an interpolating function for element
formulation. The constants of integration are made to satisfy the boundary condi-
tions in the frequency domain and thus all the requirements are satisfied at each
discrete frequency, w,. Using the IFFT, the time domain data are obtained.
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However, there is more to SFEM than just solving PDEs in frequency domain using
FFT. As the name suggests, the method has a resemblance to the FEM. As in FEM,
in SFEM, the Ritz method [18, 24] can be employed in frequency domain to obtain
the structural stiffness matrix, known as the dynamic stiffness matrix K,,. The matrix
vector equation (much like the FEM) that is solved at each frequency w), is

K, =f,, (5.3)

where &, and f , respectively are the vectors of unknown displacements and known
forces at frequency w,. The dynamic stiffness matrix can also be obtained using
regular FEM by taking the Fourier transform of the governing equation, using the
stiffness matrix K and the consistent mass matrix M as

K, =K — o’M, (5.4)

where 7 in the suffix indicates the formation at w,. However, in most cases kn in
SFEM is obtained using the exact solution to the governing in the transformed
domain as interpolating functions, whereas K, from FEM is just an approximation.
The K, in FEM approaches the K, from SFEM in the limiting process of taking the
number of FEs to infinity. Further, the matrix—vector structure of the SFEM gives
the flexibility of FE modeling, where large structures can be assembled in terms of
many spectral waveguides. The assemblage and imposition of boundary condition
in SFEM is the same as in FEM, which makes the method attractive. With the use
of Ritz method and the theorem of Minimum Potential Energy in frequency
domain, many approximate spectral elements can be formulated. Examples of
these are reported in [5, 10]. Furthermore, there is the possibility of coupling SFE
and FE in complex structures as reported in [11].

The formulation of SFEs for 2D structural waveguides poses extra complexity.
The reduced equation in the frequency domain is no longer an ODE, but remains a
PDE in terms of the space variables. This PDE is not readily solvable and another
transform is necessary to reduce the equation to one spatial dimension. A possi-
bility consists in moving to the frequency/wavenumber domain, through a 2D FT
as defined in Chap. 3. Thus, the unknown variable is further decomposed, nor-
mally using a Fourier series (FS) representation as

M-1 .
i i sin(1,,) }
uix,y,w,) = ULX, My Wi " ’ 5.5
(won) = Y- (e ){ ) (55)
where M is the number of FS points, and #,, is the discrete wavenumber related to

the spatial window Y by
= mAn =0 m (5.6)

with Ay denoting the spatial sampling rate and 7, is the highest wavenumber
captured by Ay. The spatial variation of the load determines M. Using this rep-
resentation, the governing equation becomes an ODE in x and again can be solved
exactly for some cases. This exact solution is again used as the interpolating
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function for the unknown in the spectral element formulation. Thus, for each
frequency w, and wavenumber #,, the dynamic stiffness matrix is formed and
assembled and the unknown variable is solved for its FWD amplitude #,,,, as

Kn.,mﬁn,m :J;.mma (57)

where jn,m is the FWD amplitude of applied load. First u,,,, = u(x,1,,, ®,), and
i(x,y, w,) is recovered by the FS and u(x, y, t) is recovered by the IFFT algorithm.

To obtain the exact solution of the ODE in frequency domain (for 1D analysis)
or FWD (for 2D analysis), it is assumed that the solution of #(x,w,) or
u(x,n,,, w,) is in the form u.e** where u, is an unknown constant and & is the
unknown wavenumber in the direction of propagation, say x. This assumption is
valid for a constant coefficient ODE only. However, the above assumption may
sometimes yield good approximate solutions even for variable coefficient equa-
tions, if we formulate SFE through a Ritz approach. Substitution of the solution in
the reduced ODE results in a single homogeneous linear algebraic equation for u,
(in the case of a single ODE) or a system of linear homogeneous algebraic
equations for u, (for a system of ODEs) as

Wk, w,,0,)ue =0, W e C"M u, c C™, (5.8)

In this equation, W is called the wave matrix, which is of the order N, x N,,, where
N, is the number of independent variables. For a non-trivial solution of u,, the
wave matrix must be singular, i.e., its determinant must be zero. This condition
generates the required equation for the solution of the wavenumber k, which will
be a polynomial in k, called the spectrum relation. Wavenumbers essentially
determine the type of wave, i.e., dispersive or non-dispersive. The form of wave
matrix for different waveguides is described in Chap. 2.

If there are N; roots of the characteristic equation then the complete solution is

Ny
(X, Ny ) = > to (1, On) eXP (—jkix) (5.9)
i=1

l

where k; is the ith wavenumber and u, ; is the ith coefficient vector, called the wave
amplitude vector. Thus at the heart of the SFE formulation is the computation of
wavenumber k and wave vectors u,;, which determines the efficiency of the
SFEM. This is done by posing the problem as Polynomial Eigenvalue Problem
(PEP), the details of which were explained in Sect. 2.8. In this book, we call the
spectral element formulated through FFT as FSFEM.

5.1.2 General Formulation Procedure: Wavelet Transform
Based SFEM

Formulating SFEM under Wavelet transform (WT) is slightly different. Unlike
Fourier transforms, there are a number of different wavelets to represent the given
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field variable. For solution of wave equation in general, the most desirable wavelet is
the Daubechies wavelet [8]. It is compactly supported and allows multi-resolution
analysis. We call the element formulated using WT as WSFEM.

In WSFEM formulation, the dependent variable u(x, ) can be approximated by
scaling function ¢(t) at an arbitrary scale as

u(x,7) = Zuk(x)(p(r —k), keZ (5.10)
k

where, u;(x) are the approximation coefficients at a certain spatial location x. The
first task involves the reduction of the governing differential equation to a form
that is amenable for solution. Hence, Eq. 5.10 is first substituted in a governing
differential equation L(u) —g =0 and multiplied by the scaling function
throughout. Using the orthogonality of the scaling functions, we can simplify
certain terms in the governing equations. The resulting equation is ready to be
solved in the transformed domain. However, unlike the FFT based method, the
wavelet coefficients are highly coupled. Using the relationship between the first
and the second derivatives of the wavelet coefficients, one can setup an eigenvalue
problem that uncouples the governing differential equations. Although performing
eigen analysis is time consuming, this can be computed and stored only once as it
is not related to the particular problem. Next, an extrapolation technique proposed
by Amaratunga and Williams [1, 2, 28] is used for adapting wavelet in a finite
domain and imposing the initial values. The latter approach is expected to remove
the problems associated with wrap around due to the assumed periodicity of
solutions in FSFEM and thus may result in smaller time window for a same
problem. The procedure of formulation of WSFEM is very similar to FSFEM
explained in the last subsection and hence not repeated here. The method of
reducing the governing differential equation and the uncoupling of wavelet
coefficients for a non-dispersive rod was discussed in Sect. 3.2.3.

The steps followed in 2D WSFEM formulation are quite similar to those for 2D
FSFEM. First Daubechies scaling functions are used for approximation in time and
this reduces the governing partial differential equation to a set of coupled PDEs in
the spatial variables. Wavelet extrapolation technique [28] is used for adapting
wavelet to finite domains and imposing the initial conditions. The coupled
transformed PDEs are decoupled through an eigen analysis. Next, each of these
decoupled PDEs are further reduced to a set of coupled ODEs by using the same
Daubechies scaling functions for approximation of the spatial dimension. Unlike
the temporal approximation, here, the scaling function coefficients lying outside
the finite domain are not extrapolated but obtained through periodic extension for
free lateral edges. The other boundary conditions, such as fixed-fixed, free-fixed
etc, are imposed through a restrain matrix [6]. Each set of ODE:s is also coupled,
but here, decoupling can only be done for unrestrained boundary condition i.e.
free—free boundary condition.

In the next few sections we will outline the formulation of spectral elements for a
few 1D and 2D waveguides under both Fourier and Wavelet transform environment.
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5.2 Spectral Elements for Rods and Beams

5.2.1 Non-dispersive Isotropic Rod: FFT Based Spectral
Element Formulation

The rod element of length L model has two degrees of freedom #; and u, which
define the axial displacement of two nodes at x = 0 and x = L. The corresponding
forces at these two nodes are the £, and F,, respectively.

The spectral element formulation requires the strong form of the governing
differential equation. The homogeneous form of the governing equation for an
isotropic homogeneous rod of density p and Young’s modulus E is

u  ,0%u

2= g (5.11)
where u = u(x, t) is the axial displacement and c> = E/p is the square of the wave
speed in the material. The governing equation is supplemented by the force
(natural) boundary condition

Ou
F(x,1) _AEax (5.12)
where A is the cross-sectional area of the rod and F(x,t) is the axial force.
The displacement (essential) boundary condition is the specification of the dis-
placement u at the boundaries. It should be noted that only homogeneous initial
conditions can be tackled with the present method.
Assuming a solution of the form

ux,t) =Y iix, ,)e 7" (5.13)

n=1

allows replacing the time dependency with the parameter w,. The summation is
carried out up to the Nyquist frequency wy. Substituting Eq. 5.13 in Eq. 5.11, the
reduced governing ordinary differential equation becomes

d
2 24
=0 5.14
e + wii ( )
whose solution is of the form u.e . Upon substitution in Eq. 5.14, the discret-
ized form of the governing equation becomes
(= + oD)u, =0 (5.15)

which is the PEP (see Sect. 2.8) for this model. As the equation suggests, in this
case the number of modes is N, =1 while p = 1. The wavenumber can be
computed trivially in this case as k, = +w, /c and for both modes, wave amplitude
can be taken as 1. Thus, the complete solution is
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A7n:1*jn 2*';1* )
it(x, ) = cre 7 4 ¢yl (5.16)

where ¢ and ¢, are coefficients to be determined, with L being the length of the
element. These coefficients are dependent on the displacement and/or force
boundary conditions. Specifically, they can be expressed in terms of the nodal
displacements i1, = it(xy, w,) and iy = @t(x2, ;) as

Ijtl e_jknxl _e+jk»1xl Ci c1
{ u } = |:_ejk,l)c| e+jk”x1 ¢ = [Tl] cs ) (517)

where the matrix involved is represented as T.

Similarly, the force in the frequency domain, F(x, w,) can be evaluated at x
and x, to relate the nodal forces to the unknown coefficients

F . eijk”xl —e+jk»xxl c c
{ IA'_; } = AE(]kl‘l) |:ejk”x1 e+jk,,x] :| { e = [TZ] s s (518)

where the matrix involved is represented as T. Thus, the nodal forces are related
to the nodal displacements by

{g}szTll{Z;}, (5.19)

Hence, the dynamic stiffness matrix (DSM) for the rod at frequency w, is
Dsppy =TT,

In comparison, the DSM for conventional FEM will be Dggy = K — .M ,
where K and M are the stiffness and mass matrices, respectively. If these two
DSMs are compared, it is found that in the limit of infinitely many finite elements
Drev — Dsgem [9].

FFT based SFEM requires the formulation of one-noded infinite segment called
the throw-off element for good time resolution. This is obtained by removing the
reflected coefficients from the solution given in Eq. 5.16. Hence, the solution to the
throw-off elements become

i(x,w,) = cre ¥ (5.20)

Following the same procedure followed for two noded elements, we consider

the force expression given in Eq. 5.12 and using F', = —F (x1, ®y,), we obtain the
following dynamic stiffness for the throw-off elements

Fy = EAjkit (5.21)

Note that the throw-off stiffness (in the brackets) is complex and it is this factor
that adds damping to the structure resulting in good time resolution. Such a
stiffness formulation is not possible in conventional FEM.
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5.2.2 Non-dispersive Isotropic Rod: Wavelet Transform Based
Spectral Element Formulation

As in the case of FSFEM, we begin with the governing differential equation
(Eq. 5.11). After substituting the wavelet transform given by Eq. 3.53, the equa-
tion needs further reduction. That is, after applying the initial conditions, the
coefficients are uncoupled according to the procedure given in Sect. 3.2.3.

The set of uncoupled equation in the transformed wavelet domain is given by
(refer to Sect. 3.2.3 for more details)

dzit\j pA
— = i=0,1,...,n—1 5.22
= () =01 (522)

where, y} is the element of the diagonal matrix IT> containing the eigenvalues of
Eq. 3.85. However, if the boundary conditions are periodic, y; in Eq. 5.22 should be

replace by A;, which are the eigenvalues obtained using A? matrix given in Eq. 3.81.
The solution of Eq. 5.22 is the same as that obtained through FSFEM

(Eq. 5.16). However, the wavenumber in this case is given by k, = y,+/p/E. Note
that the real part of 7y, is not accurate for the entire frequency spectrum and it is
valid only up to certain fraction of Nyquist frequency, which is a function of the
order of the wavelet basis function N. These aspects were discussed in Sect. 3.2.3.
From this point on, the procedure to formulate the WSFEM is very similar to the
FSFEM and hence not repeated here.

5.2.3 Dispersive Isotropic Timoshenko Beams-FFT Based
Spectral Element Formulation

In this section, we will only outline the FFT based spectral FEM formulation. As
seen from the last subsection, the formulation of WSFEM is exactly same as that
of FSFEM once the transformed governing equation is reduced and all the wavelet
coefficients are uncoupled. The procedure to reduce the transformed equation is
similar for all waveguides of known governing equation, and follows the steps
outlined in Sect. 3.2.3. Hence, for the Timoshenko beam and for other waveguides
to follow in this chapter, only the FSFEM formulation is discussed.

The FSFEM formulation begins with the strong form of the differential equa-
tion. According to the first-order shear deformation (Timoshenko beam) theory,
the governing equations are

o [ow
AK—|— — ¢| = pAii
GAK~ {a qﬁ] PAW,

0%

(5.23)
El— + GAK {— - ¢] = pl

Ox2
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where w(x,r) and ¢(x,7) are the transverse displacement and rotation of the
mid-plane of the beam, G is the shear modulus,  and A are the moment of inertia
and area of the cross-section, and K is the shape factor, which is introduced to
compensate for the approximation in the shear stress distribution. These equations
are supplemented by the expressions for the stress resultants which are
0 0
V = GAK [—W - ] and M = El—d) (5.24)
Ox
where V is the shear force and M is the bending moment.
Assuming a solution of the form

w(x,1) = wee &) = _ellkent) (5.25)

and substituting in Eq. 5.23, gives the following PEP becomes

,[GAK 0 0 —jGAK —pAm,* 0 Wo
k + k| + )
0 EI JGAK 0 0 GAK — plw, b,
0 (5.26)

where the unknowns are k, w, and ¢,. Thus, in this case, the order of the matrix
polynomial p is 2 and N, = 2. Thus, there are four eigenvalues (k) and eigen-
vectors ({wo ¢,}). The determinant of the matrix polynomial suggests that the
roots are complex conjugate. After solving the eigenvalue problem, the eigen-
vectors are arranged in a matrix R, so that

(k) Az + by + A, }{R‘Z} 0. (5.27)

The complete solution at frequency w, is now written as

WX, Wy, le —jkmx
2
{ e o } Zc {Rzm}e (5.28)

where C, are the unknown coefficients to be determined from the boundary
conditions. Evaluating Eq. 5.28 at the nodes, x = x; and x = x,, the T} matrix is
formed as

R e Jkix Rlze*.ikle RBe*jkle R14e*jk4x1
T Rzle_]klxl R22e—jk2X1 R23e—]k3xl R24€—Jk4xl (5 29)
1= . . . . . .
Rie jk1x2 Rise jkaxa Rize Jk3xo Ryge jkaxa

Ry e Jhix Rzze*jkzxz R23e*jk3xz R24e*jk4xz

Similarly, the forces and moments are evaluated at the nodes as

Vi=—V(x)),Va = +V(x), My = —M(x)), My = +M(x3), (5.30)
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which can be expressed in terms of C,, by the T, matrix where

) = _GA(_kaR(17 ) (2 m))
) = —EI(~jkn)R(2,
) = +GA(—jknR(1,
) R

= +EI(—jkn)R(2,

)
) R2m) (5.31)
)-

S§§§

Once these two matrices are obtained, Dsggy, the dynamic stiffness matrix for the
Timoshenko beam is formed as T,T; !

5.2.4 Composite Beams-FFT Based Spectral Element Formulation

The basic theory of composites was introduced in Chap. 2 (Sect. 2.4). The behavior
of laminated composite beam is dictated by its ply stacking sequence. A general ply
stacking results in bending and axial motion coupling, which is not the case in the
isotropic structures. This coupled motion results in both inertial as well as the
stiffness coupling. Hence, the formulated element will have three degrees of free-
dom at each node, namely the axial degree of freedom u(x, 7), the transverse degree
of freedom w(x,7) and the beam rotation ¢(x,?). The stress resultants and their
corresponding degrees of freedom are shown in Fig. 5.1 FSFEM formulation begins
with the solutions to strong form of the governing equations in the transformed
frequency domain. The Governing PDE for an elementary composite beam was
derived in Sect. 2.7.1. They are given by Eqs. 2.123-2.124. The associated force
conditions are given by Eq. 2.125-2.127. Next, need to perform spectral analysis to
obtain the wavenumbers. The wavenumbers were obtained and wave behavior were
thoroughly discussed in Sect. 2.8.2. These wavenumbers will be required for the
spectral element formulation. The solutions to the strong form the governing
equation in the transformed frequency domain is given by

{ i(x } Z Cn {2: }ef’w (5.32)

Fig. 5.1 Coordinate system
and degrees of freedom for
the spectral element
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As mentioned earlier, two cases arise in the dynamics of connected beams,
namely the finite length element and throw-off elements, respectively. The
behavior of these are fundamentally different and hence will be treated separately.

5.2.4.1 Finite Length Element

A 2-node finite element of length L with nodal displacements and forces as shown in
Fig. 5.1 is considered. Using the explicit expression for displacement field given by

Eq. 5.32, the element nodal displacement vector #° with entries ity = (0, w,,), w; =
w(0, @), 01 = Wy (0,,), i, = (L, w,), wo = Ww(L,w,) and 0, =W, (L, w,) is
expressed in terms of the wave coefficient vector # with entries i;, w; as

a° =T, (5.33)

where u® = {ﬁ] Wl él ﬂz Wz éQ}T and u = {121 ﬁz \71/3 ﬂ/4 ﬂ/5 W6}T- T] isa6x6
non-symmetric, non-singular matrix, which is a function of frequency, material
properties and dimensions of the element. This matrix represents the local wave
characteristic of the displacements.

Next, using the expressions for force boundary condition from Eqs. 2.125-2.127,
the nodal forces are related to the wave coefficients #; and w; through the following
force boundary equations:

]\]J = _ANX(Ov wn)7 = x(O CO,,) AA{I = _Mx(oa wn)7 (534)
Ny = N (L, w,), V1 =V (L, wy), M, = M, (L, w,).
In matrix notation, this can be written as
f¢ =D, (5.35)

where the element nodal force vector f = {Nl \71 M 1 Nz Vz MZ}T. The matrix Tz

has properties that are similar to T, and it represents the local wave characteristic
of forces. Combining Eqgs. 5.33 and 5.35, the equilibrium equation is obtained as

fe=Dh " = K, (5.36)

where K¢ is the symmetric dynamic stiffness matrix for an unsymmetric composite
beam element as a complex function of frequency.

5.2.4.2 Throw-Off Element

As mentioned in Sect. 5.2.1, throw-off elements are essentially used in FSFEM
formulation to obtain good resolution of response in time domain. In other words,
these elements are used to eliminate signal wraparound by artificially introducing
damping, while analyzing short waveguide structures. This was explained in
Chap. 3 (Sect. 3.2.1).
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Throw-off elements simulates a condition wherein the boundaries are at such a
distance that the effect of reflected waves becomes negligible due to attenuation
throughout their long traversal, and do not reach the location under consideration
within the time of observation. In other words, a throw-off element is a non-resonant
single node element that acts as a conduit to allow the propagation of trapped energy
out of the system. Considering only the incident part of the displacement field given
by Eq. 5.32, the field variables for the throw-off element can be written as

u(x, wy) Ry Ri3 R e

, Wy _ 11 13 15 ~ ikox 5.37
N = wse . ‘

{ w(x, w,) } [R21 Ry3 1?25} ’ —iksx ( )

\71/56

Using the same procedure as followed in the case of finite length element for-
mulation in the previous subsection, a 3 x 3 symmetric dynamic stiffness matrix

K°® as a complex function of frequency can be derived. An important property of
the dynamic stiffness matrix is that the elements are always complex.

5.2.5 Higher Order Composite Beam-FFT Based Spectral
Element Formulation

The spectral and dispersion relations for a higher order composite beam, which are
very essential for the spectral formulation was discussed in Sect. 2.8.3. The gov-
erning equations were derived in Sect. 2.7.2. We see that the higher order assumption
introduces additional degrees of freedom in the form of lateral contraction v (x, f)
(see Fig. 2.12), in addition to the axial, transverse and rotational degrees of freedom.
As before, we will derive two sets of spectral element, one is a two-noded finite length
element and the other is a one-noded semi infinite throw-off element.

5.2.5.1 Finite Length Element

The displacement field for the two-noded finite element is the result of four for-
ward moving and four backward moving wave components. Hence, the dis-
placement field contains eight wave coefficients, which need to be determined
from eight boundary conditions imposed at the two nodes. The displacement at any
point x (x € [0,L]) and at frequency w, is

ﬂ(-win) Ry ... Ry e—jk,x 0 0
) 0 edor .. 0
N 7SS GV Y | R R
VAV()C, wn) Ry ... Rsg : .. - :
o (x, w,) R4y ... Rug 0 o L pikex
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The above equation in concise form can be written
{ﬁ}n = RnDn(x)an (5.39)

where D, (x) is a diagonal matrix of size 8 x 8 whose ith element is e /** and R,
is the amplitude ratio matrix and is of size 4 x 8. This matrix needs to be known
beforehand for the element formulation. There are several ways to compute the
elements of this matrix. In this formulation the SVD method, explained in Chap. 2
Sect. 2.8.1.1, is followed, which is suitable for structural models with a large
number of degrees of freedom.

Here, a, is a vector of eight unknown constants to be determined. These
unknown constants are expressed in terms of the nodal displacements by evalu-
ating Eq. 5.38 at the two nodes, i.e., at x = 0 and x = L. In doing so, we get

(2 BB e

where @) and u, are the nodal displacements of node 1 and node 2, respectively.

Using the force boundary conditions Egs. 2.135 and 2.136, the force vector
{f}, = {Ny, Ox, Vi, M,}, can be written in terms of the unknown constants a,, as
{f}, = P,a,. When the force vector is evaluated at node 1 and node 2, nodal force

vector, {f},, is obtained and can be related to @, by

{t}, = {E }n: {i%han = T»a, (5.41)

Equations 5.40 and 5.41 together yield the relation between the nodal force and
the nodal displacement vector at frequency w,:

{t}, = 1,,T; {a}, = K.{a}, (5.42)

where K, is the dynamic stiffness matrix at frequency w, of dimension 8 x 8.
Explicit forms of the matrix 7', and T, are given below.

Ti(1:4,1:8)=R(1:4,1:8) (5.43)
Ty(I,m)=R(l—4,m)e ™ =5 8m=1,...8 (5.44)
Similarly,
Tz(l,l) :](AllR(l,l) BllR(4,l))kl7A13R(2,l)
T2(2, l) = —Bs5(—jR(3, l)k, R(4, l)) +jde55R(2, l)k,
T2(3,l) = —A55(—]R(3,l)k, R(4, l)) +st5R(2, l)k, (545)
T2(4, l) = —](BHR( ) D11R(4, i))k,‘ + B]3R(2, i)
T5(5:8,i) = —To(1 : 4,i)e ™, i=1,..,8.
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5.2.5.2 Throw-Off Element

For the infinite length element, only the forward propagating modes are consid-
ered. The displacement field (at frequency w,) becomes

4
U, =Y Rye/*a) =R,D,(x)a,, (5.46)

m=1

where R, and D,(x) is now of size 4 x 4. The a, is a vector of four unknown
constants. Evaluating the above expression at node 1 (x =0), the nodal dis-
placements are related to these constants through the matrix T as

ﬁn = {ﬁl}n = RnDn(O)an = Tl,lan (547)

where T’} is now a matrix of dimension 4 x 4. Similarly, the nodal forces at node 1
can be related to the unknown constants

£y, = {f1}, = P.(0)a, = T»,a, (5.48)

Using Eqgs. 5.47 and 5.48, the nodal forces at node 1 are related to the corre-
sponding nodal displacements at node 1

{t}, = 1,,T; {u}, = K.{a}, (5.49)

where K, is the element dynamic stiffness matrix of dimension 4 x 4 at frequency
@,. The submatrices T;(1 :4,1:4) and T»(1 : 4,i) are the same as for the finite
length element i = 1...4, and as in the elementary case, the dynamic stiffness is
complex.

5.3 Spectral Elements for 2D Composite Layers-FFT Based
Spectral Element Formulation

In the previous section, the SFE formulation for 1D waveguides was outlined in
detail. In this section, we present the formulation of SFE formulation for 2D
waveguides. As mentioned in Chap. 2, 2D SFE formulation requires a second
transform in one of the spatial directions in order to transform the governing PDE
to a set of ODE’s. In this process, an additional parameter called “horizontal
wavenumber” is introduced in the formulation, which is coupled to the propa-
gating wavenumber. These aspects were explained in the context of 2D plates in
Sect. 2.8.4.

The Partial Wave Technique (PWT) is a suitable option [4] for the formulation
of SFEM for layered media which includes anisotropic and inhomogeneous
materials. The SVD method described in Sect. 2.8.1.1 is specifically utilized to
obtain the wave amplitudes, which are essential for constructing the partial waves.


http://dx.doi.org/10.1007/978-0-85729-284-1_2
http://dx.doi.org/10.1007/978-0-85729-284-1_2
http://dx.doi.org/10.1007/978-0-85729-284-1_2
http://dx.doi.org/10.1007/978-0-85729-284-1_2
http://dx.doi.org/10.1007/978-0-85729-284-1_2
http://dx.doi.org/10.1007/978-0-85729-284-1_2

5.3 Spectral Elements for 2D Composite Layers-FFT 191

In the PWT method, once the partial waves are found, the wave coefficients are
made to satisfy the prescribed boundary conditions, i.e., two non-zero tractions
specified at the top and bottom of each layer. In our case, the formulation is
slightly different, as no specific problem oriented boundary conditions are
imposed. Thus a system matrix is established, which relates the tractions at the
interfaces to the interfacial displacements. This generalization enables the use of
the system matrix as a finite element dynamic stiffness matrix, although formu-
lated in the frequency/wavenumber domain. These matrices can be assembled to
model different layers of different ply-orientation, which obviates to the necessity
of cumbersome computations associated with multilayer analysis (e.g., see [20]).
The only shortcoming of the method is that each spectral layer element can
accommodate only one fiber angle, thus for different ply-stacking sequences the
number of elements will be at least equal to the number of different ply-angles in
the stacking.

One advantage of the present formulation is the ease in capturing Lamb wave
[27] propagation in anisotropic plates. By definition, Lamb waves are guided
waves propagating in a domain bounded by two parallel, traction-free surfaces.
The importance of Lamb waves in structural inspection lies in their ability to
propagate long distances which enables the inspection of large areas. Hence, these
waves are very attractive for SHM.

Historically, the dispersion relation for anisotropic materials was given first by
Solie and Auld [23], where PWT were used. However, the relation was obtained
for a (001)-cut copper plate. Subsequent investigations on modeling aspects of
Lamb waves were carried out by several researchers [16]. Finite element modeling
of Lamb waves was performed by Verdict et al. [26]. On the basis of discrete layer
theory and a multiple integral transform, an analytical-numerical approach was
given by Veidt et al. [25]. A coupled FE-normal mode expansion method is given
by Moulin et al. [15]. Similarly a boundary element normal mode expansion
method is given by Zhao and Rose [29].

The present formulation by virtue of the frequency wavenumber domain rep-
resentation of the solution is an inexpensive way of estimating Lamb wave modes
as well as predicting time domain signals. The formulation is based on the
assumption that there is no heat conduction in and out of the system, that dis-
placements are small, the material is homogeneous and anisotropic and the domain
is a 2D Euclidean space. The general elastodynamic equation of motion for 3D
elastic medium is given by

oijj = p(x1,x2,x3)i; (5.50)

which is applied in conjunction with the associated constitutive equations and
strain—displacement relations:

Ojj = Cijkl(xl,xZ,X3)8k17 &jj = (ui_j =+ uj‘i)/2 (551)

where comma (,) and dot () denote partial differentiation with respect to the spatial
variables and time, respectively.
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For a 2D model with orthotropic material construction, the complexity of the
above equation can be further reduced by the following assumptions. The non-zero
displacements are u; = u and u3 = w in the direction x; = x and x3 = z, respec-
tively (see Fig. 5.2). The non-zero strains are related to these displacements by

Eor = Uy, & =W, &g = Uy + W, (5.52)
The non-zero stresses are then related to the strains by
Oxx = Qllgxx + Q133zz; Ozz = Q138xx + Q338zza Oxz = Q558x17 (553)

where Q;; are the stiffness coefficients, which depend on the ply lay-up, its ori-
entation and the z coordinate within the layer. Substituting Eq. 5.53 in Eq. 5.50
and imposing the assumptions above yields the following elastodynamic equation
for 2D homogeneous orthotropic:

(a) T,
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Fig. 5.2 Sign conventions of a throw-off spectral element b layer element



5.3 Spectral Elements for 2D Composite Layers-FFT 193

Oritex + (Q13 + Os5)Wyr + Ossu, = pii,

5.54
OssWix + (013 + Oss )ity + Q33w = pib. (5:54)

Here, we attempt to reduce the governing PDE:s to a set of ODEs. Two variables
are replaced by two new parameters through the application of the Fourier
transform in time and in space. With this assumption, the spectral form of the
displacement field becomes

— > Sin("mx) —jwnt
u(x,z,t) = (2, My wn){ cos(.x) }e (5.55)

Wiz = 35 banmon{ ot b (556

n=1 m=1

where o, is the discrete angular frequency and #,, is the discrete horizontal
wavenumber. As the assumed field suggests, for M — oo, the model has infinite
extent in the positive and negative x direction, although the domain is finite in the
z direction, according the layered configuration considered. In particular,
the domain can be written as Q = [—o0, +00] X [0, L], where L is the thickness
of the layer. The boundaries of any layer will be specified by a fixed value of z.
The x dependency of the displacement field (sine or cosine) will be determined
based upon the loading pattern. In all subsequent formulation and computation, a
symmetric load pattern will be considered, i.e., sin(#,,x) for u and cos(#,,x) for w.
The real computational domain is Q. = [—X;/2, +X; /2] X [0, L], where x; is the x
window length. Discrete values of #,, depend upon x; and the number of mode
shapes (M) chosen.
This displacement field reduces the governing equations to a set of ODEs

Ad" +Bi' +Ciu =0 (5.57)

where & = {aw}, and the prime denotes differentiation with respect to z. The
matrices A, B and C are

_|Oss O o 0 —(Q13 + Qss)n,,
A= { 0 Q33}’ B= [(Qw + Os5)1, 0 ]’ (5.58)
_ [ —n2 01 + pod? 0
C = { 0 7’73an5 " sz] (5.59)

The associated boundary conditions specify the stresses o, and o,, at the layer
interfaces. From Eq. 5.53, the stresses are related to the unknowns by

§ = Dil' + Ea, (5.60)
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where

§= {Uzz sz}
{ 0 Q33}
Oss 0

E— |:’7le3 0 }
0 —1,,O55

The original boundary value problem reduces to finding &, which satisfies
Eq. 5.57 for all z € Q,, and the specification of & or § at z =0 or z = L. Once the
solution is obtained for different values of zin the z — # — w domain, for given values
of w, and 7,,, the summation over #,, will bring the solution back to the z — x — @
domain and the inverse FFT will bring the solution back to the z — x — # domain.

