

SELinux System
Administration
Third Edition

Implement mandatory access control to secure
applications, users, and information flows on Linux

Sven Vermeulen

BIRMINGHAM—MUMBAI

SELinux System Administration
Third Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Senior Editor: Arun Nadar
Content Development Editor: Romy Dias
Technical Editor: Soham Amburle
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Vijay Kamble

First published: September 2013
Second edition: December 2016
Third edition: November 2020

Production reference: 1041120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-147-7

www.packt.com

http://www.packt.com

To the doctors, nurses, public health officials, and first responders who are
protecting us from COVID-19.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Sven Vermeulen (sjvermeu on Twitter) is a long-term contributor to various free
software projects and the author of several online guides and resources, including the
Gentoo Handbook. He got his first taste of free software in 1997 and never looked back.

Within SELinux, Sven contributed several policies to the Reference Policy project, and
actively participated in policy development and user space development projects.

In his daily job, Sven is an enterprise architect in a European financial institution as well
as a self-employed solution engineer and consultant. Prior to this, he graduated with
an MSE in computer engineering from Ghent University and an MSc in ICT enterprise
architecture from IC Institute.

I want to thank the SELinux community at large for being who they are,
mature in their answers, and knowledgeable in all areas.

Closer to my heart, I would like to thank my daughter for giving me the
time to work on this book, despite being locked in with me during the

COVID-19 lockdown measures.

About the reviewers
David Windsor is a free software hacker who fell in love with Linux when he received
his first Slackware installation disc at a Linux Users' Group in the late 1990s. He initially
started contributing to Linux security as a hobbyist but has since been fortunate enough
to be able to get paid to do what he loves.

David currently works at FireEye, Inc., where he does operating system security research.
Previously, David has worked at Red Hat and The Linux Foundation and has contributed
code to the Kernel Self-Protection Project (KSPP).

I'd like to thank Drew and Liz, loyal party members who have been there
from the start. Rock on London, rock on Chicago!

Jimmy Savage is a certified Linux system administrator, DevOps tools engineer, network
engineer, and security researcher. He focuses on supporting mission-critical devices and
infrastructure, including everything from flight simulators, embedded systems, data
centers, and beyond.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

Section 1:
Using SELinux

1
Fundamental SELinux Concepts

Technical requirements� 20
Providing more security
for Linux� 20
Introducing Linux Security Modules
(LSM)� 22
Extending regular DAC with SELinux� 25
Restricting root privileges� 26
Reducing the impact of vulnerabilities� 26
Enabling SELinux support� 27

Labeling all resources
and objects� 28
Dissecting the SELinux context� 30
Enforcing access through types� 31
Granting domain access through roles� 32
Limiting roles through users� 34
Controlling information flow through
sensitivities� 35

Defining and distributing
policies� 36
Writing SELinux policies� 37
Distributing policies through modules� 39
Bundling modules in a policy store� 40

Distinguishing between
policies� 41
Supporting MLS� 41
Dealing with unknown permissions� 41
Supporting unconfined domains� 42
Limiting cross-user sharing� 43
Incrementing policy versions� 44
Different policy content� 45

Summary� 47
Questions� 47

Table of Contents

ii Table of Contents

2
Understanding SELinux Decisions and Logging

Technical requirements� 50
Switching SELinux on and off� 50
Setting the global SELinux state� 50
Switching to permissive
or enforcing mode� 52
Using kernel boot parameters� 54
Disabling SELinux protections
for a single service� 55
Understanding SELinux-aware
applications� 56

SELinux logging and auditing� 57
Following audit events� 58
Tuning the AVC� 60
Uncovering more logging� 61

Configuring Linux auditing� 62
Configuring the local system logger� 64
Reading SELinux denials� 65
Other SELinux-related event types� 68
Using ausearch� 71

Getting help with denials� 72
Troubleshooting with setroubleshoot� 73
Sending emails when SELinux
denials occur� 74
Using audit2why� 75
Interacting with systemd-journal� 76
Using common sense� 77

Summary� 79
Questions� 79

3
Managing User Logins

Technical requirements� 82
User-oriented SELinux contexts� 82
SELinux users and roles� 83
Listing SELinux user mappings� 83
Mapping logins to SELinux users� 84
Customizing logins for services� 86
Creating SELinux users� 87
Listing accessible domains� 89
Managing categories� 90

Handling SELinux roles� 91
Defining allowed SELinux contexts� 91
Validating contexts with getseuser� 93

Switching roles with newrole� 93
Managing role access through sudo� 94
Reaching other domains using runcon� 95
Switching to the system role� 96

SELinux and PAM� 96
Assigning contexts through PAM� 97
Prohibiting access during permissive
mode� 98
Polyinstantiating directories� 99

Summary� 101
Questions� 101

Table of Contents iii

4
Using File Contexts and Process Domains

Technical requirements� 104
Introduction to SELinux
file contexts� 104
Getting context information� 105
Interpreting SELinux context types� 107

Keeping or ignoring contexts� 108
Inheriting the default contexts� 109
Querying transition rules� 109
Copying and moving files� 110
Temporarily changing file contexts� 112
Placing categories on files
and directories� 113
Using multilevel security on files� 113
Backing up and restoring
extended attributes� 114
Using mount options to set
SELinux contexts� 114

SELinux file context
expressions� 115
Using context expressions� 116
Registering file context changes� 117
Optimizing recursive context
operations� 119
Using customizable types� 120
Compiling the different
file_contexts files� 121
Exchanging local modifications� 122

Modifying file contexts� 122

Using setfiles, rlpkg, and fixfiles� 123
Relabeling the entire filesystem� 123
Automatically setting context
with restorecond� 124
Setting SELinux context at boot
with tmpfiles� 124

The context of a process� 125
Getting a process context� 126
Transitioning toward a domain� 127
Verifying a target context� 129
Other supported transitions� 130
Querying initial contexts� 130
Tweaking memory protections� 130

Limiting the scope
of transitions� 131
Sanitizing environments
on transition� 132
Disabling unconstrained
transitions� 132
Using Linux's NO_NEW_PRIVS� 134

Types, permissions, and
constraints� 136
Understanding type attributes� 136
Querying domain permissions� 137
Learning about constraints� 138

Summary� 139
Questions� 140

iv Table of Contents

5
Controlling Network Communications

Technical requirements� 142
Controlling process
communications� 142
Using shared memory� 142
Communicating locally through pipes� 143
Conversing over UNIX domain sockets� 144
Understanding netlink sockets� 145
Dealing with TCP, UDP, and
SCTP sockets� 145
Listing connection contexts� 147

Linux firewalling and
SECMARK support� 148
Introducing netfilter� 148
Implementing security markings� 150
Assigning labels to packets� 151
Transitioning to nftables� 153
Assessing eBPF� 154

Securing high-speed
InfiniBand networks� 157
Directly accessing memory� 158
Protecting InfiniBand networks� 158
Managing the InfiniBand subnet� 159
Controlling access to InfiniBand

partitions� 161

Understanding labeled
networking� 163
Fallback labeling with NetLabel� 163
Limiting flows based on
the network interface� 164
Accepting peer communication
from selected hosts� 165
Verifying peer-to-peer flow� 165
Using old-style controls� 166

Using labeled IPsec with
SELinux� 167
Setting up regular IPsec� 169
Enabling labeled IPsec� 169

Supporting CIPSO with
NetLabel and SELinux� 170
Configuring CIPSO mappings� 171
Adding domain-specific mappings� 172
Using local CIPSO definitions� 173
Supporting IPv6 CALIPSO� 173

Summary� 174
Questions� 174

6
Configuring SELinux through Infrastructure-as-Code
Orchestration

Technical requirements� 176
Introducing the target
settings and policies� 176
The idempotency of actions� 176

Policy and state management� 177
SELinux configuration settings� 177
Setting file contexts� 178
Recovering from mistakes� 178
Comparing frameworks� 178

Table of Contents v

Using Ansible for SELinux
system administration� 179
How Ansible works� 179
Installing and configuring Ansible� 180
Creating and testing the Ansible role� 181
Assigning SELinux contexts to
filesystem resources with Ansible� 182
Loading custom SELinux policies
with Ansible� 183
Using Ansible's out-of-the-box
SELinux support� 185

Utilizing SaltStack to
configure SELinux� 186
How SaltStack works� 186
Installing and configuring SaltStack� 187
Creating and testing our SELinux
state with SaltStack� 188
Assigning SELinux contexts to
filesystem resources with SaltStack� 189
Loading custom SELinux policies
with SaltStack� 190
Using SaltStack's out-of-the-box
SELinux support� 190

Automating system

management with Puppet� 191
How Puppet works� 191
Installing and configuring Puppet� 192
Creating and testing the SELinux
class with Puppet� 193
Assigning SELinux contexts to
filesystem resources with Puppet� 194
Loading custom SELinux policies
with Puppet� 195
Using Puppet's out-of-the-box
SELinux support� 196

Wielding Chef for system
automation� 197
How Chef works� 197
Installing and configuring Chef� 198
Creating the SELinux cookbook� 201
Assigning SELinux contexts to
filesystem resources with Chef� 203
Loading custom SELinux policies
with Chef� 203
Using Chef's out-of-the-box
SELinux support� 204

Summary� 205
Questions� 206

Section 2:
SELinux-Aware Platforms

7
Configuring Application-Specific SELinux Controls

Technical requirements� 210
Tuning systemd services,
logging, and device
management� 210
Service support in systemd� 212
Logging with systemd� 220

Handling device files� 221

Communicating over D-Bus� 224
Understanding D-Bus� 224
Controlling service acquisition
with SELinux� 226
Governing message flows� 227

vi Table of Contents

Configuring PAM services� 228
Cockpit� 228
Cron� 230
OpenSSH� 232

Using mod_selinux
with Apache� 236
Introducing mod_selinux� 236

Configuring the general Apache
SELinux sensitivity� 238
Mapping end users to
specific domains� 239
Changing domains based on source� 239

Summary� 241
Questions� 241

8
SEPostgreSQL – Extending PostgreSQL with SELinux

Technical requirements� 244
Introducing PostgreSQL
and sepgsql� 244
Reconfiguring PostgreSQL
with sepgsql� 244
Creating a test account� 246
Tuning sepgsql inside PostgreSQL� 248
Troubleshooting sepgsql� 249

Understanding SELinux's
database-specific object
classes and permissions� 250
Understanding sepgsql permissions� 251
Using the default supported types� 252
Creating trusted procedures� 255

Using sepgsql-specific functions� 257

Using MCS and MLS� 257
Limiting access to columns based
on categories� 258
Constraining the user domain
for sensitivity range manipulation� 259

Integrating SEPostgreSQL
into the network� 259
Creating a fallback label for
remote sessions� 260
Tuning the SELinux policy� 261

Summary� 261
Questions� 262

9
Secure Virtualization

Technical requirements� 263
Understanding
SELinux-secured virtualization� 264
Introducing virtualization� 264
Reviewing the risks of virtualization� 266
Reusing existing virtualization
domains� 267

Fine-tuning virtualization-supporting
SELinux policy� 268
Understanding sVirt's use of MCS� 270

Enhancing libvirt with
SELinux support� 271
Differentiating between shared
and dedicated resources� 272

Table of Contents vii

Assessing the libvirt architecture� 272
Configuring libvirt for sVirt� 273
Changing a guest's SELinux labels� 276
Customizing resource labels� 278
Controlling available categories� 278
Changing the storage pool locations� 279

Using Vagrant with libvirt� 281

Deploying Vagrant and the
libvirt plugin� 281
Installing a libvirt-compatible box� 282
Configuring Vagrant boxes� 283

Summary� 283
Questions� 284

10
Using Xen Security Modules with FLASK

Technical requirements� 286
Understanding Xen and XSM� 286
Introducing the Xen hypervisor� 286
Installing Xen� 287
Creating an unprivileged guest� 290
Understanding Xen Security Modules� 292

Running XSM-enabled Xen� 293

Rebuilding Xen with XSM support� 293
Using XSM labels� 295
Manipulating XSM� 296

Applying custom XSM policies� 299
Summary� 300
Questions� 300

11
Enhancing the Security of Containerized Workloads

Technical requirements� 302
Using SELinux with
systemd's container support� 302
Initializing a systemd container� 303
Using a specific SELinux context� 304
Facilitating container management
with machinectl� 305

Configuring podman� 306
Selecting podman over Docker� 306
Using containers with SELinux� 308
Changing a container's
SELinux domain� 310

Creating custom domains with udica� 311
Toggling container_t privileges with
SELinux booleans� 312
Tuning the container hosting
environment� 312

Leveraging Kubernetes'
SELinux support� 313
Configuring Kubernetes with
SELinux support� 313
Setting SELinux contexts for pods� 315

Summary� 317
Questions� 317

viii Table of Contents

Section 3:
Policy Management

12
Tuning SELinux Policies

Technical requirements� 322
Working with SELinux
booleans� 322
Listing SELinux booleans� 322
Changing boolean values� 323
Inspecting the impact of a boolean� 325

Handling policy modules� 325
Listing policy modules� 326
Loading and removing policy modules� 327

Replacing and updating
existing policies� 328

Creating policies using audit2allow� 328
Using sensible module names� 330
Generating reference policy style
modules with audit2allow� 331
Building reference policy - style
modules� 332
Building legacy-style modules� 332
Replacing the default
distribution policy� 333

Summary� 334
Questions� 334

13
Analyzing Policy Behavior

Technical requirements� 336
Performing single-step
analysis� 336
Using different SELinux policy files� 336
Displaying policy object information� 337
Understanding sesearch� 340
Querying allow rules� 341
Querying type transition rules� 342
Querying other type rules� 343
Querying role-related rules� 344
Browsing with apol� 345
Using apol workspaces� 348

Investigating domain
transitions� 349

Using apol for domain
transition analysis� 350
Using sedta for domain
transition analysis� 351
Using sepolicy for domain
transition analysis� 352

Analyzing information flow� 354
Using apol for information
flow analysis� 355
Using seinfoflow for information
flow analysis� 357
Using sepolicy communicate for
simple information flow analysis� 357

Comparing policies� 358

Table of Contents ix

Using sediff to compare
policies� 358

Summary� 359
Questions� 359

14
Dealing with New Applications

Technical requirements� 362
Running applications
without restrictions� 362
Understanding how unconfined
domains work� 362
Making new applications run
as an unconfined domain� 363
Extending unconfined domains� 367
Marking domains as permissive� 368

Using sandboxed applications� 369
Understanding the SELinux sandbox� 370
Using the sandbox command� 370

Assigning common policies
to new applications� 372
Understanding domain complexity� 372
Running applications in
a specific policy� 374

Extending generated policies� 375
Understanding the limitations
of generated policies� 376
Introducing sepolicy generate� 376
Generating policies with
sepolicy generate� 378

Summary� 379
Questions� 379

15
Using the Reference Policy

Technical requirements� 382
Introducing the reference
policy� 382
Navigating the policy� 383
Structuring policy modules� 384

Using and understanding
the policy macros� 390
Making use of single-class
permission groups� 390
Calling permission groups� 391

Creating application-level
policies� 392

Constructing network-facing
service policies� 392
Addressing user applications� 396

Adding user-level policies� 398
Getting help with
supporting tools� 399
Verifying code with selint� 399
Querying the interfaces
and macros locally� 400

Summary� 402
Questions� 402

x Table of Contents

16
Developing Policies with SELinux CIL

Technical requirements� 404
Introducing CIL� 404
Translating .pp files to CIL� 404
Understanding CIL syntax� 405

Creating fine-grained
definitions� 406
Depending on roles or types� 406
Defining a new port type� 407
Adding constraints to the policy� 408

Building complete
application policies� 410
Using namespaces� 410
Extending the policy with
attribute assignments� 411
Adding entry point information� 412
Gradually extending the
policy further� 413
Introducing permission sets� 415
Adding macros� 416

Summary� 418
Questions� 418

Assessments
Other Books You May Enjoy
Index

Preface
Security-Enhanced Linux (SELinux) is one of the most complete security solutions
for Linux and is available by default in most major Linux distributions, such as Red Hat
Enterprise Linux, CentOS, Fedora, and Gentoo, as well as being easily enabled in others,
such as SUSE, Debian, and Ubuntu.

SELinux enables administrators to further harden their Linux systems and applications,
making it much harder for intruders and malicious actors to abuse the system.

SELinux System Administration – Third Edition provides end-to-end coverage of SELinux
on Linux systems, ranging from understanding what SELinux is and how it acts to tuning
SELinux controls and its integrations within Linux and application platforms, up to the
definition and maintenance of custom policies.

Who this book is for
This book is for Linux administrators who want to control the secure state of their
systems. It's packed with the latest information on SELinux operations and administrative
procedures so you'll be able to further harden your system through mandatory access
control (MAC) – a security strategy that has been shaping Linux security for years.

The book can also be enlightening for IT architects to understand how SELinux can be
positioned to enhance the security of Linux systems and Linux-hosted services within
their organization.

Readers should have reasonable experience with maintaining Linux systems, covering
user management, software installation and maintenance, regular Linux security controls,
and network configuration.

What this book covers
Chapter 1, Fundamental SELinux Concepts, provides fundamental insights into the
SELinux technology and allows you to understand the differences between SELinux
implementations.

xii Preface

Chapter 2, Understanding SELinux Decisions and Logging, teaches you how to
analyze SELinux events, and how to configure system logging to facilitate SELinux
troubleshooting.

Chapter 3, Managing User Logins, allows you to manage Linux users and associate them
with the right SELinux context.

Chapter 4, Using File Contexts and Process Domains, explains how SELinux labels are
exposed on the system, and how to change the SELinux context of files and resources.

Chapter 5, Controlling Network Communications, introduces SELinux access control
protections on a network level, ranging from socket-based protection measures to packet
filtering with SELinux.

Chapter 6, Configuring SELinux through Infrastructure-as-Code Orchestration, shows
you how to configure SELinux settings across large-scale environments using automation
and orchestration tooling.

Chapter 7, Configuring Application-Specific SELinux Controls, explains how SELinux
is adopted by several applications to augment their security posture further.

Chapter 8, SEPostgreSQL – Extending PostgreSQL with SELinux, helps you learn how to
enable SEPostgreSQL in a regular PostgreSQL deployment, and how to use the SELinux
controls within the database engine.

Chapter 9, Secure Virtualization, uses libvirt and other virtualization technologies together
with SELinux to further protect and isolate virtual guests from each other.

Chapter 10, Using Xen Security Modules with FLASK, teaches you how Xen uses
an SELinux-like approach to isolate its guests using Xen Security Modules, and how
administrators can tweak and tune isolation further.

Chapter 11, Enhancing the Security of Containerized Workloads, shows how container
platforms such as Docker, podman, and Kubernetes use SELinux as a means to secure
the host system from potentially untrusted containers and provide isolation between
containers.

Chapter 12, Tuning SELinux Policies, expands on SELinux booleans and their effect on the
system and shows how to deal with different SELinux policy modules.

Chapter 13, Analyzing Policy Behavior, explains how administrators and analysts can
interpret the SELinux policy and use policy analysis tooling to learn what a policy
will allow.

Chapter 14, Dealing with New Applications, informs you how to apply SELinux on new
applications that are not yet supported by the current SELinux policies.

Preface xiii

Chapter 15, Using the Reference Policy, explains how to use the reference policy to create
and adjust SELinux policies.

Chapter 16, Developing Policies with SELinux CIL, introduces you to the Common
Intermediate Language and how to apply it to develop custom policies.

To get the most out of this book
This book focuses on the SELinux technology, which is enabled by default on many Linux
distributions. While the book uses CentOS version 8 for most of its examples, any Linux
distribution that has an SELinux implementation based upon the reference policy (which
is the case for all major Linux distributions out there) suffices to follow this book.

In Chapter 5, Controlling Network Communications, one section covers using SELinux for
InfiniBand infrastructure, which requires specialized hardware if you want to follow the
examples to the letter. However, most of the chapter can be followed without additional
requirements.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/SELinux-System-Administration-
Third-Edition.

In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/3o4paOb.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800201477_ColorImages.pdf.

https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://github.com/PacktPublishing/
https://bit.ly/3o4paOb
https://static.packt-cdn.com/downloads/9781800201477_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800201477_ColorImages.pdf

xiv Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "When activating a module, the semodule command will copy
those modules into a dedicated directory."

A block of code is set as follows:

 chain input {
 type filter hook input priority 0;
 ct state new meta secmark set tcp dport map @secmapping_in
 ct state new ct secmark set meta secmark
 ct state established,related meta secmark set ct secmark
 }

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

(roleattributeset cil_gen_require system_r)
(block pgpool
 (type domain)
 (roletype .system_r domain)
)

Any command-line input or output is written as follows:

$ cat /etc/passwd
cat: /etc/passwd: Permission denied

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"This can be accomplished through the Open Policy button, or by navigating to File |
Open Policy."

Tips or important notes	
Appear like this.

Preface xv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

Section 1:
Using SELinux

In this part, you will learn what SELinux is and how it acts on systems, as well as how to
configure and manipulate SELinux essentials during system administration.

This section comprises the following chapters:

•	 Chapter 1, Fundamental SELinux Concepts

•	 Chapter 2, Understanding SELinux Decisions and Logging

•	 Chapter 3, Managing User Logins

•	 Chapter 4, Using File Contexts and Process Domains

•	 Chapter 5, Controlling Network Communications

•	 Chapter 6, Configuring SELinux through Infrastructure-as-Code Orchestration

1
Fundamental

SELinux Concepts
Security-Enhanced Linux (SELinux) brings additional security measures to your Linux
system to further protect its resources. As part of the Linux kernel, it is a mandatory
access control system supported by major Linux distributions. In this book, we cover all
aspects of SELinux, from basic fundamentals to resolving SELinux issues, configuring
applications to deal with SELinux, and even writing our own policies.

Before we embark on the details of SELinux, let's first cover the concepts of this
technology: why SELinux uses labels to identify resources, how SELinux differs from
traditional Linux access controls, how SELinux enforces security rules, and other
mandatory access control systems that are supported in the Linux kernel. We will also
see how the access control rules enforced by SELinux are provided through policy files.
At the end of the chapter, we will cover an overview of the differences between SELinux
implementations across Linux distributions.

In this chapter, we're going to cover the following main topics:

•	 Providing more security for Linux

•	 Labeling all resources and objects

•	 Defining and distributing policies

•	 Distinguishing between policies

20 Fundamental SELinux Concepts

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/2FFaUdm

Providing more security for Linux
Seasoned Linux administrators and security engineers already know that they need to put
some trust in the users and processes of their system in order for the system to remain
secure. This is partly because users can attempt to exploit vulnerabilities found in the
software running on the system, but a large contribution to this trust level is because the
secure state of the system depends on the behavior of the users. A Linux user with access
to sensitive information could easily leak that out to the public, manipulate the behavior
of the applications they launch, and do many other things that affect the security of the
system. The default access controls active on a regular Linux system are discretionary;
it is up to the users how the access controls should behave.

The Linux discretionary access control (DAC) mechanism is based on the user and/
or group information of the process and is matched against the user and/or group
information of the file, directory, or other resource being manipulated. Consider the /
etc/shadow file, which contains the password and account information of the local
Linux accounts:

$ ls -l /etc/shadow
-rw-r-----. 1 root root 1019 Nov 28 20:44 /etc/shadow

Without additional access control mechanisms in place, this file is readable and writable
by any process owned by the root user, regardless of the purpose of the process on the
system. The shadow file is a typical example of a sensitive file that we don't want to see
leaked or abused in any other fashion. Yet the moment someone has access to the file, that
user can copy it elsewhere, for example to a home directory, or even mail it to another
computer and attempt to attack the password hashes stored within.

https://bit.ly/2FFaUdm

Providing more security for Linux 21

Another example of how Linux DAC requires trust from its users is the configuration of
a database server. Database files themselves are (hopefully) only accessible to the runtime
account of the database management system (DBMS) itself, and the Linux root user.
Properly secured systems will only grant trusted users access to these files (for instance,
through sudo) by allowing them to change their effective user ID from their personal
user to the database runtime user or even the root account, but only for a well-defined
set of commands that the system administrator has configured up front. These users too,
can analyze the database files and gain access to potentially confidential information in the
database without going through the DBMS. Administrators often have to put significant
trust in these users to provide a secure system, rather than being able to enforce this.

However, regular users are not the only reason for securing a system. Lots of software
daemons run as the Linux root user or have significant privileges on the system.
Errors within those daemons can easily lead to information leakage or might even lead
to remotely exploitable vulnerabilities. Backup software, monitoring software, change
management software, scheduling software, and so on: they all often run with the highest
privileged account possible on a regular Linux system. Even when the administrator does
not allow privileged users, their interaction with daemons introduces a potential security
risk. So, the users are still trusted to correctly interact with these applications in order for
the system to function properly. Through this, the administrator leaves the security of the
system to the discretion of its (many) users.

Enter SELinux, which provides an additional access control layer on top of the standard
Linux DAC mechanism. SELinux provides a mandatory access control (MAC) system
that, unlike its DAC counterpart, gives the administrator full control over what is allowed
on the system and what isn't. It accomplishes this by supporting a policy-driven approach
over what processes are and aren't allowed to do and by enforcing this policy through the
Linux kernel.

Mandatory means that the operating system enforces the access control, defined solely
by the policy rules that the system administrator (or security administrator) has enabled.
Users and processes do not have permission to change the security rules, so they cannot
work around the access controls; security is not left to their discretion anymore.

Considering the relational database example, a mandatory access control system would
no longer require the administration to trust certain users, as it has full control over what
these users can and cannot do. PostgreSQL, as we will see in Chapter 8, SEPostgreSQL –
Extending PostgreSQL with SELinux, can interact with the SELinux subsystem to allow the
administrator full coverage over the data access involved, even inside the database.

22 Fundamental SELinux Concepts

The word mandatory here, just like the word discretionary before, was not chosen
accidentally to describe the abilities of the access control system: both are known terms
in the security research field. Many security publications use these terms, including the
Trusted Computer System Evaluation Criteria (TSEC) (http://csrc.nist.gov/
publications/history/dod85.pdf) standard (also known as the Orange Book)
published by the Department of Defense in the United States of America in 1985. This
publication has led to the Common Criteria standard for computer security certification
(ISO/IEC 15408), available at http://www.commoncriteriaportal.org/cc/.

Next, we'll describe how the Linux kernel is responsible for the SELinux implementation.

Introducing Linux Security Modules (LSM)
Consider the example of the shadow file again. A MAC system can be configured to only
allow a limited number of processes to read from and write to the file. On such specifically
configured systems, a user logged on as root cannot directly access the file or even move
it around. They can't even change the attributes of the file:

id
uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys),
4(adm),6(disk),10(wheel),11(floppy),26(tape),27(video) context=
sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

cat /etc/shadow
cat: /etc/shadow: Permission denied

chmod a+r /etc/shadow
chmod: changing permissions of '/etc/shadow': Permission denied

The system enforces this through rules that describe when the contents of this file can be
read, or when its attributes can be changed. With SELinux, these rules are defined in the
SELinux policy and are loaded when the system boots. It is the Linux kernel itself that is
responsible for enforcing the rules.

Mandatory access control systems such as SELinux are supported in the Linux kernel
through Linux Security Modules (LSM), a Linux subsystem called before processing
a user space request. Such requests are called system calls, and Linux supports over
100 of them.

http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://www.commoncriteriaportal.org/cc/

Providing more security for Linux 23

Figure 1.1 – High-level overview of how LSM integrates into the Linux kernel

LSM has been available in the Linux kernel since version 2.6, released in December
2003. It is a framework that provides hooks inside the Linux kernel at various locations,
including the system call entry points. When these hooks trigger, registered security
implementations such as SELinux have their functions executed automatically. In
SELinux, these functions check the policy and other information before returning a go/
no-go. LSM by itself does not provide any security functionality; instead, it relies on
security implementations that do the heavy lifting: the framework is modular.

Within the LSM framework, two types of security modules exist: exclusive and
non-exclusive modules. Two exclusive modules cannot be active simultaneously: each
exclusive LSM module needs exclusive control over some kernel objects (generally those
related to a security context) and is not able to deal with other LSM modules that need
these objects as well. Non-exclusive modules don't have this need and can be combined
(also known as stacking) at will, regardless of whether an exclusive LSM module is active
or not.

A major use case for stacking LSM modules is to enable different security models within
containers running on the system. Right now, it is not possible to implement a different
security module within a Linux container, and the security within the container falls
back to the security module of the host. To support this, more and more exclusive LSM
implementations (like SELinux) are working to make their implementation non-exclusive,
and we can expect improvements in this area within the next year.

24 Fundamental SELinux Concepts

SELinux is one implementation that uses LSM. Several other implementations exist:

•	 AppArmor is a mandatory access control system that has a strong focus on
application-level protections (called profiles), based largely on filesystem paths.
This makes AppArmor easy to understand and implement for administrators, as
it does not have the complexity of abstracting rules to labels (as SELinux does). In
the Labeling all resources and objects section, we explain why SELinux uses labels.
AppArmor is an exclusive LSM module at the time of writing, but will most likely
become non-exclusive very soon.

•	 Smack is a mandatory access control system that uses labels on processes and
resources. The labels contain security identifiers interpreted by Smack to enforce
access control, requiring fewer access rules in Smack (unlike SELinux, which does
not perform an interpretation of labels – excluding sensitivity – and thus requires
a higher number of policy rules). Smack is an exclusive LSM module.

•	 TOMOYO Linux is a mandatory access control system, but its access control
mechanism is also easy to use for system analysis. It automatically builds up policies
based on application behavior, and like AppArmor, its policies primarily use paths
rather than labels. TOMOYO Linux (and its fork, AKARI) is a non-exclusive LSM
module.

•	 LoadPin is an LSM module that ensures that the Linux kernel resources (such as
kernel modules and firmware) are all loaded from a single non-writable filesystem.
LoadPin is a non-exclusive LSM module.

•	 Yama is an LSM module that adds additional access controls on activities that are
not sufficiently fine-grained by Linux, such as by attaching them to the memory
of another process (using ptrace). Yama is a non-exclusive LSM module.

•	 SafeSetId is an LSM module that allows finer control over which users can use
setuid (switching to another user) toward another user. Rather than granting
the use of setuid, SafeSetId can limit for which users this is allowed. This ensures
that vulnerabilities or misconfigurations in tools such as sudo are still contained.
SafeSetId is a non-exclusive LSM module.

•	 Lockdown is an LSM module that protects the Linux kernel memory. It has
two modes: in integrity mode, it prevents modifying kernel objects from user
space (such as direct memory access or PCI access); in confidentiality mode,
it additionally prevents extracting potentially confidential information from kernel
objects. Lockdown is a non-exclusive LSM module.

•	 The capability LSM module is, by default, enabled on systems and provides support
for Linux capabilities (a set of permissions granted to a user when the user
is assigned a certain capability). It is a non-exclusive LSM module.

Providing more security for Linux 25

To query the list of active LSM modules on a system, read /sys/kernel/security/
lsm:

$ cat /sys/kernel/security/lsm
capability,selinux

Next, we'll explain how SELinux works on top of regular Linux access controls.

Extending regular DAC with SELinux
SELinux does not change the Linux DAC implementation, nor can it override denials
made by the Linux DAC permissions. If a regular system (without SELinux) prevents
a particular access, there is nothing SELinux can do to override this decision. This is
because the LSM hooks are triggered after the regular DAC permission checks execute,
a conscious design decision from the LSM project.

For instance, if you need to allow an additional user access to a file, you cannot add an
SELinux policy to do that for you. Instead, you will need to look into other features of
Linux, such as the use of POSIX access control lists. Through the setfacl and getfacl
commands, the user can set additional permissions on files and directories, opening up
the selected resource to additional users or groups.

As an example, let's grant a user admin read-write access to a file using setfacl:

$ setfacl -m u:admin:rw /srv/backup/setup.conf

Similarly, to view the current POSIX ACLs applied to the file, use this command:

$ getfacl /srv/backup/setup.conf
getfacl: Removing leading '/' from absolute path names
file: srv/backup/setup.conf
owner: root
group: root
user::rw-
user::admin:rw-
group::r--
mask::rw-
other::r—

This shows that the file is writable not only by its owner but also by the admin user.

26 Fundamental SELinux Concepts

Restricting root privileges
The regular Linux DAC allows an all-powerful user: root. Unlike most other users on
the system, the logged-on root user has all the rights needed to fully manage the entire
system, ranging from overriding access controls to controlling audits, changing user IDs,
managing the network, and much more. This is supported through a security concept
called capabilities (for an overview of Linux capabilities, check out the capabilities
manual page: man capabilities). SELinux is also able to restrict access to these
capabilities in a fine-grained manner.

Due to this fine-grained authorization aspect of SELinux, even the root user can be
confined without impacting the operations on the system. The previous example of
accessing /etc/shadow is just one example of an activity that a powerful user such as
root still might not be able to perform due to the SELinux access controls in place.

Reducing the impact of vulnerabilities
If one benefit of SELinux needs to be stressed, then it is its ability to reduce the impact
of vulnerabilities. But this vulnerability reduction is also often misunderstood.

A properly written SELinux policy confines applications so that their allowed activities are
reduced to a minimum set. This least-privilege model ensures that abnormal application
behavior is not only detected and audited but also prevented. Many application
vulnerabilities can be exploited to execute tasks that an application is not meant to do.
When this happens, SELinux will prevent this.

However, there are two misconceptions about SELinux's ability to thwart exploits, namely,
the impact of the policy and the exploitation itself.

If the policy is not written in a least-privilege model, then SELinux might consider this
non-standard behavior as normal and allow the actions to continue. For policy writers,
this means that their policy rules have to be very fine-grained. Sadly, that makes writing
policies very time-consuming: with more than 130 classes and over 250 permissions
known to SELinux, policy rules need to take all these classes and permissions into account
for each interaction.

As a result, policies tend to become convoluted and harder to maintain. Some policy
writers make policies more permissive than is absolutely necessary, which might result
in exploits becoming successful even though the action is not expected behavior from an
application's point of view. Some application policies are explicitly marked as unconfined
(which we discuss in Chapter 14, Dealing with New Applications), showing that they are
very liberal in their allowed permissions. Fedora, CentOS, and Red Hat Enterprise Linux
even start application policies as permissive and only start enforcing access controls for
those applications after a few releases (and additional testing).

Providing more security for Linux 27

The second misconception is the exploit itself. If an application's vulnerability allows
an unauthenticated user to use the application services as if the user were a regular,
authorized user, then SELinux will not play a role in reducing the impact of the
vulnerability; it will only notice the behavior of the application itself and not of the
sessions internal to the application. As long as the application itself behaves as expected
(such as accessing its own files and not poking around in other filesystems), SELinux will
happily allow the actions to take place.

It is only when the application starts behaving erratically that SELinux stops the exploit
from continuing. SELinux will prevent exploits such as remote command execution
(RCE) against applications that should not be executing random commands (such as
database management systems or web servers, excluding CGI-like functionality), whereas
session hijacking or SQL injection attacks are not controllable through SELinux policies.

Enabling SELinux support
Enabling SELinux on a Linux system is not just a matter of enabling the SELinux LSM
module within the Linux kernel.

An SELinux implementation contains the following:

•	 The SELinux kernel subsystem, implemented in the Linux kernel through LSM

•	 Libraries, used by applications that need to interact with SELinux

•	 Utilities, used by administrators to interact with SELinux

•	 Policies, which define the access controls themselves

The libraries and utilities are bundled by the SELinux user space project (https://
github.com/SELinuxProject/selinux). Next to the applications and libraries
provided by the SELinux user space project, various components on a Linux system are
updated with SELinux-specific code, including the init system and several core utilities.

Because SELinux isn't just a switch that needs to be toggled, Linux distributions that
support it usually come with SELinux predefined and loaded: Fedora, CentOS, and
Red Hat Enterprise Linux (with its derivatives, such as Oracle Linux) are well-known
examples. Other supporting distributions might not automatically have SELinux enabled
but can easily support it through the installation of additional packages (which is the
case with Debian and Ubuntu), and others have a well-documented approach to how to
convert a system to SELinux (for example, Gentoo and Arch Linux).

https://github.com/SELinuxProject/selinux
https://github.com/SELinuxProject/selinux

28 Fundamental SELinux Concepts

Throughout the book, we will show examples for Gentoo and CentOS 8 (which is based
on the free software of the Red Hat Enterprise Linux releases and is sponsored by Red
Hat). These two distributions have different implementation details, which allow us to
demonstrate the full potential of SELinux. To ensure the commands used within this book
are available, some SELinux support tools might need to be installed.

On Gentoo Linux, install at least the following packages:

emerge app-admin/setools sys-apps/policycoreutils

On CentOS Linux, install at least the following packages:

yum install setools-console policycoreutils-python-utils

As packages can change over time, it is sensible to look up which package provides
a particular command.

Important note
If the mentioned packages no longer exist or do not cover all commands, please
consult your distribution's documentation on which software packages to
install. Most distributions allow searching for the most appropriate package as
well, such as with e-file in Gentoo, or yum whatprovides on CentOS
or related distributions.

With the SELinux main functionality described, let's look at how SELinux knows what
is on the system, and which abstraction it uses to allow policies to be developed for a wide
set of users.

Labeling all resources and objects
When SELinux has to decide whether it has to allow or deny a particular action, it makes
a decision based on the context of both the subject (who is initiating the action) and
the object (which is the target of the action). These contexts (or parts of the context) are
mentioned in the policy rules that SELinux enforces.

The context of a process is what identifies the process to SELinux. SELinux has no notion
of Linux process ownership and does not care how the process is called, which process
ID it has, and what account the process runs as. All it wants to know is what the context
of that process is, represented to users and administrators as a label. Label and context
are often used interchangeably, and although there is a technical distinction (one
is a representation of the other), we will not dwell on that much.

Labeling all resources and objects 29

Let's look at an example label – the context of the current user:

$ id -Z
sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.c1023

The id command, which returns information about the current user, is shown executing
with the -Z switch (a commonly agreed upon switch for displaying additional security
information obtained from the LSM-based security subsystem). It shows us the context
of the current user (actually the context of the id process itself when it was executing).
As we can see, the context has a string representation and looks as if it has five fields
(it doesn't; it has four fields – the last field just happens to contain a colon character).

SELinux developers decided to use labels instead of real process and file (or other
resource) metadata for its access controls. This is different from MAC systems such as
AppArmor, which uses the path of the binary (and thus the process name) and the paths
of the resources to handle permission checks. The following reasons inspired the decision
to make SELinux a label-based mandatory access control:

•	 Using paths might be easier to comprehend for administrators, but this doesn't
allow us to keep the context information close to the resource. If a file or directory
moves or remounts, or if a process has a different namespace view on the files,
then the access controls might behave differently as they look at the path instead
of the file. With label-based contexts, the system retains this information and keeps
controlling the resource's access properly.

•	 Contexts reveal the purpose of the process very well. The same binary application
can be launched in different contexts depending on how it got started. The context
value (such as the one shown in the id -Z output earlier) is exactly what the
administrator needs. With it, they know what the rights are of each of the running
instances, but they can also deduce from it how the process was launched and what
its purpose is.

•	 Contexts also make abstractions of the object itself. We are used to talking about
processes and files, but contexts are also applicable to less tangible resources such as
pipes (inter-process communication) or database objects. Path-based identification
only works as long as you can write a path.

As an example, consider the following policy statements:

•	 Allow the httpd processes to bind to TCP port 80.

•	 Allow the processes labeled with httpd_t to bind to TCP ports labeled with
http_port_t.

30 Fundamental SELinux Concepts

In the first example, we cannot easily reuse this policy when the web server process isn't
using the httpd binary (perhaps because it was renamed or it isn't Apache but another
web server) or when we want to have HTTP access on a different port. With the labeled
approach, the binary could be called apache2 or MyWebServer.py; as long as the
process is labeled with httpd_t, the policy applies. The same happens with the port
definition: you can label the port 8080 with http_port_t and thus allow the web
servers to bind to that port as well without having to write another policy statement.

Dissecting the SELinux context
To come to a context, SELinux uses at least three, and sometimes four, values. Let's look
at the context of the SSH server as an example:

$ ps -eZ | grep sshd
system_u:system_r:sshd_t:s0-s0:c0.c1023 2629 ? 00:00:00 sshd

As we can see, the process is assigned a context that contains the following fields:

•	 The SELinux user system_u

•	 The SELinux role system_r

•	 The SELinux type (also known as the domain when we are looking at a running
process) sshd_t

•	 The sensitivity level s0-s0:c0.c1023

When we work with SELinux, knowing the contexts is extremely important. In most cases,
it is the third field (called the domain or type) that is most important since the majority
of SELinux policy rules (over 99 percent) consist of rules related to the interaction
between two types (without mentioning roles, users, or sensitivity levels).

SELinux contexts are aligned with LSM security attributes and exposed to the user space
in a standardized manner (compatible with multiple LSM implementations), allowing end
users and applications to easily query the contexts. An easily accessible location where
these attributes are presented is within the /proc pseudo filesystem.

Inside each process's /proc/<pid> location, we find a subdirectory called attr, inside
of which the following files can be found:

$ ls /proc/$$/attr
current exec fscreate keycreate prev sockcreate

Labeling all resources and objects 31

All these files, if read, display either nothing or an SELinux context. If it is empty, then
that means the application has not explicitly set a context for that particular purpose, and
the SELinux context will be deduced either from the policy or inherited from its parent.

The meaning of the files are as follows:

•	 The current file displays the current SELinux context of the process.

•	 The exec file displays the SELinux context that will be assigned by the next
application execution done through this application. It is usually empty.

•	 The fscreate file displays the SELinux context that will be assigned to the next
file written by the application. It is usually empty.

•	 The keycreate file displays the SELinux context that will be assigned to the keys
cached in the kernel by this application. It is usually empty.

•	 The prev file displays the previous SELinux context for this particular process. This
is usually the context of its parent application.

•	 The sockcreate file displays the SELinux context that will be assigned to the next
socket created by the application. It is usually empty.

If an application has multiple subtasks, then the same information is available in each
subtask directory at /proc/<pid>/task/<taskid>/attr.

Enforcing access through types
The SELinux type (the third part of an SELinux context) of a process (called the domain)
is the basis of the fine-grained access controls of that process with respect to itself and
other types (which can be processes, files, sockets, network interfaces, and more). In most
SELinux literature, SELinux's label-based access control mechanism is fine-tuned to say
that SELinux is a type enforcement mandatory access control system: when some actions
are denied, the (absence of the) fine-grained access controls on the type level are most
likely to blame.

With type enforcement, SELinux can control an application's behavior based on how it got
executed in the first place: a web server launched by a user will run with a different type
than a web server executed through the init system, even though the process binary and
path are the same. The web server launched from the init system is most likely trusted
(and thus allowed to do whatever web servers are supposed to do), whereas a manually
launched web server is less likely to be considered normal behavior and as such will have
different privileges.

32 Fundamental SELinux Concepts

Important note
The majority of SELinux's online resources focus on types. Even though
the SELinux type is just the third part of an SELinux context, it is the most
important one for most administrators. Most documentation will even just talk
about a type such as sshd_t rather than a full SELinux context.

Take a look at the following dbus-daemon processes:

ps -eZ | grep dbus-daemon
swift_u:swift_r:swift_dbusd_t:s0-s0:c0.c512 571 ? 00:00:01
dbus-daemon
swift_u:swift_r:swift_dbusd_t:s0-s0:c0.c512 649 ? 00:00:00
dbus-daemon
system_u:system_r:system_dbusd_t:s0-s0:c0.c1023 2498 ? 00:00:00
dbus-daemon

In this example, one dbus-daemon process is the system D-Bus daemon running with
the aptly named system_dbusd_t type, whereas two other ones are running with
the swift_dbusd_t type assigned to it. Even though their binaries are the same, they
both serve a different purpose on the system and as such have a different type assigned.
SELinux then uses this type to govern the actions allowed by the process toward other
types, including how system_dbusd_t can interact with swift_dbusd_t.

SELinux types are by convention suffixed with _t, although this is not mandatory.

Granting domain access through roles
SELinux roles (the second part of an SELinux context) allow SELinux to support role-
based access controls. Although type enforcement is the most used (and known) part
of SELinux, role-based access control is an important method to keep a system secure,
especially from malicious user attempts. SELinux roles define which types (domains)
can be accessed from the current context. These types (domains) on their part define the
permissions. As such, SELinux roles help define what a user (who has access to one
or more roles) can and cannot do.

Labeling all resources and objects 33

By convention, SELinux roles are defined with an _r suffix. On most SELinux-enabled
systems, the administrator can assign the following SELinux roles to users:

•	 The user_r role is meant for restricted users. This role is only allowed to have
processes with types specific to end-user applications. Privileged types, including
those used to switch to another Linux user, are not allowed for this role.

•	 The staff_r role is meant for non-critical operations. This role is generally
restricted to the same applications as the restricted user, but it has the ability to
switch roles. It is the default role for operators to have (so as to keep those users in
their least privileged role as long as possible).

•	 The sysadm_r role is meant for system administrators. This role is very privileged,
enabling various system administration tasks. However, certain end-user application
types might not be supported (especially if those types are used for potentially
vulnerable or untrusted software) to keep the system free from infections.

•	 The secadm_r role is meant for security administrators. This role allows changing
the SELinux policy and manipulating the SELinux controls. It is generally used
when a separation of duties is needed between system administrators and system
policy management.

•	 The system_r role is meant for daemons and background processes. This role
is quite privileged, supporting the various daemon and system process types.
However, end-user application types and other administrative types are not allowed
in this role.

•	 The unconfined_r role is meant for end users. This role allows a limited number
of types, but those types are very privileged as they allow running any application
launched by a user (or another unconfined process) in a more or less unconfined
manner (not restricted by SELinux rules). This role, as such, is only available if the
system administrator wants to protect certain processes (mostly daemons) while
keeping the rest of the system operations almost untouched by SELinux.

34 Fundamental SELinux Concepts

Other roles might exist, such as guest_r and xguest_r, depending on the distribution.
It is wise to consult the distribution documentation for more information about the
supported roles. The seinfo command is the most common method to obtain an
overview of available roles:

seinfo –-role
Roles: 9
 auditadm_r
 object_r
 secadm_r
 …
 user_r

With the SELinux roles identified, let's look at how we assign roles to users.

Limiting roles through users
An SELinux user (the first part of an SELinux context) is not the same as a Linux
(account) user. Unlike Linux user information, which can change while the user is
working on the system (through tools such as sudo or su), the SELinux policy can (and
generally will) enforce that the SELinux user remains the same even when the Linux user
itself has changed. Because of the immutable state of the SELinux user, we can implement
specific access controls to ensure that users cannot work around the set of permissions
granted to them, even when they get privileged access.

An example of such an access control is the user-based access control (UBAC) feature
that some Linux distributions (optionally) enable, which prevents users from accessing
files of different SELinux users even when those users try to use the Linux DAC controls
to grant access to each other's files.

The most important feature of SELinux users, however, is that SELinux user definitions
restrict which roles the (Linux) user can assume. A Linux user is first assigned to an
SELinux user, which does not need to be unique: multiple Linux users can be assigned
to the same SELinux user. Once set, that user cannot switch to an SELinux role not
associated with that SELinux user.

Labeling all resources and objects 35

The following diagram shows the role-based access control implementation of SELinux:

Figure 1.2 – Mapping Linux accounts to SELinux users

SELinux users are, by convention, defined with an _u suffix, although this is not
mandatory. The SELinux users that most distributions have available are named after the
role they represent, but instead of ending with _r, they end with _u. For instance, for the
sysadm_r role, we have the sysadm_u SELinux user.

36 Fundamental SELinux Concepts

Controlling information flow through sensitivities
The fourth part of an SELinux context, the sensitivity, is not always present (some Linux
distributions, by default, do not enable sensitivity labels, but most do). This part of the
label is needed for the multilevel security (MLS) support within SELinux, which is an
optional setting. Sensitivity labels allow the classification of resources and the restriction
of access to those resources based on a security clearance. These labels consist of two
parts: a confidentiality value (prefixed with s) and a category value (prefixed with c).

In many larger organizations and companies, documents are labeled internal, confidential,
or strictly confidential. SELinux can assign processes certain clearance levels for these
resources. With MLS, we can configure SELinux to follow the Bell-LaPadula model,
a security model characterized by no read up, no write down: based on a process's
clearance level, that process cannot read anything with a higher confidentiality level nor
write to (or communicate otherwise with) any resource with a lower confidentiality level.
SELinux does not use internal, confidential, and other labels. Instead, it uses numbers
from zero (the lowest confidentiality) to whatever the system administrator has defined
as the highest value (this is configurable and set when the SELinux policy is built).

Categories allow us to assign resources with one or more categories, and to define access
controls across categories. One of the functionalities resulting from using categories is to
support multitenancy (for example, systems hosting applications for multiple customers)
within a Linux system. Multitenancy is provided by assigning a set of categories to the
processes and resources of one tenant, whereas the processes and resources of another
tenant get a different set of categories. When a process does not have the proper categories
assigned, it cannot touch the resources (or other processes) that have other categories
assigned.

Important note
An unwritten convention in the SELinux world is that (at least) two categories
are used to differentiate between tenants. By having services randomly pick two
categories for a tenant out of a predefined set of categories, while ensuring each
tenant has a unique combination, these services receive proper isolation. The
use of two categories is not mandatory, but services such as sVirt and Docker
successfully implement this methodology.

In that sense, categories are like tags, allowing us to grant access only when the tags of the
process and the target resource match. As multilevel security is not often used, the benefits
of only using categories are persisted in what is called multi-category security (MCS).
This is a special MLS case, which only supports a single confidentiality level (s0).

Defining and distributing policies 37

Now that we know how labels are used by SELinux policies, let's look at how SELinux
policies are defined and distributed.

Defining and distributing policies
Enabling SELinux does not automatically start the enforcement of access. If SELinux
is enabled and it cannot find a policy, it will refuse to start because the policy defines
the behavior of the system (what SELinux should allow). SELinux policies are generally
distributed in a compiled form (just like with software) as policy modules. These modules
are then aggregated into a single policy store and loaded in memory to allow SELinux to
enforce the policy rules on the system.

Important note
Gentoo, a source-based meta-distribution, distributes SELinux policies as
(source) code, compiled and built at install time, just like it does with other
software.

The following diagram shows the relationship between policy rules (policy code),
policy modules, and a policy package (which is often a one-to-one mapping toward
a policy store):

Figure 1.3 – Relationship between policy rules (code), policy modules, and policy store

38 Fundamental SELinux Concepts

As we can see, policies are first written, then compiled in modules, after which they are
bundled and distributed. The next few sections describe each of these phases in detail.

Writing SELinux policies
An SELinux policy writer can write down the policy rules in three possible languages:

•	 In standard SELinux source format – a human-readable and well-established
language for writing SELinux policies

•	 In reference policy style, which extends the standard SELinux source format with
M4 macros to facilitate the development of policies

•	 In the SELinux common intermediate language (CIL) – a computer-readable (and
with some effort, human-readable) format for SELinux policies

Most SELinux supporting distributions base their policy on the reference policy
(https://github.com/SELinuxProject/refpolicy/), a fully functional
SELinux policy set managed as a free software project. This allows distributions to ship
with a functional policy set rather than having to write one themselves. Many project
contributors are distribution developers, trying to push changes of their distribution to
the reference policy project itself, where the changes are peer-reviewed to ensure no rules
are brought into the project that might jeopardize the security of any platform. Writing
policies without the extensive set of M4 macros offered by the reference policy project is
hard, which is why the reference policy has become the de facto source for policies.

The SELinux CIL format is reasonably recent, and although it is very much in use already
(the SELinux user space converts everything to CIL in the background), it is not that
common yet for policy writers to use it directly.

To show the differences between these three languages, consider the web server rule
we discussed earlier, repeated here for your convenience: allow the processes labeled
with httpd_t to bind to TCP ports labeled with http_port_t.

In the standard SELinux source format, we write this down as follows:

allow httpd_t http_port_t : tcp_socket { name_bind };

Using reference policy style, this rule is part of the following macro call:

corenet_tcp_bind_http_port(httpd_t)

In the CIL language, the rule expression is like so:

(allow httpd_t http_port_t (tcp_socket (name_bind)))

https://github.com/SELinuxProject/refpolicy/

Defining and distributing policies 39

In most representations, we can see what the rule is about:

•	 The subject (who is taking the action); in this case, this is the set of processes labeled
with the httpd_t type.

•	 The target resource or object (the target for the action); in this case, it is the set
of TCP sockets (tcp_socket) labeled with the http_port_t type. In reference
policy style, this is implied by the function name.

•	 The action or permission; in this case, it is the action of binding to a port (name_
bind). In reference policy style, this is implied by the function name.

•	 The result that the policy will enforce; in this case, it is that the action is allowed
(allow). In reference policy style, this is implied by the function name.

A policy is generally written for an application or set of applications. So, the preceding
example will be part of the policy written for web servers.

Policy writers will generally create three files per application or application set:

•	 A .te file, which contains the type enforcement rules.

•	 A .if file, which contains interface and template definitions, allowing policy
writers to easily use the newly-generated policy rules to enhance other policies.
You can compare this to header files in other programming languages.

•	 A .fc file, which contains file context expressions. These are rules that assign labels
to resources on the filesystem.

A finished policy is then packaged into an SELinux policy module.

Distributing policies through modules
Initially, SELinux used a single, monolithic policy approach: all possible access control
rules were maintained in a single policy file. It quickly became clear that this is not
manageable in the long term, and the idea of developing a modular policy approach
was born.

Within the modular approach, policy developers can write isolated policy sets for
a particular application (or set of applications), roles, and so on. These policies then
get built and distributed as policy modules. Platforms that need access controls for
a particular application load the SELinux policy module that defines the access rules for
that application.

40 Fundamental SELinux Concepts

The following diagram shows the building of policy modules. It also shows where CIL
comes into play, even when the policy rules themselves are not written in CIL:

Figure 1.4 – Build process from policy rule to policy store

The binary *.pp files (which are the SELinux policy modules) are considered to
 be written in a high-level language (HLL). Do not assume that this means they are
human-readable: these files are binary files. The consideration here is that SELinux wants
to support writing SELinux policies in a number of formats, which it calls high-level
languages, as long as it has a parser that can convert the files into CIL. Marking the binary
module formats (which in previous SELinux versions were the binary blobs loaded in
memory) as high-level allows the SELinux project to introduce the distinction between
high-level languages and CIL in a backward-compatible manner.

When distributing SELinux policy modules, most Linux distributions place the *.pp
SELinux policy modules inside /usr/share/selinux, usually within a subdirectory
named after the policy store (such as targeted). There, these modules are ready for
administrators to activate them.

When activating a module, the semodule command will copy those modules into
a dedicated directory (/var/lib/selinux/mcs/active/modules). When all
modules are aggregated in a single location, the final policy binary is compiled, resulting
in /etc/selinux/targeted/policy/policy.32 (or some other number) and
loaded in memory.

On CentOS, the SELinux policies are provided by the selinux-policy-targeted
(or -minimum or -mls) package. On Gentoo, they are provided by the various
sec-policy/selinux-* packages (Gentoo uses separate packages for each module,
reducing the number of SELinux policies loaded on an average system).

Distinguishing between policies 41

Bundling modules in a policy store
A policy store contains a single comprehensive policy, and only a single policy can be
active on a system at any point in time. Administrators can switch policy stores, although
this often requires rebooting the system and might even require relabeling the entire
system (relabeling is the act of resetting the contexts on all files and resources available
on that system).

The active policy on the system can be queried using sestatus (an SELinux status)
as follows:

sestatus | grep "Loaded policy name"
Loaded policy name: mcs

In this example, mcs is the currently loaded policy (store). The policy name that SELinux
will use upon its next reboot is defined in the /etc/selinux/config configuration
file as the SELINUXTYPE parameter.

The system's init system (be it a SysV-compatible init system or systemd)
is generally responsible for loading the SELinux policy, effectively activating SELinux
support on the system. The init system reads the configuration, locates the policy store,
and loads the policy file in memory. If the init system does not support this (in other
words, it is not SELinux-aware) then the policy should be loaded through the load_
policy command.

As we now have a better view of the flow used in policy development and distribution,
let's see how Linux distributions can differentiate their SELinux offering.

Distinguishing between policies
The most common SELinux policy store names are strict, targeted, mcs, and
mls. None of the names assigned to policy stores are fixed though, so it is a matter
of convention. Hence, we recommend consulting the distribution documentation to
verify what the proper name of the policy should be. Still, the name often provides some
information about the SELinux options enabled through the policy.

Supporting MLS
One of the options that can be enabled is MLS support. The SELinux context will not
have a fourth field with sensitivity information in it if this option is disabled, making the
contexts of processes and files look as follows:

staff_u:sysadm_r:sysadm_t

42 Fundamental SELinux Concepts

To check whether MLS is enabled, it is sufficient to see whether a process context doesn't
contain such a fourth field. Another way is to check the Policy MLS Status line in
the output of sestatus:

sestatus | grep MLS
Policy MLS status: enabled

Yet another method would be to look into the pseudo file, /sys/fs/selinux/mls.
A value of 0 means disabled, whereas a value of 1 means enabled:

cat /sys/fs/selinux/mls
1

Policy stores that have MLS enabled are generally targeted, mcs, and mls, whereas
strict generally has MLS disabled.

Dealing with unknown permissions
Permissions (such as read, open, and lock) are defined both in the Linux kernel and in
the policy itself. However, sometimes, newer Linux kernels support permissions that the
current policy does not yet understand.

Take the block_suspend permission (to be able to block system suspension)
as an example. If the Linux kernel supports (and checks) this permission but the loaded
SELinux policy does not understand that permission yet, then SELinux has to decide
how it should deal with the permission. We can configure SELinux to perform one of the
following actions:

•	 Allow every action related to an unknown permission (allow).

•	 Deny every action related to an unknown permission (deny).

•	 Stop and halt the system when an unknown permission is checked (reject).

We configure this through the deny_unknown value. To see the state for unknown
permissions, look for the Policy deny_unknown status line in sestatus:

sestatus | grep deny_unknown
Policy deny_unknown status: allowed

Administrators can set this for themselves in the /etc/selinux/semanage.conf file
through the handle-unknown variable (with allow, deny, or reject).

Distinguishing between policies 43

Supporting unconfined domains
An SELinux policy can be very strict, limiting applications as close as possible to their
actual behavior, but it can also be very liberal in what applications are allowed to do. One
of the concepts available in many SELinux policies is the idea of unconfined domains.
When enabled, it means that certain SELinux domains (process contexts) are allowed to
do almost anything they want (of course, within the boundaries of the regular Linux DAC
permissions, which still hold) and only a select number of domains are truly confined
(restricted) in their actions.

Unconfined domains are introduced to allow SELinux to be active on desktops and servers
where administrators do not want to fully restrict the entire system, but only a few of
the applications running on it. Generally, these implementations focus on constraining
network-facing services (such as web servers and database management systems) while
allowing end users and administrators to roam around unrestricted.

With other MAC systems, such as AppArmor, unconfinement is inherently part of the
design of the system as they only restrict actions for well-defined applications or users.
However, SELinux is designed to be a full mandatory access control system and thus
needs to provide access control rules even for those applications that aren't the security
administrator's primary focus. By marking these applications as unconfined, almost no
restrictions are imposed by SELinux.

We can see whether unconfined domains are enabled on the system using seinfo, by
querying the policy and asking it whether the unconfined_t SELinux type is defined.
On a system where unconfined domains are supported, this type will be available:

seinfo -t unconfined_t
Types: 1
 unconfined_t

For a system where unconfined domains are not supported, the type will not be part of
the policy:

seinfo -t unconfined_t
Types: 0

Most distributions that enable unconfined domains call their policy targeted, but
this convention is not always followed. Hence, it is always best to consult the policy
using seinfo. CentOS enables unconfined domains, whereas with Gentoo, this
is a configurable setting through the unconfined USE flag.

44 Fundamental SELinux Concepts

Limiting cross-user sharing
When UBAC is enabled, certain SELinux types will be protected by additional constraints.
This will ensure that one SELinux user cannot access the files (or other specific resources)
of another user, even when those users are sharing their data through the regular Linux
permissions. UBAC provides some additional control over information flow between
resources, but it is far from perfect. Essentially, it is made to isolate SELinux users from
one another.

Important note
A constraint in SELinux is an access control rule that uses all parts of a context
to make its decision. Unlike type enforcement rules, which are purely based
on the type, constraints can take the SELinux user, SELinux role, or sensitivity
label into account. Constraints are generally developed once and left untouched
– most policy writers will not touch constraints during their development
efforts.

Many Linux distributions, including CentOS, disable UBAC. Gentoo allows users to
decide whether they want UBAC through the Gentoo ubac USE flag (which is enabled
by default).

Incrementing policy versions
While checking the output of sestatus, we see that there is also a reference to a policy
version:

sestatus | grep version
Max kernel policy version: 32

This version has nothing to do with the versioning of policy rules but with the SELinux
features that the currently running kernel supports. In the preceding output, 32 is the
highest policy version that the running kernel supports. Every time a new feature is added
to SELinux, the version number is increased. We can find the policy file itself (which
contains all the SELinux rules loaded at boot time by the system) in /etc/selinux/
targeted/policy (where targeted refers to the policy store used, so if the system uses
a policy store named mcs, then the path will be /etc/selinux/mcs/policy).

If multiple policy files exist, use seinfo to discover which policy version file is used:

seinfo | grep Version
Policy version: 31 (MLS enabled)

Distinguishing between policies 45

A list of policy feature enhancements and the Linux kernel version in which that given
feature is introduced is provided next. Many of the features are only of concern to policy
developers, but knowing the evolution of the features gives us a good idea about the
evolution of SELinux:

•	 Version 12 represents the "old API" for SELinux, which is now deprecated.

•	 Version 15, introduced in Linux 2.6.0, provided the new API for SELinux.

•	 Version 16, introduced in Linux 2.6.5, added support for conditional policy
extensions.

•	 Version 17, introduced in Linux 2.6.6, added support for IPv6.

•	 Version 18, introduced in Linux 2.6.8, added support for fine-grained netlink socket
permissions.

•	 Version 19, introduced in Linux 2.6.12, added support for MLS.

•	 Version 20, introduced in Linux 2.6.14, reduced the size of the access vector table.

•	 Version 21, introduced in Linux 2.6.19, added support for MLS range transitions.

•	 Version 22, introduced in Linux 2.6.25, added policy capabilities.

•	 Version 23, introduced in Linux 2.6.26, added support for per-domain
permissive mode.

•	 Version 24, introduced in Linux 2.6.28, added support for explicit hierarchy
(type bounds).

•	 Version 25, introduced in Linux 2.6.39, added support for filename-based
transitions.

•	 Version 26, introduced in Linux 3.0, added support for role-transitions for
non-process classes, as well as support for role attributes.

•	 Version 27, introduced in Linux 3.5, added support for the flexible inheritance
of the SELinux user and SELinux role for newly-created objects.

•	 Version 28, introduced in Linux 3.5, added support for the flexible inheritance
of the SELinux type for newly-created objects.

•	 Version 29, introduced in Linux 3.14, added support for attributes within SELinux
constraints.

•	 Version 30, introduced in Linux 4.3, added support for extended permissions,
implemented first on ioctl controls. It also introduced enhanced SELinux Xen
support.

46 Fundamental SELinux Concepts

•	 Version 31, introduced in Linux 4.13, added support for InfiniBand access controls.

•	 Version 32, introduced in Linux 5.5, added support for automatically deducing the
intersection in sensitivity labels, called greatest lower bound, largest upper bound
(glblub).

By default, when an SELinux policy is built, the highest supported version as defined
by the Linux kernel and libsepol (the library responsible for building the SELinux
policy binary) is used. Administrators can force a version to be lower using the
policy-version parameter in /etc/selinux/semanage.conf.

Different policy content
Besides the policy capabilities described in the previous section, the main difference
between policies (and distributions) is the policy content itself. We already covered
that most distributions base their policy on the reference policy project. Although the
reference policy project is considered the master for most distributions, each distribution
has its own set of deviations from this main policy set.

Many distributions make extensive additions to the policy without directly passing the
policies to the upstream reference policy project. There are several possible reasons why
this is not directly done:

•	 The policy enhancements or additions are still immature: Fedora, CentOS, and
Red Hat initially start with active, permissive policies, meaning the policies are not
enforced. Instead, SELinux logs what it would have prevented and, based on those
logs, the policies are then enhanced. This means that a policy is only ready after
a few releases.

•	 The policy enhancements or additions are too specific to the distribution: If a policy
set is not reusable for other distributions, then some distributions will opt to keep
those policies to themselves as the act of pushing changes to upstream projects takes
quite some effort.

•	 The policy enhancements or additions haven't followed the upstream rules and
guidelines: The reference policy has a set of guidelines that policies need to adhere
to. If a policy set does not comply with these rules, then the reference policy will not
accept the contribution.

•	 The policy enhancements or additions are not implementing the same security
model as the reference policy project wants: As SELinux is a very extensive
mandatory access control system, it is possible to write completely different policies.

•	 The distribution does not have the time or resources to push changes upstream.

Summary 47

This means that SELinux policies can differ between distributions (and even releases
of the same distribution).

With this, we can conclude on some of the differentiation that distributions can put
into their SELinux policies: they can opt to enable or disable MLS support, allow or
deny unknown permissions, add distribution-provided unconfined domains, support
user-based access controls, and/or deviate from the reference policy project to suit the
distribution's principles.

Summary
In this chapter, we saw that SELinux offers a more fine-grained access control mechanism
on top of the Linux access controls. SELinux is implemented through Linux Security
Modules and uses labels to identify its resources and processes based on ownership (user),
role, type, and even the security sensitivity and categorization of the resource. We covered
how SELinux policies are handled within an SELinux-enabled system and briefly touched
upon how policy writers structure policies.

Linux distributions implement SELinux policies, which can differ between distributions
based on supported features, such as sensitivity labels, the default behavior for unknown
permissions, support for confinement levels, or specific constraints put in place, such as
UBAC. However, most of the policy rules themselves are similar and are even based on
the same upstream reference policy project.

Switching between SELinux enforcement modes and understanding the log events that
SELinux creates when it prohibits certain access is the subject of our next chapter. In it,
we will also cover how to approach the often-heard requirement of disabling SELinux,
and why doing so is the wrong way forward.

Questions
1.	 What is the most important difference between a DAC and a MAC system?

2.	 How does Linux support the different MAC technologies?

3.	 What four fields constitute an SELinux context?

4.	 How does SELinux support role-based access controls?

5.	 Why isn't there a single SELinux policy for all Linux distributions?

2
Understanding

SELinux Decisions
and Logging

Once we enable SELinux on the system, it starts its access control functionality, as
described in the previous chapter. Once it starts, administrators need to keep a close
eye on its actions, and often need to deal with unexpected behavior if one or more
applications are not acting according to the SELinux policy. Through SELinux logging,
we learn how SELinux enforces its policies toward the applications on the system.

Administrators have to know how to switch between SELinux in full-enforcement
mode (resembling a host-based intrusion prevention system) versus its permissive,
logging-only mode, and use its various methods to toggle the SELinux state (enabled
or disabled; permissive or enforcing). Furthermore, we should know how to disable
SELinux's enforcement for a single domain rather than an entire system, and learn to
interpret the SELinux log events that describe which activities SELinux has prevented.
We will finish with an overview of common methods for analyzing these logging events
in day-to-day operations.