The solutions to these ODEs are of the form u.e 7% and w.e 7%, which yields
the PEP

D

Wu, =0
) (5.61)
W= kA —jkB+C
where u, = {u,w,} and W is the wave matrix given by
_ [ —K*0ss — n2 011 + po? Jkn,,(Q13 + Qss) (5.62)

—jkn(Q13 + 0ss)  —k*Qs3 — 1,055 + pooy, |

The singularity condition of W yields the following spectral equation

0330s5k* + {(Q103 — 2013055 — 0131y, — pwin(Q33 + Oss) 1k
+{0110ssmy, — pary,(Qn + Oss) + p ) = 0. (5.63)
It is to be noted that for each value of #,, and w,, there are four values of k,
denoted by ky,, (I=1,...,4), which will be obtained by solving Eq. 5.63. The

explicit wavenumber solution kj,,, = £V —b + Vb? — 4ac, where a, b and ¢ are
the coefficients of k*, k* and k°, respectively, in Eq. 5.63.

There are certain properties of the wavenumbers which will be explored now.
As can be seen from Eq. 5.63, for #,, = 0, the equation is readily solvable to give

the roots +w+/p/03; and tw+/p/QOss. Since none of the p, Q33 or Oss can be

negative or zero, these roots are always real and linear with w. When 7,, is not
zero, k becomes zero for w satisfying

010551y, — por(Qi1 + Oss) + p*w) =0

ie., (Quny, — pw?)(Qssiy, — pw?) =0 (5.64)

e, ©=n,/0i/p, Nu/0ss/p

which identify the cut-off frequencies. For frequencies lower than the cut-off fre-
quencies, the roots are imaginary which correspond to non-propagating waves,
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while above these frequencies, the roots are real and define propagating waves. For
isotropic materials the cut-off frequencies are given by ¢, and c¢sn [19]. The cur-
rent expressions for the cut-off frequencies are also reducible to that of isotropic
materials if we identify Q; and Qss with A 4+ 2u and p, respectively, where 4 and u
are the Lamé parameters. If we identify the QP wave with Q33 (or Q;;) and the
QSV wave with Qss, then as the cut-off frequencies suggest, for the same value of
N, it is the QSV wave that becomes propagating first, since Q;; > QOss.

Once, the required wavenumbers k are obtained, the solution u, at frequency w,
and wavenumber 7, is

Um = R11C1e M 4 Ry Cre ¥ 4 Ri3C3e %% 4 Ry Cpe 70 (5.65)
Wom = Rzlcleijk]x + RzzCzeijkzx + R23C3eijk3x + R24C4eijk4x (5.66)

where R;; are the amplitude coefficients to be determined and are called wave
amplitudes. As outlined in Chap. 2, following the method of SVD (Sect. 2.8.1.1),
R;; are obtained from the wave matrix W evaluated at wavenumber k;.

Once the four wavenumbers and wave amplitudes are known, the four partial
waves can be constructed and the displacement field can be written as a linear
combination of the partial waves. Each partial wave is given by

_Ju | _ Rii | —jkz sin(#,,x) joont .
“ {w,} N {RZi }e costna) (€0 P14 (5.67)

and the total solution is

4
u= Z; Ca;. (5.68)

5.3.1 Finite Layer Element (FLE)

Once the solutions of # and w are obtained in the form of Eqs. 5.65 and 5.66 for
each value of w, and 7,,, the same procedure as outlined in the 1D element
formulation is employed to obtain the element dynamic stiffness matrix as a
function of w, and 7,,. Thus, the nodal displacements are related to the unknown
constants by
{ulnm Vinm Udnm V2nm}T - Tlnm{cl Ccy C3 C4}T7 (569)
ie.,
ﬁnm = T1mCnm (57O>

Using Eq. 5.53, nodal tractions are related to the constants by

tyn = T2nmcnm (571)

where &, = {01, 011,020, 02 }-
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Explicit forms of T, and T, are

R Ri» Ri3 R4
Ry, Ry Ry Ry

Ti= | RieMD  Ruelikl)  Riyelihil) R ekl | (5.72)

Ryl kb Roselikl)  Rose(tikil) R, e(tikal)
T2(17p) = _QSS(_lepkp - 'IRzp),
T>(2,p) = jO33Rypk, — Q134R1p,
T5(3,p) = Qss(—jRipk, — nRyp)e L)
T>(4,p) = {—jQs3Rypk, + Q13’1R1p}€(7jk”L>7
where p ranges from 1 to 4.
Thus, the dynamic stiffness matrix becomes
Kun = T T1) (5.73)

which is of size 4 x 4 having w, and 5,, as parameters. This matrix represents the
dynamics of an entire layer of any length L at frequency w, and horizontal
wavenumber 7,,. Consequently, this matrix acts as a substitute for the global
stiffness matrix of FE modeling, whose size, depending upon the thickness of the
layer, will be many orders larger.

5.3.2 Infinite Layer (Throw-Off) Element (ILE)

This is the 2D counter part of the 1D throw-off element. The element is formulated
by considering only the forward moving components, which means no reflection
will come back from the boundary. This element, as mentioned earlier, acts as a
conduit to throw away energy from the system and is very effective in modeling the
infinite domain in the z direction. This element is also used to impose absorbing
boundary conditions or to introduce maximum damping in the structure. The ele-
ment has only one edge where the displacements are to be measured and tractions
are to be specified. The displacement field for this element (at ®, and 7,,) is

—jkiz —jkaz
Upm = Ri1C1me™ " + Riacopme ™, (5.74)
_ —jkiz —jkaz
Wom = RZlclnme I +R22C2nme = ) (575)

where it is assumed that k; and k, have positive real parts. Following the
same procedure as before, displacement at node 1 can be related to the constants
Ci,i=1,2as

U = T1mCom (5.76)
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Similarly, nodal tractions can be related to the constants ¢ as

by = T2nmcnm (577)

Explicit forms of the matrix Ty and T, are
TI(ILE) = TI(FLE)(l : 2, 1: 2), TZ(ILE) = TZ(FLE)(l : 2, 1: 2) (578)

The dynamic stiffness for the homogeneous infinite half space becomes

Knm = T2an1;y:,a (579)

which is a 2 x 2 complex matrix.

5.3.3 Expressions for Stresses and Strains

From the displacement field (Egs. 5.65 and 5.66), the strain—displacement and
stress—strain relations, the matrix of strain nodal displacement relation and the
stress nodal displacement relation can be established as

¢ =BT 1 7111

5.80
6 =0BT, ' (5.80)

where & = {&yy, &, &x:},6 = {Ox, 02, 01}, while the elements of B (size 3 x 4)
are described in terms of the wave amplitude matrix R as

B(l,p) = R]p;,]e*jkpz’ B(z,p) = _jR2pkp€7jkpza

) Ca (5.81)
B(3,p) = _(]Rlpkp +R2p'l)e Fe
where p = 1,...,4 and z is the point of strain measurement.
The elasticity matrix Q is
Ou 0O 0
0= |03 01 0 (5.82)
0 0 Os

5.3.4 Prescription of Force Boundary Conditions

Essential boundary conditions are prescribed as in FE methods, where the nodal
displacements are constrained or released depending upon the nature of the
boundary conditions. The applied tractions are prescribed at the nodes. Assuming
symmetric loading, the loading function can be written as

F(x,z,t) = 0(z — Zj)( Y apm cos(nmx)> (Alz:lfné-"‘“”’)), (5.83)
1

m= n=0
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where 0 denotes the Dirac delta function, z; is the z coordinate of the point where
the load is applied and the z dependency is fixed by suitably choosing the node
where the load is prescribed. No variation of load along the z direction is allowed
in this analysis. Also, fn are the Fourier transform coefficients of the time
dependent part of the load, which are computed by FFT, and a,, are the Fourier
series coefficients of the x dependent part of the load.

There are two summations involved in the solution and two associated win-
dows, one in time ¢ and the other in space x;. The discrete frequencies w, and the
discrete horizontal wavenumbers 7, are related to these windows by the number of
data points N and M chosen in each summation, that is,

w, =2nn/T =2nn/(NAt), n, =2(m— 1)n/x, =2(m— 1)n/(MAx), (5.84)

where Ar and Ax are the temporal and spatial sample rate, respectively.

5.3.5 Determination of Lamb Wave Modes

Lamb waves are guided waves (Fig. 5.3), propagating in a plate with traction free
surfaces. There are two main approaches to the analysis of Lamb waves. The first
one is the method of potentials, where Helmholtz decomposition of the dis-
placement field decouples the governing equations written in terms of potentials.
Solutions are sought for the potentials, which contain four arbitrary constants. The
displacement field and the stresses are expressed in terms of the potentials and the
imposition of traction-free upper and lower surfaces generates the necessary
condition for finding the unknown constants and the dispersion equation [20]. The
advantage of this method is that the symmetric and anti-symmetric modes can
be analyzed separately (Fig. 5.3a, b). However, the method is applicable only to
the isotropic waveguides.

The second approach is based on the PWT, which was introduced previously
and is further discussed below. In the formulation, the solution is expressed in
terms of summations over the discrete frequencies and the horizontal wavenum-
bers. Each partial wave of Eq. 5.68 satisfies the governing PDEs (Eq. 5.54), while
the coefficients c; satisfy any prescribed boundary conditions. As long as the
prescribed natural boundary conditions are non-homogeneous, no restriction upon

Fig. 5.3 a Symmetric Lamb wave propagation; b anti-symmetric Lamb wave propagation
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the horizontal wavenumber # is imposed which leads to a double summation
solution of the displacement field. However, that is not the case for traction-free
boundary conditions on the two surfaces, which are the necessary condition for
generating Lamb waves. The governing discrete equation for a finite layer
(Eq. 5.73) in this case becomes

k(ﬂm7 wn)nmamn =0 (585)

and we are interested in a non-trivial #. Hence, the stiffness matrix K must be
singular, i.e., det(K(n,,, w,)) = 0, which gives the required relation between 7,
and w,. Since, w, is made to vary independently, the above relation must be
solved for #,, to render the stiffness matrix singular. More precisely, for each value
of w, there is a set of values of horizontal wavenumber 7,, (one for each mode)
and for each value of w, and #,, there are four vertical wavenumbers k,,,. The
difference in this case is in the value of #,,, which is to be solved for, as opposed to
its expression in Eq. 5.84, in the fact that M denotes the number of Lamb modes
considered rather than Fourier modes. Now, for each set of (wy,n,,, kum)(l =
1,...,4),K is singular and ¢;(I = 1,...,4) define the null space of K. The total
solution can finally be reconstructed using Eq. 5.68. Following normal practice,
the traction-free boundary conditions (¢, 0., = 0) are prescribed at z = Fh/2.
Using Eq. 5.80, the governing equation for ¢; and #,, becomes

W2(’7ma wn)cnm =0 (586)

where ¢ = {cy, ¢2,¢3, ¢4}, while W, is another form of the stiffness matrix K and is
given by

Wa(1,p) = (QueR(1,p)n — jO13.R(2, p)ky) "2,
Wa(2,p) = (Q11.R(1,p)1 — jQ13.R(2, p)ky,)e o/,
Wa(3,p) = Osso(—R(L,p)k, + jR(2, p)n)e"/?,
Wa(4,p) = Osso(—R(1,p)k, + jR(2,p)n)e "2,

The dispersion relation is det{W,} = 0, which yields #,,(w,), while the phase
speed for Lamb waves c,,, is given by w, /#,,. Once the values of 1, are known for
the desired number of modes, the elements of ¢ are obtained by the SVD technique
as described earlier to find the elements of R. Summing over all the Lamb modes
provides the solution at each frequency.

5.4 Anisotropic Plate-FFT Based Spectral Element Formulation

The governing equation derivation and the wavenumber computation through
spectral analysis were reported in Sects. 2.7.3 and 2.8.4. Here we directly go to the
spectral element formulation.
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5.4.1 Finite Plate Element

The geometry of the semi-bounded plate element is shown in Fig. 5.4. It has four
degrees of freedom per node, three displacements in three coordinate directions
and one rotational degree of freedom about the y axis. Thus, there are a total of
eight degrees of freedom per element, which are the unknowns. The displacement
at any x coordinate of the plate in the frequency/wavenumber domain can be
written as a linear combination of all its solution given by

8
u= Zl:a,-qﬁie*’k"", (5.87)

where & = {it, v, w}", and ¢; € C**" are the columns of the wave matrix. The a;
are the unknown constants, which must be expressed in terms of the nodal vari-
ables. This step can be viewed as a transformation from the generalized coordi-
nates to the physical coordinates. To do so, we can write the displacement field in a
matrix vector multiplication form as

. eJhix 0 .. 0

~ ’f(xa W) b o b 0 ek . 0

u= Y(x7 wn) = ¢21 e (1)28 . . . : a (588)
swon ) Lo el 0

where k.4 = —k,,(p =1,...,4) and the elements of ¢, are written as ¢, (p =
1,...,3). In concise notation the above equation becomes

ﬁn,m - (Dnva(x)n,man,m (589)

where n,m is introduced in the subscript to remind that all these expressions are
evaluated at a particular value of w, and #,,, A(x),,, is a diagonal matrix of order
8 x 8 whose ith element is e /%* @, ,, = [¢;...¢g] is the wave amplitude matrix,
and a,, is the vector of eight unknown constants to be determined. These
unknowns are expressed in terms of the nodal displacements by evaluating
Eq. 5.89 at the two nodes, i.e., at x = 0 and x = L. In doing so, we get

Fig. 5.4 Displacements and
stress resultants of the
spectral plate element (CLPT
and FLPT): for CLPT ¢ =
Ow/0x and  is absent
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{ﬁ}nm = {131 } = Tlu,,,an.m (590)
) u [ . ,

where w; = {u;, v;, w;, (Ow/0x),}, and 0, and u, are the nodal displacements of
node 1 and node 2, respectively. The elements of T; are

Ty(m,n) = ®m,n), m=1,..,3,n=1,....8
Ti(m,n) = —jk,®(m — 4,p)e ™t m=5,..,7n=1,.,8
T\(4,n) = —jk,®(3,n), n=1,...,8

T\(8,n) = —jk,®(7,n), n=1,...8.
Before advancing further, it is to be noted that the element has edges parallel to the
y axis, hence at the plate boundary n, = %1 and n, = 0. These relations are to be
utilized in the force—displacement relation. Using the force boundary conditions
Eqs. 2.149-2.151, the force vector f,,, = {Nyx, Nyy, Vi, My}, ,, can be written in
terms of the unknown constants a,,,, as f,,, = P, »a,,,. When the force vector is

evaluated at node 1 and node 2 (substituting n, = £1) nodal force vectors are
obtained and can be related to a,,, by

e {8 <[5

P(L) :| n.manﬁm = [TZ]”_’man.nr (591)
Equations 5.90 and 5.91 together yield the relation between the nodal force and
nodal displacement vector at frequency w, and wavenumber 7,, as

fnvm =T, Tl_n_lmﬁn,m = Kn,mﬁn.]m (592)

n,m

where K, ,, is the dynamic stiffness matrix at frequency w, and wavenumber #,, of
order 8 x 8. The explicit form of the matrix T, forn =1,... 8 is

Tr(1,n) = jk,Ap®(1,n) — nAR®(2,n) — k2B, ®(3,n) — *B1a®(3, 1),

T5(2,n) = nAss®(1,n) + jk,Aes®(2, 1) 4 2jBeska®(3, 1),

T>(3,n) = k*B11 ®(1,n) + jB1ok,n®(2,n) + jk2 Dy ®(3, 1) + jD12k,* ®(3, 1)
+ 20" Bee®(1,n) + 2jkyBes ®(2, n) + 4jkan* Des®(3, 1),

Ty(4,n) = —jk,B11®(1,n) + nB12®(2,n) + k2Dy1®(3,n) + > D1, ®(3, ),

Ty(m,n) = =To(m — 4,n)e Ml m=5...8.

5.4.2 Semi-infinite or Throw-Off Plate Element

As mentioned earlier, for the infinite domain element, only the forward propa-
gating modes are considered. The displacement field at frequency w, and wave-
number 7,, is given by
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4
l~ln,m = Z d)meijkmxam = (DnA,mAn,m (x)an,ma (593)

m=1

where ®,,, and A,,,(x) is now of order 4 x 4. The a,, is a vector of four
unknown constants. Evaluating the above expression at node 1 (x = 0), the nodal
displacements are related to these constants through the matrix T, as

AanN :(DnmAan n,m
Uy =Wy, mAnn(0)an, (5.94)

unxm - Tl/una”:m

where T, is now a matrix of dimension 4 x 4. Similarly, the nodal forces at node
1 can be related to the unknown constants as

fum =F1,, = Pu(0)apm = Ta, ,@um. (5.95)

Using Egs. 5.94 and 5.95, nodal forces at node 1 are related to the nodal
displacements at node 1 as

. o )
f”’:m = Tzn.mTl”ymunvm = Kmm“n,m (596)
where K, ,, is the element dynamic stiffness matrix of dimension 4 x 4 at fre-
quency o, and wavenumber #,,. The matrices T, and T, are the first 4 x 4

n,m

truncated part of the corresponding matrices for the finite plate element.

nm

5.5 Numerical Examples

In this section, we provide some interesting examples of wave propagation in both
1D and 2D connected waveguides using the formulated spectral elements. In some
examples, the results of both FSFEM and WSFEM are provided to understand the
relative merits and demerits of both formulations.

5.5.1 Wave Transmission and Scattering Through
an Angle-Joint

Often in practice, we come across planar frame structures with complex geometry.
Such structures are commonly used for space applications such as solar panels,
antennas etc., wherein a number of skeletal members are connected by rigid or
flexible joints, thereby creating a complex structural network. Both FSFEM and
WSFEM formulation can account for such situations with relative ease. In this
section, the problem is solved by FSFEM formulation. In this example, we con-
sider a rigid angle-joint with three composite members (Fig. 5.5) to analyze the
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Fig. 5.5 Rigid angle-joint z
with AS/3501-6 graphite—
epoxy composite members

Ale— 0.5m— ~— 0.5m —| B

nature of reflected and transmitted waves through the joint. In particular, it will be
interesting to observe how the dynamics of the system change with the change in
joint angle. In addition, it is also important to investigate the effects of axial—
flexural coupling on the overall response.

The FSFEM model features 0.5 m long segments on both sides of the joint
along the x-axis, which are modeled with two finite length spectral elements. The
rest of the semi-infinite segments are modeled with three throw-off elements.

The responses obtained from FSFEM model are compared with the responses
obtained from conventional FE formulation, where the three semi-infinite seg-
ments are modeled with 950 elements each, while the segment AB is modeled with
100 elements. The length of each element is 1.0 cm. This gives an overall system
size of 8994 x 9 in banded form.

Each member connected to the joint is made up of AS/3501-6 graphite—epoxy
composite members with ply stacking sequence [0s/45s]. Here, the coupling
between bending and axial motions are quantified by a coupling factor defined as
r = B3,/D11A11, which can be altered by modifying the ply stacking sequence. In
the present example, we consider the coupling factor of r = 0.213.

First of all, to validate the accuracy of the response obtained from SFEM, an
impact load as considered earlier (Fig. 4.3) is applied axially at A for joint angle
¢ = 30°. The axial velocity history at the same point A, is computed and com-
pared with the FEM result, which is shown in Fig. 5.6a. Similarly, the same load is
applied transversely at A. The axial velocity history at A is computed, and com-
pared with the FEM results. Such comparison is shown in Fig. 5.6b. In the two
cases, the results show good agreement. To study the effect of axial-flexural
coupling on the dynamic response, the same rigid joint (Fig. 5.5) with an axial
loading at point A, is considered as in the previous case. The angle of the rigid
joint ¢ is fixed as 45°. The non-dimensional coupling parameter r is varied by
using different ply-stacking sequences. In Fig. 5.7a, the axial velocity (normalized
with Ppaccp /A1 with Pp, being the maximum load amplitude and ¢y, the lon-
gitudinal wave speed in a rod) response at A and B (both at a distance of 0.5 m
from the joint) is plotted. The figure shows that the reflected axial response at A, as
well as the transmitted axial response at B, occur at the same time for a particular
value of r. However, due to the decrease in the values of A, for increasing values
of r, the axial speed of propagation decreases. As a result, both responses occur at
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Fig. 5.6 a Comparison of (a) 2 . . . . . - - - .
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a later stage. A separation of 0.24 ms can be observed between responses due to
unsymmetric cross-plies and the symmetric 0° ply configurations. Also, the dis-
persive behavior becomes dominant after the initial peak, which can be considered
as a contribution from Mode 2 and Mode 3, as discussed earlier. Fig. 5.7b shows
the plot of transverse velocity (normalized with P axCLH? /Dq1) response at A and
B. Other than a similar time lag in the arrival of reflected and transmitted
responses as observed in the case of axial propagation, the smoothness in the
response curves disappears and their transient nature becomes significant for
increasing values of r. This example has shown the ease with which FSFEM
allows simulating the dynamics of complicated networks of connected beams.
Unlike the conventional FE formulation, however, the length of the spectral ele-
ment is not a limiting factor; each element is formulated exactly, irrespective of its
length. This leads to a substantial reduction in the number of equations that are to
be solved.
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5.5.2 Wave Propagation in 2D Portal Frame

The aim of this example is to demonstrate the ability of FSFEM and WSFEM to handle
multiple reflections arising out of finite domain structures such as a 2D portal frame.

The considered frame is subjected to the impact load shown in Fig. 3.7 at the
location indicated in Fig. 5.8. This example is more complicated than the previous
example of the angle joint, as multiple reflections occur from the joints and
supports. For the analysis of this structure, three spectral elements for the three
members are used and the elemental dynamic stiffness matrices of these members
are assembled using standard FE procedures.

In Fig. 5.9, the transverse wave velocity obtained using WSFEM formulation at
point A in Fig. 5.8 is presented and compared with conventional FE response
obtained using 2-noded 1D beam element with axial, transverse and rotational
degrees of freedom at each node. Each of the three members of the frame is
discretized with 5000 elements.
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Fig. 5.8 2D frame structure P 0.508 m |
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Results show very good agreement between the two solutions. Since FSFE
cannot be used for similar analysis of undamped finite length structures, the wave
velocities are plotted in Figs. 5.10a—c for a damping of # = 0.5. In the above
mentioned figures for all the plots obtained using wavelet, a time window T,, of
1024 us is used. For FSFE, T, is increased from 1024 ps to 4096 ps in Fig. 5.10a—
to remove signal wraparound. It can be seen that for T, = 1024 s, the results are
highly distorted which gradually decreases with an increase in 7,,. From
Fig. 5.10c, we see that increasing T,, to 4096 us is not sufficient to completely
eliminate the response distortion. It further requires higher resolution. The above
numerical experiment is performed using basis function of order N =8 and
sampling rate At = 1 ps. The problem of wraparound in FSFEM and the ability of
WSFEM to accurately predict response in finite structures is clearly demonstrated.
Also, the example shows need for large time windows in FSFEM formulation, and
signal wraparound problems, present in FSFEM formulation, are completely
eliminated in the WSFEM formulation.
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(a) (b)

Fig. 5.10 Transverse tip velocity at A of 2D frame in Fig. 5.8 due to the applied load P, for time
windows T, a T,, = 1024 ps, b T,, = 2048 ps and ¢ T,, = 4096 ps.

5.5.3 Propagation of Surface and Interfacial Waves
in a Composite Layer

In this section, wave propagation in 2D composite layers is presented by comparing
FSFEM results with those obtained from a 2D FE formulation. The material used is
GFRP composite whose material properties are as follows: E| = 144.48 GPa, E; =
9.63GPa, Gi3 =4.13GPa, v;3 = 0.3, vi =0.02 and p = 1389 kg/m3. The ply-
sequence considered is [0°19/90°19/0°10], where each lamina is 0.01 m thick. This
large thickness is chosen to differentiate between the incident and the reflected
pulse, although any layer thickness can be chosen and easily handled by the con-
sidered approach. The layered system, shown in Fig. 5.11, is impacted by a high
frequency loading, where the bottom of the layer is fixed. The time history of the
high frequency load along with its spectrum are shown in Fig. 3.7.

The load is applied at the center of the top layer first in the z direction, which
generates primarily QP waves, and then in the x direction, which generates pri-
marily QSV waves. The response of the structure is measured at several locations
along the surface and interfaces. For FE analysis, the layer is modeled with 3600,
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Fig. 5.11 Layer model for
verification
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three-noded plane-strain FEs. In comparison, there are only three FLEs in the
spectral model. The FE formulation results in a global system matrix of size
3656 x 126 (where 126 is the bandwidth of the matrices), whereas the spectral
model features a global system matrix (dynamic stiffness matrix) of size 6 x 6.
While solving via FE analysis, Newmark’s time integration is adopted with a time
step At = 1 ps. For the spectral analysis, the load is sampled at 48.83 Hz with
N = 2048 (in Eq. 5.83) FFT points. Further, for the spatial variation 32 Fourier
series coefficients (i.e. M in Eq. 5.83) are considered. For the concentrated load, all
the a,, are equal to 2/x;, where x; is the window length in the x direction, here
taken as 1.0 m, as per the FE model. Since, the time domain response is real, the
computation of displacements (or velocities) needs to be carried out only upto the
Nyquist frequency. Hence, the global stiffness matrix needs to be inverted 1024 x
32 times. This computational requirement is many orders smaller than the
requirement of the FE analysis. Further, a typical simulation in FE takes 110 s of
CPU time, whereas, a SE run takes 14 s on a Compaq Alpha Server ES40 with
DEC compiler.

Before discussing the velocity histories, a few points need to be considered.
When a velocity wave encounters a stiffer zone, the reflected wave has an opposite
sign to that of the incident wave. In contrast, when the wave encounters a zone of
comparatively lower stiffness, the reflected wave has the same phase as the inci-
dent wave. These phenomena are best visible in the reflections from the fixed end
(infinite stiffness) and the free end (zero stiffness) of a structure. However,
reflected waves are also generated at the interfaces of laminates because of the
mismatch in the impedance. In the present model, propagation is considered in the
direction of ply-stacking and there is a nominal change in stiffness in that direction
due to the change in laminae angle. Hence, the magnitude of the reflected waves
from the interface will not be large enough to be visible, in comparison to the
boundary generated waves. Thus whatever reflections are present in the velocity
history are solely due to reflections from the boundary.

For the load applied in the z direction at point 1, the z directional velocity w, is
measured at points marked 1, 4, and 5 (see Fig. 5.11). The velocity histories at
these nodes are plotted in Figs. 5.12, 5.13, 5.14, and 5.15. In Fig. 5.12, where the
peak at 100 ps is the direct effect of the load. For this kind of loading, the prop-
agating wave is essentially a QP wave. In this case, the inverted peak at around
32x107%s corresponds to the reflection from the fixed end i.e., at z= 0.3 m.
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Fig. 5.12 QP wave at the
surface (point 1); solid line,
SE; dashed line, 2D FE

Zr-welocity mt 1 dus to Z-losd m 1, més

Fig. 5.13 QP wave at the
interface (point 4); solid line,
SE; dashed line, 2D FE

Z-velooity st 4 de to Z-load ut 1, méa

Tizme, seu =10

Again at the fixed end, the wave is inverted and shows up at around 5.4 x 107% s.
This figure also shows the excellent agreement between the FE and Spectral Layer
Element responses.

Next, the w history at the first interface (z = 0.1 m, point marked 4) is plotted in
Fig. 5.13. The response in this case does not start at 100 us as before, but at 130 ps.
This is due to the time taken for propagation in the first layer, i.e., 0° laminate.
Subsequent reflections at around 2.9 x 10™* s and 3.6 x 10~* s are due to the
reflections from the fixed edge (z = 0.3 m) and free edge (z = 0.0 m), respectively.
Further, the peak at around 5.0 x 10~* sis the second reflection from the fixed edge.

For the w history measured at the second interface (z = 0.2 m, point marked 5)
and the response plotted in Fig. 5.14 the main peak comes down to 1.67 x 107* s
because of the large travel distance. The QP wave velocity at 90° laminate is less
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Fig. 5.14 QP wave at the 1l
interface (point 5); solid line,
SE; dashed line, 2D FE
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Fig. 5.15 QSV wave at the pxe”

surface (point 2); solid line,
SE; dashed line, 2D FE

X-velocity st 2 due to X—Joad ut 1, mfa
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than that in the 0° laminate and hence the increase (above 1.6 x 107*s) in
propagation time. There are reflections from the fixed end (inverted peak at around
2.46 x 104 s), reflections from the free end (inverted peak at 4.0 x 10~* s) and
second reflections from the fixed end (peak at around 4.7 x 10~* s). The spectral
element formulation captures these reflections quite well, and except for the last
reflection, the response matches satisfactorily with the FE response.

Next, the same load is applied at point 1 in the x direction. For this load,
primarily QSV waves are generated. There will be no wave at the impact point and
the x directional velocity i is measured at the surface points 2 and 3 and plotted in
Figs. 5.15 and 5.16, respectively. In both cases, several reflections from the fixed
ends are visible. As before, good agreement between the FE and the SLE responses



5.5 Numerical Examples 211

Fig. 5.16 QSV wave at the
surface (point 5); solid line,
SE; dashed line, 2D FE

M—velocity s1 3 dus to X-load ut 1, mf
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Time, seo <10
can be observed. These responses establish the developed SLE in terms of accu-
racy, efficiency and cheap cost of computation.

5.5.4 Propagation of Lamb Wave

The importance of Lamb wave in the context of SHM was earlier discussed. In this
section, we derive the dispersion relations for Lamb waves in composite plates and
illustrate the changes of ply angle and thickness on its wave propagation char-
acteristics. We also illustrate the propagation of Lamb wave modes through a
numerical example.

A unidirectional lamina of 2 mm thickness is considered, with the material
properties of AS/3501-6 graphite—epoxy composites.

The solution of the dispersion relations in cases such as this requires particular
care as it is multi-valued, unbounded and complex (although the real part is of
interest). One way to solve these equations is to appeal to the strategies of non-
linear optimization, which are based on non-linear least square methods. There are
several choices of algorithms, like the trust-region dogleg method, Gauss Newton
method with a line search, or Levenberg Merquardt method with line search. Here,
the MATLAB function fsolve is used and for the default option for medium scale
optimization, the trust-region dogleg method is adopted, which is a variant of
Powell’s dogleg method [17].

Apart from the choice of algorithm, there are other subtle issues in root cap-
turing for the solution of wavenumbers. For instance, except the first one or two
modes, all the roots escape to infinity at low frequency. For isotropic materials,
these cut-off frequencies are known a priori. However, no expressions can be found
for anisotropic materials and generally, the solutions need to be tracked back-
wards, from the high frequency to the low frequency region. In general two
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Fig. 5.17 Lamb wave
dispersion relations for 0°
ply-angle layer

Phase Velocity (o)

strategies are essential in capturing all the modes within a given frequency band.
Initially, the whole region should be scanned for different values of the initial
guess, where the initial guess should remain constant for the whole frequency
range. These sweeps open up all the modes in that region, although they are not
completely traced. Subsequently, each individual mode should be followed to the
end of the domain or to a pre-set value. For this case, the initial guess should be
updated to the solution of the previous frequency step. Also, sometimes it is
necessary to reduce the frequency step in the vicinity of high gradients. Once the
Lamb modes are generated they are fed back into the frequency loop to produce
the frequency domain solution for Lamb wave propagation, which through IFFT
produces the time domain signal. As the Lamb modes are generated first, they need
to be stored separately. To this end, data are collected from the generated modes at
several discrete points over the considered frequency range. Next, a cubic spline
interpolation is performed for a very fine frequency step within the same range.
While generating the time domain data, interpolation is performed from these
finely graded data to get the phase speeds (hence, 7).

In the considered example, Lamb waves are generated through a modulated
pulse of 200 kHz center frequency applied at one end of an infinite plate.
Velocities components in the x and z directions are recorded at a propagating
distance of 320k, where & is the thickness of the plate. While studying the time
domain representation, the thickness of the plate is taken as 10mm, which
amounts to a frequency-thickness value of 2. The thickness values is chosen so that
at least three modes are excited according to the dispersion curve shown in
Fig. 5.17.

Figure 5.17 shows the first 10 Lamb modes for fiber angle 0°. The first
anti-symmetric mode (Mode 1) converges to a value of 1719 m/s in a range of
1 MHz-mm, where all the other modes also converge. In analogy to the isotropic
case, this is the velocity of the Rayleigh surface waves in 0° fiber laminae. The first
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Fig. 5.18 Lamb wave propagation for 0° ply-angle, Z direction velocity history, L = 320h

symmetric mode (Mode 2) starts above 10000 m/s and drops suddenly at around
1.3 MHz-mm to converge to 1719 m/s, before which it has a fairly constant value.
All the other higher order modes escape to infinity at various points in the fre-
quency range. Also the symmetric and the anti-symmetric pair of each mode
escape almost at the same frequency.

Propagation of these modes are plotted in Figs. 5.18 and 5.19 for the first three
modes (a.,s, and a;), here referred to as Mode 1, 2 and 3 respectively. In
Fig. 5.18, the z velocity history is plotted, whereas in Fig. 5.19 the x velocity
history is plotted. These figures readily show the different propagating modes, each
corresponds to one wave packet propagating at the group speed (and not the phase
speed). Hence, Fig. 5.17 is not helpful at predicting the arrivals of the different
modes. However, as Figs. 5.18 and 5.19 suggest, mode 2 has a lower group speed
than mode 1, and mode 3 has a group speed much higher than both mode 1 and 2.
One difference in the & and w history can be observed. That is, for i« history plot,
the higher mode generates velocity of comparatively less magnitude, whereas, for
w history plot, the magnitude is highest.



214 5 Spectral Finite Element Method

04 T T T T T T T
02k Mode | .
0
-02+ -
_04 1 'l L s L i L
0 0.3 1 1.5 2 25 3 35 4
=3
04 ; : . ; ; ; 10
g o2k Mode | & 2 =
§ o 3 + —
Z-03r -
_04 i L 1 i ' 1 A1
0 0.5 1 15 2 25 3 35 4
-3
2 T T T T T T T X lo
1F Mode |, 2& 3 1
0 e R — =
_‘ - —
_2 1 L 1 L 1 L L
0 0.5 1 1.5 z 25 3 35 4
Time, [sec) <107

Fig. 5.19 Lamb wave propagation for 0° ply-angle, X direction velocity history, L = 320h

Fig. 5.20 Plate with
ply-drop

y, =300

5.5.5 Wave Propagation in a Composite Plate with Ply-Drop

Next, we consider the case of composite structures with ply drops. Ply drops
are common in composite construction and are commonly employed to reduce
the thickness of a laminated composite structural member. From the wave
propagation point of view, they introduce geometrical discontinuity, which
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Fig. 5.21 Variation of axial c10”
velocity: solid line—ply-
drop, dashed line—uniform
plate

Fig. 5.22 Variation of ™
transverse velocity: solid
line—ply-drop, dashed
line—uniform plate

results in impendence mismatch at the ply drop junction causing repeated
reflections, which may eventually cause failure of the structure in the form
delamination.

We consider the ply dropped plate shown in Fig. 5.20. The plate is impacted at
the mid-point of the free end by a concentrated load whose time dependency is the
same as taken previously (Fig. 3.7). The load is first applied in the x direction and
the x velocity is measured at the impact point. The measured velocity history is
plotted in Fig. 5.21. The same structure is also analyzed for uniform ply-stacking
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(10 layers) and the result is superimposed in the same figure. It is evident from the
figure that the ply drop affects the stiffness of the plate considerably, as there is an
increment in the maximum amplitude of about 90%. This reduction of stiffness is
also visible in the reflection from the boundary. The reflection from the boundary
appears at the same instant in both the cases, which indicates that there is not much
alteration in the group speed due to the ply-drop. However, there are two extra
reflections, corresponding to the inverted peaks at around 175 ps and 240 ps, in the
response from the ply-drop plate before the arrival of the boundary reflection,
which originate at the ply-drop junctions due to the mismatch in impedance.

Next, the plate is impacted at the same point in the z direction and the z velocity
is measured at the same point (Fig. 5.22). For reference, the response of the
uniform plate is also plotted in the same figure. As noticed before, there is a
considerable difference in the peak amplitudes (almost of a factor of 2), which
follows the same pattern of axial velocity history. The extra reflections originated
at the interfaces are also visible (starting at around 250 ps), which are not present
in the uniform plate response. However, there is no deviation in the arrival time of
the boundary reflection, which denotes the closeness of the bending group speed in
both cases. Overall, this example shows the efficiency of the present element in
modeling structures with discontinuity and bringing out its essential dynamic
characteristics.

5.6 Conclusions

In this chapter, various spectral finite element models were formulated and their
ability to perform wave propagation analysis were demonstrated on a healthy
structure. In the next chapter, we will extend the spectral element approach to
model waveguides with flaws such as horizontal cracks or delamination, vertical
cracks or fibre breaks etc.
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Chapter 6
Simplified Spectral Models for Damaged
Waveguides

6.1 Need for Spectral Element Damage Models in Structural
Health Monitoring

Composite structures provide opportunities for weight reduction, tailoring of the
material properties, integrating control surfaces in the form of embedded trans-
ducers, etc. Since very few such high-importance composite structures have
completed significant number of years of design life, the damage tolerance of these
structures is yet to be explored. Unlike the design of metal structures, this infor-
mation has not been incorporated into the design process. Therefore, a potential
barrier at present is that composite structures can have internal defects that are
difficult to detect and therefore need frequent monitoring to assess their vulnera-
bility. Although matrix cracking, fiber breakage, fiber debonding, etc., initiate the
damage that occurs in laminated composites, inter-laminar cracking or delami-
nation is most important and can easily grow to reduce the life of the structure.
This is because, in contrast to their in-plane properties, transverse tensile and inter-
laminar shear strengths are quite low. Furthermore, material degradation defects
due to porosity and moisture absorption are common in composite structures. As
widely discussed in the previous chapters, meaningful damage detection analysis
needs to be supported by efficient models which can simulate the presence of
defects and most importantly can replicate their effects on the dynamic response of
the structure. Finite element modeling of some of the above defects were
addressed in Chap. 4. Although, FEM is versatile in modeling most defects, the FE
model sizes places severe restriction on its use for the simulation of wave-based
inspections. This aspect was discussed in Chap. 4. The main requirements of
models in support of SHM are their ability to develop simplified damage models.
This aspect is addressed in this chapter, while the damage detection aspect is dealt
with in Chaps. 10 and 11. This chapter presents the formulation of simplified
spectral element models for single and multiple delaminations, fibre breakage,
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corrosion in metals and material degradation in composites. In the next chapter,
damage models for notched type structures are presented through formulations
based on perturbation techniques.

6.2 Review of Simplified Models for Structural Defects

There are a number of damage models for metallic and composite structures reported
in the literature. Modeling flaws using conventional FEM is simple and straight-
forward and this aspect was discussed in detail in Chap. 4. Kinematics based models
have received significant attention by the researchers. Some of such models use
simple springs to represent damage by fine tuning the value of the spring constant
until the response from the model matches experimental/FEM responses. Such
models do not represent the physics of the problem accurately. That is, the presence
of cracks in the structure introduces mode conversion, which is a phenomenon by
which a purely axial input give rise to bending response and vice versa. In terms of
Lamb wave terminology, an Ap mode generates an Sy mode and vice versa in the
presence of damage. Simple spring models cannot capture this physics. Hence,
different researchers have proposed different methods to capture mode conversion
phenomena and some of these are found in [1, 6, 8, 19, 22, 23, 38, 42]. Each of these
models make varying assumptions, the result of which is the increasing complexity
in the formulated models. We are not discussing each of these models here. Models
based on constant shear kinematics are found to be very useful in capturing accu-
rately the dynamics of the cracked beams [1, 6]. Most of these works are ad hoc in
nature and are not suitable for automation to tackle practical problems. In this
chapter, a new modeling methodology under SFEM environment is outlined to
model defects in beam and plates. Since SFEM is based on FE procedures, the
scheme is highly suited for automation. That is, the formulated spectral damage
elements can be inserted in the region of suspected damage without the need for fine
meshing, normally required in the conventional FEM to capture the stress singularity
at the crack tip. The utility of these formulated elements to capture the mode con-
version phenomenon is also demonstrated in this chapter.

Most of damage modeling in 2D waveguides are performed using conventional
FEM using the concepts outlined in Chap. 4. Some of these, especially the
delamination models for composite structures are reported in [8, 15, 29, 34, 35].
However, a few researchers have used Layerwise Theories (LT) to accurately
capture the response of a damaged structure. There are many variants of the LT
modeling reported in the literature some of which can be found in [2, 5, 12, 30, 43,
44]. All these LT models require enormous model sizes to accurately capture the
response features of a delaminated structures. One simple method to model
delamination using LT or alternatively the Equivalent single layer Theory (ESLT)
is to measure slope discontinuity at the crack (delamination) front. It is shown in
the work of Rice and Levy [31] that the slope discontinuity at both sides of the
crack location due to bending moments is proportional to bending compliance of
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the crack and nominal bending stress. Using the expressions given in this paper,
Khadem and Rezaee [17] obtained slope discontinuity at both sides of a hypo-
thetical boundary along the crack in terms of the characteristics of the crack. This
expression is used to introduce delamination in the spectral plate element devel-
oped in Chap. 5 (see Sect. 5.4). Similar work can be found in [18], where the
delamination is modeled using isotropic spectral plate elements. In the next few
subsections, simplified spectral element damage models for both 1D and 2D
composite waveguides are described.

6.3 Modeling of Single Delamination or Horizontal Cracks

This model was described under the FE environment in Sect. 4.3.3 where the
kinematics between the nodes of the base laminate and sub-laminates were
imposed through rigid links. In this section, the system kinematics is enforced
through a transformation matrix that is constructed using assumed displacement
field of a 1D composite waveguide. The simplified damaged model presented in
this section can be used to model single through-width delamination in composites
or a through-width horizontal cracks in metals. This model can be formulated both
under Fourier or Wavelet transform environment.

The location of the nodes of the spectral elements for a delaminated beam is
shown in Fig. 4.7. In the absence of delamination, one spectral element between
node 1 and node 2 is sufficient for the analysis. The presence of a delamination
when treated as a structural discontinuity by neglecting the effect of stress sin-
gularity at the delamination tip, increases the number of elements from 1 to 4. Six
more nodes are introduced to model individual base laminates and sub-laminates.
For the sub-laminate elements (elements 3 and 4) the nodes are located at the mid-
plane of the sub-laminates and element lengths are equal to the length of the
delamination.

The kinematic assumption for the interface of base laminate and sub-laminates
is that the cross-section remains straight, i.e., the slope is continuous and constant
at the interface. Under this assumption, one can obtain the following equations:

i i + oy

Uz =4 @3 o = (4 = Sily (6.1)
b3 b4
g i1 — hidy

us = (2)5 = @4 = S,y (62)
bs by

and similarly,

ﬁ6 = Slﬁ7, ﬁs = S2ﬁ7. (63)
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Here all the vectors are marked with overhead hat to indicate that the variables are
discretized in the frequency domain. Using these we can map the displacements at
sub-laminate element nodes 3, 5 (on the left interface) and 6, 8 (on the right
interface) in terms of displacements of base laminate nodes 4 (on the left interface)
and 7 (on the right interface), respectively (see Fig. 4.7¢c). Also, S and S, are the
3 x 3 transformation matrices given by

1 0 h 10 —my
S;=|0 1 0|, S,=|0 1 0 |. (6.4)
00 1 00 1

From the equilibrium of the left interface AB (Fig. 6.1), we can draw the following
force balance equation:

B (R [0 A [ 0 [0
Vi p+q Vs o440 0 p4q Vs p+q 0 =20 (6.5)
My M; hyN3 Ms —h|N5s 0

which, in matrix form can be written as
f4 + Sle;; + S;fs =0. (6.6)

Similarly, from the equilibrium of the right interface CD, we can get
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Fig. 6.1 Force balance at the interface between base laminate and sub-laminate elements
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f7 + S{fﬁ + ngs =0. (6.7)

The element equilibrium equation for the jth element (j = 1,2 for base laminates,
j = 3,4 for sub-laminates) with nodes p and g can be written as

(/) up | f'p
. (3)-{5)

This equation can be rewritten using 3 x 3 sub-matrices of the stiffness matrix as

K% ﬁﬂ {%}{5} (6.9)
L I(ZJI KZJZ (6x6) Uq f(l

The above equation for the local element 1 can be written as
(&) )] . P
F% ﬁ% {W}:{ﬁ}. (6.10)
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For local element 2, we have
(2 @] . A
K% ﬁg {W}:{ﬁ} (6.11)
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For local element 3, we have

(3 - (3)
Ky Ky
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Expressing @5 and ug in terms of 4 and 07 respectively (Egs. 6.2 and 6.3) and pre-

multiplying both sides by Sg, we get
{@}:{%@} (6.13)
(6x6) v S,1s

G- e

Similarly expressing i3 and ug in terms of U4 and 7 respectively (Egs. 6.1-6.3)

and pre-multiplying both sides by SIT, we get
~ Te
{W}:{%@} (6.15)
uz Sl f6

(6x6)

SIK(}S: SIK)'S,
SIK; S SIKy'S,

For the local element 4, we have

S (1) o4
Ky Kiy
KZ] K22

(6x6)

SIK}S1 S{K(;'s,
STKy'S1 S{Ky,'s:

(6x6)
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After assembly of the above equations for the four local elements (two base
laminates and two sub-laminates) and subsequent use of Eqgs. 6.6 and 6.7 yield the
following matrix equation:

uy fl
=]y 0
K{ ™M = , 6.16
ﬁZ f2
where K is
K K} 0 0
K} K+ STRWS, +SIKYs,  sTKYs, + SIKUs, 0
0 STKSS: +SIKSYS,  STKS)S: +SIKY)S, +Kj} K}
0 0 K K

Upon condensation of the degrees of freedom at the internal nodes 4 and 7, the
final form of the equilibrium equation is obtained as

> lTll fl
K N =94 7, 6.17
© 6){“2} {fz} (6.17)

where K is the reconstructed stiffness matrix for the spectral element with
embedded delamination. Now, one only needs to replace the usual spectral element
with this spectral element wherever a possible delamination may exist in com-
posite beams and frame structures, keeping the original nodes unaltered. Hence, it
is evident that insertion of this element in a modular approach is suitable for faster
modeling and accurate prediction of delaminations in composite beams and frames
with partial measurement of sensor signals.

In the above formulation, we have not considered the effect of distributed
contact between the delaminated surfaces, at the top from the sub-laminate (4) and
at the bottom from the sub-laminate (3) (Fig. 6.2). In the present study, this is
modeled as a viscoelastic layer between the delaminated surfaces. This model
not only includes the effect of interfacial frictional slip under Mode-II fracture
but also can be used as a linearized model to restrict the interpenetration and
frictional contact under Mode-1 fracture. However, more complex models
considering a non-linear spring to restrict the occurrence of the incompatible
modes due to interpenetration can be developed. Such aspects have been studied
semi-analytically in [22].

Figure 6.2 shows the delaminated zone between two delaminated surfaces. Let
us consider the distributed spring constants K, and K, and the distributed viscous
damping coefficients C, and C,. The spectral amplitude of the distributed contact

force vectors I’ ¢ acting on the top surface of sub-laminate (3) and I » acting on the
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Fig. 6.2 Distributed contact VA
idealized through distributed
linear spring K and
distributed linear viscous

damper C between the
delaminated surfaces. The @
waveguides (4) and (3)
represents the top and bottom Kx), C(x)
sub-laminates respectively as @ X
shown in Fig. 4.7a ..?f‘....... RS hsissaiad—— ™
I |
Contact zone
Sublaminates

bottom surface sub-laminate (4) and consisting of longitudinal force along x,
transverse force along z and moment about y due to relative motion between the
top and bottom surfaces can be expressed as

. K +iw,C; 0 PR
I, = 0 K. + iw,C. {W”Wf } =K*(p — 1), (6.18)
2t (K + i0,Cy) 0 b=

I, =-I, (6.19)

where the subscripts ¢ and b respectively indicate the quantities associated with the
top surface of the sub-laminate (3) and the bottom surface of the sub-laminate (4).
In Eq. 6.18, 7z, is the depth of separation between the delaminated surfaces.
Considering the displacement field according to the Timoshenko beam theory in
Eq. 2.129, the top surface displacement vector @y for sub-laminate (3) can be
expressed as

i 3) _
ﬁ‘:{vﬁii}:[é | K ]ﬁ<x,wn><3>:s1ﬁ<x,wn>“> (6.20)

and similarly, the bottom surface displacement vector ty, for sub-laminate (4) can
be expressed as

)

‘A“’:{ﬁlb}: Ll) T }f%x,wn)(“:szﬁ<x,wn)<“> (6:21)

where 153) denotes the depth of the top surface measured from the local reference
plane of the sub-laminate (3) and z§,4> denotes the depth of the bottom surface

measured from the local reference plane of the sub-laminate (4). Using the generic

displacement vector ai(x, w,)® and (x,®,)® in terms of the spectral element
shape function matrices and nodal displacement vectors, a consistent nodal force
vector can be formed. Thus, for sub-laminate (3), the consistent nodal force vector

st = [T N ?;)ft dx., where N/ ?; is the shape function matrix for element 3. It is
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to be noted that the above method of modeling delamination can be incorporated
both under Fourier transform or Wavelet transform environment. That is, the
respective healthy spectral elements required to model beam segments before and
ahead of the crack front could be either WSFEM or FSFEM depending on the
transform domain in which the problem is solved.

6.3.1 Wave Scattering in a Delaminated Beam Using Wavelet
Spectral Elements

This problem is solved in wavelet domain using the formulated WSFE model of
delaminated composite beam. The analysis is performed on different fixed-free
delaminated AS4/3501-6 graphite-epoxy beams. The material properties of the
beam are given in Table 6.1. The beam configuration is shown in Fig. 6.3, where,
L and Ly are the lengths of the beam and delamination respectively and L; is the
distance of the delamination from the free end of the beam.

The cross-sectional dimension is 0.01 x 0.01 m? with depth 24 = 0.01 m and
width 2b = 0.01 m. Numerical examples are presented for different values of these
lengths, ply-lay up sequences and positions of delaminations along the thickness of
the beam. In addition, the wave propagation responses are studied for both broad-
banded impulse (see Fig. 3.7) and narrow-banded modulated pulse loadings. The
unit broadband impulse load used has a duration of 50 ps and a frequency content
of 44 kHz. Similarly, the modulated pulse loading with central frequency of
70 kHz is shown in time and frequency domains in Fig. 6.4. The WSFE model is
formulated with N =22 and a time sampling rate Ar =2 pus. A single spectral
element is used to simulate the responses.

First, the WSFE model of delaminated beam is validated with responses sim-
ulated using a 2D FE model. The transverse tip velocity of beam shown in Fig. 6.3
with ply-layup [0]g,L = 0.5m and L; = 0.25m is plotted for centerline delami-
nation length of Ly = 20 mm and compared with the response obtained using 2D
FE in Fig. 6.5a. The FE result is obtained using 400, 4-noded quadrilateral plane
stress elements and Newmark’s time integration with time step 1 ps. It can be seen
that results compare well. However, the small difference in the wave speeds
predicted by the two methods can be further reduced by refining the FE mesh.

Table 6.1 Properties of

. Material properties
AS4/3501-6 graphite-epoxy

beams E (GPa) 141.9
E» (GPa) 9.78
G]z = G13 (GPa) 6.13
G»3 (GPa) 4.80
V12 0.42

p 1,449 kg/m®



http://dx.doi.org/10.1007/978-0-85729-284-1_3#Fig7

6.3 Modeling of Single Delamination or Horizontal Cracks 227

Fig. 6.3 Fixed-free beam L
configuration with mid-plane
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In Fig. 6.5b, the transverse tip velocities of same beam configuration are
plotted, but, for different lengths, L4, of delaminations and are compared with the
undamaged response. The delaminations are along the centerline of the beam and
are of lengths Ly = 10,20 and 30 mm. It can be seen that in addition to the
reflection from the fixed end, the damaged responses show early reflections gen-
erated from the delaminations and amplitudes of these reflected waves increases
with increase in delamination lengths, as expected. Similar tip transverse velocities
are presented in Fig. 6.5¢c, except that, here, the delamination length is kept fixed at
Ly = 20mm while the positions along the thickness direction are varied from
hy = h,h/2 and h/4 (see Fig. 6.3). As in the previous plot, even here, the damaged
responses show reflections from the delaminations and it can be observed that their
amplitudes increase as h; i.e. depth of the delamination from the top surface of the
beam decreases. In Fig. 6.5d, the transverse velocities due to tip transverse
impulse load are plotted for beams with different ply orientation sequences. In all
the cases, the beam configuration is similar to Fig. 6.3 with L=0.5m,L; =
0.25 m and centerline delamination of Ly = 20 mm. The three ply-layups used are
[0]¢, [45]¢ and [60]s. Different ply-layups change the stiffness of the beam and
hence the wave speeds also change as seen from Fig. 6.5d, where the responses
show different amplitudes and time of arrival of reflections. The [0]; beam has the
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Fig. 6.5 Transverse tip velocity of fixed-free graphite-epoxy beam due to tip impulse load
applied in transverse direction with a delamination length Ly = 20 mm (validated with 2D FE)
b different delamination lengths Ly = 10,20,30 mm ¢ delaminations at different heights above
centreline d different ply-lay up [0]g, [45],, [60]g

lowest amplitude and the time of arrival as it has the highest flexural stiffness and
hence highest group speed.

Next, numerical experiments are performed using narrow-band sinusoidal load
(see Fig. 6.4) with central frequency of 70 kHz as input excitation. For such
loading, the waves non-dispersively and used for damage detection. The load is
again applied in transverse direction at the tip of a [0]g beam shown in Fig. 6.3
with L=0.5m and L; =0.25m. The responses studied are the transverse
velocities measured at the tip. In Figs. 6.6a—c, the velocities of undamaged and
delaminated beams with Ly = 10 and 20 mm are plotted respectively. In either
cases, the delamination is along the centerline of the beam. Similar to the
responses due to impulse loading in previous example, the damaged responses
here show an additional reflection from the delamination and their amplitude
increases with increase in the delamination length. From these plots, the
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positions of damages can be obtained directly using the time of arrival and wave
speed.

6.3.2 Effect of Wave Scattering Due to Delamination at Ply-Drops

The formulated damaged spectral element based on Fourier Transform (FSFEM) is
used to study wave scattering due to a delamination at the ply drop. These regions
are highly susceptible to such damages due to the presence of high stress gradients
arising out of thickness loss.

In health monitoring applications, detection of delaminations near ply-drops,
composite joints or other structural discontinuities is of great practical relevance. If
the delamination length is small, the same modeling strategy used for delamination
modeling can be used. A cantilever beam with the same material properties as used

(a) (b)
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Fig. 6.6 Transverse velocities of fixed-free graphite-epoxy beam due to narrow-banded load at

50 kHz applied in transverse direction a undamaged, b delaminated L3 = 10mm and
¢ Ly =20mm
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in the previous illustration and with ply-drops (Fig. 6.7) is considered. The model
has five plies dropped from the top, out of 15 plies on the fixed end side of the
cantilever. A 20 mm long delamination is considered at the location of the ply-
drops. Only two spectral elements are used in the model. Transverse velocity
histories at the free end are plotted in Fig. 6.8. For the healthy case, two reflections
can be seen; first, one from the ply-drop due to a sudden change in the thickness,
and the second one from the fixed end of the beam. For the second case with
delamination, the reflection from the ply-drop region is seen to be intensified
showing a distinct blob. In actual experimental study, one can use a second
transducer pair to generate the incident pulse and also measure the reflected pulse
both on the both ends of delamination. Thus, by measuring the reflected waves on
both sides of the delamination, it is possible to predict the length of the delami-
nation accurately. Also, the reference structural database can be updated in the
presence of any local material degradation by correlating the measured signal and
simulated signal using the present spectral element model.

6.4 Modeling of Fiber Breakage and Vertical Cracks

This model was previously described in the context of FEs in Sect. 4.3.3 to model
vertical cracks in metals or fibre breaks in composites. Here, we extend the
approach to the SFEM environment. For this purpose, we consider Fig. 4.8. As in
the case of horizontal cracks, the method was implemented using rigid links (see
Chap. 4) for enforcing kinematics between nodes surrounding the damage. In this
section, the kinematics is enforced through a transformation matrix constructed
using the beam displacement field.

The philosophy behind this approach is the same as that of the horizontal crack
model. The cracked member is split into sub-laminates and base laminates,
enforcing the kinematics on nodes forming the damage and eliminating the
internal nodes through a dynamic condensation procedure. The spectral element
model for individual base or sub-laminates could be either FFT based or wavelet
based spectral elements.

In the absence of any crack, a single spectral element between node 1 and node 2
(Fig. 4.8a) is sufficient to capture the exact dynamics of the beam. Let us consider a
transverse crack in a beam that requires explicit definition by three additional
parameters. These three parameters are (1) the span-wise location of the transverse
crack (x =L; + AL/2 as shown in Fig. 4.8a, L; and AL will be defined later),

Fig. 6.7 Configuration of the z
cantilever beam showing a Delamination ft)
delamination in the region of y 1
ply-drops. L = 1'm, /] —
L =15m 20[ (D 2 @ 3+. ..... =X
7 L
d ! U |
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Fig. 6.8 Transverse velocity 10
w at the free end due to
modulated sine pulse applied
transversely at the free end of
the cantilever beam with ply-
drops

Transverse velogity (mm/sec)

Time ( msec)

(2) the thickness-wise location of the bottom crack-tip (z = dy), (3) the thickness-
wise location of the top crack-tip (z = dp,h = dy — d; is the crack depth). We
assume that the transverse crack is a through-width crack (along the y direction),
which allows modeling to be accomplished using one-dimensional waveguides. The
element discretization shown in Fig. 4.8b corresponds to six internal waveguides
numbered (1)—(6). For all these elements, a total of ten additional nodes apart from
node 1 and node 2 will appear in the formulation, and the degrees of freedom
associated with them will be condensed out systematically. As a result, a simple two-
node element can be used to model the transverse crack in a metallic or composite
beam, where faster and repeated analysis with acceptable accuracy will be of prime
importance for damage identification studies and various SHM applications in
conjunction with a wave-based diagnostic signal.

Since the main objective behind using such a model is to improve upon the
various available approximate models based on equivalent flexibility, empirical
crack functions, etc., it is essential for the proposed element discretization tech-
nique (Fig. 4.8) that any spurious scattering effect is avoided. It can be seen in Fig.
4.8 that the elements (3) and (4) are expected to behave as hanging elements,
especially when their lengths become longer. This can be avoided in two ways.
Either a bound on the length of the elements (3) and (4) in terms of the incident
wavelength can be imposed or appropriate constraints on the top and bottom
surfaces of elements (3) and (4) can be imposed by choosing higher lengths.

Calculations for implementing both options are presented below. A bound on
the length of the hanging elements is imposed for comparison with standard FE
results and other numerical simulations. The constrained equations for unbounded
length of the hanging elements are formulated after the basic element formulation.