50 Understanding SELinux Decisions and Logging

In this chapter, we're going to cover the following main topics:

•	 Switching SELinux on and off

•	 SELinux logging and auditing

•	 Getting help with denials

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3dFaUXm

Switching SELinux on and off
This is perhaps a weird section to begin with, but disabling SELinux is a commonly
requested activity. Some vendors do not support their application running on a platform
that has SELinux enabled, as those vendors do not have the expertise to develop SELinux
policies for their own applications, or are not able to educate their own support lines to
deal with SELinux.

Furthermore, system administrators are generally reluctant to use security controls they
do not understand or find too complex to maintain. Luckily, SELinux is becoming a de
facto standard technology in several Linux distributions, which is increasing its exposure
and understanding among administrators. SELinux is also capable of selectively disabling
its access controls for a part of a system rather than requiring us to disable it for a
complete system.

Setting the global SELinux state
SELinux supports three major states that it can be in: disabled, permissive, and
enforcing. These states are set in the /etc/selinux/config file, through the
SELINUX variable, as illustrated in the following code snippet:

$ grep ^SELINUX= /etc/selinux/config
SELINUX=enforcing

https://bit.ly/3dFaUXm

Switching SELinux on and off 51

When the init system process loads the SELinux policy, the SELinux code checks the
state that the administrator has configured. The states are described as follows:

•	 If the state is disabled, then the SELinux code disables further support, booting
the system further without activating SELinux.

•	 If the state is permissive, then SELinux is active but will not enforce its policy
on the system. Instead, SELinux will report any violation against the policy, but will
not prevent the action itself. This is sometimes called host intrusion detection as it
works in reporting-only mode.

•	 If the state is enforcing, then SELinux is active and will enforce its policy on the
system. Violations are reported and denied. This is sometimes called host intrusion
prevention, as it enforces the rules while logging the actions it takes.

We can use the getenforce command or the sestatus command to get information
about the current state of SELinux, like so:

$ sestatus | grep mode
Current mode:	 enforcing
$ getenforce
Enforcing

It is also possible to query the /sys/fs/selinux/enforce pseudo-file to get similar
information. If the file returns 1, then SELinux is in enforcing mode. If it returns 0, then
it is in permissive mode. The following code snippet shows SELinux in enforcing mode:

$ cat /sys/fs/selinux/enforce
1

When we change the /etc/selinux/config file, then we need to reboot the system
for the changes to take effect. However, if we boot a system without SELinux support
(disabled), re-enabling SELinux support alone will not suffice: the administrator will
need to make sure that all files on the system are relabeled (the context of all files needs to
be set). Without SELinux support, Linux will create and update files without updating or
setting the SELinux labels on those files. When the system is later rebooted with SELinux
support, SELinux will not have any knowledge of the context of a file unless the labels
are reset.

Relabeling the filesystem is covered in Chapter 4, Using File Contexts and Process Domains.

52 Understanding SELinux Decisions and Logging

In many situations, administrators often want to disable SELinux when it starts preventing
certain tasks. This is careless to say the least, and here's why:

•	 SELinux is a security component—part of the operating system. Disabling SELinux
is like disabling a firewall because it is blocking some communication. It might help
because it's a faster way of getting something to work again, but you're removing
measures that were enabled to protect you.

•	 Just as with a firewall, SELinux is configurable by rules. If an application
is prevented from working correctly, we need to update the rules for that
application, just as with additional firewall rules that enable a particular network
flow. We will start updating SELinux policy rules from Chapter 5, Controlling
Network Communications, onward.

•	 In the worst case, when we want to allow every action an application performs
unconditionally, we can still leave SELinux on and just run this application in an
unrestricted SELinux domain, called a permissive domain.

Distributions put significant effort in the integration of SELinux within their products,
and they have awesome support channels to help you out if all things fail.

Switching to permissive or enforcing mode
Most distribution-provided Linux kernels allow switching between enforcing and
permissive mode through a simple administrative command. This feature is called the
SELinux development mode and is supported by the CONFIG_SECURITY_SELINUX_
DEVELOP kernel configuration parameter. This kernel parameter, if set, also has the Linux
kernel boot in permissive mode first, unless a specific boot option (enforcing=1) is set.

Although we could consider this development mode a risk (all a malicious person would
need to do is switch SELinux to permissive mode to disable its access controls), switching
the mode requires strong administrative privileges (like the root user has), which most
application domains don't have.

The command to switch between permissive mode and enforcing mode is the
setenforce command. It takes a single argument: 0 (permissive) or 1 (enforcing).
The permissive and enforcing strings are allowed by the command as well.

The change takes effect immediately. For instance, we can use the following command
to switch to permissive mode:

setenforce 0

Switching SELinux on and off 53

The effect of setenforce is the same as writing the right integer value into the /sys/
fs/selinux/enforce pseudo-file, as illustrated in the following code snippet:

echo 0 > /sys/fs/selinux/enforce

Switching between permissive and enforcing mode can be of interest for policy developers
or system administrators who are modifying the system to use SELinux properly. We can
also use it to quickly verify whether an application warning or error is due to SELinux
access controls or not—assuming the application is not SELinux-aware, which we will talk
about in the Understanding SELinux-aware applications section.

On production systems, it might be of interest to disable the ability to switch to permissive
mode. Disabling this feature usually requires the Linux kernel to be rebuilt, but SELinux
policy developers have also thought of a different way to disallow users from toggling the
SELinux state. The privileges that users need to switch to permissive mode are conditional,
and system administrators can easily toggle this to disable switching back from enforcing
mode to permissive mode. The condition is implemented through an SELinux Boolean
called secure_mode_policyload whose default value is off (meaning switching
SELinux state is allowed).

SELinux Booleans are configurable options that take on a single value (on or off,
although true/false and 1/0 are valid values as well) and manipulate parts of the active
SELinux policy. The value of the conditionals can be persisted (meaning they survive
reboots) or be kept only during the current boot session. We can persist the value across
reboots by adding -P to the setsebool command, as follows:

setsebool -P secure_mode_policyload on

SELinux Booleans are covered in more depth in Chapter 12, Tuning SELinux Policies.

The use of the secure_mode_policyload SELinux Boolean allows administrators to
restrict switching from enforcing mode back to permissive mode. This does not disable
SELinux completely, but only toggles whether it will act upon its policies or not.

Switching from a disabled state to a running state is not supported. However, the reverse
is possible, but only under the following condition: if the Linux kernel is built with the
SECURITY_SELINUX_DISABLE kernel configuration parameter, then services such as
init can effectively disable SELinux at runtime, but only if no SELinux policy is loaded
yet. This functionality, however, is not recommended to be actively used, and was only
introduced for platforms where boot options are hard to use. The feature is marked as
deprecated in recent kernels as such platforms are few in number.

54 Understanding SELinux Decisions and Logging

Using kernel boot parameters
Using the setenforce command makes sense when we want to switch to permissive
or enforcing mode at a point in time when we have interactive access to the system. But
what if we need this on system boot? If the system refuses to boot properly due to SELinux
access controls, we cannot edit the /etc/selinux/config file. Luckily, we can change
the SELinux state through other means as well.

The solution is to use kernel boot parameters. We can boot a Linux system with one
or two parameters that take precedence over the /etc/selinux/config setting,
as follows:

•	 selinux=0: This informs the system to disable SELinux completely, and has the
same effect as setting SELINUX=disabled in the configuration file. When set,
the other parameter (enforcing) is not consulted. Please remember that booting
a system with SELinux disabled means that to enable it again, we need to relabel
all files and resources on the filesystem. The selinux= parameter is supported
through the CONFIG_SECURITY_SELINUX_BOOTPARAM kernel configuration.

•	 enforcing=0: This informs the system to run SELinux in permissive mode, and
has the same effect as setting SELINUX=permissive in the configuration file.

•	 enforcing=1: This informs the system to run SELinux in enforcing mode, and
has the same effect as setting SELINUX=enforcing in the configuration file.

Consider a Linux system that uses GRUB2 as its boot loader, and we want to add
enforcing=0 to the boot entry. To accomplish this, we execute the following steps:

1.	 Reboot the system until the GRUB2 boot screen comes up.

2.	 Navigate with the arrow keys to the boot entry for which the SELinux state must be
altered. This is usually the default boot entry and should be already selected.

3.	 Press the E key to edit the boot entry line. Do this before the GRUB2 timer reaches
zero; otherwise, the system will continue to boot.

4.	 Use the arrow keys to go to the end of the line that starts with options. If no
such line exists, go to the end of the line that starts with linux, linux16,
or linuxefi.

5.	 Add enforcing=0 to the end of this line.

6.	 Press Ctrl + X or F10 to boot the entry.

Other boot loaders have similar approaches to changing the boot line without persisting
it for every reboot. Consult your distribution documentation for more details.

Switching SELinux on and off 55

Alongside the SELinux-specific parameters, there are a few Linux Security Module
(LSM)-related boot parameters that can be useful to know, especially when you are
combining multiple LSM modules on the same system. These are detailed as follows:

•	 The lsm.debug boot parameter enables LSM initialization debugging output,
showing which LSM modules it effectively enables or ignores, and which LSM
modules are considered as exclusive.

•	 The lsm=lsm1,…,lsmN option chooses the order of LSM initialization. For
instance, to initialize SELinux before lockdown, use lsm=selinux,lockdown.

•	 The security= boot parameter enables selection of the active, major/exclusive
LSM module. This parameter, however, is deprecated, favoring the lsm= parameter.

When using SELinux in production, it might be wise to properly protect the boot menu—
for instance, by password-protecting the menu and regularly verifying the integrity of the
boot menu files.

Disabling SELinux protections for a single service
Since policy version 23 (which came with Linux 2.6.26), SELinux also supports a more
granular approach to switching between permissive and enforcing mode: the use of
permissive domains. As mentioned before, a domain is a term that SELinux uses for
types (labels) assigned to processes. With permissive domains, we can mark one or more
domains as permissive (and, as such, not enforced by SELinux rules), even though the rest
of the system is still running in enforcing mode.

To make a domain permissive, we use the semanage command, as follows:

semanage permissive -a minidlna_t

With the same semanage command, we can list the currently defined permissive
domains, like this:

semanage permissive -l
Builtin Permissive Types

Customized Permissive Types

minidlna_t

56 Understanding SELinux Decisions and Logging

In the previous example, you will notice that there is also room for built-in permissive
types. These are domains that have been marked as permissive by the policy developers
of the Linux distribution itself. Some distributions opt to introduce new application
policies in permissive mode first, allowing users to test out the policies before enforcing
them. When that is the case, you can find these permissive domains under Builtin
Permissive Types.

Another method for listing the custom permissive types (those not marked as permissive
through the distribution) is to use the semodule command. In the previous chapter,
we briefly touched on this command when talking about SELinux policy modules. We can
use it to list the SELinux policy modules that have permissive_ in their name because
the semanage permissive command generates a small SELinux policy module to
mark the domain as permissive, as illustrated in the following code snippet:

semodule -l | grep permissive_
permissive_minidlna_t

To remove the permissive mode from the domain, pass the -d argument to the
semanage command. This is only possible for domains that the system administrator
marked as permissive, though—distribution-provided permissive domains cannot be
switched to enforcing mode through this approach. This is illustrated in the following
code snippet:

semanage permissive -d minidlna_t

When a domain is marked as permissive, the application should behave as if SELinux
is not enabled on the system (SELinux will not be enforcing anything that particular
application/domain does), making it easier for us to discover whether SELinux is really
causing a permission issue. Note, though, that other domains (including those that
interact with a permissive domain) are themselves still governed and enforced through
the SELinux access controls.

Understanding SELinux-aware applications
Most applications themselves do not have knowledge that they are running on an
SELinux-enabled system. Without this knowledge, permissive mode truly means that
the application behaves as if SELinux were not enabled to begin with. However, some
applications actively rely on the SELinux policy to make access control decisions,
or interact with SELinux for further information gathering. We call these applications
SELinux-aware because they change their behavior based on the SELinux-related
information available.

SELinux logging and auditing 57

Sadly, many of these SELinux-aware applications do not properly validate whether
they are running in permissive mode or not. As a result, running these applications in
a permissive domain (or the entire system in permissive mode) will generally not result
in the application running as if SELinux were not active.

Examples of such applications are the Secure Shell (SSH) daemon, the system login
service, the init system, and some cron daemons, as well as several core Linux utilities
(such as ls and id). They might show permission failures or different behavior based
on the SELinux policy, even if SELinux is not in enforcing mode.

We can find out whether an application is SELinux-aware by checking whether the
application is dynamically linked with the libselinux library. Such checks are possible
with readelf, ldd, or objdump, as follows:

$ readelf -d /bin/ls | grep selinux
0x0000000000000001 (NEEDED)		 Shared library: [libselinux.
so.1]

$ ldd /bin/ls | grep selinux
libselinux.so.1 => /lib64/libselinux.so.1 (0x00005d415f3f03f0)

$ objdump -x /bin/ls | grep selinux
NEEDED	 libselinux.so.1

Knowing whether an application is SELinux-aware or not can help in troubleshooting
failures, as the application's behavior might still be different between a disabled SELinux
state and a permissive SELinux state.

Up until now, we've focused on enabling or disabling SELinux, and thus on a granular
or coarse-grained matter. Once it is enabled though, its interaction with the administrator
will be through policy enforcement and logging. So, let's look at how SELinux handles
logging.

SELinux logging and auditing
SELinux developers understand that a security-oriented subsystem such as SELinux can
only succeed if it is capable of enhanced logging and—even—debugging. Every action that
SELinux takes, as part of the LSM hooks that it implements, should be auditable. Denials
(actions that SELinux prevents) should always be logged so that administrators can take
due action. SELinux tuning and changes, such as loading new policies or altering SELinux
Booleans, should always result in an audit event.

58 Understanding SELinux Decisions and Logging

Following audit events
By default, SELinux will send its messages to the Linux audit subsystem (assuming the
Linux kernel is configured with the audit subsystem enabled through the CONFIG_AUDIT
kernel configuration). There, the messages are picked up by the Linux audit daemon
(auditd) and logged in the /var/log/audit/audit.log file. Distributions and
administrators can define additional handling rules by configuring the audit dispatcher
process (audisp), which picks up audit events and dispatches them to one or more
separate processes. The SELinux troubleshooting daemon (setroubleshootd), an
optional service to provide help with troubleshooting SELinux events, uses this to get
access to audit events.

The audit event flow is shown in this diagram:

Figure 2.1 – Flow of audit events generated by SELinux

SELinux logging and auditing 59

With SELinux enabled, (almost) every permission check that results in a denial is logged.
When Linux auditing is enabled, these denials are logged by the audit daemon in the
audit.log file by default. If the audit daemon is unavailable, the events are stored in
the Linux kernel message buffer, which we can consult using the dmesg command. The
events in the kernel message buffer are also often captured through the system logger.

If the SELinux troubleshooting daemon is installed, then the audit daemon will,
alongside its logging, also dispatch the events through the audit dispatch system toward
the sedispatch command. This command will further handle the event and send it
through D-Bus (a system bus implementation popular on Linux systems) to the SELinux
troubleshooting daemon. This daemon will analyze the event and might suggest one
or more fixes to the administrator. We will cover the SELinux troubleshooting daemon
in the Getting help with denials section.

Whenever SELinux verifies a particular access, it does not always go over the entire
policy. Instead, it has an access vector cache (AVC), in which it stores the results of
previous access attempts. This cache ensures that SELinux can quickly react to activities
without having a huge impact on performance. We notice the abbreviation of this cache
as the message type for most SELinux events, as shown at the beginning of the following
example:

type=AVC msg=audit(03/22/2020 12:15:38.557:2331): avc: denied
{ read } for pid=12569 comm="dmesg" name="xterm-256color"
dev="sdb2" ino=131523 scontext=sysadm_u:sysadm_r:dmesg_t:s0-
s0:c0.c1023 tcontext=system_u:object_r:etc_t:s0 tclass=file
permissive=0

When the Linux kernel checks a permission request, this request is represented as an
access vector, and the cache is then consulted to quickly find the appropriate response.
If the cache has the right access vector, then the decision is taken from the cache;
otherwise, the SELinux subsystem consults the policy itself and updates the cache.
Of course, SELinux invalidates the cache when a new policy is loaded or the policy
is dynamically adjusted. This ensures that all permission checks are in line with the
active policy.

This inner working of SELinux is less relevant to most administrators, but at least now
we know where the term AVC comes from.

60 Understanding SELinux Decisions and Logging

Tuning the AVC
The AVC can be slightly tuned, by setting the size of the cache or its related tables.

We can configure the cache size itself through the /sys/fs/selinux/avc/cache_
threshold pseudo-file (available if the CONFIG_SECURITY_SELINUX_AVC_STATS
kernel configuration is set). For instance, to increase the cache size to 768 entries (the
default is 512), the following command would be used:

echo 768 > /sys/fs/selinux/avc/cache_threshold

To confirm the cache threshold, read the file, as follows:

cat /sys/fs/selinux/avc/cache_threshold
768

The AVC hash statistics are available through the hash_stats pseudo-file, as illustrated
in the following code snippet:

$ cat /sys/fs/selinux/avc/hash_stats
entries: 506
buckets used: 233/512
longest chain: 5

If you suspect that lower system performance is due to SELinux, then we advise you to
look at the longest chain output in hash_stats. If it is longer than 10, then some
performance impact can be expected, and updating the cache size might help.

The avcstat command shows the evolution of the cache over time (the first number
is the total since boot). When the number of cache misses is high or volatile, or the
number of reclaims (obsoleting oldest cache entries and reusing them for new ones) is
volatile, then the cache size might need to be increased. The command is illustrated in the
following code snippet:

$ avcstat 5
lookups	 hits		 misses	 allocs	 reclaims	
frees
58396334	 58382324	 14010		 14010		 10736		
13511
591		 591		 0		 0		 0		 0
1657		 1653		 4		 4		 0		 0

SELinux logging and auditing 61

Recent kernels also allow the number of buckets used through a kernel configuration
parameter to be set (CONFIG_SECURITY_SELINUX_SIDTAB_HASH_BITS), and its
cache statistics can be viewed through the /sys/fs/selinux/ss/sidtab_hash_
stats pseudo-file, as illustrated in the following code snippet:

$ cat /sys/fs/selinux/ss/sidtab_hash_stats
entries: 285
buckets use: 55/512
longest chain: 3

Another performance parameter is the size of the internal session ID (SID) (the internal
identifier used to represent contexts) to the string cache. Sadly, we can only configure this
parameter at kernel build time, using the CONFIG_SECURITY_SELINUX_SID2STR_
CACHE_SIZE setting.

Uncovering more logging
There is an important SELinux policy directive that provides control over what is (not)
audited, and that is dontaudit. A dontaudit rule in the SELinux policy tells SELinux
that an access denial should not be logged. This is the only example where SELinux won't
log a denial—the SELinux policy writer has explicitly disabled the auditing of events. This
is usually done to remove clutter from the logs and hide cosmetic denials that have no
influence on the security of the system.

The seinfo utility can tell us how many of these rules, as well as its sibling rule
auditallow (log events, even though they are allowed by the policy), are currently
active, as illustrated in the following code snippet:

$ seinfo | grep -i audit
Auditallow:	 1	 Dontaudit:		 5559
Auditallowxperm:	0	 Dontauditxperm:	 0

Luckily, we can disable these dontaudit rules at will. Through the following semodule
command, these rules are removed from the active policy:

semodule –-disable_dontaudit –-build

The arguments can also be abbreviated to -D and -B, respectively. To re-enable the
dontaudit rules, just rebuild the policy like so:

semodule -B

62 Understanding SELinux Decisions and Logging

Disabling the dontaudit rules can sometimes help in troubleshooting failures that do
not result in any useful audit event. Generally speaking, though, audit events that policy
writers mark as cosmetic are not the cause of a failure.

Configuring Linux auditing
SELinux will try to use the audit subsystem when available and will fall back to regular
system logging when it isn't. This can either be because the Linux kernel audit subsystem
is not configured or because the Linux audit daemon itself is not running.

For a Linux audit, we usually do not need to configure anything as SELinux AVC denials
are logged by default. You will find the denials in the audit log file (/var/log/audit/
audit.log), usually together with the system call and other event messages related to
the same action, as illustrated in the following code snippet:

type=PROCTITLE msg=audit(...) : proctitle=ping 8.8.8.8

type=SYSCALL msg=audit(...) : arch=x86_64 syscall=socket
success=no exit=EACCES(Permission denied) a0=inet a1=SOCK_
DGRAM a2=icmp a3=0x7fffac013050 items=0 ppid=2685 pid=17292
auid=admin uid=root gid=root euid=root suid=root fsuid=root
egid=root sgid=root fsgid=root tty=tty1 ses=1 comm=ping
exe=/bin/ping subj=sysadm_u:sysadm_r:ping_t:s0-s0:c0.c1023
key=(null)

 type=AVC msg=audit(...) : avc: denied { create } for
pid=17292 comm=ping scontext=sysadm_u:sysadm_r:ping_t:s0-
s0:c0.c1023 tcontext=sysadm_u:sysadm_r:ping_t:s0-s0:c0.c1023
tclass=icmp_socket permissive=0

To configure the target log file for the audit system, use the log_file parameter in /
etc/audit/auditd.conf.

To enable remote audit logging (to centralize audit events from multiple hosts on
a single system), you have the option of either enabling syslog forwarding or enabling the
audisp-remote plugin.

With syslog forwarding, the audit dispatch daemon is configured to send audit events to
the local system logger as well. It is then up to the administrator to configure the local
system logger to pass on events toward a remote system.

SELinux logging and auditing 63

Informational note
The use of syslog forwarding has the advantage that no additional software
deployments and daemons are needed on the servers to centralize their log
events. The setup is hence also reusable in case hardened appliances are
introduced to the environment. Of course, other log management solutions
exist that can watch for log events and send those to the central server. These,
however, require more configuration, and introduce an additional software
agent to install.

Edit the /etc/audit/plugins.d/syslog.conf file and set active to yes,
as follows:

vi /etc/audit/plugins.d/syslog.conf
active = yes
direction = out
path = /sbin/audisp-syslog
type = always
args = LOG_INFO
format = string

Using the system logger to centralize audit events might not be the best option though, as
system loggers generally use unencrypted—and often not even guaranteed—data delivery.
With the audisp-remote plugin, we can even use an encrypted channel to send the
audit events, and provide guaranteed delivery to a remote auditd server.

First, configure the audit daemon on the target (log) server to accept audit logs from
remote hosts by enabling the audit daemon to listen on port 60. We also change the
event formatting to an enriched value and add hostnames to the events so that we can
distinguish events from multiple hosts, as follows:

vi /etc/audit/auditd.conf
tcp_listen_port = 60
log_format = ENRICHED
name_format = HOSTNAME

Next, on the source systems, configure auditd.conf as shown in the previous code
snippet, but without the port setting. Then, configure the audisp-remote plugin to
connect to the target server's audit daemon, as follows:

vi /etc/audit/audisp-remote.conf
remote_server = <targethostname>
port = 60

64 Understanding SELinux Decisions and Logging

Finally, enable the audisp-remote plugin, as follows:

vi /etc/audit/plugins.d/au-remote.conf
active = yes

Don't forget to restart the audit daemon so that the changes take effect.

We can only recommend you always use the Linux audit subsystem. Not only does it
integrate nicely with troubleshooting utilities; it also allows administrators to use the
audit tools to query the audit logs or even generate reports, such as with aureport,
as illustrated in the following code snippet:

aureport --avc --start recent
AVC Report
===
date time comm subj syscall class permission obj result event
===
...
7. 03/21/2020 19:40:55 sudo sysadm_u:sysadm_r:sysadm_sudo_t:s0-
s0:c0.c1023 257 dir search sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.
c1023 denied 1067
...
10. 03/21/2020 19:48:19 dmesg sysadm_u:sysadm_r:dmesg_t:s0-
s0:c0.c1023 21 file read system_u:object_r:etc_t:s0 denied 1080

The Linux audit system is an important aide for Linux administrators, and not just for
SELinux troubleshooting. But next to the Linux audit system, events can also be directed
toward the local system logger, as explained next.

Configuring the local system logger
When auditing is not enabled, or the Linux audit daemon is not running, then the system
logger is responsible for capturing SELinux events. The system logger will log these events
through the kernel logging facility (kern.*). Most system loggers will save these kernel
log events in a general log file, such as /var/log/messages.

We can configure the system logger to direct SELinux AVC messages into its own log file,
such as /var/log/avc.log. For instance, for the rsyslog system logger, we can add
in a configuration entry under /etc/rsyslog.d named 99-selinux.conf, with the
following content:

vi /etc/rsyslog.d/99-selinux.conf
:msg, contains, "avc: "	 -/var/log/avc.log

SELinux logging and auditing 65

After restarting the system logger, the AVC-related messages will show up in the /var/
log/avc.log file.

When the local system logger handles SELinux logging, an easy method to quickly obtain
the latest AVC denials (or other messages) is through the dmesg command, as illustrated
in the following code snippet:

dmesg | grep avc | tail

Be aware, though, that unlike the audit logs, many systems allow the dmesg content to be
read by regular users. This might result in some information leakage to untrusted users.
For this reason, some SELinux policies do not allow regular users to access the kernel ring
buffer (and, as such, use dmesg) unless the user_dmesg SELinux Boolean is set to on,
as illustrated in the following code snippet:

setsebool user_dmesg on

The user_dmesg SELinux Boolean is not available on CentOS, though. There, only the
standard unconfined user type and the administrative user type have access to the kernel
ring buffer. To prevent other users from reading this information, you need to map these
users to non-administrative SELinux users, such as user_u or (x)guest_u, which is
something described further on in this book.

Reading SELinux denials
The one thing every one of us will have to do several times with SELinux systems is to
read and interpret SELinux denial information. When SELinux prohibits access and there
is no dontaudit rule in place to hide it, SELinux will log it. If nothing is logged, it was
probably not SELinux that was responsible for the failure. Remember: SELinux comes
after Linux discretionary access control (DAC) checks, so if a regular permission doesn't
allow a certain activity then SELinux is never consulted.

SELinux denial messages are logged the moment SELinux prevents some access
from occurring. When SELinux is in enforcing mode, the application usually returns
a Permission denied error, although sometimes it might be a bit more obscure.
An example of this can be seen in the following code snippet:

$ ls /proc/1
ls: cannot access '/proc/1': Permission denied
ls -ldZ /proc/1
dr-xr-xr-x. 9 root system_u:system_r:init_t:s0 0 Mar 21 10:54 /
proc/1

66 Understanding SELinux Decisions and Logging

So, what does a denial message look like? The following command output shows a denial
from the audit subsystem, which we can query through the ausearch command:

ausearch -m avc -ts recent -i
type=AVC msg=audit(03/22/2020 12:15:38.557:2331): avc: denied
{ read } for pid=12569 comm="dmesg" name="xterm-256color"
dev="sdb2" ino=131523 scontext=sysadm_u:sysadm_r:dmesg_t:s0-
s0:c0.c1023 tcontext=system_u:object_r:etc_t:s0 tclass=file
permissive=0

Let's break up this denial into its individual components. The following list gives more
information about each part of the preceding denials. As an administrator, knowing how
to read denials is extremely important, so take enough time for this:

•	 SELinux action: The action that SELinux took or would take if run in enforcing
mode. This is usually denied, although some actions are explicitly marked to be
audited as well and would result in granted. Example: denied

•	 Permissions: The checked permissions (action initiated by the process). This is
usually a single permission, although it can sometimes be a set of permissions.
Example: { read }

•	 Process ID (PID): The ID of the process that was performing the action. Example:
pid=12569

•	 Process name: The process name (command). It doesn't display any arguments to
the command, though. Example: comm="dmesg"

•	 Target name: The name of the target (resource) that the process is performing an
action on. If the target is a file, then the name is usually the filename or directory.
Example: name="xterm-256color"

•	 Target device: The device on which the target resource resides. Together with the
next field (inode number) this allows us to uniquely identify the resource on
a system. Example: dev="sdb2"

•	 Target file inode number: The inode number of the target file or directory.
Together with the device, this allows us to find the file on the filesystem.
Example: ino=131523

•	 Source context: The context in which the process resides (the domain of the
process). Example: scontext=sysadm_u:sysadm_r:dmesg_t:s0-s0:c0.
c1023

•	 Target context: The context of the target resources. Example:
tcontext=system_u:object_r:etc_t:s0

SELinux logging and auditing 67

•	 Object class: The class of the target object—for instance, a directory, file, socket,
node, pipe, file descriptor, filesystem, or capability. Example: tclass=file

•	 Permissive mode: The mode the domain was in when the action was executed.
If set to 0, then SELinux was in enforcing mode; otherwise, it was permissive
(either for the system or for the given domain).
Example: permissive=0

We can interpret the previous denial like so: SELinux has denied the dmesg command to
read a file named "xterm-256color". The file has inode number 131523 on device /
dev/sdb2 and is labeled as etc_t. The dmesg command has PID 12569 and is labeled
as dmesg_t. The dmesg_t domain was not in permissive mode.

Depending on the action and the target class, SELinux uses different fields to give all the
information we need to troubleshoot a problem. Consider the following denial:

type=AVC msg=audit(03/22/20 18:12:52.177:2326): avc:
denied { name_bind } for pid=15983 comm="nginx"
src=89 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:reserved_port_t:s0 tclass=tcp_socket
permissive=0

The preceding denial came up because the nginx web server was configured to listen on
a non-default port (89 instead of the default 80).

Identifying the problem is a matter of understanding how the operations work and
properly reading the denials. The denial logs give us enough to get us started, giving
a clear idea of what was denied.

Administrators might want to update the SELinux policy to allow a specific action (by
adding an allow rule to the SELinux policy, as described further on in this book). This is,
however, not always the right approach because other options exist and are usually better,
such as these:

•	 Providing the right label on the target resource (usually the case when the target
is a non-default port, non-default location, and so on)

•	 Switching Booleans (flags that manipulate the SELinux policy) to allow additional
privileges

•	 Providing the right label on the source process (often the case when the acting
application is not installed by the distribution package manager)

•	 Using the application as intended instead of through other means (as SELinux only
allows expected behavior), such as starting a daemon through a service (init
script or systemd unit) instead of through a command-line operation

68 Understanding SELinux Decisions and Logging

If the preceding nginx example were a wanted configuration (using a non-default port),
then we should label this port as a HyperText Transfer Protocol (HTTP) port and not
allow the httpd_t domain to bind on (many) other ports.

Other SELinux-related event types
Although most SELinux log events are AVC-related, they aren't the sole event types an
administrator will have to deal with. Most audit events will show SELinux information as
part of the event, even though SELinux has little to do with the event itself, but a few audit
event types are directly concerned with SELinux.

Tip
A full list of all possible audit events is available in the linux/audit.h
header file, located in /usr/include.

USER_AVC
A USER_AVC event resembles regular AVC audit events, but now the source is a user
space object manager. These are applications that use SELinux policy rules, but they
enforce these rules themselves rather than through the kernel.

The following example is such an event, generated by D-Bus:

type=USER_AVC msg=audit(03/22/2020 11:25:56.123:154)
: pid=540 uid=dbus auid=unset ses=unset
subj=system_u:system_r:system_dbusd_t:s0-s0:c0.c1023
msg='avc: denied { acquire_svc } for service=com.redhat.
tuned spid=1460 scontext=system_u:system_r:tuned_t:s0
tcontext=system_u:system_r:tunned_t:s0 tclass=dbus permissive=0
exe=/usr/bin/dbus-daemon sauid=dbus hostname=? addr=?
terminal=?'

The event has two parts. Everything up to the msg= string is information about the user
space object manager that generated the event, and is the first part of the event. The true
event itself (which is the second part) is stored within the msg= part and includes similar
fields, as we already know from regular AVCs.

SELinux logging and auditing 69

SELINUX_ERR
An SELINUX_ERR event comes up when SELinux detects a general policy violation
rather than an access control violation. It cannot be resolved by SELinux policy writers
by just allowing the operation. These events usually point to a misuse of applications and
services that the policy is not tailored to accomplish, and an example is shown in the
following code snippet:

type=PATH msg=audit(03/22/2020 12:25:53.104:2364) : item=0
name=/usr/sbin/rpc.nfsd inode=3019958 dev=08:12 mode=file,755
ouid=root ogid=root rdev=00:00 obj=system_u:object_r:nfsd_
exec_t:s0 nametype=NORMAL cap_fp=none cap_fi=none cap_fe=0 cap_
fver=0 cap_frootid=0
type=SELINUX_ERR msg=audit(03/22/2020 12:25:53.104:2364) :
op=security_compute_sid invalid_context=sysadm_u:sysadm_r:nfsd_
t:s0-s0:c0.c1023 scontext=sysadm_u:sysadm_r:sysadm_t:s0-s0:c0.
c1023 tcontext=system_u:object_r:nfsd_exec_t:s0 tclass=process

In the preceding example, a user (running in the sysadm_t domain) was
executing rpc.nfsd (with nfsd_exec_t as the label), and the policy wanted
to transition to the nfsd_t domain. However, that resulted in a full context of
sysadm_u:sysadm_r:nfsd_t:s0-s0:c0.c1023, which is not a valid context.
The sysadm_r SELinux role does not support the nfsd_t domain.

MAC_POLICY_LOAD
A MAC_POLICY_LOAD event occurs whenever the system loads a new SELinux policy
in memory. This occurs when the administrator loads a new or updated SELinux policy
module, rebuilds the policy with the dontaudit rules disabled, or toggles an SELinux
Boolean that the administrator wants to persist across reboots. Such an event is illustrated
in the following code snippet:

type=MAC_POLICY_LOAD msg=audit(03/22/2020 12:28:17.077:2368) :
auid=admin ses=1 lsm=selinux res=yes

When a MAC_POLICY_LOAD event occurs, you might notice a subsequent USER_MAC_
POLICY_LOAD event. This occurs when a user space object manager detects an update
on the SELinux policy and takes action. Note that not all user space object managers will
send out this event: some object managers will query the live policy and, as such, do not
need to act when a new policy loads.

70 Understanding SELinux Decisions and Logging

MAC_CONFIG_CHANGE
When an SELinux Boolean changes but doesn't persist, then a MAC_CONFIG_CHANGE
event will be dispatched. This tells the administrator that the active policy has been
instructed to change its behavior slightly, but within the bounds of the existing loaded
policy. Such an event is illustrated in the following code snippet:

type=MAC_CONFIG_CHANGE msg=audit(03/22/2020 12:29:49.564:2370)
: bool=virt_use_nfs val=0 old_val=1 auid=admin ses=1

In the preceding example, the virt_use_nfs SELinux Boolean was changed from the
value 1 (on) to 0 (off).

MAC_STATUS
A MAC_STATUS event shows up when the SELinux enforcement state has been changed.
For instance, when an administrator uses setenforce 0 to put SELinux in permissive
mode, then the following event occurs:

type=MAC_STATUS msg=audit(03/22/2020 12:30:45.200:2372) :
enforcing=0 old_enforcing=1 auid=admin ses=1 enabled=1 old-
enabled=1 lsm=selinux res=yes

MAC_STATUS is also used to inform administrators when the SELinux state itself (enabled
or disabled) is altered.

NetLabel events
NetLabel is a Linux kernel project to support labeled network packets, allowing security
contexts such as SELinux contexts to be passed on between hosts. One of the protocols
that the NetLabel implementation supports in Linux is Common IP Security Option
(CIPSO) labeling, which we will cover in Chapter 5, Controlling Network Communications.

The following audit events are related to the NetLabel capability:

•	 MAC_UNLBL_STCADD and MAC_UNLBL_STCDEL events are triggered when
a static label is added or removed. Static labeling means that if a packet is received
or sent and it does not have a label, then this "default" static label is assigned.

•	 MAC_MAP_ADD and MAC_MAP_DEL events are triggered when a mapping between
a labeling protocol (such as CIPSO) and its parameters against an LSM (SELinux)
domain is added or removed from the configuration.

•	 MAC_CIPSOV4_ADD and MAC_CIPSOV4_DEL events are triggered when a CIPSO
(IPv4) configuration is added or removed.

SELinux logging and auditing 71

Labeled IPsec events
Another labeled network protocol that Linux supports is labeled IPsec, where IPsec is
short for Information Protocol Security. Through this, the SELinux context of the source
process (which is communicating over the IPsec tunnel toward a target resource) is known
by the IPsec daemons at both ends of the tunnel. Furthermore, SELinux will contain rules
about which domains can communicate over an IPsec tunnel and which domains can
communicate with each other network-wise.

The following audit events are related to IPsec:

•	 MAC_IPSEC_ADDSA and MAC_IPSEC_DELSA events are used when a security
association is added or removed (new IPsec tunnels are defined or deleted).

•	 MAC_IPSEC_ADDSPD and MAC_IPSEC_DELSPD events are used when a security
policy definition is added or removed. Security policies generally describe whether
network packets need to be handled by IPsec and, if so, through which security
association.

•	 A MAC_IPSEC_EVENT event is a generic event for IPsec audit messages.

SELinux support for labeled IPsec is described further on in this book.

Using ausearch
The ausearch command, part of the Linux audit framework, is a frequently used
command for querying audit events stored on the system. We already briefly covered
it when taking a first look at an AVC denial, but only briefly mentioning it won't do
it justice.

With ausearch, we can search for events that originated during or after a selected time
period. We used the -ts recent (time start) option in the past, which displays events
that occurred during the past 10 minutes. The argument can also be a timestamp. Other
supported shorthand values are listed as follows:

•	 today, meaning starting at 1 second past midnight on the current day

•	 yesterday, meaning starting at 1 second past midnight the previous day

•	 this-week, this-month, or this-year, meaning starting at 1 second past
midnight on the first day of the current week, current month, or current year

•	 checkpoint, which uses the timestamp mentioned in a checkpoint file created
in a previous run

72 Understanding SELinux Decisions and Logging

•	 boot, which implies only events since the system booted should be shown

•	 week-ago, meaning starting at 1 second after midnight exactly 7 days ago

The use of checkpoint is particularly useful when troubleshooting SELinux issues as
it allows us to show denials (and other SELinux events) since the last invocation of the
ausearch command. This is illustrated in the following code snippet:

ausearch --checkpoint /root/ausearch-checkpoint.txt -ts
checkpoint

This allows administrators to perform minor tweaks and reproduce the problem and only
see the events since then, instead of going through all events over and over again.

By default, the ausearch command displays all events stored in the audit log. On busy
systems, this can be very verbose and may result in unwanted events being displayed as
well. Luckily, users can limit the type of events queried through the ausearch command.

For SELinux troubleshooting, using avc,user_avc,selinux_err limits the events
nicely to those needed for the job, as illustrated in the following code snippet:

ausearch -m avc,user_avc,selinux_err -ts recent

If the numeric display of fields such as user IDs and timestamps is too confusing, then it
is possible for ausearch to look up and translate user IDs to usernames and timestamps
to formatted time fields. Add the -i option to ausearch to have it interpret these fields
and display the interpreted values instead.

In this section, we've seen how SELinux notifies the system about its actions through log
events, and where these log events are stored. In the next section, we'll look at how to act
upon these events.

Getting help with denials
On some distributions, additional support tools are available that help us identify the
cause of a denial. These tools have some knowledge of common mistakes (for instance,
setting the right context on files to allow the web server to read them). Other distributions
require us to use our experience to make proper decisions, supporting us through the
distribution mailing lists, bug tracking sites, and other cooperation locations—for
example, Internet Relay Chat (IRC).

Getting help with denials 73

Troubleshooting with setroubleshoot
In CentOS (and other Red Hat Enterprise Linux (RHEL)-related distributions such as
Fedora), additional tools are present that help us troubleshoot denials. The tools work
together to catch a denial, look for a plausible solution, and inform the administrator
about the denial and its suggested resolutions.

When used on a graphical workstation, denials can even result in popups that ask the
administrator to review them immediately. Install the setroubleshoot package to
get this support. On servers without a graphical environment, administrators can see
the information in the system logs or can even configure the system to send out SELinux
denial messages via email. Install the setroubleshoot-server package to get this
support.

Under the hood, it is the audit daemon that triggers its audit event dispatcher application
(audispd). This application supports plugins, something the SELinux folks gratefully
implemented. They built an application called sedispatch that will act as a plugin for
audispd. The sedispatch application checks whether the audit event is an SELinux
denial and, if so, forwards the events to D-Bus. D-Bus then forwards the events to the
setroubleshootd application (or launches the application if it isn't running yet),
which analyzes the denial and prepares feedback for the administrator.

When running on a workstation, seapplet is triggered to show a popup on the
administrator workstation. The administrator can then select Show to view more details.
Administrators don't need a graphical user interface to be informed about SELinux issues,
though. You can find analyzed feedback on the filesystem, and in the system logs you can
read how to easily reach this information, as illustrated in the following code snippet:

Mar 22 11:40:35 ppubssa3ed setroubleshoot[1544]: SELinux is
preventing /usr/sbin/nginx from name_bind access on the tcp_
socket port 89. For complete SELinux messages run: sealert -l
f2914dba-04ef-44ca-9a0b-0f5e62ec72e4

We can look at a complete explanation through the sealert command (as mentioned in
the log), as follows:

sealert -l f2914dba-04ef-44ca-9a0b-0f5e62ec72e4
SELinux is preventing /usr/sbin/nginx from name_bind access on
the tcp_socket port 89.
***** Plugin bind_ports (99.5 confidence) suggests

If you want to allow /usr/sbin/nginx to bind to network port 89

Then you need to modify the port type.
Do

74 Understanding SELinux Decisions and Logging

semanage port -a -t PORT_TYPE -p tcp 89
 where PORT_TYPE is one of the following: http_cache_port_t,
http_port_t, jboss_management_port_t, jboss_messaging_port_t,
ntop_port_t, puppet_port_t.

***** Plugin catchall (1.49 confidence) suggests

...

The sealert application is a command-line application that parses the information
stored by the setroubleshoot daemon (in /var/lib/setroubleshoot).

This will provide us with a set of options to resolve the denial. In the case of the
Apache-related denial shown earlier, sealert gives us one option with a certain
confidence score. Depending on the problem, this tool might show multiple options,
each with its own confidence figure (that is, how certain sealert is that this is the
right resolution).

As we can see from this example, the setroubleshoot application itself uses plugins
to analyze denials. These plugins (offered through the setroubleshoot-plugins
package) look at a denial to check whether they match a particular, well-known use case
(for example, when to change an SELinux Boolean or when a target resource has a wrong
context) and give feedback to setroubleshoot about how certain the plugin is so that
this denial can be resolved through its recommended method.

Sending emails when SELinux denials occur
Once a system is fine-tuned and denials no longer occur regularly, administrators can opt
to have setroubleshootd send emails whenever a new denial comes up. This truly
brings SELinux's host intrusion detection/prevention capabilities on top, as administrators
do not need to constantly watch their logs for information. However, keep in mind that
this could lead to a sudden burst in emails, which might result in Denial of Service
(DoS)-like behavior, if many denials are triggered. Administrators should only implement
this if their email infrastructure has rate limiting or other Quality of Service (QoS)
controls in place.

Getting help with denials 75

Open /etc/setroubleshoot/setroubleshoot.conf in a text editor and locate
the [email] section. Update the parameters to match the local mailing infrastructure,
as follows:

vi /etc/setroubleshoot/setroubleshoot.conf
[email]
recipients_filepath = /var/lib/setroubleshoot/email_alert_
recipients
smtp_port = 25
smtp_host = localhost
from_address = selinux@infra.example.com
subject = [infra] SELinux Alert for host infra.example.com

Next, edit the email_alert_recipients file (as referenced through the
recipients_filepath variable), and add the email addresses that need to be notified
when an SELinux alert comes up.

Finally, restart the D-Bus daemon, as follows:

systemctl restart dbus

When working on a non-systemd system, use the following command instead:

service dbus restart

The D-Bus restart is needed as D-Bus manages the setroubleshootd daemon.

Using audit2why
If setroubleshoot and sealert are not available in the Linux distribution, we can
still get some information about a denial. Although it isn't as extensive as the plugins
offered by setroubleshoot, the audit2why utility (which is short for audit2allow
-w) does provide some feedback on a denial. Sadly, it isn't always right in its deduction.

Let's try it out against the same denial for which we used sealert, as follows:

ausearch -m avc -ts recent | audit2why
type=AVC msg=audit(1584880436.644:385): avc:
denied { name_bind } for pid=5119 comm="nginx"
src=89 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:reserved_port_t:s0 tclass=tcp_socket
permissive=0

 Was caused by:

76 Understanding SELinux Decisions and Logging

 Missing type enforcement (TE) allow rule.

 You can use audit2allow to generate a loadable module to
allow this access.

The audit2why utility here didn't consider that the context of the target location was
wrong, and it suggests that the policy be updated to allow the web server to bind to the
unreserved_port_t type, unlike the information provided by setroubleshoot,
which was more accurate, recommending that the target port be relabeled instead.

As the output of the command mentions, another tool exists called audit2allow, which
can convert a denial into an SELinux policy. We will cover audit2allow in Chapter 12,
Tuning SELinux Policies.

Interacting with systemd-journal
Alongside the Linux audit system, which is used for most SELinux logging and events,
we can also gather information through other logging systems. systemd's journal, for
instance, captures SELinux context information with the events and allows administrators
to use this information while querying the journal.

For instance, to see the events in systemd-journal that are generated by an
application associated with the system_u:system_r:sssd_t:s0 context, the
following command can be used:

journalctl _SELINUX_CONTEXT="system_u:system_r:sssd_t:s0"
-- Logs begin at Sun 2020-03-22 10:43:48 UTC, end at Sun 2020-
03-22 12:40:12 UTC. --
Mar 22 10:43:51 ppubssa3ed sssd[545]: Starting up
Mar 22 10:43:51 ppubssa3ed sssd[be[implicit_files]][623]:
Starting up
Mar 22 10:43:51 ppubssa3ed sssd[nss][630]: Starting up

Because systemd-journal adds the SELinux context of the originating application,
it is harder for malicious applications to generate fake events. Whereas regular system
loggers just capture string events, systemd-journal retrieves the SELinux context
from the system. Using the SELinux context, it is easy to group events across different
but strongly related applications and have a higher guarantee that events come from
a particular application.

Getting help with denials 77

When the bash-completion package is installed, we can even use it to see which
SELinux contexts are present in the systemd-journal logs, which makes querying the
journal logs much easier, as follows:

journalctl _SELINUX_CONTEXT=<tab><tab>
kernel
system_u:system_r:auditd_t:s0
system_u:system_r:chronyd_t:s0
...

To find messages related to nginx, use the embedded grep filter, as follows:

journalctl -g nginx
-- Logs begin at Sun 2020-03-22 10:43:48 UTC, end at Sun 2020-
03-22 12:52:26 UTC. --
Mar 22 11:40:32 ppubssa3ed systemd[1]: Starting The nginx HTTP
and reverse proxy server...
Mar 22 11:40:32 ppubssa3ed nginx[1538]: nginx: the
configuration file /etc/nginx/nginx.conf syntax is ok
Mar 22 11:40:32 ppubssa3ed nginx[1538]: nginx: [emerg] bind()
to 0.0.0.0:89 failed (13: Permission denied)
...
Mar 22 11:40:35 ppubssa3ed setroubleshoot[1544]: SELinux is
preventing /usr/sbin/nginx from name_bind access on the tcp_
socket port 89. For complete SELinux messages run: sealert -l
f2914dba-04ef-44ca-9a0b-0f5e62ec72e4

The benefit of the embedded grep filter is that journalctl will still show the multiline
messages, whereas actually redirecting the journalctl output through grep would
only show the individual lines that match the expression.

Using common sense
Common sense is not easy to document, but reading a denial often leads to the right
solution when we have some experience with file labels (and what they are used for).
If we get a denial about a web server failing to read its files, and the context of the file
is (for instance) user_home_t, then that should ring a bell. End user home files, for
instance, use the user_home_t context, which is not suitable for system files that the
web server reads.

78 Understanding SELinux Decisions and Logging

One way to make sure that the context of the target resource is correct is to verify it with
matchpathcon. This utility returns the context as it should be according to the SELinux
policy, as follows:

$ matchpathcon /srv/www/html/index.html
/srv/www/html/index.html	 system_u:object_r:httpd_sys_
content_t:s0

Performing this for denials related to files and directories might help in finding a proper
solution quickly.

Furthermore, many domains have specific manual pages that inform the reader about
types commonly used for each domain, as well as how to deal with the domain in more
detail (for example, the available booleans, common mistakes made, and so on).
These manual pages start with the main service and are suffixed with _selinux,
as illustrated here:

$ man ftpd_selinux

In most cases, the approach to handling denials can be best described as follows:

•	 Is the target resource label (such as the file label) the right one? Verify this with
matchpathcon, or compare with labels of working (accessible) resources.

•	 Is the source label (the domain) the expected one? An SSH daemon should run in
the sshd_t domain, not the init_t domain. If this is not the case, make sure that
the labels of the application itself (such as its executable binary) are correct (again,
use matchpathcon for this).

•	 Is the denial one that might be covered by an SELinux boolean? In that case, the
policy might already have the appropriate rules in place, only requiring a change
in an SELinux boolean value. setroubleshootd will report this if it is the case.
Usually, the manual page of the domain (such as httpd_selinux) will also cover
the available SELinux Booleans. We explain how to query and adjust SELinux
Booleans in Chapter 12, Tuning SELinux Policies.

Changing file labels will be discussed in Chapter 4, Using File Contexts and Process
Domains.

To close off this section, common sense will be your most prolific approach to managing
SELinux denials, but the aforementioned tools will be of assistance to begin with.

Summary 79

Summary
In this chapter, we saw how to enable and disable SELinux, both on a complete system
level as well as a per-service level using various methods: kernel boot options, an SELinux
configuration file, or plain commands. One such command is semanage permissive,
which can disable SELinux protections for a single service.

Next, we saw where SELinux logs its events and how to interpret them, which is one of the
most common tasks an administrator has to undertake when dealing with SELinux. To
assist us with this interpretation, we can use tools such as setroubleshoot, sealert,
and audit2why. We also touched upon several utilities related to Linux auditing to help
us sift through various events.

In the next chapter, we will look at the first administrative task on SELinux systems:
managing user accounts, their associated SELinux roles, and security clearances for the
resources on the system.

Questions
1.	 What should administrators try before disabling SELinux?

2.	 Where can administrators find SELinux logs by default?

3.	 How do we know whether an application is SELinux-aware?

4.	 What is the purpose of the AVC?

5.	 Are AVC events the only type of events for SELinux?

3
Managing User

Logins
When we log in to an SELinux-enabled system, we receive an SELinux context to work
in. This context contains an SELinux user, an SELinux role, a domain, and optionally,
a sensitivity range. As the SELinux user defines the roles and types that can be accessed,
managing user logins and SELinux users is the first step in configuring end users on the
system.

To enable properly configured users, we will learn to define users that have sufficient
rights to do their jobs, ranging from regular users with strict SELinux protections to
fully privileged administrative users with few SELinux protections. We will create and
assign categories and sensitivities, as well as assign roles to users and use various tools to
switch roles. At the end of the chapter, we will see how SELinux integrates with the Linux
authentication process.

In this chapter, we're going to cover the following main topics:

•	 User-oriented SELinux contexts

•	 SELinux users and roles

•	 Handling SELinux roles

•	 SELinux and PAM

82 Managing User Logins

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3jbASmr

User-oriented SELinux contexts
Once logged in to a system, our user will run inside a certain context. This user context
defines the rights and privileges that we, as a user, have on the system. The command to
obtain current user information, id, also supports displaying the current SELinux context
information:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

On SELinux systems with a targeted policy type, chances are very high that all users are
logged in as unconfined_u (the first part of the context). On more restricted systems,
the user can be user_u (regular restricted users), staff_u (operators), sysadm_u
(system administrators), or any of the other SELinux users.

The SELinux user defines the roles that the user can switch to. SELinux roles themselves
define the application domains that the user can use. By default, a fixed number of
SELinux users are available on the system, but administrators can create additional
SELinux users. It is also the administrator's task to assign Linux logins to SELinux users.

SELinux roles, on the other hand, cannot be created through administrative commands,
as SELinux roles are part of the SELinux policy. For this, the SELinux policy needs to be
enhanced with additional rules that create the role. We will touch upon that in Chapter 15,
Using the Reference Policy.

To view the currently available roles, use seinfo:

seinfo --role
Roles: 14
 auditadm_r
 dbadm_r
 ...
 xguest_r

SELinux roles can be coarse-grained (such as sysadm_r) or more functionality-oriented
(such as dbadm_r). Custom SELinux roles can even be very fine-grained, only granting
the ability to transition into limited domains.

https://bit.ly/3jbASmr

SELinux users and roles 83

Let's see how to create and manage SELinux users.

SELinux users and roles
In SELinux-enabled environments, the login binary calls the libselinux API to
establish the initial mapping between SELinux users and local users. Then, after finding
the right SELinux user, the system looks up the role and domain that the user should be in
and sets that as the user's context.

Listing SELinux user mappings
When logged in to the system, we can use id -Z to obtain the current SELinux context.
For many users, this context will be defined by the unconfined user (unconfined_u),
regardless of their username. If not that, it will generally be a context based on one of
sysadm_u, staff_u, or user_u. This is because most Linux distributions will only
provide a limited set of SELinux users by default, aligned with the SELinux roles that they
support.

During login, the service process through which the login is handled will check a local
definition file to find the appropriate mapping between the Linux account and the
SELinux user. Let's look at the existing login mappings using semanage login -l. The
following output is the default output on a CentOS system:

semanage login -l
Login Name		 SELinux User	 MLS/MCS Range	 Service

__default__	 unconfined_u	 s0-s0:c0.c1023	 *
root			 unconfined_u	 s0-s0:c0.c1023	 *

The output of the command shows one login mapping per line. Each mapping consists of
the following:

•	 The Login Name for which the mapping is applicable (that is, the username)

•	 The SELinux User to which the login is mapped

•	 The MLS/MCS Range to which the login is mapped

•	 The Service for which the mapping applies (this is used for local customizations,
which we will tackle in the Customizing logins for services section)

84 Managing User Logins

The login name can contain a few special values that do not map directly to a single
Linux account:

•	 __default__ is a catch-all rule. If none of the other rules match, then the users
are mapped to the SELinux user identified through this line. In the given example,
all users are mapped to the unconfined_u SELinux user, meaning regular
Linux users are hardly confined in their actions. When this isn't meant to happen,
administrators usually map regular logins to restricted SELinux users, while
administrative logins are mapped to the staff_u or sysadm_u SELinux users.

•	 Login names starting with % will map to groups. This allows administrators to map
a group of people directly to an SELinux user rather than having to manage the
mappings individually.

When both an individual user mapping and group mapping match, then the individual
user mapping takes precedence. When multiple group definitions exist, then SELinux will
use the first matching group mapping (in the order listed in the underlying seusers
configuration file).

Important note
System processes (non-interactively logged-in Linux accounts) are mapped to
the system_u SELinux user. This SELinux user should never be assigned to
end user logins.

In the case of an MLS- or MCS-enabled system, the mapping contains information
about the user's allowed sensitivity range (MLS/MCS range). This way, we can map
multiple users to the same restricted SELinux user, while differentiating between these
users through the allowed sensitivities. For instance, one user might only be allowed to
access low-sensitivity areas (s0), whereas another user might also have access to higher
sensitivities (for example, s1) or different categories.

Mapping logins to SELinux users
Let's use a few examples to show how we make these mappings work. For more intricate
details on this, see the SELinux and PAM section. We'll assume we have a Linux user
called lisa, and we want her account to be mapped to the staff_u SELinux user,
whereas all other users in the users group are mapped to the user_u SELinux user.

SELinux users and roles 85

We can accomplish this through the semanage login command, using the -a
(add) option:

semanage login -a -s staff_u lisa

semanage login -a -s user_u %users

The -s parameter assigns the SELinux user to the given login, whereas the -r parameter
handles the sensitivity (and categories) for that user. For instance, let's modify (using -m
instead of -a) the recently created group-based definition by mapping to the staff_u
user instead, and limiting these users to the s0-s0 sensitivity range and categories c0
to c4:

semanage login -m -s staff_u -r "s0-s0:c0.c4" %users

The sensitivity range of a login mapping may not exceed the range assigned to the
SELinux user. For example, if the staff_u SELinux user itself is only granted access to
s0-s0:c0.c3, then the previous command will fail as it is trying to assign a broader
access range. We'll discuss how to define SELinux users and their range in the Creating
SELinux users section.

The semanage login command updates the seusers file located inside /etc/
selinux/targeted. If multiple group mappings are defined, then the order of
mappings within this file defines which mapping applies to a given user. Users that belong
to multiple mapped groups will be assigned an SELinux user based on the first match.

While it is possible to update the order of the entries in the seusers file, this is not
recommended. Every time semanage login modifies the seusers file, it will reorder
the mappings. Instead, when a user belongs to multiple mapped groups, we advise you to
create an individual (user-based) mapping. This is also shown whenever we create a group
mapping for a group that contains users for which active mappings already exist:

semanage login -a -s guest_u %nginx
libsemanage.add_user: User taylor is already mapped to group
users, but also belongs to group nginx. Add an explicit mapping
for this user to override group mappings.

The changes take effect when a new login occurs, so we should force a logout for these
users. The following command kills all the processes of the lisa user, forcing a logout for
that user:

pkill -KILL -u lisa

86 Managing User Logins

Also, when we modify a user's settings, we should also reset the contexts of that user's
home directory (while that user is not logged in). To accomplish this, use restorecon
as follows:

restorecon -RF /home/lisa

The -F option in the preceding command forces a reset, while -R does this recursively.

Important note
Running the restorecon -RF command will also reset file contexts that
the user has manually set using tools such as chcon. We recommend defining
SELinux user mappings up front, or recursively changing only the SELinux user
of the files using chcon -R -u. The chcon application and file contexts
are discussed in the next chapter.

To remove a login mapping, use the -d (delete) option. Don't forget to run the
restorecon command afterward:

semanage login -d lisa

restorecon -RF /home/lisa

Don't forget to force a user logout again if this user is active on the system.

Customizing logins for services
When login mappings are added using semanage login, they apply to all services.
There is no option in semanage to allow customizing the mappings based on the service.
However, that does not mean it is not possible.

The SELinux user space tools and libraries will consult the following two configuration
files to know what the mappings are:

•	 The /etc/selinux/targeted/seusers file contains the standard,
service-agnostic mappings. This file is managed by semanage login and should
not be updated through any other means.

•	 The /etc/selinux/targeted/logins directory contains customized
mappings, one file per Linux account. So, the custom mapping for the root user will
be in /etc/selinux/targeted/logins/root.

SELinux users and roles 87

Inside the files for customized mappings, administrators can define, per service, a different
SELinux user to map to. The services are the Pluggable Authentication Modules (PAM)
services through which a user can log in, and more information on this can be found in
the SELinux and PAM section.

For instance, to have the root user – when logged in through SSH – be mapped to the
user_u SELinux user rather than their default unconfined_u user, the root file
would need to contain the following:

sshd:user_u:s0

When querying the current mapping, semanage login will show this customization
as follows:

semanage login -l
...
Local customization in /etc/selinux/targeted/logins
root		 user_u		 s0		 sshd

Of course, this customization does not need to be so drastic. It can also be used to limit
the user's default MLS/MCS range. For instance, to limit the categories to c0.c8 (rather
than the default c0.c1023 range) you would use the following:

sshd:unconfined_u:s0-s0:c0.c8

Such customizations allow us to flexibly change the access control policies based on the
PAM service used.

Creating SELinux users
By default, only a small number of SELinux users are available for mapping to logins.
If we want more control over the Linux accounts and their mappings, we need to create
additional SELinux users.

First, list the currently known SELinux users using the semanage user -l command,
as follows:

semanage user -l
SELinux	 Labeling	 MLS/		 MLS/
User		 Prefix	 MCS Level	 MCS Range		 SELinux
Roles

guest_u	 user		 s0		 s0			 guest_r
root		 user		 s0		 s0-s0:c0.c1023	 staff_r

88 Managing User Logins

...

...
xguest_u	 user		 s0		 s0			 xguest_r

Next, create a new SELinux user with semanage user, using the -a (add) option.
We need to give SELinux additional information about this SELinux user, such as
the following:

•	 The default sensitivity (using the -L option) for the SELinux user. This is the
sensitivity that the user starts with.

•	 The security clearance (using the -r option) applicable to the SELinux user. This
range cannot be extended when defining login mappings. It is, however, possible to
give a user a more limited range, as long as it is bounded by the current range.

•	 The allowed role or roles (using the -R option) for the SELinux user.

Tip
The labeling prefix shown in the previous example is used to dynamically create
SELinux policies with specific prefixes, such as <prefix>_home_t for
user's home files. Most distributions leave this to the default user setting, and
changing it is done through the (undocumented) -P parameter to semanage
user.

In the following example, we're configuring the SELinux user finance_u:

semanage user -a -L s0 -r "s0-s0:c0.c127" -R user_r finance_u

When the command creates the SELinux user, its information becomes part of the
SELinux policy. From this point onward, administrators can map Linux accounts to this
SELinux user.

Important note
SELinux roles are enabled through the SELinux user that a Linux account is
mapped to. When an administrator wants to allow additional existing roles to
a Linux account, the administrator either updates existing SELinux mappings
to include the new role(s) or creates a new SELinux user that has access to the
new role(s) and then maps this SELinux user to the Linux account.

SELinux users and roles 89

Just like with login mappings, semanage user also accepts the -m option to modify
an existing entry, or -d to delete one. For instance, the following command deletes the
finance_u SELinux user:

semanage user -d finance_u

Separate SELinux users enhance the audit information since SELinux users generally do
not change during a user's session, whereas the effective Linux user ID can. If the user
creates files or other resources, these resources also inherit the SELinux user part in their
security context.

Listing accessible domains
When creating SELinux users, one of the parameters that needs to be provided is the
role or roles for an SELinux user. Most of the roles are self-explanatory: the dbadm_r
role is for DBAs, whereas the webadm_r role is for web application infrastructure
administrators. If a role is not clear, or an administrator is not certain which accesses
are part of a given role, the administrator can still query the SELinux policy for more
information.

Informational note
This book will mostly focus on the command-line utilities used to query
and interact with the active SELinux policy. In Chapter 13, Analyzing Policy
Behavior, we will also cover the graphical utility apol.

As documented earlier, roles define which domains are accessible for the users associated
with the role. We saw that seinfo can show us the available roles, but it can do more.
It can list the domains accessible for a role as well, using the -x option:

seinfo -r dbadm_r -x
Roles: 1
 role dbadm_r types { ... qmail_inject_t user_mail_t ... };

In this example, users running with the dbadm_r role as part of their security context will
be able to transition to, for instance, the qmail_inject_t (the domain used to read
email messages and pass those on to the qmail queue) and user_mail_t (the domain
used for generic email-sending command-line applications) domains.

The information provided through the dominated roles is usually not of concern to the
administrators. Role dominance, although supported in SELinux core, is not used by
Linux distribution policies. It signifies the inheritance of (other) roles, but it will always
just show the queried role.

90 Managing User Logins

Managing categories
Sensitivity labels and their associated categories are identified through numeric values,
which is great for computers but not that obvious for users. Luckily, the SELinux utilities
support translating the levels and categories to human-readable values, even though they
are still stored as numbers. As a result, almost all tools that can show contexts will show
them translated rather than presented as numerical values.

The translations are managed through the setrans.conf file, located in /etc/
selinux/targeted. Inside this file, we can name specific values (for example,
s0:c102) or ranges (such as s0-s0:c1.c127) with a string that is much easier for
administrators to use. However, for translations to be performed, mcstransd – the MCS
translation daemon – needs to be running.

Consider our example of the finance_u SELinux user who was allowed access to the
c0.c127 category range. Two of the categories within that range are c102, which we
will tag as Contracts, and c103, which we will tag as Salaries. The c1.c127 range
will be labeled as FinanceData. The following diagram shows the relationship between
these various categories:

Figure 3.1 – Relationship of the example categories and category range

To accomplish this, the following should be placed in the setrans.conf file:

s0:c102=Contracts
s0:c103=Salaries
s0-s0:c1.c127=FinanceData

After editing the setrans.conf file, the mcstransd application needs to be restarted.

These translations are handled by the SELinux utilities, which connect to the mcstransd
daemon through the .setrans-unix socket located in /var/run/setrans to query
the setrans.conf file. If the daemon is not running or the communication with the
daemon fails, the numeric sensitivity and category values are displayed.

Handling SELinux roles 91

For instance, with the daemon running, the output of id -Z is now as follows:

id -Z

unconfined_u:unconfined_r:unconfined_t:SystemLow-SystemHigh

We can view the available sensitivities and their human-readable counterparts using the
chcat tool. The following example displays the translations after adding the finance-
related ones:

$ chcat -L
s0			 SystemLow
s0-s0:c0.c1023	 SystemLow-SystemHigh
s0:c0.c1023	 SystemHigh
s0:c102		 Contracts
s0:c103		 Salaries
s0-s0:c1.c127	 FinanceData

The same chcat utility can be used to assign categories to users. For instance, to grant
the Salaries category to the lisa Linux user, we'd use the following command:

chcat -l -- +Salaries lisa

The previous command grants the Salaries category (c103) to the Linux user lisa.
The user mapping is immediately updated with this information. Again, we need to make
sure that the lisa user is logged out for the changes to take effect.

With this, we end our section on managing SELinux users and logins. We've learned
how to align users with SELinux users so that they log in to the system with the correct
context. In the next section, we will look at the SELinux roles and how to apply those to
SELinux users.

Handling SELinux roles
We saw how SELinux users define the role(s) that a user can hold. But how does SELinux
enforce which role a user logs in through? And when logged in, how can a user switch
their active role?

Defining allowed SELinux contexts
To select the context assigned to a successfully authenticated user, SELinux introduces
the notion of a default context. Based on the context of the service through which a
user logs in (or through which the user executes commands), the system selects the right
user context.

92 Managing User Logins

Inside the /etc/selinux/targeted/contexts directory, a file called
default_contexts exists. Each line in this file starts with the SELinux context
information of the parent process and is then followed by an ordered list of all the
contexts that could be picked based on the user's allowed SELinux role(s).

Consider the following line of code for the sshd_t context:

system_r:sshd_t:s0	 user_r:user_t:s0 \
 staff_r:staff_t:s0 \
 sysadm_r:sysadm_t:s0 \
 unconfined_r:unconfined_t:s0

This line of code mentions that when a user logs in through a process running in the
sshd_t domain, the listed roles are checked against the roles of the user. The user will
transition to the first context listed that matches the roles the user can use.

For instance, assume we are mapped to an SELinux user that has access to both the
staff_r and sysadm_r roles. In that case, we will log in as staff_r:staff_t since
that is the first match.

However, like the seusers file for the Linux account mappings, the default_
contexts file is a default file that can be overruled through specific customizations.
These customizations are stored in the /etc/selinux/targeted/contexts/
users subdirectory. These files are named after the SELinux user for which they take
effect. This allows us to assign different contexts for particular SELinux users even if they
share the same roles with other SELinux users. Because SELinux checks the entries per
line, we do not need to copy the entire content of the default_contexts file. Only
the configuration lines that we want to see a different configuration for need to be listed;
SELinux will automatically use the default_contexts file for the rest.

Let's modify the default contexts so that the staff_u SELinux user logs in with the
sysadm_r role (and with the sysadm_t type) when logged in through SSH. To do so,
use the sshd_t line, modify it, and save the result as /etc/selinux/targeted/
contexts/users/staff_u:

system_r:sshd_t:s0	 sysadm_r:sysadm_t:s0

Specifically, for the SSH daemon, we also need to enable the ssh_sysadm_login
boolean, which is a special precaution SELinux policy developers have made to prevent
users from immediately logging in with highly privileged accounts:

setsebool ssh_sysadm_login on

Handling SELinux roles 93

With these settings in place, we've set sysadm_r:sysadm_t:s0 as the only possible
context, ensuring that the target context is staff_u:sysadm_r:sysadm_t.

Validating contexts with getseuser
To validate whether our change succeeded, we can ask SELinux what the result of
a context choice will be without having to parse the files ourselves. We can accomplish this
through the getseuser command, which takes two arguments: the Linux user account
and the context of the process that switches the user context.

Important note
The getseuser command is a helper utility offered by the SELinux user
space project, but is not made available on all distributions. You will find it on
Debian and Gentoo, but not on CentOS or other Red Hat Enterprise Linux-
derived distributions.

Here's an example that checks what the context would be for the sven user when they log
in through a process running in the sshd_t domain:

getseuser sven system_u:system_r:sshd_t
seuser: user_u, level s0-s0
Context 0	 user_u:user_r:user_t:s0

One of the advantages of the getseuser command is that it asks the SELinux code
what the context should be, which not only looks through the default_contexts and
customized files, but also checks whether the target context can be reached or not, and
that there are no other constraints that prohibit the change to this context.

Switching roles with newrole
After having successfully authenticated and logged in, users will be assigned the context
through the configuration mentioned in the SELinux users and roles section. If the
SELinux user has access to multiple roles, however, then the Linux user can use the
newrole application to transition from one role to another.

94 Managing User Logins

Consider an SELinux system without unconfined domains and where we are, by default,
logged in as the staff_r role. To perform administrative tasks, we need to switch to
the sysadm_r administrative role, which we can do with the newrole command.
This command only works when working through a secure terminal listed in /etc/
securetty:

$ id -Z
staff_u:staff_r:staff_t:s0

$ newrole -r sysadm_r
Password: (Enter user password)

$ id -Z
staff_u:sysadm_r:sysadm_t:s0

Notice how the SELinux user remains constant but the role and domain have changed.

The newrole command can also be used to transition to a specific sensitivity, as follows:

$ newrole -l s0-s0:c0.c100

When we switch to another role or sensitivity, what we actually do is create a new session
(with a new shell) that has this new role or sensitivity. The command does not change the
context of the current session, nor does it exit from the current session.

We can return from our assigned role and go back to the first session by exiting
(through exit, logout, or Ctrl + D).

Managing role access through sudo
Most administrators use sudo for privilege delegation: allowing users to run certain
commands in a more privileged context than the user is otherwise allowed. The sudo
application is also capable of switching SELinux roles and types.

We can pass the target role and type to sudo directly. For instance, we can tell sudo to
switch to the administrative role when we edit a PostgreSQL configuration file:

$ sudo -r sysadm_r -t sysadm_t vim /var/lib/pgsql/data/pg_hba.
conf

Handling SELinux roles 95

However, we can also configure sudo through the /etc/sudoers file to allow users to
run commands within a certain role and/or type, or get a shell within a certain context.
Consider a user that has access to both the user_r and dbadm_r roles (with the
dbadm_r role being a role designated for database administrators). Within the sudoers
file, the following line allows the myuser user to run any command through sudo,
which, when triggered, will run with the dbadm_r role and within the dbadm_t domain:

myuser ALL=(ALL) TYPE=sysadm_t ROLE=sysadm_r ALL

Often, administrators will prefer sudo over newrole as the latter does not change the
effective user ID, which is often required for end users when they want to invoke a more
privileged command (concerning the root user or a service-specific runtime account)
anyway. The sudo application also has great logging capabilities, and we can even have
commands switching roles without requiring the end user to explicitly mention the target
role and type. Sadly, it does not support changing sensitivities.

Reaching other domains using runcon
Another application that can switch roles and sensitivities is the runcon application.
The runcon command is available for all users and is used to launch a specific
command as a different role, type, and/or sensitivity. It even supports changing the
SELinux user – assuming the SELinux policy lets you.

The runcon command does not have its own domain – it runs in the context of the user
executing the command. As such, the privileges of the user domain itself govern the ability
to change the role, type, sensitivity, or even SELinux user.

Most of the time, we will use runcon to launch applications with a particular category.
This allows us to take advantage of the MCS approach in SELinux without requiring
applications to be MCS-enabled:

$ runcon -l Salaries bash

$ id -Z
unconfined_u:unconfined_r:unconfined_t:Salaries

For instance, in the previous example, we run a shell session with the Salaries category
(prohibiting it from accessing resources that do not have the same or fewer categories set).

96 Managing User Logins

Switching to the system role
Sometimes, administrators will need to invoke applications that should not run under
their current SELinux user context but instead as the system_u SELinux user with the
system_r SELinux role. SELinux policy administrators acknowledge this need, and
allow a very limited set of domains to switch the SELinux user to a different user – perhaps
contrary to the purpose of the immutability of SELinux users mentioned earlier. Yet, as
there are cases where this is needed, SELinux needs to accommodate this. One of the
applications allowed to switch the SELinux user is run_init (through its run_init_t
domain).

The run_init application is mainly (almost exclusively) used to start background
system services on a Linux system. Using this application, the daemons do not run under
the user's SELinux context but the system's, as required by SELinux policies.

As this is only needed on systems where launching additional services is done through
service scripts, distributions that use systemd do not require the use of run_init.
systemd already runs with the system_r role and is responsible for starting additional
services. As such, no role transition is needed. Other init systems, such as Gentoo's
OpenRC, integrate run_init so that administrators do not generally need to invoke
run_init manually.

Most SELinux policies enable role-managed support for selective service management
(for non systemd distributions). This allows users that do not have complete system
administration rights to still manipulate a select number of services on a Linux system,
allowed by the SELinux policy. These users are to be granted the system_r role, but
once accomplished, they do not need to call run_init to manipulate specific services
anymore. The transitions happen automatically and only for the services assigned to the
user – other services cannot be launched by these users.

This finalizes our section on handling SELinux roles. We've learned how to manage
SELinux roles and switching roles and contexts, as well as how to define the target role and
type in the case of privilege escalation. In the last section of this chapter, we will look at
how PAM is used to configure the SELinux context setup on the system.

SELinux and PAM
With all the information about SELinux users and roles, we have not touched upon
how exactly applications or services create and assign an SELinux context to a user.
As mentioned earlier on, this is coordinated through the use of Linux's PAM services.

SELinux and PAM 97

Assigning contexts through PAM
End users log in to a Linux system through either a login process (triggered through
a getty process), a networked service (for example, the OpenSSH daemon), or through
a graphical login manager (xdm, kdm, gdm, slim, and so on).

These services are responsible for switching our effective user ID (upon successful
authentication, of course) so that we are not active on the system as the root user.
For SELinux systems, these processes also need to switch the SELinux user (and role)
accordingly, as otherwise, the context will be inherited from the service, which is
obviously wrong for any interactive session.

In theory, all these applications can be made fully SELinux aware, linking with the
SELinux user space libraries to get information about Linux mappings and SELinux
users. Instead of converting all these applications, the developers decided to take the
authentication route to the next level using the PAM services that Linux systems provide.

PAM offers a very flexible interface for handling different authentication methods
on Linux (and Unix) systems. All applications mentioned earlier use PAM for their
authentication steps. To enable SELinux support for these applications, we need to update
their PAM configuration files to include the pam_selinux.so library.

The following code listing is an excerpt from CentOS's /etc/pam.d/remote file,
limited to PAM's session service directives. It triggers the pam_selinux.so library code
as part of the authentication process, as follows:

session	 required	 pam_selinux.so close
session	 required	 pam_loginuid.so
session	 required	 pam_selinux.so open
session	 required	 pam_namespace.so
session	 optional	 pam_keyinit.so force revoke
session	 include	 password-auth
session	 include	 postlogin

The arguments supported by the pam_selinux.so code are described in the pam_
selinux manual page. In the preceding example, the close option clears the current
context (if any), whereas the open option sets the context of the user. The pam_selinux
module takes care of querying the SELinux configuration and finding the right mappings
and context based on the service name used by the daemon.

98 Managing User Logins

Prohibiting access during permissive mode
Having SELinux active and enforcing on a system improves its resilience against successful
exploits and other malicious activities, especially when the system is used as a shell server
(or provides other interactive services) and the users are confined – meaning they are
mapped to user_u or other confined SELinux users.

Some administrators might want to temporarily switch the system to permissive mode.
This could be to troubleshoot issues or to support some changes made on the system.
When using permissive mode, it would be a good idea to ensure that the interactive
services are not usable for regular users.

With pam_sepermit, this can be enforced on the system. The PAM module will deny
a set of defined users access to the system if the system is in permissive mode. By default,
these users are mentioned in /etc/security/sepermit.conf, but a different file
can be configured through the conf= option inside the PAM configuration itself.

In the sepermit.conf file, there are three approaches to document which users should
be denied access when the system is in permissive mode:

•	 Regular usernames

•	 Group names, prefixed with the @ sign

•	 SELinux usernames, prefixed with the % sign

Within this file, we list each user, group, or SELinux user on a single line. After each entry,
we can (but don't have to) add one or two options:

•	 exclusive means that the system will allow the user to be active even when the
system is in permissive mode, but only a single session can be active. When the user
logs out, all active processes will be killed.

•	 ignore will return PAM_IGNORE as the return status if SELinux is in enforcing
mode, and PAM_AUTH_ERR if SELinux is in permissive mode. This allows special
constructs/branches for this user in PAM based on the permissive state of the
system.

To enable pam_sepermit, it's sufficient to enable the module in the auth PAM service
as follows:

auth	required	 pam_sepermit.so

Of course, don't forget to remove all active user sessions when switching to permissive
mode, as any running session is otherwise left untouched.

SELinux and PAM 99

Polyinstantiating directories
The last PAM module we'll look at is pam_namespace.so. Before we dive into
configuring this module, let's first look at what polyinstantiation is about.

Polyinstantiation is an approach where, when a user logs in to a system, the user gets
a view on filesystem resources specific to its session, while optionally hiding the resources
of other users. This differs from regular access controls, where the other resources are still
visible, but might just be inaccessible.

This session-specific view, however, does not just use regular mounts. The module uses
the Linux kernel namespace technology to force a (potentially more limited) view on the
filesystem, isolated and specific to the user session. Other users have a different view on
the filesystem.

Let's use a common example. Assume that all users, except root, should not have access
to the temporary files generated by other users. With standard access controls, these
resources would still be visible (perhaps not readable, but their existence or the directories
they reside in would be visible). Instead, with polyinstantiation, a user will only see their
own /tmp and /var/tmp views.

The following setting in /etc/security/namespace.conf will remap these two
locations:

/tmp		 /tmp/tmp-inst/		 level	root
/var/tmp	 /var/tmp/tmp-inst/	 level	root

On the real filesystem, those locations will be remapped to a subdirectory inside /tmp/
tmp-inst and /var/tmp/tmp-inst. The end users do not know or see the remapped
locations – for them, /tmp and /var/tmp are as they would expect.

The format (and thus polyinstantiation) of the subdirectories created depends on the third
option within the namespace.conf file. The supported options are as follows:

•	 user, which will create a subdirectory named after the user (such as lisa)

•	 level, which will create a subdirectory named after the user sensitivity level and
username (such as system_u:object_r:tmp_t:s0-s0:c0.c1023_lisa)

•	 context, which will create a subdirectory named after the process
context (including the sensitivity level) and username (such as
system_u:object_r:user_tmp_t:s0_lisa)

100 Managing User Logins

For SELinux systems, the most common setting is level.

Tip
In the default namespace.conf file, you might notice that this also has
support for home directories. When enabled with the level or context
method, this will ensure that users have a sensitivity-specific home directory
set. For instance, if the system configuration forces the user to have a lower
sensitivity when logged in through SSH than when the user logs in through the
terminal, a different home directory view will be used.

In the previous example, only the root user is exempt from these namespace changes.
Additional users can be listed (comma-separated), or an explicit list of users can be given
for which polyinstantiation needs to be enabled (if we prefix the user list with the ~
character). To allow the namespace changes to take place, the target locations need to be
available on the system with the 000 permission:

mkdir /tmp-inst && chmod 000 /tmp-inst

Next, enable pam_namespace.so in the PAM configuration files at the session service:

session	 required	 pam_namespace.so

Finally, make sure that SELinux allows polyinstantiated directories. On CentOS, this is
governed through the polyinstantiation_enabled SELinux boolean:

setsebool polyinstantiation_enabled on

Other distributions will have it through the allow_polyinstantiation SELinux
boolean.

With the polyinstantiation support, we close off this final section of the chapter, where
we learned how PAM is used to trigger SELinux context changes on the system.

Summary 101

Summary
SELinux maps Linux users onto SELinux users and defines the roles a user can be assigned
through the SELinux user definitions. We learned how to manage those mappings and
SELinux users with the semanage application, and how to grant the right roles to the
right people.

We also saw how the same commands are used to grant the proper sensitivity to the user
and how we can describe these levels in the setrans.conf file. We used the chcat tool
to do most of the category-related management activities.

After assigning roles to the users, we saw how to jump from one role to another using
newrole, sudo, runcon, and run_init. We ended this chapter with important
insights into how SELinux is integrated into the Linux authentication process and how to
tune a Linux system further using a couple of SELinux-aware PAM modules.

In the next chapter, we will learn to manage the labels on files and processes, and see how
we can query the SELinux policy rules.

Questions
1.	 Why can't we just add an SELinux role to a Linux account?

2.	 Can Linux accounts be mapped to more than one SELinux user?

3.	 Besides associating the valid SELinux roles, what other advantages does an SELinux
user have?

4.	 What purpose does PAM have when dealing with Linux accounts and SELinux
mappings?

4
Using File Contexts

and Process
Domains

SELinux-enabled systems are strongly dependent on the notion of contexts (on resources)
and domains (on processes). The access controls that SELinux enforces use these contexts
to identify the resources, and define the enforcement rules within the policy. Because of its
inherent reliance on these contexts, this chapter will go into detail on file contexts, context
definitions, and process domains.

We will work with the file contexts and learn where they are stored so that you can easily
adjust your system to work optimally with SELinux. We assign contexts to resources both
temporarily (for testing purposes) and permanently, and learn how these contexts are
used to automatically deduce the process domain. Once we know how to obtain process
domain information, we will query the SELinux policy to learn about the current access
controls.

104 Using File Contexts and Process Domains

In this chapter, we're going to cover the following main topics:

•	 Introduction to SELinux file contexts

•	 Keeping or ignoring contexts

•	 SELinux file context expressions

•	 Modifying file contexts

•	 The context of a process

•	 Limiting the scope of transitions

•	 Types, permissions, and constraints

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3m3JzkP

Introduction to SELinux file contexts
SELinux file contexts are the most important configuration that a system administrator
will have to work with when working with SELinux on the system. Contexts for files
are generally identified through a label that is assigned to the file. Mislabeled files are
a constant source of headaches for sysadmins, and most common SELinux issues are
resolved by correcting the SELinux context.

Knowing where and how SELinux contexts are used is key to understanding and resolving
SELinux related issues. The following diagram shows how contexts are applied on regular
Linux resources, and how the LSM subsystem uses these contexts for decision making:

https://bit.ly/3m3JzkP

Introduction to SELinux file contexts 105

Figure 4.1 – Distinction between contexts and regular Linux info

Let's consider a web-based deployment as an example: DokuWiki. This is a popular PHP
wiki that uses files rather than a database as its backend system, and is easy to install and
manage. As a web hosting platform, we will use nginx.

Getting context information
Let's assume that the DokuWiki application will be hosted at /srv/web/localhost/
htdocs/dokuwiki and that it will store its wiki pages (user content) in the data/
subdirectory. We start by downloading the latest DokuWiki tarball from the project site,
http://download.dokuwiki.org, and extract it to this location:

mkdir -p /srv/web/localhost/htdocs/

tar -C /srv/web/localhost/htdocs/ -xvf dokuwiki.tgz

chown -R nginx:nginx /srv/web/localhost/htdocs/dokuwiki

While distributions might have prepackaged DokuWiki installations available, we will
use the manual installation approach to show the various file context-related actions in
this chapter.

http://download.dokuwiki.org

106 Using File Contexts and Process Domains

The contexts of files can easily be acquired using the -Z option of the ls command. Most
utilities that can provide feedback on contexts will try to do so using the -Z option, as
we saw with the id utility in Chapter 1, Fundamental SELinux Concepts, and Chapter 3,
Managing User Logins.

Let's look at the current context of the dokuwiki directory itself:

ls -dZ /srv/web/localhost/htdocs/dokuwiki
undefined_u:object_r:var_t:s0 /srv/web/localhost/htdocs/
dokuwiki

The context displayed here is var_t. In the Keeping or ignoring contexts section,
we will change this to the correct context (as var_t is too generic and not meant for
hosting web content).

File and directory contexts are stored in the filesystem as extended attributes when the
filesystem supports this. An extended attribute (often abbreviated to xattr) is a key/value
combination associated with a resource's inode (an information block that represents
a file, directory, or symbolic link on a filesystem). Each resource can have multiple
extended attributes, but only one value per unique key. When we talk about assigning
a label to a file or directory (or relabeling a file), then we imply setting or updating this
extended attribute, as it is the label that SELinux will use to obtain the SELinux context
for the file.

Important note
Filesystems that do not support extended attributes can still be used on
SELinux-enabled systems. However, the entire filesystem (including all its files
and directories) will then be shown with a single context, and differentiation
across resources on the filesystem is not possible. We explain how to define file
contexts on these filesystems in the Using mount options to set SELinux contexts
subsection in this chapter.

By convention, extended attributes on Linux use the following syntax:

<namespace>.<attribute>=<value>

The namespace of an extended attribute allows for additional access controls or features.
Of the currently supported extended attribute namespaces (security, system,
trusted, and user), the security namespace enforces specific restrictions on
manipulating the attribute: if no security module is loaded (for instance, SELinux is not
enabled), then only processes with the CAP_SYS_ADMIN capability (basically root
or similarly privileged processes) can modify this parameter.

Introduction to SELinux file contexts 107

We can query the existing extended attributes using the getfattr application, as shown
in the following example:

$ getfattr -m . -d dokuwiki
file: dokuwiki
security.selinux="unconfined_u:object_r:var_t:s0"

As we can see, the security.selinux extended attribute hosts the SELinux context.
This ensures that non-administrative users cannot alter the SELinux context of a file when
SELinux is disabled and that the SELinux policy controls who can manipulate contexts
when SELinux is enabled.

The stat application can also be used to show SELinux contexts:

$ stat dokuwiki
 File: dokuwiki
 Size: 211		 Blocks: 0		 IO Block: 4096	
directory
Device: fd01h/64769d	 Inode: 8512888	 Links: 8
Access: (0755/drwxr-xr-x)	 Uid: (0/	 root) Gid: (
0/	root)
Context: unconfined_u:object_r:var_t:s0
...

Getting context information from a file or directory should be as common to an
administrator as getting regular access control information (the read (r), write (w), and
execute (x) flags).

Interpreting SELinux context types
After using SELinux for a while, the motive behind using file labels to assign an SELinux
context to the file becomes somewhat clearer. SELinux contexts are named after their
purpose, allowing administrators to more easily see whether a context is correctly
assigned.

Consider the context of a user file in its home directory (user_home_t), a directory
in /tmp for a Java application (java_tmp_t), or a socket of rpcbind (rpcbind_
var_run_t). All these files or directories have considerably different purposes on the
filesystem, and this reflects itself in the assigned contexts.

Policy writers will always try to name the context consistently, making it easier for us to
understand the purpose of the file, but also to make the policy almost self-explanatory
so that administrators can understand the purpose of the policy without additional
documentation needs.

108 Using File Contexts and Process Domains

For the regular filesystem, for instance, files are labeled with a context resembling their
main location as they have similar security properties. For example, we find binaries in the
/bin folder (and /usr/bin) to be associated with the bin_t type, boot files in /boot
associated with boot_t, and generic system resources in /usr associated with usr_t.

We can also find more application-specific contexts. For instance, for the PostgreSQL
database server, we have the following:

•	 The postgresql_t context is meant for the application itself (process type
or domain).

•	 The postgresql_port_t context is meant for the TCP port on which the
PostgreSQL daemon listens.

•	 The postgresql_server_packet_t and postgresql_client_packet_t
contexts are types associated with network packets received (in case of the
postgresql_server_packet_t type) or sent to the PostgreSQL port.

•	 The postgresql_exec_t type is assigned to the postgres binary.

•	 The various postgresql_*_t types for specific filesystem locations related to the
daemon, such as postgresql_var_run_t (to apply to resources in /var/run),
postgresql_etc_t (to apply to resources in /etc), postgresql_log_t
(to apply to resources in /var/log), and postgresql_tmp_t (to apply to
resources in /tmp).

•	 The mysqld_db_t type for the database files themselves.

Based on the context of a file or resource, administrators can easily detect anomalies in
the system setup. An example of an anomaly is when we move a file from the user's home
directory to a web server location. When this occurs, the file retains the user_home_t
context as extended attributes are moved with it. As the web server process isn't allowed
to access user_home_t by default, it will not be able to serve this file to its users.

Let's see how to properly set contexts during such copy or move operations.

Keeping or ignoring contexts
Now that we are aware that file contexts are stored as extended attributes, how do
we ensure that files receive the correct label when they are written or modified? To set an
SELinux context on a filesystem resource, a few guidelines exist, ranging from inheritance
rules to explicit commands.

Keeping or ignoring contexts 109

Inheriting the default contexts
By default, the SELinux security subsystem uses context inheritance to identify which
context should be assigned to a file (or directory, socket, and so on) when it is created.
A file created in a directory with a var_t context will be assigned the var_t context as
well. This means that the file inherits the context from the parent directory and not from
the context of the executing process.

There are a few exceptions to this though:

•	 SELinux-aware applications can force the context of a file to be different (assuming
the SELinux policy allows it, of course). As this is within the software code itself,
this behavior cannot be generally configured.

•	 An application called restorecond can be used that enforces contexts on various
paths/files based on SELinux's context rules. We will cover these rules and the
restorecond application in the SELinux file context expressions and Modifying file
contexts sections, respectively.

•	 The SELinux policy allows for transition rules that consider the context of the
process creating new files or directories, as well as the name of the file the process
is creating.

It is these transition rules we will cover next.

Querying transition rules
Type transition rules are policy rules that force the use of a different type upon certain
conditions. For file contexts, such a type transition rule can be as follows: if a process
running in the httpd_t domain creates a file in a directory labeled with the var_log_t
SELinux type, then the type identifier of the file becomes httpd_log_t.

Basically, this rule assigns the httpd_log_t web server log context to any file placed in
a log directory by web servers, rather than the default var_log_t, which would be the
case when standard inheritance was used.

We can query these type transition rules using sesearch. The sesearch application
is one of the most important tools available to query the current SELinux policy. For the
previous example, we need the (source) domain and the (target) context of the directory:
httpd_t and var_log_t. In the following example, we use sesearch to find the type
transition declaration related to the httpd_t domain toward the var_log_t context:

$ sesearch -T -s httpd_t -t var_log_t
type_transition httpd_t var_log_t:file httpd_log_t;

110 Using File Contexts and Process Domains

The type_transition line is an SELinux policy rule, which maps perfectly to the
description. Let's look at another set of type transition rules for the tmp_t type (assigned
to the directory used for temporary files, such as /tmp and /var/tmp):

$ sesearch -T -s httpd_t -t tmp_t
type_transition httpd_t tmp_t:dir httpd_tmp_t;
type_transition httpd_t tmp_t:file httpd_tmp_t;
type_transition httpd_t tmp_t:file krb5_host_rcache_t HTTP_23;
type_transition httpd_t tmp_t:file krb5_host_rcache_t HTTP_48;
type_transition httpd_t tmp_t:lnk_file httpd_tmp_t;
type_transition httpd_t tmp_t:sock_file httpd_tmp_t;

The policy tells us that, if a file, directory, symbolic link, or socket is created in a directory
labeled tmp_t, then this newly created resource gets the httpd_tmp_t context assigned
(and thus not the default, inherited tmp_t one). Alongside these rules, it also contains
two named file transitions, which are more flexible transition rules.

With named file transitions, the policy can consider the name of the file (or directory)
created to select a more appropriate context. In the previous example, if a file named
HTTP_23 or HTTP_48 is created in a directory labeled tmp_t, then it does not get the
httpd_tmp_t context assigned (as would be implied by the regular type transition
rules), but the krb5_host_rcache_t type (used for Kerberos implementations)
instead.

Type transitions not only give us insight into what labels (and thus also SELinux contexts)
are going to be assigned, but also give us some clues as to which types are related to
a particular domain. In the web server example, we found out by querying the policy that
its log files are most likely labeled httpd_log_t, and its temporary files httpd_tmp_t.

Copying and moving files
File contexts can also be transferred together with the file itself during copy or move
operations. By default, Linux will do the following:

•	 Retain the file context in case of a move (mv) operation on the same filesystem
(as this operation does not touch extended attributes, but merely adjusts the
metadata of the file).

•	 Ignore the current file context in case of a move operation across a filesystem
boundary, as this creates a new file, including content and extended attributes.
Instead, it uses the inheritance (or file transition rules) to define the target context.

•	 Ignore the file context in case of a copy (cp) operation, instead using the
inheritance (or file transition rules) to define the target context.

Keeping or ignoring contexts 111

Luckily, this is just default behavior (based on the extended attribute support of these
utilities) that can be manipulated freely.

We can use the -Z option to tell mv that the context of the file should be set to the default
type associated with the target location. For instance, in the next example, two files are
moved from a user's home directory to the /srv directory. The first example will retain
its file context (user_home_t or admin_home_t), while the second one will receive the
type associated with user files placed in /srv (var_t):

touch test1 test2

mv test1 /srv

mv -Z test2 /srv

ls -Z /srv/test*
staff_u:object_r:admin_home_t:s0 /srv/test1
staff_u:object_r:var_t:s0 /srv/test2

Similarly, we can tell the cp command through the --preserve=context option
to preserve the SELinux context while copying files. Using the same example, we now get
the following:

cp test1 /srv

cp --preserve=context test2 /srv

ls -Z /srv/test*
staff_u:object_r:var_t:s0 /srv/test1
staff_u:object_r:admin_home_t:s0 /srv/test2

Most of the utilities provided through the coreutils package support the -Z option:
mkdir (to create a directory), mknod (to create a device file), mkfifo (to create a named
pipe), and so on.

Important note
If the mv command returns failed to set the security
context when using the -Z option, then it is very likely that the location
either does not have a valid context associated with it, or that the filesystem
does not support SELinux labels. The former is for instances applicable when
moving files to /tmp as the CentOS SELinux policy does not have any default
context set for files and directories inside /tmp. Newly created resources
always need to have their own affiliated labels applied (such as user_
tmp_t).

112 Using File Contexts and Process Domains

Even more so, many of these utilities allow the user to explicitly provide a context through
the --context option. For instance, to create a directory, /srv/foo, with the context
user_home_t, using mkdir by default would not work, as the target context would be
set to var_t. With the --context option, we can tell the utility to set a specific context:

mkdir --context=user_u:object_r:user_home_t:s0 /srv/foo

ls -dZ /srv/foo
user_u:object_r:user_home_t:s0 /srv/foo

For other utilities, it is best to consult the manual page and see how the utility deals
with extended attributes. For instance, the rsync command can preserve the extended
attributes by using the -X or --xattrs option.

Temporarily changing file contexts
We can use the chcon tool to update the context of the file (or files) directly. In our
previous example, we noticed the var_t label on the DokuWiki files. This is a generic
type for variable data and is not the right context for web content. We can use chcon to
put the httpd_sys_content_t label on these files, which would allow web servers to
have read access on these resources:

chcon -R -t httpd_sys_content_t /srv/web

Another feature that chcon offers is to tell it to label a file or location with the same
context as a different file. In the next example, we use chcon to label /srv/web and its
resources with the same context as used for the /var/www directory:

$ chcon -R --reference /var/www /srv/www

If we change the context of a file through chcon and set it to a context different from the
one in the context list, then the context might be reverted later: package managers might
reset the file contexts back to their intended value, or the system administrator might
trigger a fill filesystem relabeling operation.

Until now, we've only focused on the type part of a context. Contexts, however, also
include a role part and an SELinux user part. If UBAC is not enabled, then the SELinux
user has no influence on any decisions, and resetting it has little value. If UBAC is enabled,
though, it might be necessary to reset the SELinux user values on files. Utilities such as
chcon can set the SELinux user as well:

chcon -u system_u -R /srv/web

Keeping or ignoring contexts 113

The role for a file is usually object_r as roles currently only make sense for users
(processes).

To be able to change contexts, we do need the proper SELinux privileges, named
relabelfrom and relabelto. These rights are granted on domains to indicate
whether the domain can change a label from one type to another. If we find denials in
the audit log related to these permissions, then this means that the policy prohibits the
domain from changing the contexts.

Placing categories on files and directories
We focused primarily on changing types and briefly touched SELinux users, but another
important part is to support categories and sensitivity levels. With chcon, we can add
sensitivity levels and categories as follows:

chcon -l s0:c0,c2 doku.php

Another tool that can be used to assign categories is the chcat tool. With chcat, we can
assign additional categories rather than having to reiterate them, as would be the case with
chcon, and even enjoy the human-readable category levels provided by the setrans.
conf file:

chcat -- +Contracts doku.php

To remove a category, just use the minus sign:

chcat -- -Contracts doku.php

To remove all categories, use the -d option:

chcat -d doku.php

Users and administrators should keep in mind that applications generally do not set
categories themselves, so they need to be added ad hoc.

Using multilevel security on files
When the system uses an MLS policy, the chcon tool needs to be used. The syntax is the
same as with categories. For instance, to set the sensitivity s1 and category set c2 and c4
to c10 on all files of a user's home directory, you'd do the following:

$ chcon -R -l s1:c2,c4.c10 /home/lisa

114 Using File Contexts and Process Domains

Remember that both the context of the user executing chcon and the context of the user
who will use the data must be able to deal with the mentioned sensitivity.

Backing up and restoring extended attributes
As with the regular file operation tools (such as mv and cp), backup software, too, needs
to consider SELinux contexts. Two important requirements exist for a backup tool when
working with SELinux-enabled systems:

•	 The backup tool must run in an SELinux context capable of reading all files in scope
of the backup, and, of course, of restoring those files as well. If no specific SELinux
policy for the backup tool exists, then it might need to run in an unconfined
or highly privileged domain to succeed.

•	 The backup tool must be able to back up and restore extended attributes.

A popular tool for taking backups (or archives) is the tar application, which supports
SELinux contexts as follows:

tar cjvf dokuwiki-20200405.tar.bz2 /srv/web --selinux

When creating a tar archive, add --selinux to include SELinux contexts (both during
the creation of the archive and when extracting files from the archive).

Using mount options to set SELinux contexts
Not all filesystems support extended attributes. When we use a filesystem without
extended attribute support, then the SELinux context of a file is either based on the
filesystem type itself (each filesystem has its own associated context) or is passed on to the
system using a mount option.

The most commonly used mount option in these situations is the context= option.
When set, it will use the mentioned context as the context for all the resources in the
filesystem. For instance, to mount an external USB drive that hosts a FAT filesystem
while ensuring that end users can write to it, we could mount it with the user_home_t
context:

mount -o context="user_u:object_r:user_home_t:s0" /dev/sdc1 /
media/usb

SELinux file context expressions 115

If the filesystem supports extended attributes but doesn't have all files labeled yet, then
we can use the defcontext= option to tell Linux that, if no SELinux context is available,
then the default context provided should be used:

mount -o defcontext="system_u:object_r:var_t:s0" /dev/sdc1 /
srv/backups

Another mount option is fscontext=. This assigns a context on the filesystem type
rather than the context of the files on the filesystem. For instance, a CD/DVD filesystem
can be ISO 9660, Joliet, or UDF. SELinux uses this type definition on a filesystem to map
permissions such as mount operations and file creation. With the fscontext= option,
the filesystem type can be set differently from what the default filesystem type would be.

The last option that can be used when mounting filesystems is the rootcontext=
option. This will force the root inode of the filesystem to have the given context even
before the filesystem is visible to the user space. Permission checks on the location during
the mount operation itself can cause havoc when the location does not have the expected
context (especially when filesystems are mounted outside their expected location). The
rootcontext= option provides a reusable configuration option to set the expected
context:

mount -o rootcontext="system_u:object_r:tmp_t:s0" -t tmpfs
none /var/tmp

That's it – these are all the context-related mount options. A final note though: the
context= option is mutually exclusive to the defcontext= and fscontext=
options. So, while the defcontext= and fscontext= options can be used together,
they cannot be used with the context= option. Assuming the target filesystem allows for
extended attributes, then we can use the file context expressions, which we will cover in
the next section.

SELinux file context expressions
When we think that the context of a file is wrong, we need to correct the context. SELinux
offers several methods to do so, and some distributions even add in more. We can use
tools such as chcon, restorecon (together with semanage), setfiles, rlpkg
(Gentoo), and fixfiles. Of course, we could also use the setfattr command, but
that would be the least user-friendly approach for setting contexts.

Let's see how we can set context expressions in a more manageable way.

116 Using File Contexts and Process Domains

Using context expressions
In the SELinux policy, a list of regular expressions is kept that informs the SELinux
utilities and libraries what the context of a file (or other filesystem resource) should be.
Though this expression list is not enforced on the system directly, administrators and
SELinux utilities use it to see whether a context is correct, and to reset contexts to what
they are supposed to be. You can find the list itself in /etc/selinux/targeted/
contexts/files in the various file_contexts.* files.

As an administrator, we can query this list through semanage fcontext as follows:

semanage fcontext -l
SELinux fcontext	type		 Context
/			 directory	 system_u:object_r:root_t:s0
...
/vmlinuz.*		 symbolic link	 system_u:object_r:boot_t:s0
/xen(/.*)?		 all files	 system_u:object_r:xen_image_t:s0
...

An example of a tool that queries this information is matchpathcon, which we
introduced in Chapter 2, Understanding SELinux Decisions and Logging:

matchpathcon /srv/web/localhost/htdocs/dokuwiki
/srv/web/localhost/htdocs/dokuwiki system_u:object_r:var_t:s0

Not all the entries are visible through the semanage application though. Entries related
to specific user home directories (such as /home/lisa/.ssh) are not shown as these
entries depend on the Linux user (and, more importantly, its associated SELinux user).

But for all other entries, the output of the command contains the following:

•	 A regular expression that matches one or more paths

•	 The classes to which the rule is applicable, but translated into a more
human-readable format

•	 The context to assign to the resources that match the expression and class list

The class list allows us to differentiate contexts based on the resource class. The
semanage fcontext output uses human-readable identifiers: resource classes can be
a regular file (--), a directory (-d), a socket (-s), a named pipe (-p), a block device (-b),
a character device (-c), or a symbolic link (-l). When it says all files, the line is valid
regardless of the class.

SELinux file context expressions 117

Right now, we have not defined such rules yet, but after the next section, even defining
custom SELinux context expressions will no longer hold any secrets. An important
property of the context list is how SELinux prioritizes its application – after all, we could
easily have two expressions that both match a certain resource or path. Within SELinux,
the most specific rule wins. The logic used is as follows (in order):

1.	 If line A has a regular expression and line B doesn't, then line B is more specific.

2.	 If the number of characters before the first regular expression in line A is less than
the number of characters before the first regular expression in line B, then line B is
more specific.

3.	 If the number of characters in line A is less than in line B, then line B is more
specific.

4.	 If line A does not map to a specific SELinux type (the policy editor has explicitly
told SELinux not to assign a type) and line B does, then line B is more specific.

There is a caveat with the rule order, however. When additional rules are added through
semanage (which we describe in the next section), then SELinux's utilities apply the
rules in the order they were added rather than their specificity. So, instead of the most
specific rule, the most recently added rule that matches the path is used.

Registering file context changes
Because changing an SELinux context using chcon is often just a temporary measure,
it is seriously recommended to only use chcon when testing the impact of a context
change. Once the change is acceptable, we need to register it through semanage. For
instance, to permanently mark /srv/web (and all its subdirectories) as httpd_sys_
content_t, and the DokuWiki data/ and conf/ folders as httpd_sys_rw_
content_t (to allow the web server to modify these resources), we need to execute
the following:

semanage fcontext -a -t httpd_sys_content_t "/srv/web(/.*)?"

semanage fcontext -a -t httpd_sys_rw_content_t "/srv/web/
localhost/htdocs/dokuwiki/data(/.*)?"

semanage fcontext -a -t httpd_sys_rw_content_t "/srv/web/
localhost/htdocs/dokuwiki/conf(/.*)?"

restorecon -Rv /srv/web

118 Using File Contexts and Process Domains

What we do here is register /srv/web and its subdirectories as httpd_sys_
content_t and the two writable directories as httpd_sys_rw_content_t through
semanage. Then, we use restorecon to (recursively) reset the contexts of /srv/web
to the value registered in the context list. This is the recommended approach for setting
contexts on most resources.

These registrations are local (custom) context expressions and are stored in a separate
configuration file (file_contexts.local). Considering the priority of (locally
added) expressions, it is important to have the most specific entries added last, as otherwise
the more broadly defined rule for httpd_sys_content_t would be applied to the
entire directory. This is unlike the priority rules for (policy added) expressions that do
have the concept of most specific rule wins.

The semanage fcontext application can also be used to inform SELinux that a part
of the filesystem tree should be labeled similarly as a different location on the filesystem.
Such an equivalency rule allows us to use different paths for application installations or
file destinations and tell semanage to apply the same contexts as if the destination were
the default.

Let's make this more visible through an example, and have everything under /srv/web
be labeled in a similar manner to the files at /var/www (including subdirectories),
so /srv/web/icons gets the same context as /var/www/icons. We use the -e
option of semanage fcontext to create such an equivalency as follows:

semanage fcontext -a -e /var/www /srv/web

restorecon -Rv /srv/web

This will create a substitution entry so that anything under /srv/web gets the same label
as if it were at the same location under /var/www.

Most distributions already configure a few equivalency rules that we can read as follows:

cat /etc/selinux/targeted/contexts/files/file_contexts.subs_
dist
/run /var/run
...
/sysroot/tmp /tmp

The semanage fcontext -l command will show these equivalent locations at the
end of its output as well.

SELinux file context expressions 119

Optimizing recursive context operations
The restorecon application resets the SELinux context of files and other resources
based on the context definitions managed through the SELinux policy and semanage
fcontext. When applying restorecon in a recursive fashion against directories,
this might take a while. To improve performance in this situation, the SELinux authors
support the skipping of restorecon operations.

With the -D option to restorecon, an additional extended attribute will be written to
the main directory that contains a hash of the file context definitions used when invoking
the command:

restorecon -RD /home

Subsequent invocations of restorecon with -D will check this hash to see whether
any of the file context definitions that impact this directory have been modified (using
semanage fcontext). If there aren't, then the restore operation will be skipped:

restorecon -RvD /home
Skipping restorecon as matching digest on: /home

Once we update a definition that influences the given location, then restorecon will
reset the contexts appropriately:

semanage fcontext -a -t httpd_user_content_t "/home/[^/]*/
cgi-bin(/.*)?"

restorecon -RvD /home
Relabeled /home/lisa/cgi-bin from staff_u:object_r:user_
home_t:s0 to staff_u:object_r:httpd_user_content_t:s0
Updated digest for: /home

The restorecon_xattr command can be used to manage these extended attributes
(view or delete) and show how the attributes are formed:

restorecon_xattr -v /home
specfiles SHA1 digest: 7ed69be330ad60811481e455ca8e5ab0b1556036
calculated using the following specfile(s):
/etc/selinux/targeted/contexts/files/file_contexts.subs_dist
...
/etc/selinux/targeted/contexts/files/file_contexts.local.bin

/home Digest: 7ed69be330ad60811481e455ca8e5ab0b1556036 Match

120 Using File Contexts and Process Domains

The digest referenced is the security.restorecon_last or security.sehash
extended attributes. More recent user space tools use the latter, and apply their logic to
each subdirectory, whereas older user space utilities use the former and only apply their
logic on the selected directory.

The disadvantage of the security.restorecon_last usage is that it does not work
with subdirectories: if we apply a recursive restorecon operation against /, then this
tool will ignore the digest on /home. With the security.sehash usage, a recursive
operation against / will check the digest for /home as well.

Using customizable types
Some SELinux types are meant for files whose paths cannot be accurately defined by
administrators or where the administrator does not want the context to be reset when
a relabeling operation is triggered. For these purposes, SELinux supports what it calls
customizable types. When tools that manage file contexts (such as restorecon)
encounter a file with a customizable type set, they will not revert its context to the
registered context definition.

The customizable types are declared in the customizable_types file inside /
etc/selinux/targeted/contexts. To have restorecon relabel such files,
administrators need to pass the force reset option (-F) before the tool resets the contexts.

Let's look at the contents of this customizable_types file:

$ cat /etc/selinux/targeted/contexts/customizable_types
container_file_t
sandbox_file_t
...
httpd_user_content_t
git_session_content_t
home_bin_t
user_tty_device_t

As an example, we can mark a file in a home directory as home_bin_t, which is a
customizable type, and as such, this file will not be relabeled back to user_home_t when
a filesystem relabeling operation is done:

$ chcon -t home_bin_t ~/convert.sh

SELinux file context expressions 121

Marking other types as customizable requires updating the customizable_types file,
as there is no user command that adds or removes type definitions from this list. Because
this file can be overwritten when the distribution or administrator pushes out a new
policy package, it needs to be governed carefully.

That said, the use of customizable types has its advantages. As an administrator, we might
want to create and support specific types as usable by end users who can use chcon to set
the contexts of individual files in their home directory. By having those types marked as
customizable types, a relabeling operation against /home will not reset those contexts.

When the target type is not a customizable type, administrators generally prefer to use
semanage fcontext to add an expression and restorecon to fix the context of
the files. Most administrators will use directory-based labeling: this is much easier to
maintain, and much easier to explain to end users. Many will even use this approach for
customizable types:

semanage fcontext -a -t home_bin_t "/home/[^/]*/bin(/.*)?"

With this command, user binaries and scripts located in the ~/bin directory will be
labeled as home_bin_t.

Compiling the different file_contexts files
Inside the /etc/selinux/targeted/contexts/files directory, five different
file_contexts files can be found:

•	 The file_contexts file itself (without any suffix) is the basic expression file
provided by the SELinux policy offered through the Linux distribution.

•	 The file_contexts.local file contains the locally added rules (through the
semanage fcontext command, which we covered earlier in this chapter).

•	 The file_contexts.homedirs file contains the expressions for the user home
directories. When new user mappings are created and managed through semanage
login and semanage user, this file is adjusted to reflect the new situation.

•	 The file_contexts.subs_dist file contains equivalency rules, provided by
the distribution's SELinux policy, which tell SELinux to consider one part of the
filesystem as having the same labeling rules as another location.

•	 The file_contexts.subs file contains locally managed equivalency rules
(through the semanage fcontext command, covered earlier in this chapter).

122 Using File Contexts and Process Domains

Alongside those files, you will find associated *.bin files (so file_contexts.
bin for the file_contexts file, file_contexts.local.bin for the file_
contexts.local file, and so on). These *.bin files are automatically created, but in
case of a discrepancy, administrators can rebuild the files themselves as well using the
sefcontext_compile command:

cd /etc/selinux/targeted/contexts/files

sefcontext_compile file_contexts.local

These files contain the same information as the main file, but are precompiled to make
lookups faster. Unless the tools detect that the *.bin files are older than their source files,
the SELinux utilities will use the compiled versions of these files.

Exchanging local modifications
When local modifications are registered through semanage fcontext, they only
apply to a single system. If local definitions need to be reapplied on various systems,
administrators can extract the local modifications and import them on another system.

To export the local modifications, use semanage export:

semanage export -f local-mods.conf

The file that contains the local modifications (local-mods.conf in the example) can
be adjusted at will. This allows administrators to remove all lines except those they want
to apply on other systems.

With the local modifications stored in the file, transport the file to the other system(s) and
import the settings:

semanage import -f ./local-mods.conf

The imported settings are immediately registered. Of course, in case of filesystem changes
(semanage fcontext), don't forget to run restorecon against the target directories.

Modifying file contexts
We now know how to set SELinux contexts, both directly through tools such as chcon as
well as through the restorecon application, which queries the SELinux context list to
know what context a file should have. Yet restorecon is not the only application that
considers this context list.

Modifying file contexts 123

Using setfiles, rlpkg, and fixfiles
The setfiles application is an older one, which requires the path to the context list
file itself to reset contexts. It is often used under the hood of other applications, so most
administrators do not need to call setfiles directly anymore:

setfiles /etc/selinux/targeted/contexts/files/file_contexts /
srv/web

Another set of tools are the rlpkg (Gentoo) and fixfiles (CentOS and related
distributions) applications. Both these applications have a nice feature: they can be used
to reset the contexts of the files of an application rather than having to iterate over the files
manually and run restorecon against them.

In the next example, we're using these tools to restore the contexts of the files provided by
the nginx package:

rlpkg nginx

fixfiles -R nginx restore

Another feature of both applications is that they can be used to relabel the entire
filesystem without the need to perform a system reboot, like so:

rlpkg -a -r

fixfiles -f -F relabel

Of course, this is not as fine-grained as the commands before.

Relabeling the entire filesystem
The rlpkg and fixfiles commands as listed in the previous section are not the only
available approaches for relabeling the entire filesystem when working with a CentOS
(or related) distribution. SELinux offers two other methods to ask the system to perform
a full filesystem relabeling operation during (re)boot: placing a touch file (which the
system reads at boot time) or configuring a boot parameter.

The touch file is called .autorelabel and should be placed in the root filesystem. Once
set, the system needs to be rebooted:

touch /.autorelabel

reboot

124 Using File Contexts and Process Domains

We trigger the same behavior if we add the autorelabel=1 parameter to the boot
parameter list (like where we can set the selinux= and enforcing= parameters as
discussed earlier).

Asking the system to perform a full filesystem relabeling operation will take a while.
When finished, the system will reboot again. Touch files will be removed automatically
after the relabeling operation has finished.

Automatically setting context with restorecond
Contexts can also be applied by the restorecond daemon. The purpose of this
daemon is to enforce the expression list rules onto a configurable set of locations, defined
in the /etc/selinux/restorecond.conf file.

The following set of files and directories is an example list of locations configured in the
restorecond.conf file so that restorecond automatically applies the SELinux
contexts on these files and directories whenever it detects a context change in them:

/etc/services
/etc/resolv.conf
/etc/samba/secrets.tdb
...
/root/.ssh/*

In this case, if a process creates a file that matches any of the previously created paths, the
Linux inotify subsystem will notify restorecond of it. restorecond will then relabel
the file according to the expression list, applying the correct label regardless of the process
(and context) that created the file.

The use of restorecond is primarily for historical reasons, when SELinux didn't
support named file transitions. At that time, writing resolv.conf in /etc could not
be differentiated from writing to the passwd file in /etc. The introduction of named file
transitions has considerably reduced the need for restorecond.

Setting SELinux context at boot with tmpfiles
If the Linux distribution uses systemd, then you can use systemd-tmpfiles to
automatically set SELinux context at boot. systemd uses the tmpfiles application to
automatically create and manage volatile locations on the system, such as locations inside
/run when /run is a tmpfs-mounted filesystem (an in-memory filesystem).

The context of a process 125

Administrators can configure tmpfiles to automatically create files, directories, device
files, symbolic links, and others at boot, and to reset the permissions on resources. It is
through this reset operation that we can use tmpfiles to set the right SELinux context
at boot time.

In Chapter 3, Managing User Logins, we covered polyinstantiation, where users get their
own private view on filesystem resources. The example we gave used a directory called
/tmp/tmp-inst, which had to have the 000 permission set, and which will host the
user-oriented /tmp views. Rather than having to create and set this permission each
time, we can configure tmpfiles to do this for us, and define the right SELinux context
up front:

semanage fcontext -a -t tmp_t -f d "/tmp/tmp-inst"

In /etc/tmpfiles.d, we create a file called selinux-polyinstantiation.conf
with the following content:

d /tmp/tmp-inst 000 root root

The name of the file can be chosen freely, but make sure it uses the .conf suffix. Every
time the system boots, systemd-tmpfiles will ensure that the /tmp/tmp-inst
directory is created with the appropriate permissions.

If a location does not need to be created, but only its SELinux context reset, then you can
use the z (one resource) or Z (recursively) options in the tmpfiles configuration. This is
used, for instance, by the default SELinux tmpfiles configuration, selinux-policy.
conf, in /usr/lib/tmpfiles.d:

z /sys/devices/system/cpu/online - - -

The - used is to inform tmpfiles not to adjust the permissions and ownership, and only
to reset the SELinux context.

The context of a process
As everything in SELinux works with contexts, even processes are assigned a context,
also known as the domain. Let's see how we can obtain this information, how SELinux
transitions from one domain to another, and learn how to query the SELinux policy to
find more information about these transitions.

126 Using File Contexts and Process Domains

Getting a process context
We saw that the nginx web server runs in the httpd_t domain, which can be seen with
the ps -eZ command, as follows:

ps -eZ | grep nginx
system_u:system_r:httpd_t:s0 3744 ? 00:00:00 nginx

Several other ways exist to obtain the process context. Although the method with ps
is the most obvious, these other methods can prove useful in scripted approaches
or through monitoring services.

A first approach is to read the /proc/<pid>/attr/current pseudo-file, which
we've already encountered in Chapter 1, Fundamental SELinux Concepts. It displays
a process's current security context:

pidof nginx
3746 3745 3744

cat /proc/3744/attr/current
system_u:system_r:httpd_t:s0

To receive a somewhat more human-readable output, use the secon command for the
given process ID:

secon --pid 3744
user: system_u
role: system_r
type: httpd_t
sensitivity: s0
clearance: s0
mls-range: s0

Finally, the SELinux user space project has a helper utility called getpidcon, which the
libselinux library optionally provides. Although this utility is not available on CentOS
(or related distributions), other distributions such as Gentoo do have it. The utility
requires a single PID and returns its context:

getpidcon 679
system_u:system_r:nginx_t:s0

Now, the Apache processes don't themselves inform SELinux that they need to run in the
httpd_t (or, for Gentoo, the nginx_t) domain. For that, transition rules exist in the
SELinux policy that govern when and how processes are executed in a specific domain.

The context of a process 127

Transitioning toward a domain
Just as we have seen with files, if a process forks and creates a new process, this process,
by default, inherits the context of the parent process. For the web server, the main process
is running in the httpd_t domain, so all the launched worker processes inherit the
httpd_t domain from it.

To differentiate the domain of one process from another, domain transitions can be
defined. A domain transition (also known as a process transition or type transition)
is a rule in SELinux that tells SELinux another domain is to be used for a forked process
(actually, it is when the parent process calls the execve() function, most likely after
a fork() operation).

Like the file-based transitions, domain transitions can be queried using sesearch.
Let's investigate the domains allowed to transition to the httpd_t domain:

$ sesearch -T -t httpd_exec_t
type_transition certwatch_t httpd_exec_t:process httpd_t;
type_transition cluster_t httpd_exec_t:process httpd_t;
type_transition initrc_t httpd_exec_t:process httpd_t;
...
type_transition system_cronjob_t httpd_exec_t:process httpd_t;

In this case, SELinux will switch the context of a launched web server to httpd_t if
the parent process is running in one of the mentioned domains (such as the initrc_t
domain) and is executing a file labeled as httpd_exec_t (the label assigned to the
httpd and nginx binaries).

But for this to truly happen, several other permissions (next to the domain transition)
need to be in place. The following list describes these various permissions:

•	 The source process (such as initrc_t) needs to be allowed to transition to the
httpd_t domain, governed by the transition privilege on the process class:

$ sesearch -s initrc_t -t httpd_t -c process -p
transition -A

•	 The source process (such as initrc_t) needs to have the right of execution on the
file it is launching (httpd_exec_t):

$ sesearch -s initrc_t -t httpd_exec_t -c file -p execute
-A

128 Using File Contexts and Process Domains

•	 The httpd_exec_t type must be identified as an entry point for the httpd_t
domain. SELinux uses an entry point to ensure that a domain transition only
occurs when using the specified file context on the executing binary or script:

$ sesearch -s httpd_t -t httpd_exec_t -c file -p
entrypoint -A

•	 The target domain must be allowed for the role that the parent process is in. In the
case of system daemons, the role is system_r:

$ seinfo -r system_r -x | grep httpd_t

A graphical representation of these rights is as follows:

Figure 4.2 – Graphical overview of the necessary transition permissions

Only when all these privileges are allowed will a domain transition occur. If not, then
either the execution of the application fails (if the domain has no execute or execute_
no_trans rights on the file), or it executes but remains running in the same domain as
the parent process.

The context of a process 129

Domain transitions are an important concept as they inform the administrator how an
application gets into its privileged context. To analyze this, many security administrators
look at how one context can transition to another. We explain policy analysis in Chapter
13, Analyzing Policy Behavior.

For policy writers, deciding when to create a domain transition and when to keep the
processes running in the same (source) context is a matter of design. Generally, policy
developers will try to keep the parent context confined so that every additional privilege
is a source of consideration for switching to another domain (which has that privilege).
Basically, policy developers will trigger a transition when the target application requires
significantly more (or different) permissions than the source domain holds.

That is also why the unconfined_t domain has fewer transitions when executing
user applications compared to the confined user domains, user_t or guest_t: the
unconfined_t domain already holds many privileges, so transitioning to a different
domain has little value. Note that this is a decision made by the policy writers or Linux
distribution, not by the SELinux technology itself. All SELinux does is enforce the
policy rules.

Verifying a target context
When executing applications, the SELinux policy might have the command run in
a different domain. Although we could start querying all rules with sesearch, a simpler
command exists that tells us what the target context is when we execute a command
or script: selinuxexeccon.

This command requires at least one argument (the path of the binary or script that
would be executed) and an optional second (the source context). If we omit the second
argument, the tool will use the current context as the source context.

For instance, to find out in which domain the passwd command would run when
executed from the current context, we'd use this command:

selinuxexeccon /usr/bin/passwd
unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023

The following example shows the target context when the init_t domain executes the
nginx binary:

selinuxexeccon /usr/sbin/nginx system_u:system_r:init_t:s0
system_u:system_r:httpd_t:s0

Using selinuxexeccon is much faster than querying all appropriate permissions
separately.

130 Using File Contexts and Process Domains

Other supported transitions
Regular domain transitions are the most common transitions in SELinux, but other
transitions are possible as well. For instance, some applications (such as cron or login)
are SELinux-aware and will specify which domain to transition to. These applications call
the setexeccon() method (set execution context) to specify the target domain and do
not use a type transition rule. The other privilege requirements, however, still hold.

Some SELinux-aware applications are even able to change their current context (and
not just the context of the application they execute). To accomplish this, the application
domain needs the dyntransition privilege (one of the privileges supported for
process-level activities). One example of such an application is OpenSSH, which, by
default, runs in the sshd_t domain but can transition to the sftpd_t type.

Querying initial contexts
When SELinux does not have a label yet for a resource, it will assign an initial context
(or initial security ID (SID)) to the resource. For a few classes, the SELinux policy will
have a default initial context from which it can further jumpstart and assign labels.

The initial contexts for various SIDs can be queried using seinfo:

seinfo --initalsid -x
Initial SIDs: 27
 sid any_socket system_u:object_r:unlabeled_t:s0
 sid devnull system_u:object_r:null_device_t:s0
...
 sid unlabeled system_u:object_r:unlabeled_t:s0

As you can see, not all classes have a default context assigned, as other classes have their
contexts derived from the contexts of the currently listed initial SIDs.

Tweaking memory protections
Legacy binaries on Linux systems might require execution permissions to be set on
memory regions when these are used for reading, even when the execute permission
is not actually used. This read-implies-exec is a nuisance for mandatory access controls
such as SELinux because they need to document the appropriate permissions in their
policy. If an application needs read access, does the policy then also have to include the
implied execute rights? And if the policy does not include execute rights, should the read
operation then fail because it implied execute permissions?

Limiting the scope of transitions 131

Informational note
Read-implies-exec is a legacy support for running old binaries or binaries
compiled for other Unix systems where applications do not explicitly mark
their executable memory as executable, assuming that every memory region
that is marked as readable is executable. This creates a security risk as
malicious actors can load in executable code dynamically without the system
being able to prevent the application to execute this code. Many operating
systems nowadays have clear memory protection routines in place, including
preventing data from becoming executable. Sadly, we often need to deal with
legacy situations, so all operating systems have methods in place that selectively
disable these memory controls, and within Linux this is done through its
personalities support (see man personality for more information).

SELinux developers allow administrators to select their most appropriate permission
handling by introducing a memory protection check that can be tuned. The
checkreqprot option can be set to 0 to check protections as handled by the kernel,
or 1 to check protections as asked by the application.

On older systems, this option will be set to 1 to support these legacy binaries. Recent
distributions, however, build their applications appropriately, and the more secure setting
0 is used, as displayed by the sestatus command:

sestatus | grep Memory
Memory protection checking: actual (secure)

You can toggle this support through /sys/fs/selinux/checkreqprot:

echo 1 > /sys/fs/selinux/checkreqprot

sestatus | grep Memory
Memory protection checking: requested (insecure)

The parameter's default value is configured when building the Linux kernel, through
the CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE kernel configuration
parameter. Administrators can also boot the system with the checkreqprot= boot
parameter to have the specified value set.

Limiting the scope of transitions
For security reasons, Linux systems can reduce the ability of processes to gain elevated
privileges under certain situations or provide additional constraints to reduce the
likelihood of vulnerabilities to be exploitable. SELinux developers, too, honor these
situations.

132 Using File Contexts and Process Domains

Sanitizing environments on transition
When we execute a higher-privileged command (be it a setuid application or one
where capabilities are added to the session), the GNU C library (glibc) will sanitize
the environment. This means that a set of security-sensitive environment variables are
discarded to make sure that attackers, malicious persons, or malicious applications cannot
negatively influence the session.

This secure execution is controlled through an Executable and Linkable Format
(ELF) auxiliary vector called AT_SECURE. When set, environment variables such
as LD_PRELOAD, LD_AUDIT, LD_DEBUG, TMPDIR, and NLSPATH are removed from
the session.

SELinux will force this sanitation on domain transitions as well, ensuring that the newly
executed domain does not have access to these sensitive environment variables. Of course,
sometimes the transitioned domain requires these variables. Not all domains can deal
with sanitized environments, or use these environment variables to pass along important
information, so always dropping the environment variables might result in unusable
application domains.

To allow transitions without sanitizing the environment, the noatsecure permission
can be granted to domain transitions. For instance, let's consider the execution of a Firefox
plugin:

sesearch -t mozilla_plugin_t -p noatsecure -A
...
allow unconfined_t mozilla_plugin_t:process { ... noatsecure
...};
...

When an application running in the unconfined_t domain executes the plugin (which
results in a domain transition to mozilla_plugin_t), the environment variables need
to be kept as otherwise the plugin might not function properly. As such, the SELinux
policy grants the noatsecure permission to the domains that invoke Firefox plugins.

Disabling unconstrained transitions
A second security constraint that Linux supports is to mount a filesystem with the
nosuid option. When set, no setuid and setgid binaries on that filesystem will have
any effect on the effective user or group ID of the executing session. Essentially, a setuid
application on a filesystem mounted with nosuid will act as if no setuid bit is set.

Limiting the scope of transitions 133

To ensure that transitions triggered by applications hosted on a nosuid-mounted
filesystem do not allow for elevated privileges, SELinux policy developers must
explicitly mark a transition as allowed for nosuid-mounted filesystems, using the
nosuid_transition permission. This permission is part of the process2 class:

$ sesearch -s unconfined_t -p nosuid_transition -A
allow unconfined_t initrc_t:process2 { nnp_transition nosuid_
transition };
...

This allows policy developers to differentiate regular domain transitions from
nosuid-constrained domain transitions.

Note
SELinux has a limit on the number of privileges that can be assigned to a class.
When the number of privileges exceeds 32, the SELinux developers will create
a different class and the permissions continue in this second class. Right now,
the two classes that have more than 32 permissions are the capability
class and the process class.

This permission-based approach might not be in place on all SELinux-enabled systems
though. It is enabled when the nnp_nosuid_transition policy capability is defined
and set to 1:

cat /sys/fs/selinux/policy_capabilities/nnp_nosuid_transition
1

If this capability value is 0, then SELinux will use a concept called type bounds to
support domain transitions for applications hosted on nosuid-mounted filesystems. Any
executable with a file context that would result in a domain transition will only result in
a domain transition if the target domain is bounded by the parent domain.

Note
Policy capabilities cannot be tweaked by administrators. They are used by
policy developers to inform the Linux kernel which behavior it expects. For
the nnp_nosuid_transition capability, the policy developer informs
the kernel that the nosuid_transition and nnp_transition
permission checks should be used rather than bounded domains, and that its
policy will generally only include support for the transitions and not for the
bounded domains.

134 Using File Contexts and Process Domains

If it is not bounded, then the domain transition will not occur, and the session will remain
in the current context (or the command will fail to execute if the application is not allowed
to run in the current context).

A bounded domain is not just calculated live based on the permissions though. SELinux
has an explicit rule that enforces a target domain to be bounded by a parent domain. Even
when permissions are later added to the bounded domain, they will be denied by the
SELinux security subsystem if they aren't part of the parent domain.

With seinfo, these type bounds can be listed as follows:

seinfo --typebounds

Most distributions, however, do not have bounded domains defined in their SELinux
policy anymore, as the new nosuid_transition permission is much more flexible.
The use of bounded domains required policy developers to extend the permissions of the
parent domain every time the child domain needed to be extended, which was a major
nuisance when the parent domain is a generic one (be it a container management platform
or a system service daemon).

Using Linux's NO_NEW_PRIVS
The use of filesystems mounted with nosuid is a specific case of Linux's No New
Privilege (NNP) support. NNP is a process-specific attribute that tells the Linux
kernel that the process is no longer to be granted additional privileges. From that point
onward, the constraints as mentioned before hold, and SELinux will only allow domain
transitions if it has the nnp_transition permission, or toward a bounded domain
if the nnp_nosuid_transition policy capability is not set.

The parameter can be set by applications themselves using the process control function
prctl(), but the user can also influence this. The setpriv command can be used to
launch applications with PR_SET_NO_NEW_PRIVS set (the parameter that applications
can pass through the prctl() function).

As an example, create the following simple Python-based CGI script in a cgi-bin
directory inside a regular user's home directory:

#!/usr/bin/env python3
import sys, time
import subprocess
import cgi, cgitb
cgitb.enable()
print('Content-Type: text/html;charset=utf-8\n')
PIPE = subprocess.PIPE

Limiting the scope of transitions 135

STDOUT = subprocess.STDOUT
pd = subprocess.Popen(['ping', '-c', '1', 'localhost'],
stdout=PIPE, stderr=STDOUT)
while True:
 output = pd.stdout.read(1)
 if output == '' and pd.poll() != None:
 break
 if output != '':
 sys.stdout.write(output.decode('utf-8'))
 sys.stdout.flush()

With this CGI script now available, first launch a simple CGI-capable web server (we will
pick port 6020 as unprivileged users should be able to bind processes to this port) and
connect to it:

$ python3 -m http.server --cgi 6020

In a different session, connect to the web server and call the newly created Python script
(here named test.py):

$ curl http://localhost:6020/cgi-bin/test.py
PING localhost(localhost(::1)) 56 data bytes ...

Now, launch the same CGI-capable web server, but with NNP enabled:

$ setpriv --no-new-privs python3 -m http.server --cgi 6020

Again, connect to the web server and call the test.py CGI script:

$ curl http://localhost:6020/cgi-bin/test.py
ping: socket: Permission denied

Because Linux's NNP is enabled, the ping command is not able to obtain the higher
privileges needed to open the socket.

Sometimes, you'll notice a denial for the execute_no_trans permission in the
SELinux audit logs. This occurs when the SELinux policy does not allow an application
to be executed without transitioning.

136 Using File Contexts and Process Domains

Types, permissions, and constraints
Now that we know more about types (for processes, files, and other resources),
let's explore how these are used in the SELinux policy in more detail.

Understanding type attributes
We have discussed the sesearch application already and how it can be used to query the
current SELinux policy. Let's look at a specific process transition:

$ sesearch -s initrc_t -t httpd_t -c process -p transition -A
allow initrc_domain daemon:process transition;

Even though we asked for the rules related to the initrc_t source domain and the
httpd_t target, we get a rule back for the initrc_domain source domain and the
daemon target. What sesearch did here was show us how the SELinux policy allows
the requested permission, but through attributes assigned to the initrc_t and
httpd_t types.

Type attributes in SELinux are used to group multiple types and assign privileges to
those groups rather than having to assign the privileges to each type individually. For
initrc_domain, the following types are all tagged with this attribute, as can be seen
through the seinfo application:

$ seinfo -a initrc_domain -x
Type Attributes: 1
 attribute initrc_domain;
 cluster_t;
 ...
 initrc_t;
 ...
 piranha_pulse_t;

As we can see, the initrc_t type is indeed one of the types tagged with
initrc_domain. Similarly, the daemon attribute is assigned to several types
(several hundred, even). So, the single allow rule mentioned earlier consolidates more
than a thousand rules into one.

Attributes are increasingly used in the policy as a way of consolidating and simplifying
policy development. With seinfo -a, you can get an overview of all the attributes
supported in the current policy.

Types, permissions, and constraints 137

Querying domain permissions
The most common rules in SELinux are the allow rules, informing the SELinux
subsystem what permissions a domain has. allow rules use the following syntax:

allow <source> <destination> : <class> <permissions>;

The <source> field is almost always a domain, whereas the <destination> field can
be any type.

The <class> field allows us to differentiate privileges based on the resource, whether it
is for a regular file, a directory, a TCP socket, a capability, and so on. A full overview of all
supported classes can be obtained from seinfo -c. Each class has a set of permissions
assigned to it that SELinux can control. For instance, the sem class (used for semaphore
access) has the following permissions associated with it:

$ seinfo -c sem -x
Classes: 1
 class sem
inherits ipc

The reference to ipc in the output informs us that the class inherits permission from the
common ipc class, which we can query as follows:

$ seinfo --common=ipc -x
Commons: 1
{
 write
 destroy
 ...
 create
}

In the <permissions> field, most rules will bundle a set of permissions using
curly brackets:

allow user_t etc_t : file { ioctl read getattr lock execute
execute_no_trans open };

138 Using File Contexts and Process Domains

This syntax allows policy developers to make very fine-grained permission controls.
We can use the sesearch command to query these rules. The more options are given to
the sesearch command, the finer-grained our search parameters become. For instance,
sesearch -A would give us all allow rules currently in place. Adding a source (-s)
filters the output to only show the allow rules for this domain. Adding a destination or
target (-t) filters the output even more. Other options that can be used to filter through
allow rules with sesearch are the class (-c) and permission (-p) options.