We consider equal lengths of hanging laminates denoted by AL/2 as shown in
Fig. 4.8b. For any arbitrary dynamic excitation involving multiple harmonics, the
bound on the length of the hanging laminates is imposed in terms of the smallest
group wavelength, which is given by
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AL<Min(Zg), g =co/w, (6.22)

where ¢, is the group wave velocity defined as ¢, = dw/dk, k is the wavenumber,
w, = /27 is the excitation frequency. As the frequency increases, the group
wavelength 4, decreases. Note that 4, is the same as the wavelength 4 = ¢/, for
single frequency excitation, where c is the phase velocity, but is different from 4
for a band-limited excitation about a central frequency. Considering the arrival of
the waves through the uncracked base laminates, Eq. 6.22 can now can be used to
eliminate any spurious scattering of wave in an approximate manner.

The kinematic assumption adopted in the present formulation is that the cross-
sectional interfaces between the base laminate, the sub-laminates and the hanging
laminates remain straight, i.e., the slope is continuous and constant at these
interfaces. Under this assumption, one can relate the nodal degrees of freedom at
the interfaces as follows:

A L:‘? g + hy s R

U7 = 4§ 7 = @5 = S;u0;5 (6.23)
¢7 ¢5
ug g + ho s

Ug = g p = s = S,05 (6.24)
bs bs

) i il + hy s )

Ug = (2)9 = @5 = S;us (625)
bo b5

and similarly,
uy = Sqllg, Gy = S, Upz = S3lig (6.26)

where

|

6.4.1 Interface Equilibrium of Forces
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Considering the left interface between the base laminate and sub-laminates
(Fig. 4.8), the equilibrium of the associated nodal forces can be written as

N. Ny Ng No 0
Vev4+d o ve v+ Ve v+l e v =40
M Mo+ Ny Mg + hoVg Mo + h3No 0

(6.28)
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which, in matrix form and with the help of Eq. 6.27, can be expressed as
fs + STty + STfg + STy = 0. (6.29)

Similarly, considering the right interface between the base laminate and sub-
laminates, the equilibrium of the associated nodal forces can be expressed as

fs -+ STf10 + Sif1z + Sif1, = 0. (6.30)
At the crack surface,
f3+f,=0 (6.31)

and under the assumption of no contact between the crack surfaces, f'3 =0 and

f4 = 0. The effect of contact between the crack surfaces will be dealt with as a
separate case in Sect. 6.4.3.

6.4.2 Assembly of the Element Internal Waveguides

The element equilibrium equation for the jth element-internal waveguide (j = 1,2
for base laminates, j = 5, 6 for sub-laminates and j = 3, 4 for hanging laminates as
shown in Fig. 4.8) with nodes p and g can be expressed generically as

(- {&} 6

The above equation, for the internal element (1) is

(1 (1 . A
B Kiﬂ {ay={0 (633)
Kot Ky [ ) U5 fs
or for the internal element (2),
L) A2 . R
EE RO
Kot Ka [ 6xe) 2 f2

Similarly, for the internal element (3), we have

& ) .
15531; 15532; {‘fs} - {fs } (6.35)
K Ka [ (oee ™ fs
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Expressing Gig in terms of @5 with the help of Eq. 6.24 and pre multiplying both
sides of Eq. 6.35 by Sg, we get

SIK(/'S; SIK) [ {%0) (6.36)
SgKngz Sgng) (6x6) w 515

The equilibrium equation for the internal element (4) is

W o ) .
[‘fﬁzi ‘fiﬂ lon) =i} (637
K21 K22 (6x6) Uy f12

Expressing U3 in terms of Gg with the help of Eq. 6.26 and pre multiplying both
sides of Eq. 6.37 by Sg, we get

S;Kiy SK,S; {‘:‘4} - { 5,14 } (638)
SIK(Y)  SIKY)s, o L 6 STty

The element equilibrium equation for the internal element (5) is

(5 > (5 N &
sl e e
K21 K22 (6x6) ujo fl()

Expressing @7 and w9 in terms of ds and ug respectively with the help of
Egs. 6.23-6.26 and pre multiplying both sides of Eq. 6.39 by S{, we get

ks SKis] ful_(sh) gy
STKG St STKGS: | g L Us STty

The element equilibrium equation for the internal element (6) is
(0 (6 . &
Ky Ky ol _ )0 L (6.41)
up f12

i (0)  (6)

Ky Ky
Expressing Gy and 0y, in terms of 05 and G respectively with the help of Egs. 6.25
and 6.26 and pre multiplying both sides of Eq. 6.41 by S:{, we get

[S:ff((fi)ss S§K§§>531 {ﬁs } _ { Sty } (6.42)
(6x6)
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STKYS; STK(s; i Sifp

6.4.3 Modeling Dynamic Contact Between Crack Surfaces

The present SFE with embedded transverse crack can be also formulated to capture
the effect of dynamic frictional contact and viscosity due to the polymer matrix
grain boundary and broken fiber fragments. Similar models for delamination can
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be found in [22, 26]. However, a more complex model includes a non-linear spring
to restrict the occurrence of incompatible opening-closing modes due to inter-
penetration. This development will not be attempted here. Figure 4.8c shows the
transverse crack surfaces and the associated hanging laminates (3) and (4). The
motion of the crack surfaces is approximated through the motion of node 3 and
node 4. Let us assume that the distributed spring and viscoelastic contact force
along the crack surfaces can be lumped on node 3 and node 4 as

Do ELLE e

where
(Ky +ioCy) 0 0
0 0 (K¢ + iwC(/,)

with K, K,,,Ky are the spring stiffnesses and C,,C,, and Cy are the viscous
damping coefficients associated with relative longitudinal displacement, transverse
displacement and rotation between node 3 and node 4.

After assembling the element equilibrium equations for the six internal ele-
ments (Egs. 6.33-6.41) and subsequently using Egs. 6.29-6.31 and 6.43, we get

K11 Ku 0 0 0 0 [15] fl
Ky Kz Kz 0 Ky 0 s 0
0 K3 K3z Kiyy 0 0 u3 0

N = 6.45
0 0 Kg Ky Kys 0 uy 0 (’ (6:43)
0 Ksp 0 Ksu Kss Kse i 0
0 0 0 0 K K] g 0 f,

where

Kn = Kill)7 Ky = K(12>7 Ky = K;?,
Kz = K} + STK\)s; + SIK{VS, + STK\Y's;,

Kz = SJK{), Kas = STK{)S; + SIK\JS;,  Ka = KJJSy,
Kz = K§) + SIK*, Ka = —SIK*, Kg = -SJK*,

Ky = Kﬁ) +SIK*, Kys = K(I?Sz,

Ks» = STKYS; + STKY)S;,  Ksy = SIKYY,

Kss = K7 + STKD)S, + STK(YS, + STK(YS;, K =K\2,
Kes =K, Kg =K.
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6.4.4 Modeling of Surface Breaking Cracks

The surface-breaking cracks can be considered in the same framework as
formulated above. Figures 6.9a and b show the internal elements for the top and
bottom surface-breaking cracks respectively. The only difference in these
cases compared to the embedded transverse crack is that here the number of
elements and nodes representing the top sub-laminates (element (6)) and bottom
sub-laminates (element 5), which are absent in Fig. 4.8b. Therefore, by removing
these element equilibrium equations while assembling, one can obtain the
modified form of Eq. 6.45 for the top and bottom surface-breaking cracks.

6.4.4.1 Super Element Level Condensation

We first condense out the degrees of freedom at the crack surfaces (i.e. node 3 and
node 4), which reduces Eq. 6.45 to

Ki K 0 0 1%} f
Ky Kpn Ky 0 s 0
K2 Kz us {_ , 6.46
0 Ki» Kiz Ky Ug 0 (6.46)
0 0 K43 I{44 (12x12) ﬁZ fz

where

Kiu =K, Ki=Kn, Kiu=Kiu, K»=Kzp+KuKj,
Kz = Kjs + Ki3K3, Ka = Ks; + KsyKjs,
K33 = Kss + KsuKjy, Kiy = Kss, Ky3 = Kgs,
Ku = Kes, Kis = (Kas — KisKi3 Kag) ' K3K3 Kaa,
In the second step, we condense out the degrees of freedom at node 5 and node 6,

which yields the final form of the equilibrium equation representing a two-node
element with embedded transverse crack, and can be expressed as

Ko ka] fu) i) 6
Kiy; Ky u; £, )
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Fig. 6.9 Representation of the base laminates, sub-laminates and hanging laminates by spectral
elements for a top surface-breaking crack and b bottom surface-breaking crack
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where

Ky =Ky + KK3,;, Kp = K2K3,, Ky = K4:KG,,

IQ(zz =Ku + KK, Kg = (K3 — K32K2_21K23)71K32K2_21K217
K;, = —(Ks3 — K32K2_21K23)_1K347

Ks; = —(Ky Ko + K KaKg),  Ks, = —K3 KoK,

As in the case of delamination modeling, one only needs to replace the spectral
element for the healthy beam with this spectral element wherever the presence of a
transverse crack is to be accounted for. To emphasize the novel use of this element
for applications in SHM, its numerical performance is compared with standard
plane-stress finite element simulations in Sect. 6.4.6. Before proceeding further
with the numerical studies, the constrained formulation to accommodate longer
hanging laminates and the enforcing of displacement continuities, which is an
alternative option to Eq. 6.22, is discussed below.

6.4.5 Distributed Constraints at the Interfaces Between
Sub-Laminates and Hanging Laminates

For longer lengths of sub-laminates (5) and (6) and intermediate hanging laminates
(3) and (4) shown in Fig. 4.8b, especially when AL > min(/,) as discussed in the
context of Eq. 6.22, interfacial slip and other discontinuities at the horizontal
interfaces between the hanging laminates and the top and bottom sub-laminates
may become significant for certain wave interactions and to be restricted. This
requires displacement continuity between the surface displacements of a hanging
laminate and the neighboring sub-laminate, which can be expressed as

a0 = (), (6.48)

where the superscripts (j) and (/) indicates the element numbers and the subscripts
t and b indicate the top or bottom surface respectively. While modeling delami-
nation along with fiber fracture, such constraints can be removed. It can be seen
from Fig. 4.8a that there are four such horizontal interfaces where constraints need
to be imposed otherwise. Considering element (5) and element (3), Eq. 6.48 can be
expanded using the generic field variables as

10 Zz(5> YRR 10 z;(f) ey ®
01 0 @y =101 0 ) (6.49)
00 1 ¢ 00 1 ¢

Further, using element shape functions in Eq. 6.49, we get
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HON(x, ,)Y0® = HPN(x, 0,)Pa® (6.50)

where N(x, wn)(j) is the shape function matrix of the jth element. Similarly for the
other three interfaces, the constraints are

HN(x, 0,)V8® = HYN(x, 0,)Ya® (6.51)
HYN(x, 0,)Ya? = HIN(x, 0,)%a® (6.52)
HYN(x, 0,)Pa® = HON(x, 0,)@a® (6.53)

The nodal displacement vectors @®) = {uf al} and @ = {a} al,} can now be
transformed using Eq. 6.45 in the above equations (6.50)—(6.53) and the internal
nodes can be condensed out systematically. To illustrate further, let us consider the
constraint for the first interface as given by Eq. 6.50, which can be rewritten after

transformation as
% . (8- {3
= ey " = 6.54
[C21 C22 ] (6x6) L U6 0 (6:34)

Since in Eq. 6.54, @5 and G¢ are the internal nodal vectors, they are mapped onto
node 1 and node 2. This second step with the help of Eq. 6.46, gives

Cu Cp 1%} 0 () ge
ur | _ = C(x, m,) Vi = 0 6.55
[CZI C22](6x6){“2} {0} ( on)0 (6.55)

Similar constraints for the other three horizontal interfaces can be obtained in the

same way, where C(x, wn)(j), Jj=1,...,4 are the matrices of coefficients associ-
ated with the multi-point constraints mapped on the degrees of freedom of the two-
node element with embedded transverse crack. Introducing a diagonal matrix of
penalty parameters « and minimizing the potential in the frequency domain [32],
the updated dynamic stiffness matrix for the element with embedded transverse
crack incorporating unbounded length of the internal hanging laminates can be
expressed as

Ky =K+ K¢ (6.56)
where
ALJ2
Kc = / (C<1>’ac<1) + C(3>TocC<3)) dx
0 (6.57)

AL
+ / (C<2)T<x(2) + C(4)Toz<4>) dx
/2
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6.4.6 Wave Scattering Due to Transverse Cracks

The spectral FEM for modeling transverse cracks requires only three additional
input parameters. These additional inputs are span-wise location of the crack
(L1 + AL/2), and depth-wise location of the top and bottom crack-tips (d;, d>).
Although, the effect of crack-tip singularity is not included in the local analysis, it
is essential to validate the performance of the proposed element for wave-based
diagnostics and SHM applications, where most damage models are approximated
by springs or equivalent change in the constitutive model for faster analysis. In the
following section, response of a unidirectional composite cantilever beam with
mid-span surface-breaking fiber fracture to a high frequency pulse loading is
simulated using the developed SFE and the response is compared with a detailed
2D FE model. The analysis is performed using FFT based spectral FEM

A uni-directional graphite-epoxy cantilever beam of length 800 mm and having
a cross-section 16 mm (thickness) x10 mm (width) is considered for this study.
An 8 mm deep top surface-breaking crack is introduced at mid-span of the beam.
The pulse loading shown in Fig. 3.7 is applied at the tip of the cantilever beam in
the transverse direction. SFE analysis is carried out using a single SFE with
embedded crack. The length of the hanging laminates AL/2 is chosen using
Eq. 6.22. 16,384 FFT sampling points (Aw = 12.2070 Hz) are used for the forward
and inverse transform of the loading and response, respectively. In the detailed FE
analysis, the fine mesh consists of 5,120 constant strain triangular elements under
plane-stress conditions in the X—Z plane. Newmark time integration with time step
At = 1 ps is used. Here the element size is comparable with the wavelength of the
applied excitation. The pulse load is applied consistently in the transverse direction
at the tip cross-section of the FE model.

Figure 6.10 shows the plots of w history at the mid-node of the tip cross-section
predicted by SFE and detail 2D FE analysis. After the incident pulse, the effect of
the crack due to wave scattering at around 0.55-0.6 ms can be seen. The peak
amplitude of the velocity history and its arrival time matches very well with the 2D
FE prediction. However, a small additional peak before the main peak amplitude
can be seen, which is due to several approximations made in the proposed mod-
eling compared to the actual local crack-tip behavior. Indeed, the overall trend of
the response predicted by the proposed spectral element can be seen as reliable, in
terms of the arrival time of the broadband wave scattered from the crack, as well as
the associated peak amplitude in the signal. Another important aspect we need to
mention in this context is that the inter-penetration of the crack surfaces of the
breathing crack in the detailed 2D FE analysis (in the absence of contact elements)
was found to occur much beyond the time window shown in Fig. 6.10 and had
negligible amplitude (relative displacement between the crack surfaces). Hence
this can be considered less significant for transient wave-based diagnostics.
However, long duration monitoring under sustained loading and associated
incremental crack-growth related study need further strategy for FE model-based
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identification of frequency dependent dynamic contact forces, which can be used
then in the present spectral element model for more accurate analysis.

6.4.7 Sensitivity of the Fiber Breakage Location
and Configuration

To identify the location of fiber break from the scattered wave information, the
same graphite-epoxy cantilever beam as considered in the previous example is
used. Figure 6.11 shows the w history at the cantilever tip of the beam with a mid-
span 8 mm deep embedded crack introduced symmetrically across the thickness.
From the group speed of the flexural wave, the time of arrival of the flexural wave
is estimated and is shown by * in Fig. 6.11. Although the time of arrival is the
same for both the surface-breaking crack and embedded crack, which is obvious, a
smaller wave packet visible at 0.58 ms is due to the presence of the embedded
crack.

A 20 kHz tone burst signal is used to perform numerical simulations for varying
crack depth and contact stiffnesses. Varying depth and contact stiffnesses of the
crack surfaces produce no visible fluctuation in the scattered waves from the
embedded crack under the present loading in the flexural shear mode. However,
the surface-breaking crack with variation in the crack depth and contact stiffnesses
of the crack surfaces shows significant changes in the scattered waves, which are
plotted in Figs. 6.12 and 6.13, respectively. As the crack depth becomes more than
half the beam thickness (16 mm), additional peaks after the first reflection can be
seen in Fig. 6.12. In Fig. 6.13, the contact stiffness between the crack surfaces is
varied using a stiffness factor 5, where only the surface-normal contact stiffness is
considered and is assumed to be K* = fQ1;, where Qy; is the composite material

Fig. 6.10 Comparison of the 20
transverse velocity W history
at the mid-plane of the tip of
the cantilever beam predicted
by the single spectral element
and detailed 2D FE models
under high frequency pulse
loading (Fig. 3.7)
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stiffness parameter. Apart from the main reflected wave from the crack at around
1 ms, which indicates the crack location, Fig. 6.13 shows small amplitude of
additional scattering for contact stiffness smaller than @, and significant
amplitude and additional scattering for contact stiffness more than Q1;, which can
be considered as a stiff inclusion. In the present one-dimensional model, the higher
order Lamb wave modes, especially the thickness stretching mode, are not
accounted for. From the simulations, it appears that for identification of the crack
configuration completely, especially the crack depth and thickness-wise location, a
higher-order Lamb wave model based on high frequency excitation in flexural
shear thickness stretching modes may be necessary.

6.5 Modeling of Structures with Multiple Horizontal Cracks
or Delaminations

Handling of delaminations in composite structures or horizontal cracks in metallic
structures can be challenging for standard FE due to the requirements of fine
spatial discretization. Generally available FE packages use plate-bending elements
or degenerated shell elements, which cannot be used in the interfacial regions
where more than one sub-laminate form the base laminate. Moreover, due to the
significant difference in the order of the thickness and planar dimensions, planar or
solid elements, when used at the interfaces, yield enormous system size. In
addition, a high computational cost is required to handle such a large system and to
capture highly transient pulse propagation. In the present study, a systematic
derivation is presented to model the interfaces between the base laminate and
multiple sub-laminates in a general form. When one of the intermediate sub-
laminates are of different material configuration, it can be treated as a strip
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Fig. 6.12 Transverse
velocity w at the cantilever
tip due to modulated sine
pulse transversely applied at
the tip of the cantilever with a
top surface-breaking crack of
varying depth. No contact
between the surfaces is
assumed

Fig. 6.13 Transverse
velocity w at the cantilever
tip due to modulated sine
pulse transversely applied at
the tip of the cantilever with a
top surface-breaking crack
with varying contact
stiffnesses (K* = fQ11).
Crack depth is § mm

i Contact Stiffness
Time (msec) 2 g Factor log | (b)

inclusion. The idea is to capture wave transmission and scattering at these
delamination tips or at the interfaces between the inclusions and the host materials
using a diagnostic signal. The SFEM (both WSFEM or FSFEM) discussed in
Chap. 5 can be used as the basic building block for the spectral interface model.

In this section, our main objective is to construct and solve a set of constrained
equations in either the Fourier or Wavelet domain (consistent with the framework
of SFEM) for multiple delaminations and inclusions by allowing discontinuity in
the rotation 0, of the cross-sectional plane between two sub-laminates above and
below delaminations. The delaminated configuration is shown in Fig. 6.14. This
also allows a particular sub-laminate made of different materials to be treated as a
strip inclusion debonded from the host material. For simplicity, we assume that the
dynamics of the delaminations or the slip between the inclusion and host materials
is governed by Mode-II fracture process, excluding any effect of Mode-I fracture
corresponding to the opening and closing of delaminations causing interpenetra-
tion and incompatibility in the thickness direction.

The formulation is generalized by considering the two cases shown in Fig. 6.15.
In case (a) (Fig. 6.15a), two consecutive nodes p and g are considered to connect
two elements on opposite sides of the interface. Since, there is no delamination
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Fig. 6.14 Schematic Z
diagram showing multiple
through-width delaminations
in a laminated composite
beam

Delaminations

Sub-laminate

Base laminate

between node p and node ¢, in-plane displacements and rotation of normal planes
at these nodes can be constrained as

u; + Z[%]Hyp = MZ, eyp = eyqa (6.58)
where z,,, is the distance along the z direction between the node p and node ¢. In
case (b) (Fig. 6.15b), a single delamination is considered between node p and node
g, which are on the same face on the interface. Each of these nodes belongs to the
element representing one of the sub-laminate above or below the delamination.
Node ¢’ on the other side of the interface belongs to the element representing the
base laminate. Since, under the assumption of sub-laminate-wise constant shear,
the normal plane passing through node ¢’ has to rotate in a rigid body mode, the
discontinuous plane passing through node p and node g must rotate in a con-
strained manner. Such constraint can be imposed as follows. The interface in the
region including node p and node ¢ is already defined in Eq. 6.58 representing
the case (a). Now, one needs to construct the constrained equations for interfacing
the node p and node g. This can be expressed as

Uy + 2,0y, = ug + 24,0y, (6.59)

where z,, is the depth of the top surface of the sub-laminate containing node p and
measured from the corresponding element local reference line. Similarly, z, is the

Sublaminate reference 1

—_—X

Fig. 6.15 Interfacial nodes (a)
taking part in constrained
kinematics of base laminate
and sub-laminates or
debonded strip inclusions
with b or without a a third
delaminated surface

(b)

(o]

Delaminated surface
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depth of the bottom surface of the sub-laminate containing node g and measured
from the corresponding element local reference line. For all other nodal dis-
placement components associated with the node p and node ¢, the equations for
constraints can be written as

0., =0.,. (6.60)

o __ .0 o __ .0 _ _
Vo= wl=w Oy, =0 p = Uz

P q’ P - q7 xXq»

Implementation of the above displacement constraints can be automated to model
multiple delaminations or inclusions across the thickness as well as for different
variations of such configuration at various locations along the length of a beam.
Equations 6.58-6.60 can be assembled at the global level with appropriate
transformation to form the multi point constraints (MPC) equation in the nodal
displacement vector. Let us consider Eq. 6.58 obtained in case (a) along with
Eq. 6.60. We can write these six equations in matrix form as

1 000wgz 0 -1 0 0 0 0 O ’
01000 0 0 -1 0 0 0 0/[]:
0010000 0 -1 0 0 0])6,|_
0001 00 0 0 0 —1 0 0/ = 0. (661)
0000 1 0 0 0O 0 0 -1 0 :
000001 0 0 0 0 0 —1]].

0

Now, for example, if the node numbering is p,p + 1 and ¢,q + 1 for the two
elements connected to the interface, then Eq. 6.61 can be rewritten as

T4
. 6

where Cy; and C,, are the two 6 x 6 sub-matrices in Eq. 6.61. A similar form is
also obtained for interface in case (b). Finally, all these equations of displacement
constraints can be assembled to form a single matrix equation at the global level,
which is given by

Cua 0 ‘ C2 0

Cuif = 0. (6.63)

Next, the equilibrium of the nodal forces at each interface is to be established. This
is obtained as

Tge o
> s, =1, (6.64)
P

where the summation sign stands for all the nodes in a particular cross-section.

Here, f is the applied load vector at the interface under consideration. For an
element with nodes numbered p, p + 1 and the node p on the interface, we have,
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S, = 0 (6.65)

cCooc oo~
cooco~—o
cocoor~oO
co~ oo
oo oo
e =E=E=R=N=

where, h, is the distance of the node p in the z direction measured from the bottom
surface of the beam. Equation 6.65 can be rewritten in terms of the element nodal
displacement vector at the global level as

DS TIKE TR = T (6.66)
p

Equation 6.66 can be assembled to form a single matrix equation involving force
constraints at the global level, which is given by

Crut =1 (6.67)
Now, we use two diagonal matrices of penalty parameters a, and o to impose
displacement constraints in Eq. 6.63 and force constraints in Eq. 6.67 to minimize
the stationary potential

A~ 1 . .
[1 =50 Keae — a2 + - (Cuit) oy (Cui®)

2
1 ~ NT ~ /
+§(Cfug — ) oy (Cpi® — ')

N —

(6.68)

in the frequency domain for each w,. Minimizing the above potential with respect
to the global displacement vector G®, we get the spectral finite element equilibrium
equation

(f(g + Ty Cy + CT afcf)ﬁg = 1 CToyf’. (6.69)

Note that the constraint equations (Egs. 6.63 and 6.67) involve dissimilar degrees
of freedom, whose motion is governed by the dynamic stiffness coefficients KijAjl.
Therefore, use of penalty parameters o, and oy consistent with the associated
degrees of freedom to achieve sufficient numerical accuracy [3] is important. Note
the order of the values in the additional entries in the updated dynamic stiffness
matrix in Eq. 6.69, that is

. ~a2 ~a2
0(ClCy) ~ (—6,0), O(C{Cy) ~ 0(m1n (kfj),max (k; )), (6.70)
These values are arrived based on the fact that in the matrix Cy, the entries are

either 1 or z,, (depth of composite beam sub-laminates are typically in the order of
millimeters). These lead to
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7e
kjj

g = [k | % 10°, o = [fs | x 10° (6.71)
as a convenient choice of the penalty parameters while solving the constrained

system in Eq. 6.69.

6.5.1 Wave Scattering from Delamination: Comparison with 2D
FEM

In this section, we consider single and two delaminations using the multiple
delamination spectral element model explained in the last section. The main
objective here is to validate the FSFEM multiple delamination model through
comparisons with conventional FE solutions.

A unidirectional graphite-epoxy [0°]y, composite cantilever beam of length
0.8 m, thickness 16 mm, width 10 mm with a 50 mm mid-plane delamination is
considered. The center of the delamination is 0.4 m away from the fixed end of the
beam. A single frequency sinusoidal pulse modulated at 20 kHz (Fig. 4.1 is
applied transversely at the tip). Issues related to instrumentation and signal gen-
eration of such diagnostic wave for integrated SHM systems are discussed in
[40, 20, 16]. In the FSFEM model, four elements (two for base-laminates and two
for sub-laminates above and below the delamination) with 4,096 FFT sampling
points (Aw = 48 : 828 Hz) are used. The 2D plane stress FEM in the xz plane
consists of a fine mesh of 2,560 constant strain triangular elements which gives an
element size compatible with the wavelength for the applied excitation.

Figure 6.16 shows the comparison of transverse velocity history w at the free
end mid-plane. The first pulse starting at 0.5 ms is due to the incident load at the
tip. After this, the first reflection from the delamination tip arrives at r = 0.9088 ms
(marked as *). The results from FSFEM and FEM match well within the zoomed
window. In the FSFEM model, numerical errors due to window distortion during
IFFT are avoided by adding a small amount of damping # in the wavenumbers as
ki — k;i(1 —jn), with n =1 x 1073, This is done to alleviate the wraparound
problems associated with FSFEM model.

A snapshot of the deformed triangular FE mesh at t = 0.84 ms is shown in
Fig. 6.17, where the relative slip between the delaminated faces can be observed.
However, the assumption that this slip is frictionless may lead to erroneous pre-
diction when the delamination length is large.

Next we study the wave scattering due to a broadband load (Fig. 3.7). We
consider the same cantilever beam as in the previous example, however two mid-
span delaminations, each of length 50 mm, are introduced at z = 4 mm. The
response of the delaminated beam in Fig. 6.18 shows the first arrival of the wave
scattered by the delamination, which along with its resonance behavior, matches
well with the FEM. Again here, 7 = 1 x 1072 is used for damping out the waves.
Due to this damping, little amount of decay in the velocity response at time can be
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observed. However, the nature of the peaks are accurately captured in FSFEM
model. The overall performance shows the acceptable accuracy of the multiple
delamination FSFEM model.

6.5.2 Computational Efficiency of FSFEM Compared to FEM

It was mentioned earlier that both FSFEM or WSFEM are computationally
superior to conventional FEM for multi-modal wave propagation problems due to
the ability of the former to accurately capture the inertial properties. In this section,
we quantify the efficiency of FSFEM model as apposed to FEM by computing the
CPU time taken and the memory required by these respective methods to solve the
same problem of a waveguide with a delamination.

In FSFEM model, the matrix equation Ki = f is solved directly at each fre-
quency sampling point w,,n = 1,2,...N, where N defines the Nyquist frequency.
The system size of the present FSFEM depends only on the number of sub-
laminates and base-laminates and not on the actual length or thickness of the
delaminated beam and therefore it is very small. For example, for a beam with a
single delamination, a maximum of four waveguide elements are needed. So, the
system size can increase up to (48 x 48) with 6 degrees of freedom per node. This
internally constrained system is formed at each sampling frequency w, from the
wavenumbers k; in the shape function and is solved directly. Hence, the main
computational cost is in the element formulation only (as seen in the matrix
manipulations). Whereas, for conventional FEM, the element size is limited by the
smallest wavelength of propagation and the system size increases for increasing
span and depth of the beam. For example, if the span of the beam whose existing
FEM system size is (n x m), where m is the bandwidth and n is the number of
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Fig. 6.17 Snap of the deformed FE mesh taken at the region of the delamination at 7 = 0.84 ms.
The nodal displacements are magnified by 10° times
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Fig. 6.18 Comparison of a transverse velocity history and b transverse displacement spectrum
obtained from the present SFEM and the 2D plane stress FEM at the free end of a graphite-epoxy
unidirectional composite cantilever beam with two symmetric delaminations at the mid-span

degrees of freedom, and the span is increased by length [}, then the system size will
increase to (7 x m), where 1 =~ n + [ (n,, + 1)n,s/Al. Here Al =~ 1/10, where 1 is
the smallest wavelength of the propagating waves, n; is the number of elements
across the beam depth and n, is the number of degrees of freedom per node. Now,
such large FE system is to be solved at each time step over the time window of
observation while adopting a particular time integration scheme. The time step
again has to comply with the high frequency nature of the excitation and is
generally of the order of ps. Obviously, the conventional FEM will be always
slower and will need more memory compared to FSFEM. The computational costs
are given in Table 6.2 for the first comparative study reported in Sect. 6.5.1, which
shows nearly three times higher memory requirements and two orders of magni-
tude higher computation time for FEM. The above numbers are based on com-
putations performed using IBM/RS6000 high performance computer.

6.6 Modeling of Corrosion Pits

In this section, we present techniques for modeling pitting corrosion, which is one of
the leading failure types in a metallic structure. It is quite well known that metals
corrode in a humid atmosphere. Corrosion is a complex process associated with the
release of chemical energy. Although there are many different types of corrosion, we
will address only the modeling of pitting corrosion. There are two reasons for this:
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Table 6.2 Computational efficiency of FSFEM compared to FEM

Type of model Total CPU time (s) Memory (MB) System size
FEM 365.6 3.364 2,898 x 28
FSFEM 9.2 1.342 42 x 42

(1) the simplified damage models can be most easily generated compared to other
types of corrosion and (2) it is the most common type of corrosion occurring in
metallic structures.