As you might have guessed by now, sesearch is an extremely versatile command
for querying the active policy, showing us the SELinux policy rules that match the
options given.

Learning about constraints
The allow statements in SELinux, however, only focus on type-related permissions.
Sometimes though, we need to restrict certain actions based on the user or role
information. SELinux supports this through constraints.

Constraints in SELinux are rules applied against a class and a set of its permissions that
must be true for SELinux to further allow the request. Consider the following constraint
on process transitions:

constrain process
 { transition dyntransition noatsecure siginh rlimitinh }
 (
 u1 == u2 or
 (
 t1 == can_change_process_identity and
 t2 == process_user_target
) or (
 t1 == cron_source_domain and
 (
 t2 == cron_job_domain or
 u2 == system_u
)
) or (
 t1 == can_system_change and
 u2 == system_u
) or (
 t1 == process_uncond_exempt
)
);

Summary 139

This constraint says that at least one of the following rules must be true if a transition,
dyntransition, or any of the other three mentioned process permissions is invoked:

•	 The SELinux user of the source (u1) and that of the target (u2) must be the same.

•	 The SELinux type of the source (t1) must have the can_change_process_
identity attribute set, and the SELinux type of the target (t2) must have the
process_user_target attribute set.

•	 The SELinux type of the source (t1) must have the cron_source_domain
attribute set, and either the target type (t2) should have cron_job_domain as
an attribute, or the target SELinux user (u2) should be system_u.

•	 The SELinux type of the source (t1) must have the can_system_change
attribute set, and the SELinux user of the target (u2) must be system_u.

•	 The SELinux type of the source (t1) must have the process_uncond_exempt
attribute set.

It is through constraints that UBAC is implemented as follows:

u1 == u2
or u1 == system_u
or u2 == system_u
or t1 != ubac_constrained_type
or t2 != ubac_constrained_type

You can list the currently enabled constraints using seinfo --constrain. Multiple
constraints can be active for the same class and permission set. In that case, all the
constraints need to be true for the permission to go through.

Summary
In this chapter, we learned how file contexts are stored as extended attributes on the
filesystem and how we can manipulate the contexts of files and other filesystem resources.
Next, we found out where SELinux keeps the definitions that describe which SELinux
contexts to assign to the files.

We also learned to work with the semanage tool to manipulate this information and
worked with a few tools that use this information to enforce contexts on resources.

140 Using File Contexts and Process Domains

On the process level, we got our first taste of SELinux policies, identifying when a process
launches inside a certain SELinux domain. With it, we covered the sesearch and
seinfo applications to query the SELinux policy. Finally, we looked at some of Linux's
security implementations that limit the transition scope of applications, which also
influences SELinux domain transitions.

In the next chapter, we will expand our knowledge of protecting the operating system
through the networking-related features of SELinux.

Questions
1.	 What is the most common option for Linux tools to display or explicitly set

SELinux contexts?

2.	 How is an SELinux context for a file or directory stored on the system?

3.	 Why is chcon not recommended to persist SELinux context changes?

4.	 Is the order of context definitions using the semanage fcontext command
important?

5.	 How do you relabel files on the filesystem?

6.	 What privileges does a domain need before it can transition to another domain?

7.	 How do SELinux policies bundle multiple types together to facilitate policy
development?

5
Controlling Network

Communications
The SELinux mandatory access controls go much beyond its file and process access
controls. One of the features provided by SELinux is its ability to control network
communications. By default, general network access controls use the socket-based access
control mechanism, but more detailed approaches are also possible.

In this chapter, we will learn how network access controls are governed by SELinux,
cover what administrators can do to further strengthen network communications using
iptables, and describe how SELinux policies can be used for cross-system security
through labeled IPsec. We'll finish the chapter with an introduction to CIPSO labeling
and its integration with SELinux.

We cover the following topics in this chapter:

•	 Controlling process communications

•	 Linux firewalling and SECMARK support

•	 Securing high-speed InfiniBand networks

•	 Understanding labeled networking

•	 Using labeled IPsec with SELinux

•	 Supporting CIPSO with NetLabel and SELinux

142 Controlling Network Communications

Technical requirements
Not all sections in this chapter apply to all environments. For InfiniBand support, for
instance, InfiniBand hardware is needed, whereas for NetLabel/CIPSO support, the
network in its entirety needs to support the CIPSO (or CALIPSO in the case of IPv6)
protocol for the hosts to be able to communicate with each other.

Check out the following video to see the Code in Action: https://bit.ly/34bVDdm

Controlling process communications
Linux applications communicate with each other either directly or over a network. But
the difference between direct communication and networked communication, from an
application programmer's point of view, is not always that big. Let's look at the various
communication methods that Linux supports and how SELinux aligns with them.

Using shared memory
The least network-like method is the use of shared memory. Applications can share certain
parts of the memory with each other and use those shared segments to communicate
between two (or more) processes. To govern access to the shared memory, application
programmers can use mutual exclusions (mutexes) or semaphores. A semaphore is an
atomically incremented or decremented integer (ensuring that two applications do not
overwrite each other's values without knowing about the value change), whereas a mutex
can be interpreted as a special semaphore that only takes the values 0 or 1.

On Linux, two implementations exist for shared memory access and control: SysV-style
and POSIX-style. We will not dwell on the advantages and disadvantages of each, but
rather look at how SELinux governs access to these implementations.

SELinux controls the SysV-style primitives through specific classes: sem for semaphores
and shm for shared memory. The semaphores, mutexes, and shared memory segments
inherit the context of the first process that creates them.

Administrators who want to control the SysV-style primitives can use the various ipc*
commands: ipcs (to list), ipcrm (to remove), and ipcmk (to create).

https://bit.ly/34bVDdm

Controlling process communications 143

For instance, let's first list the resources and then remove the listed shared memory:

ipcs
...
------ Shared Memory Segments ------
key		 shmid	owner		 perms	bytes	nattch	 status
0x0052e2c1	0	 postgres	 600	 56	 6

ipcrm -m 0

When POSIX-style semaphores, mutexes, and shared memory segments are used,
SELinux controls those operations through the file-based access controls. The POSIX-style
approach uses regular files in /dev/shm, which is simpler for administrators to control
and manage.

Communicating locally through pipes
A second large family of communication methods in operating systems is the use of
pipes. As the name implies, pipes are generally one-way communication tunnels, with
information flowing from one (or more) senders to one receiver (there are exceptions to
this, such as Solaris pipes, which act as bidirectional channels, but those are not supported
on Linux). Another name for a pipe is first-in, first-out (FIFO).

We have two types of pipes in Linux: anonymous pipes (also known as unnamed pipes)
and named pipes. The difference is that a named pipe uses a file in the regular filesystem
as its identification, whereas anonymous pipes are constructed through the applications
with no representation in the regular filesystem.

In both cases, SELinux will see the pipes as files of the fifo_file class. Named pipes
will have their path associated with the regular filesystem and are created using the
mknod or mkfifo commands (or through the mkfifo() function when handled
within applications). Anonymous pipes, however, will be shown as part of the pipefs
filesystem. This is a pseudo filesystem, not accessible to users, but still represented as
a filesystem through Linux's virtual file system (VFS) abstraction.

From an SELinux policy point of view, the FIFO file is the target for which the access
controls apply: two domains that both have the correct set of privileges toward the context
of the FIFO file will be able to communicate with each other.

144 Controlling Network Communications

Administrators can find out which process is communicating over FIFOs with other
processes through tools such as lsof, or by querying the /proc filesystem (as part of the
/proc/<pid>/fd listings). The lsof tool supports the -Z option to show the SELinux
context of the process, and even supports wildcards:

lsof -Z *:postfix_*

In this example, lsof displays information about all processes that use a postfix_*
label.

Conversing over UNIX domain sockets
With pipes supporting one-way communication only, any conversation between two
processes would require two pipes. Also, true client/server-like communication with pipes
is challenging to implement. To accomplish the more advanced communication flows,
processes will use sockets.

Most administrators are aware that TCP and UDP communication occurs over sockets.
Applications can bind to a socket and listen for incoming communications or use the
socket to connect to other, remote services. But even on a single Linux system, sockets
can be used to facilitate the communication flows. There are two socket types that can
be used for process communication: UNIX domain sockets and netlink sockets. Netlink
sockets are specific to the Linux operating system and are quite low-level, resembling the
ioctl() system call usage. UNIX domain sockets, on the other hand, are higher-level
and more directly accessible by administrators, which is why we explain them here in
more detail.

We can distinguish between two UNIX domain socket definitions, as with pipes: unnamed
sockets and named sockets. And like pipes, the distinction is in the path used to identify
a socket. Named sockets are created on the regular filesystem, while unnamed sockets are
part of the sockfs pseudo filesystem. Similarly, sockets can be queried through utilities
such as lsof or through the /proc/<pid>/fd listings.

There is another distinction regarding UNIX domain sockets though, namely, the
communication format that the UNIX domain socket allows. UNIX domain sockets can
be created as datagram sockets (data sent to the socket retains its chunk size and format)
or streaming sockets (data sent to the socket can be read in different-sized chunks). This
has some repercussions for the SELinux policy rules.

For SELinux, communicating over UNIX domain sockets requires both domains to
have the proper communication privileges toward the socket file type (open, read, and
write), depending on the direction of the communication.

Controlling process communications 145

Additionally, the sending (client) domain requires additional privileges toward the
receiving (server) domain:

•	 The connectto privilege in the unix_stream_socket class in the case of
stream sockets

•	 The sendto privilege in the unix_dgram_socket class in the case of datagram
sockets

As you can see, the privileges depend on the communication type used across the socket.

Understanding netlink sockets
Another socket type that can be used for process communication is netlink. Netlink
sockets are sockets that allow user space applications to communicate and interact with
kernel processes, and, in special cases (where network management is delegated to a user
space process by the Linux kernel), also communicate with another user space application.
Unlike the regular UNIX domain sockets, whose target context associates with the owner
of that socket, netlink sockets are always local to the SELinux context.

Put differently, when a domain such as sysadm_t wants to manipulate the kernel's
routing information, it will open and communicate with the kernel through a netlink
route socket, identified through the netlink_route_socket class:

$ sesearch -s sysadm_t -t sysadm_t -c netlink_route_socket -A
allow sysadm_t domain:netlink_route_socket getattr;
allow sysadm_t sysadm_t:netlink_route_socket { append bind ...
};

As applications gain more features, it might be that some of these features are no longer
allowed by the current SELinux policy. Administrators will then need to update the
SELinux policy to allow the netlink communication.

An overview of supported netlink sockets can be devised from the netlink information
on the manual page (man netlink), from which the SELinux classes can easily be
derived. For instance, the NETLINK_XFRM socket is supported through the SELinux
netlink_xfrm_socket class.

Dealing with TCP, UDP, and SCTP sockets
When we go further up the chain, we look at socket communication over the network.
In this case, rather than communicating directly between processes (and thus in Linux
terminology between SELinux domains), the flows are from, and to, TCP, UDP, and
Stream Control Transmission Protocol (SCTP) sockets.

146 Controlling Network Communications

SELinux will assign types to these ports as well, and these types are then the types to
use for socket communication. For SELinux, a client application connecting to the DNS
port (TCP port 53, which receives the dns_port_t type in most SELinux policies)
uses the name_connect permission within the tcp_socket class toward the port
type. The SCTP protocol (with the sctp_socket class) uses the same permission. For
UDP services (and thus the udp_socket class), name_connect is not used. Daemon
applications use the name_bind privileges to bind themselves to their associated port.

Important note
Support for SCTP has only been recently introduced in SELinux, and not all
Linux distributions have updated their policies accordingly. To see whether
SCTP support is active, check the value of the /sys/fs/selinux/
policy_capabilities/extended_socket_class file. A value
of 1 means that the policy has SCTP support included, whereas a value of 0
(or an absent file) means that the system does not yet support SCTP.

Administrators can fine-tune which label to assign to which TCP, UDP, or SCTP port. For
this, the semanage port command can be used. For instance, to list the current port
definitions, you'd use this command:

semanage port -l
SELinux Port Type	 Proto	Port Number
afs3_callback_port_t	 tcp	 7001
...
http_port_t		 tcp	 80, 81, 443, 488, 8008, 8009, ...

In this example, we see that the http_port_t label is assigned to a set of TCP ports.
Web server domains that can bind to http_port_t are, as such, allowed to bind to any
of the mentioned ports.

To allow a daemon, such as an SSH server, to bind to other (or additional) ports, we need
to tell SELinux to map this port to the appropriate label. For instance, to allow the SSH
server to bind to port 10122, we first check whether this port already holds a dedicated
label. This can be accomplished using the sepolicy command:

$ sepolicy network -p 10122
10122: udp unreserved_port_t 1024-32767
10122: tcp unreserved_port_t 1024-32767
10122: sctp unreserved_port_t 1024-32767

Controlling process communications 147

The unreserved_port_t label is not a dedicated one, so we can assign the
ssh_port_t label to it:

semanage port -a -t ssh_port_t -p tcp 10122

Removing a port definition works similarly:

semanage port -d -t ssh_port_t -p tcp 10122

When a specific port type is already assigned, then the utility will give the following error:

semanage port -a -t ssh_port_t -p tcp 80
ValueError: Port tcp/80 already defined

If this is the case and another port cannot be used, then no option exists other than to
modify the SELinux policy.

Listing connection contexts
Many of the tools in an administrator's arsenal can display security context information.
As with the core utilities, most of these tools use the -Z option for this. For instance, to
list the running network-bound services, netstat can be used:

netstat -naptZ | grep ':80'
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 17655/nginx: master
system_u:system_r:httpd_t:s0

Even lsof displays the context when asked to:

lsof -i :80 -Z
COMMAND PID SECURITY-CONTEXT USER FD TYPE DEVICE
SIZE/OFF NODE NAME
nginx 17655 system_u:system_r:httpd_t:s0 root 8u IPv4 31230
0t0 *:http (LISTEN)

Another advanced command for querying connections is the ss command. Just calling
ss will display all the connections of the current system. When adding -Z, it adds the
context information as well.

For instance, the following command queries for listening TCP services:

ss -ltnZ

More advanced queries can be called as well — consult the ss manual page for more
information.

148 Controlling Network Communications

Note
The use of the -Z option to show SELinux context information or consider
SELinux context information in the activity that is requested by the user is
a general but not mandatory practice amongst application developers. It is
recommended to check the manual page of the application to confirm whether,
and how, SELinux is supported by a tool. For instance, to get the ss manual
page, run man ss.

All these interactions are still quite primitive in nature, with the last set (which focuses
on sockets) being more network-related than the others. Once we look into interaction
between systems, we might not have enough control through just the sockets though. To
enable more fine-grained control, we'll look at firewall capabilities and their SECMARK
support next.

Linux firewalling and SECMARK support
The approach with TCP, UDP, and SCTP ports has a few downsides. One of them is
that SELinux has no knowledge of the target host, so cannot reason about its security
properties. This method also offers no way of limiting daemons from binding on any
interface: in a multi-homed situation, we might want to make sure that a daemon only
binds on the interface facing the internal network and not the internet-facing one,
or vice versa.

In the past, SELinux allowed support for this binding issue through the interface and
node labels: a domain could be configured to only bind to one interface and not to any
other, or even on a specific address (referred to as the node). This support had its flaws
though, and has been largely deprecated in favor of SECMARK filtering.

Before explaining SECMARK and how administrators can control it, let's first take a quick
look at Linux's netfilter subsystem, the de facto standard for local firewall capabilities on
Linux systems.

Introducing netfilter
Like LSM, the Linux netfilter subsystem provides hooks in various stages of its
networking stack processing framework, which can then be implemented by one or
more modules. For instance, ip_tables (which uses the iptables command as its
control application) is one of those modules, while ip6_tables and ebtables are
other examples of netfilter modules. Modules implementing a netfilter hook must inform
the netfilter framework of that hook's priority. This enables controllable ordering in the
execution of modules (as multiple calls for the same hook can and will be used together).

Linux firewalling and SECMARK support 149

The ip_tables framework is the one we will be looking at in more detail because
it supports the SECMARK approach. This framework is commonly referred to as just
iptables, which is the name of its control application. We will be using this term for
the remainder of this book.

iptables offers several tables, functionally-oriented classifications for network
processing. The common ones are as follows:

•	 The filter table enables the standard network-filtering capabilities.

•	 The nat table is intended to modify routing-related information from packets,
such as the source and/or destination address.

•	 The mangle table is used to modify most of a packet's fields.

•	 The raw table is enabled when administrators want to opt out certain packets/flows
from the connection-tracking capabilities of netfilter.

•	 The security table is offered to allow administrators to label packets once regular
processing is complete.

Within each table, iptables offers a default set of chains. These default chains specify
where in the processing flow (and thus which hook in the netfilter framework) rules are
to be processed. Each chain has a default policy – the default return value if none of the
rules in a chain match. Within the chain, administrators can add several rules to process
sequentially. When a rule matches, the configured action applies. This action can be
to allow the packet to flow through this hook in the netfilter framework, be denied,
or perform additional processing.

Commonly provided chains (not all chains are offered for all tables) include the following:

•	 The PREROUTING chain, which is the first packet-processing step once a packet
is received

•	 The INPUT chain, which is for processing packets meant for the local system

•	 The FORWARD chain, which is for processing packets meant to be forwarded
to another remote system

•	 The OUTPUT chain, which is for processing packets originating from the local
system

•	 The POSTROUTING chain, which is the last packet-processing step before a packet
is sent

150 Controlling Network Communications

Overly simplified, the implementation of these tables and their chains roughly associates
with the priority of the calls within the netfilter framework. The chains are easily
associated with the hooks provided by the netfilter framework, whereas the table tells
netfilter which chain implementations are to be executed first.

Implementing security markings
With packet labeling, we can use the filtering capabilities of iptables (and
ip6tables) to assign labels to packets and connections. The idea is that the local
firewall tags packets and connections and then the kernel uses SELinux to grant (or deny)
application domains the right to use those tagged packets and connections.

This packet labeling is known as SECurity MARKings (SECMARK). Although we use the
term SECMARK, the framework consists of two markings: one for packets (SECMARK)
and one for connections, that is, CONNection MARKings (CONNMARK). The
SECMARK capabilities are offered through two tables, mangle and security. Only
these tables currently have the action of tagging packets and connections available in their
rule set:

•	 The mangle table has a higher execution priority than most other tables.
Implementing SECMARK rules on this level is generally done when all packets
need to be labeled, even when many of these packets will eventually be dropped.

•	 The security table is next in execution priority after the filter table. This
allows the regular firewall rules to be executed first, and only tag those packets
allowed by the regular firewall. Using the security table allows the filter table
to implement the discretionary access control rules first and have SELinux execute
its mandatory access control logic only if the DAC rules are executed successfully.

Once a SECMARK action triggers, it will assign a packet type to the packet or
communication. SELinux policy rules will then validate whether a domain is allowed
to receive (recv) or send packets of a given type. For instance, the Firefox application
(running in the mozilla_t domain) will be allowed to send and receive HTTP client
packets:

allow mozilla_t http_client_packet_t : packet { send recv };

Another supported permission set for SECMARK-related packets is forward_in and
forward_out. These permissions are checked when using forwarding in netfilter.

Linux firewalling and SECMARK support 151

One important thing to be aware of is that once a SECMARK action is defined, then all the
packets that eventually reach the operating system's applications will have a label associated
with them — even if no SECMARK rule exists for the packet or connection that the kernel
is inspecting. If that occurs, then the kernel applies the default unlabeled_t label. The
default SELinux policy implemented in some distributions (such as CentOS) allows all
domains to send and receive unlabeled_t packets, but this is not true for all Linux
distributions.

Assigning labels to packets
When no SECMARK-related rules are loaded in the netfilter subsystem, then SECMARK
is not enabled and none of the SELinux rules related to SECMARK permissions are
checked. The network packets are not labeled, so no enforcement can be applied to them.
Of course, the regular socket-related access controls still apply — SECMARK is just an
additional control measure.

Once a single SECMARK rule is active, SELinux starts enforcing the packet-label
mechanism on all packets. This means that all the network packets now need a label on
them (as SELinux can only deal with labeled resources). The default label (the initial
security context) for packets is unlabeled_t, which means that no marking rule
matches this network packet.

Because SECMARK rules are now enforced, SELinux checks all domains that interact
with network packets to see whether they are authorized to send or receive these packets.
To simplify management, some distributions enable send and receive rights against the
unlabeled_t packets for all domains. Without these rules, all network services would
stop functioning properly the moment a single SECMARK rule becomes active.

To assign a label to a packet, we need to define a set of rules that match a particular
network flow, and then call the SECMARK logic (to tag the packet or communication
with a label). Most rules will immediately match the ACCEPT target as well, to allow this
particular communication to reach the system.

Let's implement two rules:

•	 The first is to allow communication toward websites (port 80) and tag the related
network packets with the http_client_packet_t type (so that web browsers
are allowed to send and receive these packets).

•	 The second is to allow communication toward the locally running web server (port
80 as well) and tag its related network packets with the http_server_packet_t
type (so that web servers are allowed to send and receive these packets).

152 Controlling Network Communications

For each rule set, we also enable connection tracking so that related packets are
automatically labeled correctly and passed.

Use the following commands for the web server traffic:

iptables -t filter -A INPUT -m conntrack --ctstate
ESTABLISHED,RELATED -j ACCEPT

iptables -t filter -A INPUT -p tcp -d 192.168.100.15 --dport
80 -j ACCEPT

iptables -t security -A INPUT -p tcp --dport 80 -j SECMARK
--selctx "system_u:object_r:http_server_packet_t:s0"

iptables -t security -A INPUT -p tcp --dport 80 -j
CONNSECMARK --save

Use these commands for the browser traffic:

iptables -t filter -A OUTPUT -m conntrack --ctstate
ESTABLISHED -j ACCEPT

iptables -t filter -A OUTPUT -p tcp --dport 80 -j ACCEPT

iptables -t security -A OUTPUT -p tcp --dport 80 -j SECMARK
--selctx "system_u:object_r:http_client_packet_t:s0"

iptables -t security -A OUTPUT -p tcp --dport 80 -j
CONNSECMARK --save

Finally, to copy connection labels to the established and related packets, use the following
commands:

iptables -t security -A INPUT -m state --state
ESTABLISHED,RELATED -j CONNSECMARK --restore

iptables -t security -A OUTPUT -m state --state
ESTABLISHED,RELATED -j CONNSECMARK --restore

Even this simple example shows that firewall rule definitions are an art by themselves,
and that the SECMARK labeling is just a small part of it. However, using the SECMARK
rules makes it possible to allow certain traffic while still ensuring that only well-defined
domains can interact with that traffic. For instance, it can be implemented on kiosk
systems to only allow one browser to communicate with the internet while all other
browsers and commands aren't. Tag all browsing-related traffic with a specific label, and
only allow that browser domain the send and recv permissions on that label.

Linux firewalling and SECMARK support 153

Transitioning to nftables
While iptables is still one of the most widely used firewall technologies on Linux, two
other contenders (nftables and bpfilter) are rising rapidly in terms of popularity.
The first of these, nftables, has a few operational benefits over iptables, while
retaining focus on the netfilter support in the Linux kernel:

•	 The code base for nftables and its Linux kernel support is much more
streamlined.

•	 Error reporting is much better.

•	 Filtering rules can be incrementally changed rather than requiring a full reload
of all rules.

The nftables framework has recently received support for SECMARK, so let's see how
to apply the http_server_packet_t and http_client_packet_t labels to the
appropriate traffic.

The most common approach for applying somewhat larger nftables rules is to use
a configuration file with the nft interpreter set:

#!/usr/sbin/nft -f
flush ruleset
table inet filter {
 secmark http_server {
 "system_u:object_r:http_server_packet_t:s0"
 }
 secmark http_client {
 "system_u:object_r:http_client_packet_t:s0"
 }
 map secmapping_in {
 type inet_service : secmark
 elements = { 80 : "http_server" }
 }
 map secmapping_out {
 type inet_service : secmark
 elements = { 80 : "http_client" }
 }
 chain input {
 type filter hook input priority 0;
 ct state new meta secmark set tcp dport map @secmapping_in
 ct state new ct secmark set meta secmark
 ct state established,related meta secmark set ct secmark
 }
 chain output {

154 Controlling Network Communications

 type filter hook output priority 0;
 ct state new meta secmark set tcp dport map @secmapping_out
 ct state new ct secmark set meta secmark
 ct state established,related meta secmark set ct secmark
 }
}

The syntax that nftables uses is recognizable when we compare it with iptables. The
script starts with defining the SECMARK values. After that, we create a mapping between
a port (80 in the example) and the value used for the SECMARK support. Of course,
already established sessions also receive the appropriate SECMARK labeling.

If we define multiple entries, the elements variable uses commas to separate the various
values:

elements = { 53 : "dns_client" , 80 : "http_client" , 443 :
"http_client" }

Next to nftables. A second firewall solution that is gaining traction is eBPF, which
we cover next.

Assessing eBPF
eBPF (and the bpfilter command) is completely different in nature compared to
iptables and nftables, so let's first see how eBPF functions before we cover the
SELinux support details for it.

Understanding how eBPF works
The extended Berkeley Packet Filter (eBPF) is a framework that uses an in-kernel
virtual machine that interprets and executes eBPF code, rather low-level instructions
comparable to processor instruction set operations. Because of its very low-level, yet
processor-agnostic language, it can be used to create very fast, highly optimized rules.

BPF was originally used for analyzing and filtering network traffic (for example, within
tcpdump). Because of its high efficiency, it was soon found in other tools as well, growing
beyond the plain network filtering and analysis capabilities. As BPF expanded toward
other use cases, it became extended BPF, or eBPF.

The eBPF framework in the Linux kernel has been successfully used for performance
monitoring, where eBPF applications hook into runtime processes and kernel subsystems
to measure performance and feed back the metrics to user-space applications. It, of
course, also supports filtering on (network) sockets, cgroups, process scheduling, and
many more — and the list is growing rapidly.

Linux firewalling and SECMARK support 155

As with the LSM framework, which uses hooks into the system calls and other
security-sensitive operations in the Linux kernel, eBPF hooks into the Linux kernel as
well. Occasionally it can use existing hooks (as with the Linux kernel probes or kprobes
framework) and thus benefit from the stability of these interfaces. We can thus expect
eBPF to grow its support further in other areas of the Linux kernel as well.

eBPF applications (eBPF programs) are defined in user space, and then submitted to
the Linux kernel. The kernel verifies the security and consistency of the code to ensure
that the virtual machine will not attempt to break out of the boundaries it works in.
If approved (possibly after the code is slightly altered, as the Linux kernel has some
operations that modify eBPF code to suit the environment or security rules), the eBPF
program runs in the Linux kernel (within its virtual machine) and executes its purpose.

Note
The Linux kernel can compile the eBPF instructions into native, processor-
specific instructions, rather than having the virtual machine interpret them.
However, as this leads to a higher security risk, this Just-In-Time (JIT) eBPF
support is sometimes disabled by Linux distributions in their Linux kernels. It
can be enabled by setting /proc/sys/net/core/bpf_jit_enable
to 1.

These programs can load and save information in memory, called maps. These eBPF maps
can be read or written to by user-space applications, and thus offer the main interface to
interact with running eBPF programs. These maps are accessed through file descriptors,
allowing processes to pass along and clone these file descriptors as needed.

Various products and projects are using eBPF to create high-performance network
capabilities, such as software-defined network configurations, DDoS mitigation rules, load
balancers, and more. Unlike the netfilter-based firewalls, which rely on a massive code
base within the kernel tuned through configuration, eBPF programs are built specifically
for their purpose and nothing more, and only that code is actively running.

Securing eBPF programs and maps
The default security measures in place for eBPF programs and maps are very limited,
partly because lots of trust is put in the Linux kernel verifier (which verifies the eBPF code
before it passes the code on to the virtual machine), and partly because the eBPF code was
only allowed to be loaded when the process involved has the CAP_SYS_ADMIN capability.
And as this capability basically means full system access, additional security controls were
not deemed necessary.

156 Controlling Network Communications

Since Linux kernel 4.4, some types of eBPF programs (such as socket filtering) can be
loaded even by unprivileged processes (but, of course, only toward the sockets these
processes have access to). The system allows loading programs to work on cgroups socket
buffers (skb) if the process has the CAP_NET_ADMIN capability. Recently, the permission
to load eBPF programs has been added to the CAP_BPF and CAP_TRACING capabilities,
although not all Linux distributions offer a Linux kernel that supports these capabilities
already. But Linux administrators that want more fine-grained control over eBPF can use
SELinux to tune and tweak eBPF handling.

SELinux has a bpf class, which governs the basic eBPF operations: prog_load,
prog_run, map_create, map_read, and map_write. Whenever a process creates
a program or map, this program or map inherits the SELinux label of this process. If the
file descriptors regarding these maps or programs are leaked, the malicious application
still requires the necessary privileges toward this label before it can exploit it.

User-space operations can interact with the eBPF framework through the /sys/fs/bpf
virtual filesystem, so some Linux distributions associate a specific SELinux label (bpf_t)
with this location as well. This allows administrators to manage access through SELinux
policy rules in relation to this type.

While eBPF is extremely extensible, the number of simplified frameworks surrounding
it is small given its very early phase. We can, however, expect that more elaborate support
will come soon, as a new tool called bpfilter is showing off the capabilities of
eBPF-based firewalling on Linux systems.

Filtering traffic with bpfilter
The bpfilter application is an application that builds a new eBPF program to filter and
process traffic. It allows administrators to build firewall capabilities without understanding
the low-level eBPF instructions, and has recently started supporting iptables:
administrators create rules with iptables, and bpfilter translates and converts these
into eBPF programs.

Important note
While bpfilter is part of the Linux kernel tree, it should be considered a
proof-of-value currently, rather than a production-ready firewall capability.

bpfilter creates eBPF programs that hook inside the Linux kernel between the network
device driver and the TCP/IP stack in a layer called the eXpress Data Path (XDP). At this
level, the eBPF programs have access to the full network packet information (including
link layer protocols such as Ethernet).

Securing high-speed InfiniBand networks 157

To use bpfilter, the Linux kernel needs to be built with the appropriate settings,
including CONFIG_BPFILTER and CONFIG_BPFILTER_UMH. The latter is the
bpfilter user mode helper that will capture iptables-generated firewall rules, and
translate those into eBPF applications.

Before we load the bpfilter user mode helper, we need to allow execmem permission
in SELinux:

setsebool allow_execmem on

Next, load the bpfilter module, which will have the user mode helper active on the
system:

modprobe bpfilter
dmesg | tail
...
bpfilter: Loaded bpfilter_umh pid 2109

Now, load the iptables firewall using the commands listed previously. The instructions
are translated into eBPF programs, as shown with bpftool:

bpftool p
1: xdp tag 8ec94a061de28c09 dev ens3
 loaded_at Apr 25/23:19 uid:0
 xlated 533B jited 943B memlock 4096B

The eBPF code itself can be displayed as well, but is hardly readable at this point for
administrators.

All of the aforementioned firewall capabilities interact with the TCP/IP stack supported
within the Linux kernel. There are, however, networks that do not rely on TCP/IP, such as
InfiniBand. Luckily, even on those more specialized network environments, SELinux can
be used to control communication flows.

Securing high-speed InfiniBand networks
The InfiniBand standard is a relatively recent (in network history) technology that
enables very high throughput and very low latency. It accomplishes this by having a very
low overhead on the network layer (protocol) and direct access from user applications to
the network level. This direct access also has implications for SELinux, as the Linux kernel
is no longer actively involved in the transport of data across an InfiniBand link.

Let's first look at what InfiniBand looks like, after which we can see how to still apply
SELinux controls to its communication flows.

158 Controlling Network Communications

Directly accessing memory
One of the main premises of InfiniBand is to allow user applications to have direct
access to the network. By itself, InfiniBand is a popular Remote Direct Memory Access
(RDMA) implementation, which has received significant support from vendors. We find
RDMA actively used in high-performance clusters.

Because of the direct access, controls are only possible while setting up the access
approach. Without SELinux, all that is needed to set up and manage InfiniBand
communications is to have access to the device file itself. If a process can write to the
InfiniBand device, then it can use InfiniBand. By default, these devices are only accessible
by the root user.

The InfiniBand devices are the network cards or Host Channel Adapters (HCA) and
can have multiple ports. An InfiniBand port is the link or interface that connects to an
InfiniBand subnet. The subnet is the high-speed network on which multiple machines
(ports) are connected. As with regular networks, InfiniBand switches are used to facilitate
communication across a subnet, and routers can be used to connect different subnets with
each other.

An InfiniBand subnet is managed by a Subnet Manager (SM). This is a process
that coordinates the management of the different ports within the subnet, as well as
the partitions. Partitions in InfiniBand are a way to differentiate between different
communications within a subnet, like Virtual Local Area Networks (VLANs) in more
regular networks. With partitioned communication, it is the subnet manager that tells
which ports can be used for which partitions of the communication.

Protecting InfiniBand networks
Unlike regular networks, where firewalls and switch-level access controls are the norm
for preventing unauthorized access, InfiniBand has few protection measures in place.
InfiniBand largely assumes that the network is within a trusted environment. However,
that does not exclude us from applying more rigid controls over which process can access
the InfiniBand network in SELinux.

As the communication flow itself is directly mapped in-memory toward the devices, the
Linux kernel does not have any hooks available to do packet-level controls like it can with
regular TCP/UDP traffic (using the SECMARK capabilities), or even session-level controls
with sockets. Instead, SELinux focuses on two main controls, as visualized in the following
diagram:

Securing high-speed InfiniBand networks 159

Figure 5.1 – SELinux InfiniBand controls

These two main controls are as follows:

•	 Controlling who can manage the InfiniBand subnet

•	 Controlling who can access an InfiniBand partition

To properly govern these controls, the semanage application assigns the right type to the
appropriate InfiniBand resource. However, not all SELinux policies already contain the
appropriate types, so we need to add those in as well.

Managing the InfiniBand subnet
Let's start with managing the InfiniBand network. With InfiniBand on Linux, this is
most often accomplished using the opensm application. Many InfiniBand adapters have
multiple ports, allowing a server to participate in multiple InfiniBand subnets. With
SELinux, we can control which domain can manage a subnet by controlling access to the
InfiniBand port on a device.

First, we need to assign a label to the InfiniBand port associated with a subnet. To
accomplish that, we first need to obtain the right InfiniBand device, create the appropriate
label (type), and then assign it to the port.

160 Controlling Network Communications

Let's start by querying the available InfiniBand-capable devices on the system using ibv_
devinfo:

ibv_devinfo
hca_id: rxe0
 transport:	 InfiniBand (0)
 fw_ver:		 0.0.0
 ...
 phys_port_cnt:
 port:	 1
		 state:	 PORT_ACTIVE (4)
		 ...

Next, we create a type (label) to assign to the port. This type is only used to validate the
access from the opensm application to this port. We use the CIL language for this
(which we will elaborate upon in Chapter 16, Developing Policies with SELinux CIL).
Create a file with the following content (let's call it infiniband_subnet.cil):

(typeattribute ibendport_type)
(type local_ibendport_t)
(typeattributeset ibendport_type local_ibendport_t)
(allow opensm_t local_ibendport_t (infiniband_endport (manage_
subnet)))

In the previous code, we enhance the SELinux policy with a new type called local_
ibendport_t, assign it the ibendport_type attribute, and then grant the opensm_t
domain the manage_subnet privilege within the infiniband_endport class.

Let's load this policy enhancement:

semodule -i infiniband_subnet.cil

Finally, we assign this newly created type to the InfiniBand port:

semanage ibendport -a -t local_ibendport_t -z rxe0 1

This command assigns the local_ibendport_t type to port number 1 of the rxe0
device (as obtained from ibv_devinfo). Once this mapping is in place, we can query
it using semanage as well:

semanage ibendport -l
SELinux IB End Port Type	 IB Device Name	 Port Number
local_ibendport_t		 rxe0			 0x1

Without any mappings, the command does not display any output.

Securing high-speed InfiniBand networks 161

Important note
Currently, most Linux distributions have not incorporated InfiniBand support
within the SELinux policy, requiring us to create our own custom labels. We
can expect that distributions will add in default types for InfiniBand resources,
and that SELinux support for InfiniBand will be extended with sane defaults.

If we use InfiniBand on an SELinux-enabled system without any port mappings, the
initial security context for unlabeled classes will be used as the label for this port, namely,
unlabeled_t. It is, however, not recommended to stick to this label, as it is more widely
used for unlabeled resources. Granting any privilege to the unlabeled_t type should be
limited to highly privileged processes, and its use should be carefully considered to ensure
that logging interpretation and SELinux policy rules vis-à-vis InfiniBand resources are
clear (through well-documented types).

Controlling access to InfiniBand partitions
While the previous section focused on allowing the management application opensm to
manage a subnet, this section will focus on restricting access to the InfiniBand network to
the right domains. As mentioned before, an InfiniBand subnet can be divided further into
separate networks using InfiniBand partitions.

Originally, these partitions are used to allow Quality of Service (QoS) or specific
bandwidth and performance requirements on flows. The SM defines the partitions and
its attributes, and applications use a Partition Key (P_Key) to inform the InfiniBand
network as regards to which partition certain communications must be done.

SELinux can govern these partitions by creating a mapping between the InfiniBand subnet
plus P_Key and an SELinux type. However, as with the subnet management, we need to
find the appropriate details first and create an appropriate SELinux type before we can
define the mapping.

Let's start by figuring out the subnet and partition details. Both are managed by opensm.
If you do not have access to the opensm configuration, then you need to ascertain these
details from the (InfiniBand) network administrator.

Within the opensm partition configuration (/etc/rdma/partitions.conf), the
subnet and prefix can be found as follows:

grep '=0x' /etc/rdma/partitions.conf
Default=0x7fff, rate=3, mtu=4, scope=2, defmember=full;
Default=0x7fff, ipoib, rate=3, mtu=4, scope=2;
rxe0_1=0x0610, rate=7, mtu=4, scope=2, defmember=full;
rxe0_1=0x0610, ipoib, rate=7, mtu=4, scope=2;

162 Controlling Network Communications

In this example, two partitions are defined. The first one is the default partition, which
needs to remain (0x7fff). The second partition with key 0x0610 is active on the rxe0
device and port 1. It is this second partition that we will protect with SELinux.

Let's create a new type to assign to this partition. We use the CIL format again to define
the policy enhancement, and store these rules in a file called infiniband_pkey.cil:

(typeattribute ibpkey_type)
(type local_ibpkey_t)
(typeattributeset ibpkey_type local_ibpkey_t)
(allow unconfined_t local_ibpkey_t (infiniband_pkey (access)))

Within this example, we've created the local_ibpkey_t type, assigned it to the
ibpkey_type attribute, and granted unconfined_t access privilege within the
infiniband_pkey class.

Let's load the policy:

semodule -i infiniband_pkey.cil

We can now create an appropriate mapping to this partition, and limit it to the ff12::
subnet prefix:

semanage ibpkey -a -t local_ibpkey_t -x ff12:: 0x0610

semanage ibpkey -l
SELinux IB PKey Type	 Subnet_Prefix	 Pkey Number
local_ibpkey_t		 ff12::		 0x610

While we can create separate types for each partition, we can also use an SELinux range to
use SELinux category support:

semanage ibpkey -a -t local_ibpkey_t -r s0-s0:c0.c4 -x ff12::
0x0610

With categories, we can grant access based on the source domain category, something
we benefit from with other network protection measures such as labeled networking,
which we tackle next.

Understanding labeled networking 163

Understanding labeled networking
Another approach to further fine-tune access controls on the network level is to introduce
labeled networking. With labeled networking, security information passes on between
hosts (unlike SECMARK, which only starts when the netfilter subsystem receives the
packet, and whose marking never leaves the host). This is also known as peer labeling, as
the security information passes on between hosts (peers).

The advantage of labeled networking is that security information remains across the
network, allowing end-to-end enforcement on mandatory access-control settings between
systems as well as retaining the sensitivity level of communication flows between systems.
The major downside, however, is that this requires an additional network technology
(protocol) that can manage labels on network packets or flows.

SELinux currently supports two implementations as part of the labeled networking
approach: NetLabel and labeled IPsec. With NetLabel, two implementations exist: fallback
labeling and CIPSO. In both cases, only the sensitivity of the source domain is retained
across the communication. Labeled IPsec supports transporting the entire security context
with it.

Note
NetLabel actually supports loopback-enabled, full-label support. In that
case, the full label (and not only the sensitivity and categories) is passed on.
However, this only works for communications that go through the loopback
interface and, as such, do not leave the current host.

Quite some time ago, support for NetLabel/CIPSO and labeled IPsec merged into
a common framework, which introduces three additional privilege checks in SELinux:
interface checking, node checking, and peer checking. These privilege checks are only
active when labeled traffic is used; without labeled traffic, these checks are simply ignored.

Fallback labeling with NetLabel
The NetLabel project supports fallback labeling, where administrators can assign labels to
traffic from or to network locations that don't use labeled networking. By using fallback
labeling, the peer controls mentioned in the next few sections can be applied even without
labeled IPsec or NetLabel/CIPSO being in place.

The netlabelctl command controls the NetLabel configurations. Let's create a fallback
label assignment for all traffic originating from the 192.168.100.1 address:

netlabelctl unlbl add interface:eth0 address:192.168.100.1
label:system_u:object_r:netlabel_peer_t:s0

164 Controlling Network Communications

To list the current definitions, use the following command:

netlabelctl -p unlbl list
Accept unlabeled packets : on
Configured NetLabel address mappings (1)
 interface: eth0
 address: 192.168.100.1/32
 label: "system_u:object_r:netlabel_peer_t:s0"

With this rule in place, labeled networking is active. Any traffic originating from the
192.168.100.1 address will be labeled with the netlabel_peer_t:s0 label, while
all other traffic will be labeled with the (default) unlabeled_t:s0 label. Of course,
the SELinux policy must allow all domains to have the recv permission from either the
unlabeled_t peers or the netlabel_peer_t peers.

Fallback labeling is useful for supporting a mix of labeled networking environments and
non-labeled networks, which is why we list it here before documenting the various labeled
networking technologies.

Limiting flows based on the network interface
The idea involving interface checking is that each packet that comes into a system passes
an ingress check on an interface, whereas a packet that goes out of a system passes an
egress check. ingress and egress are the SELinux permissions involved, whereas
interfaces are given a security context.

Interface labels can be granted using the semanage tool and are especially useful for
assigning sensitivity levels to interfaces in case of MLS, although assigning different labels
to the interface is also possible (but requires more adjustments to the running SELinux
policy to return with a working system):

semanage interface -a -t netif_t -r s1-s1:c0.c128 eth0

Like the other semanage commands, we can view the current mappings as follows:

semanage interface -l
SELinux Interface	 Context
eth0				 system_u:object_r:netif_t:s1-s1:c0.c128

Keep in mind that for inbound communications, the acting domain is the peer. With
labeled IPsec, this would be the client domain initiating the connection, whereas in
NetLabel/CIPSO, this is the associated peer label (such as netlabel_peer_t).

Understanding labeled networking 165

By default, the interface is labeled with netif_t and without sensitivity constraints. This
will, however, not be shown in the semanage interface -l output as its default
output is empty.

Accepting peer communication from selected hosts
SELinux nodes represent specific hosts (or a network of hosts) that data is sent to
(sendto) or received from (recvfrom) and are handled through the SELinux node
class. Just like interfaces, these can be listed and defined by the semanage tool. In the
following example, we mark the 10.0.0.0/8 network with the node_t type and
associate a set of categories with it:

semanage node -a -t node_t -p ipv4 -M 255.255.255.255 -r
s0-s0:c0.c128 192.168.100.1

Again, we can list the current definitions, too:

semanage node -l

Like the network interface flow, the acting domain for incoming communications is the
peer label.

By default, nodes are labeled with node_t and without category constraints. This will,
however, not be shown in the semanage node -l output as its default output is empty.

Verifying peer-to-peer flow
The final check is a peer class check. For labeled IPsec, this is the label of the socket
sending out the data (such as mozilla_t). For NetLabel/CIPSO, however, the peer
will be static, based on the source, as CIPSO is only able to pass on sensitivity levels.
A common label seen for NetLabel is netlabel_peer_t.

Unlike the interface and node checks, peer checks have the peer domain as the target
rather than the source.

Important note
In all the labeled networking use cases, the process listed in a denial has
nothing to do with the denial shown in the audit logs. This is because the denial
triggers from within a kernel subsystem rather than through a call made by a
user process. As a result, the kernel interrupts an unrelated process to prepare
and log the denial, and this process name is used in the denial event.

166 Controlling Network Communications

To finish up, look at the following diagram, which provides an overview of these various
controls and the level to which they apply:

Figure 5.2 – Schematic overview of the various network-related SELinux controls

The top-level controls are handled on the domain level (such as httpd_t), whereas the
bottom-level controls are on the peer level (such as netlabel_peer_t).

Using old-style controls
Most Linux distributions enable the network_peer_control capability. This is an
enhancement within the SELinux subsystem that uses the previously mentioned peer class
for verifying peer-to-peer flow.

However, SELinux policies can opt to return to the previous approach, where
peer-to-peer flow is no longer controlled over the peer class, but uses the tcp_socket
class for communication. In that case, the tcp_socket class will be used against the
peer domain, and it will also use the recvfrom permission (on top of the existing tcp_
socket permissions).

The current value of the network_peer_control capability can be queried through
the SELinux filesystem:

cat /sys/fs/selinux/policy_capabilities/network_peer_controls
1

Using labeled IPsec with SELinux 167

If the value is 0, then the previously mentioned peer controls will be handled through the
tcp_socket class instead of the peer class.

The default labeled networking controls within SELinux do not pass on any process
context, and the use of fallback labeling with NetLabel is most commonly used in
environments where the system participates in both labeled as well as unlabeled
networks. However, there is a much more common networking implementation that not
only supports labeled networking, but even passes on the domain context and does not
require specialized environments: labeled IPsec.

Using labeled IPsec with SELinux
Although setting up and maintaining an IPsec setup is far beyond the scope of this book,
let's look at a simple IPsec example to show how to enable labeled IPsec on a system.
Remember that the labeled network controls on the interface, node, and peer levels, as
mentioned earlier, are automatically enabled the moment we use labeled IPsec.

In an IPsec setup, there are three important concepts to be aware of:

•	 The security policy database (SPD) contains the rules and information for the
kernel to know when communication should be handled by an IP policy (and, as
a result, handled through a security association).

•	 A security association (SA) is a one-way channel between two hosts and contains
all the security information about the channel. When labeled IPsec is in use, it also
contains the context information of the client that caused the security association to
materialize.

•	 The security association database (SAD) contains the individual security
associations.

Security associations with a labeled IPsec setup are no longer purely indexed by the source
and target address, but also the source context. As such, a Linux system that participates
in a labeled IPsec setup will easily have several dozen SAs for a single communication flow
between hosts, as each SA now also represents a client domain.

168 Controlling Network Communications

Labeled IPsec introduces a few additional access controls through SELinux:

•	 Individual entries in the SPD are given a context. Domains that want to obtain an
SA need to have the polmatch privilege (part of the association class) against
this context. Also, domains that initiate an SA need to have the setcontext
privilege (also part of the association class) against the target domain.

•	 Only authorized domains can make modifications to the SPD, which is also
governed through the setcontext privilege, but now also against the SPD context
entries. This privilege is generally granted to IPsec tools, such as Libreswan's pluto
(ipsec_t).

•	 Domains that participate in IPsec communication must have the sendto privilege
with their own association and the recvfrom privilege with the association of
the peer domain. The receiving domain also requires the recv privilege from the
peer class associated with the peer domain.

So while labeled IPsec cannot govern whether mozilla_t can communicate with
httpd_t (as mozilla_t only needs to be able to send to its own association), it can
control whether httpd_t allows or denies incoming communication from mozilla_t
(as it requires the recvfrom privilege on the mozilla_t association). The following
diagram displays this complex game of privileges:

Figure 5.3 – Example SELinux controls for labeled IPsec

In the next example, we will set up a simple IPsec tunnel between two hosts using the
Libreswan tool.

Using labeled IPsec with SELinux 169

Setting up regular IPsec
Configuring Libreswan is a matter of configuring Libreswan's main configuration
file (ipsec.conf). Most distributions will use an include directory (such as
/etc/ipsec.d) where admins or applications can place connection-specific settings.
Generally, this include directory is used for the actual IPsec configurations, whereas the
general ipsec.conf file is for Libreswan behavior.

To create a host-to-host connection, we first define a shared secret on both hosts. Let's call
the connection rem1-rem2 (as those are the hostnames used for the two hosts), so the
shared secret will be stored as /etc/ipsec.d/rem1-rem2.secrets:

192.168.100.4 192.168.100.5 : PSK "somesharedkey"

Next, we define the VPN connection in /etc/ipsec.d/rem1-rem2.conf as follows:

conn rem1-rem2
	 left=192.168.100.4
	 right=192.168.100.5
	 auto=start
	 authby=secret
	 #labeled-ipsec=yes
	 #policy-label=system_u:object_r:ipsec_spd_t:s0

The settings that enable labeled IPsec are commented out for now to first test the IPsec
connection without this feature.

Launch the IPsec service on both systems:

systemctl start ipsec

Verify whether the connection works, for instance, by checking the network traffic with
tcpdump, or by checking the state with ip xfrm state.

Enabling labeled IPsec
To use labeled IPsec with Libreswan, uncomment the labeled-ipsec and policy-
label directives in the /etc/ipsec.d/rem1-rem2.conf IPsec definition. Restart
the ipsec service, and try the connection again.

170 Controlling Network Communications

When an application tries to communicate over IPsec with remote domains, pluto
(or any other Internet Key Exchange version 2 (IKEv2) client that supports labeled
IPsec) will exchange the necessary information (including context) with the other side.
Both sides will then update the SPD with the necessary SAs and associate the same
security policy information (SPI) with it. From that point onward, the sending side will
add the agreed-upon SPI information to the IPsec packets so that the remote side can
immediately associate the right context with it again.

The huge advantage here is that the client and server contexts, including sensitivity and
categories, are synchronized (they are not actually sent over the wire with each packet, but
exchanged initially when the security associations are set up).

In certain specialized or highly secure environments, labeled networking is supported
within the network itself. The most common labeling technology used is CIPSO, whose
SELinux support we cover next.

Supporting CIPSO with NetLabel and SELinux
NetLabel/CIPSO labels and transmits sensitivities across the network. Unlike labeled
IPsec, no other context information is sent or synchronized. So, when we consider the
communication flows between two points, they will have a default, common SELinux type
(rather than the SELinux type associated with the source or target) but will have sensitivity
labels based on the sensitivity label of the remote side.

Part of NetLabel's configuration are mapping definitions that inform the system which
communication flows (from selected interfaces, or even from configured IP addresses)
are for a certain Domain of Interpretation (DOI). The CIPSO standard defines the DOI
as a collection of systems that interpret the CIPSO label similarly, or, in our case, use the
same SELinux policy and configuration of sensitivity labels.

Once these mappings have been established, NetLabel/CIPSO will pass on the
sensitivity information (and categories) between hosts. The context we will see on
the communication flows will be netlabel_peer_t, a default context assigned to
NetLabel/CIPSO-originated traffic.

Through this approach, we can start daemons with a sensitivity range and thus only accept
connections from users or clients that have the right security clearance, even on remote,
NetLabel/CIPSO-enabled systems.

Supporting CIPSO with NetLabel and SELinux 171

Configuring CIPSO mappings
A preliminary requirement for having a good CIPSO-enabled network is to have
a common understanding of which DOI will be used and what its consequences are.
Labeled networks can use different DOIs for specific purposes.

Along with the DOI, we also need to take care of how the categories and sensitivities are
passed on over the CIPSO-enabled network. The CIPSO tag controls this setting, and
NetLabel supports this with the following three values:

•	 With tags:1, the categories are provided in the CIPSO package in a bitmap
approach. This is the most common approach, but limits the number of supported
categories to 240 (from 0 to 239).

•	 With tags:2, the categories are enumerated separately. This allows a wider range
of categories (up to 65,543), but only supports at most 15 enumerated categories.
Try to use tags:2 when you have many categories but for each scope, only a few
categories need to be supported.

•	 With tags:5, the categories can be mentioned in a ranged approach (lowest and
highest), with at most seven such low/high pairs.

Note that the CIPSO tag results are handled under the hood: system administrators only
need to configure the NetLabel mapping to use a selected tag value.

Let's assume that we have two CIPSO-enabled networks, which have 10.1.0.0/16
associated with doi:1 and 10.2.0.0/16 associated with doi:2. Both use the tag
value 1. First, we enable CIPSO and allow it to pass CIPSO-labeled packages with the DOI
set to either 1 or 2. We don't perform any translations (so the category and sensitivity set
on the CIPSO package is the one used by SELinux):

netlabelctl cipsov4 add pass doi:1 tags:1

netlabelctl cipsov4 add pass doi:2 tags:1

If we need to translate (say that we use sensitivity s0-s3 while the CIPSO network uses
sensitivity 100-103), a command would look like so:

netlabelctl cipsov4 add std doi:1 tags:1
levels:0=100,1=101,2=102

172 Controlling Network Communications

Next, we implement mapping rules, telling the NetLabel configuration which network
traffic is to be associated with doi:1 or doi:2:

netlabelctl map del default

netlabelctl map add default address:10.1.0.0/16
protocol:cipsov4,1

netlabelctl map add default address:10.2.0.0/16
protocol:cipsov4,2

To list the current mappings, use the list option:

netlabelctl map list -p
Configured NetLabel domain mappings (2)
 domain: DEFAULT (IPv4)
 address: 10.1.0.0/16
 protocol: CIPSO, DOI = 1
 domain: DEFAULT (IPv4)
 address: 10.2.0.0/16
 protocol: CIPSO, DOI = 2

That's it. We removed the initial default mapping (as that would prevent the addition of
new default mappings) and then configured NetLabel to tag traffic for the given networks
with the right CIPSO configuration.

Adding domain-specific mappings
NetLabel can also be configured to ensure that given SELinux domains use a well-defined
DOI rather than the default one configured earlier on. For instance, to have the SSH
daemon (running in the sshd_t domain) have its network traffic labeled with CIPSO
doi:3, we'd use this:

netlabelctl cipsov4 add pass doi:3 tags:1

netlabelctl map add domain:sshd_t protocol:cipsov4,3

The mapping rules can even be more selective than that. We can tell NetLabel to
use doi:2 for SSH traffic originating from one network, use doi:3 for SSH traffic
originating from another network, and even use unlabeled network traffic when it comes
from any other network:

netlabelctl map del domain:sshd_t protocol:cipsov4,3

netlabelctl map add domain:sshd_t address:10.1.0.0/16
protocol:cipsov4,1

Supporting CIPSO with NetLabel and SELinux 173

netlabelctl map add domain:sshd_t address:10.4.0.0/16
protocol:cipsov4,3

netlabelctl map add domain:sshd_t address:0.0.0.0/0
protocol:unlbl

The NetLabel framework will try to match the most specific rule first, so 0.0.0.0/0 is only
matched when no other rule matches.

Using local CIPSO definitions
As mentioned before, NetLabel, by default, only passes the sensitivity and categories.
However, when using local (over the loopback interface) CIPSO, it is possible to use
full label controls. When enabled, peer controls will not be applied against the default
netlabel_peer_t type, but will use the client or server domain.

To use local CIPSO definitions, first declare the DOI for local use:

netlabelctl cipsov4 add local doi:5

Next, have the local communication use the defined DOI (5 in our example):

netlabelctl map add default address:127.0.0.1
protocol:cipsov4,5

With this enabled, local communication will be associated with doi:5 and use the local
mapping, passing the full label to the mandatory access control system (SELinux).

Supporting IPv6 CALIPSO
CIPSO is an IPv4 protocol, but a similar framework exists for IPv6, named Common
Architecture Label IPv6 Security Option (CALIPSO). As with CIPSO, CALIPSO is
supported by the NetLabel project. When we need CALIPSO support, the protocol target
is calipso rather than cipsov4.

CALIPSO has a few small differences compared to CIPSO in NetLabel:

•	 Only one tag type is supported (unlike CIPSO's three tag types). As a result,
CALIPSO administrators do not need to specify tags:# anywhere.

•	 CALIPSO only uses pass-through mode. Translations are not supported.

•	 The NetLabel CALIPSO implementation currently does not support local mode,
where the full label would be passed on.

Beyond these differences, the use of CALIPSO is very similar to CIPSO.

174 Controlling Network Communications

Summary
SELinux, by default, uses access controls based on the file representation of
communication primitives or the sockets used. On InfiniBand networks, access controls
are limited to accessing the InfiniBand port and partitions. For TCP, UDP, and SCTP
ports, administrators have some leeway in handling the controls through the semanage
command without resorting to SELinux policy updates. Once we go into the realms
of network-based communication, more advanced communication control can be
accomplished through Linux netfilter support, using SECMARK labeling, and through
peer labeling.

In the case of SECMARK labeling, local firewall rules are used to map contexts to
packets, which are then governed through SELinux policy. With peer labeling, either the
application context itself (labeled IPsec) or its sensitivity level (netfilter/CIPSO) identify
the resources the access controls apply. This allows an almost application-to-application
network flow control through SELinux policies.

We learned that the most common firewall frameworks (iptables and nftables)
support SECMARK already, while the more recent eBPF-based bpfilter application
has yet to receive this support.

In the next chapter, we look at how we can use common infrastructure-as-code
frameworks to address the various SELinux controls in a server environment.

Questions
1.	 How do you map an SELinux type to a TCP port?

2.	 Does SECMARK labeling change the network packets as they go over the wire?

3.	 What semanage subcommands are used for InfiniBand support?

4.	 Is specialized equipment needed for labeled IPsec?

6
Configuring

SELinux through
Infrastructure-as-

Code Orchestration
With the advent of large distributed application platforms, cloud services, and the high
adoption of virtualized infrastructure, system administrators are actively managing their
systems through Infrastructure-as-Code frameworks: orchestration and configuration
tooling that uses source code-like information to manage the systems.

In this chapter, administrators will learn how to distribute and load custom SELinux
policy modules, set file context definitions and apply those to the systems, set the
permissive state of the system or SELinux domains, configure the SELinux settings on
the systems, and how to customize SELinux actions if they are not supported by the
tooling. We will apply this with four popular automation frameworks: Ansible, Chef,
Puppet, and SaltStack.

176 Configuring SELinux through Infrastructure-as-Code Orchestration

We will cover the following topics in this chapter:

•	 Introducing the target settings and policies

•	 Using Ansible for SELinux system administration

•	 Utilizing SaltStack to configure SELinux

•	 Automating system management with Puppet

•	 Wielding Chef for system automation

Technical requirements
The code files for this chapter can be found in our Git repository at https://github.
com/PacktPublishing/SELinux-System-Administration-Third-
Edition.

Check out the following video to see the Code in Action: https://bit.ly/2T4Fksv

Introducing the target settings and policies
Before we embark on the journey of using these four automation frameworks, we need to
clarify what we want to accomplish. After all, to truly compare automation frameworks,
we need to test each framework with the same tests each time.

The idempotency of actions
Whenever we create a remote management environment with a central repository,
we need to consider the impact of running remote management activities on the system.
A very common best practice, strongly adopted by all these frameworks, is idempotency.

An idempotent task is a task that will not modify a system if the system's state is already
how it should be. Or, differently put, repeatedly executing a task does not affect the system
or the processes that run on it if nothing needs to be changed. As an example, consider
loading an SELinux module: if the module is already loaded, then the module should not
be reloaded. If it isn't loaded yet, then we will load the proper module.

While most actions supported by the automation frameworks are idempotent, we will
need to create custom actions ourselves if the framework does not support what we want.
For instance, if the framework does not support loading SELinux modules, then we need
to write our own code to do so.

https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://bit.ly/2T4Fksv

Introducing the target settings and policies 177

Most orchestration frameworks will envelope non-idempotent tasks in a definition that is
more idempotent. For instance, if a change in a configuration file requires a system reboot,
then the enveloped definition would be something like reboot after file change. The engine
can check the state of the file (when it changed) and the system (when it rebooted) and
deduce whether a reboot is needed or not, even though a system reboot as a task is
a non-idempotent task.

Policy and state management
The first set of scenarios that we want to support through the automation frameworks is
to ensure that SELinux is active (enforcing) and that the right SELinux policy is loaded,
a task usually performed by the machine's package management system. While allowing
the package management system to handle this is convenient, it only offers the ability to
use distribution-specific default policies. Sysadmins of systems with different security
requirements will be restrained when using default policies and will need to create custom
policies and policy handling routines. So, we will examine how to distribute and load
custom policies.

The custom policy we will use in the examples is a CIL policy, which is very new and
often not directly supported by the automation frameworks. However, it gives us a nice
reoccurring situation to create custom rules within the automation framework. We store
the policy itself in a file called test.cil that has the following content:

(auditallow staff_sudo_t sysadm_t (process (transition)))

This simple policy will enable logging any transition from the staff_sudo_t domain
to the sysadm_t domain and is easy to test out with sudo. In our example, it serves no
other purpose than to quickly allow us to verify that the policy has been correctly loaded.

State-wise, we will ensure that the system is in enforcing mode, but have the
zoneminder_t SELinux domain marked as permissive.

SELinux configuration settings
The second group of actions we want to take up is to configure the system with the
various SELinux settings we've discussed in different chapters before. Most of these
we've seen through the semanage commands, and we will learn how the various
automation frameworks support these entries, and to what extent.

178 Configuring SELinux through Infrastructure-as-Code Orchestration

We will not go through every setting, but rather focus on the supported configuration
sets within each automation framework. If a framework does not support a particular
configuration (such as the semanage ibpkey one, which is fairly new), we will need to
create custom actions for this. In that case, we will show how to approach this once, as it is
a recurring and similar approach for the others as well.

Setting file contexts
The third and final group of actions we want to see is how the automation frameworks
support applying file contexts to resources. This can be applying an semanage fcontext
configuration, after which a restore operation is done (such as with restorecon), but also
validating whether the framework supports applying contexts directly.

Directly applying the context allows administrators to use the frameworks directly
without having to twiddle with creating and reapplying file context definitions (which
can have some performance overhead). However, this should only be considered if the
automation framework is the sole method through which system changes can be made.
In any other case, having missing file context definitions might lead to administrators
resetting contexts to an incorrect state.

Recovering from mistakes
In this chapter, we're diving into the various frameworks that allow managing SELinux
across a multitude of systems. It is not the intention of this chapter to explain the
frameworks themselves in detail, nor the secure configuration of the frameworks
themselves. We don't recommend immediately applying this to production systems
without testing first, and make sure to have backups!

That being said, many settings applied in this chapter are easily corrected if things fail.
We refer to Chapter 2, Understanding SELinux Decisions and Logging, to selectively put
SELinux in permissive mode if needed.

Furthermore, each framework can easily be suspended, allowing administrators to correct
issues without being affected by the framework overwriting the changes immediately after.

Comparing frameworks
Every framework we discuss further has its own approach to infrastructure automation
and configuration. It is not the intention of this book to dwell on the details of each
framework, but rather to focus on its core support and how it deals with SELinux. We will
also abstract away how to handle different Linux distributions and have all examples based
on CentOS.

Using Ansible for SELinux system administration 179

Furthermore, these frameworks are continuously improving and evolving. When
we consider these frameworks in this chapter, we only explore how they are commonly
used, and not how they can specialize in specific deployments. For instance, if a framework
uses an agent-based architecture by default but also supports SSH-based connections,
we will only consider the agent-based one in this book, as that is the default setup for these
frameworks and we want to focus on the SELinux configuration support features.

But don't let this stop you from experimenting with the frameworks further and adapting
them to your own liking! That said, let's dive into our first engine, Ansible.

Using Ansible for SELinux system
administration
The first orchestration and automation tooling we'll consider is Ansible, a very popular
open source solution for the remote management of systems. Ansible has commercial
backing through Red Hat but does not limit its support to Red Hat or even Linux systems.
Other environments such as Windows environments or even network setups have
significant Ansible-based support.

How Ansible works
Ansible generally uses a central server that hosts the configuration and interprets the
settings. The Ansible runtime then connects to the remote systems over SSH, sending the
necessary data to a temporary location, and then executes the steps locally.

The use of SSH as its main connection approach has significant advantages: administrators
know how this protocol works and how to configure and control it. Furthermore, Ansible
does not require any additional deployments on the target machines, except for Python
and libselinux's Python bindings (which are often installed on SELinux-enabled machines
by default).

Ansible knows how to address the various resources through its modules. Ansible
modules contain the logic that Ansible uses to execute tasks correctly. The module code is
distributed to the target machines and is executed on the remote systems.

The definitions that administrators configure systems with are stored in Ansible
playbooks. Playbooks define how a system should be configured, and Ansible will read
and interpret playbooks to see what it must execute on each system.

180 Configuring SELinux through Infrastructure-as-Code Orchestration

To facilitate the management of Ansible playbooks in larger environments, Ansible uses
Ansible roles to bundle coherent definitions. Administrators can then, in their playbooks,
assign roles to systems to automatically uplift the state of those systems accordingly. For
instance, a role can be created to create a properly configured web server, a database, and
so on.

In this chapter, we will create a role called packt_selinux and apply it to a remote
system. Within that role, we will show how to configure and execute the various SELinux
tasks using Ansible.

Installing and configuring Ansible
To install and set up Ansible, most Linux distributions offer out-of-the-box support for
the framework. On CentOS, the following steps can be taken. Users of other distributions
can easily deduce the steps for their platform:

1.	 You need to enable Extra Packages for Enterprise Linux (EPEL), after which
you can install Ansible easily. Execute this on the master node (from which
you want to manage the other systems):

yum install epel-release

yum install ansible

2.	 Once installed, create an SSH key pair to use between the master system and the
target systems that we will be managing with Ansible. Use the ssh-keygen
command to create a key pair on the master system, and then copy the public
key (~/.ssh/id_rsa.pub) to the remote systems, saving it as ~/.ssh/
authorized_keys:

ssh-keygen

scp ~/.ssh/id_rsa.pub rem1:/root/.ssh/authorized_keys

3.	 Test to see whether the remote connection works properly, for instance, by
executing the id command remotely:

ssh rem1 id

4.	 If the test is successful, we can configure Ansible to see this remote system as one
of the nodes it will be managing. To accomplish this, edit /etc/ansible/hosts
and add the hostname to the list:

cat /etc/ansible/hosts
rem1

Using Ansible for SELinux system administration 181

5.	 To see whether Ansible can correctly manage the remote system, we can ask
it to gather all the facts about the remote system. Facts in Ansible represent the
discovered settings of the remote system and can be used to fine-tune playbooks
and roles later. For instance, the Ansible facts discovered of the distribution can be
used to select which package name an installation uses:

ansible all -m setup

This instruction asks all managed hosts (all, reflecting all entries in /etc/
ansible/hosts) to execute the tasks in the setup module.

The output of the last task is a large set of discovered facts, showing us that the connection
succeeded and that Ansible is ready to manage the remote system.