Pitting is defined as the localized corrosion of a metal surface, confined to a
point or a small area, that takes the form of cavities [7]. The combined action of
mechanical stresses and corrosion pit severely affect structural integrity. Pitting is
one of the most destructive forms of corrosion. Pits can act as a local stress raiser
and the sites for crack initiation. It is very difficult to detect the pits owing to its
very small size (of the order of microns) and its being covered by corrosion
products. Therefore precise structural health monitoring of pre-crack surface
corrosion is very important to understand and predict the effect of corrosion on
structural integrity and fatigue life.

Several nondestructive techniques are available to detect corrosion [25]. These
methods have limited capability and reliability, especially in revealing the con-
ditions beneath paint. The notable nondestructive evaluation (NDE) techniques for
corrosion detection include advanced ultrasonic [14], eddy current [37], and
thermo-graphic techniques [13]. Both ultrasonic and eddy current techniques are
limited in lateral spatial resolution to approximately 1 cm. Thermography systems
provide increased spatial resolutions of 10-100 pm, but the environmental noise
and difficulties in interpreting results currently restrict widespread use of this
technique [13]. Recently structural health monitoring using diagnostic waves is
being studied widely for corrosion detection. The high frequency content of the
waves helps with the detection of the presence of minute defects, which is
otherwise not possible using conventional techniques like modal analysis. Thus
damages can be detected at their onset and further propagation can be prevented.

In this section, a spectral finite element beam model based on First order shear
deformation theory (FSDT) is developed to model the corrosion pits. The model
will depend on the shape of the corrosion pits. Such shape is dependent on the
material of the structure and also on the environment to which it is exposed. In
aluminum, the pit is generally hemispherical in shape [10, 28] and the rate of
corrosion decreases with time when exposed to air. Corrosion pits are normally of
arbitrary shape which may require a higher number of elements for their model.

As said earlier, the shape of corrosion pit depends upon the material. For
example, in steel its shape is conical with circular at opening, with a ratio of the
diameter to the depth in the range between 8 : 1 to 10 : 1 for coal and iron ore
carrying cargo, whereas for oil tankers, this ratio is in the range between 4 : 1 to
6 : 1 [27]. In aluminum, the pit tends to be roughly circular at the opening and
roughly hemispherical in cross section [10, 28]. For modeling of pits resulting
from corrosion in an aluminum beam, we need to know the shape and size of the
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Fig. 6.19 Plot of pit depth as
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pit, which are function of time of exposure in years. Aluminum has a very high
affinity for oxygen resulting in a thin protective layer of aluminum oxide, which is
the reason of aluminum being usually very resistant to most atmospheric condition
and to a great varieties of chemical agents. In general, the rate of corrosion of
aluminum decreases with time baring few cases like in caustic soda, where the rate
is nearly linear. In aqueous solutions, at elevated temperature and pressure, cor-
rosion rate increases with time [10]. The growth rate of pit depth is high during
early years of exposure and gradually decreases to approach an asymptotical value.
The maximum pit depth for 10 years of exposure is about 100 pm after that it is
nearly constant as evident from Fig. 6.19. The pit depth rarely exceeds 200 pm
after exposure to 20 years [10].

Figure 6.19 shows the variation of pit depth with the number of years of
exposure [24]. From this plot, the relationship between the pit depth and time of
exposure is established by fitting the curve, which is found to be exponential for
aluminum, and can be written as

dyic = 0.1177T° — 3.20237% + 30.491T  (um); (6.72)

where, dp is the pit depth (um), and T is the exposure time (years). In [9], the
maximum pit depth of aluminum exposed to various waters is found as the
function of the cube root of exposure time, and is of the form:

dyiy = kT (6.73)

where k is a constant which depends on the composition of water and of the alloy.
Here, the corrosion pit is assumed as roughly hemispherical [10, 28] in shape and
is modeled as a series of FSDT stepped beams as shown in Fig. 6.20.

6.6.1 Wave Propagation Response Due to Corrosion Pits

It was mentioned earlier that corrosion pits are very small (of the order of few
microns). If a wave hits such region, it will encounter a very small impedance
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Fig. 6.20 Modeling of
hemispherical corrosion pit

mismatch, which will introduce a reflection of magnitude which is many orders
smaller than that of the incident wave. The detection of small pit size requires a
very high frequency content signal. If this problem is modeled using conventional
FEM, it would lead to enormous system size. In this section, the problem is solved
using WSFEM, where the beam sections are modeled using FSDT beam element.

The beam used for numerical experiments has a length L = 0.9 m, width b =
0.02m, and depth & = 0.002m. The material properties are as follows, Young’s
modulus E = 70 GPa; density p = 2,700kg/m3. For WSFEM formulation, the
Daubechies scaling function used has an order of N = 22 and the sampling rate is
At = 1 ps. The number of sampling point used is 1,024 which gives a time window
of Ty, = 1,024 ps.

First, a convergence study is performed to select the number of elements
required to model the corrosion pit for accurate simulation of response. The
hemispherical pit is modeled using 1, 3, 7 and 9 elements, respectively and the
discretization of the pit is shown in Fig. 6.21a—d respectively. In the simulation
studies, a tone burst signal modulated at a frequency 28.32 kHz is used. From
Fig. 6.22 it is evident that there is no significant differences between response
obtained from pit modeled using 7 and 9 elements. Hence to save on computa-
tional cost, the analysis is performed using 7 elements. In Fig. 6.22, only the
portion of the reflected wave is presented, as the changes occur only in the
reflected wave responses.

Figure 6.23 shows the tip transverse velocity in the beam due to modulated load
applied at the tip. The corrosion is at the middle of the beam and is modeled with
seven WSFEM. The responses are plotted for different sizes of the pit at different

Fig. 6.21 Corrosion pit (a) (b)
|

modeled witha 1, b 3, ¢ 7
and d 9 elements i§~.,_ _//1
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Fig. 6.22 Comparison of %107
reflected responses for
various element size
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times. These sizes at different times are obtained from Eq. 6.72. It can be seen
from the figures that the reflected waves are visible only when magnified. This is
due to the very small dimensions of the corrosion pit as compared to the beam
dimensions.

Next we will investigate the effect of beam theories on the group speeds. All the
examples in this section uses WSFEM formulated using FSDT. It is well known
that the beam theory based on Euler—Bernoulli theory predicts higher group speeds
compared to FSDT [11]. Note that we can derive the Euler Bernoulli beam element
from the FSDT element by setting the shear rigidity to infinity and the rotational
inertia to zero. This aspect can be seen from Fig. 6.24 with the early arrival of
reflected waves predicted by the Euler—Bernoulli beam case.

Next, we evaluate how the location of the corrosion pits scatter the waves in a
beam. The corrosion pits are assumed at three different locations from the fixed
end of the beam, namely 0.35, 0.5 and 0.65 m, respectively. The beam length is

Fig. 6.23 Transverse tip o2
velocity in beam due to tip
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assumed to be 0.9 m and has a fixed right end. The time of exposure is assumed
equal to 10 years. It is expected that as the corrosion pits moves away from the
free end, the reflected waves from the corrosion pits will also shift accordingly,
which is clearly seen in Fig. 6.25. Knowing the speed of the medium (from the
dispersion curves) and the time of arrival of waves from the time history plots, one
can find the flaw location.

This section has shown how a simplified corrosion model can be developed
using simplified assumptions. In the next section, we will address the simplified
model for degraded zones, which is normally prevalent in composites due to
excessive moisture absorption.

6.7 Modeling of Material Degradation

Material degradation occurs commonly in composite structures, especially when
exposed to humid environment. Due to the inherent property of the composites and
sometimes aided by the manufacturing defects, composite structures are suscep-
tible to being porous. Moisture sits in the pores and reduces the stiffness, and hence
the load carrying capacity of these structures. That is, moisture absorption can
cause an irreversible hygrothermal deterioration of the material. The change in
temperature and moisture absorption changes the mechanical properties. This
affects the structure in dimensional stability as well as material degradation due to
reduction in mechanical properties. Hence, it becomes necessary to continuously
monitor the structure for material degradation and wave based diagnostics can be
used for this purpose.

In this section, we develop simplified damage models for composites with
degraded zones. The material property reduction due to moisture absorption and
temperature can be directly obtained through experimentation and an empirical
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Fig. 6.25 Response of oo x10?
corroded beam for corrosion
pit at various location
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relation of material properties as a function of moisture and temperature can be
obtained. This function can be used in theoretical or spectral FEM model to
determine the effects of wave response on the material degradation or determine
the degraded zone location from the measured wave response. Alternatively, one
can average the material characteristics in the degraded region by determining the
ratio of material property of healthy structure to the experimentally obtained
property of the degraded region and this ratio, say o will say by how much the
moisture has reduced the stiffness of the structure. Such an approach will enable to
develop a kinematics based damaged model explained for single delamination in
Sect. 6.3. Here we will develop both these damage models for material degrada-
tion. The first method based on direct experimentally obtained curves is called the
Experimental Degraded (ED) Model while the second method is called the
Average Degraded (AD) Model.

6.7.1 Experimental Degraded Model (EDM)

Degradation in composite material causes differential swelling of fiber and the
matrix due to moisture absorption and as a result, it causes matrix cracks or/and
fiber/matrix debonding. The weakening of bonding between fiber and matrix and
softening of matrix material are also the reasons behind decrease in composite
strength. In order to utilize the full potential of composite materials for structural
applications, the moisture content of composite materials has to be defined well in
advance and probably in the design stage. Few researchers have done experiments
in standard laboratory conditions to establish the effect of moisture concentration
on the elastic modulus of composite materials [39]. The hygrothermal deformation
of a unidirectional composite is much higher in the transverse direction than in the
longitudinal direction. Such difference in deformation in two directions induces
residual stresses in composite laminates, because the multi-directionality of fiber
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orientation resists free deformations. Also the change in temperature and moisture
absorption changes the mechanical properties. Thus this affects the structure in
dimensional stability as well as material degradation due to reduction in
mechanical properties. The physical effect of moisture absorption is the reduction
in glass transition temperature 7, of the resin. At room temperature, the perfor-
mance of resin may not change with the reduction in 7, but at elevated temper-
ature, the properties are severely affected. The general observation is that as the
composite material degrades after moisture absorption, its tension modulus first
slightly increases with relative humidity (RH) up to 50% of RH and then decreases
with further increases in RH. Thus the stiffness of the structure varies with the
relative humidity.

The moisture concentration increases with time and reaches the saturation level
after some prescribed time. The maximum moisture content depends on the
environment. In humid air it is a function of relative humidity. It has been found
that maximum moisture content, C,, can be related to the relative humidity ¢ by
the expression [33]

Cn = ag’ (6.74)

where, a and b are constants which depend on material. The value of these con-
stants can be obtained by fitting the line through the data points obtained exper-
imentally. Table 6.3 gives the values of a and b obtained by various researchers. It
has been found that maximum moisture content is insensitive to the ambient
temperature but depends on the moisture content of the environment [33]. This is
evident from Eq. 6.74. This is a useful approximation and it has been stated also
that the maximum moisture concentration C,, varies also with temperature [36].

Figure 6.26 shows the variation of composite modulus E,,E, and E; as a
function of moisture content for two different temperatures. These plots are
obtained from [33]. From the figure, the expression for modulus as function of
moisture concentration can be obtained through curve fitting and can be written in
the following forms, which are given in Eqgs. 6.75-6.80, where modulus is in GPa
and moisture concentration C is in percent.

For temperature, 7' = 366 K;

E, = 16.344C° — 66.161C° + 92.479C* — 57.29C* + 13.769C* — 81.049C
+134.39 (6.75)

Table 6.3 Values of a and b obtained by various researchers for composite material AS/3501

Investigator a b
Springer [21] 0.019 1
Delasi and Whiteside [4] 0.0186 1.6, ¢ <60% RH

- - 1.9, ¢ > 60% RH
Whitney and Browning [41] 0.016 1.1
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Fig. 6.26 Variation of modulus as a function of moisture content a E, variation b E, variation
¢ E, variation

E, = 4.5804C° — 20.11C° + 32.943C* — 24.297C° + 7.7994C* — 1.8376C
+9.6732 (6.76)

E. = 1.2694C°® — 6.2108C° + 11.629C* — 10.281C> + 4.129C* — 0.4398C
+ 6.0866 (6.77)
For temperature, T = 394 K, we can write the three modulus as
E, = 16.344C% — 66.161C° + 92.479C* — 57.29C° + 13.769C* — 81.049C
+ 134.39 (6.78)
E, = —5.8703C* + 11.744C° — 5.3871C* — 2.3500C + 7.7277 (6.79)

E, = —0.7275C* + 1.8871C% — 1.6856C? — 0.3426C + 5.5415 (6.80)

The time required to attain at least 99.9% of its maximum possible moisture
content is given by the expression [33].

_ 0.67s?

m 6.81
= (681)
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where, t,, is maximum time, s is thickness and D is diffusivity. The time required
to reach the maximum moisture content is insensitive to the environment, how-
ever, it depends on thickness s of the composite material and the temperature 7, as
diffusivity D, depends on temperature [33]. The diffusivity, D can be related to the
temperature 7 by the expression [21].

D = D,el7] (6.82)
where, D, and C are constants and T is the absolute temperature. Using Eq. 6.82,
Eq. 6.81 can be rewritten as follows:

_ 0.67s%
Doe[;TC]

(6.83)

Im

Figure 6.27 shows the graphical representation of Eq. 6.83.
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Fig. 6.27 Time required to reach saturation level at various temperature and thickness in mm,
a at Temp = 250-300 K, b at Temp = 300-350 K, ¢ at Temp = 350400 K, d at Temp =
400-450 K
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6.7.1.1 Wave Propagation in Degraded Composites Using ED Model

A moisture absorbed AS/3501 composite cantilever beam is considered in this
numerical experiment solved using the WSFEM formulation. The beam dimen-
sions are as follows: length, L = 0.75m, width, b = 0.05m, and ply thickness,
t = 0.0013 m. The material properties assumed are as follows, the Young modulus
(E) is variable due to moisture absorption and is given in Egs. 6.75-6.80. In
absence of data available for the variation of G with moisture absorption, it is
assumed to be constant and its value is taken as, Gi; = G13 = 6.13GPa; Gy3 =
4.80 GPa; vi, = 0.42; and mass density = 1,449kg/m>. The Daubechies scaling
function used in these examples has an order of N = 22 and the sampling rate is
At = 1 ps. The number of sampling points used is equal to 1,024, which gives a
time window is Ty, = 1,024 ps. To calculate the moisture concentration Eq. 6.74
is used, where a = 0.0018 and b = 1 [24].

A sinusoidal pulse modulated at 37.6 kHz is used as input signal. Figure 6.28
shows the tip transverse velocity in the beam due to a modulated load applied at
the tip in the transverse direction.

The degraded region is at 0.25 m from the fixed end and is modeled with single
WSFEM. The responses are plotted for different values of RH from 0 to 80% in the
step of 20%. Figure 6.29 is the magnified view of Fig. 6.28.

On careful observation from Fig. 6.29, it is found that the magnitude of
response is increasing from 0% RH to 40% RH after which it is decreasing and at
80% RH, it is found that the phase of the response gets changed. To investigate
this further, the response is plotted as shown in Fig. 6.30 at smaller steps of
increment.

Again careful observation Fig. 6.30, it is found that the magnitude of response
is increasing from 0% RH to 50% RH after which it decreases and the magnitude
corresponding to 30% RH and 60% RH are nearly same, which means that

Fig. 6.28 Transverse tip <10°> Part of a beam is exposed to humid atmosphere; Temp = 394K
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Fig. 6.29 Magnified view of « 1oPart of a beam is exposed to humid phere; Temp = 394K
transverse tip velocity shown T
in Fig. 6.28

Transverse velocity (m/s)

Fig. 6.30 Magnified view of x 10~ Part of a beam is exposad to humid atmosphere; Temp = 394K
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stiffnesses at these two values of RH are nearly same. When RH is increased
beyond 70%, the phase get changed, which is in accordance with the variation in
tension modulus Ey, which first increases up to 50% RH and then decreases. After
70% RH, it decreases rapidly.

We will next treat the same problem slightly differently by using a kinematics
based average model, which is explained in the next section.

6.7.2 Average Degraded Model

In the average degraded model (ADM), the characteristic of a degraded region is
that the material properties (Young’s modulus, density, etc.) gets reduced due to
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moisture absorption say by a. Hence, we represent the degraded laminate con-
stitutive property under plane stress or plane strain condition by

Oxx w1011 213013 0 Exx
0z ¢ = | 13013 233033 0 &z ¢, (6.84)
Tos 0 0 assQss | | Vxz

where zis the laminate thickness direction and x is the longitudinal direction (0° fiber
direction). o;; are degradation factors, which are unity for healthy laminates.

We apply the same approach we adopted to model the delamination or vertical
cracks (see Sects. 6.3 and 6.4). The element nodal degrees of freedom are con-
densed after the assembly of two undamaged elements on both sides of the
damaged zone. It will then be possible to describe the damage configuration just by
prescribing three sets of parameters: (1) the degradation factors (o;;) describing the
damaged laminate (Eq. 6.84); (2) the approximate span-wise location of one of
the interface between the undamaged and damaged zone; and (3) the length of the
damaged zone.

The location of the two nodes of spectral elements with an embedded degraded
zone in a beam is shown in Fig. 6.31a. In the absence of degradation, one spectral
element between node 1 and node 2 is sufficient for analysis. The presence of
degradation, when treated as a structural discontinuity increases the number of
elements from one to three as shown in Fig. 6.31b. Four more nodes are introduced
to model the degraded zone (element (3)) and the surrounding undamaged zones
(elements (1) and (2)). In a practical situation, it may so happen that the matrix
crack density in laminates may decrease with some gradation from the damaged
zone. In such a case, the elements (1) and (3) can be used with such graded
laminate properties, based on the same constitutive model as discussed in Eq. 6.84.

As elsewhere, all variables with “hats” denote that the variables are defined in
the frequency domain. The kinematic assumption of continuity of displacements
and rotations at the internal element nodes 3, 5 and 4, 6 leads to

its = {ag s &S}T: iy, g = {ag o &6}T: iy (6.85)

Fig. 6.31 a Composite beam
segment with degraded zone
of size L,. The whole
segment is represented by the
end nodes 1 and 2 of the
spectral element. b Element
local configuration showing
the internal element numbers
(1), (2) and (3) by circles and
the associated nodes 1-3,
2-4, and 5-6 () L 3 o 6ot 2
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From equilibrium of the nodal forces and moments at the left interface (between
nodes 3 and 5) and at the right interfaces (between nodes 4 and 6), we get
respectively

f:, + fs =0, f4 + fﬁ =0. (6.86)

The element equilibrium equation for the jth internal element (j = 1,2, 3) with

nodes p and ¢ can be written as
{‘fl’} _ {f!’}. (6.87)
i fq

Assembling Eq. 6.87 for the three internal elements (1), (2) and (3), we get

Wil
I(21 K22

(6x6)

: EI:I; " n @ @l ’ o b
a Ky +Kyp o Ky 0 ul_)JoL (6.88)
0 Ky Ky +Kj K U 0
0 0 K 231) Kg (12x12) - =

Upon condensation of the degrees of freedom at the internal nodes 3 and 4 and
assuming no load is applied to the damaged zone, Eq. 6.88 becomes

e lAll fl
Kigued MLl 6.8
w{uz} {f} (6.89)

where the sub-matrices of the new dynamic stiffness matrix K are defined as

K = K} - K (K + K)) X (6.90)
Ki =Ky (K +K{) KX 'K, (691)
Ko = KX, K (K +KE) Y (6.92)

K = Ky - KX, 'K(), (6.93)
Xi = (RE +KY) - K (K + k) K, (6.94)
X, = Ky + K3X; 'K (K(z‘z) + Kﬁ)) TR, (6.95)

Equation 6.89 is the equilibrium equation for the spectral element with embedded
degraded zone, where only the degrees of freedom at the end nodes 1, 2 need to be
used while forming the global system of a damaged structure.
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6.7.3 Wave Scattering in a Degraded Composite Beam
Using ADM

To simulate the effect of stiffness degradation on the diagnostic signal, a graphite-
epoxy cantilever beam of length 0.8 m, thickness 16 mm and width 10 mm is
considered. All the plies are assumed to be of equal thickness with stacking
sequence (040/9050/040). A 20 mm long degraded zone is introduced at 0.3 mm
from the fixed end of the beam. The finite element model of the beam consists of a
single damaged spectral element under plane stress conditions in the X—Z plane
(Fig. 6.31). It is assumed that all the 90° plies are degraded with the same factor,
o171 (Eq. 6.84) in the longitudinal mode.

In the transverse and shear modes, the plies are assumed to be undamaged. In a
practical situation, however, the transverse and shear moduli will also have deg-
radation but their effect on the damaged structural response under flexural wave
excitation (as in the present case) will be negligible compared to that due to
degradation in the longitudinal elastic modulus. A sinusoidal pulse modulated at
20 kHz (shown in Fig. 4.1) is applied in the transverse direction (parallel to the
z-axis) at the tip. 2,048 FFT sampling points are used in the analysis. Transverse
velocity histories at the tip of the beam due to the variation in degradation of cross-
ply are shown in Fig. 6.32. As seen in this figure, the first pulse appearing at
0.5-0.75 ms is the incident wave. The next smaller pulses seen at higher degra-
dation (smaller values of o) are reflections from the two ends of the degraded
zone. Here we assume that the plies were degraded uniformly within the degraded
zone.

To study the effect of the length of the degraded zone, we consider the same
cantilever beam with one of the interfaces fixed at 0.4 m from the tip. However,
instead of narrow band load, we will use the broadband signal shown in Fig. 3.7.
The length of the degraded zone is varied by moving the other interface towards
the fixed end from 0.1 to 0.4 m. The last case represents one-half of the beam on
the fixed end side of the beam as degraded. The variation of the transverse velocity
histories at the tip of the beam with the variation of the size of the degraded zone is

Fig. 6.32 Transverse \ \\
velocity history due to i
variation in the degradation
factor o) using a narrow-
band diagnostic signal
(Fig. 4.1). Length of the
degraded zone is 20 mm

Transverse velocity (mm/sec)
|

Time {msec)
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Fig. 6.33 Transverse |
velocity histories due to
variation in the length of the
degraded zone with
broadband diagnostic signal
(Fig. 3.7). Degradation factor
o1 = 0.2

Transverse velocity (mm/sec)

15 o1

shown in Fig. 6.33 for a;; = 0.2. From the figure it can be seen that for a smaller
size degraded zone with higher degradation (smaller values of ), both reflections
from the two interfaces are easily detectable.

6.8 Modeling of Vertical Cracks in 2D Waveguides

Simplified modeling of flaws in 1D waveguides can achieved by imposing
kinematics among the nodes that make up the flaw. In 2D waveguides, impo-
sition of kinematics is not straightforward. Alternate ways be adopted for
modeling damages in 2D waveguides. One such approach is the use of flexibility
functions across the crack front for certain degrees of freedom of the nodes that
make up the flaw. Although such approach is limited for very few crack ori-
entation, they are found to be very useful in SHM studies due to their
simplicity.

In this section, we will formulate a spectral element based on Fourier transform
for a 2D waveguide with through width vertical crack for which flexibility func-
tions are available. This element is an extension of spectral plate element for-
mulated in Sect. 5.4.

A model of the spectral plate element with a transverse open and non-propagating
crack is shown in Fig. 6.34. The length of the element in the X direction is L and the
plate is infinite in the Y direction (although having a Y window length Ly). The crack
is located at a distance of L, from the left edge of the plate and has a length 2c¢ in the
Y direction.

Following the classical plate theory for symmetric ply-stacking, the displace-
ment field at frequency w, is given by


http://dx.doi.org/10.1007/978-0-85729-284-1_5
http://dx.doi.org/10.1007/978-0-85729-284-1_3#Fig7
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Fig. 6.34 The plate element v
with transverse and non-
propagating crack L

M
W(x,y) =Y ib(x)e o
n—
M
= Z(Amne*jklx + aneﬁikzx + Cmne*jkl(Llfx) +Dmnefjkz(LI,x))e,jfmy,

where k| and k, are the wavenumbers, which are the roots of the following dis-
persion relation:

Dy ik* + (2D1y 4 4Dgs) E2 K2 + (D &h — Lw?) = 0,

with &,, = 2mmn/Ly. Further, expressions of the moment (M,,) and shear force (Vy)
according to this theory are

M, = D13%(x,y) /x® + D1pd*(x, y) /0y (6.96)

Ve = —(D110W(x,y) /2’ + (D12 + 4Dgs) W (x,y) /Oxy?). (6.97)

We assume two different displacement fields vy (x,y) and W, (x,y) on the left
and right side of the crack, respectively, whose wavenumber domain representa-
tions are Wi (x) and wy(x). These expressions involve a total of eight constants,
which will be denoted in subsequent formulation by vector ¢. This vector can be
represented as a function of nodal displacements and rotations {gi, §2,33,qs} =
{uy,u,}, using the boundary conditions at the left and right edge and a hypo-
thetical boundary along the crack line as:

1. At the left edge of the element (x = 0)

171/1()6) = ql, 6wl(x)/6x = éQ
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2. At the crack location (x = L; for w; and x = O for w,)

wi(x) = Wwa(x) (continuity of displacement across the crack)
0wy (x)/0x — OWa(x)/ox = f>  (discontinuity of slope across the crack)
M, = M,» (continuity of bending moment)
Vi1 = Vo (continuity of shear force)

3. At the right edge of the element (x = L — L;):

wa(x) =gz 0w (x)/0x = ga
where M,,; and V,; are the moment and shear force obtained from w;(x,y) and
similarly for M., and V,,. The fz is the wavenumber transform of the slop dis-

continuity function f5(y) along the crack edge. The way of obtaining f>(y) is given
in the next section. These boundary conditions can be written as

M, 0 T i
M2 M3 {C} = 0 5 f= {07f2}
0 My s

where ¢ = {Ayu, Bun, Con, Do} and M, My € C¥* and M,,M; € C¥4,
Inverting the matrix M (and calling it N), the constants ¢ can be expressed as

c=N :N@nzzw{$}+N@@qﬁ (6.98)

up

Using Eqgs. 6.96 and 6.97, the shear forces and bending moments at the left and
right edge of the plate can be written as

Va1 (0) Vi
Lt g e
Mo(L) M,
Combining Egs. 6.98 and 6.99,
7
AR A
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where K is the frequency-wavenumber domain element stiffness matrix for the

cracked plate and b is the body force vector due to the presence of the crack. They
are given by

f(zﬁl I?Z]N(:,[I,ZJ,S]), 13:[};1 I?JN(:,BA])

6.8.1 Flexibility Along the Crack

If O(y) denotes the bending flexibility at both sides of the crack, then the slope
discontinuity function can be written as

L) = 0(y)My(L1,y). (6.100)

The dimensionless form of 6(y) can be obtained as (see [17])
0(y) = (6H/Ly)op,(V)F(¥), y=y/Ly

where H is the total thickness of the plate, o4,(7) is function representing
dimensionless bending compliance coefficient and F(y) is a correction function.
The function oy, (y) is given by the following relation:

% (¥) = of (V)
with
ho
o, = (1/H) / E(1.99 — 2.47¢ +12.978% — 23.1178% + 24.80&%)* dh,

0
¢=h/H

where h(y) is a function representing the shape of the crack and Ay is the central
crack depth. Then

f) = exp[~(3 —5o)’¢*/2¢7]

where e is the base of the natural logarithm and ¢ is the normalized half-crack
length, ¢/L,. The correction factor is given as

_2¢/H +3(v+3)(1 = v)ay,[1 - £ ()]

F(y) 2¢/H +3(v+3)(1 — v)op,

Figure 6.35 shows the variation 0(y) for different values of the crack length ¢ and
central crack depth ho. To obtain f>, it is necessary to take Fourier transform of
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fz (y). However, in Eq. 6.100, the expression of M,,(L;,y), which is the moment at
the crack location, is not known beforehand. Thus, to perform the transform, some
approximation is necessary. Here, we assume that the moment is not greatly
perturbed by the presence of the crack and M, of the cracked plate can be replaced
by the M,, of the undamaged plate, M,,f(y). Further, if the applied load is
concentrated, i.e., its ¥ dependency is 6(y — yo), then so is f(y). Thus, applying the
Fourier transform and using the shifting property of the dirac delta function,

,];2 - MxxOH(yO)

which is a constant. Using this, a first approximation of the displacement and stress
field for the cracked plate can be obtained. This new result can be used again to
replace M,y and this iteration can be continued until the convergence is achieved.
In the present work, no iteration is performed as the objective is to show the
qualitative change induced in the displacement field due to the presence of a crack.

6.8.2 Scattering Due to a Transverse Crack

The effect of a non-propagating transverse crack on the velocity field is studied in
this section. A GFRP plate is taken for this purpose, which is 1.0 m long (L, in
Fig. 6.34). This large propagating length is taken to distinguish clearly the position
of the crack (L), where the crack length is taken as 0.1 m. The Y window length, Ly,
is fixed at 10.0 m. In this example symmetric ply-sequence ([01¢]) is considered,
where each ply is 1.0 mm thick. The plate is fixed at one end and is impacted by the
same pulse loading (Fig. 3.7) at the other end. The response of the plate (transverse
velocity) for various locations of the crack is shown in Fig. 6.36 along with the
response of a healthy plate at the bottom. As the figure suggests the presence of crack

Fig. 6.35 Variation of non- s X0 . : _ < -_— -

dimensional flexibility at the

crack location st 20, =05,k =020 1
4
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Fig. 6.36 Scattering due to
transverse crack: broadband
pulse
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Fig. 6.37 Scattering due to transverse crack: modulated pulse, healthy plate response is also
shown below the scattered response

does not alter the peak amplitude and the group velocity of the bending mode
significantly, and the reflection from the fixed end arrives at 500 ps in all the cases.
However, due to the presence of the crack, there is an extra reflection from the crack
front which arrives before the boundary reflection (at around 250, 200 and 150 ps,
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Fig. 6.38 Scattering due to Gxi0t
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for Ly = 0.25,0.5 and 0.75 m, respectively). This pattern of wave scattering from a
stationary transverse crack is similar to that found in wave scattering due to vertical
cracks in beams and this was reported in Sect. 6.4.