Creating and testing the Ansible role
To allow reusable configurations across multiple systems, Ansible recommends the use of
its Ansible roles. We will create a role called packt_selinux, have it create a custom
directory, and then assign this role to the remote system:

1.	 Use ansible-galaxy to create an empty yet ready-to-use role:

cd /etc/ansible/roles

ansible-galaxy init packt_selinux --offline
- Role packt_selinux was created successfully

This command will create the necessary files and directories that constitute a role.
The file we will use is packt_selinux/tasks/main.yml, which will host all
the settings and definitions we want to apply when we assign the packt_selinux
role to a system. The other directories are, for our brief introduction to Ansible, less
relevant, but play an important role in making sufficiently modular roles.

2.	 Edit the main.yml file and have it create a custom directory. The content of the file
should look like this:

- name: Create /usr/share/selinux/custom directory

 file:
 path: /usr/share/selinux/custom
 owner: root
 group: root
 mode: '0755'
 state: directory

182 Configuring SELinux through Infrastructure-as-Code Orchestration

In later steps, this file will be extended with more and more blocks. Each block
will start with a name that identifies the block, and then the state definition. In the
current block, we used Ansible's file module to assert that a file or directory is
available with the parameters given.

3.	 Assign the role to the remote system and apply the playbook. We accomplish this by
first creating an /etc/ansible/site.yml file with the following content:

- hosts: all
 roles:
 - packt_selinux

4.	 Run this playbook to apply the setting defined in our role to the remote systems:

ansible-playbook /etc/ansible/site.yml

Ansible will display its progress, as well as for which tasks it has executed a change.
In our case, a change would mean that the directory has been created.

Now that we have tested our role and assigned the role to the remote system, all we
need to do is update the role gradually until it contains all the logic we need. No other
configuration is needed, and after each change, we can rerun the ansible-playbook
command from the main server.

Assigning SELinux contexts to filesystem resources
with Ansible
In the current role, we create a custom directory inside /usr/share/selinux. This
parent directory has the usr_t SELinux type set, so the newly created subdirectory
has it as well. The SELinux user of this directory, however, will be different, as Ansible
has created the directory after remotely logging in to the system. In a default CentOS
configuration, this means that the target directory's context will have unconfined_u
as its SELinux user component.

Let's update the definition in main.yml and explicitly set the SELinux user and type:

- name: Create /usr/share/selinux/custom directory
 file:
 path: /usr/share/selinux/custom
 owner: root
 group: root
 mode: '0755'

Using Ansible for SELinux system administration 183

 state: directory
 setype: 'usr_t'
 seuser: 'system_u'

After applying the change (using ansible-playbook), the updated definition results in
a correctly set SELinux user and SELinux type for this directory.

In this case, we added two parameters to the file definition: setype and seuser. The
Ansible file module supports the following SELinux-related parameters:

•	 seuser is the SELinux user of the resource. Set this to system_u for system
resources, as used in the example.

•	 serole is the SELinux role of the resource. This is generally not used, as role
inheritance on the system will generally result in the resource being labeled with the
object_r role, which is correct most of the time.

•	 setype is the SELinux type of the resource and is the most commonly used
SELinux parameter in file modules.

•	 selevel is the SELinux sensitivity level for the resource. By default, it is set to s0.

As we've learned from the example already, you do not need to declare the type if the
inherited context is correct.

Loading custom SELinux policies with Ansible
Ansible's current release has no support for loading custom SELinux modules. While
custom modules are found on Ansible galaxy (the ecosystem where contributors can add
more modules), let's see how we would handle distributing a custom policy to the systems
under Ansible control and loading the module, but only if it is not loaded yet.

While we could start creating custom modules ourselves, let's use a combination of tasks
in the existing role to accomplish this. We will try to accomplish the following tasks in
sequence:

1.	 Upload a custom policy called test.cil to the remote system.

2.	 Check whether this custom policy is already loaded.

3.	 Load the custom policy, but only if the previous check failed.

184 Configuring SELinux through Infrastructure-as-Code Orchestration

These three tasks are handled through three modules: the copy module, the shell
module, and the command module. We will use each of these modules in separate steps:

1.	 Create the custom policy mentioned earlier in this chapter by placing the test.
cil file in the files/ folder of the packt_selinux role.

2.	 Create a new code block in the main.yml file of the role, with the following
content:

- name: Upload test.cil file to /usr/share/selinux/custom
 copy:
 src: test.cil
 dest: /usr/share/selinux/custom/test.cil
 owner: root
 group: root
 mode: '0644'

This will ensure that the test.cil file, currently on the master machine, is
distributed to the target nodes in the directory we've previously created.

3.	 Next, we check whether the policy is already loaded. For this, we use the shell
module and use the fail or success state later. Hence, we store the return in the
test_is_loaded variable, and explicitly tell Ansible to ignore a failure as we use
this as a check rather than a state definition:

- name: Check if test SELinux module is loaded
 shell: /usr/sbin/semodule -l | grep -q ^test$
 register: test_is_loaded
 ignore_errors: True

4.	 The command module loads the policy file, and only if the previous task failed:

- name: Load test.cil if not loaded yet
 command: /usr/sbin/semodule -i /usr/share/selinux/
custom/test.cil
 when: test_is_loaded is failed

This approach shows how we can use our knowledge of SELinux to define and set states.
This method can be used for other SELinux settings as well, for instance, by validating the
output of listings (for example, with semanage) before defining or adjusting settings.

Using Ansible for SELinux system administration 185

Using Ansible's out-of-the-box SELinux support
Ansible has quite a few modules available to provide native support for several
SELinux-related settings, which we briefly cover here:

•	 The selinux module can be used to set or change the SELinux state (enforcing
or permissive) as well as to select the appropriate SELinux policy type (such as
targeted):

- name: Set SELinux to enforcing mode
 selinux:
 policy: targeted
 state: enforcing

•	 With the seboolean module, the SELinux booleans can be adjusted at will:

- name: Set httpd_builtin_scripting to true
 seboolean:
 name: httpd_builtin_scripting
 state: yes

•	 The sefcontext module allows us to change SELinux file context definitions:

- name: Set the context for /srv/web
 sefcontext:
 target: '/srv/web(/.*)?'
 setype: httpd_sys_content_t
 state: present

•	 With selinux_permissive, we can selectively mark certain SELinux policy
domains as permissive:

- name: Set zoneminder_t as permissive domain
 selinux_permissive:
 name: zoneminder_t
 permissive: true

•	 The selogin module can be used to map a login to an SELinux user, as with
semanage login:

- name: Map taylor's login to the unconfined_u user
 selogin:
 login: taylor
 seuser: unconfined_u
 state: present

186 Configuring SELinux through Infrastructure-as-Code Orchestration

•	 seport can be used to create an SELinux port mapping:

- name: Set port 10122 to ssh_port_t
 seport:
 ports: 10122
 proto: tcp
 setype: ssh_port_t
 state: present

Other SELinux settings might be supported through custom modules, but with the
method presented earlier, administrators can already start configuring SELinux across all
systems in their environment.

Utilizing SaltStack to configure SELinux
The second orchestration and automation framework we'll consider is SaltStack, which
has commercial backing by the SaltStack company. SaltStack uses a declarative language
similar to Ansible and is also written in Python. In this chapter, we will use the open
source SaltStack framework, but an enterprise version of SaltStack is available as well,
which adds more features on top of the open source one.

How SaltStack works
SaltStack, often also described as just Salt, is an automation framework that uses an
agent/server model for its integrations. Unlike Ansible, SaltStack generally requires agent
installations on the target nodes (called minions) and activation of the minion daemons
to enable communications to the master. This communication is encrypted, and the
minion authentication uses public-key validation, which needs to be approved on the
master to ensure no rogue minions participate in a SaltStack environment.

While agent-less installations are possible with SaltStack as well, we will focus on
 agent-based deployments. In such a configuration, the minions regularly check with the
master to see whether any updates need to be applied. But administrators do not need
to wait until the minion pulls the latest updates: you can also trigger updates from the
master, effectively pushing changes to the nodes.

The target state that a minion should be in is written down in a Salt State file, which
uses the .sls suffix. These Salt State files can refer to other state files, to allow a modular
design and reusability across multiple machines.

If we need more elaborate coding, SaltStack supports the creation and distribution
of modules, called Salt execution modules. However, unlike Ansible's Galaxy, no
community repositories currently exist to find more execution modules.

Utilizing SaltStack to configure SELinux 187

Installing and configuring SaltStack
The installation of SaltStack is similar across the different Linux distributions. Let's see
how the installation is done on a CentOS machine:

1.	 We first need to enable the SaltStack repository that contains its software. The
project maintains the repository definitions through RPM files that can be installed
immediately:

yum install https://repo.saltstack.com/py3/redhat/salt-
py3-repo-latest.el8.noarch.rpm

2.	 Once we have enabled the repository on all systems, install salt-master on the
master, and salt-minion on the remote systems:

master ~# yum install salt-master

remote ~# yum install salt-minion

3.	 Before we start the daemons on the systems, we first update the minion
configuration to point to the master. By default, the minions will attempt to connect
to a host with the hostname salt, but this can be easily changed by editing /etc/
salt/minion and setting the right hostname:

remote ~# vim /etc/salt/minion
master: ppubssa3ed

4.	 With the minion configured, we can now launch the SaltStack master
(salt-master) and minion (salt-minion) daemons:

master ~# systemctl start salt-master

remote ~# systemctl start salt-minion

5.	 The minion will connect to the master and present its public key. To list the agents
currently connected, use salt-key -L:

master ~# salt-key -L
Accepted Keys:
Denied Keys:
Unaccepted Keys:
rem1.internal.genfic.local
Rejected Keys:

188 Configuring SELinux through Infrastructure-as-Code Orchestration

We need to accept the keys for the remote machines:
master ~# salt-key -a rem1.internal.genfic.local
The following keys are going to be accepted:
Unaccepted Keys:
rem1.internal.genfic.local
Proceed? [n/Y] y
Key for minion rem1.internal.genfic.local accepted.

6.	 Once we have accepted the key, the master will know and control the minion.
Let's see whether we can properly interact with the remote system:

master ~# salt '*' service.get_all

This command will list all system services on the minion.
The salt command is the main command used to query and interact with the remote
minions from the master. If the last command is successfully returning all system services,
then SaltStack is correctly configured and ready to manage the remote systems.

Creating and testing our SELinux state with SaltStack
Let's create our SELinux state called packt_selinux, and have it applied to the remote
minion:

1.	 We first need to create the top file. This file is the master file for SaltStack, from
which the entire environment is configured:

master ~# mkdir /srv/salt

master ~# vim /srv/salt/top.sls
base:
 '*':
 - packt_selinux

2.	 Next, we create the state definition for packt_selinux:

master ~# mkdir /srv/salt/packt_selinux

master ~# vim /srv/salt/packt_selinux/init.sls
/usr/share/selinux/custom/test.cil:
 file.managed:
 - source: salt://packt_selinux/test.cil
 - mode: 644
 - user: root
 - group: root
 - makedirs: True

Utilizing SaltStack to configure SELinux 189

The init.sls file is the main state file for this packt_selinux state. So, when
SaltStack reads the top.sls file, it sees a reference to the packt_selinux state
and then searches for the init.sls file inside this state.

3.	 Place the SELinux test.cil module, as defined earlier on in this chapter,
inside /srv/salt/packt_selinux as we refer to it in the state definition. Once
placed, we can apply this state to the environment:

master ~# salt '*' state.apply

The state.apply subcommand of the salt command is used to apply the state across
the environment. Each time we modify our state definition, this command can be used to
force an update to the minions. Without this, the minions will (by default) update their
state every 60 minutes. These scheduled state updates are called mine updates and are
configured on the agents inside /etc/salt/minion.

Assigning SELinux contexts to filesystem resources
with SaltStack
At the time of writing, support for addressing SELinux types in resources has not yet
reached the stable versions of SaltStack. SaltStack, however, supports running commands
but only if a certain test has succeeded (or failed).

Update the init.sls file and add the following code to it:

{%- set path = '/usr/share/selinux/custom/test.cil' %}
{%- set context = 'system_u:object_r:usr_t:s0' %}
set {{ path }} context:
 cmd.run:
 - name: chcon {{ context}} {{ path }}
 - unless: test $(stat -c %C {{ path }}) == {{ context }}

In this code snippet, we declare two variables (path and context) so that we do
not need to iterate the path and context multiple times, and then use these variables in
a cmd.run call.

The cmd.run approach allows us to easily create custom SELinux support using the
commands we've seen earlier on in this book. The unless check contains the test to see
whether we need to execute the command or not, allowing us to create idempotent state
definitions.

190 Configuring SELinux through Infrastructure-as-Code Orchestration

Loading custom SELinux policies with SaltStack
Let's load our custom SELinux module on the remote systems. SaltStack has support for
loading SELinux modules through the selinux.module state:

load test.cil:
 selinux.module:
 - name: test
 - source: /usr/share/selinux/custom/test.cil
 - install: True
 - unless: "semodule -l | grep -q ^test$"

As in the previous section, we need to add an unless statement, as otherwise, SaltStack
will attempt to load the SELinux module repeatedly every time the state is applied.

Using SaltStack's out-of-the-box SELinux support
SaltStack's native SELinux support is gradually expanding but still has much room for
improvement:

•	 With selinux.boolean, the SELinux boolean values can be set on the target
machines:

httpd_builtin_scription:
 selinux.boolean:
 - value: True

•	 The file contexts, as managed with semanage fcontext, can be defined using
the selinux.fcontext_policy_present state:

"/srv/web(/.*)?":
 selinux.fcontext_policy_present:
 - sel_type: httpd_sys_content_t

•	 To remove the definition, use the selinux.fcontext_policy_absent
definition.

•	 With selinux.mode, we can put the system in enforcing or permissive mode:

enforcing:
 selinux.mode

Automating system management with Puppet 191

•	 Port mappings are handled using the selinux.port_policy_present state:

tcp/10122:
 selinux.port_policy_present:
 - sel_type: ssh_port_t

With the cmd.run approach mentioned earlier, we can apply SELinux configuration
updates to systems in a repeatable fashion for unsupported settings.

Automating system management with Puppet
Puppet is the third automation framework that we will check out. It is the oldest one in
our list, with its first release in 2005, and is commonly seen as the baseline against which
other automation frameworks are compared. It has commercial backing through the
Puppet company, also often referred to as Puppet Labs.

How Puppet works
Like SaltStack, Puppet uses an agent/server-based model with public-key authentication
of the agents to ensure no rogue agents are active within the environment.

The Puppet master has access to the Puppet manifests, which is the declaration of
the state that Puppet wants to achieve. These manifests use a specific language inspired
by Ruby and can refer to classes provided by modules to ensure reusability across the
environment.

Puppet modules, hence, are the workhorse within Puppet, and Puppet has a significant
community called Puppet Forge that allows you to download and install modules created
by the community to more easily manage your environment.

Puppet agents will regularly connect to the master, informing the master of the current
details of the remote machine. These current details are called facts and can be used by
Puppet to dynamically handle changes in the environment. The master then compiles the
target state in what it calls a catalog and sends that catalog over to the agent. The agent
then applies this catalog and reports the results back.

192 Configuring SELinux through Infrastructure-as-Code Orchestration

Installing and configuring Puppet
The Puppet company offers integrated packages for several Linux distributions. The
following instructions focus on RPM-compatible distributions, but other platforms have
very similar instructions:

1.	 The Puppet company provides repository definitions through RPM files. After
the repositories are established, you can install puppetserver and pdk (on the
master) and puppet-agent (on the remote systems) so that the software is readily
available to use:

yum install https://yum.puppet.com/puppet6-
release-el-8.noarch.rpm

master ~# yum install puppetserver pdk

remote ~# yum install puppet-agent

2.	 Configure the master to have its certificate properly named. Edit the puppet.
conf file inside /etc/puppetlabs/puppet and, within the [master]
section, update or add the following settings:

master ~# vim /etc/puppetlabs/puppet/puppet.conf
certname = ppubssa3ed.internal.genfic.local
server = ppubssa3ed.internal.genfic.local
environment = production

3.	 Start the Puppet server so that the clients can start connecting to it:

master ~# systemctl start puppetserver

4.	 On the remote systems, edit the same configuration file, and update or add the
following settings in the [main] section:

remote ~# vim /etc/puppetlabs/puppet/puppet.conf
[main]
certname = rem1.internal.genfic.local
server = ppubssa3ed.internal.genfic.local
environment = production
runinterval = 1h

5.	 Next, start the Puppet agent:

remote ~# systemctl start puppet

Automating system management with Puppet 193

6.	 On the master node, we can now query the pending certificate requests. It should
display the requests from the agents we recently started:

master ~# /opt/puppetlabs/bin/puppetserver ca list
Requested Certificates:
 rem1.internal.genfic.local (SHA256) ...

7.	 We can accept this request (sign the certificate) as follows:

master ~# /opt/puppetlabs/bin/puppetserver ca sign
--certname rem1.internal.genfic.local
Successfully signed certificate request for rem1.
internal.genfic.local

8.	 To validate whether the connection works, log in on the remote machine and trigger
the agent to apply the (currently empty) catalog:

remote ~# /opt/puppetlabs/bin/puppet agent --test

Unlike SaltStack, where we can push a change to the agents, Puppet relies on the agents
to frequently poll the server. In the configuration we made earlier, we configured the agent
to check every hour. With the puppet agent --test command, we can signal the
agent to run the state check immediately.

Creating and testing the SELinux class with Puppet
Let's create our packt_selinux class, through which we will configure our remote
machine's SELinux settings:

1.	 Call the Puppet Development Kit (PDK) on the master node inside the /etc/
puppetlabs/code/modules directory:

master ~# cd /etc/puppetlabs/code/modules

master ~# pdk new module packt_selinux --skip-interview

The result is an empty module with lots of default files and directories. We will be
mostly working with the module's manifest file.

2.	 Inside the packt_selinux/manifests directory, create a new file named
init.pp with the following content:

class packt_selinux {
 file { "/usr/share/selinux/custom":
 ensure => directory,
 mode => "0755",

194 Configuring SELinux through Infrastructure-as-Code Orchestration

 }
}

3.	 Next, inside the /etc/puppetlabs/code/environments/production/
manifests location, create a file called site.pp with the following content:

node 'rem1.internal.genfic.local' {
 include packt_selinux
}

The site.pp file provides the top-level hierarchy for Puppet to associate its
environment with the appropriate definitions. In this example, the node with the
hostname rem1.internal.genfic.local is configured through a reference to
packt_selinux, the module we created previously.

Inside the packt_selinux module, we've created the packt_selinux
class, which currently is composed of a single directive to create /usr/share/
selinux/custom.

4.	 With these definitions in place, have the remote agent update its state:

remote ~# puppet agent -t

In product environments, it is common to have this command either scheduled
regularly or to run the Puppet agent continuously as a daemon.

With the class properly assigned to the node, we can expand our configuration with more
SELinux details.

Assigning SELinux contexts to filesystem resources
with Puppet
Let's augment our current class definition with the following snippet:

file { 'selinux_custom_module_test':
 path => "/usr/share/selinux/custom/test.cil",
 ensure => file,
 owner => "root",
 group => "root",
 source => "puppet:///modules/packt_selinux/test.cil",
 require => File["/usr/share/selinux/custom"],
 seltype => "usr_t",
}

Automating system management with Puppet 195

For this block to work properly, we need to place the test.cil SELinux module in the
files/ folder inside the packt_selinux module location. This block will have Puppet
upload the file to the directory, with the dependency set that the directory must exist. The
require statement refers to the previously defined block.

We also see that Puppet has out-of-the-box support for SELinux type definitions. The file
class has several SELinux-supported parameters that can be used:

•	 seluser defines the SELinux user for the resource.

•	 selrole defines the SELinux role for the resource.

•	 seltype defines the SELinux type for the resource.

•	 selrange defines the SELinux sensitivity range for the resource.

•	 selinux_ignore_defaults tells Puppet to ignore the default SELinux context
(as queried from the SELinux policy).

Our previous example is thus actually superfluous because Puppet will actively query
the SELinux policy to discover what the right resource context is and apply this. With
selinux_ignore_defaults set to true, Puppet will not query and adjust the
context accordingly, which can be useful when testing out new setups that do not have
proper context definitions set.

Loading custom SELinux policies with Puppet
Puppet does have support for loading and managing SELinux modules. However, its
support is currently restricted to the more traditional SELinux policy modules, and not
the CIL powered ones.

So, let's create another block in our module definition that loads the test.cil file, but
only if no test SELinux module is already loaded:

exec { '/usr/sbin/semodule -i /usr/share/selinux/custom/test.
cil':
 require => File['selinux_custom_module_test'],
 unless => '/usr/sbin/semodule -l | grep -q ^test$',
}

This approach allows us to create custom SELinux configuration adjustments if the native
Puppet support does not suffice.

196 Configuring SELinux through Infrastructure-as-Code Orchestration

Using Puppet's out-of-the-box SELinux support
Puppet has a few SELinux-related classes supported out of the box but has more support
through Puppet Forge, an ecosystem of community-contributed modules. One of the
modules that we can recommend is the puppet-selinux module, which Puppet
(the company) maintains on Puppet Forge (and thus has a higher chance of remaining
supported in later versions of Puppet).

Installing new modules is quite easy, using the puppet module command:

master ~# /opt/puppetlabs/bin/puppet module install puppet-
selinux

We can then refer to the selinux class (provided through this module) within
our manifest:

•	 The selinux class can be directly used to set the enforcing (or permissive) state
of the system:

class { selinux:
 mode => 'enforcing',
 type => 'targeted',
}

•	 The (native) selboolean class can be used to set SELinux booleans:

selboolean { 'httpd_builtin_scripting':
 value => off,
}

•	 SELinux file contexts can be defined using the selinux::fcontext class:

selinux::fcontext { '/srv/web(/.*)?':
 seltype => 'httpd_sys_content_t',
}

•	 Equivalence definitions for the file context are handled by
selinux::fcontext::equivalence, like so:

selinux::fcontext::equivalence { '/srv/www':
 ensure => 'present',
 target => '/srv/web',
}

Wielding Chef for system automation 197

•	 Custom port mappings are handled by selinux::port:

selinux::port { 'set_ssh_custom_port':
 ensure => 'present',
 seltype => 'ssh_port_t',
 protocol => 'tcp',
 port => 10122,
}

•	 Individual SELinux domains can be made permissive using
selinux::permissive:

selinux::permissive { 'zoneminder_t':
 ensure => 'present',
}

•	 If standard SELinux modules are present, the use of selmodule allows loading
it up. In this case, it will search for the SELinux module named after the block,
inside the directory referred to by selmoduledir:

selmodule { 'vlock':
 ensure => 'present',
 selmoduledir => '/usr/share/selinux/custom',
}

While other SELinux-supporting modules might be available on Puppet Forge, be sure
to validate whether these modules are mature and sufficiently stable. If their support is
uncertain, you might want to pursue the exec route, as used earlier on, in Loading custom
SELinux policies with Puppet.

Wielding Chef for system automation
The last automation framework we will explore is Chef. Chef is a slightly more hands-on
and development-oriented automation framework than the previous ones, but powerful
nonetheless. It has commercial backing by the similarly named company Chef.

How Chef works
Chef has a slightly more extensive approach to automation and requires slightly
more work to get up and running. Once set up, however, it offers a very flexible and
programmable environment wherein infrastructure automation can be worked out.

198 Configuring SELinux through Infrastructure-as-Code Orchestration

There are three types of systems in the Chef architecture:

•	 The Chef server acts as the central hub on which the automation code is
maintained, and which interacts with the remote systems to apply the changes.

•	 The Chef workstation is an endpoint on which administrators and engineers
develop Chef recipes (code) and cookbooks and interact with the Chef server. There
can be multiple Chef workstations per Chef environment.

•	 The Chef client is an agent running on the remote systems (nodes) managed by the
Chef environment.

Developers create automation code in recipes, which are like tasks. Multiple recipes
are bundled in a cookbook and uploaded to the Chef server before the recipes can be
applied to one or more nodes. Cookbooks can be compared with modules in the previous
automation frameworks.

The Chef clients and server use public key-based authentication and encryption for their
interactions. It is the client that takes the initiative, connecting to the server to download
the latest cookbooks and other resources, after which it calculates and applies the latest
changes, sending feedback on these changes back to the server.

Installing and configuring Chef
A full Chef installation requires a few components to be installed. The Chef workstation
and the Chef server need to be installed by the administrator, whereas the Chef agents will
be installed by Chef later.

Installing the Chef workstation
To install and use Chef, first download the Chef workstation. All Chef software can be
downloaded from https://downloads.chef.io. For CentOS, the Chef workstation
is available as an RPM, which can be installed using yum.

However, unlike common packaged software, the Chef workstation dependencies are
not explicitly listed as RPM dependencies, causing the software to be installed without
its necessary libraries. At the end of the installation, the RPM file will execute a
post-installation script that checks the dependencies and reports on the missing libraries:

master ~# yum install chef-workstation-0.17.5-1.el7.x86_64.rpm

The dependencies, currently, require the following CentOS packages to be installed:

master ~# yum install libX11-xcb libXcomposite libXcursor
libXdamage nss gdk-pixbuf2 gtk3 libXScrnSaver alsa-lib git

https://downloads.chef.io

Wielding Chef for system automation 199

After the installation, run chef -v (as a regular, non-root user) to verify whether all
dependencies are met:

master ~$ chef -v

The command should output the versions of the included Chef components.

Installing and configuring the Chef server core
The second installation is the Chef server core. This software is again made available
as RPM:

1.	 Install the Chef server core using yum:

master ~# yum install chef-server-core-13.2.0-1.el7.
x86_64.rpm

After the installation finishes, we need to configure it for our environment.

2.	 Create a directory named /var/opt/chef. We will use this directory to store the
cryptographic keys to authenticate against the Chef server:

master ~# mkdir /var/opt/chef

3.	 Next, configure the Chef server using chef-server-ctl:

master ~# chef-server-ctl reconfigure

This will set up the Chef server on the current system. This setup can take a while
to complete, but once finished, we can continue with creating a user account inside
of Chef.

4.	 Let's create an account called chefadmin for the user lisa on this system and
give it a custom password:

master ~# chef-server-ctl user-create chefadmin Lisa
McCarthy lisa@ppubssa3ed.internal.genfic.local pw4chef
--filename /var/opt/chef/chefadmin.pem

5.	 Create an organization unit inside the Chef configuration, which we associate with
the newly created user:

master ~# chef-server-ctl org-create ppubssa3ed "Packt
Pub SSA 3rd Edition" --association_user chefadmin
--filename /var/opt/chef/ppubssa3ed-validator.pem

200 Configuring SELinux through Infrastructure-as-Code Orchestration

With this done, the server administration itself is all done, and we can start creating
our development environment.

Preparing the development environment
As mentioned earlier on, Chef is somewhat more development-oriented than the
previous automation frameworks. The user that will interact with Chef (using the Chef
workstation) needs to establish a development environment first:

1.	 We previously created an account called chefadmin for the user lisa. Now,
log in as the user lisa and create a development environment in the user's home
directory:

master ~$ mkdir chef

master ~$ cd chef

master ~$ git init

2.	 We create a Git-enabled environment as the Chef utilities require it. If you have no
active Git configuration yet, you might need to add your email and name:

master ~$ git config --global user.email "lisa@
ppubssa3ed.internal.genfic.local"

master ~$ git config --global user.name "Lisa McCarthy"

3.	 Next, create the Chef knife configuration as .chef/knife.rb within this
environment (so ~/chef/.chef/knife.rb in our example):

master ~$ mkdir .chef

master ~$ vim .chef/knife.rb
current_dir = File.dirname(__FILE__)
log_level		 :info
log_location	 STDOUT
node_name		 "chefadmin"
client_key		 "/var/opt/chef/chefadmin.pem"
chef_server_url	 "https://ppubssa3ed/organizations/
ppubssa3ed"
cookbook_path	 ["#{current_dir}/../cookbooks"]

This configuration references the key used previously as well as the organization
we created. If the Chef workstation is a different system than the Chef server, don't
forget to copy over the key (chefadmin.pem in our example) and adjust the
configuration accordingly.

Wielding Chef for system automation 201

4.	 Download the certificates that the Chef server uses (these certificates are self-signed
certificates) and then check the SSL connection:

master ~$ knife ssl fetch

master ~$ knife ssl check

5.	 If the checks are successful, we can commit the changes:

master ~$ git add -A

master ~$ git commit -m 'Chef configuration baseline'

We are now ready to start our recipe and cookbook development.

Creating the SELinux cookbook
The cookbook we are going to develop will contain the various SELinux configuration
entries, which are then assigned to the remote node:

1.	 Let's start by creating a cookbook called packt_selinux:

master ~$ mkdir cookbooks

master ~$ cd cookbooks

master ~$ chef generate cookbook packt_selinux

master ~$ cd packt_selinux

This command creates the default files for the cookbook, of which we will handle
metadata.rb and recipes/default.rb. The metadata.rb file contains
information about the cookbook and, while it is not necessary for our example,
it is sensible to edit and update this file immediately. Later, we will adjust this file
to include dependency information toward other cookbooks.

2.	 The recipes/default.rb file contains the actual logic we want to apply to the
remote systems. Let's create a definition for the /usr/share/selinux/custom
directory:

master ~$ vim recipes/default.rb
directory '/usr/share/selinux/custom' do
 owner 'root'
 group 'root'
 mode '0755'
 action :create
end

202 Configuring SELinux through Infrastructure-as-Code Orchestration

3.	 Now upload the cookbook to the Chef server:

master ~$ knife cookbook upload packt_selinux

4.	 We can query the available cookbooks on the Chef server with the list
subcommand:

master ~$ knife cookbook list
packt_selinux 0.1.0

5.	 With the cookbook available, let's bootstrap the target node. Bootstrapping only
needs to occur once, but must be triggered from a Chef authenticated user:

master ~$ knife bootstrap rem1 --ssh-user root --node-
name rem1

6.	 This ensures the Chef server knows the remote system. We can query the nodes
using knife node list and get more details about a node with the show
subcommand:

master ~$ knife node show rem1

7.	 Assign the packt_selinux recipe to the node using the run_list add
subcommand:

master ~$ knife node run_list add rem1 'recipe[packt_
selinux]'

Adding the recipe to the node list does not automatically trigger the requested
update. For this, the remote node's administrator needs to ensure that the
chef-client binary executes either regularly (through a cron job or similar)
or starts as a daemon.

8.	 For our purposes, we will trigger the chef-client command on the remote
system to download and apply the latest changes:

remote ~# chef-client

The output of chef-client should show how it found and applied the changes
listed in the recipe.

If this command returns successfully, then Chef is ready to manage the remote system
using the cookbook we've developed.

Wielding Chef for system automation 203

Assigning SELinux contexts to filesystem resources
with Chef
Chef has limited native support for SELinux contexts. When instructed to create
or modify files on nodes, it will relabel those files according to the present file context
definitions on the nodes. We can, however, subscribe to events defined in the recipe,
and trigger appropriate actions when they occur. For instance, to explicitly set the
context of a directory, we can create something like this:

execute 'set_selinux_custom_context' do
 command '/usr/bin/chcon -t usr_t /usr/share/selinux/custom'
 action :nothing
 subscribes :run, 'directory[/usr/share/selinux/custom]',
:immediately
end

After adding this to the recipes/default.rb file, we first need to upload the updated
cookbook to the server:

master ~$ knife cookbook upload packt_selinux

Afterward, we can rerun chef-client on the remote node to apply this updated recipe.
If the directory was previously already created, the recipe will not change anything as the
subscription will not be triggered.

Loading custom SELinux policies with Chef
Let's update our recipe to include the logic to load a custom policy. We will use two blocks
in our recipe, one to upload the test.cil file to the node, and another one to load it,
but only if it was not loaded previously:

cookbook_file '/usr/share/selinux/custom/test.cil' do
 source 'test.cil'
 owner 'root'
 group 'root'
 mode '0755'
 action :create
end

bash 'load_test_cil' do
 code '/usr/sbin/semodule -i /usr/share/selinux/custom/test.
cil'
 not_if '/usr/sbin/semodule -l | grep -q ^test$'
 only_if { ::File.exists?('/usr/share/selinux/custom/test.

204 Configuring SELinux through Infrastructure-as-Code Orchestration

cil') }
end

Put the test.cil file in a folder called files inside the packt_selinux cookbook
directory, before uploading the updated cookbook and reapplying the changes using
chef-client.

Using Chef's out-of-the-box SELinux support
While Chef itself has limited out-of-the-box SELinux support, cookbooks are available
online on Chef Supermarket (where the Chef community manages and distributes their
custom cookbooks). Chef (the company) maintains the selinux cookbook itself,
which allows managing the SELinux state of a system, whereas the selinux_policy
cookbook addresses a few other SELinux settings.

Let's download and install the selinux and selinux_policy cookbooks:

master ~$ knife supermarket install selinux_policy

master ~$ knife supermarket install selinux

master ~$ knife cookbook upload selinux_policy

master ~$ knife cookbook upload selinux

Next, adjust the metadata.rb file of our own cookbook to include the dependency to
this newly added cookbook:

depends 'selinux_policy'
depends 'selinux'

We can now use some of the predefined recipes to handle SELinux configuration settings:

•	 With selinux_state, we can place the system in an enforcing or permissive
state:

selinux_state "SELinux enforcing" do
 action :enforcing
end

•	 The selinux_policy_boolean recipe can configure an SELinux boolean value:

selinux_policy_boolean 'httpd_builtin_scripting' do
 value false
end

Summary 205

•	 With selinux_policy_port, a custom SELinux port mapping can be defined:

selinux_policy_port '10122' do
 protocol 'tcp'
 secontext 'ssh_port_t'
end

•	 A file context definition can be set using selinux_policy_fcontext:

selinux_policy_fcontext '/srv/web(/.*)?' do
 secontext 'httpd_sys_content_t'
end

•	 An SELinux domain can be put in permissive mode using the selinux_policy_
permissive recipe:

selinux_policy_permissive 'zoneminder_t' do
end

Don't forget to upload the changed cookbook before calling chef-client on the
remote systems.

Summary
Automation frameworks such as Ansible, SaltStack, Puppet, and Chef can be easily
used to manage SELinux settings on a multitude of systems. While not all frameworks
can deal with SELinux settings natively, this is easily mitigated by either using
community-provided modules or by creating custom rules that check and update the
settings accordingly. In this chapter, we've seen how to accomplish this by installing
a custom, CIL-based SELinux policy.

We learned that these frameworks all have their specific approaches. Ansible, for instance,
does not use any software installations on remote systems and communicates with the
target systems using SSH. The other frameworks all use an agent/server model but have
their own views on configuring settings (the syntax between Puppet and SaltStack is
noticeably different) or design (Chef uses a workstation where developers have their
development environment). All these frameworks are easily put in place and configured
and can handle most SELinux settings without any problems. All tools have a way of
modularizing the definitions so they can be applied easily against a larger number
of systems.

Now that we know how to apply SELinux settings consistently, let's see what other
SELinux controls exist, but now through userspace application-specific support.

206 Configuring SELinux through Infrastructure-as-Code Orchestration

Questions
1.	 Which of the four tools have native support for setting SELinux contexts on

resources?

2.	 How do these orchestration tools allow reusable customization beyond native
support?

3.	 What are some obvious differences between the listed orchestration tools?

Section 2:
SELinux-Aware

Platforms

Some applications and platforms have explicit SELinux support to further tighten security
controls. In this part, the most common platform SELinux controls are explained.

This section comprises the following chapters:

•	 Chapter 7, Configuring Application-Specific SELinux Controls

•	 Chapter 8, SEPostgreSQL – Extending PostgreSQL with SELinux

•	 Chapter 9, Secure Virtualization

•	 Chapter 10, Using Xen Security Modules with FLASK

•	 Chapter 11, Enhancing the Security of Containerized Workloads

7
Configuring

Application-Specific
SELinux Controls

Several Linux services and applications enable additional SELinux controls besides the
kernel-enforced SELinux policy. They allow the administrator to further manipulate and
enforce policy rules through the application itself—isolating users, reducing data leakage
risks, and mitigating the impact of malicious behavior.

In this chapter, we will look at several SELinux-aware applications, such as systemd
services and how they allow administrators to set up and specify target domains and
resource labels. We'll also cover the D-Bus service, which allows SELinux policies to
control the service binding and message communication within D-Bus itself. Next,
we'll jump to PAM-enabled services that allow users to log in through them.

Finally, we'll end the chapter with mod_selinux, an Apache module that allows
SELinux-specific tuning of the web server's behavior. This approach shows how
applications that do not natively have SELinux support can still be extended to address
the administrator's requirements.

210 Configuring Application-Specific SELinux Controls

We will cover the following topics in this chapter:

•	 Tuning systemd services, logging, and device management

•	 Communicating over D-Bus

•	 Configuring PAM services

•	 Using mod_selinux with Apache

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/37jYtze

Tuning systemd services, logging, and device
management
systemd is a core component of many Linux distributions. Since its birth in 2010, many
distributions have gradually adopted systemd as the core init system, responsible for
handling services and boot-up operations.

Throughout its development phase, systemd added several other components to its
portfolio:

•	 D-Bus, which offers a system and session bus service allowing the use of D-Bus for
inter-application communication, merged with systemd.

•	 systemd also incorporated udev, which offers a flexible device-node
management application.

•	 Login capabilities were added to systemd, enabling fine-grained control over
user sessions.

•	 The journald daemon joined the systemd family to provide a new approach to
system and service logging, replacing some of the functionality of standard
system loggers.

•	 The timerd daemon provides support for the time-based execution of tasks,
replacing some of the functionality of standard cron daemons.

•	 Network configurations can be managed by systemd-networkd.

https://bit.ly/37jYtze

Tuning systemd services, logging, and device management 211

This ongoing approach of absorbing several system services into a single application suite
has not gone unnoticed and isn't without controversy. Some distributions even refuse to
have systemd as the default init system.

The systemd project includes SELinux support for most of its services. Applications such
as systemd, which not only include SELinux awareness but also enforce access controls
on specific SELinux classes and permissions (rather than relying on the Linux kernel), are
called userspace object managers:

Figure 7.1 — The difference between kernel-enforced, standard SELinux, and
userspace-managed SELinux

If an application enforces access controls toward certain classes and permissions, then it
will also have its own AVC (see Chapter 2, Understanding SELinux Decisions and Logging,
for more information about the AVC). Log events resulting from these applications will
be identified as USER_AVC events rather than (kernel-managed) AVC events. The systemd
application has support for systemd-specific classes, as we will see in the Governing unit
operation access section. But before we dive into these specific details, let's first see what
systemd is all about and what SELinux support it has.

212 Configuring Application-Specific SELinux Controls

Service support in systemd
The main capability of the system daemon that most people know about is its support for
system services. Unlike traditional SysV-compatible init systems, systemd does not use
scripts to manage services. Instead, it uses a declarative approach for the various services,
documenting the wanted state and configuration parameters while using its own logic to
ensure that the right set of services start at the right time and in the correct order.

Understanding unit files
systemd uses unit files to declare how a service should behave. These unit files use the
INI-style syntax, supporting sections and key/value pairs within each file. A service can
have multiple unit files that influence the service at large. It is important to remember that
different unit files for the same service are all related:

•	 The *.service unit files define how a system service should be launched, what its
dependencies are, how systemd should treat sudden failures, and so on.

•	 The *.socket unit files define which socket(s) should be created and which
permissions should be assigned to it. systemd uses this for services that can be
launched on request rather than directly at boot.

•	 The *.timer unit files define at what time or frequency the service should be
launched. Services that do not necessarily run daemonized but need to execute
a certain logic at defined intervals can use these timer files to ensure regular runs.
These settings are comparable to the more classic yet still widely used crontabs,
which we briefly touch upon in PAM services, in the subsection called Cron.

Other unit files exist as well, although those have more in common with generic
system configurations (such as slice definitions and automount settings) and less with
runtime services.

System unit files can be placed in one of three locations:

•	 Unit files are installed by default by the system's package manager inside /usr/
lib/systemd/system.

•	 At runtime, updates can be placed inside /run/systemd/system, which will
override the unit files in the default location. However, this location is transient and
will not persist across reboots.

•	 System administrators can override the configurations in the two locations by
placing unit files in /etc/systemd/system. These unit files override previous
definitions, so there is no need to remove the unit files from the previous locations.

Tuning systemd services, logging, and device management 213

As an example, check out the default Nginx service unit file, nginx.service, inside /
usr/lib/systemd/system:

[Unit]
Description=The nginx HTTP and reverse proxy server
After=network.target remote-fs.target nss-lookup.target

[Service]
Type=forking
PIDFile=/run/nginx.pid
ExecStartPre=/usr/bin/rm -f /run/nginx.pid
ExecStartPre=/usr/sbin/nginx -t
ExecStart=/usr/sbin/nginx
ExecReload=/bin/kill -s HUP $MAINPID
KillSignal=SIGQUIT
TimeoutStopSec=5
KillMode=mixed
PrivateTmp=true

[Install]
WantedBy=multi-user.target

This unit file declares the command to launch Nginx with and informs systemd that
the service should be launched after successfully reaching the network, remote-fs,
and nss-lookup targets (which is a milestone in the boot process, allowing proper
dependency handling). The unit file also declares that it is a dependency of the
multi-user target (which is the equivalent of the default run level when using
SysV-style init services), which means the service should launch when the
system boots.

Setting the SELinux context for a service
When systemd launches a service, it executes the command defined through the
ExecStart= configuration entry in the service unit file. By default, a standard domain
transition will occur as defined through the SELinux policy.

Package developers and system administrators can, however, update the service unit
files to have the service launched in an explicitly mentioned SELinux domain. To
accomplish this, the [Service] section of the unit file can be extended with the
SELinuxContext= configuration entry.

214 Configuring Application-Specific SELinux Controls

For instance, to ensure that Nginx launches with the httpd_t:s0:c0.c128 context,
you'd use this:

[Service]
Type=forking
PIDFile=/run/nginx.pid
ExecStartPre=/usr/bin/rm -f /run/nginx.pid
ExecStartPre=/usr/sbin/nginx -t
ExecStart=/usr/sbin/nginx
ExecReload=/bin/kill -s HUP $MAINPID
SELinuxContext=system_u:system_r:httpd_t:s0:c0.c128
KillSignal=SIGQUIT
TimeoutStopSec=5
KillMode=mixed
PrivateTmp=true

Of course, it is also possible to use this to have a service running with a different context,
which can be useful when developing custom policies for daemons. However, keep in
mind that the SELinux policy rules still apply: you cannot ask systemd to launch Nginx,
for instance, with the dnsmasq_t domain without updating the SELinux policy so that
httpd_exec_t (the entry point for the httpd_t domain) is also made an entry point
for the dnsmasq_t domain.

When you request systemd to explicitly use an SELinux context for a service, systemd will
attempt to use this context for all execution-related tasks: ExecStartPre, ExecStart,
ExecStartPost, ExecStopPre, ExecStop, ExecStopPost, and ExecReload. As
these tasks often are not labeled with the right entry point label, these commands can fail.
In that case, prefix the commands with + so that the SELinux context definition does not
apply to them:

[Service]
Type=forking
PIDFile=/run/nginx.pid
ExecStartPre=+/usr/bin/rm -f /run/nginx.pid
ExecStartPre=/usr/sbin/nginx -t
ExecStart=/usr/sbin/nginx
ExecReload=/bin/kill -s HUP $MAINPID
SELinuxContext=system_u:system_r:httpd_t:s0:c0.c128
KillSignal=SIGQUIT
TimeoutStopSec=5
KillMode=mixed
PrivateTmp=true

Tuning systemd services, logging, and device management 215

While developing and changing unit files, the changed settings might not always be
immediately applied to the system. Running systemctl daemon-reload after
modifying unit files will ensure that the latest changes on the system are read by systemd.

Using transient services
systemd can also be used to launch applications as if they are services and have them
under systemd's control. Such applications are called transient services as they lack the
unit files that generally declare how systemd should behave.

Transient services are launched through the systemd-run application. To show this,
let's create a simple Python script (one that calculates Pi up to 10,000 digits):

from decimal import Decimal, getcontext
getcontext().prec=10000
with open('/tmp/pi.out', 'w') as f:
 print(sum(1/Decimal(16)**k * (
 Decimal(4)/(8*k+1)-
 Decimal(2)/(8*k+4)-
 Decimal(1)/(8*k+5)-
 Decimal(1)/(8*k+6)) for k in range(10000)), file=f)

As this takes some time, we can opt to run this Python script under systemd's control:

systemd-run python3.6 /tmp/pi.py
Running as unit: run-rf9ce45c...f343.service

As transient services do not have unit files to manage, changing the SELinux context must
be accomplished through the command line as well. Of course, this is only needed if the
standard domain transitions defined in the policy do not result in the wanted behavior:

systemd-run -p SELinuxContext=guest_u:guest_r:guest_t:s0
python3.6 /tmp/pi.py

The systemd-run application supports this through the --property (or -p) option,
through which unit file properties can be added. In the previous example, we use this
option to run the script in the guest_t domain using the SELinuxContext property,
similar to how we would define this in the unit file itself.

Requiring SELinux for a service
Some services should only run when SELinux is enabled or disabled. With systemd, this
can be defined through its conditional parameters.

216 Configuring Application-Specific SELinux Controls

A service unit file can contain several conditions that need to be valid before systemd
will consider executing the service. These conditionals can point to the system type
(virtualized or not), kernel command-line parameters, files that do or don't exist, and so
on. The one we are interested in is ConditionSecurity, which represents the state of
the given security system—in our case, SELinux.

For instance, look at the selinux-autorelabel.service unit file inside /usr/
lib/systemd/system:

[Unit]
Description=Relabel all filesystems
DefaultDependencies=no
Conflicts=shutdown.target
After=sysinit.target
Before=shutdown.target
ConditionSecurity=selinux
[Service]
ExecStart=/usr/libexec/selinux/selinux-autorelabel
Type=oneshot
TimeoutSec=0
RemainAfterExit=yes
StandardOutput=journal+console

Similarly, the Linux distribution provides the selinux-autorelabel-mark.
service file. This service ensures that, if SELinux is not active when the system
boots (and no /.autorelabel file exists yet), then systemd will create an empty
/.autorelabel file. This file ensures that, when the system reboots with SELinux
support, the relabeling operation occurs.

Relabeling files during service startup
One of the actions that many services require is the preparation of service-specific
runtime directories, such as /run/httpd for the Apache service. systemd supports
this through tmpfiles.d. We have briefly covered tmpfiles in Chapter 4, Using File
Contexts and Process Domains. Within tmpfiles, we can define the files and locations
requested to be provided or updated immediately (at boot time) when these are not placed
in the (persisted) filesystem.

For instance, the package that provides the Apache daemon installs the following
definition as /usr/lib/tmpfiles.d/httpd.conf on the system:

d /run/httpd	 710 root apache
d /run/httpd/htcacheclean	 700 apache

Tuning systemd services, logging, and device management 217

Like the systemd unit files, the files that contain these settings should be declared in one of
the following three locations. Each location overrides the settings of the previous one:

•	 The default, package-provided location is /usr/lib/tmpfiles.d.

•	 Runtime declarations can be placed in /run/tmpfiles.d.

•	 Local system administrator-provided declarations are placed in /etc/
tmpfiles.d.

These definitions can get much more specific than just directory creation. Through the
tmpfiles.d application, definitions can be set to create files, empty directories upfront,
create sub-volumes, manage special files such as symbolic links or block devices, set
extended attributes, and more.

One of its features is to set the file mode and ownership, and restore the SELinux context
on a file (z) or recursively against a directory (Z). This can be used to change contexts on
files that have a proper context definition in the policy, but whose context is not properly
assigned.

For instance, look at the definitions in the selinux-policy.conf file inside /usr/
lib/tmpfiles.d:

z /sys/devices/system/cpu/online - - -
Z /sys/class/net - - -
z /sys/kernel/uevent_helper - - -
w /sys/fs/selinux/checkreqprot - - - - 0

We need to relabel files inside /sys because this location is labeled with sysfs_t by
default and changing the context at runtime does not preserve its status across reboots.
Yet some of its files should have a different label – the /sys/devices/system/cpu/
online file, for instance, requires the cpu_online_t label:

matchpathcon /sys/devices/system/cpu/online
/sys/devices/system/cpu/online system_u:object_r:cpu_
online_t:s0

The definition ensures that this (pseudo) file is relabeled at boot so that all other processes
that rely on the file labeled with cpu_online_t can happily continue working.

The other arguments to the definition are explicitly marked with a dash in the previous
example, meaning that no other parameters need to be configured. They can be used to set
the mode, User Identifier (UID), Group Identifier (GID), age, and argument related to
the rule.

218 Configuring Application-Specific SELinux Controls

An example configuration that uses some of these other parameters with the z or Z state is
the systemd.conf file:

grep ^[zZ] /usr/lib/tmpfiles.d/systemd.conf
z /run/log/journal 2755 root systemd-journal - -
Z /run/log/journal/%m ~2750 root systemd-journal - -
z /var/log/journal 2755 root systemd-journal - -
z /var/log/journal/%m 2755 root systemd-journal - -
z /var/log/journal/%m/system.journal 0640 root systemd-journal
- -

For more information about the definition format, see man tmpfiles.d.

Using socket-based activation
The system daemon also supports socket-based activation. When configured, systemd will
create the socket on which the daemon usually listens and will have the daemon launched
when the socket is first used. This allows systems to boot quickly (as many daemons
do not need to be launched immediately) while still ensuring that all required sockets
are available.

When a client only writes information to the socket (such as with the /dev/log socket),
the client does not even need to wait for the daemon to be activated. The data is stored in
a buffer until the daemon can read it. Only when the buffer is full will the operation block
until the daemon flushes the buffer.

Take a look at the systemd-journald.socket unit file, available inside /usr/lib/
systemd/system:

[Unit]
Description=Journal socket
Documentation=man:systemd-journal.service(8) man:journald.
conf(8)
DefaultDependencies=no
Before=sockets.target
IgnoreOnIsolate=yes

[Socket]
ListenStream=/run/systemd/journal/stdout
ListenDatagram=/run/systemd/journal/socket
SocketMode=0666
PassCredentials=yes
PassSecurity=yes
ReceiveBuffer=8M
Service=systemd-journald.service

Tuning systemd services, logging, and device management 219

When a client uses one of the mentioned sockets, then systemd will launch the
systemd-journald.service unit to accommodate the client interaction. As long as
these sockets are not used, the service will not be started.

Inside the [Socket] section, an SELinux-specific entry can be defined:
SELinuxContextFromNet=true. When a unit file has this entry set, systemd will
obtain the MLS/MCS information from the client context (the application connecting to
the socket) and append this to the context of the service. This sensitivity inheritance can
be used to prevent any information leakage from taking place when communication is
happening through sockets.

Governing unit operation access
Until now, we've looked at configuration settings related to systemd's SELinux support.
systemd also uses SELinux to control access to services defined through unit files. When
a user wants to perform an operation against a unit (such as starting a service or checking
the state of a running service), systemd queries the SELinux policy to see whether it will
allow this operation.

The systemd daemon uses the service class to validate the permissions of the client's
domain toward the requested operation. For instance, to validate whether a user context,
sysadm_t, can view the status of the service associated with the sshd.service unit
file, it checks the context of this file (being sshd_unit_file_t) and then validates
whether the status permission is granted:

sesearch -s sysadm_t -t sshd_unit_file_t -c service -p status
-A

Other supported permissions are disable, enable, reload, start, and stop. When
a permission is not granted, a USER_AVC denial message will be visible in the audit logs
(rather than an AVC message) as the message is not generated by the Linux kernel, but by
systemd. So, while the rules themselves are part of the SELinux policy, it is systemd that
enforces the access.

systemd, or the client through which systemd is queried, might also provide additional
error messages to reflect that the SELinux policy prevents the action. For instance,
if we attempt to query systemd over D-Bus (which we cover in the D-Bus communication
section) from an unprivileged user domain, then we get the following error:

Error: GDBus.Error:org.freedesktop.DBus.Error.AccessDenied:
SELinux policy denies access

220 Configuring Application-Specific SELinux Controls

To facilitate troubleshooting any systemd-triggered failures, systemd also has an extensive
logging component, called systemd-journald, which we'll cover next.

Logging with systemd
systemd is not only responsible for service management: it takes up several other tasks as
well. One of these tasks is log management, traditionally implemented through a system
logger.

While systemd still supports running with a traditional system logger, it now suggests the
use of systemd-journald. One of the advantages of the journal daemon is that it is
not limited to textual, single-line log messages. Daemons can now use binaries as well as
multiline messages as part of its logging capabilities.

The journal daemon also registers information about the sending process alongside
the log messages themselves. This additional information contains ownership data (the
process owner) including the SELinux context of the sending process.

Retrieving SELinux-related information
The traditional approach to receive SELinux-related information (excluding the audit
events we tackled before) is to grep through the log information. With the journal
daemon, we can accomplish this as follows:

journalctl -b | grep -i selinux

The -b option passed on to the journal control application informs the journal daemon
that we are only interested in the log messages that originated for a specific boot.

Querying logs given an SELinux context
A unique feature of the journal daemon is to use the information associated with the log
messages as part of the query to be launched against the journal database. For instance,
we can ask the journal daemon to only show those messages that originated from a daemon
or application running in the udev_t context:

journalctl _SELINUX_CONTEXT=system_u:system_r:init_t:s0

The available contexts can be retrieved through the Bash completion support on the
system. After writing _SELINUX_CONTEXT=, press Tab twice to see the possible values.

Tuning systemd services, logging, and device management 221

Using setroubleshoot integration with journal
The SELinux troubleshoot daemon is also integrated with systemd-journald. Any
alert that comes up from setroubleshootd is also available through the journal
daemon.

This helps administrators as they will quickly find out about SELinux denials when
investigating problems. For instance, when the Nginx web server is not working properly
and this is due to an SELinux policy, a quick investigation of the status of the service will
reveal that the SELinux policy is preventing some actions:

systemctl status nginx

To get more information about the message, use journalctl:

journalctl -xe

As you can see, systemd-journald has captured environment information related to
the service, which can provide much-needed guidance on resolving potential problems.

A third systemd service that has SELinux configuration possibilities is the device daemon.

Handling device files
Linux has a long history of device managers. Initially, administrators needed to make
sure that the device nodes were already present on the filesystem (/dev was part of the
persisted filesystem). Gradually, Linux adopted more dynamic approaches for device
management.

Nowadays, device files are managed through a combination of a pseudo filesystem
(devtmpfs) and a userspace device manager called udev. This device manager is merged
in systemd as well, becoming systemd-udevd.

The device manager listens on a kernel socket for kernel events. These events inform the
device manager about detected or plugged-in devices (or the removal of such devices) and
allow the device manager to take appropriate action. For udev, these actions are defined in
udev rules.

Using udev rules
Configuring the udev subsystem is mainly done through udev rules. These rules are
one-liners that contain a matching part and an action part.

222 Configuring Application-Specific SELinux Controls

The matching part contains validations, executed against the event(s) that udev receives
from the Linux kernel. This validation uses key/value pairs obtained from the event, and
includes the following possible keys:

•	 Kernel-provided device name (KERNEL)

•	 Device subsystem (SUBSYSTEM)

•	 Kernel driver (DRIVER)

•	 Specific attributes (ATTR)

•	 Active environment variables (ENV)

•	 The action type to inform if the device is detected or removed (ACTION)

While more match keys are possible, the preceding list is most commonly used.

The Linux kernel will also inform the device manager about the device hierarchy. This
allows rules to be defined based on, for instance, the USB controller through which
a USB device is plugged in. Alongside the information for the device itself, the kernel
will also provide hierarchically related information through similar key/value pairs. These
pairs, however, use a key definition in plural form: SUBSYSTEMS instead of SUBSYSTEM,
DRIVERS instead of DRIVER, and so on.

For instance, to match a USB webcam with vendor ID 05a9 and product ID 4519, the
match-related pairs could look like this:

KERNEL=="video[0-9]*", SUBSYSTEM=="video4linux",
SUBSYSTEMS=="usb", ATTR{idVendor}=="05a9",
ATTR{idProduct}=="4519"

The second part of a udev rule is the action to take. The most common action is to create
a symbolic link to the created device file, ensuring that applications can always reach the
same device through the same symbolic link, even when the device from the kernel point
of view has a different name. We can, for instance, extend the preceding example with
SYMLINK+="webcam1" to have /dev/webcam1 point to this newly detected device.

The udev application supports many more actions than just defining symbolic links, of
course. It can associate ownership (OWNER) or group membership (GROUP) on the device,
controlling who can access the devices. udev can also set environment variables (ENV) and
even run a command (RUN) when the matched device is plugged in or detached from the
system. To make sure the command is only executed when the device is added, we need to
add an ACTION setting such as ACTION=="add".

Tuning systemd services, logging, and device management 223

Important note
udev can interpret ENV as both a matching key as well as an action key. The
difference is the operation performed (a single equals sign = or a double ==).
ENV{envvar}=="value" is a match operation (checking whether the
variable matches the given value), whereas ENV{envvar}="value"
is an action (setting the variable to value).

udev rules are provided by default through the /usr/lib/udev/rules.d location.
Distributions and applications/drivers will store their default rules in this location.
Additional rules or rule overrides can be placed in /etc/udev/rules.d.

It's important to remember that udev will continue processing rules even when it has
already encountered a matching rule. This can be changed on a per-rule basis through the
OPTIONS action, as with OPTIONS+="last_rule", which informs udev that it can
stop processing further rules for this event.

Setting an SELinux label on a device node
One of the actions that udev supports is to assign an SELinux context on the device node.
We can do this using the SECLABEL{selinux} action:

KERNEL=="fd0", ..., SECLABEL{selinux}="system_u:object_r:my_
device_t:s0"

Note that this action only sets the context on the device node. If the rule also sets
a symbolic link, then the symbolic link itself will inherit the default device_t context.

Placing an SELinux label on a device node is often done together with the other
security-related permissions, so the rule often receives additional actions such as setting
the target owner (OWNER), group (GROUP), and permission set (MODE). After all, SELinux
security controls only apply after the regular, discretionary access control checks have
passed, so don't forget to make sure your users have access to the device nodes outside
of the SELinux controls as well.

All the settings we've seen so far are about systemd service management and system
support. Another component within the systemd ecosystem is D-Bus, which is less about
system management and more about facilitating communication and interaction between
different applications over a programmable communication bus.

224 Configuring Application-Specific SELinux Controls

Communicating over D-Bus
The D-Bus daemon provides an inter-process communication channel between
applications. Unlike traditional IPC methods, D-Bus is a higher-level communication
channel that offers more than simple signaling or memory sharing. Applications that want
to chat over D-Bus link with one of the many D-Bus-compatible libraries, such as those
provided by the libdbus, sd-bus (part of systemd), GDBus, and QtDBus applications.

The D-Bus daemon is part of the systemd application suite.

Understanding D-Bus
Linux generally supports two D-Bus types – system-wide and session-specific D-Bus
instances:

•	 The system-wide D-Bus is the main instance used for system communication. Many
services or daemons will associate themselves with the system D-Bus to allow others
to communicate with them through D-Bus.

•	 The session-specific D-Bus is an instance running for each logged-in user. It is
commonly used by graphical applications to communicate with each other within
a user session.

Both D-Bus instances are provided through the dbus-daemon application. The
system-wide D-Bus will run with the --system option, whereas a session-specific
instance will run with the --session option.

Applications register themselves against D-Bus through a namespace. Conventionally,
this namespace uses the domain name of the project. For instance, systemd declares the
org.freedesktop.systemd1 namespace, whereas D-Bus is at org.freedesktop.
DBus.

The currently associated applications can be queried using Python easily:

python3.6
>>> import dbus
>>> for service in dbus.SystemBus().list_names():
... print(service)
org.freedesktop.DBus
org.freedesktop.login1
org.freedesktop.systemd1
org.freedesktop.PolicyKit1
com.redhat.tuned
:1.10
:1.11

Communicating over D-Bus 225

org.freedesktop.NetworkManager
...

Each application then provides objects on the bus that can be reached by other objects
(other applications)—of course, assuming they have the privileges to do so. These objects
are represented through a path-like syntax and generally also use the domain of the
project as a prefix.

For instance, to list the objects currently associated with org.freedesktop.
systemd1, we can use the gdbus command. To facilitate its use, we first enable
auto-completion support, after which we can use the Tab key to easily add the appropriate
values:

source /usr/share/bash-completion/completions/gdbus

gdbus call --system --dest <TAB><TAB>

gdbus call --system --dest org.freedesktop.systemd1 --object-
path /org/freedesktop/systemd1<TAB><TAB>
Display all 220 possibilities? (y or no)
/org/freedesktop/systemd1
/org/freedesktop/systemd1/job
/org/freedesktop/systemd1/unit
...

Applications can trigger methods on these objects, or send messages to the applications
bound to these objects through these methods.

For instance, to get the state of the sshd.service unit through D-Bus, we invoke the
org.freedesktop.systemd1.Manager.GetUnitFileState method on the
org.freedesktop.systemd1 object reachable through the /org/freedesktop/
systemd1 path, and with the sshd.service argument, like this:

gdbus call --system \
 --dest org.freedesktop.systemd1 \
 --object-path /org/freedesktop/systemd1 \
 --method org.freedesktop.systemd1.Manager.GetUnitFileState \
 sshd.service
('enabled',)

These calls can also be controlled through the SELinux policy, as we will learn next.

226 Configuring Application-Specific SELinux Controls

Controlling service acquisition with SELinux
The D-Bus application, like systemd, will query the SELinux policy to verify whether to
allow an operation. Again, it is the D-Bus application itself that enforces the policy and
not a Linux kernel subsystem.

The first control that administrators can enable within D-Bus is to ensure that only
well-established domains can acquire a specified object within D-Bus. Without this
control, malicious code could register itself as org.freedesktop.login1, for
instance, and act as a system daemon on the bus. Other applications might mistakenly
send out sensitive information to the application.

Applications store this policy information in files hosted in /usr/share/dbus-1/
system.d. The login service, for instance (stored as org.freedesktop.login1.
conf) has the following policy snippet installed:

<busconfig>
 <policy user="root">
 <allow own="org.freedesktop.login1"/>
 <allow send_destination="org.freedesktop.login1"/>
 <allow receive_sender="org.freedesktop.login1"/>
 </policy>
 <policy context="default">
 <deny send_destination="org.freedesktop.login1"/>
 <allow
 send_destination="org.freedesktop.login1"
 send_interface="org.freedesktop.DBus.Introspectable"/>
 ...
 </policy>
</busconfig>

As the login daemon runs in the systemd_logind_t domain, we could enhance this
configuration as follows:

<busconfig>
 <selinux>
 <associate
 own="org.freedesktop.login1"
 context="system_u:system_r:systemd_logind_t:s0" />
 </selinux>
 ...
</busconfig>

Communicating over D-Bus 227

With this enhancement in place, D-Bus will check whether the application (which
we presume is running in the systemd_logind_t context) has the acquire_svc
permission (of the dbus class) against the systemd_logind_t context. By default, the
SELinux policy does not have this permission, and as such, the registration fails:

systemctl restart dbus-org.freedesktop.login1
Job for systemd-logind.service failed because a timeout was
exceeded.
See "systemctl status systemd-logind.service" and "journalctl
-xe" for details.

ausearch -m user_avc -ts recent

When we add the following SELinux policy rule, the registration of systemd-logind
will succeed, as expected:

(allow systemd_logind_t systemd_logind_t (dbus (acquire_svc)))

Load this policy (say test.cil) and try the restart operation again:

semodule -i test.cil

systemctl restart dbus-org.freedesktop.login1

By limiting which domains can obtain a given service, we ensure that only trusted
applications are used. Non-trusted applications will generally not run within the domain
of that application (end users, for instance, cannot trigger a transition to such a domain)
even if they receive root privileges (which is another check that D-Bus does for the login
service, as shown in the first busconfig snippet).

Administrators can enhance this D-Bus configuration without having to alter the
existing configuration files. For instance, the previously mentioned SELinux-governing
busconfig snippet could very well be saved as a different file.

Governing message flows
A second control that D-Bus validates is which applications can communicate with each
other. This is not configurable through the service configurations but is a pure SELinux
policy control.

Whenever a source application is calling a method of a target application, D-Bus validates
the send_msg permission between the two domains associated with the source and
target applications.

228 Configuring Application-Specific SELinux Controls

For instance, communication over D-Bus between a user domain (sysadm_t) and
service domain (systemd_logind_t) will check the following permissions:

allow sysadm_t systemd_logind_t : dbus send_msg;
allow systemd_logind_t sysadm_t : dbus send_msg;

If these permissions are not granted, then D-Bus will not allow the communication to
happen. If at any point, the application context cannot be obtained, then the bus daemon
context will be used.

Failures will be logged as USER_AVC entries in the audit log. If the communication should
be allowed, we can create a simple SELinux policy file to address this like so:

(allow sysadm_t systemd_logind_t (dbus (send_msg)))
(allow systemd_logind_t sysadm_t (dbus (send_msg)))

Store these rules in a file with the suffix .cil (say, local_logind_systemd.cil),
and load it with semodule:

semodule -i local_logind_systemd.cil

Let's consider a few other applications that have SELinux support, not necessarily built-in,
but through the SELinux policy and PAM integration within the system.

Configuring PAM services
systemd and D-Bus are SELinux-aware applications, with explicit SELinux support built
in. Several other services exist on a Linux system that play nicely together with SELinux
yet are not SELinux-aware themselves. Many of these services have an affinity with
SELinux through their PAM integration.

We covered PAM integration in Chapter 3, Managing User Logins. In this section,
we'll cover three example services using PAM, and how SELinux can be further fine-tuned
to support these services.

Cockpit
Cockpit is a simple, browser-based management application that allows administrators
to easily see system resources (monitoring) as well as to interact with the system. It also
allows users to log into the system through the browser.

It is this browser-based terminal that we want to configure: by tuning the target SELinux
roles for the SELinux users, we can selectively put users in a specific role. This effectively
defines what the users can accomplish through this browser-based session.

Configuring PAM services 229

Installing Cockpit
The Cockpit application is readily available in the CentOS repository, so installing it is
a breeze:

yum install cockpit

While the application does not need additional configuration, if you do need tweaks,
you will need to create the configuration file, /etc/cockpit/cockpit.conf, yourself
as the application does not create a default configuration file. Within this configuration
file, you can configure the TLS settings, or disable encrypted communication generally.

Let's disable the encrypted communication for this demonstration run (but if you intend
to use Cockpit in production, you should not only keep encryption on but also ensure that
only trusted hosts are connecting, possibly even requiring client certificate authentication
using the ClientCertAuthentication directive):

[WebService]
AllowUnencrypted=true

With this set, we can continue with configuring SELinux for Cockpit.

Restricting user logins
Through these instructions, we will add the more restricted user_r role to the staff_u
SELinux user, and then ensure that all logins mapped to the staff_u SELinux user are
logged in using the user_r role when they log in through Cockpit. If they log in through
other services, they will continue using the default staff_r role.

Note
The use of the user_r role rather than the (even more restricted) guest_r
role is to allow the Cockpit application to function properly. The application
will run a service under the user's privileges, which are not sufficient for
Cockpit if we use the guest_t user domain.

Let's first add the user_r role so that we can put the users in the correct context later:

semanage user -m -R "staff_r sysadm_r system_r user_r"
staff_u

230 Configuring Application-Specific SELinux Controls

Next, we want to update the SELinux configuration so that any Cockpit login by staff_u
mapped users is going to use the user_r role. The Cockpit application has logins done
through a service running in the cockpit_session_t context, which we find out by
checking the context of the process first, and then logging in on Cockpit and checking the
context of the processes again. There, we notice that a new process (cockpit-session)
runs with the cockpit_session_t context:

ps -eZ | grep cockpit
system_u:system_r:cockpit_ws_t:s0	 ... cockpit-ws
system_u:system_r:cockpit_session_t:s0 ... cockpit-session
localhost

With this information now available, we can edit the /etc/selinux/targeted/
contexts/users/staff_u file as follows:

system_r:local_login_t:s0 staff_r:staff_t:s0
sysadm_r:sysadm_t:s0
system_r:remote_login_t:s0 staff_r:staff_t:s0
system_r:sshd_t:s0 staff_r:staff_t:s0
sysadm_r:sysadm_t:s0
system_r:cockpit_session_t:s0 user_r:user_t:s0
system_r:crond_t:s0 staff_r:staff_t:s0
staff_r:cronjob_t:s0

By adjusting the order of the roles listed for the cockpit_session_t context
(or limiting them to only the user_r role), we ensure that users allowed to run with
the user_r role (like the staff_u user we configured earlier on) do so through the
user_r role. As this role is more restricted than the default staff_t user domain,
logins through Cockpit are thus more isolated.

This approach can be used for all PAM-enabled services, as this solely relies on the pam_
selinux.so call in the service PAM configuration. For some services, the SELinux
policy administrators add in a few more tweaks to use, such as with cron and SSH, which
we'll discuss next.

Cron
Cron services on a system allow you to run tasks or commands on predefined schedules.
Some cron applications are explicitly made SELinux-aware (such as fcron), allowing them
to compute the target context a job should run in. Even cron systems that do not have any
specific SELinux logic built in can be fine-tuned.

Configuring PAM services 231

Switching between user-specific and generic contexts
A common setup supported through the SELinux policy is to toggle whether user
tasks run in the user's default context (such as staff_t for staff users) or in a default,
restricted cron context (cronjob_t). Both approaches have their pros and cons.

When we configure the system to have user jobs run in the user's default context, then
users know what the privileges are of their jobs. A guest user has guest privileges, a staff
user has staff privileges, and so forth. This is the most common configuration, and the
default cron system on CentOS uses the context of the file containing the user's tasks
(located in /var/spool/cron) to deduce the target runtime context.

By running user jobs in a more restricted context such as cronjob_t, all users' cron jobs
run with the same privileges, and the administrator can easily fine-tune the privileges for
all user jobs. This also allows the administrator to grant specific privileges for cron jobs
while keeping the user contexts free of these rights.

Let's have a simple task executed every minute, namely a 59-second sleep. As a regular
user, create a file (let's say lisa.cron) with the following content:

* * * * * sleep 59

This file uses the common cron syntax, where the following applies:

1.	 The first field covers the minute.

2.	 The second field covers the hour.

3.	 The third field covers the day of the month.

4.	 The fourth field covers the month.

5.	 The fifth field covers the day of the week.

6.	 The rest of the line is the command to execute.

The fields can use expressions to facilitate time definitions. For instance, to run every 15
minutes, you can use */15 in the first field. If you want to run only at 8 o'clock and 18
o'clock, you can use the 8,18 value in the second field. Another example is if you only
want to run on workdays, for which you can use 1-5 in the fifth field (in cron, Sunday
holds both 0 and 7 as valid values).

232 Configuring Application-Specific SELinux Controls

By loading it with the crontab command, the file is checked for errors and, if error-free,
is securely placed inside /var/spool/cron (the crontab command is a setuid
command that is able to modify /var/spool/cron even though this location is
inaccessible by regular users):

$ crontab ./lisa.cron

From here, the cron daemon will pick up this file, and 1 minute later we will see the
command active in the background:

$ ps -efZ | grep sleep
staff_u:staff_r:staff_t:s0 ... sleep 59

As seen from the output, the command is running in the staff_t context. To change
this to the cronjob_t type, rather than editing the SELinux context definition file as
we did with the Cockpit application, use the cron_userdomain_transition SELinux
boolean:

setsebool cron_userdomain_transition off

This boolean changes the active SELinux policy behavior so that any user task executed
from the cron system executes within the cronjob_t domain. You might need to reset
the crontab definition (this depends on the cron system used), but afterward, we will see
the job running in the cronjob_t domain:

$ ps -efZ | grep sleep
staff_u:staff_r:cronjob_t:s0 ... sleep 59

The use of SELinux booleans to allow administrators to differentiate system behavior as
needed is commonly used. For the SSH daemon, SELinux policy administrators have
defined something similar.

OpenSSH
The OpenSSH daemon is the most common secure shell daemon around. It allows users
to remotely access systems through a terminal, as well as to securely transfer files, tunnel
application communications, and more.

When logging in through SSH, the PAM controls apply, but the SELinux policy also has
specific SSH controls embedded and controllable through SELinux booleans.

Configuring PAM services 233

Directly logging in as sysadm_t
The first change to assess is to allow directly logging in using the sysadm_r role. Users
mapped to the staff_u SELinux user by default log in using the (more restricted)
staff_r role, and then need to explicitly switch roles to obtain the more privileged
sysadm_r role.

The first change we need to make is to edit the /etc/selinux/targeted/
contexts/users/staff_u file and adjust the order of the roles listed for the sshd_t
context:

system_r:local_login_t:s0 staff_r:staff_t:s0
sysadm_r:sysadm_t:s0
system_r:remote_login_t:s0 staff_r:staff_t:s0
system_r:sshd_t:s0 sysadm_r:sysadm_t:s0
staff_r:staff_t:s0
system_r:cockpit_session_t:s0 user_r:user_t:s0
system_r:crond_t:s0 staff_r:staff_t:s0
staff_r:cronjob_t:s0

However, this is not enough. The SELinux policy administrators have disabled direct
logins through SSH to the sysadm_r role, forcing users to explicitly change roles (and
thus reauthenticate). This approach is because SSH is often a publicly reachable and not
otherwise easily controllable service (unlike services such as web servers, which can have
reverse proxies and web application firewalls in front).

Change the SELinux ssh_sysadm_login boolean to true to enable the wanted
behavior:

setsebool ssh_sysadm_login true

This boolean changes the SELinux policy behavior to allow logins to the sysadm_r role
from the SSH daemon.

Chrooting Linux users
Another feature that SSH supports is forcing logins from selected users to be chrooted.
A chroot (which is a portmanteau of change root) is an isolation method for processes,
where the process no longer sees the entire filesystem but only a part of it.

234 Configuring Application-Specific SELinux Controls

Informational note
Now, chroot environments are an easy way to isolate processes, but a chroot
itself is still governed through Linux's discretionary access controls, and
escaping chroot environments is not impossible. Using SELinux to further
confine the process is recommended but is not in the scope of this section. For
that, we refer to Chapter 14, Dealing with New Applications.

Before we configure SSH to chroot some users, we need to create a properly functioning
environment: once we change the root for a process, all commands and libraries that the
process wants to read or execute need to be available within this chroot environment.

Let's first create a chroot environment. A nice utility that assists in creating the right
folder structure and files is Jailkit. Jailkit is not available by default through the regular
repositories but can be easily installed and only requires a working compiler and Python
environment.

We start off by installing the necessary dependencies:

yum install gcc python36-devel

Next, we download the Jailkit source code and build it. As CentOS does not have a
linked Python binary by default (as it requires the use of python3 as the runtime),
we need to tell the build scripts how to address Python. We do this by declaring the
PYTHONINTERPRETER environment variable:

wget https://olivier.sessink.nl/jailkit/jailkit-2.21.tar.bz2

tar xvf jailkit-2.21.tar.bz2

cd jailkit-2.21

export PYTHONINTERPRETER=/usr/bin/python3

./configure

make

make install

Once the installation is complete, you might need to remove a duplicate
includesections call within the Jailkit configuration file (the jk_init command,
which we will use next, will inform you about it if you don't). The openvpn section in /
etc/jailkit/jk_init.ini should look like this:

[openvpn]
comment = jail for the openvpn daemon
paths = /usr/sbin/openvpn
users = root,nobody

Configuring PAM services 235

groups = root,nobody
devices = /dev/urandom, /dev/random, /dev/net/tun
includesections = netbasics, uidbasics
need_logsocket = 1

With the configuration updated, we can now create the chroot environment. Let's create
the /srv/chroot directory and then populate it with the necessary files, directories,
device nodes, and more with the jk_init command:

mkdir /srv/chroot

jk_init -v -j /srv/chroot extshellplusnet

We want to make sure that the SELinux contexts for the resources inside this location are
equivalent to the root location, so let's create a file context equivalency definition:

semanage fcontext -a -e / /srv/chroot

restorecon -RvF /srv/chroot

With the chroot environment set, we can now update the SSH configuration to chroot
a user:

Match User lisa
 X11Forwarding no
 AllowTcpForwarding no
 ChrootDirectory /srv/chroot

While not applicable to all systems (as it depends on the distribution), we might need
to tell the SELinux policy that the user domains for the users can chroot. This privilege
(sys_chroot) is often not enabled by default for user domains:

setsebool selinuxuser_use_ssh_chroot true

With this set, restart the SSH daemon and see whether the chroot is successful:

systemctl restart ssh

Chroot environments are not only sensible for SSH access; other daemons might support
chroot environments to further protect the resources on the system. In the past, chroot
support was a common way to further harden the system. Namespace and resource
isolation support has, however, largely surpassed the need for chroot jails. These new
features have also jumpstarted the containerized ecosystem, which we will cover in
Chapter 11, Enhancing the Security of Containerized Workloads.

236 Configuring Application-Specific SELinux Controls

The SELinux support for applications such as Cockpit, cron, and OpenSSH is generally
provided through the SELinux policy and uses PAM integration to link SELinux controls
within the application. It is, however, also possible to explicitly build in SELinux support
in applications not intentionally SELinux-aware, but who support dynamic additions of
logic through a modular design. As an example of this, we will look at Apache and the
mod_selinux Apache module next.

Using mod_selinux with Apache
Applications are often web-based, exposing their interface as either a common website
or a simple web service, and executing the bulk of logic either within the web server or in
backend services that the web server interacts with for the user.

A web-based application has the huge advantage that end users often don't require any
application or client to be installed on top of what is available by default on their device,
be it a workstation, laptop, mobile, wristwatch, or smart TV.

However, unlike the services discussed earlier, Apache does not run individual user
sessions through PAM logins on the system. Instead, user requests are handled by the web
server threads and processes themselves, which makes easy SELinux-based controls a bit
harder to accomplish.

Introducing mod_selinux
Apache has support for modules: dynamically loadable code that enhances the
functionality of the web server, without having to rebuild the web server code itself. This
modularity has given rise to the popularity of Apache, as we can see through its support
for features such as PHP, introducing dynamic web applications to a server platform that
was once meant to serve static content only.

mod_selinux uses the same modular support, which allows the Apache web server to
become SELinux-aware. Once we enable mod_selinux, we can configure Apache to
switch SELinux sensitivity or even SELinux domains for running code, further isolating
the behavior of the web server and allowing SELinux policies to control what the web
server can do. mod_selinux also supports user mappings, allowing the Apache web
server to run specific user sessions in different domains.

Before building the mod_selinux module, let's first install the necessary dependencies
on the system:

yum install gcc git httpd httpd-devel redhat-rpm-config
libselinux-devel

Using mod_selinux with Apache 237

Once the dependencies are installed, we can download and build the mod_selinux
code. The code is available on GitHub in Kaigai's mod_selinux repository:

git clone https://github.com/kaigai/mod_selinux

cd mod_selinux

apxs -c -i mod_selinux.c

The apxs command is the Apache Extension Tool, which facilitates building and
installing Apache modules. The command both compiles (-c) and installs (-i) the mod_
selinux module. We have yet to activate it in the Apache configuration though, which
we accomplish by creating a new module configuration file in /etc/httpd/conf.
modules.d called 99-selinux.conf (you can pick whatever name you want, but
make sure it ends with the .conf suffix):

LoadModule selinux_module modules/mod_selinux.so

Now, while we have now installed the module, it is not ready for consumption yet,
as we have not loaded the SELinux policy for it.

The mod_selinux repository contains the necessary SELinux policy code. However,
it is not fully compatible with the more recent SELinux policy used by Linux distributions.
We need to edit the mod_selinux.if file and remove all references to httpd_user_
script_ro_t, httpd_user_script_rw_t, and httpd_user_script_ra_t,
as those types are no longer present in current SELinux policies:

sed -i '/script_r/d' mod_selinux.if

A second change – cosmetic for now – is to rename the calls from miscfiles_read_
certs to miscfiles_read_generic_certs. These are functions used in the
reference policy, a different – and still the most common way – of writing SELinux
policies (which we cover in Chapter 15, Using the Reference Policy), and while both
functions are supported at the time of writing, the miscfiles_read_certs function
is no longer recommended for use and will disappear soon:

sed -i 's/miscfiles_read_certs/miscfiles_read_generic_
certs/g' mod_selinux.if

Once we have adjusted the policy, we can build and load it. As this policy is developed
using the reference policy style, the installation first requires building the module before
we load it (unlike the directly loadable CIL examples we've used so far):

make -f /usr/share/selinux/devel/Makefile mod_selinux.pp

semodule -i mod_selinux.pp

238 Configuring Application-Specific SELinux Controls

With the SELinux module loaded and the mod_selinux Apache module installed,
we can start configuring the Apache daemon with SELinux-specific controls.

Configuring the general Apache SELinux sensitivity
The simplest configuration setting that mod_selinux supports is to configure Apache
to run with a specific SELinux sensitivity. Suppose we want Apache to run with the
s0-s0:c0.c100 sensitivity, then we need to adjust the Apache configuration and
use the selinuxServerDomain directive.

Assuming we want to adjust the sensitivity for the default welcome site, edit /etc/
httpd/conf.d/welcome.conf and add in the following code snippet:

<IfModule mod_selinux.c>
 selinuxServerDomain *:s0-s0:c0.c100
</IfModule>

If the Apache web server uses virtual host definitions (allowing a single web server
definition to manage multiple websites, based on the hostname that the client is using to
access the web content), the selinuxDomainVal directive needs to be used instead of
the selinuxServerDomain one.

For instance, suppose the web server manages two virtual hosts, one for the apps.
genfic.local domain, and the other for intranet.genfic.local, then we can
assign each virtual host with its own sensitivity set like so:

<VirtualHost *:80>
 DocumentRoot /srv/web/apps/htdocs
 ServerName apps.genfic.local
 selinuxDomainVal *:s0:c1,c2
</VirtualHost>

<VirtualHost *:80>
 DocumentRoot /srv/web/intranet/htdocs
 ServerName intranet.genfic.local
 selinuxDomainVal *:s0:c3,c4
</VirtualHost>

Restart the Apache web server and validate that the setting is active:

systemctl restart httpd

ps -efZ | grep httpd_t
system_u:system_r:httpd_t:s0-s0:c0.c100 ... /usr/sbin/httpd

Using mod_selinux with Apache 239

As you can see, the web server is now running with the given sensitivity. An important
caveat though: the mod_selinux code does not support mcstransd, the translation
daemon we covered in Chapter 3, Managing User Logins, so you cannot use
human-readable sensitivity definitions such as SystemLow-SystemHigh.

Mapping end users to specific domains
To map users, when logged in to a web application, to a specific domain, we need to create
a user mapping file. This mapping file is then referred to using the selinuxDomainMap
directive in the web server configuration.

Let's first create the mapping file inside /etc/httpd/conf.d, naming it mod_
selinux.map, with the following content:

test	user_webapp_t:s0:c0.c100
*	 user_webapp_t:s0:c0,c1
__anonymous__	 anon_webapp_t:s0

This mapping file contains three mappings:

•	 The first one is for a user called test and is mapped to the user_webapp_t
domain and s0:c0.c100 sensitivity.

•	 The second one is for any successfully authenticated user and is mapped to the
user_webapp_t domain and s0:c0,c1 sensitivity.

•	 The third one is for unauthenticated users and is mapped to the anon_webapp_t
domain.

We can then refer to this map by adjusting the previously created snippet like so:

<IfModule mod_selinux.c>
 selinuxServerDomain *:s0-s0:c0.c100
 selinuxDomainMap /etc/httpd/conf.d/mod_selinux.map
</IfModule>

Restart the web server to apply the changes.

Changing domains based on source
The mod_selinux module also supports setting the server domain value based on
environment variables that we have defined elsewhere in the configuration. For instance,
we can first declare the value in an environment variable when a certain condition
triggers, and then tell mod_selinux that this environment variable's value is to be
used for the server domain setting.

240 Configuring Application-Specific SELinux Controls

Let's make this a bit more tangible with an example. Suppose the website manages
web applications for both local (internal) people, as well as for people that work from
remote locations. Assuming these users enter the web server through different source IP
addresses, we can use the source IP address to differentiate between the two and assign
a different SELinux sensitivity value.

We can do this in the Apache configuration with the SetEnvIf directive, which declares
an environment variable but only if a request matches a particular condition. The
condition we use is then the Remote_Addr directive, which checks the source IP address
against the expression that follows.

Suppose local users come from 10.10.0.0/16 and remote users from a load balancer
or reverse proxy with the IP address 10.121.12.15, then we can differentiate this as
follows:

SetEnvIf Remote_Addr "10.10.[0-9]+.[0-9]+$"
SENSITIVITY=*:s0:c0.c80
SetEnvIf Remote_Addr "10.121.12.15" SENSITIVITY=*:s0:c90
selinuxDomainEnv SENSITIVITY

It is possible to mix and match multiple mod_selinux directives. The module will use
the first successful declaration, so you could use a user mapping first, and if that user
mapping does not result in a hit (because the user is not declared in the map), use the
environment variable, and if that fails, fall back to a default setting.

All we have to do to accomplish this fallback definition is to sequentially declare the mod_
selinux directives, like so:

selinuxDomainMap /etc/httpd/conf.d/mod_selinux.map
selinuxDomainEnv SENSITIVITY
selinuxDomainVal *:s0:c0,c1

Through these declarations, you can fine-tune the web server security using SELinux
domains and sensitivities. While this should never replace the security approach within
the application itself, it provides additional isolation in case an unauthorized or malicious
user exploits an error within the application.

Summary 241

Summary
In this chapter, we started out with an introduction to systemd and a strong focus on the
service management capabilities that systemd offers. We learned how to start a service
with a custom SELinux context as well as how additional files can be properly labeled
upon boot. Alongside the service management, through systemd's unit files, this chapter
also covered transient services and how to immediately associate the right SELinux
context.

Other systemd capabilities and services were touched upon as well. We saw how SELinux
contexts are registered as part of the systemd journal and how to query for events using
this context. We took a brief look at udev and how its rules can be used to support
administrators in managing devices. One of its actions is to set the SELinux context of the
device node.

We then looked at D-Bus, how SELinux can be used to control the association of
applications with services, and how D-Bus uses the send_msg permission to validate
communications across its channels.

After D-Bus, we looked at several services that use PAM to launch user contexts, and
we dived into specific examples such as SSH, learning how SELinux policy developers
have further fine-tuned support for these services.

We finished with a look at mod_selinux, a dynamic module for Apache that enables
SELinux support within Apache's configuration even though Apache itself does not have
any SELinux specifics in it.

In the next chapter, we will look at another SELinux-aware application, SEPostgreSQL,
which extends the popular and robust PostgreSQL database with mandatory access
control support through SELinux.

Questions
1.	 Why should you not update unit files in /usr/lib/systemd/system directly?

2.	 What application allows resetting the SELinux context of files during boot?

3.	 How can we get all log events in journald associated with a given SELinux context?

4.	 How can you set the SELinux label for a device node created by udev?

5.	 Are SELinux controls always applicable to D-Bus associations?

6.	 How is it possible for Apache to be SELinux-aware without Apache having any
SELinux code in it?

8
SEPostgreSQL

– Extending
PostgreSQL with

SELinux
In the previous chapter, we covered a few example SELinux-aware applications:
applications that know and interact with the SELinux subsystem to further enhance
security within the application context. Some of these use existing policy constructs, such
as Apache's mod_selinux, whereas others enhance the policy with custom classes to
further fine-tune their behavior (as with D-Bus and the acquire_svc permission).

With Security-Enhanced PostgreSQL (SEPostgreSQL), we get a more elaborate example
of an SELinux-aware application, which uses multiple additional classes within SELinux,
as well as labeling its internal database objects to further enforce security rules. In this
chapter, we will learn how to apply labels within PostgreSQL, debug its enforcement rules,
associate the right labels with the PostgreSQL resources, and show how this label-based
security method can be used to augment specific security practices within a relational
database.

244 SEPostgreSQL – Extending PostgreSQL with SELinux

In this chapter, we're going to cover the following main topics:

•	 Introducing PostgreSQL and sepgsql

•	 Understanding SELinux's database-specific object classes and permissions

•	 Using MCS and MLS

•	 Integrating SEPostgreSQL into a network

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3dDcg4Z

Introducing PostgreSQL and sepgsql
PostgreSQL is a popular, featureful, and mature relational database management system.
Like Apache, it also enables a modular extension of its functionalities through loadable
modules. The module we will investigate is called sepgsql, shorthand for Security
Enhanced PostgreSQL or SEPostgreSQL. Through sepgsql, PostgreSQL enhances
itself with SELinux support for additional access controls, offering fine-grained data flow
controls based on SELinux policy rules.

Please be aware though that sepgsql does not implement a full mandatory access
control system within PostgreSQL, as not all PostgreSQL statements will result in a policy
check. While it augments the security posture of the PostgreSQL database, the module
has a few limitations listed in its online documentation, available at https://www.
postgresql.org/docs/10/sepgsql.html (adjust the version number in the URL
as needed; the referenced document at this URL is for PostgreSQL 10, which is the version
currently used within CentOS 8 and used throughout this chapter).

Reconfiguring PostgreSQL with sepgsql
Before we can install sepgsql, we need to have a working PostgreSQL system at
our disposal. Most Linux distributions have readily available tutorials on how to deploy
PostgreSQL, which often involves creating the databases associated with it.

In this chapter, we will assume that the database itself is available inside /var/lib/
pgsql/data, the default location for a CentOS-based PostgreSQL installation. The
PostgreSQL configuration files are also located inside this location.

https://bit.ly/3dDcg4Z
https://www.postgresql.org/docs/10/sepgsql.html
https://www.postgresql.org/docs/10/sepgsql.html

Introducing PostgreSQL and sepgsql 245

To install sepgsql, the following steps should be executed:

1.	 Let's first see whether the database is functioning properly by logging in as the
(default) postgres superuser, and listing the currently available databases:

su postgres -

$ psql postgres
psql (10.6)
Type "help" for help.

postgres=# \l
 List of databases
 Name | Owner | Encoding | ...
-----------+----------+-------------+ ...
 postgres | postgres | UTF8 | ...
 template0 | postgres | UTF8 | ...
 template1 | postgres | UTF8 | ...

If at any point a failure occurs, check the log file inside /var/lib/pgsql/data/
log to get more information. This log file is the default log file for all
PostgreSQL-related activities, as we will see when troubleshooting its SELinux
support in the Troubleshooting sepgsql section.

2.	 Assuming PostgreSQL is working properly, let's configure it to use the sepgsql
module. This module is part of the contributed modules within PostgreSQL, and
is maintained by the PostgreSQL community. In CentOS, the sepgsql module
is part of the postgresql-contrib package, which can be easily added to the
system using yum install postgresql-contrib if it is not present yet.

3.	 Edit the postgresql.conf file inside /var/lib/pgsql/data and search for
the shared_preload_libraries statement. By default, it will be commented
out, so uncomment it and add sepgsql inside:

shared_preload_libraries = 'sepgsql' # (change requires
restart)

4.	 As mentioned, changing this parameter requires restarting the database. We will do
that later, but first, we will shut down the database as our next steps will require an
offline database:

systemctl stop postgresql

246 SEPostgreSQL – Extending PostgreSQL with SELinux

5.	 Next, we need to reconfigure all databases and enable the sepgsql-related
functions. We will cover these functions in the Using sepgsql specific functions
section. To enable the functions, we have to become the postgres superuser
again, and for each database available, we load a specific SQL file:

su postgres -

$ export PGDATA=/var/lib/pgsql/data

$ for DBNAME in template0 template1 postgres; do
 postgres --single -F -c exit_on_error=true $DBNAME <
/usr/share/pgsql/contrib/sepgsql.sql > /dev/null;
 done

The databases listed in the example are the three default databases available in
a brand-new installation. You can obtain the actual list of databases on the system
through PostgreSQL's shorthand \l command, which we used earlier to check
whether the database is functioning properly.

6.	 Let's validate whether sepgsql is working by starting the PostgreSQL database,
logging in to PostgreSQL, and asking for our current context:

systemctl start postgresql

su postgres -
$ psql postgres
...
postgres# SELECT sepgsql_getcon();
 sepgsql_getcon()

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

What we did here was to execute the freshly installed sepgsql function
sepgsql_getcon(), which retrieves the current context for the session.

Let's further configure the database with a test account that we can use to validate the
sepgsql controls.

Creating a test account
To validate whether the sepgsql controls are working, we should have a test account
outside of the postgres superuser, and a local user that we can map to different SELinux
contexts. As the SELinux context will heavily decide which privileges are associated with
a session, we want to be able to show the impact of one context compared to the others.

Introducing PostgreSQL and sepgsql 247

First, inside PostgreSQL (with the postgres superuser), create a test account called
testuser, and allow the account to authenticate with a given password:

postgres=# CREATE USER testuser PASSWORD 'somepassword';

We also need to configure the database to allow password-based authentication (as the
default PostgreSQL setup will use system trust or another means of authentication). To
accomplish that, edit the pg_hba.conf file inside /var/lib/pgsql/data with the
following settings:

local		 all	 postgres					 peer
local		 all	 testuser					 md5
host		 all	 testuser		 127.0.0.1/32	 md5
host		 all	 testuser		 192.168.100.0/24	 md5

The pg_hba.conf file manages the host-based authentication rules for PostgreSQL.
We update it to allow password-based authentication for the testuser account (which
uses md5 as an identifier) while allowing the postgres superuser to continue to
authenticate using peer trust.

With these changes in place, PostgreSQL allows password-based authentication of
the testuser account both when the user initiates the communication over a local,
socket-based interaction, as well as when a network-based communication is used.

We also need to tell the SELinux policy that regular users will be allowed to connect to the
PostgreSQL service:

setsebool -P selinuxuser_postgresql_connect_enabled on

While this would be sufficient for accessing the PostgreSQL service, it is not adequate
to allow the regular user domain (user_t) to interact with sepgsql. To accomplish
that, we need to adjust the SELinux policy so that the user_t domain is also associated
with the sepgsql_client_type attribute, and that the user_r role can have the
sepgsql-related types active.

We do this through a small CIL policy, as follows:

(typeattributeset cil_gen_require sepgsql_client_type)
(typeattributeset cil_gen_require user_t)
(typeattributeset cil_gen_require sepgsql_trusted_proc_t)
(typeattributeset cil_gen_require sepgsql_ranged_proc_t)
(typeattributeset sepgsql_client_type (user_t))
(roleattributeset cil_gen_require user_r)
(roletype user_r sepgsql_trusted_proc_t)
(roletype user_r sepgsql_ranged_proc_t)

248 SEPostgreSQL – Extending PostgreSQL with SELinux

It is also possible to accomplish this with a reference policy style module, as follows:

policy_module(local_sepgsql, 1.0)
gen_require(`
	 role user_r;
	 type user_t;
')
postgresql_role(user_r, user_t)

Assuming we stick with the CIL-based policy, let's load the file (that is, local_
sepgsql.cil) as an SELinux policy module:

semodule -i local_sepgsql.cil

Don't forget to restart the PostgreSQL service after changing the pg_hba.conf file.

Tuning sepgsql inside PostgreSQL
The sepgsql module introduces two configuration parameters that can be used to tweak
sepgsql inside PostgreSQL:

•	 The sepgsql.permissive parameter tells PostgreSQL not to enforce the
SELinux policy rules inside PostgreSQL. This is similar to the permissive state
of SELinux on the system, but covers the sepgsql-related functionality inside
PostgreSQL alone.

•	 The sepgsql.debug_audit parameter tells PostgreSQL to always log the
SELinux-related decisions, even when they are to allow a statement to be processed.
This is similar to the auditallow statements for SELinux on the system.

It is very important however to understand that sepgsql is a user-space object manager,
as explained in Chapter 7, Configuring Application-Specific SELinux Controls: the SELinux
subsystem in the Linux kernel is not used for enforcing the access controls, only sepgsql
is. The only purpose that the SELinux subsystem has is to allow PostgreSQL to query the
active SELinux policy or obtain current SELinux context information.

Hence, the previous configuration parameters work mostly independently of the
configuration of the system. While SELinux must be active on the system, it does not need
to be in enforcing mode to have sepgsql enforce the rules inside PostgreSQL, nor does
a permissive SELinux system make the enforcement of sepgsql permissive as well.

Introducing PostgreSQL and sepgsql 249

The sepgsql.debug_audit parameter does have some relationship with the system
policy. We can add auditallow statements to the SELinux policy to force the logging of
events even when they are allowed. What the sepgsql.debug_audit parameter does
is force all events to be logged, something useful for troubleshooting sepgsql, as we will
see next.

Troubleshooting sepgsql
Let's enable the debug statements for an individual session and reinvoke the
sepgsql_getcon function again:

su postgres -c "/usr/bin/psql postgres"

postgres=# SET sepgsql.debug_audit = true;
SET

postgres=# SELECT sepgsql_getcon();
...

If you want to enable the configuration for the entire system, you can place the
configuration inside the postgresql.conf file:

sepgsql.debug_audit = true

Inside the PostgreSQL logs, we will notice the following information:

STATEMENT: SET sepgsql.debug_audit = true
STATEMENT: SELECT sepgsql_getcon();
LOG: SELinux: allowed { execute } \
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.
c1023 \
 tcontext=system_u:object_r:sepgsql_proc_exec_t:s0 \
 tclass=db_procedure name="pg_catalog.sepgsql_getcon()"

The first two lines log the statements that we have executed within the session, whereas
the third line is the SELinux log event related to the execution of sepgsql_getcon.

The event tells us that the unconfined_t domain (source context) has attempted
(and succeeded) to execute the database procedure (as indicated by the db_procedure
class) labeled with the sepgsql_proc_exec_t type. The in-database function is the
sepgsql_getcon function within the pg_catalog schema.

250 SEPostgreSQL – Extending PostgreSQL with SELinux

If a denial occurs, this will result in a similar event in the logs, but will also be made
visible to the end user that triggered the denial, as PostgreSQL will show an error
message like so:

ERROR: SELinux: security policy violation

Unlike the audit logging executed by, for instance, D-Bus (which results in USER_AVC
events in the regular audit log), sepgsql will follow the log configuration of the
PostgreSQL database itself, so keep a close eye out on this log file (or other log targets
configured in PostgreSQL) when trying to troubleshoot sepgsql.

In this simple example, you might already have noticed that the event references
a database-specific class (db_procedure). In the next section, we will look into the
various classes, permissions, and types associated with sepgsql and thus supported
by the SELinux policy.

Understanding SELinux's database-specific
object classes and permissions
The sepgsql module uses several database-specific SELinux classes to fine-tune the
policies and access controls. The supported classes can be listed through /sys/fs/
selinux/class or the seinfo command:

seinfo --class | grep db_
db_blob
db_column
db_database
db_language
db_procedure
db_schema
db_sequence
db_table
db_tuple
db_view

These classes have an obvious relational database meaning: db_database is for
database-related permissions, db_table for table permissions, db_procedure for
database procedures, and so on. While not all classes are still supported by sepgsql
(the db_database class has no immediate support anymore), most do have their usual
mapping within the PostgreSQL database.

Understanding SELinux's database-specific object classes and permissions 251

Let's see what permissions are supported by sepgsql and how this can be used to
fine-tune access controls within the database.

Understanding sepgsql permissions
The access controls that sepgsql enforces are on top of the discretionary access controls
already supported by PostgreSQL. Rather than using the privileges of the role or user
currently acting within the database, the sepgsql module will use the context associated
with the session.

As we can use different SELinux contexts for sessions that are authenticated using the
same database role, we can create distinct access controls within the database without
associating this with the user account itself. We can, for instance, differentiate based on
the initialization of the database session: a remote session might have a separate context
compared to a locally launched session, or the authorizations might be unique across
different Linux users even when they share the same account within the database.

Important note
As remote connections require the peer context to be accessible, sepgsql
requires either the use of labeled IPSec, or we need to introduce fallback
labeling using NetLabel and CIPSO, as seen in Chapter 5, Controlling
Network Communications. We will establish such a mapping in the Integrating
SEPostgreSQL in the network section, after explaining the various permission
mappings.

Once logged in, a query on a table will trigger a few checks against the SELinux policy:

•	 Any SELECT, INSERT, UPDATE, or DELETE statement on a table results in
a permission check against the select, insert, update, or delete
permissions within the db_table class.

•	 When the WHERE clause lists one or more different tables, then the select
privilege for those different tables is checked as well.

•	 Furthermore, column-level permissions are checked for each referenced column,
and this is checked against the permissions within the db_column class. Again,
permission checks against the select permission validate the read access, whereas
the update or insert permissions reflect the controls to check when the values
are changed.

A more elaborate overview of the supported permissions is available in the PostgreSQL
sepgsql documentation.

252 SEPostgreSQL – Extending PostgreSQL with SELinux

Using the default supported types
The default SELinux policy has several types readily available for use within a sepgsql
setup. Most of the SEPostgreSQL configurations will not deviate from these default types,
and instead rely on the category- and sensitivity-oriented controls that we touched upon
in Chapter 3, Managing User Logins.

To see what these default types are, what they are used for, and how to assign these labels
within PostgreSQL, let's start with creating a new database called db_test:

su postgres -c "/usr/bin/psql postgres"

postgres=# CREATE DATABASE db_test;
CREATE DATABASE

Next, we connect to this newly created database and create a simple table, called
tb_users, which has the following columns:

•	 The user's ID, named uid

•	 The user's name, named name

•	 The user's email address, named mail

•	 The user's mailing address, named address

•	 The user's password salt and hash, named salt and phash

Important note
The example used is merely an example, meant to show how to approach
SELinux labels and sepgsql. Proper database design and best practices for
addressing password hashes and other sensitive data are well beyond the scope
of this book!

As you can imagine, we will be securing some of these columns further: while the
password hash should obviously be considered very sensitive, we should also make sure to
properly protect the mail and address fields as this is Personally Identifiable Information
(PII), which in many areas of the world is governed by specific privacy laws:

postgres=# \c db_test;

db_test=# CREATE TABLE tb_users(uid int primary key, name text,
mail text, address text, salt text, phash text);

Understanding SELinux's database-specific object classes and permissions 253

What is now the label associated with this table? For that, we need to query the
PostgreSQL internal tables/views, more specifically the pg_seclabels one:

db_test=# SELECT objname,provider,label FROM pg_seclabels WHERE
objname='tb_users';
 objname | provider | label
----------+----------+--
 tb_users | selinux | unconfined_u:object_r:sepgsql_table_t:s0

As you can see, the table has received the sepgsql_table_t type and default
sensitivity (s0).

sepgsql_table_t is the default type for tables. We usually find this type used for
general table support and columns. Alongside the sepgsql_table_t type, the
policy has a few other table- and column-oriented types that administrators can use
to differentiate the controls that sepgsql enforces:

•	 The sepgsql_fixed_table_t type can be used for tables or columns that can
only be appended to (inserted into) but not updated. This could be for log-related
tables or audit events where we want to use the sepgsql controls to further
enforce this (beyond the in-database controls that could be used for this as well).

•	 The sepgsql_ro_table_t type can be used for tables or columns that should
only be read from (read-only).

•	 The sepgsql_secret_table_t type can be used for tables or columns that
cannot be accessed by regular users or sessions, and only by administrative ones.
This is generally used for tables or columns that are only used through protected
and/or privileged procedures.

•	 The unpriv_sepgsql_table_t type is like the sepgsql_table_t type, but
specific to tables or columns managed by admins or unconfined users that cannot
be accessed by confined users.

•	 The user_sepgsql_table_t type on the other hand is specifically constructed
for tables or columns managed by confined users. This allows administrators to
differentiate between user-specific tables and general tables.

Let's grant the testuser account (full) access to this table and database, and add some
data to the table:

db_test=# GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public
TO testuser;

db_test=# INSERT INTO tb_users VALUES (1, 'Sven Vermeulen',
'some@example.com', 'Some Place 10001, Somewhere', 'abc123',

254 SEPostgreSQL – Extending PostgreSQL with SELinux

'f5ba94...3');

db_test=# INSERT INTO tb_users VALUES (2, 'Lisa McCarthy',
'lisa@example.com', 'Lisa Place 15, Someplace', 'def456',
'ba53f2...0');

If we query the data through our test user, we can see all data added to the table:

db_test=> SELECT * FROM tb_users;

Let's change the type of the phash column to sepgsql_secret_table_t:

db_test# SECURITY LABEL ON COLUMN tb_users.phash IS
'system_u:object_r:sepgsql_secret_table_t:s0';

This alone however will not prevent the testuser user from accessing the data. It will
depend on how the testuser logs in to the database—from which context the session
will be initiated. If we launch the session from an unconfined domain, then the session
will still allow access to the data. Let's instead log in from a regular user session (user_t),
and try to access the data again:

db_test=> SELECT * FROM tb_users;
ERROR: SELinux: security policy violation

Even though the user has all the privileges within the database, we notice that the policy
has prevented access. We can, however, query the columns not marked as sepgsql_
secret_table_t:

db_test=> SELECT uid, name, mail, address, salt from tb_users;

As the phash column is now marked as sepgsql_secret_table_t, we would
still want the regular database user to be able to query if a hash matches the hash in
the database, or set a new hash. This allows the database user to manage the accounts
without easily leaking the password hashes. We do this through functions, which we will
describe next.

Understanding SELinux's database-specific object classes and permissions 255

Creating trusted procedures
PostgreSQL supports functions and procedures to facilitate isolating or combining actions
within the database or on the data in a more structured and managed way. Procedures
are allowed to do transactional updates in the database, but do not return a value by
themselves. Functions return a value, but are not allowed to do transactional updates. In
our example, we will create two functions, one to compare a hash with the stored hash
(but without showing the stored hash to the database user) and another to update the
stored hash.

Informational note
While we should be using procedures for the second function, not all
PostgreSQL versions in use today support them. Support for procedures has
only been included from PostgreSQL version 11 onward, whereas our examples
use PostgreSQL 10.6, as that is the current version supported by CentOS 8.

Let's first create the two functions:

postgres=# CREATE FUNCTION compare_hash(fuid int, fphash text)
RETURNS boolean AS 'SELECT phash = regexp_replace(fphash,
''[^a-f0-9]*'', '''', ''g'') FROM tb_users WHERE uid = fuid'
LANGUAGE sql;

postgres=# CREATE FUNCTION set_hash(fuid int, fphash
text) RETURNS int AS 'UPDATE tb_users SET phash = regexp_
replace(fphash, ''[^a-f0-9]*'', '''', ''g'') WHERE uid = fuid
RETURNING uid' LANGUAGE sql;

We introduce a regular expression in the function to sanitize the input as we will be
marking these functions as trusted later, and we do not want the functions to be
a jumping ground for activities such as SQL injection.

256 SEPostgreSQL – Extending PostgreSQL with SELinux

Once the functions are defined, authorized users can use them to access the more
protected data. Of course, we need to properly label these functions. In the default
SELinux policy, the following types are available to deal with procedures and functions:

•	 sepgsql_proc_exec_t is the type to assign to regular functions or procedures.
Once executed, the procedure will run within the current context of the user, so no
transition will occur.

•	 sepgsql_trusted_proc_exec_t is the type to assign to trusted procedures
or functions. Once executed, these functions will run in the sepgsql_trusted_
proc_t domain, which has access to more privileged types such as sepgsql_
secret_table_t.

•	 sepgsql_ranged_proc_exec_t is the type to assign to a trusted procedure
or function, but with an additional privilege: ranged procedures are allowed to
change the current sensitivity. Ranged procedure privileges are useful to assign
to a function or procedure that can access columns labeled with a category that
the current context would not be able to access otherwise. Once executed, these
functions and procedures will run in the sepgsql_ranged_proc_t domain.

•	 User-managed procedures can be labeled with unpriv_sepgsql_proc_exec_t
(for unconfined users) and user_sepgsql_proc_t (for confined users). These
procedures and functions will continue to run in the user domain itself.

To get the currently assigned label for the function, use the LIKE statement as the
functions are defined (in the objname column) with variables in their name. As such,
they are not always that obvious to immediately select:

db_test=# SELECT objname,provider,label FROM pb_seclabels WHERE
objname LIKE 'compare_hash%';

Let's mark these functions as trusted:

db_test=# SECURITY LABEL ON FUNCTION compare_hash(fuid integer,
fphash text) IS 'system_u:object_r:sepgsql_trusted_proc_
exec_t:s0';

db_test=# SECURITY LABEL ON FUNCTION set_hash(fuid integer,
fphash text) IS 'system_u:object_r:sepgsql_trusted_proc_
exec_t:s0';

With these labels in place, the database user can execute the appropriate checks and
changes even though the user has no access to the phash column itself:

db_test=> SELECT compare_hash(1, 'abc123');
f

Using MCS and MLS 257

db_test=> SELECT set_hash(1, 'abc123');
1

db_test=> SELECT compare_hash(1, 'abc123');
t

Of course, preventing unauthorized users from accessing sensitive data is not something
that PostgreSQL cannot do without sepgsql. PostgreSQL can have procedures and
functions marked as running with the privileges of the owner of the function or procedure,
rather than the executing session. What sepgsql provides is another means to accomplish
this, or offer data protection through other security models.

For instance, in our example, the in-database permissions of the testuser account are
still applicable, we are not granting the testuser account other privileges or escalating
its privileges to a higher set – instead, we are using the SELinux labels and context
information to additionally filter privileges.

Using sepgsql-specific functions
The sepgsql PostgreSQL module adds a handful of functions that we can use to interact
with the labeling within the database:

•	 With sepgsql_getcon(), we can obtain the current context for the session.

•	 With sepgsql_setcon(), we can change the context of the current session,
provided that the current context has the permissions to do so, of course.

•	 With sepgsql_restorecon(), all objects within the current database are
relabeled back to the default setup. The function supports a single argument, which
can be NULL, or be a reference to a file that defines the new defaults.

•	 With sepgsql_mcstrans_in() and sepgsql_mcstrans_out(),
we can interact with the mcstrans daemon (if it is running), translating from
a human-readable sensitivity range to raw (_in()) or vice versa (_out()).

These functions are useful when maintaining labels or defining functions that have logic
included that depends on the context information.

Using MCS and MLS
The most common use case for enabling the sepgsql module is to use Multi-Category
Support (MCS) and Multi-Level Security (MLS) support within SELinux to fine-tune
access to resources.

258 SEPostgreSQL – Extending PostgreSQL with SELinux

Limiting access to columns based on categories
Suppose we use the range of category numbers from c900 to c909 to address specific PII
datasets, and grant users access to these categories either by granting them direct access,
or by using specific SELinux contexts to consult this data.

Within the database, we could mark the PII-sensitive data with a category number within
that range:

db_test=# SECURITY LABEL ON COLUMN tb_users.mail IS
'system_u:object_r:sepgsql_table_t:s0:c903';

db_test=# SECURITY LABEL ON COLUMN tb_users.address IS
'system_u:object_r:sepgsql_table_t:s0:c903';

With the labels applied, a user that does not have access to this category will not be able to
access the data:

db_test=> SELECT sepgsql_getcon();
user_u:user_r:user_t:s0-s0:c0.c100

db_test=> SELECT uid,name,mail,address FROM tb_users;
ERROR: SELinux: security policy violation;

With the category range for the user set correctly, access to the data is granted:

db_test=> SELECT sepgsql_getcon();
user_u:user_r:user_t:s0-s0:c0.c100,c900.c904

db_test=> SELECT uid,name,mail,address FROM tb_users;

It is important to understand though that most domains will be allowed to switch their
category set, as long as it remains within the allowed range:

semanage login -l
Login Name SELinux User MLS/MCS Range ...
...
taylor user_u s0-s0:c0.c100,c900.c903 ...

This means that, even when a user session for this user launches with a more limited
category set (for instance, using the runcon command), the user will still be able to call
runcon again to extend the category range, or use the sepgsql_setcon() function:

db_test=> SELECT sepgsql_getcon();
user_u:user_r:user_t:s0-s0:c0.c100;

db_test=> SELECT sepgsql_setcon('user_u:user_r:user_t:s0-s0:c0.
c100,c900.c903');

Integrating SEPostgreSQL into the network 259

db_test=> SELECT sepgsql_getcon();
user_u:user_r:user_t:s0-s0:c0.c100,c900.c903

To remediate this, we need to have the target domain be MCS-constrained.

Constraining the user domain for sensitivity range
manipulation
The SELinux policy always allows reducing the category range, so a range that initially
includes the c900 category can always switch to a category range that excludes this
category. The rules within SELinux that grant domains the privilege to reduce their
category range use dominance rules, which are basically algorithms running mathematical
set expressions on the source and target set: if the target set is fully enclosed within the
source set, then SELinux will allow the range transition to occur.

The policy however also allows for extending the category range (if the range remains
within the allowed range as defined by the SELinux configuration for the user), unless
the domain itself is marked as MCS-constrained. The default MCS-constrained domains
are generally those domains used for sandbox usage or virtualization, as we will see in
Chapter 9, Secure Virtualization.

However, we can easily add more domains. For instance, to mark the user domain as
MCS-constrained, load the following CIL policy:

(typeattributeset cil_gen_require mcs_constrained_type)
(typeattributeset cil_gen_require user_t)
(typeattributeset mcs_constrained_type (user_t))

This will prevent the user_t domain from growing its category range again.

Integrating SEPostgreSQL into the network
When we use the sepgsql module in PostgreSQL, all database sessions need to have
a security context associated with them. While for local communications (which use Unix
domain sockets) this context is readily available, networked sessions (which are the most
common) do not automatically have a context set.

If the system does not participate in a labeled networking setup, as we saw in Chapter 5,
Controlling Network Communications, interaction with the database will fail:

$ psql -U testuser -h ppubssa3ed db_test
psql: FATAL: SELinux: unable to get peer label: Protocol not
available

260 SEPostgreSQL – Extending PostgreSQL with SELinux

To resolve this, the recommended approach is to start using labeled IPSec. However,
we can also use NetLabel to introduce fallback labeling where needed.

Creating a fallback label for remote sessions
With Linux's NetLabel and CIPSO support (as seen in Chapter 5, Controlling Network
Communications) we can introduce both fallback labeling (associating a label based on the
source address), as well as use full labeling for localhost communication.

With full, local label support, NetLabel can pass the source context to the target if all this
communication solely traverses over the loopback device (as such communication does
not leave the system, allowing NetLabel to trace and support the flow from end to end and
provide context information to the receiving service).

Let's create the CIPSO definition for local labeling:

netlabelctl cipsov4 add local doi:2

We now create a default context for communication coming from the network (over the
eth0 interface and the 192.168.100.1/24 network). It is this context that we will see
when connecting to the PostgreSQL server over the network:

netlabelctl unlbl add interface:eth0 address:192.168.100.0/24
label:user_u:user_r:user_t:s0

We can now remove the default mapping rules, and add mapping rules for the different
communication types:

netlabelctl map del default

netlabelctl map add default address:0.0.0.0/0 protocol:unlbl

netlabelctl map add default address:::/0 protocol:unlbl

netlabelctl map add default address:127.0.0.1
protocol:cipsov4,2

The mappings we created will allow unlabeled communication for everything (but
keep in mind that we have a specific label defined for communication coming from
192.168.100.0/24) and loopback-based full labeling on the localhost.

Summary 261

Tuning the SELinux policy
Next to the labeling configuration, we might also need to further fine-tune the SELinux
policy for PostgreSQL. A couple of SELinux booleans are worth mentioning here:

•	 The postgresql_selinux_transmit_client_label SELinux boolean
(disabled by default) allows the postgresql_t domain to set its own session
contexts. The PostgreSQL server might want to set its own session context when the
server itself has database connections to other, remote databases (for instance, using
PostgreSQL's Foreign Data Wrapper (FDW) support). When enabled, the client
context will be passed on to the remote databases as well.

•	 The postgresql_selinux_unconfined_dbadm SELinux boolean (enabled
by default) grants administrative database privileges in sepgsql to any unconfined
user domain.

•	 The postgresql_selinux_users_ddl SELinux boolean (enabled by default)
allows unprivileged users to run Data Definition Language (DDL) statements.
There are database statements that create new tables, views, and so on, and will
result in user-oriented types such as user_sepgsql_table_t being used.

•	 The selinuxuser_postgresql_connect_enabled SELinux boolean
(disabled by default) allows user domains to connect to the PostgreSQL daemon
over the Unix domain sockets.

Don't forget to persist the boolean changes (using setsebool -P) as otherwise,
a system reboot will revert the settings back to their default values.

Summary
The PostgreSQL database can be extended with SELinux support using the sepgsql
module. The module adds label support to the various objects within a database, and
checks access permissions between the session context and the target label. To obtain the
session context, sepgsql relies either on purely socket-based communication, or labeled
networking.

In this chapter, we learned how to enable the sepgsql module and how to troubleshoot
possible policy issues. We then used the various default types within an example database
and used these types to show how the access controls in sepgsql work. We then used
SELinux's MCS support to further handle category-based access controls. Finally,
we integrated PostgreSQL in a network using fallback labeling support.

In the next chapter, we will examine secure virtualization within Linux and see how
SELinux contributes to the isolation of virtual guests.

262 SEPostgreSQL – Extending PostgreSQL with SELinux

Questions
1.	 Is SEPostgreSQL part of the default PostgreSQL technology?

2.	 What else needs to be additionally enabled before sepgsql can be used properly?

3.	 How do you set or query the labels on database objects?

4.	 Why are the sepgsql decision events not available in the system audit log?

9
Secure Virtualization
More and more system tools have built-in support for SELinux or use SELinux's features
to further harden their own service offering. When we look at virtualization, libvirt is the
reigning champion as a virtualization management tool, using the QEMU and
Kernel-Based Virtual Machine (KVM) hypervisors.

In this chapter, administrators will learn what secure Virtualization (sVirt) is and how
it is applied by the libvirt tool suite, which SELinux domains are put in place, and how
sVirt uses SELinux categories to isolate guests from each other. We will study how
SELinux can help reduce the risks of virtualization and understand how the SELinux
policy is tuned to support virtualization services.

In this chapter, we're going to cover the following main topics:

•	 Understanding SELinux-secured virtualization

•	 Enhancing libvirt with SELinux support

•	 Using Vagrant with libvirt

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/2T805Ug

While it is possible to run the examples in this chapter on an older system, we recommend
using a more modern system that has hardware support for virtualization. This will ensure
higher performance during the exercises, as full emulation can severely hamper the
progress, especially on older systems.

https://bit.ly/2T805Ug

264 Secure Virtualization

To verify whether your system has hardware support for virtualization (and can therefore
use the Linux KVM-based virtualization), the following command should have output:

grep -E 'svm|vmx' /proc/cpuinfo
flags : fpu vme de ... vmx ...

If no output is shown, then the system does not support hardware-assisted virtualization.

Understanding SELinux-secured virtualization
Virtualization is a core concept that plays a part in many infrastructural service
designs. Ever since its inception in the early 1970s as a means of isolating workloads
and abstracting hardware dependencies, virtualization implementations have grown
tremendously. When we look at infrastructure service offerings today, we quickly realize
that many cloud providers would be out of service if they could not rely on the benefits
and virtues of virtualization.

One of the properties that virtualization offers is isolation, which SELinux can support
and augment quite nicely.

Introducing virtualization
When we look at virtualization, we look at the abstraction layers it provides to hide certain
resource views (such as hardware or processing power). Virtualization contributes to
the development of more efficient hardware usage (which results in better cost control),
centralized views on resources and systems, more flexibility in the number of operating
systems that the company can deal with, standardization of resource allocation, and even
improved security services.

There are several virtualization types around:

•	 Full-system emulation: Where hardware is completely emulated through software.
QEMU is an open source emulation software capable of handling full-system
emulation, allowing administrators and developers to run virtual platforms with
different processor architectures not otherwise compatible with their own systems.

•	 Native virtualization: Where main parts of the hardware are shared across
instances, and guests can run unmodified on them. Linux's KVM, which is also
supported through QEMU, is an example of this type of virtualization.

Understanding SELinux-secured virtualization 265

•	 Paravirtualization: Where the guest operating system uses specific APIs offered by
the virtualization layer (on which unmodified operating systems cannot be hosted).
Initial releases of Xen only supported paravirtualization. Using KVM with VirtIO
drivers is another, more modular example.

•	 OS-level virtualization or containerization: Where the guest uses the host
operating system (kernel) but does not see the processes and other resources
running on the host. Docker containers or LXC containers are examples of OS-level
virtualization.

•	 Application virtualization: Where the application runs under a specialized
software runtime. A popular example here is the support for Java applications,
running on the Java Virtual Machine (JVM).

Many virtualization platforms support a few virtualization types. QEMU can range from
full emulation to paravirtualization, depending on its configuration.

When we work with virtualization layers, the following terms come up frequently:

•	 The host is the (native) operating system or server on which the virtualization
software is running.

•	 The guest is the virtualized service (generally an operating system or container) that
runs on the host.

•	 The hypervisor is the specialized virtualization software that manages the hardware
abstraction and resource-sharing capabilities of the virtualization platform. It is
responsible for creating and running the virtual machines.

•	 An image is a file or set of files that represents the filesystem, disk, or other medium
assigned to a guest.

•	 A virtual machine is the abstracted hardware or resource set in which the
guest runs.

We will be using these terms in this chapter, as well as in Chapter 10, Using Xen Security
Modules with FLASK, and Chapter 11, Enhancing the Security of Containerized Workloads,
as those chapters also cover specific virtualization implementations and how SELinux
actively provides additional security controls in them.

Before we embark on configuring and tuning virtualization services, let's first see what
SELinux has to offer for virtualized environments.

266 Secure Virtualization

Reviewing the risks of virtualization
Virtualization comes with a number of risks though. If we ask architects or other
risk-conscious people about the risks of virtualization, they will talk about virtual machine
sprawl, challenges related to secure or insecure APIs, the higher complexity of virtualized
services, and whatnot.

Going over the challenges of virtualization itself is beyond the scope of this chapter,
but there are a few notable risks that play directly into SELinux's field of interest.
If we can integrate SELinux with a virtualization layer, then we can mitigate these risks
more proactively:

•	 The first risk is data sensitivity within a virtual machine. Whenever multiple
virtual machines are hosted together, you could have the risk that one guest is able
(be it through a flaw in the virtualization software, the hypervisor's networking
capabilities, or through side-channel attacks) to access sensitive data on another
virtual machine.

With SELinux, data sensitivity can be controlled using sensitivity ranges. Guests can
run with different sensitivity ranges, guaranteeing the data sensitivity even on the
virtualization layer.

•	 Another risk is the security of offline guest images. Here, either administrators
or misconfigured virtual machines might gain access to another guest image.
SELinux can prevent this through properly labeled guest images and ensuring
that images of offline virtual machines are typed differently from online virtual
machines.

•	 Virtual machines can also exhaust the resources on a system. On Linux systems,
many resources can be controlled through the control groups (cgroups) subsystem.
As this subsystem is governed through system calls and regular file APIs, SELinux
can be used to further control access to this facility, ensuring that the cgroups
maintained by libvirt, for instance, remain solely under the control of libvirt.

•	 Break-out attacks, where vulnerabilities within the hypervisor are exploited to
try to reach the host operating system, can be mitigated through SELinux's type
enforcement as even a hypervisor does not require full administrative access to
everything on the host.

•	 SELinux can also be used to authorize access to the hypervisor, ensuring that
only the right teams (through the role-based access controls) are able to control
the hypervisor and its definitions.

Understanding SELinux-secured virtualization 267

•	 Finally, SELinux also offers improved guest isolation, which goes beyond just the
guest image accesses. Thanks to SELinux's MCS implementation, guests can be
separated from each other in a mandatory approach. With type enforcement, the
allowed behavior of guests can be defined and controlled. This is a key capability
used by hosting providers as they allow running (for them) untrusted guest virtual
machines.

SELinux, however, is not a full security solution for virtualization providers. One
main design constraint with SELinux is that it is not dynamic if the system itself is not
SELinux-aware. When we assign a type to a virtual machine, this type is generally rigid
and set in stone. Virtual machines will have different behavior characteristics depending
on the software running on them.

A virtual machine running a web server has different behavior characteristics than one
running a database or an email gateway. Although SELinux policy administrators would
be capable of creating new domains for each virtual machine, this is not efficient.
As a result, most SELinux policies will only offer a few domains usable by the virtual
machine with broad characteristics.

With libvirt, these domains are part of the sVirt solution.

Reusing existing virtualization domains
When Red Hat introduced its virtualization solution, it also added SELinux support,
calling the resulting technology sVirt, derived from secure virtualization. As secure
virtualization as a term is hardly unique in the market, we use the term sVirt
predominantly to refer to the SELinux integration within virtualization management
solutions such as libvirt.

With sVirt, the open source community has a reusable approach for augmenting the
security posture of virtualization and containerization through SELinux. It does this
through the following domains and types, which can be used regardless of the underlying
virtualization platform:

•	 The hypervisor software itself, such as libvirtd, uses the virtd_t domain.

•	 Guests (virtual machines) that do not require any interaction with the host system
and resources beyond those associated with a generic virtual machine generally
use the svirt_t domain. This domain is the most isolated guest domain for full
virtualization solutions.

•	 Guests that require more interaction with the host, such as using the QEMU
networking capabilities and sharing services, will use the svirt_qemu_net_t
domain.

268 Secure Virtualization

•	 Guests that use the KVM networking capabilities and sharing services will use the
svirt_kvm_net_t domain. It is very similar in permissions to svirt_qemu_
net_t but optimized for KVM.

•	 Containerized guests, as we will see in Chapter 11, Enhancing the Security of
Containerized Workloads, will use the svirt_lxc_net_t domain, whose
privileges are optimized for OS-level virtualization.

•	 Guests that require more flexible memory accesses (such as executing writable
memory segments and memory stacks) will use the svirt_tcg_t domain. This
flexible memory access is common for full virtualization guests whose emulation/
virtualization requires the use of a Tiny Code Generator (TCG), hence the name.

•	 Image files that contain a guest's data will be labeled with the svirt_image_t
type.

•	 Image files that are not in use at the moment will use the default virt_image_t
type.

•	 Image files used in a read-only fashion will have the virt_content_t type
assigned to them.

To enable some flexibility in what the domains are allowed to do, additional SELinux
booleans are put in effect, which we'll cover next.

Fine-tuning virtualization-supporting SELinux policy
Use caution when toggling SELinux booleans to control the confinement of virtualization
domains. Such booleans influence the SELinux policy on the host level, and cannot be
used to change the access controls or privileges of individual guests. As such, when
we change the value of an SELinux boolean, the change affects the permissions of all
guests on that host.

Let's see what the various SELinux booleans are for virtualized environments:

•	 The staff_use_svirt boolean, if enabled, allows the staff_t user domain
to interact with and manage virtual machines, as by default this is only allowed for
unconfined users.

•	 The unprivuser_use_svirt boolean, if enabled, allows unprivileged user
domains (such as user_t) to interact with and manage virtual machines.

Understanding SELinux-secured virtualization 269

•	 With the virt_read_qemu_ga_data and virt_rw_qemu_ga_data
booleans, the QEMU guest agent (which is an optional agent running inside the
guests, facilitating operations such as freezing filesystems during backup routines)
can read or even manage data labeled with the virt_qemu_ga_data_t type.
This type, however, is not in use by default, and these SELinux booleans are disabled
by default.

•	 The virt_sandbox_share_apache_content boolean allows the guest
domains to share web content. This is most commonly used for containers but is
possible on guests as well if the hypervisor supports mapping host filesystems into
the guest.

•	 With virt_sandbox_use_audit enabled, this boolean allows the guest
domains to send audit messages to the host's audit service.

•	 The virt_sandbox_use_fusefs boolean grants the guest domains the
privilege to mount and interact with Filesystem in Userspace (FUSE) filesystems.
The virt_use_fusefs boolean allows the guests to read files on these
filesystems.

•	 If the virt_sandbox_use_netlink boolean is active, then guest domains can
use Netlink system calls to manipulate the networking stack within the host.

•	 With virt_transition_userdomain, containers can transition to a user
domain (including the unconfined user domain unconfined_t).

•	 When we enable virt_use_execmem, guests can use executable memory.

•	 The virt_use_glusterd, virt_use_nfs, and virt_use_samba booleans
allow guests to use network filesystems mounted on the host, offered through
GlusterFS, NFS, and Samba respectively. Note that this does not involve mounts
inside the guest itself, such as a guest that connects to an NFS server. The booleans
handle interaction through filesystem mounts on the host.

•	 Device access is also governed through some SELinux booleans, such as the virt_
use_comm boolean to interact with serial and parallel communication ports,
virt_use_pcscd to allow guests to access smartcards, and virt_use_usb to
grant access to USB devices.

•	 The virt_use_rawip boolean allows guests to use and interact with raw IP
sockets, allowing network interaction that circumvents some of the processing logic
within the regular network stack.

270 Secure Virtualization

•	 With virt_use_sanlock, guests can interact with the sanlock service, a lock
manager for shared storage.

•	 When virt_use_xserver is set to true, guests can use the X server on the host.

If security-sensitive operations need to be allowed for a single guest or a small set of
guests, it is advisable to run those guests on an isolated host where these operations are
then allowed while running the other guests on hosts where the policy does not allow
these particular actions.

Administrators can also use different SELinux domains for specific guests, fine-tuning the
access controls for an individual virtual machine. How we can assign specific domains
depends on the underlying technology of course. In the Enhancing libvirt with SELinux
support section, we will introduce this for libvirt-based virtualization.

Understanding sVirt's use of MCS
The SELinux domains and the mentioned types are not enough to implement proper
confinement and isolation between guests. sVirt adds another layer of security by using
SELinux's Multi-Category Security (MCS) extensively.

Within SELinux, some domains are marked as an MCS-constrained type. When this is
the case, the domain will not be able to access resources that do not have the same set of
categories (or more) assigned as the current context, as it will not be able to extend their
own active category set—something we saw in Chapter 8, SEPostgreSQL – Extending
PostgreSQL with SELinux.

The sVirt implementation ensures that the virtualization domains mentioned earlier are
all marked as MCS-constrained types. This can be confirmed by asking the system which
types have the mcs_constrained_type attribute set:

seinfo -amcs_constrained_type -x
Type Attributes: 1
 attribute mcs_constrained_type
 container_t
 netlabel_peer_t
 openshift_app_t
 openshift_t
 sandbox_min_t
 sandbox_net_t
 sandbox_t
 sandbox_web_t
 sandbox_x_t
 svirt_kvm_net_t
 svirt_qemu_net_t

Enhancing libvirt with SELinux support 271

 svirt_t
 svirt_tcg_t

Through the MCS constraints, sVirt enables proper isolation between guests. Every
running virtual machine (generally running as svirt_t) will be assigned two (random)
SELinux categories. The images that virtual machine needs to use are assigned the same
two SELinux categories.

Whenever a virtual machine wants to access the wrong image, the difference in MCS
categories will result in SELinux denying the access. Similarly, if one virtual machine is
trying to connect to or attack another virtual machine, the MCS protections will once
again prevent these actions from happening.

sVirt selects two categories to allow a large number of guests to run even when there are
only a few categories available. Assume that the hypervisor is running with the c10.
c99 category range. That means that the hypervisor can only select 90 categories. If
each guest only receives a single category, then the hypervisor can support 90 guests
before allowing multiple guests to interact with each other (assuming a malicious actor
found a vulnerability that allows that, of course, the hypervisor software will generally
disallow such accesses as well). With two categories, however, the number of supported
simultaneously running guests becomes 4,005 (the number of unique pairs in a set of 90,
obtained through the formula n*(n-1)/2).

Let's see what libvirt's SELinux support looks like.

Enhancing libvirt with SELinux support
The libvirt project offers a virtualization abstraction layer, through which administrators
can manage virtual machines without direct knowledge of or expertise in the underlying
virtualization platform. As such, administrators can use the libvirt-offered tools to manage
virtual machines running on QEMU, QEMU/KVM, Xen, and so on.

To use the sVirt approach, libvirt can be built with SELinux support. When this is the case
and the guests are governed (security-wise) through SELinux, then the sVirt domains and
types are used/enforced by libvirt. The libvirt code will also perform the category selection
to enforce guest isolation and will ensure that the image files are assigned the right label
(image files that are in use should get a different label than inactive images files).

272 Secure Virtualization

Differentiating between shared and
dedicated resources
The different labels for images allow for different use cases. The image used to host the
main operating system (of the guest) will generally receive the svirt_image_t label
and will be recategorized with the same pair of categories as the guest runtime itself
(running as svirt_t). This image is writable by the guest.

When we consider an image that needs to be readable or writable by multiple guests, then
libvirt can opt not to assign any categories to the file. Without categories, MCS constraints
don't apply (well, they still apply, but any set of categories dominates an empty set, and as
such, actions against those properly labeled files are allowed).

Images that need to be mounted read-only for a guest (such as bootable media) are
assigned the virt_content_t type. If they are dedicated, then categories can be
assigned as well. For shared read access, no categories need to be assigned.

Note that these label differences apply mainly to virtualization technologies and not
container technologies.

Assessing the libvirt architecture
The libvirt project has several clients that interact with the libvirtd daemon. This
daemon is responsible for managing the local hypervisor software (be it QEMU/KVM,
Xen, or any other virtualization software) and is even able to manage remote hypervisors.
This latter functionality is often used for proprietary hypervisors that offer the necessary
APIs to manage the virtual resources on the host:

Enhancing libvirt with SELinux support 273

Figure 9.1 – High-level libvirt architecture

Due to the cross-platform and cross-hypervisor nature of the libvirt project, sVirt is
a good match. Instead of hypervisor-specific domains, generic (yet confined) domains
are used to ensure the security of the environment.

Configuring libvirt for sVirt
Most systems that support libvirt on SELinux systems will have SELinux support
automatically enabled. If this is not the case, but SELinux support is possible, then all
it takes is to configure libvirt to allow the SELinux security model. We map the SELinux
security model in libvirt on a per-hypervisor basis.