Next, a modulated pulse is applied at the free end and the transverse velocity is
measured at the same point. Figure 6.37 shows the time histories for both cracked
and healthy plate. The extra reflections can be clearly seen in the sub-figures, which
change their positions with variation in L; . Instead of applying mechanical force, the
plate can also be subjected to piezoelectric actuation and the measured response will
also capture the scattered wave from the crack. This method of actuation has the
advantage over mechanical loading in that the center frequency of the modulated
pulse can be controlled quite accurately. To demonstrate this, a piezo-patch is placed
at the tip of the plate and a pulse voltage of 50 kHz center frequency is applied to this
material, which as a result actuates mechanical loading (in terms of bending
moment) to the structure. The transverse velocity at the tip is measured and plotted in
Fig. 6.38, where the crack is assumed to be at 0.35 m from the fixed end. The thick
solid line denotes response of the plate without a crack, which is devoid of the extra
waveform. However, for a plate with a damage, we clearly see an extra waveform
occurring at 300 ps, which is due to the presence of damage.

6.9 Conclusions

This chapter presented various simplified spectral element damage models for
different failure modes in metals and composite in 1D and 2D waveguides. The
modeling approach can be easily incorporated in both Fourier and Wavelet
spectral FEM environment. Some of these damage models will form the basis for
damage detection methodologies, which are outlined in the Part-III of this book.
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Chapter 7
Perturbation Methods for Damaged
Structures

7.1 Perturbation Methods for Notched Structures

In this chapter, analysis methods for notch type and line type defects are presented,
which are based on perturbation techniques. The line defect could be a horizontal
crack (delamination) or vertical crack (fiber breaks). Modeling of some of these
defects were addressed in the last chapter and the methods presented here represent
another approach to the simplified modeling of these defects.

The effects of cracks on the dynamic behavior of beams and shafts have been
studied by many authors. Excellent overviews of the state-of-the-art can be found
for example in [23, 3]. Many of the existing formulations are based on the
description of damage as an equivalent stiffness at the location of the defect. The
dynamic behavior of single-sided cracked beams can for example be found in
[5 and 12-14, 19], while the work of [1, 6-7] analyzed the effect of double-sided
cracks of equal depth. A different approach of modeling cracked beams consists in
using approximated numerical solutions as illustrated in the previous chapter. For
example in [2], the variation of the fundamental frequency of a simply supported
beam with a mid-span crack is evaluated using a two-term Rayleigh-Ritz solution.
In the approximation, an exponentially decaying crack function was used to
simulate damage, and the decay rate of the function was estimated from experi-
mental results. The Galerkin approximation is used alternatively in [22] in order to
achieve fast convergence rates, while in [20], a Finite Element model is used to
predict the behavior of a beam with an edge crack. Finally, [18] and subsequently
[17] presented a perturbation method to describe the dynamic behavior and in
particular the curvature modes of cracked beams. In these works, the perturbation
analysis is based on the assumption of a small crack whose depth is defined by a
perturbation parameter. The modal behavior of the cracked beam is evaluated
through perturbation of the modal parameters of the undamaged beam, so that
approximated analytical expressions for the damaged modes can be obtained. The
present chapter extends the formulation presented in [17, 18] to plates with

S. Gopalakrishnan et al., Computational Techniques for Structural Health Monitoring, 273
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-284-1_7,
© Springer-Verlag London Limited 2011
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localized defects. Both point defects, or notches, as well as line defects are con-
sidered to evaluate their effects on natural frequencies, mode shapes and curva-
tures. Relatively little work can be found in the literature on the analytical
modeling of damaged plates. Among the work considered as reference for this
study, the contributions by Ostachowicz, Krawczuk and co-workers are here
mentioned as relevant to the present investigations [3, 11, 15]. In addition, the
chapter illustrates the application of perturbation techniques in conjunction
with FSFEM to investigate the wave propagation characteristics of simple Euler—
Bernoulli beams, where damage couples axial and bending behavior so that mode
conversion can be captured.

The analytical formulations presented below can be used in support of
experimental tests, to analyze data and to supplement the experiments with
mechanics-based analysis tools that quantify damage. In particular, the application
of scanning laser vibrometry for the detection of dynamic deflection shapes allows
unprecedented amounts of information, which can be successively used for the
evaluation of curvature shapes. The results presented in this chapter and in [17, 18]
in fact indicate how curvatures are extremely sensitive to damage, and can be
successfully utilized as part of a damage detection technique.

7.2 Modal Analysis of Damaged Plates
7.2.1 Governing Equations

The free dynamic behavior of isotropic damaged plates can be described by
expressions formulated from the general equation of motion for plates of variable
thickness, as found in [16]:

=0 (7.1)

V(DY) — (1 v)<62D62w o’D O*w azpa2w> *w
w) — (1 —

P ar “oymyx o2 02) Mo

where w = w(x,y) is the out-of-plane displacement of the plate, & = h(x,y) is the
plate thickness, D = D(x,y) = Eh*/12(1 —v?) is the plate rigidity, and m =
m(x,y) = ph(x,y) is the mass per unit area of the plate. Also E, p and v are the
Young’s modulus, the density and the Poisson’s ration of the plate material.

We consider defects described as localized reductions in the plate thickness.
Notch-type damage, and line defects along the x and y directions are specifically
analyzed according to the configurations presented schematically in Figs. 7.1 and
7.2, respectively. The line loads can be considered as simplified descriptions of a
linear crack or of plate delaminations oriented along the reference axis. The
extension of the present formulation to line defects of general orientation does not
present any theoretical difficulties. However its implementation and related
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Fig. 7.1 Schematic of plate with notch damage
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Fig. 7.2 Schematic of plates with considered line defects

analytical derivations are quite involved, and are not reported in this chapter as
they do not add significant contributions to the discussion.
Damage is described by expressing the plate thickness at the defect location as:

ha = ho — hp (7.2)

where Ay is the thickness of the undamaged plate and 4 is the thickness of the
plate at the damage location. Accordingly, the plate rigidity at the defect site can
be expressed as:

where Dy

(7.3)

= ER}/12(1 —1?) is the rigidity of the undamaged plate. For a small

damage, i.e. for hp < hy, Eq. 7.3 can be approximated as:
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DdﬁDo(l—?’Zz) :Do(l—S) (74)

where ¢ = 3hp/hg. Similarly, the mass per unit area of the plate at the defect site

can be expressed as:
h 1
md:m()(l—hlz) :m0(1—38> (7.3)

where my = phy is the mass per unit area of the undamaged plate. The plate
rigidity D(x,y) can in general be described as:

D(x,y) = Do[l — e(H(x —x1) = H(x = x2))(H(y = y1) = H(y = y2))] ~ (7.6)

where x1, x; and y;, y, define the dimensions of the defect in the x, y directions, and
where H is the Heaviside step function. Equation 7.6 can be conveniently
manipulated to describe both notch-type defects, as well as line loads of the kind
shown in Fig. 7.2. Equation 7.6 can in fact be rewritten as:

(H(x —x1) —H(x —x3)) (H(y —y1) = H(y — y2))
Al Al

D(x,y) = DQ 1- SAD (77)

where b, = x, — x1,b, = y» — y1, and Ap = b, * b,. For a notch defect at xp,yp
(see Fig. 7.1), it is assumed that
X1 =Xy X Xp, Y1 ~Y2=)Yp

and Eq. 7.6 becomes:

D(x,y) = Do[l — eApd(x — xp)d(y — yp)] (7.8)
where
5(x) = d’;ix)

is the Dirac delta function. Similar expressions can be defined to characterize a line
defect. For example, a line defect at location y = yp and parallel to the x direction
(Fig. 7.2a) can be described as:

D(x,y) = Do [1 — eby6(y — ) / 5(x é)dé] (7.9)

while a defect at x = xp along the y direction (Fig. 7.2b) can be expressed as:

D(x,y) = Do [1 — ebyd(x — xp) [ Sy — n)dn] (7.10)
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where x;,x, and y;,y, define the length of the defect, while & 1 are dummy
integration variables. It is worth observing how in Egs. 7.9 and 7.10, the heaviside
function is replaced by the integral of the delta function over the extension of the
defect. This substitution is adopted in order to take advantage of properties of
the delta function which are very convenient for the the analytical derivations
presented below.

A general description of line and notch defects of the kind considered here can
be obtained by expressing the plate bending rigidity as:

D(x,y) = Do[l — &yp(x,y)] (7.11)

where y,(x,y) denotes the function describing the considered damage configura-
tion, which can be particularized to the expressions in Egs. 7.8-7.10. Similarly, the
mass per unit area of the damaged plate can be described as:

try) =mo(1=32) <o 1 = ()] (7.12)

The expressions for the plate rigidity and mass given in Eqs. 7.11 and 7.12 can be
substituted in Eq. 7.1 to obtain a solution predicting the dynamic behavior of
plates with the considered types of damage.

7.2.2 Perturbation Solution

A solution for equation Eq. 7.1 can be obtained through modal superposition by
imposing a solution of the kind:

W(X,y) = qui,j(xay)eiwut (713)

where ¢, ;, w;; are respectively the i,jth mode shape and natural frequency
(eigensolutions) of the plate, while j is the imaginary unit. Considering for sim-
plicity the contributions of a single mode i,j and substituting Eq. 7.13 in Eq. 7.1
gives:

62D62¢ azD 62¢ aZDazd)
2(DV26) — (1 — — 22—t —
\Y% ( \% ¢) ( v) <ay2 o2 O0yOx Oyox  OxZ 0y?

) —mip =0 (7.14)
where /. = w?, and the subscripts i, j are omitted for simplicity. In our analysis, ¢ is
assumed to be a small parameter corresponding to a small damage depth hp.
Within this assumption, the eigensolutions for the damaged plate can be expressed
as perturbations from the solution for the intact plate, so that the eigenfunctions
and eigenvalues of the damaged plate can respectively be expressed as [16]:
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¢(x,y) = ¢ (x,y) —ep'V (x.y) + O() (7.15)

and
A =79— W 4 0@ (7.16)

where q’)(O)()c7 y),/l(o) are the eigensolutions for the undamaged plate, while

(l)(l)(x, y), AV are the first order perturbations. Substituting the perturbed eigen-
solutions into Eq. 7.14, and collecting the coefficients of same power of ¢ gives a
set of equations which can be solved in terms of the perturbations coefficients:

SOZ

V4e® Z_z 1040 — (7.17)

Vil + V2 [ (o) + 01) ] =
(1-v) [4)(”’/0 + ¢ Oy, — 290 VDX\:| (7.18)

1
+D—O(x<>¢> + 200 +3A<>¢<°>yD)

where y,, = yp(x,¥), and where (-) ; denotes partial derivatives with respect to the
variable {. Equation 7.17 represents the equation of motion for an undamaged
plate, and its solution provides the undamaged modes d)(o) (x,y) and eigenvalues
/1(0>, which can then be substituted in Eq. 7.18 to obtain a solution in terms of the
perturbation modal parameters ¢<1>(x,y), A,

7.2.3 Fourier Series Solution of ¢! Equations

The i, jth eigenfunction and eigenvalue for a plate supported on all edges are
respectively given by [16]:

q’)l((;) (x,y) = smL—stg (7.19)
N .
and
N2 212
0 _ Do (im\" (/m
7 = (Lx> +<Ly) 1 (7.20)
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where L., L, denote the plate dimensions. An approximate solution for Eq. 7.18
can be found by imposing a solution of the kind:

I . PIX . Ty
o1 (x,y) = NN My sin = (7.21)
P g *

which corresponds to the Fourier series expansion of the perturbed mode.
Substituting this expansion in Eq. 7.18 gives:

2
ZZ pn ar 2 —molo | 1 sin? ™ sin 7 —
L R R N
(90 qsfsg)vzyb (=) [6075, + 6%, ~ 260, ]

mo ., 1o 0
0 2,00, 0)
+DO( +3 p |

(7.22)

where d)(()) = ‘15,((;) (x,y), A0 = il(»(j-) are respectively defined in Egs. 7.19 and 7.20.
The complexity of Eq. 7.22 can be substantially reduced by exploiting the
orthogonality properties of harmonic functions. Multiplying Eq. 7.22 by
sin = sm— and integrating over the plate surface gives:

((%)2+<2—T)2)2—((i—i)*(i—’i)zf S

L.L,
4

— K1+ (1 — V)K2 + @/ﬂu(l)éri(ssj
Dy

_/L”/L"’ i\ (Y | g2, Lm0,
K1 = L L D 3D, D

Jjmy . rmx . smy
sm — s1n ——sin sin ——dxdy
Lx L, L, L,

Ky = / / d) sin 22 Ly L dxdy+
* - . I'xp . STyp
+ / / d)(yoy) sin sin L, b, dxdy+

_2/ / ¢(0)sm rnxD i SZD wa_dxdy

where

and
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Also, in Eq. 7.22, 0y, is the Kronecker symbol defined as:

5o 1 k=1
K70 k#£1

The summation signs in Eq. 7.22 are eliminated in virtue of the well-known
orthogonality property of harmonic functions, which reads:

/ / qny FIX Snydxd _ L.L, 51005
L, L, 4 0

and corresponding versions for cosine functions. Given the considered modes for
the undamaged plate, Eq. 7.23 can be solved in terms of the unknowns #, , A,
Letting » =i and s = j, yields an equation which can be solved in terms of /'tﬁf,):

,m _ _4Do
W n’loLxLy

[K1 — (1 = v)Ky) (7.24)

It is worth observing how the integrations required for the evaluation of the
constants x, k, are significantly simplified by taking advantage of the following
properties of the delta function [9]:

f(x)o(x — x0) = f(x0)(x) (7.25)
and
n X n—1 X

where f(x) is a generic function. A few simple manipulations yield the following

expressions:
. 2 . 2
Lmg ) . JTyD . Imxp
—=—A sin—— sin ,
3Dy L, L,

" 4D0AAD _7'[ 2+ ‘E 2
T \ |\ L
4D, 1 ; 2 prx : 2
K1 = oby in _ 1050 | (g !™P / Sin@ ac.
L.L, L, 3D, 7 ) /. L.

. 2 . 2 . 2 . 2
K| = 4Dob. m + Jn — l@i(o) sin XD /y2 Sinﬂm dn.
L.L, L, L, 3Dy L, v L,

which respectively define the value of x; for a notch damage and for line defects
along the x and y directions. Similar expressions, here omitted for the sake of
brevity, are obtained for the parameter ;.
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The amplitude of the Fourier series coefficients 7, ; can instead by obtained by
letting r # i and s # j in Eq. 7.22. Summation of the various terms of the Fourier
series expansion gives an approximate expression for the first order perturbation
eigenvalues and eigenvectors, according to Eqgs. 7.15 and 7.16.

The results obtained from the formulation presented above are here used to
assess the influence of various damage levels, at different locations on the plate
surface. Natural frequencies (or eigenvalues), modal deflections, as well as modal
curvatures are studied as damage indicators to be used in the development of a
modal-based damage detection theory. The modal curvatures can be easily com-
puted from the obtained perturbation solution, and they are given by:

qﬁ,-jm = - <£) s1n]Ll:C sm@ - Z Z Nrs (rn> sm%smsLﬂ + 0(¢ )

y

. 2
I imx ]TC.X ST rmx STTX
¢lj"'-":_<L_y) SIIL—XSI'I—_ E § nrv( ) SIHL—XSHL—‘F@( )

y

) .
ijm inx rUX  STX
by, = (Lxl,y) co Lx cos— + E E ’1r3 LL COS—cosL—+ O(e?).

X y

(7.27)

7.2.4 Strain Energy Ratio for Damage Localization

The curvature modes evaluated in the previous section can be used directly as
damage indicators, and their analytical expressions can be used to evaluate the
extent of damage. Alternatively, the curvatures can be used to evaluate the strain
energy of the damaged plate. The strain energy for a rectangular plate vibrating
according to mode m, n can be expressed as [16]:

1 Ly Ly
UmA,n = EDO/ / ()byznn,“ + ¢fnn‘\,. + 2V(l’)mn ¢mn N 2(1 - v)¢3m dXdy
0 0 2 y e Wy
(7.28)

The evaluation of the strain energy for undamaged and damaged plate can be used
as an effective strategy for the identification of damage. Furthermore, the location
of the defect can be also evaluated through the estimation of the strain energy over
limited regions of the plate corresponding to its subdivision into a grid. The strain
energy associated to the i,j area of the plate can be expressed as:

Yj+1
Un ”( DO / / d)mn - ¢r2nn + 2v¢mn - ¢mn o (1 - V)¢5m,xydxdy

(7.29)
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We define the modal Strain Energy Ratio (SER) at location i,; as:

o Unalin))
Gm,n(ld) = W

where U, U'”) respectively denote the strain energies of the damage and undam-
aged plate at the considered location. The strain energy for the damage plate can
be obtained by using the curvatures obtained from the first order perturbation
solution. Imposing Eqs. 7.27 in Eq. 7.32 and neglecting higher powers of ¢ allows
expressing the strain energy for the damaged plate as:

(7.30)

Upn(i,7) = U9 (i,7) — eAU, (i, )) (7.31)

m7

where:

Y T 40 g O
AUm,”(lvj) = ZDO/ / qsmn,n (bmn,xx + ¢mn,‘,)»¢mn,w
Xi Yj

1
21 =g +5v(B. B+l B )dxdy
The SER can be therefore expressed as:

AUm,n(imi)
(i)

The modal SER provides indications regarding the integrity of the area i,j as any
variation from unity indicates a difference between the curvature modes over the
particular area. A similar concept has been proposed in the literature in [8, 10].
The analytical framework of the perturbation analysis of the plate provides a
theoretical description of the concept. The presented analytical study also offers
the opportunity of quantifying the extent of damage through the value of the SER,
which is directly related to the level of damage e.

The definition of strain energy ratio in Eq. 7.32 considers only one mode of the
structure. However it is well known that damage mostly affects regions of higher
strain energy. It is thus convenient to sum information obtained from the analysis
of several modes m,n and therefore to consider a cumulative strain energy ratio,
which may be defined as

P P AUm.n i’j
dm=Z%Mmﬂ%Z;W%Z (1.33)

O'm,n(ivj) =1-c¢ (732)

This cumulative index provides a unique information which combines the results
from several modes. Modes not affected by damage because the particular location
will not contribute, whereas the index for modes altered by the defect will be
combined to provide a robust indication of damage.
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7.2.5 Effect of Notch Damage on the Plate Modal Properties

The perturbation analysis presented in the previous section is applied to evaluate
natural frequencies, mode shapes and curvature modes of damage plates. Initial
results consider the effect of notch damage at various locations, while the inves-
tigation of the effects of line defects is presented in the following section. The
study is performed on a rectangular plate with L, = 1.5m and L, = 1 m, supported
on all edges as assumed in the analytical derivations. The plate has a thickness
ho = 5mm and it is made of aluminum (E =7.1 x 10'°Pa, p = 2700kg/m?,
v = 0.3). The extent of damage is varied and it is defined by the parameter ¢
according to the definition given in the previous section.

The effect of a notch damage on the plate natural frequencies is first investi-
gated. Various damage locations as well as damage extents are considered for the
analysis. The results of the investigations are presented in Table 7.1. Damage in
general tends to reduce the natural frequencies, as a result of the associated
stiffness reduction. It is interesting to observe how frequencies remain unchanged
when damage is located at the intersection of the nodal lines of the corresponding
mode shape as demonstrated by the frequency of mode (2,2) for damage at xp =
L./2,yp = L,/2. Also frequencies corresponding to higher order modes tend to be
more affected by the presence of damage, as demonstrated for example by the
comparison of the frequency changes in modes (1,1) and (1,3). Modal deflections
and curvatures for plates with notch damage are evaluated through the procedure
presented above. The perturbation analysis is limited to the first order based on
previous results for beams, which have shown how the second order term gives

Table 7.1 Natural frequencies (rad/s) of plates with notch damage
Mode(i,j)  hp/ho=0  hp/ho =1%  hp/hg=2%  hp/ho =3%  hp/ho = 4%

XD:LX/Z yD:Ly/Z
1,1 110.6 110.6 110.4 110.2 109.9
1,2 340.3 340.2 339.6 338.8 337.5
2,1 212.7 212.5 212.0 211.1 209.9
2,2 442.5 442.5 442.5 442.5 442.5
1,3 723.2 722.5 720.1 716.2 710.7
XDILX/3 yD=L)./3
1,1 110.6 110.5 110.4 110.0 109.6
1,2 340.3 340.1 339.3 338.0 336.1
2,1 212.7 212.6 212.3 211.7 210.9
2,2 442.5 442.2 441.4 440.2 438.4
1,3 723.2 723.0 722.3 721.2 719.5
XD:LX/S yD:Ly/S
1,1 110.6 110.6 110.4 110.1 109.6
1,2 340.3 340.1 339.4 338.3 336.7
2,1 212.7 212.6 212.1 211.4 210.4
2,2 442.5 442.2 441.6 440.5 439.0

1,3 723.2 722.8 721.3 718.9 715.5
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Fig. 7.3 Curvature ¢, estimation using increasing orders of Fourier Series expansion.
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minor contributions [18]. The Fourier series expansions are performed by con-
sidering the superposition of 300 terms. This number has been selected after the
qualitative analysis of mode shapes and curvatures predicted with increasing
number of expansion terms. A sample of these investigations is shown in Fig. 7.3,
which presents the curvature ¢; for mode (1,2) estimated with increasing
number of terms in the expansion. In the plot, the presence of damage is dem-
onstrated by a peak at the corresponding location. It is easy to observe how 300
terms are able to fully capture the peak and that considering higher numbers of
terms does not provide additional details on damage. Series expansion with 300
terms are therefore used in our study as a good compromise between accuracy and
computational efficiency. Examples of modal deflections and curvatures are shown
in Figs. 7.4, 7.5, 7.6, 7.7 and 7.8 for several combinations of damage location and
damage extent. The results for modes (1,1) and (1,3) are presented in Figs. 7.4 and
7.5, which clearly demonstrate how for the considered level of damage, the
deflection mode shapes are not affected by the presence of the notch, while the
curvature modes highlight its presence through a peak at the corresponding
locations. The amplitude of the peak is proportional to the extent of damage as
shown in Fig. 7.6., which depicts the curvature mode ¢22M for increasing damage
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Fig. 7.4 Deflection and curvatures for mode (1, 1) with ip/ho = 2% and damage located at
Xp = Lx/37yD = L>/3

ratios hp/hg. The effect of damage on the curvature modes also depends on its
location with respect to the nodal lines of the corresponding mode shapes.
Figure 7.7 shows for example how a notch damage with hp/hy = 2% becomes
more evident when it is located close, or at the points of maximum curvature.
Finally, Fig. 7.8 compares the effects of a defect of assigned extent on various
modes, and demonstrates how the notch tends to affect more significantly higher
order modes than lower order modes. This observation confirms the remarks made
regarding the natural frequencies of the damaged plates listed in Table 7.1.

7.2.6 Notch Damage Localization Through the Strain Energy
Ratio

The SER defined in the previous section is here used for the estimation of damage
location and extent. The SER is computed by discretizing the plate surface into a
60 x 60 grid, over which the strain energy and its variation with respect to the
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Fig. 7.5 Mode 1,3: Deflection and curvatures for hp/hg =2% and damage located at
Xp = Lx/S,yD = L‘/S

undamaged configuration are computed. The integration required for the SER
evaluation are evaluated analytically, due the convenient formulation for the
undamaged and damaged curvature modes obtained through the perturbation
analysis. Results for notch defects are presented in Figs. 7.9 and 7.10, where the
SER distributions are represented as contour plots. The abscissa and ordinates
respectively represent the plate length L, and width L,, while the magnitude of the
SER is indicated by a gray color scale varying between a minimum of 1.05 (black)
to a maximum of 2 (white). The presence of the defect in the presented maps is
highlighted by a peak at the corresponding location, which stands out very evi-
dently on the white background imposed on the figure. The extent of the peak and
mostly its magnitude are proportional to the damage extent and specifically to the
parameter ¢ or to the ratio hp/hy as predicted by Egs. 7.32 and 7.33. The corre-
lation between damage extent and magnitude of the SER is shown in Fig. 7.9,
which presents modal SER results for notch defects of different extent and loca-
tion. The application of the superposition of modal SER distributions to obtain a
single damage index is instead illustrated in Fig. 7.10, which shows modal SER
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Fig. 7.6 Influence of increasing damage levels on curvature mode 4522)0‘ for notch at xp =
L./5,yp =Ly/5. a hplhg = 1%, b hplhy = 2%, ¢ hp/hy = 4%

values for an assigned damage configuration and the result of the combinations of
the modal contributions according to Eq. 7.33. As discussed above, various modes
have in fact different sensitivity to damage at a specific location. In here for
example, it is clear how the considered damage has very little effect on mode (3,1),
as demonstrated by the corresponding modal SER map shown in Fig. 7.10d.
The combination of the various modal contributions however is able to capture the
presence of the defect by combining the information provided by each mode.

7.2.7 Effect of Line Damage on the Plate Modal Properties

The presented analytical procedure is also applied to the analysis of line defects of
the kind depicted in Fig. 7.2. Results for various defect lengths, extensions and
orientation are presented in Figs. 7.11 to 7.13. Figure 7.11 for example shows the
influence of damage on the curvature mode q’)llw. Different defect lengths and
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Fig. 7.7 Influence on damage location on curvature mode ¢,; for /p /ho = 2%. a xD = Lx/2,
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orientations are considered to demonstrate how the considered curvature mode
highlights the presence of damage through an evident discontinuity at the damage
location. The length and the orientation of the discontinuity correspond to those of
the considered defect. Figure 7.12 presents results for the curvature mode ¢, of
a damage plate. The plot in Fig. 7.12a is obtained for the defect located along the
nodal line of the curvature mode and therefore no discontinuity can be observed.
The same damage at a different location however becomes clearly evident as
shown in the case presented in Fig. 7.12b. Moreover, Figs. 7.12b, ¢ compare
damage discontinuities corresponding to damage of increasing lengths to dem-
onstrate the increased sensitivity of the curvature modes. In Fig. 7.13 finally, the
influence of damage location and extent is demonstrated for mode ¢12,w- Strain
Energy Ratios are computed also for line defects. Examples of the results are
shown in Figs. 7.14 and 7.15. The maps presented in Fig. 7.14 clearly demonstrate
how the SER representation is able to provide information regarding damage
extent, length and location. Finally, Fig. 7.15 presents the result of the summation
procedure for various modal SER, to obtain a cumulative ratio to be used as a
damage index in damage identification routines.
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7.3 Analysis of Wave Propagation in Notched Beams
Through Spectral FE Solution

The perturbation method can be also applied in conjunction with the FSFEM to
provide a solution of the perturbed equations in the presence of structures of
increasing complexity. The approach is illustrated in this section for the case of
beams described according to a elementary beam theory, whereby strain varies
linearly across the thickness. This leads to a set of two equations governing
bending and axial motion of the beam. In the absence of damage, the two equa-
tions are completely uncoupled as predicted by elementary beam theory, whereas
damage causes coupling and mode conversion. This is a noteworthy aspect of this
approach, which shows how a simple beam formulation can be employed to
predict and analyze mode conversions caused by damage. The solution technique
is validated by comparing its predictions with those of a model developed in the
commercial code ABAQUS, and with solutions from the modal superposition
approach. The SFEM was introduced as a general framework in Chap. 5, which
combines the advantages of conventional FEs, with the computational efficiency of
analytical techniques. The modal superposition technique can easily handle only
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Fig. 7.9 Examples of modal SER for various damage locations and extents. a #D/h0 = 2%, xD =
Lx/5, yD = Lyl5, b hD/h0O = 4%, xD = Lx/5, yD = Ly/5, ¢ hD/hO = 2%, xD = 3Lx/4, yD = 3Ly/4,
d hD/hO = 4%, xD = 3Lx/4, yD = 3Lyl/4

simple geometries with reasonable computational costs, which limits its applica-
bility. For this reason it is only used for validation purposes on simple geometries
and cannot be considered as a general tool for the simulation of wave propagation
in damaged structures. In contrast, the combination of FSFEM and perturbation
analysis lends itself to the analysis of complex waveguides affected by small
defects.

7.4 Governing Equations

The dynamic behavior of the notched beam shown in Fig. 7.16 is described by a
set of governing equations derived through Hamilton principle. The defect is
modeled as a reduction in thickness of depth /,, extending over a length A/, placed
at the distance x,. According to Fig. 7.16, x € [0, L] denotes the horizontal coor-
dinate, whereas the vertical coordinate z varies in the following interval:
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Fig. 7.11 Curvature mode ¢y, for hp/hy = 4% and line defects of various lengths and
orientations. a x-line defect, yD = Ly/2, x,—x; = 0.15 m, b x-line defect, yD = Ly/2, x,—x,
= 0.3 m, c y-line defect, xD = Lx/2, y,—y; = 0.05 m, d y-line defect, xD = Lx/2, y,—y; = 0.1 m

g (1 —2ey,(x)) (7.34)

c h
Z 3

ha

where ¢ = 72, and where 7,(x) is a damage function defined as:

2ax) = H(x = (x4 — Al) — H(x — x,) (7.35)

with H denoting the Heaviside function. The governing equations for the notched
beam and the appropriate set of boundary conditions are derived using Hamilton
principle. The required kinetic and strain energies, and the work of external forces
are formulated using the following kinematic assumptions:

(et o

where u(x, t) and w(x, t) are the axial and transverse displacements in the reference
plane z = 0, respectively. The linear strain—displacement relations are:
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Fig. 7.12 Curvature mode ¢, for hp/hy = 4% and line defects of various lengths, locations
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Sxx(xa 2, t) = u’x(x, t) - ZW,XX()G t)

e(%,2,0) =0, p.(x,2,1) =0 (7.37)

where the subscript, , denotes a partial derivative with respect to x. The consti-
tutive relation is assumed to be of the well known form:

O-XX(x7Z7 t) = ngx(xv 2y t) (738>

where o, is the normal stress in the x direction and E is the Young’s modulus.
Accordingly, the axial force resultant and bending moment resultant are expressed
as:

A(1-2e74(x))

Nu(x, 1) =b / 0w (x,2,1)dz

(7.39)

(S

h
= Ehbu, + |—u, + Wy Ebhy,(x)e
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Fig. 7.13 Influence of extent and location of damage on curvature mode ¢, . a x-line defect,
yD = Ly/4, x,—x; = 0.3 m, hD/hO = 2%, b x-line defect, yD = Ly/4, x,—x; = 0.3 m, hD/h0 = 4%,
¢ x-line defect, yD = Ly/6, x,—x; = 0.3 m, hD/h0 = 4%

M (x,t) =b / 205 (x, 2, 1)dz

T (7.40)
bh? h) _bh?
=—-F— — —|E—
12 W,xx + |: u,x + W,xx 2:| ) yd(x>8
Hamilton’s principle,
15}
/5(U—T+V)dt:0 (7.41)
n

requires the derivation of the first variation of the beam’s strain and kinetic
energies and of the work of the external forces, which in this case are given by:
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0
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X
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Fig. 7.16 Beam geometry A Z,w
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(7.45)

where, for simplicity we assume that the loads are applied along the reference
plane z = 0. Also in Eq. 7.45 n(x,?) and g(x,t) respectively denote axial and
transverse distributed external loads, m(x, ¢) denotes a distributed bending moment
distribution, while N;(), Qj(r) and M;(r) are external concentrated longitudinal and
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vertical loads, and bending moment applied at N locations x = x;. Finally ¢ is the
Dirac delta function.