274 Secure Virtualization

The configuration parameters related to sVirt are generally defined on a per-hypervisor
basis. For instance, for the QEMU-based virtualization driver, we need to edit the /
etc/libvirt/qemu.conf file. Let's look at the various parameters related to secure
virtualization:

•	 The first parameter, which defines whether sVirt is active or not, is the security_
driver parameter. While libvirt will by default enable SELinux once it detects
SELinux is active, we can explicitly mark sVirt support as enabled by setting the
selinux value:

security_driver = "selinux"

SELinux support will by default be enabled without explicitly marking the
security_driver variable in the configuration file. If you want to use libvirt
without SELinux support (and consequently without sVirt), then you need to
explicitly mark the security_driver setting as none:

security_driver = "none"

•	 A second sVirt-related setting in libvirt is security_default_confined. This
variable defines whether guests are by default confined (and thus associated with the
sVirt protections) or not. The default value is 1, which means that the confinement
is by default enabled. To disable it, you need to set it to 0:

security_default_confined = 0

•	 Users of the libvirt software can also ask to create an unconfined guest (and libvirt
allows this by default). If we set security_require_confined to 1, then no
unconfined guests can be created:

security_require_confined = 1

We can confirm that sVirt is running when we have a guest active on the platform, as
we can then consult the label for its processes to verify that it indeed received two random
categories.

Let's create such a guest, using the regular QEMU hypervisor. We use an Alpine Linux
ISO to boot the guest with, but that is merely an example—you can substitute it with any
ISO you want:

virt-install --virt-type=qemu --name test \
 --ram 128 --vcpus=1 --graphics none \
 --os-variant=alpinelinux3.8 \
 --cdrom=/var/lib/libvirt/boot/alpine-extended-x86_64.iso \
 --disk path=/var/lib/libvirt/images/test.
qcow2,size=1,format=qcow2

Enhancing libvirt with SELinux support 275

The locations mentioned are important, as they will ensure that the files are
properly labeled:

•	 In /var/lib/libvirt/boot (and /var/lib/libvirt/isos), read-only
content should be placed, which will result in the files automatically being labeled
with virt_content_t.

•	 In /var/lib/libvirt/images, we create the actual guest images. When the
guests are shut down, the images will be labeled with virt_image_t, but once
started, the labels will be adjusted to match the categories associated with the
domain.

The command will create a guest called test, with 128 MB of memory and 1 vCPU. No
specific graphics support will be enabled, meaning that the standard console or screen
of the virtual machine will not be associated with any graphical service such as Virtual
Network Computing (VNC) but will rely on a serial console definition inside the guest.
Furthermore, we have the guest use a small, 1 GB disk that uses the QEMU copy-on-write
(QCOW2) format.

Once we have created the guest and launched it, we can check its label easily:

ps -efZ | grep test
system_u:system_r:svirt_tcg_t:s0:c533,c565 /usr/bin/qemu-
system-x86_64 -name guest=test,...

To list the currently defined guests, use the virsh command:

virsh list --all
 Id Name State

 1 test running

The --all argument will ensure that even guests that are defined but are not running
currently are listed as well.

Important note
Within libvirt, guests are actually called domains. As SELinux (and thus this
book) also uses the term domain frequently when referring to the context of
a process, we will be using guest as terminology when referring to libvirt's
domains to keep possible confusion to a minimum.

276 Secure Virtualization

The virsh command is the main entry point for interacting with libvirt. For instance, to
send a shutdown signal to a guest, you would use the shutdown argument, whereas the
destroy argument will force the shutdown of the guest. Finally, to remove a definition,
you would use undefine.

As shown in the previous example, the guest we defined is running with the svirt_
tcg_t domain. Let's see how we can adjust the labels used by libvirt for guests.

Changing a guest's SELinux labels
Once a guest has been defined, libvirt allows administrators to modify its parameters by
editing an XML file representing the guest. Within this XML file, the SELinux labeling has
a place as well.

To view the current definition, you can use the dumpxml argument to virsh:

virsh dumpxml test

At the end of the XML, the security labels are shown. For SELinux, this could look like so:

<seclabel type='dynamic' model='selinux' relabel='yes'>
 <label>system_u:system_r:svirt_tcg_t:s0:c533,c565</label>
 <imagelabel>system_u:object_r:svirt_image_t:s0:c533,c565</
imagelabel>
</seclabel>

If we want to modify these settings, we can use the edit argument to virsh:

virsh edit test

This will open the XML file in the local editor. However, once we accomplish that,
we'll notice that the seclabel entries are nowhere to be found. That is because the
default behavior is to use dynamic labels (hence type='dynamic') with default labels,
which does not require any default definition.

Enhancing libvirt with SELinux support 277

Let's instead use a static definition, and have the guest run with the c123,c124 category
pair. In the displayed XML, at the end (but still within the <domain>...</domain>
definition), place the following XML snippet:

<seclabel type='static' model='selinux' relabel='yes'>
 <label>system_u:system_r:svirt_tcg_t:s0:c123,c124</label>
</seclabel>

To run a guest with a different type is of course done in a similar fashion, changing
svirt_tcg_t to a different type. However, keep in mind that not all types can be used
regardless. For instance, the default svirt_t domain cannot be used with QEMU's
full-system virtualization (as QEMU uses TCG if it cannot use KVM).

Important note
The default types that libvirt uses are declared inside /etc/selinux/
targeted/contexts, in the virtual_domain_context and
virtual_image_context files. However, it is not recommended to
change these files as they will be overwritten when SELinux policy updates are
released by the distribution.

The relabel statement requests libvirt to relabel all resources for the guest according
to the guest's current assigned label (relabel='yes') or not (relabel='no'). With
dynamic category assignment, this will always be yes, while with static definitions both
values are possible.

Of course, if we want to, we can use dynamic category assignment with custom type
definitions as well. For that, we declare type='dynamic' but explicitly define a label
within a <baselabel> entity, like so:

<seclabel type='dynamic' model='selinux'>
 <baselabel>system_u:system_r:svirt_t:s0</baselabel>
</seclabel>

This will have the guest run with a dynamically associated category pair, while using
a custom label rather than the default selected one.

278 Secure Virtualization

Customizing resource labels
If the guest definition has relabeling active (either because it uses dynamic category
assignment or on explicit request of the administrator), then the resources that the guest
uses will be relabeled accordingly.

Administrators can customize the labeling behavior of libvirt through the same interface
we used previously: guest definition files. For instance, if we would not want libvirt to
relabel the test.qcow2 file that represents the guest's disk, we could add to the XML
like so:

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/var/lib/libvirt/images/test.qcow2'>
 <seclabel relabel='no'/>
 </source>
 <target dev='hda' bus='ide'/>
 <address type='drive' controller='0' bus='0'
 target='0' unit='0'/>
</disk>

This is useful when you want to allow the sharing of some resources across different
guests, without making them readable by all guests. In such a situation, we could label the
file itself with (say) svirt_image_t:s0:c123 and have the guests with category pairs
always contain the category c123.

Controlling available categories
When libvirt selects random categories, it does so based on its own category range. By
default, MCS systems will have this range set to c0.c1023. To change the category range,
we need to ensure that we launch the libvirt daemon (libvirtd) in the proper context.

With systemd, we saw in Chapter 7, Configuring Application-Specific SELinux Controls,
that this can be accomplished by editing the service unit file and defining the right
SELinuxContext variable. Let's apply this to libvirtd as well:

1.	 First, copy over the system-provided libvirtd.service file to /etc/
systemd/system:

cp /usr/lib/systemd/system/libvirtd.service /etc/
systemd/system

Enhancing libvirt with SELinux support 279

2.	 Edit the libvirtd.service file and add the following definition:

SELinuxContext=system_u:system_r:virtd_t:s0-s0:c800.c899

3.	 Reload the daemon definitions for systemd so that it picks up the new libvirtd.
service file:

systemctl daemon-reload

4.	 Restart the libvirtd daemon:

systemctl stop libvirtd

systemctl start libvirtd

5.	 We can now start our guests again and verify that each guest is now running with
a category pair within the range defined for the libvirtd daemon:

virsh start test

ps -efZ | grep virt
system_u:system_r:virtd_t:s0-s0:c800.c899 /usr/sbin/
libvirtd
system_u:system_r:svirt_t:s0:c846,c891 /usr/bin/qemu-
system-x86_64 -name guest=test...

As we can see, the categories selected by libvirt are now within the defined range.
Systems that do not use systemd can edit the SysV-style init script and use runcon:

runcon -l s0-s0:c800.c899 /usr/sbin/libvirtd \
 --config /etc/libvirt/libvirtd.conf --listen

Every time we launch a new guest, the libvirt code will randomly select two categories.
The service will then check whether these categories are part of its own range and whether
the category pair is already used or not. If any of these checks fail, libvirt will randomly
select a new pair of categories until a free pair matches the requirements.

Changing the storage pool locations
A very common configuration change with libvirt is to reconfigure it to use a different
storage pool location. This has a slight impact on SELinux as well, as we do not have
proper file context definitions for the new location.

280 Secure Virtualization

Let's see how to create a new pool location and change the SELinux configuration for it:

1.	 List the current storage pools to make sure the new pool name is not already taken:

virsh pool-list --all
 Name State Autostart

 boot active yes
 images active yes
 root active yes

2.	 Create the target location:

mkdir /srv/images

3.	 Create the new storage pool with pool-define-as. In the following command,
we name the pool large_images:

virsh pool-define-as large_images dir - - - - "/srv/
images"
Pool large_images defined

4.	 Configure SELinux to label the pool properly:

semanage fcontext -a -t virt_image_t "/srv/
images(/.*)?"

5.	 Relabel the directory structure:

restorecon -R /srv/images

6.	 Have libvirt populate the directory structure:

virsh pool-build large_images

7.	 Start the storage pool:

virsh pool-start large_images

8.	 Turn on auto-start so that, when libvirtd starts, the pool is immediately usable
as well:

virsh pool-autostart large_images

Using Vagrant with libvirt 281

9.	 We can verify that everything is functioning properly with the pool-info
command:

virsh pool-info large_images

The output will show the current and available capacity for the new location.
If we host the storage pool on an NFS-mounted location, then we need to enable the
virt_use_nfs SELinux boolean as well.

Now that we've fully grasped how to configure libvirt and SELinux for it, let's see how
we can use the popular Vagrant tool with libvirt.

Using Vagrant with libvirt
Vagrant is a framework to quickly spin up and manage virtual machines and is very
popular within development communities. While Vagrant uses Oracle VirtualBox as the
hypervisor by default, we can install a libvirt plugin to use Vagrant with libvirt, benefiting
from the sVirt security offered by SELinux.

Deploying Vagrant and the libvirt plugin
The Vagrant application can be installed from a single RPM file. Find the latest version at
https://www.vagrantup.com/downloads.html and install it. For instance, for
CentOS systems, you can use yum directly:

yum install https://releases.hashicorp.com/vagrant/2.2.9/
vagrant_2.2.9_x86_64.rpm

To install the libvirt plugin, we first need to make sure that the dependencies are installed
as well. The documentation, online at https://github.com/vagrant-libvirt/
vagrant-libvirt, gives a good overview of which packages need to be installed. Do
not forget this step, as dependency failures during the plugin installation are not always
obvious.

Once the dependencies are installed, use vagrant itself to download and install
the plugin:

vagrant plugin install vagrant-libvirt

After installing the plugin, we can go forward with setting up a Vagrant box.

https://www.vagrantup.com/downloads.html
https://github.com/vagrant-libvirt/vagrant-libvirt
https://github.com/vagrant-libvirt/vagrant-libvirt

282 Secure Virtualization

Installing a libvirt-compatible box
Vagrant uses boxes: images prepared for quick installation using Vagrant. Not all Vagrant
boxes are compatible with the libvirt provider. Luckily, the Vagrant Cloud website at
https://app.vagrantup.com/boxes/search?provider=libvirt allows
you to quickly find compatible boxes.

Suppose we want to use a Fedora image called fedora/32-cloud-base, then we can
configure it as follows:

1.	 Create a new directory, which we will define the box configuration in, and enter
this location:

mkdir vagrant

cd vagrant

2.	 Initialize the Vagrant box, using the fedora/32-cloud-base box definition:

vagrant init fedora/32-cloud-base

This will create an empty Vagrantfile that can be used to further configure
the box.

3.	 Edit the Vagrantfile, and add the following code:

config.vm.provider :libvirt do |libvirt|
 libvirt.storage_pool_name = "images"
 libvirt.driver = "qemu" # or kvm
end

This will configure the libvirt provider to use the images directory as the default
storage pool, and use the QEMU driver within libvirt.

4.	 Still inside the Vagrantfile, add the following code to give the box
a proper name:

config.vm.define :test do |test|
 test.vm.box = "fedora/32-cloud-base"
end

The name chosen here is test, and will result in a virtual guest named vagrant_
test.

5.	 To launch the test guest, run the vagrant up command like so:

vagrant up --provider=libvirt

Depending on the speed of the system, this step can take a while to complete.

https://app.vagrantup.com/boxes/search?provider=libvirt

Summary 283

Tip
Rather than calling vagrant up every time with the
--provider=libvirt parameter, we can also declare the VAGRANT_
DEFAULT_PROVIDER="libvirt" environment variable and drop the
command-line argument, as the environment variable will then be used.

Once the guest is up and running, you can connect to it using vagrant ssh. While
you can manipulate the guest with the virsh commands, you can also use vagrant
halt to shut down, or vagrant destroy followed by vagrant box remove to
remove the box from the system completely.

Configuring Vagrant boxes
Once a box is deployed, it is available through libvirt as a standard guest. That means that
the operations we've seen before to modify its labels or tweak SELinux controls using the
SELinux booleans still apply.

Let's first verify that Vagrant is indeed using libvirt to launch its own boxes:

virsh list --all
 Id Name State

 1 vagrant_test running

Sure enough, the guest is available and titled vagrant_test. We can modify its
configuration with virsh edit as well:

virsh edit vagrant_test

As long as the Vagrant box is not destroyed, the settings in libvirt will persist.

Summary
Virtualization is a powerful technology whose security posture can be augmented thanks
to SELinux. With sVirt, the open source community has a powerful approach to isolate
guests and ensure virtual machines are only able to access the resources they should.

In this chapter, we looked at virtualization and the risks associated with it. We discussed
how some of these risks can be mitigated through the same set of controls that SELinux
offers, such as type enforcement (limiting what guests can do) and MCS confinement
(isolating guests from each other).

284 Secure Virtualization

We then covered how libvirt supports several virtualization technologies on Linux
platforms and how it includes a technology called sVirt that enables SELinux integration,
offering guest isolation and access controls. We saw how administrators can manipulate
the sVirt logic within libvirt, such as through different domain labels or category sets.
We finished the chapter with information on how to use Vagrant with libvirt.

In the next chapter, we'll look at another virtualization solution, called Xen, which has
adopted an SELinux-based technology for its hardening.

Questions
1.	 What is unique about sVirt that cannot be done with regular SELinux

configuration?

2.	 What are the two main risks that SELinux tackles with virtualization?

3.	 What is the difference between virt_image_t, svirt_image_t, and virt_
content_t?

4.	 How do you change guest labels with libvirt?

5.	 How can we use Vagrant yet still benefit from sVirt?

10
Using Xen Security

Modules with FLASK
In Chapter 9, Secure Virtualization, we saw that libvirt is able to apply sVirt protection
measures, based upon SELinux domains and category assignation, to several supported
hypervisors. Xen, another popular open source hypervisor, is also supported by libvirt,
but it is much more common to use Xen on its own, independent from libvirt.

Xen itself has a security framework called Xen Security Modules (XSM), similar to Linux
Security Modules (LSM), and an access control system called XSM-FLASK, which is their
SELinux-based security framework. We'll see how Xen uses XSM, how to build Xen with
XSM support, and finally, how we can apply policies to Xen domains.

In this chapter, we're going to cover the following main topics:

•	 Understanding Xen and XSM

•	 Running XSM-enabled Xen

•	 Applying custom XSM policies

286 Using Xen Security Modules with FLASK

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3kcCePl

Understanding Xen and XSM
The Xen Project is a Linux Foundation project that maintains the Xen hypervisor. While
the Xen Project manages multiple security and virtualized-related software titles, our
focus is on the Xen hypervisor.

Introducing the Xen hypervisor
The Xen hypervisor runs directly on top of hardware and sits in between the various
virtual machines and the hardware itself. Unlike QEMU or KVM, which run as a process
within Linux to offer the virtualization functionality, Xen works more independently. As
a result, administrators will not see the running instances as separate processes. Instead,
they need to rely on Xen commands and APIs to get more information and to interact
with the Xen hypervisor.

Important note
As with libvirt, the Xen hypervisor uses the term domain to point to its guests.
As we use the term domain frequently in SELinux to mean the SELinux type
of a running process, and thus also the SELinux type of a running guest,
we will use guest wherever possible. However, there will be some terminology
associated with Xen where we will have to keep the domain terminology
in place.

Xen always has at least one virtual guest defined, called Domain 0 (dom0). This
guest manages the system and runs the Xen daemon (xend). It is through dom0 that
administrators will create and operate virtual guests running within Xen. These regular
guests are unprivileged, and therefore abbreviated as domU—unprivileged domains.

When administrators boot a Xen host, they boot into Xen's dom0 instance, through which
they then further interact with Xen. The Linux kernel has included support for running
both within dom0 as well as domU for quite some time now (with complete support,
including backend drivers, since Linux kernel 3.0).

Let's use an existing Linux deployment to install Xen, and use this existing deployment as
Xen's dom0 guest.

https://bit.ly/3kcCePl

Understanding Xen and XSM 287

Installing Xen
While many Linux distributions offer Xen out of the box, it is very likely that these
deployments do not support XSM (which we will enable in the Running XSM-enabled Xen
section). So, rather than fiddling with prebuilt Xen environments first, we want to build it
from source as released by the Xen Project immediately.

Before we start using Xen, let alone its XSM support, we first need to make sure that
we are running with a Xen-enabled Linux kernel.

Running with a Xen-enabled Linux kernel
The Linux kernel on the system must have support for running (at least) inside a dom0
guest. Without this support, not only will the dom0 guest not be able to interact with the
Xen hypervisor, it will also not be able to boot the Xen hypervisor itself (the Xen-enabled
kernel needs to bootstrap the Xen hypervisor before launching itself as the dom0 guest).

If you build your own Linux kernel, you need to configure the kernel with the settings
as documented at https://wiki.xenproject.org/wiki/Mainline_Linux_
Kernel_Configs. Some Linux distributions provide more in-depth build instructions
(such as Gentoo at https://wiki.gentoo.org/wiki/Xen). On CentOS, however,
out-of-the-box Xen support is currently missing from the last release (as CentOS focuses
more on libvirt and related technologies for its virtualization support).

Luckily, the community offers well-maintained Linux kernel builds that do include Xen
support, through the kernel-ml package. Let's install this kernel package:

1.	 Enable the Enterprise Linux Repository (ELRepo), which introduces several other,
community-driven repositories:

yum install elrepo-release

2.	 Install the kernel-ml package, which will install the most recent Linux kernel,
with a configuration that includes Xen support. We simultaneously enable the
elrepo-kernel repository, through which this package is made available:

yum install --enablerepo=elrepo-kernel kernel-ml

3.	 Generally, the Linux boot loader will be reconfigured to include these new kernels.
If not, or you want to make sure that the kernel is properly detected, the following
command can be used to regenerate the Grand Unified Bootloader (GRUB2)
configuration file:

grub2-mkconfig -o /boot/grub2/grub.cfg

https://wiki.xenproject.org/wiki/Mainline_Linux_Kernel_Configs
https://wiki.xenproject.org/wiki/Mainline_Linux_Kernel_Configs
https://wiki.gentoo.org/wiki/Xen

288 Using Xen Security Modules with FLASK

Of course, if your system uses a different boot loader, different instructions apply.
Consult your Linux distribution's documentation for more information on how to
configure the boot loader.

4.	 Reboot the system using the newly installed kernel:

reboot

If all goes well, you will now be running with a Xen-compatible kernel. That, of course,
does not mean that Xen is active, but merely that the kernel can support Xen if it is
needed. Let's now move forward with building the Xen hypervisor and related tooling.

Building Xen from source
The Xen hypervisor and tools have dependencies on various programs and libraries, and
not all tools and libraries are properly detected as dependencies while building Xen from
source.

Let's first install these dependencies:

1.	 Enable the PowerTools repository:

dnf config-manger --set-enabled PowerTools

2.	 Install the dependencies supported by the CentOS repositories:

yum install gcc xz-devel python36-devel acpica-tools
uuid-devel ncurses-devel glib2-devel pixman-devel yajl
yajl-devel zlib-devel transfig pandoc perl-Pod-Html git
glibc-devel.i686 patch libuuid-devel

3.	 Install the dev86 package. At the time of writing, this package is not yet available
for CentOS 8 so we deploy the version from CentOS 7 instead:

yum install https://download-ib01.fedoraproject.org/
pub/epel/7/x86_64/Packages/d/dev86-0.16.21-2.el7.x86_64.
rpm

With the dependencies now installed, let's download the latest Xen and build it:

1.	 Go to https://xenproject.org/downloads/ and go to the last Xen Project
release.

2.	 At the bottom of the page, download the latest archive.

https://xenproject.org/downloads/

Understanding Xen and XSM 289

3.	 Unpack the downloaded archive on the system:

$ tar xvf xen-4.13.1.tar.gz

4.	 Enter the directory the archive is unpacked in:

$ cd xen-4.13.1

5.	 Configure the sources for the local system. At this point, no specific arguments need
to be passed on:

$./configure

6.	 Build the Xen hypervisor and associated tools:

$ make world

7.	 Install the Xen hypervisor and tools on the system:

make install

8.	 Reconfigure the boot loader. This should automatically detect the Xen binaries and
add the necessary boot loader entries:

grub2-mkconfig -o /boot/grub2/grub.cfg

9.	 Configure the system to support libraries installed in /usr/local/lib:

echo "/usr/local/lib" > /etc/ld.so.conf.d/local-xen.
conf

ldconfig

10.	 Create equivalence rules for the subdirectories in /usr/local so that SELinux file
contexts are correctly applied:

semanage fcontext -a -e /usr/local/bin /usr/bin

semanage fcontext -a -e /usr/local/sbin /usr/sbin

11.	 Relabel the files inside /usr/local:

restorecon -RvF /usr/local

290 Using Xen Security Modules with FLASK

12.	 The result of these steps is that Xen is ready to be booted on the system. The boot
loader will not use the Xen-enabled kernel by default though, so during reboot, it is
important to select the right entry. Its title will contain with Xen hypervisor:

reboot

13.	 After rebooting into the Xen-enabled system, all we need to do is to start the Xen
daemons:

systemctl start xencommons

systemctl start xendomains

systemctl start xendriverdomain

systemctl start xen-watchdog

14.	 To verify that everything is working as expected, list the currently running guests:

xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 7836 4 r----- 46.2

The listing should contain a single guest, named Domain-0, which is the guest you
just executed the xl list command in.

15.	 Finalize the installation by ensuring that the previously started daemons are started
at boot:

systemctl enable xencommons

systemctl enable xendomains

systemctl enable xendriverdomain

systemctl enable xen-watchdog

Before we move on to XSM, let's also create a guest inside Xen (as a domU) so that we can
associate policies with it later, in the Using XSM labels section.

Creating an unprivileged guest
When the Xen hypervisor is active, the operating system through which we interact with
Xen is called dom0 and is the (only) privileged guest that Xen supports. The other guests
are unprivileged, and it is the interaction between these guests and the actions taken by
these guests that we want to isolate and protect further with XSM.

Understanding Xen and XSM 291

Let's first create a simple, unprivileged guest to run alongside the privileged dom0
one. We use Alpine Linux in this example, but you can easily substitute this with other
distributions or operating systems. This example will use the ParaVirtualized (PV) guest
approach, but Xen also supports Hardware Virtual Machine (HVM) guests:

1.	 Download the ISO for the Alpine Linux distribution, as this distribution is more
optimized for low memory consumption and lower (virtual) disk size requirements.
Of course, you are free to pick other distributions as well if your system can
handle it. We pick the release optimized for virtual systems from https://www.
alpinelinux.org/downloads/ and store the ISO on the system in /srv/
data.

2.	 Mount the ISO on the system so that we can use its bootable kernel when creating
an unprivileged guest in our next steps:

mount -o loop -t iso9660 /srv/data/alpine-virt-
3.8.0-x86_64.iso /media/cdrom

3.	 Create an image file, which will be used as the boot disk for the virtual guest:

dd if=/dev/zero of=/srv/data/a1.img bs=1M count=3000

4.	 Next, create a configuration file for the virtual guest. We call the file a1.cfg and
place it in /etc/xen:

Alpine Linux PV DomU

Kernel paths for install
kernel = "/media/cdrom/boot/vmlinuz-virt"
ramdisk = "/media/cdrom/boot/initramfs-virt"
extra = "modules=loop,squashfs console=hvc0"

Path to HDD and ISO file
disk = [
 'format=raw, vdev=xvda, access=w, target=/srv/data/
a1.img',
 'format=raw, vdev=xvdc, access=r, devtype=cdrom,
target=/srv/data/alpine-virt-3.8.0-x86_64.iso'
]

DomU settings
memory = 512
name = "alpine-a1"

https://www.alpinelinux.org/downloads/
https://www.alpinelinux.org/downloads/

292 Using Xen Security Modules with FLASK

vcpus = 1
maxvcpus = 1

5.	 Boot the virtual guest using the xl create command:

xl create -f /etc/xen/a1.cfg -c

The -c option will immediately show the console to interact with, allowing you to
initiate and complete the installation of the operating system in the guest.

6.	 When the guest needs to reboot, use shutdown instead, and edit the configuration
file. Remove the line referring to the ISO to prevent the guest from booting into the
installation environment again.

7.	 To launch the guest again, use the xl create command again. If the guest
installation finishes and you no longer need to have access to the console, drop the
-c option:

xl create -f /etc/xen/xa1.cfg

8.	 We can confirm that the virtual guest is running with xl list:

xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 7836 4 r----- 99.4
alpina-a1 1 128 1 -b---- 2.5

With Xen, guests are launched with the create subcommand and shut down with the
shutdown (graceful) or destroy subcommands.

With these steps behind us, we now have a working Xen installation and a running guest.
It's time to learn what Xen has to offer us from a security perspective.

Understanding Xen Security Modules
In Chapter 1, Fundamental SELinux Concepts, we learned that SELinux is implemented
through a Linux subsystem called Linux Security Modules (LSM). Xen has borrowed this
idea and has a similar approach to its own security measures.

Running XSM-enabled Xen 293

With Xen Security Modules (XSM), Xen makes it possible to define and control actions
between Xen guests, and between a Xen guest and the Xen hypervisor. Unlike the Linux
kernel though, where several mandatory access control frameworks exist that can plug
into the LSM subsystem, Xen currently only has a single module available for XSM, called
XSM-FLASK.

FLASK stands for Flux Advanced Security Kernel and is the security architecture
and approach that SELinux also uses for its own access control expressions. With
XSM-FLASK, developers and administrators can do the following:

•	 Define permissions and fine-grained access controls between guests

•	 Define limited privilege escalation for otherwise unprivileged guests

•	 Control direct hardware and device access from guests on a policy level

•	 Restrict and audit activities executed by privileged guests

While XSM-FLASK uses SELinux-like naming conventions (and even SELinux build
tools to build the policy), the XSM-FLASK-related settings are independent of SELinux.
If dom0 is running with SELinux enabled (and there is no reason why it shouldn't),
its policy has nothing to do with the XSM-FLASK policy.

The labels that XSM-FLASK uses will also not be visible for regular Linux commands
running inside the guests (and thus also dom0). As the running guests are not shown
as processes within the system, they do not have an SELinux label at all, only an
XSM-FLASK label (if enabled). Hence, Xen cannot benefit from the sVirt approach,
as documented in Chapter 9, Secure Virtualization.

Running XSM-enabled Xen
Switching from a regular Xen deployment to an XSM-enabled Xen deployment is
a matter of rebuilding Xen with XSM support and rebooting the system. Xen comes with
an out-of-the-box policy that can be readily applied, which we will use as part of our XSM
endeavor.

Rebuilding Xen with XSM support
Let's rebuild the Xen hypervisor and tools on the system with XSM support:

1.	 Clean up the previous build by running the make clean command inside the
build directory (xen-4.13.1 in our example):

$ make clean

294 Using Xen Security Modules with FLASK

2.	 Inside the build directory, go to the xen directory:

$ cd xen

3.	 Launch the Xen configuration using make menuconfig:

$ make menuconfig

4.	 Navigate to the XSM setting and enable the XSM-related parameters:

Common Features --->
 [*] Xen Security Modules support
 [*] FLux Advanced Security Kernel support
 [*] Compile Xen with a built-in FLAS security
 policy
 [*] SILO support
 Default XSM implementation (FLux Advanced
 Security Kernel)

5.	 Go back to the main build directory (xen-4.13.1 in our example):

$ cd ..

6.	 Rebuild the Xen hypervisor and tools:

$./configure

$ make world

7.	 Install the updated Xen build on the system:

make install

This will not only update the tools but will also provide an updated Xen kernel and
an XSM policy inside /boot (named xenpolicy-4.13.1).

8.	 Reconfigure the boot loader with the new Xen build, ensuring that the XSM policy
is also loaded with it:

grub2-mkconfig -o /boot/grub2/grub.cfg

9.	 Reboot the system:

reboot

Running XSM-enabled Xen 295

10.	 Once rebooted, we can verify that the XSM policy is loaded and used by querying
Xen for the labels associated with the running guests:

xl list -Z
Name ID ... Security Label
Domain-0 0 ... system_u:system_r:dom0_t
alpina-a1 1 ... system_u:system_r:domU_t

If the xl list command, given the -Z argument, lists the security labels, then Xen is
running with an XSM policy active. Let's see where these labels are used.

Using XSM labels
When Xen boots with XSM support and has its default policy active, the following types
can be used by guests:

•	 The dom0_t type is reserved for the privileged guest.

•	 The domU_t type is the default type to use for unprivileged guests.

•	 The isolated_domU_t type is the type to assign to unprivileged guests that
should not be able to interact with other unprivileged guests, only with the
privileged dom0 one.

•	 The prot_domU_t type is meant for guests that will be prevented from starting
if the XSM policy boolean prot_doms_locked is set.

•	 The nomigrate_t type is applied to guests that are not allowed to be migrated
from one Xen host to another. Internally, this prevents the dom0 guest from
accessing the guest's memory once booted.

There are a few other types also available inside the XSM policy that are not meant for
regular guests themselves:

•	 The dm_dom_t type is assigned to the device model guest. This is a special,
privileged guest that represents the hardware virtualized for an HVM-type guest,
without jeopardizing dom0.

•	 The xenstore_t type is assigned to the xenstore stub guest. This is a special,
privileged guest that provides support for unprivileged guests to access their
virtualized resources, without jeopardizing dom0.

•	 The nic_dev_t type is assigned to hardware devices that can be used in
passthrough mode (meaning domU guests can directly interact with these hardware
devices rather than going through the privileged guests).

296 Using Xen Security Modules with FLASK

These stub guests (stub domains or stubdoms as they are called in Xen) are a way for Xen
to further increase its security posture, as privileged operations that cannot be prevented
are more isolated from dom0. If at any point a security vulnerability can be exploited in
these privileged services, they do not necessarily affect dom0 and, with a proper XSM
policy, can even be mitigated fully.

Assigning one of these labels to a guest is a matter of editing the guest's configuration file
inside /etc/xen and adding in the seclabel configuration parameter:

seclabel = 'system_u:system_r:isolated_domU_t'

Once configured and rebooted (using xl create), the new label will be visible when
querying the running guests:

xl list -Z
Name ID ... Security Label
Domain-0 0 ... system_u:system_r:dom0_t
alpina-a1 1 ... system_u:system_r:isolated_domU_t

Applying the right label to the guest is the most common use case (as it effectively handles
the access control and protection measures we seek from the XSM implementation), but
other operations are supported as well.

Manipulating XSM
As with SELinux, several activities can be executed to further manipulate the XSM
subsystem or the active policy.

Defining the state, ranging from disabled to enforcing
When Xen boots, we can add a kernel parameter called flask, which can be set to one of
the following values:

•	 With flask=enforcing, we ensure that XSM is active, enforcing the policy
between its guests and resources, and that the enforcement is immediate
(no delayed activation).

•	 With flask=permissive, XSM will load the policy, but XSM will not enforce
the rules set in the policy. This is obviously meant for development purposes and
behaves similarly to SELinux's permissive mode.

Running XSM-enabled Xen 297

•	 With flask=late, XSM will not enforce any access controls until a policy is
loaded, after which the policy is enforced. This allows administrators to boot with
XSM active, but only to load and apply a policy when the administrator deems
it ready.

•	 With flask=disabled, XSM will not enforce any access controls nor load
the policy.

This parameter can be set either directly when booting (from the boot loader) or through
the boot loader configuration on the system. For instance, with GRUB2, we can edit /
etc/default/grub and add or modify the following parameter:

GRUB_CMDLINE_XEN_DEFAULT="flask=enforcing"

Don't forget to regenerate the GRUB2 configuration file:

grub2-mkconfig -o /boot/grub2/grub.cfg

As with SELinux, we can also manipulate the state of XSM through the command line.
With xl getenforce, we can query the current state:

xl getenforce
Enforcing

The xl setenforce command can be used to switch to another state:

xl setenforce permissive

These commands have nothing to do with the SELinux configuration within dom0:
switching Xen from permissive mode to enforcing or vice versa is specific to Xen and has
no impact on the SELinux settings inside dom0.

Querying XSM logs
Like SELinux, XSM also uses AVC logging to provide feedback to the administrator about
the decisions it has taken. With xl dmesg, we can query this log information (alongside
the other Xen output logging):

xl dmesg
...
(XEN) avc: granted { setenforce } for
domid=0 scontext=system_u:system_r:dom0_t
tcontext=system_u:system_r:security_t tclass=security

298 Using Xen Security Modules with FLASK

Not all granted operations will be logged, but denied operations will always result in an
AVC entry. The AVC entries themselves are fully formatted like SELinux AVC entries,
allowing administrators to use SELinux tools such as audit2allow to generate
XSM policies.

Using XSM booleans
The default policy enabled by Xen has two booleans that can be toggled:

•	 The guest_writeconsole boolean, which defaults to 1 (on), allows guests to
access and write to the Xen console.

•	 The prot_doms_locked boolean, which defaults to 0 (off), will disallow prot_
domU_t guests from launching if enabled.

While no subcommand is available for the xl command to query and set XSM booleans,
two other commands are installed on the system to accomplish this – flask-get-bool
and flask-set-bool:

•	 With flask-get-bool, we can query the current state of a boolean, or list all
booleans with their current value:

flask-get-bool -a
guest_writeconsole: 1
prot_doms_locked: 0

•	 The flask-set-bool command is used to toggle booleans:

flask-set-bool prot_doms_locked 1

This is very similar to SELinux's getsebool and setsebool commands.

Querying the XSM policy
The XSM policy file (xenpolicy-4.13.1) is quite similar to an SELinux policy file. As
a result, we can use the SELinux tools to query this file and learn more about the policy:

•	 With seinfo, we can query statistics about the policy, view which classes are
supported, the constraints that are enabled within, and more. The only query that
fails is listing the types supported within the policy:

$ seinfo --all ./xenpolicy-4.13.1

Applying custom XSM policies 299

•	 With sesearch, we can query the XSM policy rules themselves, for instance, to
list all allow rules:

$ sesearch -A ./xenpolicy-4.13.1

When we discuss analyzing SELinux policies in Chapter 13, Analyzing Policy Behavior,
we will get familiar with other tools that can also be used to analyze XSM policy files.

Labeling hardware resources
With the flask-label-pci command, administrators can label specified PCI devices
with a given type. This approach allows administrators to mark certain devices for
passthrough access by unprivileged guests.

For instance, to label the PCI device with address 3:2:0 with the nic_dev_t type, use
the following

flask-label-pci 0000:03:02.0 system_u:object_r:nic_dev_t

As you might guess from the name, this type is initially defined for passthrough access to
network devices but can be used for other PCI hardware as well.

Applying custom XSM policies
Xen also allows administrators to build and use their own, custom policy.

The default policy for Xen is available inside the tools/flask/policy directory
within the Xen build directory. For instance, the policy rules for the dom0 guest are
available inside modules/dom0.te.

Important note
Adjusting the Xen XSM policy is beyond the scope of this chapter. You will find
instructions on how to create SELinux policies using the reference policy-style
method in Chapter 15, Using the Reference Policy. The Xen XSM policy is based
upon this style.

Building a custom policy is a matter of updating these files (make a backup before you do)
and then rebuilding the policy itself:

$ make

300 Using Xen Security Modules with FLASK

The result of the policy build is a new xenpolicy-4.13.1 file. This file can be loaded
directly using the xl loadpolicy command:

xl loadpolicy /path/to/xenpolicy-4.13.1

This command is similar to the flask-loadpolicy command:

flask-loadpolicy /path/to/xenpolicy-4.13.1

If, after testing, the policy is deemed ready to be used continuously, copy it over to /boot
so that it is automatically picked up at the next boot as well.

Summary
The Xen hypervisor is quite different from the QEMU and KVM hypervisors, which are
more readily used in libvirt. SELinux support for Xen is also different than sVirt as the
SELinux subsystem can only be active inside Xen guests, and SELinux does not see other
guests.

Xen has resolved that by implementing its own SELinux copy as XSM-FLASK and has
integrated the appropriate support for the XSM-FLASK labels in its own tooling. In this
chapter, we've learned how to apply our own types to Xen guests, toggle the XSM state,
toggle XSM booleans, and even how we can build and load our own XSM-FLASK policy.

In the next chapter, we'll look at container workloads and how SELinux can help
administrators to further harden and secure their container runtimes. We will see how
sVirt can be applied to container runtimes, and how the tooling deals with SELinux
support.

Questions
1.	 Why doesn't the regular SELinux subsystem govern Xen guests?

2.	 How are labels assigned to Xen guests?

3.	 What are the common Xen commands that deal with XSM labels?

4.	 How can administrators load a custom policy for testing purposes?

11
Enhancing the

Security of
Containerized

Workloads
Container platforms and management frameworks provide application-level abstraction
to administrators and developers. Lightweight container frameworks allow for rapid
development and deployment of new applications, whereas heavier container platforms
allow for optimal resource consumption and highly resilient hosting platforms.

SELinux plays a vital role in many of these frameworks and platforms, ensuring that
untrusted containers cannot escape or interact with resources they are not supported
to interact with. In this chapter, we look at how SELinux is supported, ranging from
systemd-nspawn to podman (and Docker), and finally in larger environments with
Kubernetes. We also learn how to create custom SELinux domains for containers using
the udica utility.

302 Enhancing the Security of Containerized Workloads

In this chapter, we're going to cover the following main topics:

•	 Using SELinux with systemd's container support

•	 Configuring podman

•	 Leveraging Kubernetes' SELinux support

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/34aHOfl

Using SELinux with systemd's container
support
In Chapter 7, Configuring Application-Specific SELinux Controls, we introduced systemd
as an SELinux-aware application suite, capable of launching different services with
configurable SELinux contexts. Besides service support, systemd has quite a few other
features up its sleeve. One of these features is systemd-nspawn.

With systemd-nspawn, systemd provides container capabilities, allowing
administrators to interact with systemd-managed containers in an integrated way, almost
as if these containers were services themselves. It uses the same primitives as LXC from
the Linux Containers project (which was the predecessor of the modern container
frameworks) and Docker, based upon namespaces (hence the n in nspawn).

Informational note
The Linux Containers project has a product called LXC that combines several
isolation and resource management services within the Linux kernel, such
as control groups (cgroups) and namespace isolation. cgroups allow for
capping or throttling resource consumption in the CPU, memory, and
I/O, whereas namespaces allow for hiding information and limiting the
view on system resources. Early versions of Docker were built upon LXC,
although Docker has since embraced the Linux services itself directly without
using LXC.

https://bit.ly/34aHOfl

Using SELinux with systemd's container support 303

SELinux-wise, the software running inside the container might not have a correct view on
the SELinux state (depending on the container configuration) as the container is isolated
from the host itself. SELinux does not yet have namespace support to allow containers
or other isolated processes to have their own SELinux view, so if a container has a view
on the SELinux state, it should never be allowed to modify it.

Now, unlike Docker, podman, and Kubernetes, which can use the sVirt approach we saw
in Chapter 9, Secure Virtualization, the systemd-nspawn approach does not support
this technology.

Informational note
The systemd-nspawn command might not be installed by default. On
CentOS, Debian, and related distributions, the package that provides this tool
is called systemd-container. Other distributions such as Gentoo and
Arch Linux have it installed as part of the default systemd installation.

Let's see how systemd-nspawn works and what its SELinux support looks like.

Initializing a systemd container
To create a systemd container, we need to create a place on the filesystem where its files
will be stored, and then call systemd-nspawn with the correct arguments. To prepare
the filesystem, we can download prebuilt container images, or create one ourselves.
Let's use the Jailkit software, as used in Chapter 7, Configuring Application-Specific
SELinux Controls, and build a container from it:

1.	 First, create the directory the container runtimes will be hosted in:

mkdir /srv/ctr

2.	 Edit the /etc/jailkit/jk_init.ini file and include the following section:

[nginx]
comment = nginx runtime
paths = /usr/sbin/nginx, /etc/nginx, /var/log/nginx, /
var/lib/nginx, /usr/share/nginx, /usr/lib64/nginx, /usr/
lib64/perl5/vendor_perl
users = root,nginx
groups = root,nginx
includesections = netbasics, uidbasics, perl

This section tells Jailkit what it should copy into the directory, and which users
to support.

304 Enhancing the Security of Containerized Workloads

3.	 Execute the jk_init command to populate the directory:

jk_init -v -j /srv/ctr/nginx nginx

4.	 Finally, start the container using systemd-nspawn:

systemd-nspawn -D /srv/ctr/nginx /usr/sbin/nginx \
 -g "daemon off;"

As Nginx will by default attempt to run as a daemon, the container would immediately
stop as it no longer has an active process. By launching with the daemon off option,
nginx will remain in the foreground, and the container can continue to work.

Using a specific SELinux context
When we launch a container directly, this container will run with the SELinux context
of the user. We can, however, pass on the target context for the container using
command-line arguments:

•	 The --selinux-context= option (-Z for short) allows the administrator to
define the SELinux context for the runtime processes of the container.

•	 The --selinux-apifs-context= option (-L for short) allows the
administrator to define the SELinux context for the files and filesystem of the
container.

The SELinux types that can be used here, however, need to be carefully selected. The
processes running inside a container cannot perform any type of transitions, so regular
SELinux domains are often not feasible to use. Taking our Nginx example again, the
httpd_t domain cannot be used for this container.

We can use the SELinux types that the distribution provides for container workloads.
Recent CentOS versions will use a domain such as container_t (which was previously
known as svirt_lxc_net_t) and a file-oriented SELinux type, container_file_t.
While this domain does not hold all possible privileges needed for any container, it
provides a good baseline for containers.

Let's use this type for our container:

1.	 First, we need to extend the container_t privileges with some additional rights
for the nginx daemon. Create a CIL policy file with the following content:

(typeattributeset cil_gen_require container_t)
(typeattributeset cil_gen_require container_file_t)
(typeattributeset cil_gen_require http_port_t)

Using SELinux with systemd's container support 305

(typeattributeset cil_gen_require node_t)
(allow container_t container_file_t (chr_file (read open
getattr ioctl write)))
(allow container_t self (tcp_socket (create setopt bind
listen accept read write)))
(allow container_t http_port_t (tcp_socket (name_bind)))
(allow container_t node_t (tcp_socket (node_bind)))
(allow container_t self (capability (net_bind_service
setgid setuid)))

2.	 Load this file as a new SELinux module:

semodule -i custom_container.cil

3.	 Relabel the files of the container with the container_file_t SELinux type:

chcon -R -t container_file_t /srv/ctr/nginx

4.	 Launch the container with the appropriate labels:

systemd-nspawn -D /srv/ctr/nginx \
-Z system_u:system_r:container_t:s0 \
-L system_u:object_r:container_file_t:s0 \
/usr/sbin/nginx -g "daemon off;"

Whenever a container is launched, it remains attached to the current session. We can of
course create service files that launch the containers in the background, or use session
management services such as screen or tmux. A more user-friendly approach, however,
is to use machinectl.

Facilitating container management with machinectl
The machinectl command allows administrators to manage containers or even
virtual machines more easily through systemd. For containers, machinectl will use
systemd-nspawn.

Let's use this machinectl command to download, start, and stop a container:

1.	 First, download a ready-to-go container image with the pull-tar argument and
prepare it on the system:

machinectl pull-tar https://nspawn.org/storage/
archlinux/archlinux/tar/image.tar.xz archlinux

306 Enhancing the Security of Containerized Workloads

We can also download the archive manually, and then import it using machinectl
import-tar:

machinectl import-tar archlinux.tar.xz

2.	 List the available images with the list-images argument:

machinectl list-images

3.	 We can now clone this image and launch the container:

machinectl clone archlinux test

machinectl start test

4.	 To access the container environment, use the shell argument:

machinectl shell test

5.	 We can shut down the container using the poweroff argument:

machinectl poweroff test

When we use machinectl, the containers will run in the unconfined_service_t
SELinux domain. There is currently no way to override this. Luckily, we have other
tools available to facilitate container management that do have more significant built-in
SELinux support, such as Docker and podman.

Configuring podman
The podman utility is the default container management utility on CentOS 8 and other
distributions derived from Red Hat Enterprise Linux. Other distributions such as Gentoo
can also easily get access to podman by installing libpod.

Selecting podman over Docker
When we compare podman with Docker, we might not see a big difference when
we are simply using it for basic container management operations. The commands are
very similar, and podman even has a Docker compatibility layer that facilitates the usage
of podman for administrators who are used to working with Docker.

Configuring podman 307

Under the hood though, there are quite a few differences. For one, podman is
a daemon-less container management system, which allows end users to easily run
containers within their confined space. The libpod project also uses different design
principles and supports a different container runtime, which supports the Open
Container Initiative (OCI)-based definitions, called the Container Runtime Interface
for OCI (CRI-O).

Let's use podman to deploy a PostgreSQL container on the system:

1.	 First, we need to find the appropriate container. We can use the podman search
command for this:

podman search postgresql

2.	 Of the various PostgreSQL containers listed, we pick the Bitnami one:

podman pull docker.io/bitnami/postgresql

This command will download the container base image to the system, storing the
files in /var/lib/containers/storage.

3.	 We can now launch a container, assign a password to the PostgreSQL superuser
(postgres), and make sure that the PostgreSQL port (5432) is made available
to the system:

podman run -dit --name postgresql-test \
 -e POSTGRESQL_PASSWORD="pgsqlpass" \
 -p 5432:5432 postgresql

This command will create a container definition, based on the container base
we've just downloaded, and start it on the system.

4.	 We can use psql to validate that the database runs:

psql -U postgres -h localhost

5.	 When we're done with the container, we can stop it (using podman stop), which
keeps the current container information, allowing us to revive it again later (using
podman start) or remove the container from the system completely:

podman rm postgresql-test

308 Enhancing the Security of Containerized Workloads

6.	 Removing the container removes the container runtime, but the base container
image remains on the system:

podman images

This allows us to quickly start another container without having to download the
files again.

Using containers is a fast and effective way to quickly install and deploy software on the
system. Additionally, SELinux provides some additional protections to make sure that
these containers do not misbehave.

Using containers with SELinux
When we look at the active runtime, we will notice that SELinux is already confining these
containers in a way we understand:

ps -efZ | grep postgres
system_u:system_r:container_t:s0:c182,c609 ... /opt/bitnami/
postgres -D ...

The running processes have two categories assigned and are executing in the
container_t SELinux domain. This is the sVirt approach we saw in Chapter 9, Secure
Virtualization. Unlike virtual machines though, containers are often used in a more
transient way: when a new version of the container base is released, the containers are
scrapped, and new ones are started. Virtual machines often undergo in-system upgrades,
and thus have a longer lifespan.

The transient approach with containers also means that we need to provide data
persistence in a different way. The approach that most containers use is to allow mapping
locations from the host into the container environment.

Let's use podman to map a location outside the container to the /bitnami/
postgresql location inside the container, as needed by the PostgreSQL container:

1.	 First, create the location where we want to store the PostgreSQL data(base)
on the host:

mkdir -p /srv/db/postgresql-test

2.	 Next, change the ownership of this location to the user with user ID 1001 (the user
ID that the container uses internally):

chown -R 1001:1001 /srv/db/postgresql-test

Configuring podman 309

3.	 Now start the container, creating a mapping from this location to the container:
podman run -dit --name postgresql-test \
 -e POSTGRESQL_PASSWORD="pgsqlpass" \
 -v /srv/db/postgresql-test:/bitnami/postgresql:Z \
 -p 5432:5432 postgresql

This will have the PostgreSQL data stored in /srv/db/postgresql-test.
If we later delete the container and create a new one (for instance, because an
update for the container base has been made available), the database itself is not
affected.

The mapping itself contains an SELinux-specific variable, namely the trailing :Z.
If we were to omit this from the mapping, then the location would still be made accessible
inside the container. However, the PostgreSQL runtime would not be able to use it.

Important note
The use of :Z in directory mappings (or volume mounts as they are also often
called) is the most frequently forgotten option that system administrators are
confronted with. Whenever SELinux is active on the system and the container
runtime uses sVirt, you are more likely to need :Z (or :z, as we will see
shortly) than not!

Containers are still part of the host operating system. When we create the /srv/db/
postgresql-test location, it will receive the var_t SELinux type by default.
Containers that want to use this location would require write privileges to var_t.
However, this privilege is not one we want to provide. After all, the containers should be
isolated as much as possible from the host—this isolation is what the sVirt technology
is about after all.

Hence, we need to relabel this location accordingly. The SELinux type to use for
generic containers is container_file_t. Moreover, we want to make sure that
only the right container can access this location. Restricting and isolating access is what
the :Z (with a capitalized Z) does in the command: labeling the directory with the
container_file_t type and associating the right categories with it.

If we want to have a location accessible by multiple containers, we can tell podman
to share the location, yet still be labeled with the container_file_t SELinux type.
To accomplish that, we would use the :z argument (with a lowercase z), like so:

podman run -dit --name postgresql-test \
 -e POSTGRESQL_PASSWORD="pgsqlpass" \
 -v /srv/db/postgresql-test:/bitnami/postgresql:z \
 -p 5432:5432 postgresql

310 Enhancing the Security of Containerized Workloads

Creating appropriate mappings is not the only approach where SELinux configuration
comes into play. If we want, we can also tell podman to use different SELinux domains for
the container as well.

Changing a container's SELinux domain
To control the SELinux context under which a container is launched, we use the
--security-opt argument to the podman command. For instance, to run an Nginx
container with the container_logreader_t SELinux domain, we use the following:

podman run -dit --name nginx-test -p 80:80 \
 --security-opt label=type:container_logreader_t nginx

This domain is slightly more privileged than the default container_t domain, as it also
has read privileges on log files. We could use this to have a web server expose the log files,
for instance.

Other labeling options that we can pass on are as follows:

•	 The SELinux user, with the label=user:<SELinux user> argument.

•	 The SELinux role, with the label=role:<SELinux role> argument.

•	 The SELinux sensitivity level, with the label=level:<SELinux level>
argument.

•	 The SELinux type for the files, with the label=filetype:<SELinux type>
argument. This sets the SELinux context for the location mappings that have the
:Z and :z suffixes set. The selected type must be an entry point for the container's
SELinux domain.

There is also another option that we can use, namely label=disable. With this
argument set, a container will run without any SELinux isolation. Now, it does not disable
SELinux for the container, but associates an unconfined domain called spc_t with the
container:

podman run -dit --name nginx-test -p 80:80 \
 --security-opt label=disable \
 -v /srv/web/localhost:/usr/share/nginx/html nginx
ps -efZ | grep nginx
unconfined_u:system_r:spc_t:s0 ... nginx: worker process

While for most use cases, the default container_t domain is sufficiently privileged,
it might be too privileged for some. Luckily, we can easily create new SELinux domains
specific to our use case.

Configuring podman 311

Creating custom domains with udica
The container_t domain is configured to be widely reusable, which implies that
it has many privileges for common use cases, which you might not want to give to each
container. Furthermore, if we would launch a container but need to associate more
privileges with it, then we would have to extend container_t with more privileges,
resulting in all containers receiving this privilege extension.

To quickly build up new policies, a tool called udica can be used. The udica tool reads
the container definition and creates a custom SELinux policy from it. We can then use
this custom policy for this particular container, allowing other containers to remain
untouched.

Let's use this for a Jupyter Notebook, which we want to grant read/write privileges to
a (shared) user home directory location:

1.	 First, we create the definition of the container:

podman run -dit --name notebook-test -p 8888:8888 \
 -v /home/lisa/work:/home/jovyan/shared scipy-notebook

2.	 Next, inspect this container using podman inspect and store the results in a file:

podman inspect notebook-test > notebook-test.json

3.	 Use udica to generate an SELinux policy for it:

udica -j notebook-test.json custom-notebook-test
Policy custom-notebook-test created!
Please load these modules using:
semodule -i custom-notebook-test.cil /usr/share/udica/
templates/{base_container.cil,net_container.cil}
Restart the container with: "--security-opt
label=type:custom-notebook-test.process" parameter

4.	 Load the custom policy as mentioned by the udica output:

semodule -i custom-notebook-test.cil \
 /usr/share/udica/templates/base_container.cil \
 /usr/share/udica/templates/net_container.cil

5.	 Stop and remove the container, and then recreate it with the parameter as
mentioned in the udica output:

podman stop notebook-test

podman rm notebook-test

312 Enhancing the Security of Containerized Workloads

podman run -dit --name notebook-test -p 8888:8888 \
 -v /home/lisa/work:/home/jovyan/shared \
 --security-opt \
 label=type:custom-notebook-test.process scipy-notebook

The custom SELinux policy has the privileges to write to the home directory, as the
container had a mapping from /home/lisa/work, and udica automatically created
the permissions for it. If we wanted the container to only have read-only privileges,
we could use a mapping with a trailing :ro (rather than :Z or :z for SELinux-specific
changes). This would map the location inside the container with read-only access, and
udica would only create read privileges for the associated SELinux type.

If creating custom policies is a bit too specific, we can also fine-tune the privileges of the
container_t domain with the appropriate SELinux booleans.

Toggling container_t privileges with SELinux booleans
The container_t SELinux domain is associated with the svirt_sandbox_domain
attribute, and through that association, will automatically be managed by several of the
virt_* SELinux booleans that we saw in Chapter 9, Secure Virtualization.

There are a few container-specific SELinux booleans as well:

•	 With container_use_cephfs, containers can use CephFS-based storage. This
is predominantly used when the containers are managed by larger container-cluster
software such as Kubernetes.

•	 With container_manage_cgroup, containers can manage cgroups.
This is needed when the container hosts systemd inside, which is often the case
for full-blown container runtimes (rather than process-specific containers). Such
containers host almost complete Linux systems.

•	 With container_connect_any, the container_t SELinux domain can
connect to any TCP port.

Keep in mind though that these booleans influence the privileges of the container_t
domain, and thus are in effect for all containers.

Tuning the container hosting environment
The podman utility will by default store its container volumes and base images in /var/
lib/containers. Administrators can add more locations through the storage.
conf configuration file available in /etc/containers. However, you need to adjust
the SELinux configuration accordingly as well.

Leveraging Kubernetes' SELinux support 313

Suppose that the /srv/containers location will be used, then we need to create an
equivalence rule to make sure that this location is labeled appropriately:

semanage fcontext -a -e /var/lib/containers \
 /srv/containers

restorecon -R -v /srv/containers

If the location is a network mount, you might need to change the appropriate SELinux
booleans as well.

Leveraging Kubernetes' SELinux support
When containers are used in a larger environment, they are often managed through
container orchestration frameworks that allow scaling container deployment and
management across multiple systems. Kubernetes is a popular container orchestration
framework with a good community, as well as commercial support.

Kubernetes uses the container software found on the machines under the hood. When, for
instance, we install Kubernetes on Fedora's CoreOS, it will detect that Docker is available
and use the Docker engine for managing the containers.

Configuring Kubernetes with SELinux support
Installing Kubernetes can be a daunting task, and several methods exist, ranging from
single-node playground deployments up to commercially supported installations. One of
the well-documented installation methods on the Kubernetes website is to use kubeadm
for bootstrapping Kubernetes clusters.

Important note
The installation of Kubernetes is documented on the Kubernetes website
at https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm. In this section, we will not go through
the individual steps to set up a working Kubernetes instance, but give pointers
as to which changes are needed for having proper SELinux support.

The kubeadm command, when initializing the Kubernetes cluster, will download and
run the various Kubernetes services as containers. Unfortunately, Kubernetes' services
use several mappings from the host system into the container to facilitate their operations.
These mappings are not done using the :Z or :z options—it would even be wrong to
do so, as the locations are system-wide locations that should retain their current
SELinux labels.

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm

314 Enhancing the Security of Containerized Workloads

As a result, Kubernetes' services will be running with the default container_t SELinux
domain (as Docker will happily apply the sVirt protections), which does not have access
to these locations. The most obvious change we can apply is to have the services run with
the highly privileged spc_t domain for now. Applying this change however during the
installation is hard, as we would need to change the domain sufficiently quickly before the
installation fails.

While we can create deployment configuration information for Kubernetes that
immediately configures the services with spc_t, another method can be pursued:

1.	 Mark the container_t type as a permissive domain before the installation starts.
While this will prevent any SELinux controls on the container, we can argue that the
installation of Kubernetes is done in a contained and supervised manner:

semanage permissive -a container_t

2.	 Run kubeadm init, which will install the services on the system:

kubeadm init

3.	 When the services are installed, go to /etc/kubernetes/manifests. Inside
this directory, you will find four manifests, each one representing a Kubernetes
service:

cd /etc/kubernetes/manifests

4.	 Edit each manifest file (etcd.yaml, kube-apiserver.yml, kube-
controller-manager.yml, and kube-scheduler.yml) and add a security
context definition that configures the service to run with the spc_t domain. This is
done as a configuration directive under the containers section:

apiVersion: v1
kind: Pod
metadata:
 name: etcd
spec:
 containers:
 - command: …
 securityContext:
 seLinuxOptions:
 type: spc_t
 image: k8s.gcr.io/etcd:3.4.3-0
 …

Leveraging Kubernetes' SELinux support 315

5.	 During the Kubernetes installation, the kubelet service will be installed, which
will detect that these files have been changed, and will automatically restart the
containers. If not, you can shut down and remove the container definitions within
Docker, and kubelet will automatically recreate them:

docker ps
CONTAINER ID ... NAMES
548f0c3ed18e k8s_POD_etcd-ppubssa3ed_kube…
b7b1df2d0027 k8s_POD_kube-apiserver-…
eecd4d4ad108 k8s_POD_kube-scheduler-…
76da4910b927 k8s_POD_kube-controller-…

for n in 548f0c3ed18e b7b1df2d0027 eecd4d4ad108
76da4910b927; do docker stop $n; docker rm $n; done

6.	 Verify that the services are now running with the privileged spc_t domain:

ps -ef | grep spc_t

7.	 Remove the permissive state of container_t so that it is back to enforcing mode:

semanage permissive -d container_t

With these slight adjustments during the installation, Kubernetes is now running fine with
SELinux support enabled.

Setting SELinux contexts for pods
Within Kubernetes, containers are part of pods. A pod is a group of containers that all
see the same resources and can interact with each other seamlessly. Previously, in the
Configuring podman section, we worked on the container level. The podman utility is
also able to use the pods concept (hence the name). For instance, we could put the Nginx
container in a pod called webserver like so:

podman pod create -p 80:80 --name webserver

podman pull docker.io/library/nginx

podman run -dit --pod webserver --name nginx-test nginx

Unlike podman, Kubernetes does not rely on command-line interaction to create
and manage resources such as pods. Instead, it uses manifest files (as we've briefly
touched upon in the Configuring Kubernetes with SELinux support section). Kubernetes
administrators or DevOps teams will create manifest files and apply those to the
environment.

316 Enhancing the Security of Containerized Workloads

For instance, to have the Nginx containers run on Kubernetes, the following manifest
could be used:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-test-deployment
spec:
 selector:
 matchLabels:
 app: nginx-test
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx-test
 spec:
 containers:
 - name: nginx-test
 image: nginx:latest
 ports:
 - containerPort: 80

This manifest is a Kubernetes deployment, and tells Kubernetes that we want to run two
Nginx containers. To apply this to the environment, use kubectl apply:

$ kubectl apply -f simple-nginx.yml

As with the manifests for the Kubernetes services, we can tell Kubernetes to use a specific
SELinux type:

…
spec:
 containers: ...
 securityContext:
 seLinuxOptions:
 type: "container_logreader_t"

The seLinuxOptions block can contain user, role, type, and level to define the
SELinux user, SELinux role, SELinux type and SELinux sensitivity level.

Summary 317

Unlike the regular container management services (such as Docker or CRI-O),
Kubernetes does not allow changing SELinux labels on mapped volumes (except on
single-node deployments): when we map volumes into containers, they retain their
current SELinux label on the system. Hence, if you want to make sure that the resources
are accessible from a regular container_t domain, you need to make sure these
locations are labeled with container_file_t.

Kubernetes does offer advanced access controls itself. Enabling volumes within the
containers is also handled by a plugin architecture, with several plugins already available.
When the plugin enables SELinux labeling, then Kubernetes will attempt to relabel the
resource and assign the categories (as with sVirt). However, this support is currently only
made available on single-node deployments (using the local host storage plugin)—and for
such deployments, using podman is much simpler.

Summary
Containerized workloads allow administrators to add capabilities quickly and easily to
a system, while retaining possible dependencies within a container. Each container hosts
its own dependencies, allowing containers to be removed and added from the system
without affecting others. With SELinux, this workload is further isolated from the host
and, in case of sVirt protections, also from each other.

We've seen how systemd has container support but lacks sVirt-based protections,
and how podman can apply sVirt protections on its own container environments.
We learned that Docker and podman are very similar in usage, yet different under the
hood. Both frameworks allow us to apply different SELinux types to the containers and
resources, and with udica we've learned how to create custom policies without much
development effort. Finally, we've seen how Kubernetes can be configured to use SELinux
labeling as well.

With all these SELinux-capable technologies behind us, we are ready to tackle the SELinux
policy development itself. In the next chapter, we'll learn to work with SELinux policies in
depth and tune the policies to our needs.

Questions
1.	 Why is Docker or podman preferred over machinectl for SELinux?

2.	 How do we ensure host data is properly mapped within a container?

3.	 How can we create a custom policy from a container definition?

4.	 Where in Kubernetes' manifests can we place SELinux settings?

Section 3:
Policy Management

SELinux behavior is defined by the policy. In this part, we cover policy changes and
development, including the creation of custom policies.

This section comprises the following chapters:

•	 Chapter 12, Tuning SELinux Policies

•	 Chapter 13, Analyzing Policy Behavior

•	 Chapter 14, Dealing with New Applications

•	 Chapter 15, Using the Reference Policy

•	 Chapter 16, Developing Policies with SELinux CIL

12
Tuning SELinux

Policies
Until now, we have been working with an existing SELinux policy by tuning our system
to deal with the proper SELinux contexts and assigning the right labels to files, directories,
and even network ports. We've learned that the behavior that SELinux enforces is defined
within the policies. To fine-tune the policy enforcement rules, we have already briefly
covered SELinux booleans.

It's time we look into SELinux booleans in more detail, learning how to look up the impact
booleans have. Within this chapter, we then consider SELinux policy modules themselves
and what options administrators have when dealing with these modules. Finally, we will
look at how to update or even replace existing policies.

In this chapter, we're going to cover the following main topics:

•	 Working with SELinux booleans

•	 Handling policy modules

•	 Replacing and updating existing policies

322 Tuning SELinux Policies

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/2T7MkVK

Working with SELinux booleans
One of the methods of manipulating SELinux policies is by toggling SELinux booleans.
Ever since Chapter 2, Understanding SELinux Decisions and Logging, where we used the
secure_mode_policyload boolean, these tunable settings have been popping up
over the course of this book. With their simple ON/OFF state, they enable or disable parts
of the SELinux policy. Policy developers and administrators use SELinux booleans to
toggle parts of the policy that not all deployments always need to be active, but some
still do.

These booleans are added to the policy based on feedback from, and with the help of, the
community at large. By establishing which policy rules are necessary against those that are
optional, SELinux developers can provide an SELinux policy that works for a majority of
systems, even when the uses of these systems differ.

Listing SELinux booleans
An overview of SELinux booleans can be obtained by using the semanage command
with the boolean option. On a regular system, we can easily find over a hundred
SELinux booleans, so it is necessary to filter them out for the description of the boolean
we need:

semanage boolean -l | grep policyload
secure_mode_policyload	(off, off)
 Boolean to determine whether the system permits loading
 policy, setting enforcing mode, and changing boolean values.
 Set this to true and you have to reboot to set it back.

The output not only gives us a brief description of the boolean, but also the current value
(actually, it gives us the current value and then the value pending a policy change, but this
will almost always be the same).

Another method for getting the current value of a boolean is through the getsebool
command, as follows:

getsebool secure_mode_policyload
secure_mode_policyload --> off

https://bit.ly/2T7MkVK

Working with SELinux booleans 323

If the name of the boolean is not exactly known, we can ask for an overview of all
booleans (and their values) and filter for the one we need:

getsebool -a | grep policy
secure_mode_policyload --> off

Another utility that can be used to view SELinux boolean descriptions is the sepolicy
booleans command:

sepolicy booleans -b secure_mode_policyload
secure_mode_policyload=_("Boolean to ...")

However, this command does not show the current value of the boolean.

Finally, booleans are also represented through the /sys/fs/selinux filesystem:

cat /sys/fs/selinux/booleans/secure_mode_policyload
0 0

Here, booleans can be read as if they were regular files, and they return two values:

•	 The first value is the current state of the boolean, where 0 means OFF and 1
means ON.

•	 The second value is the pending state of the boolean.

A pending state allows administrators to change multiple boolean values simultaneously,
but only when manipulating booleans through the /sys/fs/selinux filesystem, as we
will see next.

Changing boolean values
We can change the value of a boolean using the setsebool command. For instance,
to toggle the httpd_can_sendmail SELinux boolean, we can use the following
command:

setsebool httpd_can_sendmail on

Some Linux distributions might also have the togglesebool command available. This
command will flip the value of the boolean, so ON becomes OFF, and OFF becomes ON:

togglesebool httpd_can_sendmail

324 Tuning SELinux Policies

SELinux booleans have a default state defined by the policy administrator (and thus the
default SELinux policy active on the system). Changing the value using setsebool
updates the current active access controls, but this does not persist across reboots
(if we toggle the boolean, then after rebooting, the old value will be used again).

In order to keep the changes permanently, add the -P option to the setsebool
command as follows:

setsebool -P httpd_can_sendmail off

In the background, the updated SELinux boolean value is included in the policy store.
Then, the current policy file is rebuilt and loaded. As a result, the policy file (called
policy.## with ## representing an integer value) residing in /etc/selinux/
targeted/policy will be regenerated. This regeneration takes time, which is
why switching a boolean value persistently (using -P) takes more time to complete
than when we change a value without persisting it (using setsebool without -P
or togglesebool) to the policy store.

Another way to change and persist the boolean settings is to use the semanage
boolean command as follows:

semanage boolean -m --on httpd_can_sendmail

In this case, we modify (-m) the boolean value and set it to ON (--on).