Application of Hamilton’s principle yields the following set of differential
equations:

Nux(,1) = ph[l — e, ()it = p'5 e, ()i = fi (x,1)
Mo, 1) + {5 09, 0) + 302 25 1 = eg(x)] | —phl1 = o9, (0o = fo(x,1)
(7.46)
where fi(x,t) and f>(x,7) are respectively defined as:
N
Silx, 1) = —n(x,1) ZNJ (x —xj)

J=1

Sl 1) = —q(x, 1) + m(

an

N
A =x) + M) {d0x = x)}
=
(7.47)

The associated boundary conditions, at x = 0 and x = L are:

Ny (x,t) =0 or u(x,?)given

DM x(x, 1) + plow x(x, 1) — m(x,t) — g:le(t)é(x —x;)=0 or w(x,1) given

J=

My (x,t) =0 or wy(x,1)given
(7.48)

Equations 7.46 can be conveniently expressed in the frequency domain through
the Fourier Transform (FT) of the applied generalized loads f;(x, 7) (with i = 1,2),
which can be expressed as:

0= filx o)™ (7.49)
k

where j = v/ —1, and fik (x, ) denotes the harmonic component of the generalized
load at frequency wy [4]. Accordingly, the beam’s displacements can be written as:

t) = Z i (x, cop )&t (7.50)
k

wix, ) = i(x, wp)e™ (7.51)
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where i (x, o), Wi(x, wg) are the displacements corresponding to the kth har-
monic component of the load. For simplicity, in the remainder of the chapter, the
subscript k is dropped so that the following notation is adopted w; = w,
i (x, wx) = it(x, w), Wi (x, ) = W(x, w).

Next, the axial and transverse displacements of the beam in the reference plane
are considered as perturbations (over the small parameter ¢) of the axial and
vertical displacement of the undamaged beam:

i(x, ) 0 (x, w) M (x, w) 2
o =9 . ’ —& . ’ -0 7.52
{ Ww(x, m) } { w0 (x, w) ¢ Wl (x, o) (&) (7.52)
Replacing Eqs. 7.39-7.40 and Eq. 7.52 into the differential equation (Eq. 7.46)

and collecting the coefficients of ¢ and ¢! yields the following set of differential
equations:

7.53
o)) _fio) Y
0 —Elb] | %% (x, ) hlx,0)
| [mw 0} iV (x, ) [EA 0 ] i (x, )
&
0 mo?] | w(x, ) 0 —plyo?’ ng(xw
" (7.54)

JHAL o B e

where I = bh3/12,A = bh, p is the density per unit area, m is the beam mass, and
where:

{§1 (x, ) } _ fmwzyd(x ) 0 u(o) (¥, )
&(x, ) — 2oy, (o) —mo?y,(x o) (x o)

—EAy, (x, @) mh wz/d(x w) u (x, ®)
* —EALy,  (x,0) = 2oty (x,0) 3 I
L 2 Vdxx\Xs 5 WO7Va plow /dx(x o) x7w
L[ B o) EA% 4%, 0)

L o }
m)(x )

0 i) (x, )
0 3E10yd_x()c7 ) w(f"l (x, )

I —EAhy, (x,0) 3Elyy . (x, 0) + plo?y,(x, ®)

r ~(0
oo EALy,(x,0) } { i), ) } N

| —EA 57a(x, @) 6Elyy,(x,w) W(gz (x, w)
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Equations 7.53 and 7.54 can be solved for an assigned set of loads in terms of the
unknown displacements @) (x,») = [ (x,) WO (x,w)]" and their first

order perturbation a(") (x, w) = [ (x,0) W (x, w)}T

7.4.1 Spectral Finite Element Discretization

The equation for the & term corresponds to the governing equation for the

undamaged beam, the first order perturbation equation has the same form and
features an applied generalized load that is a function of the solution of the &°
equation. A common strategy for the solution of the two equations (Egs. 7.53 and
7.54) derived from the expansion of the beam’s displacements in terms of the
perturbation parameter can be adopted based on their formally identical form.
Each of the equations can in fact be written in the following matrix form:

A e R e N
0 0 U ax(x, 0 X,
+[0 —EI] { wi((x w)> } - {Z;Ex Zi }
. Mi(x, ©) + E i (x, ) + Exli 4 (x, 0) = q(x, ®) (7.57)

The weak form solution of Eq. 7.57 can be sought through multiplication by a
suitable test function v(x, a))T:

L L
/ v (x, 0)Mi(x, w)dx — / v (x, 0)E i, (x, 0)dx
0 0o

L L
+/0 V?;X(x,w)Ezﬁﬁxx(x,w)dx:/o v (x, w)q(x, w)dx (7.58)

where L; is the length of an element j that connects two nodes (Fig. 7.17). The
behavior of each node is described by three degrees of freedom, so that the ele-
ment’s vector of degrees of freedom is defined as d; = {ity;, Wij, Wi, i),
Waj, Wojx} . The displacement w(x, w) within element j is obtained as an inter-
polation of the nodal degrees of freedom d;:

ii(x, ) = Ny(x, 0)d;(0) (7.59)
Fig. 7.17 Spectral finite Wy, Quj " A .
element with nodal T / e - QQJT et
displacements and loads o — fig;, N
g 1V2j

=0 dy, Nlj z=1L;
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where N;(x, w) is the matrix of the dynamic shape functions, which is obtained
from the solution of the homogeneous governing equation

Nj(x, 0) = ©(0)G(x, )T, (o) (7.60)

where O(w) is an amplitude ratio matrix:

1 001 00
O(w) 01 101 1 (7.61)
G(x, w) is defined as:
e" 0 0 0 0 0
0 e 0 0 0 0
|l o 0 e Fl 0 0 0
Gj(.x, 0)) = 0 O O e—ik(Lj—X> 0 O (7.62)
0 0 0 0 e~ihx 0
0 0 0 0 0 el
whereas T;(w) is obtained by imposing the displacements at the nodes:
1 0 0 e kL 0 0
0 1 e Pl 0 1 e L
N_| 0 —-B —pefi 0 —ip  ipe P
Tj(w) = o~ kL 0 0 1 0 0 (7.63)
0 e Pl 1 0 e L 1
0 —Pe Pl p 0 —ife Pl ip

with k> = @?/c* = w?m/EA and f* = w?*m/El,.

The dynamic shape functions provide the exact displacement variation along
the beam if the external loads are concentrated at the nodal locations [4]. In the
case considered here, it can be shown that the generalized load in the first order
perturbation equations reduces to a concentrated nodal load if a node is placed at
the damage location. Accordingly, the solution of homogeneous beam equations
and proper description of nodal loads corresponding to the presence of damage
based on the formulation presented above can be used to obtain exact dynamic
shape functions and accurate representations of the beam’s displacements in the
frequency range corresponding to the applied load. This approach can also be
applied when loads are generally distributed along the element length. In this case,
the dynamic shape functions do not reproduce exactly the displacement field
within the element, and some approximation is introduced. The application of
nodes at damage and load locations do not cause a dramatic increase in the
computational time, and the presented modeling approach still represents an
efficient tool for the analysis of wave propagation in the considered class of
damaged structures.
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The dynamic interpolation functions can be also used for the test function v.
Substitution in the weak form of the equation yields the following algebraic
equation:

Kj(o)dj(o) = t;(w) (7.64)

where K(w); is the element stiffness matrix at frequency o, defined as:

K(0) = /0 f{NjT(x,w)Mij(x, ) — NI (x, 0)E; N, (x, )

" (7.65)
+NjT_XX (x,®)E| N« (x, 0) }dx
and where f is the vector of applied nodal loads:
L
fi(w) = / N (x, 0)gq(x, w)dx (7.66)
0

7.5 Wave Propagation in Notched Beams:
Numerical Examples

In this section, the developed technique is applied to evaluate longitudinal and
transverse wave propagation in damaged beams. The solution based on FSFEM is
first validated through comparisons with the predictions of a model developed in
ABAQUS. The case of a simply supported beam solved through the modal
superposition approach is then used as a baseline for comparison. Upon assessment
of the accuracy of the procedure, simulations in the time and frequency domain are
performed for various sets of boundary conditions, excitation configurations, and
damage extent and location to show the potential of the technique as a general
simulation tool, and to highlight interesting phenomena related to the interaction of
propagating waves with damage.

7.5.1 Technique Validation: FSFEM Versus FE Predictions

A detailed finite element model of the damaged beam is developed using the
commercial software ABAQUS. The considered beam is assumed in a clamped-
free configuration, has length L = 1 m, thickness 4 = 10 x 107> m and width
b = 50 x 1073 m. The beam is made of aluminum (Young’s modulus E = 70 GPa,
density p = 2750kg/m 3), and features a notch of length Al =1 x 107> m and
depth hy; = h/2 at x; = L/2. The beam is modeled using 10,000 four-node bilinear
plane stress quadrilateral elements, and its response is computed through an
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explicit dynamic analysis. The same beam is modeled using two spectral finite
elements as shown in Fig. 7.18a. The considered excitation is a four-cycles
sinusoidal burst at 75 kHz modulated by a Hanning window (Fig. 7.18b), applied
at the free end on the beam in the longitudinal direction according to the con-
figuration shown in Fig. 7.18a.

Figures 7.19a, b compare longitudinal and transverse displacements at the free
end of the beam as obtained using FSFEM and ABAQUS. The longitudinal responses
in Fig. 7.19a show an excellent agreement, both in terms of amplitude of the incident
wave and of the reflected wave produced by the damage, and in terms of time of
arrival of the reflected waves. Fig. 7.19b presents the comparison between corre-
sponding transverse displacements. Both FSFEM and ABAQUS models predict the
generation of a transverse displacement component upon interaction of the longi-
tudinal wave with the defect, which indicates that mode conversion has taken place.
The time lag between the models can be explained by the fact that a simple Euler—
Bernoulli formulation has been employed for FSFEM. It is well-known that Euler—
Bernoulli theory overestimates the wave speeds in comparison with more refined
beam theories such as Timoshenko formulation [4]. The ABAQUS model does not
rely on beam theory, and can be considered as a more accurate description of the
dynamic behavior due to the highly refined mesh employed for the analysis. The
discrepancies in terms of wave velocities is estimated from the dispersion relations
predicted by the two models. The dispersion relation in FSFEM follows the Euler—

1/4
Bernoulli relation k = (%) , while that of the ABAQUS model needs to be
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Fig. 7.19 Comparison between FEM and SFEM results: a longitudinal and b transverse
displacement at the free end of notched beam with a defect at x; = L/2

evaluated by means of a numerical experiment. Specifically, the beam is excited by a
broadband pulse, and its response in the time domain is recorded at all the nodal
points available along the beam span. This allows the computation of two-dimen-
sional FT in space and time, which provides wavenumber and frequency information
over the considered frequency range. This data is then used to estimate the group
velocity variation in terms of frequency, and compare it with the SFEM one. The
result of this analysis is presented in Fig. 7.20: the mismatch in group velocities
observed at the excitation frequency of 75kHz corresponds to the time delay
observed in the time plots of Fig. 7.19b.

7.5.2 FSFEM and Modal Superposition Results

A second validation is carried out through comparisons with the modal superpo-
sition solution of the perturbation equations Egs. 7.54 and 7.55. The modes of the
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Fig. 7.21 Schematic of the simply-supported beam with a longitudinal load at the middle, used
to compare superposition of modes and SFEM results

considered structure are used to decouple the equations of motion and to obtain
time-domain ODEs in terms of the modal coordinates. The convolution integral is
then employed for the time-domain solution given the assigned excitation time
history and the corresponding modal loads. This approach, very well known and
established, does not provide the generality of the SFEM and can only be con-
veniently applied in the case of simple geometries. The considered configuration is
that of the beam in Fig. 7.21, which is excited longitudinally at mid span by a four-
cycle modulated sinusoidal burst at 500 kHz. The corresponding longitudinal and
transverse mid-span displacements in Fig. 7.22 show the agreement between the
solutions and confirm that the interaction with the damage partially converts the
longitudinal wave into a transverse one.

The second validation example considers a notch placed at x;, = 3L/8 and a
transverse load at mid-span. Figures 7.23 and 7.24 compare snapshots of the beam
deflected configuration (longitudinal and bending component) at various instants
of time. The plots show how longitudinal displacements are produced by the
interaction of the bending wave with the defect, and confirm the good agreement
between FSFEM and mode superposition solutions.

7.5.3 Time Domain Results

The first example in the time domain considers a simply-supported beam with a
notch at x; =3L/4 and a vertical load at x; = L/2. The beam has the same
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Fig. 7.22 Longitudinal (a) and transverse (b) displacement at the mid length of notched beams
with a defect at x;, = 3L/4
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Fig. 7.24 Displacements as function of longitudinal coordinate at the same moments: a SFEM
transverse displacement, b SM transverse displacement

geometry and material properties as described in the previous section. The beam is
modeled using four spectral elements as shown in Fig. 7.21. The beam response
computed through the FSFEM model is presented in Fig. 7.25 both in time and
space as a color map plot, while Fig. 7.26 shows snapshots of the displacements’
variation along the beam at three instants of time. In both figures, the axial dis-
placement is plotted in the subplot (a) and the transverse displacement is displayed
in subplot (b). The applied transverse load generates a transverse wave which
propagates from the middle of the beam in both directions. When the wave reaches
the notch, it is partially reflected, and partially gets converted into a longitudinal
wave originating at the notch location. Figures 7.27 and 7.28 show the time var-
iation of longitudinal and transverse velocities at the middle of the beam for two
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different defect positions (x;, = 5L/8 and x; = 3L/4), and compare them directly
with the velocity of the undamaged beam. As expected, the arrival time of the
wave that is reflected from a defect closer to the applied load is smaller, and the
amplitude of the wave is higher due to the dissipation added to the model. Details
of the reflected transverse waves for different damage locations are shown in
Fig. 7.28b. The influence of the notch length on the axial and transverse velocities
is shown in Figs. 7.29 and 7.30, which illustrate how the arrival time of both
reflected waves does not change with the damage axial length, and how the
amplitude of the waves are instead increasing proportionally with the notch length.
A second problem considers a clamped-free beam with a notch at x; = 3L/4 and a
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horizontal load at x; = L. The beam is modeled using two spectral elements with a
total of nine d.o.fs. (Fig. 7.18a). The considered applied load is again a modulated
sine burst at 500 kHz. Figure 7.31 presents 3D surfaces of the displacements (as
functions of time and longitudinal coordinate) whereas Fig. 7.32 presents snap-
shots of displacements variations along the beam length at three instants of time. In
both cases the axial displacement is plotted in the subplot (a) and the transversal
displacement is plotted in subplot (b). A longitudinal load causes a longitudinal
wave to propagate from the tip of the beam. When the wave reaches the notch (in
this case at x = 3L/4), it is partially reflected and partially converted into a
transversal wave originating at the notch location.
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Fig. 7.31 Displacements as function of time and longitudinal coordinate a longitudinal
displacement; b transverse displacement. The length of the notch is Al = 0.001 m
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Fig. 7.33 Displacements at the tip of a cantilever beam in the frequency domain. Case I:
horizontal load. a Longitudinal displacement; b transverse displacement

7.5.4 Frequency Domain Results

The FSFEM can be conveniently used to obtain results in the frequency domain,
upon transformation of the applied load and direct solution for the nodal ampli-
tudes at each frequency. Frequency sweeps of unit amplitude loads are considered
to obtain Frequency Response Function (FRF) predictions. Examples of this kind
of analyses are presented in this section.

The frequency response of a clamped-free beam with unit harmonic tip load is
evaluated in the presence of a notch at x; = 3L/4, of length Al = 1 x 107> m and
depth hy; = h/10. Figure 7.33 shows FRFs corresponding to a longitudinal load of
frequency varying in the 5-10 kHz range. Both longitudinal and transverse response
components resulting from a longitudinal load are presented. Specifically, Fig. 7.33a
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Fig. 7.34 Displacements at the tip of a cantilever beam in the frequency domain. Case II:
vertical load. a Longitudinal displacement; b transverse displacement

compares the responses for damaged and undamaged beams and shows how the
small localized notch produces small changes in the frequency domain, and par-
ticularly how the location of the resonant peaks is shifted of a negligible amount.
This confirms the notion that the considered type of damage does not significantly
modify the natural frequencies of the structure, even in a high frequency range as
considered here. The changes in natural frequencies due to notch damage in beams
and plates are quantified respectively in [17, 21], where it is essentially shown how
perturbations ()(¢) in the mode shapes, correspond to ()(¢?) change in the natural
frequencies. The transverse response in Fig. 7.33b again demonstrates the inter-
modal coupling between longitudinal and transverse motion. The peaks in the plot
correspond both to the bending frequencies of the beam and to the longitudinal ones,
the latter being excited by the considered axial excitation. The results for a transverse
tip load shown in Fig. 7.34 lead to similar conclusions and confirm the observations
made in commenting the previous figure.

References

1. Atluri SN (1986) Computational methods in the mechanics of fracture. North Holland,
Amsterdam

2. Christides S, Barr ADS (1984) One-dimensional theory of cracked Euler—Bernoulli beams.
Int J Mech Sci 26(11-12):639-648

3. Doebling SW, Farrar C, Prime MB, Daniel WS (1996) Damage identification and health
monitoring of structural and mechanical systems from changes in their vibration
characteristics: a literature review, LA-13070-MS, May 1996

4. Doyle JF (1997) Wave propagation in structures. Springer, New York

5. Gudmundson P (1984) The dynamic behavior of slender structures with cross-sectional
cracks. J Mech Phys Solids 31: 329-345



312 7 Perturbation Methods for Damaged Structures

6. Haisty BS, Springer WT (1988) A general beam element For use in damage assessment of
complex structures. ASME J Vib Acoust Stress Reliab Des 110:356-359
7. Hellan K (1984) Introduction To fracture mechanics. McGraw-Hill, New York
8. Hu N et al (2001) Damage assessment of structures using modal test data. Int J Solids Struct
38:3111-3126
9. Jones DS (1982) The theory of generalized functions. Cambridge University Press,
Cambridge
10. Kim JT, Stubbs N (2001) Crack detection in beam type structures using frequency data.
J Sound Vib 259(1):146-160
11. Krawczuk M (2002) A rectangular plate finite element with an open crack. Comput. Struct
12. Krawczuk M (2005) Application of spectral beam finite element with a crack and iterative
search technique for damage detection. Finite Elem Anal Des 38(6):537-548
13. Krawczuk M, Ostachowicz W (2002) Identification of delamination in composite beams by
genetic algorithm. Sci Eng Compos Mater 10(2):147-155
14. Krawczuk M, Ostachowicz W (1995) Modelling and vibration analysis of a cantilever
composite beam with a transverse open crack. J Sound Vib 183(1):69-89
15. Krawczuk M, Palacz M, Ostachowicz W (2004) Wave propagation in plate structures for
crack detection. Finite Elem Anal Des 40(9-10): 991-1004
16. Leissa A (1993) Vibration of plates Acoustical Society of America, Washington
17. Lestari W (2001) Damage of composite structures: detection technique, Dynamic response
and residual strength, Ph.D. Thesis, Georgia Institute of Technology, July 2001
18. Luo H, Hanagud S (1997) An integral equation for changes in the structural characteristics of
damaged structures. International Journal of Solids and Structures 34(35-36): 4557—4579
19. Ostachowicz W, Krawczuk M (1990) Analysis of the effect of cracks on the natural
frequencies of a cantilever beam. J Sound Vib 138:115-134
20. Qian GL, Gu SN, Jiang JS (1991) The dynamic behavior AN crack detection of a beam with a
crack. J Sound Vib 138:233-243
21. Sharma VK, Ruzzene M, Hanagud S (2006) Perturbation methods for the analysis of the
dynamic behavior of damaged plates. Inter J Solids Struct 43:4648-4672
22. Shen MH, Pierre C (1990) Natural modes of Euler—Bernoulli beams with symmetric cracks.
J Sound Vib 138: 115-134
23. Staszewski WJ, Boller C, Tomlinson G (2004) Health monitoring of aerospace structures
smart sensors and signal processing. Wiley, Chichester



Chapter 8

Bridging Scales Analysis of Wave
Propagation in Heterogeneous Structures
with Imperfections

8.1 Overview

The goal of NDE of SHM techniques is to detect the presence of localized
imperfections in the structure. These include, among others, porous regions, voids,
sharp discontinuities in material properties of the medium, stiff or soft inclusions,
cracks and plastic hinges. Localized damages like cracks or stiff inclusions are of
particular interest since they represent points of potential structural weakness.
Wave-based inspection methods rely on the common knowledge that waves are
reflected by changes in the impedance of the medium. In some cases, the mag-
nitude of the reflective wave can be related to the intensity of the defect. The
comparison between reflective and incident waves provides information about
location and size of the defect. Inspections are often supported by numerical
simulations which can serve two purposes. First, the simulated response of dam-
aged components can be used to test damage detection algorithms under known
damage configurations and in the absence of experimental noise. Second, simu-
lations can be employed in support of the interpretation of experimental data, to
identify time of arrivals, modes of wave propagation and complex reflection
patterns within the domain under consideration.

The main problem that arises during the simulation of wave propagation phe-
nomena is the high computational cost required by the numerical analysis, espe-
cially when a very detailed mesh is required to capture the perturbations induced in
the wavefield by the presence of a localized defect [7]. The size of the mesh is in
fact dictated by the minimum number of elements required to properly model the
defect. In a finite element (FE) scenario, the most intuitive way to reduce
the computational cost would be to refine the mesh only inside specific regions of
the domain where the presence of a discontinuity is simulated. The resulting non-
homogeneous mesh, however, will most likely cause spurious numerical phe-
nomena [5, 7], in the form of waves reflected by the boundaries between the
meshes. This aspect was also discussed in Chap. 4. These waves have no physical
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counterpart and potentially interfere with true reflections caused by actual
imperfections eventually undermining the validity of the simulations (Fig. 8.1).
The occurrence of spurious terms can be partially eliminated through proper
transitions of mesh size across the computation domain, which however may
produce very large models whose solution requires a very high computational cost.
Such cost may be also increase by the requirement that time step and mesh size
need to be related and satisfy conditions which ensure the accuracy of the solution.
This requires the mesh to be very refined for problems involving high frequency
waves, or may impose small time steps for cases where the geometry requires very
small elements to proper capture important geometrical features.

One way to address the problem of spurious waves consists in the application
of the Bridging Scales Method (BSM) [2, 7, 8], which allows a coarse
description of the global behavior of the structure while simultaneously obtaining
local information regarding a small region of the domain. Interaction forces at
the interfaces between the scales are added in order to bridge the two scales and
therefore minimize spurious effects [7]. This method was originally designed for
molecular dynamics (MD) applications to address the problem of coupling an
atomistic analysis with a continuum representation at the macroscopic level [8],
and for problems that are traditionally resistant to theoretical solutions, like
fracture and plasticity. However, applications have been presented for the case of
two continuum representations projected onto two meshes with different levels of
detail [2, 4].

This chapter illustrates the application of the BSM to wave propagation prob-
lems in 1D and 2D structures. In addition, the BSM can be applied to the problem
of waves in periodic structures in conjunction with an homogenization technique
[6]. While a detailed simulation of the actual periodic assembly takes care of the
problem inside the fine-scale region, the coarse scale solution is simply sought by
solving the homogenized equations of motion for the whole structure with a coarse
mesh. One of the examples in this chapter is to explore this kind of application and
the limits of the compatibility between the two models.
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Documented downsides of the BSM consist in the need to carry out a convo-
lution operation at each integration step, and in the two-scale time marching
scheme that needs to be implemented to carry out solutions at both coarse and fine
scale. The need for a convolution operation in the time domain is significantly
simplified through the formulation of the method in the frequency domain, which
transforms the convolution into a simple product, thus significantly simplifying the
implementation of the technique. In addition, the frequency domain formulation
does not need to satisfy the mesh size requirements associated with the time
marching scheme, which has the potential to reduce the number of elements
needed for proper prediction of the considered phenomena. In the time domain
formulation, the need for a two-scale integration scheme can be partially mitigated
through a procedure that monitors the total energy in the fine scale region, and
therefore identifies when relevant motion is occurring at the fine scales. This
reduces the computational time by limiting the fine scale solution to interval of
times during which the wave is actually transiting in the fine-scale region. Both of
these techniques are presented in this chapter, which first introduces the general
concept behind BSM, and subsequently presents its time domain and frequency
domain formulations. Examples on 1D and 2D waveguides illustrate the capa-
bilities of the considered formulations.

8.2 Theoretical Background

8.2.1 Coarse and Fine Scale Discretization and Bridging
Matrices

Let us consider an elastic domain discretized by both a coarse-scale FE and a fine-
scale FE mesh. The underlying assumption is that the resolution of the fine mesh is
high enough to capture the localized phenomena under investigation and that of
the coarse mesh is such that the computation over the whole domain is possible at
a reasonable cost.

For a given discretization of a linear elastic domain, the present multiscale
method is based on the decomposition of the displacement field # into coarse and
fine scales:

u=u+u (8.1)

where @ represents the displacement of the coarse-scale region and #’ is a fine-
scale displacement whose projection onto the coarse-scale space is zero. In this
chapter, the coarse and fine scales respectively include n. and ny degrees of
freedom as illustrated in Fig. 8.2.

The coarse-scale displacement can be represented in matrix form as:

i=Ad (8.2)
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Computational domain Q Q,

Fig. 8.2 Scale decomposition of the computational domain

where d is the vector of nodal degrees of freedom and /" is an operator of size
ny x n, that interpolates the coarse-scale solution on the nodal points of the fine-
scale using a proper set of shape functions. In other words, #; represents the
coarse-scale interpolation of the nodal values d; at the fine-scale nodal location x;
through the shape function matrix ./7;(x;):

ne

ﬁ,‘ = Z,/Vj(x,-)ln,)dj (83)

J=1

where I,,, is the identity matrix of size np, with np denoting the number of degrees
of freedom per node. The fine-scale u’ defines the part of the total displacement
field that cannot be represented by the coarse-scale and that can be derived from
the fine solution ¢ as:

u = Qq (8.4)

where Q is a square operator of size n; x ny whose purpose is to subtract the
information shared between the scales. A detailed derivation of the A4 and Q
matrices can be found in [2].

8.2.2 Multiscale Lagrangian

The dynamic governing equations of the system are obtained using Lagrange’s
equations, and the expression of the potential and kinetic energies of the fine-scale
discretization:

1
V =—u"Ku,
2 8.5
0 (8.5)
T:EuTMu

where M and K are the lumped mass and stiffness matrices of the fine-scale
discretization and can be derived with standard discretization procedures.
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The Lagrangian of the system, defined as & = T — V, is used in the general form
of Lagrange’s equations that for a conservative system subjected to the generalized
force vector F can be written as:

d (0% 0%
E(W) “ou = F (86)

Substituting Eq. 8.1 into Eq. 8.5 and imposing Eq. 8.6 gives:

Mg+K(NVd+ Qq)=F

M.+ Kd+ V"KQq=F.

where M., K. and F. are the consistent mass matrix, stiffness matrix and vector of
external forces projected on the coarse grid:

M, = V"MWV
K.= V"KWV (8.8)
F,.=/ATF

Equation 8.7 show how the two governing equations are coupled by the presence
of the interpolation and projection operators .4~ and Q.

8.2.3 Reduction of the Degrees of Freedom

It would be in general interest to explicitly solve for the fine-scale solution only in
a small region of the domain, while maintaining a coarse-scale representation in
the remaining part of the structure.

The redundant fine-scale degrees of freedom are eliminated by partitioning the
fine-scale domain € into two supplementary regions as illustrated in Fig. 8.3.
Specifically, Q}’ where the fine-scale solution is computed and coexists with the
coarse solution, while Q}IZ is the sub domain where only the coarse-scale solution is

calculated. Accordingly, the fine-scale degrees of freedom q are partitioned as
follows:

q=1q,q,)" (8.9)

where g, are the nf fine-scale degrees of freedom in region Q}’ that are to be
computed explicitly, and ¢°, of size n}’ , the fine-scale degrees of freedom in region
Q}f that must be rejected. In this chapter it is assumed that the number of degrees of
freedom in the region of interest is much smaller than the degrees of freedom to be
condensed out, i.e. n}’ < n}’ , and with n}‘ + n}’ = ny. The matrices M and K can all
be partitioned between the two regions as was done for ¢:
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N a
Qf
Computational domain Q Qr
Fig. 8.3 Reduction of the redundant fine-scale degrees of freedom
M., 0
e[t 0] 60
K K,
K = aa a 8.11
[Kha Kbb] (8.11)
so that the fine-scale equations of motion can be written as:
Mauéa + Kuaqa + Kab quh = Fa - Kabf/‘/bd (812)
Mppq, + Kppqy, + KpaQaq, = F — Kpa NV od (8.13)

Note that the matrix K, is of size nf X n]? and is nonzero only on the boundary

between the two regions, where the two sets of degrees of freedom are directly
coupled.

8.2.4 Time Domain Formulation

The fully explicit equations of motion for the fine-scale are expressed as [2]:

M
m+7

t
Maaéa + Kaaqa = Fa - KabJVbd Z / 0171*711'(1‘ - T)u(),m/(f)df (814)

m’:mf%Jrl 0

Equation 8.14 involves the evaluation at each time step of a convolution integral
of the quantity 6 known as the time kernel history function. Details about the
derivation of kernel functions for various assemblies are discussed thoroughly in
[2, 3]. For reference, in the case of a two-dimensional domain with a scale
interface placed along a vertical straight line, the kernel history of a node located
on the interface at a vertical location m is calculated as:
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)= 7, [7,0,6009] | [7,06000)] || 819

where n = 0 and n = 1 represent the horizontal locations in the mesh of points
sitting respectively on the interface and immediately to its right. Also, the operator
F ;l_w defines the inverse Discrete Fourier Transform in space, with p denoting
the discrete variable in the Fourier domain, while » defines the spatial location of
the considered boundary cell. In addition, the operator ! denotes the inverse

Laplace Transform. The quantity G(p,q,s) in Eq. 8.16 is defined as:

G(p,q,s) = [$*T+my'K(p, 61)]7l (8.16)

where s is the Laplace variable and ma,, Ke(p, q) are respectively the reduced mass
matrix and reduce stiffness matrix, expressed in the Fourier domain, of a fine-scale
finite element located immediately outside the fine-scale window and sharing one
side with the interface line. As pointed out in [2, 8], one of the challenges in the
evaluation of Eq. 8.15 consists in the calculation of the inverse Laplace transform,
which in most cases needs to be carried out numerically. For the applications
presented in what follows, the method of Weeks [9] is implemented by means of
the algorithm suggested by Weideman [10].

8.2.5 Frequency Domain Formulation

The complexity associated with the evaluation of the convolution term in Eq. 8.14
can be avoided through the expression of the method in the frequency domain.
This alternative approach has also the advantage of limiting requirements on the
mesh, whose refinement does not need to be dictated by conditions imposed by
the time step size. Some of the drawbacks to be considered however include the
computational effort required at each frequency step, along with the restrictions to
linear problems. The ability to formulate the BSM in two domains however offers
the opportunity to select the approach to be considered on the basis of the specific
problem to be analyzed.

For a frequency domain formulation of the BSM, the fine-scale and the coarse-
scale governing equations are transformed in the Fourier domain so that differ-
ential and integral operators are transformed into algebraic operators. The coarse
and fine scale solutions are then found at each frequency step as the solution of a
non symmetric complex linear system. The final solution in the time domain is
then recovered by means of the inverse Fast Fourier Transform (IFFT).

Equation 8.13 can be used to eliminate the degrees of freedom ¢,, by solving for
them explicitly and then substituting the result into Eq. 8.12. This can be easily
accomplished by means of the Fourier transform:
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Ff()] = F(w) = / eI (t) dt (8.17)

This allows to rewrite all the differential operators in the equations of motion given
by Egs. 8.12 and 8.13 in terms of algebraic operators and thus leads to a simple
expression for the condensed fine-scale degrees of freedom:

qb((,O) = [—COZM[,}) +Khb}_] (Fb - Kba'/‘/ad(w) - KbaQaqa(w)) (818)

In general, an equation of motion for g, is found by using the inverse Fourier
transform on Eq. 8.18 and substituting the result back into Eq. 8.12 [1, 8]. This
approach involves a time history kernel matrix that captures the effects of the
removed degrees of freedom and for very simple cases can be derived analytically.
However, the evaluation in time of this term is time consuming and for many
configurations of practical interest no close form solution exists. An alternative is
to conduct the entire analysis in the frequency domain and to post-process the
solution to recover the displacements as functions of time. Substituting Eq. 8.18
into Egs. 8.12 and 8.13 gives the following coupled system of equations in terms
of the coarse-scale degrees of freedom d and fine-scale degrees of freedom ¢,,:

[_szaa =+ Kaa + Keq(w)} U (w) + qu(w)d(w) = Feq(w) (8 19)
[~0’M. + K.]d(0) + /TKQ,q,(») = F. (o) (8.20)

where the following matrices are introduced to simplify the notation:

Key(0) = Ky Qp [~ Miy, + Kpp| ~ Kpa Q. (8.21)

Koa(0) = KV — KayQp [~ My + K] KpaV' (8.22)
-1

Fog(@) = Fo(®) — [—0’Mpyy, + Kip]  Fy() (8.23)

Note that the matrices K, and K}, are characterized by non-zero elements only
on the rows corresponding to the nodes belonging to the boundary between regions

ijf and Q}’. This significantly speeds up the computation of K., K,q and F,, since
only the terms of [—w*My,;, + K ,,;,}71 adjacent to the interface are actually inverted

and contribute to Eq. 8.19. Equations 8.19 and 8.20 can also be effectively written
in matrix form as:

—0?M, +K. NTKQ, . (8.24)
qu —COZM[m JrKga +Keq(w) qa N FC .

The linear system of Eq. 8.24 is solved at each frequency step for the coarse-
scale solution in the entire domain and for the fine-scale only in the region Q? of
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interest. Note that this formulation is completely general in the sense that, for a
given discretization, it can be applied to any structural element of any spatial
dimension without requiring ad-hoc expressions for the dynamic coupling
conditions.

8.3 Results for Time-Domain Bridging
8.3.1 Application to a One-Dimensional Rod

The first example considers the propagation of axial waves through the one-
dimensional (1D) system of Fig. 8.4. The system is a rod whose inertial and
stiffness properties are represented by concentrated parameters k and m of an
equivalent spring-mass model. For simplicity, free—free boundary conditions are
imposed at the ends of the structure. Two meshes are considered: the coarse-scale
mesh is defined over the entire length of the rod, while the fine-scale mesh is
limited over the central portion of the rod for x € [—Ly, Ls]. The two meshes are
selected such that

N
L =10 (8.25)
N,
Ny /N =10
x,u(x)
Qe |
ol
! f !
_Lf | i‘ Lf

Fig. 8.4 Schematic for one-dimensional case

— Coarse-scale initial condition

= = = Fine-scale initial condition

2, 4(x)

Fig. 8.5 Initial condition expressed in the two scales
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where N, and Ny are the number of coarse-scale elements and fine-scale elements
in the whole structure domain, respectively. An initial disturbance is applied in the
form of a Gaussian distribution of axial displacement centered at x = 0 (see
Fig. 8.5):

fof)Z

u(x,t =0) =uge” (= (8.26)

where ug is the amplitude of the imposed displacement and ¢ is the standard
deviation of the Gaussian distribution. According to classical wave propagation
theory, the disturbance is expected to travel towards the ends of the structure, be
reflected at the free ends and travel back towards the source without altering its
shape. In this case, the time kernel history function 6 can be obtained analytically
[8] as:

. 1

G s) ="+ 8.27
(&) s2 4+ 2(1 — cos ¢) (8.27)

where Eq. 8.27 corresponds to Eq. 8.16 for a one-dimensional domain. The time

history kernel function for the system is then found as:

0() = 2! {g;_g} _ %Jz(za)nt) (8.28)

where J, is the second-order Bessel function and

k
n=1\/— 2
) - (8.29)

Fig. 8.6 Time history kernel 0.8
versus normalized fine-scale
time
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Fig. 8.7 Axial wave
propagation in a rod.

a Coarse-scale simulation.
b Fine-scale simulation
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The kernel history for this system features a transient phase during which it
oscillates about the 0 value and its amplitude decays with time. After about 5 + 10
time units, the kernel is almost completely damped out [8] (see Fig. 8.6).

The simulation time corresponds to the wave traveling half the length of the bar
twice. A second order accurate Newmark scheme is selected as the time inte-
gration scheme. The considered rod is 1 m long and is made of aluminum
(E=17.1x10'""N/m?, p = 2700 kg/m?). The initial disturbance is selected such
that ¢ = 0.1 and Ly = 0.375m. Figure 8.7a, b show the calculated wavefield
versus time and space. The coarse-scale representation of Fig. 8.7a shows the
applied disturbance moving towards the external regions of the domain being
reflected in a non-dispersive manner, within the accuracy limits of the numerical
model. When the wave travels across the interface, no spurious reflections due to
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the interface between the two meshes are observed. Figure 8.7b, on the other hand,
shows the same wave projected onto the fine-scale mesh in the region of the
domain where the fine scale is defined. As expected, no reflected waves are
observed at the interface: both the outgoing and the incoming waves travel
unperturbed through the interfaces without changes in direction or amplitude. One
way to quantify the accuracy of the technique consists in comparing the results
with those obtained applying a non-uniform mesh over the entire elastic domain.
In such a scenario, the only compatibility between the scales that is enforced is the
continuity of displacements between two neighboring elements belonging to dif-
ferent scales at the shared node. The results of both methods must then be com-
pared with a reference solution, for instance the one obtained through a full refined
discretization of the whole structure. The total mechanical energy of the fine-scale
region E7, is selected as a metric for the comparison and is calculated based on the
following expression:

1 o ad .o 1 aa
Er, = 54, My'q, + 54,K'q, + ' Tq, (8.30)

where f/ are the interface forces. In Fig. 8.8, the total mechanical energy nor-
malized by its value at ¢t = O(E,) is plotted against the first half of the fine-scale
interval for the mesh layouts. It can be observed that, without a proper bridging of
the scales, some spurious energy is left inside the system when the wave propa-
gates through the interface. This residual energy is associated with the spurious
reflective waves that are generated at the interface when the proper impedance
force is not accounted for in the model. On the contrary, the energy curve for the
BSM model closely matches the reference one obtained with a detailed FE
analysis.
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8.3.2 Homogenized Bi-material Rod with Imperfections

The structure depicted in Fig. 8.9 consists of a periodic sequence of unit cells with
two materials. A first order approximation of the dynamic behavior of the rod can
be obtained by considering equivalent properties defined according to the rule of
mixtures:

prA = (my +m;)

8.31
EpA = kiky (8.31)
ki + ky
where
E\A E>A
ko =—= k=
o (1—0) (8.32)

my = pAa,  my = pyA(l — )

The definition of the FE meshes used for this problem is shown schematically in
Fig. 8.10. A detailed fine-scale mesh is applied to the central region of the rod and
accounts for the alternation of material phases over one cell of the structure. The
discontinuity is modeled by reducing the Young’s modulus associated with one layer
in the bi-material pattern (Eges = 0.025E), to model a soft inclusion. As shown in the
schematic of Fig. 8.10a, the position of the fine-scale window is chosen such that the
defect falls within the region where a detailed description of the medium is available.
For this example, the discontinuity is introduced at x = 0.22. Alongside the detailed
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Fig. 8.11 Wave propagation
in a homogenized rod with
localized defect. a Coarse-
scale simulation. b Fine-scale
simulation
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problem, an equivalent rod featuring the derived homogeneous properties Ey and py
is discretized with a lower number of bar elements.

Figure 8.11a, b show the propagating wave plotted versus time and space as
calculated from the BSM analysis. The presence of the material discontinuity is
highlighted by the generation of a reflected wave due to the change in impedance
caused by the inclusion. It can be noticed how the imperfection is responsible for a
time shift in the incident propagating wave, but does not affect the speed at which
the wave propagates past the discontinuity. The same reflection pattern is featured
by the returning wave when it hits the imperfection. The absence of spurious
reflections at the interfaces between the meshes allows a straightforward inter-
pretation of the wavefield.
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Two considerations can be made out of the inspection of Fig. 8.11a, b to
underline the effectiveness of the BSM. First, the plots provide two representations
of the same propagating wave with different levels of accuracy. The coarse-scale
simulation provides a global description of wave motion in the rod while detecting
the presence of a defect, but fails to offer a high-resolution representation of the
reflection in the neighborhood of the discontinuity. On the contrary, the fine-scale
simulation provides an accurate local representation from which details of the
reflection generation mechanism can be inferred. Secondly, and most importantly,
the size of the damaged area is in most cases (including the example of Fig. 8.11a,
b smaller than the size of a single finite element in the coarse scale. Therefore the
coarse scale does not model the defect and considers instead the homogeneous
properties in Eq. 8.31 applied throughout the rod length.

Fig. 8.12 Wave propagation 1 1
in a homogenized rod with
wide damaged region.
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A slight variation on the previous example is shown in Fig. 8.12a, b. In this case,
the region of the rod with reduced stiffness extends over a larger portion of the
domain. This configuration results in a more complex wavefield. Like in the pre-
vious example, the low-impedance region reflects the incoming wave. In addition,
the refracted wave propagates in the damaged region at a lower speed due to the
lower stiffness of the material. When the wave leaves the damaged area, a second
change in the material impedance occurs, the wave regains its original speed, and
another reflection is observed at the damage boundary. A chain of internal reflec-
tions can also be observed, which produces a standing wave confined to the dis-
continuity region. While these additional phenomena are standard features due to
the increased complexity of the domain, they allow additional considerations about
the method. Unlike the previous example, the succession of consecutive reflections
inside the damaged area is here accurately shown only in the fine scale represen-
tation, while it is barely visible in the coarse scale. This is due to the fact that the
internal reflections span over a small region which is discretized with an insufficient
number of coarse elements. A more complicated reflection pattern accentuates the
difference in performance between the scales. This example tests the capabilities of
the BSM, since it involves many more crossings of the scale interfaces. The
inspection of Fig. 8.12b, however, shows that the interface forces are still very
effective and no spurious reflections are generated.

It is interesting to note that the fine scale matrices are assembled using the
actual material properties of the elements, while the coarse scale considers
equivalent or homogenized properties. This results in a certain degree of incom-
patibility between the two models that is as negligible as the technique used for the
homogenization is refined. The mutual transfer of information from one scale to
the other generates a contamination of the results that grows with the mismatch
between the actual and the homogenized properties of the structure. The imped-
ance mismatch between the materials dominates the validity of the homogeniza-
tion process and therefore the compatibility between the homogenized model and
the original structure. Figure 8.13 shows the results of simulations for bi-material
layouts with increasing mismatch between the properties of the two phases. The
total mechanical energy of the fine-scale region is again chosen as the metric for
the accuracy of the method and compared with the same quantity calculated with a
detailed fine-mesh simulation performed over the elastic domain. The results of
this comparison are shown in Fig. 8.13. The energy curves feature considerable
agreement during the early stages of the simulation, when the fine-scale integration
is carried out from a given initial disturbance applied directly to the fine scale. The
reconstruction of the wave returning inside the fine-scale window relies instead on
values imported from the coarse scale simulation. These values are affected by
errors due to the approximation associated with the rule of mixtures approxima-
tion, therefore the shortcomings of the homogeneous model used for the coarse
scale ultimately affect the refined analysis. As expected, the disagreement between
the curves grows with the impedance mismatch.

Let us consider different distributions of the initial applied disturbance
u(x,t = 0). The changes are made by controlling the parameter ¢ in the expression
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Fig. 8.13 Variation of total mechanical energy for different levels of impedance mismatch:
comparison between BSM (solid line) and reference solution (dashed line). a E; =
09E; —p, =09p,. b E; =08E, —p, =0.8p,. ¢ E; =0.7E, — p, =0.7p,. d E; =0.6E;
—py = 0.6p,

for u that represents the standard deviation of the Gaussian curve. Low values of ¢
correspond to short wavelength disturbances, as opposed to high values of ¢ which
generate spatially smoother signals. The calculated time histories of the fine-scale
energy Er, are shown in Fig. 8.14 for increasing o. In the case of high o, the
agreement is good over the whole interval of simulation: the changes occurring
because of the internal reflections due to the defects are properly captured and the
residual energy level left in the fine scale window at the end of the simulation
coincides with the reference value. In contrast, a low ¢ causes a poor agreement
when it comes to the returning wave: for ¢ = 0.025, the residual energy is
underestimated by almost 80% (Fig. 8.14a. The results of Fig. 8.14 and the
comparison with the previous set of results suggest the presence of an incom-
patibility enhanced by the shape of the excitation. The homogenized model pro-
vides in fact a good approximation for the behavior of the bi-material rod only in
the low frequency regime. Sharp excitations generate waves whose frequency
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Fig. 8.14 Total mechanical energy for the fine-scale region—BSM method versus full
simulation. a ¢ = 0.025. b 6 = 0.075. ¢ 6 =0.1.d 6 = 0.15

content is less compatible with the range of applicability of the rule of mixtures.
Ultimately sharp excitations induce a shortcoming in the performance of the
coarse scale. This is consistent with the trend of Fig. 8.14, but still does not explain
why it is the fine scale result to be ultimately so deeply affected by the short-
coming. A possible explanation can be argued by looking at Fig. 8.15 where the
calculated wave is shown respectively for the ¢ = 0.025 and ¢ = 0.15 cases.
Figure 8.15a, ¢ show that, when it comes to the incident wave, the fine scale
provides an accurate representation of the wavefield for both excitations. However,
Fig. 8.15b, d reveal a much better performance of the coarse scale simulation in
the ¢ =0.15 scenario, in accordance with the argument made above. For
o = 0.025, the coarse scale energy deteriorates from the early stages of the inte-
gration (Fig. 8.15b), featuring a wavy behavior typical of the dispersive nature of
the bi-material rod. Finally, the coarse scale solution eventually contributes to the
fine scale simulation of the returning wave. For ¢ = 0.15 the fine solution, being
based on the good result of the coarse solution, is extremely accurate (Fig. 8.15¢),
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while for ¢ = 0.025 the incompatibility of the coexisting representations is
responsible for the blurry fine scale wave of Fig. 8.15a. All of these effects can
also be associated with the interpolation procedure required to project the coarse-
scale displacements onto the fine-scale mesh at the coarse-fine scale interface,
which is carried out through the shape function matrix N introduced above.

8.3.3 Energy-Based Time Integration Scheme

The main motivation for numerical techniques such as the BSM is a reduction in
computational cost. The partition of the domain is beneficial since the fine-scale
equation of motion involves smaller matrices, which is expected to have dramatic
consequences on memory allocation. On the other side, the method has a few
downsides that reduce its applicability to a limited number of scenarios. Notably,
the interface force generation process involves at each time step a convolution
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Table 8.1 CPU Time performance of the BSM on fine meshes of different size
Ny Full simulation CPU time (s) Bridging scales CPU time (s) CPU time saved (%)

400  28.86 25.69 11.0
450  36.61 27.81 24.0
500 4520 29.97 33.7

integral calculated from the initial instant of the simulation. By its own definition,
this operation requires an amount of time that increases at each time step. For long
simulations, the process can become time consuming and can cause the simulation
time to exceed the time needed to conduct a fully detailed simulation involving a
fine scale applied over the entire domain. This limitation becomes critical when
the fine-scale window and the entire domain are comparable in size. As soon as the
global dimension of the domain increases with respect to that of the fine-scale
window, the method begins to pay off. These considerations are summarized in
Table 8.1, where the results for the first rod problem presented above are shown
for different meshes. For this comparison, an increasing size of the global problem
is achieved by varying the number of elements in the detailed fine discretization
Ny. The numbers shown in Table 8.1 are relative to a simulation run in Matlab®
on a PC Dell® Dimension 8250 with a 2.78 GHz CPU, and 1.0GB RAM. The
speed of the method can be enhanced by letting the simulation run on the sole
coarse-scale mesh unless the presence of a wave propagating within the fine-scale
window is detected. This can be achieved automatically by monitoring the energy
level inside the fine-scale window and use it as a threshold to trigger the update of
the fine-scale solution. The coarse-scale total mechanical energy calculated inside
the fine-scale region is an ideal trigger, since it is updated at each time step even
when the wave is outside the fine-scale region. A threshold value E* is selected
such that, when E., > E*, the algorithm interprets it as a wave traveling inside
the fine-scale and the coupled integration is conducted. When the wave moves
across the scale interface, the value of E. drops below the threshold and only the
coarse-scale integration is carried out. When the returning wave traveling back
towards the source gets inside the region, the coupled integration is re-established.
The procedure is detailed in Fig. 8.16. The performance of the integration with the
energy threshold is shown in Table 8.2 for the same set of simulations of
Table 8.1. By comparison of the two sets of results, it is clear how the threshold on
the energy manages to reduce the CPU time in all the considered cases.

8.3.4 Propagation of In-plane Waves in a 2D Elastic Domain

An additional example considers the propagation of plane waves in a free—free
square 2D elastic domain. The plate is 0.5 m long, 0.5 m wide and 0.035 m thick
and made of aluminum (Young’s modulus E = 7.1 x 10'°N/m?, density p =
2.7 x 10° Kg/m® and Poisson’s ratio v = 0.3).
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Fig. 8.16 Flow-chart of the energy threshold procedure

Table 8.2 Effect of an energy threshold on the CPU Time
Ny Full simulation CPU time (s)  Energy threshold CPU time (s) CPU time saved (%)

400  28.86 14.30 50.5
450  36.61 14.95 522
500 45.20 17.58 61.1

The system is initially perturbed by imposing a two-dimensional Gaussian
distribution of the displacement along the y coordinate (Fig. 8.17b) defined as:

RO
uy(x,y) = ¢ K 10%‘ 5SIZ (8.33)
> L.

where d is a radial distance from the origin of the reference frame and u, is a
characteristic parameter of the Gaussian curve, respectively defined as:
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Fig. 8.17 Schematic of a y 4
rectangular plate with applied
Gaussian in-plane initial
disturbance. a Geometry.

b Initial disturbance

Fig. 8.18 Snapshot of
incident travelling wave

(8.34)

K and ¢ are two additional parameters defining the amplitude and the standard
deviation of the Gaussian curve, respectively. A reference solution for this
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Fig. 8.19 Behavior of (1) x10°
for different m. a 0(1,1).
b 0(2,2)

example is obtained through a detailed FE analysis conducted by applying a fine
mesh over the entire plate domain. Rectangular 4-node bilinear finite elements are
used to discretize the plate. Figure 8.18 shows a snapshot of the wavefield after
3 x 1077 s of simulation. By inspection, it is possible to recognize some charac-
teristic features of in-plane wave motion. A pressure wave is clearly visible
traveling along the direction of the disturbance. A shear wave, smaller in ampli-
tude and lagging the pressure wave, can also be observed traveling mostly along
the x direction.

Let us now introduce two meshes: a 20 x 20 coarse mesh applied over the
entire square domain and a fine mesh confined to a smaller rectangular window of
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size 0.5 x 0.1 m centered about x = 0,y = 0.15 m involving elements whose size
is such that they would form a 80 x 80 mesh if applied to the entire domain. The
procedure for the calculation of the time history kernel function is detailed in [2].
Since the nodes in the mesh have two degrees of freedom, at each instant in time,
0(1) is a 2 x 2 matrix.

It is interesting to observe that this matrix is not symmetric, i.e. 01, # 0,;. It has
been shown [2] that, since the effects of m decays quickly with m itself, it is
sufficient to retain contributions from 3 + 5 values of m. For reference, Fig. 8.19a,
b respectively show the behavior of 61 and 6,, over the fine-scale simulation time
domain for some values of m.

Figure 8.20a represents a coarse-scale description of the wave propagation over
the entire rectangular domain, while Fig. 8.20b is the fine-scale description of the
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wavefield within the small rectangular window where the fine mesh is available.
Two considerations can be made: first, the fine-scale analysis provides a more
detailed representation of the phenomenon, therefore a detailed inspection of a
region of the plate is available without solving the full fine-scale problem. Second,
the BSM takes care of the interface between the meshes and no spurious reflections
are observed.

A discontinuity is introduced as a region of material characterized by higher
density and stiffness to simulate a stiff inclusion. The stiff region is modeled as a
10 x 1 fine-scale element strip located symmetrically with respect to the vertical axis
at y = 0.15m. The results of the simulation are shown in Fig. 8.21a, b. As in the
previous examples, the two scales provide two complementary yet compatible pieces
of information about the wave motion. Figure 8.21a provides a low-resolution
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Fig. 8.22 Energy-based
accuracy test or bridging
scales simulation.

a Undamaged plate.

b Damaged plate
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picture of the complete wavefield including both the pressure and shear mode and
allows visualization of the wave interaction with the plate boundaries.

Figure 8.21b clearly shows that the presence of the stiff inclusion is properly
detected and provides a crisp picture of the reflection generation mechanism. The
absence of spurious waves due to the scale interface, documented in Fig. 8.20a, b
and the compatibility between the result in Fig. 8.21a with the one in Fig. 8.21b
suggest that the analysis is accurate. The fine-scale simulation provides a precise
representation of the wavefield and shows the extent of the defect. The accuracy of
the BSM is again quantified by monitoring the total mechanical energy over the
fine-scale region. The energy is normalized by its value at + = 0 and is plotted
versus time in Fig. 8.22a, b for the damaged and undamaged cases, respectively.
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The plots show considerable agreement with the reference solution over a
simulation interval corresponding to the time required by the pressure wave to
reach the upper edge of the plate, be reflected and travel through the fine-scale
region. Comparison of Fig. 8.22b with Fig. 8.22a also shows the presence of a
defect: the returning wave is in fact associated with a slightly lower level of
mechanical energy as a consequence of the localized reflection caused by the stiff
inclusion.

8.4 Results for Frequency-Domain Bridging
8.4.1 Time Domain Spectral Element Discretization

Although independent of the approximation technique, the considered multiscale
approach is applied in conjunction with a time domain spectral element (SE)
discretization of the wavefield due to the significant advantages offered in mod-
eling elastic waves in complex structures.

Within a SE framework, high-order Lagrange’s polynomials are used as inter-
polation/shape functions of the field variables. The n + 1 Lagrange polynomials of
degree n are defined in terms of the control points ¢; € [—1,1],i=1,...,n+ 1:

l,b(é);l _ (g_ 51)(5—6171)(5_ él+1)(éy_ gp+1) (835)
(&G—&) (G =&)(& = &) (&G = &)
The n + 1 control points ¢; used in Eq. 8.35 are chosen to be the Gauss—Lobatto—
Legendre (GLL) points, which are the roots of the following equation:

(1-EHZ (&) =0 (8.36)

where #/ (&) denotes the first derivative of the Legendre polynomial of degree n.
Note that the GLL points always include +1 and —1 therefore in a SE mesh some
nodes always lie exactly on the boundaries of the elements. The shape functions
for 2D elements are conveniently generated by the cartesian product of 1D shape
functions in the x and y direction.

This method is characterized by the high accuracy of spectral method while
maintaining the flexibility of FE methods when dealing with complex geometries.
Similarly to classical finite elements, the governing partial differential equations of
a waveguide are discretized and transformed to a set ordinary differential equation
in time. Let u# denote the global vector of unknown degrees of freedom, the
discretized system of governing differential equation results:

Mii(r) + Ku(t) = f(1) (8.37)

where M and K are the mass and stiffness matrices of the system and f the vector
of externally applied nodal loads.
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Fig. 8.23 One dimensional n/n =5 F
uniform rod and e Coarse scale mesh: Q ®
corresponding multi scale r0000mE00oamIe000E RDCOCOIRX
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8.4.2 Rod

The propagation of axial waves in a one dimensional (1D) homogeneous rod is
first studied as a test problem.

The system under consideration (Fig. 8.23) consists of a uniform aluminum rod
(E =71.0GPa, p = 2700 kg/m*) clamped at the left end and excited by a con-
centrated force at the opposite boundary. To avoid the onset of numerical noise
during simulations, dissipation is added to the system by a complex Young’s
modulus: E = E(1 +0.017). The same figure also shows that the waveguide is
simultaneously discretized using two meshes: a coarse-scale mesh is defined over
the entire domain, and a fine-scale mesh is limited over a selected portion of the
structure: Q}“) = [0.3L 0.5L] with L = 1.0m denoting the length of the rod. The
underlying assumption of the BSM is that the coarse-scale region must be accurate
enough to capture the global wave motion. The SE approach adopted in this
chapter, allows to discretize the coarse-scale mesh with only 6 nodes per shortest
wavelength, while a refinement ratio n;/n, = 5 is chosen for the fine-scale region.

Wave propagation results are obtained for a four cycles sine burst at 200 kHz.
Figure 8.24a shows the computed wavefield in the coarse-scale region for a
simulation time that allows the wave to travel the length of the rod twice. As
expected, when the main wave intersects the boundaries between the two meshes,
the wavefield remains free from spurious reflections from the interface.
Figure 8.24b illustrates that also the displacement field solved in the fine-scale
region is free from reflections at the boundaries: both the incoming and outgoing
waves are free to propagate undisturbed through the two regions.

Figure 8.25 show a snapshot of the wave traveling across the two regions and
illustrate the perfect matching between the coarse and fine scale solutions. This can
be better observed in Fig. 8.25b that shows how the fine-scale displacement
overlaps the coarse-scale solution, with a better spatial resolution and no spurious
reflections.

8.4.3 Damaged Timoshenko Beam

The present multiscale approach is also applied to model the wave propagation
characteristics of an aluminum Timoshenko beam with imperfections. Figure 8.26
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illustrates the considered structure in which damage is modeled as a reduction of
the effective stiffness of a section located at x; = 0.35 m from the clamped end.
The fine-scale mesh is chosen to provide a fine discretization in the damaged

region Q}a) = [0.3L 0.5L]. The coarse-scale mesh, that discretizes the entire beam,
includes 40 elements, while the fine-scale mesh correspond to a refinement ratio
ng/n. = 5. With the present approach, the presence of a discontinuity is modeled
only at the fine-scale level, since in many cases the size of the damaged area in the
fine scale region is smaller than that of the size of a single finite element of the
coarse-scale. On the contrary, the coarse-scale model simply considers homoge-
neous properties applied throughout the entire domain.
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Fig. 8.25 a Snapshot of the 1
response when the incident

wave is traveling through the t=0.110 ms
refined zone, and b a detail of
the fine-scale solution. Coarse
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Numerical results are presented for the beam being excited by a four-cycle sine
burst at 100 kHz. Figures 8.27 and 8.28 show how incident and reflected waves
are able to propagate throughout the entire structure without spurious reflections at
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Fig. 8.26 Sketch of the considered Timoshenko beam with damage
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the interface between the two meshes. Specifically, Figs. 8.27a and 8.28a illustrate
the coarse-scale wavefield corresponding to the beam vertical displacement and
sectional rotation respectively. These results show how the coarse-scale mesh is
able to describe the global behavior of the structure, including the interaction with
damage, but fails in giving a detailed representation of the reflections induced by
the discontinuity. Figures 8.27b and 8.28b show how the displacement field
resolved at the fine-scale level is free from spurious reflections, and give a more
detailed description of the interaction between the incident wave and the damaged
section. Snapshots of the displacement field at the fine and coarse scales are
illustrated in Fig. 8.29. These results illustrate the perfect overlapping between the
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Fig. 8.28 a Computed
coarse-scale wavefield of the
sectional rotation degrees of
freedom, and b corresponding
fine-scale solution
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two scales for both the transverse displacement and sectional rota