Booleans can also be changed through their /sys/fs/selinux/booleans
representation. When this happens, the boolean value is not immediately activated – the
change of the value is pending. This allows administrators to modify multiple booleans
through /sys/fs/selinux/booleans first:

echo 0 > /sys/fs/selinux/booleans/httpd_can_sendmail

getsebool httpd_can_sendmail
httpd_can_sendmail --> on pending: off

To commit the changes, write the value 1 into /sys/fs/selinux/commit_
pending_bools:

echo 1 > /sys/fs/selinux/commit_pending_bools

As long as you modify booleans through the semanage or setsebool commands
though, the changes will immediately be committed. Only operations through
the /sys/fs/selinux structure allow pending boolean changes.

Handling policy modules 325

Inspecting the impact of a boolean
To discover which policy rules a boolean manipulates, the description usually suffices.
Sometimes though, we might want to know which SELinux rules change when we alter
a boolean value. With the sesearch application, we can query the SELinux policy,
displaying the rules affected by a given boolean. To show this information in detail, we use
the -b option (for the boolean) and -A option (to show all allow rules):

sesearch -b httpd_can_sendmail -A
allow httpd_suexec_t bin_t:dir { getattr open search }; [
httpd_can_sendmail]:True
...
allow system_mail_t httpd_t:process sigchld; [httpd_can_
sendmail]:True

When we query the SELinux policy directly, conditional rules can be shown as part of
the output:

sesearch -s system_mail_t -t httpd_t -A
allow domain domain:key { link search };
allow system_mail_t httpd_t:fd use; [httpd_can_sendmail]:True
...

When allow rules are suffixed with an SELinux boolean between square brackets
followed by :True, then these rules are only applied if the boolean is active. If the
boolean is followed by :False, then the rule is applied if the boolean is not active.

Not all situations can be perfectly defined by policy writers though. Sometimes we will
need to create our own SELinux policy modules and load those. Let's see how we can
handle SELinux policy modules specifically.

Handling policy modules
When the system loads the SELinux policy in memory, it uses the policy.## file, with
representing the policy version, as explained at the end of Chapter 1, Fundamental
SELinux Concepts. This file, which resides in /etc/selinux/targeted/policy,
is generated every time the policy is modified. This can be when booleans are changed
(and persisted), or when SELinux policy modules are added or removed.

326 Tuning SELinux Policies

Listing policy modules
SELinux policy modules are sets of SELinux rules that can be loaded and unloaded.
These modules, with .pp or .cil suffixes, can be loaded and unloaded as needed by the
administrator. Once loaded, the policy module is made part of the SELinux policy store,
and will be loaded even after a system reboot. Unlike SELinux boolean changes, SELinux
policy module loads are always persisted.

To list the currently loaded SELinux policy modules, we recommend using the semodule
command. By default, semodule will show all loaded SELinux policy modules without
any details:

semodule -l
abrt
accountsd
...
zosremote

SELinux policy modules can, however, be loaded at a specified priority. This allows
administrators to load a policy that overrules an already loaded policy: SELinux policy
modules with a higher policy module priority take precedence over similarly named
SELinux policy modules with lower priorities. To see the current priorities, use the
--list-modules=full argument:

semodule --list-modules=full
100 abrt pp
100 accountsd pp
...
400 test cil
...
100 zosremote pp

Alongside the priority, the listing also shows whether the policy module is based upon the
binary module format (pp) or the more modern Common Intermediate Language (CIL)
format (cil).

The SELinux utilities will copy the active policy modules into a policy-specific location.
This allows administrators to list the currently active modules through regular filesystem
queries as well:

ls /var/lib/selinux/targeted/active/modules/*
/var/lib/selinux/targeted/active/modules/100:
abrt
accountsd

Handling policy modules 327

...

/var/lib/selinux/targeted/active/modules/400:
test

The use of the filesystem location for querying active policies is, however, not
recommended, as we have no guarantee that the loaded policies match the filesystem:
non-SELinux utilities can add or remove files from these locations without adjusting the
SELinux policy state.

Loading and removing policy modules
In the Replacing and updating existing policies section, we will learn how to generate new
policy modules. Once created, they need to be loaded and/or removed. We load policy
modules with semodule as well, regardless of the policy format (.pp or .cil):

semodule -i screen.pp

By default, SELinux policy modules are loaded at the 400 priority when invoked by the
administrator, whereas SELinux policy modules loaded as part of the default system policy
will be loaded at the 100 priority. When loading policies, the priority can be adjusted
using the -X option. For instance, to load the test.cil policy with a priority of 500
we use the -X option as follows:

semodule -X 500 -i test.cil
libsemanage.semanage_direct_install_info: Overriding test
module at lower priority 400 with module at priority 500.

To remove a policy module with semodule, use the --remove or -r option. In this
case, we are not referring to an SELinux policy module file, but to the name of the module
itself as displayed by semodule. Hence, we do not need to pass on a suffix:

semodule -r test

To remove an SELinux policy module from a specified priority, use the -X option:

semodule -X 500 -r test
libsemanage.semanage_direct_remove_key: test module at priority
400 is now active.

The order of the arguments is important: the -X option will set the priority for the
actions that follow it, not those that precede it. If it is not set, then a priority value of 400
will be used.

328 Tuning SELinux Policies

Finally, it is possible to keep an SELinux policy module but disable it. This keeps the
module in the policy store, but disables all the SELinux policy rules inside of it. We use the
--disable (or -d) option to accomplish this:

semodule -d screen

To re-enable the policy, use the --enable (or -e) option:

semodule -e screen

The disabled and enabled states of SELinux policy modules persist through reboots as
well. Furthermore, if you are disabling an SELinux module, all instances of that module
(including lower priority ones) will be disabled.

Disabling policies is strongly recommended when the policy module is part of the
distribution's SELinux policy, as the modules themselves are not always available on the
system and might require a reinstallation of the policy package just to get it back.

With loading and unloading policies explained, let's see how we can generate updates on
the current SELinux policy.

Replacing and updating existing policies
When we replace or update existing policies, we need to load them using the semodule
commands, as shown in the Handling policy modules section. But how do we create
or update the policies, exactly? Let's consider a few use cases where SELinux policy
adjustments are triggered.

Creating policies using audit2allow
When SELinux prevents certain actions, we know it will log the appropriate denial
(assuming no dontaudit statements are defined) in the audit logs. This denial can be
used as the source to generate a custom SELinux policy that allows the activity.

Consider the following denial, which occurred when a confined user called su to switch
to the root user:

type=AVC msg=audit(...): avc: denied { write }
for pid=58002 comm="su" name="btmp" dev="vda1"
ino=4213650 scontext=staff_u:staff_r:staff_t:s0
tcontext=system_u:object_r:faillog_t:s0 tclass=file
permissive=0

Replacing and updating existing policies 329

If we are certain that these operations need to be granted, then we can use the
audit2allow command to generate a policy module for us that allows these activities.
The audit2allow application transforms a denial (or set of denials) into SELinux allow
rules. These rules can then be saved in a file, ready to be built into an SELinux policy
module, which can then be loaded.

To generate SELinux policy allow rules, pipe the denials through the audit2allow
application:

grep btmp /var/log/audit/audit.log | audit2allow
#============ staff_t ============
allow staff_t faillog_t:file write;

Based on the denials, audit2allow prepared an allow rule. We can also ask
audit2allow to immediately create an SELinux policy module:

grep btmp /var/log/audit/audit.log | audit2allow -M
localpolicy
************ IMPORTANT ************
To make this policy package active, execute:
semodule -i localpolicy.pp

A file called localpolicy.pp will be available in the current directory, which
we can load using the semodule command. The source file will also be present, named
localpolicy.te.

If the denials that occurred are considered cosmetic in nature (meaning that the system
functions as expected and the denials should not cause any updates on the policy),
you can use audit2allow to generate dontaudit rules rather than allow rules.
In that case, the denials will no longer be visible in the audit logs, while still preventing
the actions from taking place:

grep btmp /var/log/audit/audit.log | audit2allow -D -M
localpolicy

It is likely, after including the necessary rules, that the action will result in more
denials that were not previously triggered. As long as the previous AVC denials are still
available in the audit logs, it is sufficient to regenerate the policy and continue. After all,
audit2allow will consider all AVC denials that it encountered, regardless of the current
SELinux policy state.

330 Tuning SELinux Policies

Another popular approach is to put the system (or the application domain) in permissive
mode to generate and fill up the audit logs with all the AVC denials related to the action.
Although this generates more AVC denials to work with, it could also result in wrong
decisions by the audit2allow command. Hence, always verify the denials before
generating new policy constructs, and review the generated policy to make sure that it will
enforce the right set of access controls and not grant more privileges than needed.

When the previous AVC denials are no longer available inside the audit log, a new policy
module will need to be generated, as otherwise the previously fixed accesses will be denied
again: the newly generated policy will no longer contain the allow rules from before, and
when we load the new policy, the old policy is no longer active.

Using sensible module names
In the previous section, we used the audit2allow command to generate a policy
module named localpolicy. However, this name does not reveal what the purpose of
the module is.

Once we create a (binary) policy (such as the localpolicy.pp file) and load it, it
is not always clear to the administrators and users at first glance what this module is
meant to accomplish. Although it is possible to unpack the .pp file (using semodule_
unpackage) and then disassemble the resulting .mod file into a .te file, it requires
software not available on most distributions (the dismod application, for instance, part of
the checkpolicy software, is often not included). Considering that we just want to get
insights into the rules that are part of a module, this is a very elaborate and time-intensive
approach.

The content of a module can also be somewhat deduced from its CIL code. For instance,
an active screen module will have its code available at /var/lib/selinux/
targeted/active/modules/100/screen, in a file called cil. On some
distributions, this file will be a compressed file, so you might need to unzip it before
viewing:

file screen/cil
cil: bzip2 compressed data, block size = 500k
bzcat screen/cil
(typealias secadm_screen_home_t
...

Still, having to dive into the rules to know what localpolicy is about is not only very
cumbersome, but also requires sufficient privileges to be able to read these files.

Replacing and updating existing policies 331

Instead, it is a best practice to name the generated modules for their intended purposes.
An SELinux policy that fixes a few AVC denials that come up when su executes from
within the staff_t domain would be best named custom_staff_su_faillog, for
instance.

It is also recommended to prefix (or suffix) the custom policies, so they can be more
easily found:

semodule -l | grep ^custom_
custom_staff_su_faillog

This identifies that the policy module has been added by the administrator (or
organization) and is not sourced from the default Linux distribution's policy.

Generating reference policy style modules with
audit2allow
The reference policy project provides distributions and policy writers with a set of
functions that simplify the development of SELinux policies. As an example, let's see what
the reference policy functions (called macros) can do with the su situation:

grep btmp /var/log/audit/audit.log | audit2allow -R
require {
 type staff_t;
}
#============ staff_t ============
auth_rw_faillog(staff_t)

The rule in the example is auth_rw_faillog(staff_t). This is a reference policy
macro that explains an SELinux rule (or set of rules) in a more human-readable way. In
this case, it allows the staff_t domain to read/write on faillog_t labeled resources.
The faillog_t type is part of the system authentication SELinux policy (as suggested
by the auth_ prefix, which identifies the source SELinux policy module).

Important note
As audit2allow -R uses an automated approach for finding potential
functions, we need to review the results carefully. Sometimes it selects a
method that creates far more privileges for a domain than needed.

332 Tuning SELinux Policies

All major distributions base their SELinux policies upon the macros and content provided
by the reference policy. The list of methods we can call while building SELinux policies is
available on the local filesystem, at /usr/share/doc/selinux-policy/html.

These named methods bundle a set of rules related to the functionality that SELinux
policy administrators want to enable. For instance, the storage_read_tape()
method allows us to enhance an SELinux policy, providing a given domain with read
access to tape storage devices.

Building reference policy - style modules
If we generate an SELinux policy using reference policy macros but do not have access
to the binary policy module anymore, then we need to build the policy before loading it.
CIL-based policies can be loaded directly, which is why this book uses CIL as much as
possible. However, given the wide use of the reference policy, knowing how to build these
modules is important as well.

Suppose that the reference policy-based SELinux policy code resides in a file called
custom_staff_su_faillog.te, then we can build it into a .pp file as follows:

make -f /usr/share/selinux/devel/Makefile custom_staff_su_
faillog.pp
Compiling targeted custom_staff_su_faillog.pp policy package
rm tmp/custom_staff_su_faillog.mod tmp/custom_staff_su_faillog.
mod.fc

Once built, we can load it using semodule. Every time we change the policy code
(in the .te file) or other policy information (such as file context definitions in the .fc
file), we need to rebuild the .pp file before we can load it.

Building legacy-style modules
If we ask audit2allow to generate the policy rules without using reference policy style
macros (which we call a legacy-style SELinux policy), then building the .pp file from it
requires a different approach.

Suppose we have the .te file as generated by audit2allow -M, but not the .pp file,
then we can generate it as follows:

1.	 First, create the .mod file using checkmodule:

checkmodule -M -m -o custom_nonrefpol.mod \
 custom_nonrefpol.te

Replacing and updating existing policies 333

2.	 Next, generate the .pp file using semodule_package:

semodule_package -o custom_nonrefpol.pp \
 -m custom_nonrefpol.mod

If an .fc file (which contains file context definitions) is present, use the -f option:
semodule_package -o custom_nonrefpol.pp \
 -m custom_nonrefpol.mod -f custom_nonrefpol.fc

The audit2allow command will automatically execute these commands, so this is
only needed if the .pp file is no longer present, or when these more legacy-style SELinux
policies are shared with you and you need to build and load them manually.

Replacing the default distribution policy
When adding custom SELinux policies, all that users can do is to add more allow rules.
SELinux does not have a deny rule that can be used to remove currently allowed access
rules from the active policy.

If the current policy is too permissive for the administrator's liking, then the
administrator will need to update the policy rather than just enhance it. That implies that
the administrator has access to the current SELinux policy rules in use.

To replace an active SELinux policy, most Linux distributions allow you to get the source
code of the policy. For instance, for RPM-based Linux distributions, the source RPM of
the SELinux policy package can be downloaded and unpacked to gain access to the policy
as follows:

1.	 First, find out what the current version of the SELinux policy is:

$ rpm -qi selinux-policy
Name		 : selinux-policy
Version	 : 3.14.3
...
Source RPM	: selinux-policy-3.14.3-20.el8.src.rpm
...

2.	 Next, try to obtain the source RPM shown in the output. Source RPMs can also be
downloaded from third-party repositories. If the package is difficult to find, you can
try to find it through https://rpmfind.net.

3.	 Next, use the rpmbuild utility to extract the source RPM:

$ rpmbuild --rebuild --nobuild \
 selinux-policy-3.14.3-20.el8.src.rpm

https://rpmfind.net

334 Tuning SELinux Policies

This will unpack the source RPM in the ~/rpmbuild directory.

4.	 When finished, the SELinux policy source code can be found inside ~/rpmbuild/
SOURCES and is probably named selinux-policy-9c02e99.tar.gz or
similar, which you can extract further:

$ tar xvf selinux-policy-9c92e99.tar.gz

$ tar xvf selinux-policy-contrib-c8ebb9f.tar.gz

The SELinux policy can then be found in the created subdirectories. For instance,
the screen.te file can be found in the ./selinux-policy-contrib-
c8ebb*/policy/modules/contrib subdirectory.

The policy files can now be safely copied over, manipulated at will, and built to replace the
existing policy. If we load the updated SELinux policy module with the same (or higher)
priority as the already loaded policy, it will take precedence in the policy.

Most distributions will also have their active SELinux policy available through an online
source-controlled repository. For instance, the current SELinux policy for CentOS is
available at https://github.com/fedora-selinux/selinux-policy.

Summary
The SELinux policy can be adjusted by administrators, either through SELinux booleans
as provided by the SELinux policy itself, or by loading new SELinux policy modules. These
modules can be generated automatically, or built manually by the policy developers.

In this chapter, we've learned how to use SELinux booleans and how to query the active
policy for the effects that the booleans will have on the system. We then learned how to
use semodule to load and unload policies, or enable/disable modules on the system.
We ended the chapter with information on how to generate and replace policies.

In the next chapter, we will extend our query of the SELinux policy beyond just booleans,
and learn how to analyze policy behavior in detail using specialized tools.

Questions
1.	 How can we mark a boolean change as pending but not commit it yet?

2.	 Which command can be used to query the impact of a boolean?

3.	 Why can SELinux policy modules be loaded with different priorities?

4.	 How can denials be transformed into new SELinux policy modules?

https://github.com/fedora-selinux/selinux-policy

13
Analyzing Policy

Behavior
Although SELinux policies enforce the mandatory access controls and application
behavior on a system, knowing how a policy will act upfront is useful for administrators
to perform assessments and root cause analysis activities.

Throughout this chapter, we will learn how to query the SELinux policy in depth, using
a multitude of tools to query process transitions, analyze information flows, and compare
policies. We will consider the apol tool, a graphical interface with which we can perform
several analyses on a policy, as well as command-line tools such as sesearch, sedta,
seinfoflow, and sepolicy. Finally, we will use sediff to compare policies.

In this chapter, we're going to cover the following main topics:

•	 Performing single-step analysis

•	 Investigating domain transitions

•	 Analyzing information flow

•	 Comparing policies

336 Analyzing Policy Behavior

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3lY56LB

Performing single-step analysis
Until now, we've covered a few methods of analyzing SELinux policies through
command-line utilities such as seinfo and sesearch. These utilities can assist users
in performing single-step analyses: they either provide immediate information about an
SELinux object (which is mainly what seinfo is about) or are capable of querying direct
SELinux rules (which is the scope of sesearch).

Not all capabilities of the seinfo and sesearch utilities have been discussed yet
though, so let's see what other tricks these commands have up their sleeves.

Using different SELinux policy files
Many SELinux analysis tools, including seinfo and sesearch, can access both the
currently loaded SELinux policy and a specified SELinux policy file. The latter allows
developers to query SELinux policies of systems they do not have direct access to, for
which direct access is cumbersome (such as mobile devices), or that have been used in
previous situations (backups) and are no longer active.

For instance, to analyze a policy file called policy.sepolicy-2, the following
seinfo command can be used:

$ seinfo ./policy.sepolicy-2
Statistics for policy file: ./policy.sepolicy-2
Policy Version: 30 (MLS enabled)
Target Policy: selinux
Handle unknown classes: deny
 Classes: 63 Permissions: 286
 Sensitivities: 1 Categories: 1024
 Types: 1858 Attributes: 28
 Users: 1 Roles: 2
 Booleans: 0 Cond. Expr.: 0
 Allow: 108120 Neverallow: 0
 Auditallow: 24 Dontaudit: 553
 Type_trans: 639 Type_change: 0
 Type_member: 0 Range_trans: 0
 Role allow: 0 Role_trans: 0
 Constraints: 0 Validatetrans: 0
 MLS Constrain: 59 MLS Val. Tran: 0

https://bit.ly/3lY56LB

Performing single-step analysis 337

 Permissives: 0 Polcap: 2
 Defaults: 0 Typebounds: 0
 Allowxperm: 185 Neverallowxperm: 0
 Auditallowxperm: 0 Dontauditxperm: 0
 Initial SIDs: 27 Fs_use: 16
 Genfscon: 83 Portcon: 0
 Netifcon: 0 Nodecon: 0

When the command is not explicitly told to parse a given policy file, it will try to query
the current active policy through the /sys/fs/selinux/policy pseudo-file.

Displaying policy object information
The main purpose of the seinfo application is to display SELinux object information.
This information is presented on a per-object basis. Various SELinux object types are
supported, ranging from the well-known types, attributes, roles, and users, to the more
specialized fs_use_* declarations or genfscon statements.

A complete list of supported object types (and their resulting seinfo options) can be
found on the seinfo manual page, or through the direct help:

$ seinfo --help

Regardless of the object type that the user is interested in, seinfo has three main modus
operandi:

•	 In the first mode, it lists the objects of a given type. For this, only the option has to
be passed on, without additional information. For instance, to list all object classes
available in the policy, use the following command:

$ seinfo --class

•	 In the second mode, it can confirm (or deny) the presence of an object instance. To
accomplish this, add the instance name to the command. For instance, to validate
if the memprotect class is available in the policy, use the following command:

$ seinfo --class memprotect
Classes: 1
 memprotect

Sadly, regardless of whether the instance is available or not, the return code of the
application is the same, so scripts cannot use this without additional statements to
verify whether the instance exists. Instead, they will need to check the output of the
command (which will state that zero instances exist that match the name).

338 Analyzing Policy Behavior

•	 The third mode displays expanded information about a selected instance. Although
not all information objects support an expanded set, most of the common ones do.
The expanded information generally shows a list of (different) instances related to
the initial query:

$ seinfo --class memprotect -x
Classes: 1
 class memprotect
{
 mmap_zero
}

The supported types that seinfo can query are the following:

•	 With --attribute (-a), seinfo shows all currently known SELinux attributes
in the policy. When expanded, it shows the types associated with a given attribute.

•	 With --bool (-b), seinfo shows all currently known SELinux booleans in the
policy. When expanded, it shows the current value of the boolean.

•	 With --class (-c), seinfo shows the supported SELinux classes. When
expanded, it shows the permissions supported by that class.

•	 With --role (-r), seinfo shows the SELinux roles supported in the policy.
When expanded, it shows the domains allowed for that role.

•	 With --type (-t), seinfo shows the SELinux types in the policy. When
expanded, it shows the aliases that the type has, as well as the attributes.

•	 With --user (-u), seinfo shows the SELinux users (not the Linux users
or logins) known by the policy. When expanded, it shows the roles and sensitivity
range associated with the SELinux user.

•	 With --category, seinfo shows the currently supported categories. When
expanded, it shows the sensitivities for which the category is associated (only in
MLS policies).

•	 With --common, seinfo shows the common permission sets. These are sets
inherited by different classes. When expanded, it shows the permissions part
of that set.

•	 With --constrain, seinfo shows the current constraints. There is no expanded
information for this query.

•	 With --default, seinfo shows the default_* rules within the policy.
One of these rules, for instance, is the default sensitivity range for a class
(default_range). There is no expanded information for this query.

Performing single-step analysis 339

•	 With --fs_use, seinfo shows the fs_use_* rules within the SELinux
policy. One of these rules is to allocate a security context for filesystems that
support extended attributes (fs_use_xattr). There is no expanded information
for this query.

•	 With --genfscon, seinfo shows the context allocations for filesystems that do
not support extended attributes. There is no expanded information for this query.

•	 With --initialsid, seinfo shows all the initial Security Identifiers (SID).
These are all the classes that have predefined contexts set. When expanded, it shows
the context associated with the SID.

•	 With --netifcon, seinfo shows the contexts currently associated with the
network interfaces. This is only applicable when labeled networking is active. There
is no expanded information for this query.

•	 With --nodecon, seinfo shows the contexts currently associated with the node
definitions (hosts). This is only applicable when labeled networking is active. There
is no expanded information for this query.

•	 With --permissive, seinfo shows which types are currently marked as
permissive domains. There is no expanded information for this query.

•	 With --polcap, seinfo shows the policy capabilities (that is, in-policy settings
that define the SELinux subsystem behavior, such as support for SCTP through
the extended_socket_class policy capability that we saw in Chapter 5,
Controlling Network Communications). When expanded, it shows the actual policy
capability statements in the policy.

•	 With --portcon, seinfo shows the current port mappings and their associated
contexts (which is also interpreted by semanage port -l). There is no expanded
information for this query.

•	 With --sensitivity, seinfo shows the currently supported sensitivity levels.
When expanded, it shows the actual policy statements to declare the sensitivities.

•	 With --typebounds, seinfo shows the type bounds (SELinux types or domains
bounded by a parent domain). There is no expanded information for this query.

•	 With --validatetrans, seinfo shows the transition constraints active in the
policy (these are constraints that limit when a file transition is allowed). This is not
used in most Linux distributions. There is no expanded information for this query.

The seinfo command also has an --all option that shows all possible information
it can get from a policy file. However, this does not include the expanded information.

340 Analyzing Policy Behavior

Understanding sesearch
Where seinfo displays information about SELinux objects, sesearch is used to query
SELinux rules and behavior information between a source and a target resource.

We have been using sesearch to query standard allow rules (type enforcement-
related access controls) as well as the impact of SELinux booleans on these allow rules.
The sesearch application allows us to not just query rules based on the rule type, but
also filter based on additional parameters. Let's see which parameters can be used for
sesearch filters:

•	 The most common queries are to filter out the rules that match a given source
expression using --source (-s) and/or target expression using --target (-t):

$ sesearch -A -s mount_t -t unconfined_t

The sesearch application can also deal with indirect source or target information.
For instance, when querying information related to the svirt_sandbox_domain
attribute, it will also display rules of all types that have this attribute assigned. We
can selectively disable this behavior using -ds (for source) and -dt (for target):

$ sesearch -A -s svirt_sandbox_domain -ds

•	 With the --class (-c) argument, we can search for only those rules affecting
a specified resource class (such as file, dir, tcp_socket, and so forth—the list
of all possible classes can be obtained using seinfo --class):

$ sesearch -A -s svirt_sandbox_domain -c file

•	 If we are interested in only a particular action (or permission), we can use the
--perm (-p) argument. This is particularly useful when we encounter a denial for
a certain action (say, write) and want to see which domains are allowed to
perform this action, as it might indicate that we are examining the wrong source
domain. We can list multiple permissions, in which case sesearch will display
the rules that have at least one permission in them:

$ sesearch -A -s staff_t -c file -p write

With the -ep option, sesearch will only list the rules that have all permissions
in them, rather than at least one.

•	 We can also query only those rules influenced by an SELinux boolean using the
--bool (-b) argument, as we saw in Chapter 12, Tuning SELinux Policies.

If we use the -eb option, then all booleans listed on the command line must be
matched, rather than at least one.

Performing single-step analysis 341

•	 The sesearch application can also use regular expressions rather than actual
values. This is not the default behavior, but can be activated with -rs (for the
source type or role), -rt (for the target type or role), -rc (for the class), -rd
(for the default type or role), and -rb (for the boolean):

$ sesearch -A -s staff_.*_t -c process -p transition -rs

As this provides insights into the most common SELinux behavior and access controls,
let's go through the various rules and the impact they have on the system.

Querying allow rules
The first set of rules are the allow rules, of which many subtypes exist. The standard
allow rule defines which actions a source domain can successfully trigger toward
or against a target type:

$ sesearch --allow -s guest_t -t cgroup_t -c dir
allow guest_usertype cgroup_t:dir { getattr ioctl lock open
read search };
allow guest_usertype filesystem_type:dir { getattr open search
};

There are a few similar rules that SELinux policies can define, and these can be queried
similarly with sesearch as follows:

•	 Using --auditallow, we can query which actions are allowed by SELinux but
will still result in an audit event.

•	 Using --dontaudit, we can query which actions will not trigger an audit event,
even when the action is denied.

•	 Using --neverallow, we can query which actions are forbidden from being
declared within the policy. Such actions, when defined, will cause the system to
refuse to load new SELinux policies if they violate the rule. It cannot be used to
negate existing rules though, and neverallow rules that you attempt to add to the
policy afterward will fail if the current policy already has deviations against this rule.

SELinux also supports extended permission rules. These rules are similar to regular
allow rules but take an additional (number) parameter that further limits the applicability
of the rule, and are used to provide fine-grained access control for device queries. These
queries are generally handled by the ioctl() system call, but until its support for
extended permissions, SELinux could only control whether a domain was allowed to
use the ioctl() system call or not, rather than filtering on the explicit query through
ioctl().

342 Analyzing Policy Behavior

With extended permission rules, SELinux policy developers can specify which ioctl()
queries are allowed and which ones aren't. For instance, we can grant a domain the ability
to get a hardware address (known as SIOCGIFHWADDR, which is defined with number
0x8927) as follows:

allowxperm <domain> <resource> : tcp_socket ioctl 0x8927;

Within sesearch, we can query these rules using --allowxperm. Like regular
allow rules, we also have the --auditallowxperm, --dontauditxperm, and
--neverallowxperm options to cover the extended-permission-equivalent rules. These
have the same impact on the query and also on the extended permission rules.

Querying type transition rules
A second set of rules are the type transition rules. Rather than informing the system
which actions are allowed or not, type transitions influence the SELinux context of
objects and resources through actions taken by the processes on the system. Type
transition rules, for instance, define what context a newly written file receives when it is
written by a particular domain within a directory that has a given SELinux type, or what
domain a newly created process receives when it is executed from a given source domain:

$ sesearch -T -s guest_t -c process
type_transition guest_t abrt_helper_exec_t:process abrt_
helper_t;
type_transition guest_t chfn_exec_t:process chfn_t;
...

In this output, we can see that when the guest domain successfully executes a binary
labeled with abrt_helper_exec_t, its resulting process will be assigned the
abrt_helper_t context.

These rules are queried and interpreted by various tools in the Investigating domain
transitions section.

Performing single-step analysis 343

Querying other type rules
Alongside the allow rules and type transition rules, sesearch can also query two
other type-related rules: type_change and type_member. These rules are meant for
SELinux-aware applications and are not enforced by the in-kernel SELinux subsystem:

•	 With type_change statements (which can be filtered in sesearch using the
--type_change option), developers inform the SELinux-aware application that
a target resource should be relabeled with a given type on behalf of the source
domain.

For instance, when systemd assigns a terminal to a user, it queries the SELinux
policy for type_change statements for the user domain, given the current
terminal's SELinux type, and will return the following type_change statement:

type_change guest_t tty_device_t:chr_file user_tty_
device_t;

As the device file itself already exists and is only reassigned to a user, no type
transition itself is done. Instead, the type_change rule is interpreted by the
SELinux-aware application that relabels the device file accordingly.

•	 The type_member rule (which can be filtered in sesearch using the --type_
member option) informs SELinux-aware applications that participate in setting up
polyinstantiated locations (as we saw in Chapter 3, Managing User Logins) about
the target SELinux type of such directories. For instance, when the /tmp location
(which is labeled with tmp_t) is polyinstantiated for a user, then the following
rule is used to understand that the /tmp view for this user is to be labeled with
user_tmp_t:

type_member guest_t tmp_t:dir user_tmp_t;

The PAM module responsible for addressing the polyinstantiation is
SELinux-aware, and will use these rules to deduce what the target types must
be for the created locations.

Alongside the type-related statements, sesearch can also handle role-related queries.

344 Analyzing Policy Behavior

Querying role-related rules
SELinux also has rules related to role activities and transitions. With the sesearch
application, we can query which SELinux roles are allowed to be accessed from other
roles, and when a role transition (such as switching from a user role to the system role)
is performed:

$ sesearch --role_allow -s dbadm_r;
allow dbadm_r sysadm_r;
$ sesearch --role_trans -s dbadm_r;
role_transition dbadm_r mysqld_initrc_exec_t:process system_r;
role_transition dbadm_r postgresql_initrc_exec_t:process
system_r;

The distinction between the two is that the allowed access (using --role_allow) shows
which roles can be accessed from a given role, but they do not dictate when the change
is done. The role transitions (using --role_trans) show when the system attempts
to automatically change a role (and to what role it would be changed) when executing
a script or binary. Hence, they can be compared with the allow rules (which specify
what is allowed) and type transitions (defining SELinux behavior).

Analyzing role transitions and role allow rules helps administrators deduce which roles
are too powerful or could result in potential security issues. For instance, allowing the
dbadm_r role to switch to the system_r role through the postgresql_initrc_
exec_t type might allow that role to invoke actions outside its scope if it also has the
rights to modify postgresql_initrc_exec_t resources:

$ sesearch -A -s dbadm_t -t postgresql_initrc_exec_t -c file;
allow dbadm_t postgresql_initrc_exec_t:file { execute execute_
no_trans getattr ioctl map open read };

While directly modifying postgresql_initrc_exec_t files is thus not allowed,
it is not enough to only look at the main user type. A decent analysis needs to include
all types reachable by the dbadm_r role, which we will cover in the Investigating domain
transitions and Analyzing information flow sections. These sections will use apol, so let's
first see what this application is all about.

Performing single-step analysis 345

Browsing with apol
An advanced tool to perform policy analysis is apol, which can be launched by just
executing the command without any arguments. The tool is graphical in nature and allows
analysts and administrators to perform a wide range of analytical actions against the
SELinux policy.

Once started, the first action to take with apol is to load a target policy (either the
currently active policy or a file copied over from a different system). This can be
accomplished through the Open Policy button, or by navigating to File | Open Policy.

The tool will then display a generic overview of the loaded policy:

Figure 13.1 – The apol application after loading a policy file

346 Analyzing Policy Behavior

Once it has been loaded, select New Analysis to initiate the policy analysis functions:

Figure 13.2 – apol's overview of supported analysis methods

Performing single-step analysis 347

A decent number of analysis methods are provided. Let's select Types to browse through
the available types, or select an attribute to find out which SELinux types are assigned to
that attribute:

Figure 13.3 – Type browsing with apol

348 Analyzing Policy Behavior

Similarly, with the TE Rules analysis, we can perform the same analysis as we did with the
sesearch application:

Figure 13.4 – Querying type enforcement rules with apol

The more advanced analysis methods are covered in the Investigating domain transitions
and Analyzing information flow sections.

Using apol workspaces
Analyzing SELinux policies can take a while, especially when this involves multiple phases
of analysis and fine-tuning. The apol tool allows you to save your current workspace to
disk, so that you can later get back to the analysis from the point at which you saved it:

Investigating domain transitions 349

Figure 13.5 – Workspace management in apol

Workspaces not only retain the settings of the queries so far, but also the notes you might
add. Notes are an important feature within apol where you can write down thoughts
and observations from the queries you've made. The notes are associated with the tabs
you have open, allowing you to switch between different queries as needed.

Now that we know how the apol application works, let's see how we can use it (and other
tools) for more in-depth analyses.

Investigating domain transitions
An important analytical approach when dealing with SELinux policies is to perform
a domain transition analysis. Domains are bounded by the access controls in place for
a given domain, but users or processes can transition to other domains by executing the
right set of applications.

350 Analyzing Policy Behavior

Analyzing whether and how a transition can occur between two SELinux domains allows
administrators to validate the secure state of the policy. Given the mandatory nature
of SELinux, adversaries will find it difficult to be able to execute target applications
if a domain transition analysis shows that the source domain cannot execute said
application, either directly or indirectly.

Administrators should use domain transition analysis to confirm a domain is correctly
confined, and that vulnerabilities within the applications running inside a domain cannot
lead to privilege escalations.

Using apol for domain transition analysis
After starting apol, select New Analysis followed by Domain Transition Analysis.
The analysis screen itself will show several possible analytical approaches:

Figure 13.6 – Querying possible transition paths between staff_t and unconfined_t

Investigating domain transitions 351

This analysis will attempt to find a path between a given source domain and target
domain, and display the execution trail that could lead to the transition. Administrators
can then verify whether the applications associated with these domain transitions can
be trusted or not. Such analysis is sensible when we need to assert that certain domains
cannot break out of their confinement, or when we are developing new policies and want
to ensure that the confinement is within the boundaries we want.

The transition analysis can be fine-tuned through the following settings:

•	 With Shortest paths, apol will show domain transitions between the source
domain and the target domain, seeking the shortest transitions possible. For
instance, a transition from staff_t to staff_sudo_t to unconfined_t
is a two-step path. When a path is found, apol will not search for longer paths.

•	 When we select All paths up to, apol will perform the analysis up to a certain
number of steps. When we use up to one step, then this is similar to doing direct
queries with seinfo or sesearch.

•	 Using Transitions out of the source domain and Transitions into the target
domain will show all transitions that can occur from a given source domain or to
the target domain. This is used for a more interactive session, where users can click
through the domains to see the next set of domains that can be transitioned to.

To further fine-tune the analysis, a few options can be selected. For instance, we can
exclude certain types from being used in the domain transition analysis. This allows us
to mark certain domains as trusted (such as the *_sudo_t domains), which will make
apol ignore those domains to find more appropriate transition chains to analyze.

Using sedta for domain transition analysis
The path analysis done by apol can also be executed from a command-line application
called sedta. It has the same capabilities as the domain transition analysis functionality
within apol.

The type of analysis is selected through command-line arguments: -S is used for shortest
path analysis, whereas -A (followed by a number) runs the equivalent of All paths up to.

For instance, to check for a domain transition path between the staff_t domain and the
unconfined_t domain, excluding the staff_sudo_t, newrole_t, and init_t
domains, use the following command:

$ sedta -S -s staff_t -t unconfined_t staff_sudo_t newrole_t
Domain transition path 1:
Step 1: staff_t -> oddjob_t

352 Analyzing Policy Behavior

Domain transition rule(s):
allow staff_t oddjob_t:process transition;

Set execution context rule(s):
allow staff_t staff_t:process { dyntransition fork getattr
getcap getpgid getrlimit getsched getsession noatsecure
rlimitinh setcap setcurrent setexec setfscreate setkeycreate
setpgid setrlimit setsched setsockcreate share sigchld siginh
sigkill signal signull sigstop transition };

Entrypoint oddjob_exec_t:
 Domain entrypoint rule(s):
 allow oddjob_t oddjob_exec_t:file { entrypoint execute
getattr ioctl lock map open read };

 File execute rule(s):
 allow staff_t oddjob_exec_t:file { execute execute_no_
trans getattr ioctl map open read };

 Type transition rule(s):
 type_transition staff_t oddjob_exec_t:process oddjob_t;

Step 2: oddjob_t -> openshift_initrc_t
...

We can analyze a different policy than the current system policy using the -p option.

Using sepolicy for domain transition analysis
The sepolicy tool has a built-in domain transition analysis capability using the
transition argument. It is, however, not as flexible as sedta or apol, as no tuning
can be done to the command. It also does not seem to cover all possible paths, often
displaying extensive and elaborate routes that could be much simpler:

$ sepolicy transition -s mount_t -t unconfined_t
mount_t ... glusterd_t ... ipsec_t ... ipsec_mgmt_t
 ... initrc_t ... condor_schedd_t ... condor_startd_t
 ... openshift_initrc_t ... stunnel_t ... telnetd_t
 ... remote_login_t @ shell_exec_t --> unconfined_t
 -- Allowed True [unconfined_login=1]
mount_t ... glusterd_t ... ipsec_t ... ipsec_mgmt_t
 ... initrc_t ... condor_schedd_t ... condor_startd_t
 ... openshift_initrc_t ... kmscon_t ...

Investigating domain transitions 353

 local_login_t @ shell_exec_t --> unconfined_t
 -- Allowed True [unconfined_login=1]
mount_t ... glusterd_t ... ipsec_t ... ipsec_mgmt_t
 ... initrc_t ... condor_schedd_t ... condor_startd_t
 ... openshift_initrc_t ... kdumpgui_t ... kdumpctl_t
 ... sge_execd_t ... sge_shepherd_t ...
 sshd_t @ shell_exec_t --> unconfined_t
 -- Allowed True [ssh_sysadm_login=0 || unconfined_login=1]
mount_t ... glusterd_t ... ipsec_t ... ipsec_mgmt_t
 ... initrc_t ... condor_schedd_t ... condor_startd_t
 ... openshift_initrc_t ... kdumpgui_t ... kdumpctl_t ...
 sulogin_t @ shell_exec_t --> unconfined_t
 -- Allowed True [unconfined_login=1]
mount_t ... glusterd_t ... ipsec_t ... ipsec_mgmt_t
 ... initrc_t ... condor_schedd_t ... condor_startd_t
 ... openshift_initrc_t ... kdumpgui_t ... kdumpctl_t
 ... inetd_t ...
 rshd_t @ shell_exec_t --> unconfined_t
 -- Allowed True [unconfined_login=1]
mount_t ... glusterd_t ... ipsec_t ... ipsec_mgmt_t
 ... initrc_t ... condor_schedd_t ... condor_startd_t

 ... openshift_initrc_t ... kdumpgui_t ... kdumpctl_t
 ... piranha_pulse_t ...
 crond_t @ shell_exec_t --> unconfined_t
 -- Allowed True [cron_userdomain_transition=1 || unconfined_
login=1]
mount_t ... glusterd_t ... ipsec_t ... ipsec_mgmt_t
 ... initrc_t ... condor_schedd_t ... condor_startd_t
 ... openshift_initrc_t ... kdumpgui_t ... kdumpctl_t
 ... piranha_pulse_t ... cockpit_ws_t ...
 cockpit_session_t @ unconfined_exec_t --> unconfined_t

Let's compare this with sedta, which we use against the same policy and for the same
domain transition:
$ sedta -S -s mount_t -t unconfined_t | \
 grep -E '(transition path|Step)'
Domain transition path 1:
Step 1: mount_t -> glusterd_t
Step 2: glusterd_t -> sulogin_t
Step 3: sulogin_t -> unconfined_t
Domain transition path 2:

354 Analyzing Policy Behavior

Step 1: mount_t -> glusterd_t
Step 2: glusterd_t -> virtd_lxc_t
Step 3: virtd_lxc_t -> unconfined_t
Domain transition path 3:
Step 1: mount_t -> glusterd_t
Step 2: glusterd_t -> xdm_t
Step 3: xdm_t -> unconfined_t
Domain transition path 4:
Step 1: mount_t -> glusterd_t
Step 2: glusterd_t -> crond_t
Step 3: crond_t -> unconfined_t
Domain transition path 5:
Step 1: mount_t -> glusterd_t
Step 2: glusterd_t -> sshd_t
Step 3: sshd_t -> unconfined_t
Domain transition path 6:
Step 1: mount_t -> glusterd_t
Step 2: glusterd_t -> virtd_t
Step 3: virtd_t -> unconfined_t
6 domain transition path(s) found.

When comparing the transition paths with the ones generated by sedta, you will notice
that sedta often finds shorter domain transitions, which sepolicy transition
does not. Hence it is not recommended to rely solely on sepolicy transition for
domain transition analysis.

Analyzing information flow
Another analytical investigation that can be carried out on SELinux policies is
information flow analysis. Unlike domain transitions, which look at how one domain can
gain a certain set of permissions through transitions to another domain, information flow
analysis looks at how a domain could leak (purposefully or not) information to another
domain.

Information flow analysis is performed by looking at all operations that occur between
two types. A source type can be read by a domain, which subsequently can write
information to another type that can then be accessed by another domain. While this can
still be analyzed in a step-wise fashion, it quickly becomes very challenging because
we cannot limit ourselves to the read and write operations.

Information can be leaked through filenames, file descriptors, and more. Information flow
analysis must take all these methods into account.

Analyzing information flow 355

Using apol for information flow analysis
After loading an SELinux policy, select Information Flow Analysis. The interface
we receive is similar to the domain transition analysis, but now has a few toggles
to fine-tune the path analysis specific to information flows:

Figure 13.7 – Analyzing information flow between two domains

Unlike domain transitions, the number of paths through which information can flow is
exponentially bigger. To perform a decent information flow analysis, we need to fine-tune
the search criteria:

•	 The Minimum permission weight option allows users to only look at permissions
or actions that have a particular weight. Each action is given a weight in the tool,
from a low priority (such as the lock operation, which has weight 1) to a high
priority one (such as the write operation, which has weight 10). The purpose
of these weights is to define which actions are plausible for information flow and
which ones are much harder (but not impossible) to use for deliberate information
exchange.

356 Analyzing Policy Behavior

•	 With Excluded Permissions, we can selectively enable or disable certain
permissions from the analysis.

The other options are similar to those in domain transition analysis.

The most important area for information flow analysis is the permission map, which
we can fine-tune partially while enabling or disabling permissions in the analysis.
However, we might not be happy with the weights that the current permission map uses.

To edit the permission map, select Permission Map | Edit Permission Map from the
apol menu:

Figure 13.8 – Editing the permission map and permission weights

Within this editor, we can fine-tune the weights of the permissions to our liking, as well as
the directionality of the action:

•	 None (no information flow)

•	 Write (information flows to the resource)

Analyzing information flow 357

•	 Read (information is retrieved from the resource)

•	 Both (information can both flow to and from the resource)

Once we are satisfied with the results, we can (and probably should) save the permission
map for later reuse (if not, the changes are only applicable to the current session and will
be forgotten when apol is closed).

Using seinfoflow for information flow analysis
Like the sedta application for domain transition analysis, there is also a command-
line application that offers information flow analysis capabilities similar to apol, that is,
seinfoflow. Every invocation of the seinfoflow command requires the permission
map to be passed on for its analysis. If you don't have a permission map created and saved
yourself, you can use the default one available at /var/lib/sepolgen/perm_map.

Let's analyze the information flow possibilities between the staff_t and guest_t
domains, using the default permission map, and only considering the permissions of
weight 10:

$ seinfoflow -S -m /var/lib/sepolgen/perm_map \
 -s staff_t -t guest_t -w 10

The more elaborate a permission map is, the more time it takes for the analysis to
complete.

Using sepolicy communicate for simple information
flow analysis
The sepolicy command can perform a simple flow analysis using the communicate
option. Given a source and target domain, sepolicy will check through which
intermediate types information can flow between the domains:

$ sepolicy communicate -s postgresql_t -t staff_t
krb5_host_rcache_t
cluster_conf_t
security_t
postgresql_t
postgresql_tmp_t
hugetlbfs_t

The preceding flow analysis is basically checking what types can be written to by the
source domain, and read by the target domain.

358 Analyzing Policy Behavior

Comparing policies
Until now, we've analyzed a single policy set, finding the domain transitions and
information flow paths. The commands and applications we've used all focus on this
single-policy analysis. Another important analysis is to compare two policies. Policy
developers can use this to compare a new policy with an old one, or to compare two
system policies to see what additional rules have been added by the administrator.

Using sediff to compare policies
The sediff tool looks at the differences between two policy files and reports those to the
user. It is often not sensible to use this against completely different policies, but is powerful
for finding slight differences between policies, which can assist in troubleshooting issues
across different systems.

A common use case for sediff is to validate that a source-built policy file is the same as
the distribution-provided binary policy file. Administrators can then be certain that the
source code they've used to build a policy file is the same as that used by the distribution,
even when the binary files themselves (the policy.## file) have different checksums:

$ sediff policy.31 /sys/fs/selinux/policy
Policy Properties (0 Modified)

Classes (1 Added, 0 Removed, 4 Modified)
 Added Classes: 1
 + xdp_socket
 Modified Classes: 4
 * capability2 (1 Removed permissions)
 - compromise_kernel
 * process (1 Added permissions, 1 Removed permissions)
 + getrlimit
...

It is possible to direct sediff to only show differences for a specified area or part of the
SELinux policy (such as the available types, roles, booleans, or type enforcement rules).

Summary 359

Summary
SELinux has quite a few analysis tools that we can use to analyze policies. We've seen how
to use sesearch to do in-depth assessments of the current policy, but noticed that it fails
to validate the more dynamic analysis requirements.

With apol, we have seen a graphical application that is able to do more dynamic analysis,
including the domain transitions (examining which domains can be reached from
a current point) and information flow analysis (investigating how information can flow
from one domain to another). From this experience, we've learned that such analysis
is intensive and requires lots of interpretation to be done correctly.

Next to apol, we also learned that command-line utilities exist with similar capabilities:
sedta for domain transition analysis, seinfoflow for information flow analysis, and
sepolicy, which has a few out-of-the-box functionalities, but not as extensive or flexible
as the other options we looked at.

In the end, we learned how to compare policies using sediff. This is useful for when
new policies are being developed, which is something we'll do in the remaining chapters.
We first start with aligning and extending existing policies for new applications in the next
chapter, and move on to full application policy development in the last two.

Questions
1.	 What is the difference between seinfo and sesearch?

2.	 How do you check whether you can reach a domain?

3.	 Why does analyzing information flows take so long?

4.	 Can we generate a delta between policies and load it?

14
Dealing with New

Applications
New applications are often not yet supported through an application-specific SELinux
policy, as most application projects do not develop the SELinux policies themselves, but
rely on the community in general (or Linux distributions more specifically) to create
and maintain them. Some Linux distributions have implemented fallbacks to allow these
applications to run, even though they might not be isolated properly. Administrators
might not like the sound of having untrusted new applications running without any
SELinux enforcements active though.

Hence, this chapter covers how administrators can run new applications in a number of
isolated environments, ranging from the (often default) unprotected domains, to sandbox
systems, and eventually by reusing existing SELinux domains without having to develop
completely new ones.

In this chapter, we're going to cover the following main topics:

•	 Running applications without restrictions

•	 Using sandboxed applications

•	 Assigning common policies to new applications

•	 Extending generated policies

362 Dealing with New Applications

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3dGG5Bu

Running applications without restrictions
The default behavior in many Linux distributions is to run new applications through
unconfined domains. These are specially crafted domains that, while still being controlled
by SELinux, are designed to have very, very broad permissions granted. You can compare
such unconfined domains with a firewall that allows any possible flow: while the firewall
is running, it is hardly doing any enforcement.

There is, however, another approach possible as well, namely, running an application as
a permissive domain. Unlike unconfined domains, permissive domains are not enforced
through SELinux: everything the domain does is allowed, even though SELinux might log
every violation. We briefly touched upon permissive domains in Chapter 3, Understanding
SELinux Decisions and Logging.

Let's first look at unconfined domains and how administrators can modify system
configuration to apply unconfined domains to other applications, or remove applications
from being unconfined.

Understanding how unconfined domains work
An unconfined domain is an SELinux domain that has broad permissions, restricting
only a very small amount of actions that a domain can do. Unconfined domains are not
really a concept that SELinux, as technology, supports. Instead, it is used by SELinux
policy developers who created a set of permissions they consider as being unconfined.

End users on many Linux distributions will have noticed that their own context is
unconfined_t. While this is indeed a reference to being an unconfined domain, there
are more domains that are unconfined than unconfined_t.

SELinux policy developers have aggregated most of the permissions related to unconfined
domains either in the domains themselves (as is the case for the reference policy) or in
SELinux attributes, such as unconfined_domain_type and unconfined_user_
type (as is the case for CentOS and related Linux distributions). In the case of attributes,
these attributes are then assigned to one or more domains to effectively make them
unconfined in nature:

$ seinfo -a | grep unconfined

$ seinfo -a unconfined_domain_type -x

https://bit.ly/3dGG5Bu

Running applications without restrictions 363

Once a process is running as an unconfined domain, that does not imply that every action
of that domain remains unconfined. When an unconfined domain executes a process
that has a proper SELinux policy assigned, it is possible for this execution to still invoke
a domain transition, effectively running the executed command in a (possibly confined)
SELinux domain.

As the decision whether a domain transition is allowed or not falls within the SELinux
policy, it is recommended that administrators query which domain transitions are
allowed and which ones aren't. We saw how to analyze domain transitions in Chapter 13,
Analyzing Policy Behavior. Given that we are mostly interested in single-step analysis, we
can use the sesearch utility to have a quick overview of supported domain transitions:

$ sesearch -A -s unconfined_service_t -c process -p transition
allow unconfined_service_t chronyc_t:process transition;
allow unconfined_service_t rpm_script_t:process transition;
allow unconfined_service_t unconfined_service_t:process {
transition ...};
allow unconfined_service_t virt_domain:process { transition
...};

We can see the (many) permissions related to an unconfined domain by either checking
them for a single domain, or for the attribute that represents unconfined domains directly:

$ sesearch -A -s unconfined_domain_type -ds

Using unconfined domains is preferred over making domains permissive, so let's see how
we can mark a new application to run as an unconfined domain.

Making new applications run as an unconfined domain
When applications are executed, there are a number of checks that need to pass before this
results in a domain transition:

•	 The source SELinux domain must be able to execute the application (implying
execute rights on the SELinux type associated with the application's binary
or script).

•	 The source SELinux domain must be able to transition to the target domain.

•	 The target domain must have its application binary or script labeled with an
SELinux type that is marked as an entrypoint for that domain.

•	 The target domain must be allowed for the SELinux role that the source domain is
running with (or a role transition has to be allowed, but that is a corner case).

364 Dealing with New Applications

All these checks are related to the SELinux policy and the labels. It comes as no surprise
then that, in order for us to enable applications to run in an unconfined domain, we need
to associate the right labels.

Let's consider two examples in the following sections, one being a user-triggered
application, while the other is a daemonized service.

Running applications in an explicit unconfined domain
For applications that users execute, let's take the example of Jailkit, which we introduced
in Chapter 7, Configuring Application-Specific SELinux Controls. By default, this
application is not associated with any domain, so it runs within the same domain as the
parent process. If we are logged in to the system through the unconfined_u user
(in the unconfined_t SELinux domain), then we have nothing to do. But suppose that
our staff user is confined, yet we want to have the command run in the unconfined_t
domain.

Important note
This is used as an example that shows how to have applications run in a target
domain – in our case, an unconfined domain. Allowing confined users to run
unconfined applications always has a risk associated with it, because they might
use this to break out of their confinement. Make sure that this is only done
for applications or users where you have confidence that they will not breach
security.

To allow the application to run in the unconfined_t domain, we will use sudo and its
SELinux support. While we could also extend the SELinux policy to allow it transparently,
this is not recommended. Updating the SELinux policy to allow confined users to run
unconfined commands implies that several principles listed in the policy are overturned.
You would need to allow the confined user to switch to the unconfined_r role (which
is often not allowed for security reasons) transparently, for instance. It would require
significant analysis to make sure that it cannot be used to break out of the confined role.

Using sudo allows us to limit the methods through which such more privileged
commands are executed. SELinux-wise, the appropriate controls are put on the
staff_sudo_t domain, for instance, which is only assigned when executing the
sudo command, rather than the staff_t domain, which is where most of the user's
interactions are executed.

Running applications without restrictions 365

Let's allow the lisa user to run the jk_init command as an unconfined process:

1.	 First, check whether the SELinux user for which we want to execute the command is
allowed to do anything with the unconfined_r SELinux role (and if not, add the
role to the SELinux user configuration):

semanage user -l

Allowing a role does not imply that the user domain automatically switches role
when needed though, but rather that it is an allowed role for the user.

2.	 Next, update the /etc/sudoers file to include a transition when executing the
following command:

visudo
lisa ALL=(root) ROLE=unconfined_r TYPE=unconfined_r
NOPASSWD: /usr/sbin/jk_init

In this case, we not only use a ROLE and TYPE transition, but we also allow
the command to be executed as the root user, as that is a requirement for the
jk_init command. Of course, this can be adjusted as needed.

3.	 Our user can now run the command, prefixed by sudo, to have it execute in the
right domain and using the right role:

$ sudo /usr/sbin/jk_init -v -j /srv/chroot \
 extshellplusnet

Using sudo for end user applications is common when the privileges of the user also have
to switch (from the user privilege to the root privilege). It is less common to use it when
staying within the Linux user context though.

Running daemons in an explicit unconfined domain
The second use case, and perhaps a more common one than for end user applications, is
to run daemonized services in an unconfined domain. Most Linux distributions that use
unconfined domains (such as CentOS) will by default have newly installed software run
as an unconfined domain as well. For instance, any service that is enabled and activated
through systemd (which runs as the init_t SELinux domain) and that does not have an
explicit labeling set (meaning the executable commands are labeled as bin_t) will run in
the unconfined_service_t domain.

366 Dealing with New Applications

But what if we have a confined application that we want to run in an unconfined domain?
Let's take PostgreSQL as an example. Suppose this is an isolated database that has certain
extensions active that are incompatible with the existing PostgreSQL SELinux domain
(postgresql_t). Administrators might not have the time to extend the current
SELinux policy using methods such as audit2allow, as seen in Chapter 12, Tuning
SELinux Policies.

Luckily, we can easily move PostgreSQL to work and run in an unconfined domain. There
are two ways to approach this:

•	 We can remove the existing labels on its executable files (postgresql_exec_t)
and set it to bin_t instead. This will then trigger the default transition when
starting the PostgreSQL binary to the unconfined_service_t domain.

•	 We can update the SELinux policy for postgresql_t to become an unconfined
domain itself.

Switching the labels is easy, but is the least recommended method. It is, however, a quick
and dirty way to see whether running the service in the unconfined_service_t
domain is sufficient to resolve the issue immediately:

chcon -t bin_t /usr/bin/postgres

If agreeable, make sure that the label change remains, even after a relabel operation
occurs:

semanage fcontext -a -t bin_t /usr/bin/postgres

Updating the SELinux policy for the PostgreSQL daemon is recommended though, as
it retains the existing support within the policy (including the file transitions and other
integrations that the postgresql_t domain has with other domains and resources).
It also allows administrators to update the policy as needed later on, when there is more
time available.

To make the postgresql_t domain unconfined, we need to assign the
unconfined_domain_type attribute to the postgresql_t domain. This can be
accomplished by loading in the following CIL-based SELinux policy:

(typeattributeset cil_gen_require postgresql_t)
(typeattributeset cil_gen_require unconfined_domain_type)
(typeattributeset unconfined_domain_type (postgresql_t))

Running applications without restrictions 367

Save this in a file and load it using semodule -i, and from that point onward the
postgresql_t domain will be augmented with the privileges associated with the
unconfined_domain_type attribute.

Extending unconfined domains
As unconfined domains are still enforced, it might be possible that SELinux is still
preventing some actions from occurring. We can adjust the SELinux policy to extend
unconfined domains with more privileges though. While the default unconfined_
service_t domain has almost all possible permissions set, more specifically, identified
domains might not be as expansive.

The trick to adding more privileges to the domains is to assign the appropriate attribute
to them. The method is the same as seen in Running daemons in an explicit unconfined
domain, adding more attributes as needed. The list of attributes that we can add is very
significant (as you can see from seinfo -a), but the most important ones, especially
for the CentOS-based SELinux policy, are the following:

•	 files_unconfined_type allows the domain to manage any possible
file- or filesystem-based resource.

•	 devices_unconfined_type allows the domain to interact and manage any
device resource.

•	 filesystem_unconfined_type allows the domain to interact and manage
all filesystems.

•	 selinux_unconfined_type allows the domain to interact with and manage
the SELinux subsystem and configuration.

•	 storage_unconfined_type allows the domain to interact with storage systems
and removable devices.

•	 dbusd_unconfined allows the domain to interact with all possible D-Bus
services.

•	 xserver_unconfined_type allows the domain to interact with and manage
all X server resources.

Furthermore, there are several can_* attributes that fine-tune very specific,
security-sensitive actions. The names of these attributes nicely explain what they allow.
For instance, can_write_shadow_passwords allows the domain to write to /etc/
shadow, whereas can_change_object_identity means that the domain can
change the SELinux user of an object.

368 Dealing with New Applications

Not all attributes have their privileges reflected in regular allow rules or transitions that
can be queried using sesearch. For instance, can_change_object_identity is
used in SELinux constraints instead:

seinfo --constrain | grep can_change_object_identity

Querying the constraints is an often forgotten method to see what or why a certain
privilege is or isn't assigned to a domain.

Suppose now that an application still fails to run correctly within an unconfined domain,
then we can use permissive domains to allow this application to run unprotected, while
having the rest of the system remain in enforcing mode.

Marking domains as permissive
As we saw in Chapter 2, Understanding SELinux Decisions and Logging, we can mark
a domain as permissive using semanage permissive:

semanage permissive -a postgresql_t

The same command can be used to query (-l) or remove (-d) permissive states.
However, administrators should take special care before marking domains as permissive:

•	 First of all, if you mark a domain as permissive, then all processes running with
that SELinux domain will run without any active SELinux enforcements. As an
administrator, you really want to limit the number of processes that are running
through permissive domains, so do not mark broadly used SELinux domains as
permissive.

A daemon that runs in an unconfined domain, yet still has problems, should not
result in the unconfined domain being marked as permissive. Instead, have the
daemon run as a different domain, and mark that domain as permissive.

•	 Secondly, permissive domains will still trigger SELinux behavior by the SELinux
subsystem. Transition rules, including process transitions and file transitions, are
still executed. This is of course by design, as permissive domains are meant to be
short-lived, allowing administrators and developers to capture information and
adapt the policy as needed before they can remove the permissive flag again.

Using sandboxed applications 369

This also implies that, if the domain does not have proper transition rules set,
it might result in files being created on the system that have the wrong SELinux
types set. Because of this, using permissive domains should not be considered for
applications or daemons that have a wide impact on the system, but rather for more
isolated situations where you, as an administrator, feel confident that you can easily
fine-tune the policy if needed.

Consider the situation where we deploy pgpool-II, a load balancer for PostgreSQL
databases, and find that the application does not run properly in an unconfined domain,
even though it already runs in the unconfined_service_t SELinux domain. While
we can put this domain in permissive mode, this would also apply to various other
services running inside the unconfined_service_t domain.

What we can do is relabel its resources (executables mostly) so that the application is run
through a different SELinux domain, and then mark that domain as permissive. We can
either reuse an existing, unused domain or generate one, as we will see in the Generating
policies with sepolicy generate section.

When we want to run an application in a (strictly) confined manner though, we need
to take a completely different route and seek out how to put such applications in
sandbox-like domains.

Using sandboxed applications
New applications that should only have very limited privileges, and that are untrusted by
nature, should be confined completely. While we could look at custom SELinux policies
for these applications, this is hardly possible for each and every application out there.

Instead, we can consider sandboxing the applications, isolating their access from the
system. With the help of some other Linux primitives such as namespace support, a utility
has been created called the SELinux sandbox, which launches applications in a tightly
confined domain. This is mostly meant for end user applications.

Important note
The SELinux sandbox, its SELinux policy, and the command associated with it,
is specific to Linux distributions that use or follow Red Hat packages, such as
CentOS. It might not be available for your Linux distribution.

For service-oriented domains, using the container runtime and protection measures are
more suited. For more information about using container protections, see Chapter 11,
Enhancing the Security of Containerized Workloads.

370 Dealing with New Applications

Understanding the SELinux sandbox
The SELinux sandbox is a combination of a number of technologies and protection
measures. While the SELinux policy plays an important part, other isolation measures are
taken as well to really create a sandbox experience for applications and users.

The purpose of the sandbox is to create a low-privilege environment that blocks anything
that could jeopardize the security of the system or the user's data. This also means
that network interaction is blocked by default (no data exfiltration), and many system
resources are hidden away from the sandboxed process.

Many of the access controls themselves are handled by the SELinux policy. The sandbox
SELinux domains, sandbox_t, and derivatives such as sandbox_xserver_t, do not
have many privileges for other resources. The sandbox utility will also apply sVirt-like
categories to differentiate one sandboxed process from another.

The isolation, however, is done using different means. Namespaces are used to give
the sandboxed process a different view of the filesystem (similar to polyinstantiation),
whereas runtime capabilities are dropped before executing the process. The seunshare
application is responsible for doing these isolation tasks.

Let's see how the SELinux sandbox works in practice.

Using the sandbox command
The SELinux sandbox uses the sandbox command. Now, before we can use it, we need
to make sure that our SELinux user has multiple categories set as, otherwise, the SELinux
sandbox cannot randomly allocate two categories for isolation:

semanage login -l

semanage login -m -r "s0-s0:c0.c100" lisa

Once assigned, we can prepare for running an untrusted application in a sandbox.
For instance, we can download one of the International Obfuscated C Code Contest
applications from https://www.ioccc.org, compile it, and then only run it in
a sandbox mode just in case the code behaves maliciously:

1.	 Assuming we use the 2019 entry from adamovsky, we should have the prog
binary and the advent.unl file ready to use. Create a location in which to store
these files, and copy them over:

$ mkdir sandbox

$ cp 2019/adamovsky/* sandbox

https://www.ioccc.org

Using sandboxed applications 371

2.	 Next, run the prog command from within the sandbox:

$ sandbox -H sandbox/ prog advent.unl
Welcome to Adventure!! Would you like instructions?
**

3.	 While the application runs, we can check its current context with ps:

ps -efZ | grep prog

Alongside the prog command itself, which will be running in the sandbox_t
SELinux domain and with a certain category pair set, you will notice that a
seunshare command will run alongside it. This command provides the isolation
for the process, not only by triggering the SELinux context change, but also
removing unnecessary mount and filesystem views from the process's viewpoint.

4.	 If we exit the application, we can see that the sandbox location has been labeled with
an sVirt-like MCS pair:

$ ls -Z sandbox/
staff_u:object_r:sandbox_file_t:s0:c29,c94 advent.unl
staff_u:object_r:sandbox_file_t:s0:c29,c94 prog

The method we used here was to explicitly tell the sandbox to create an isolated home
directory based upon the sandbox/ folder and run the prog binary from within this
location (and with advent.unl as an argument to the prog command). However, this
is not the sole approach.

If no explicit home directory is provided, then the sandbox will create a temporary one
(and clean it up afterward). However, in that case, we cannot execute commands that
are not already installed on the system, unless we allow the sandbox domain to execute
user_home_t-labeled resources:

(typeattributeset cil_gen_require sandbox_t)
(allow sandbox_t user_home_t (file (execute map)))

With this policy loaded, we can use the sandbox with the least number of options. For
instance, with the Burton contest submission (also from IOCCC's 2019 contest), we have
the following:

$ cat prog.c | sandbox ./prog
 1 1 127

372 Dealing with New Applications

The use of a more known location, however, allows more flexibility, as well as allowing the
sandbox to keep data across multiple sessions (as the directory pointed toward will not be
cleaned up).

The SELinux sandbox also supports running graphical applications in the sandbox. To
accomplish this, add the -X option to the sandbox command. The resulting process
will run in the sandbox_xserver_t domain rather than the sandbox_t domain, as
more privileges are needed to allow graphical applications to run. Keep in mind though
that the sandbox domain has very few privileges; connecting to networked resources is
not allowed, so it is not possible to use the sandbox (without additional modifications and
SELinux policy adjustments) to run a sandboxed browser to interact with unsafe websites.

Assigning common policies to new
applications
In between the strong isolation of an SELinux sandbox and the broad permissions
of unconfined domains (or even permissive domains) sits the sufficiently privileged
application domain. For most administrators, having a proper SELinux domain for
applications is the best way forward, as it allows all the common behaviors and restricts
unwanted ones.

When we start looking at application domains, however, we notice that there is
differentiation in complexity, and as an administrator, we need to understand what the
complexity is about before we can make the right choice.

Understanding domain complexity
SELinux is able to provide full system confinement: each and every application runs in
its own restricted environment that it cannot break out of. But that requires fine-grained
policies that are developed as quickly as the new releases of all the applications they
confine.

Developing fine-grained policies at this speed is not possible, so a balance has to be
struck between the maintainability of a policy and the security of the domain. This
balance is the policy design complexity or domain complexity, which can be roughly
categorized as follows:

•	 Fine-grained policies have separate, individual domains for each sub component of
an application or service. Such policies have the advantage that they really attempt
to restrict applications as much as possible. Through fine-grained policies, roles
developed with users and administrators in mind become fine-grained as well, for
instance, by differentiating sub-roles in the application.

Assigning common policies to new applications 373

The disadvantage of such policies is that they are hard to maintain, requiring
frequent updates as the application itself evolves. The policies also need to take
into account the impact of the various configuration options that the application
supports.

Such fine-grained policies are not frequently found. An example is the policy
set provided for the Postfix mail infrastructure. Each sub-service of the Postfix
infrastructure has its own SELinux domain.

•	 Application-level policies use a single domain for an application, regardless of its
sub-components. This balances the requirement for application confinement versus
the maintainability of the application and its SELinux policy.

Such application-level policies are the most common in SELinux policies. They do
still suffer from regular maintenance as applications expand their functionality, but
the complexity of this is limited and SELinux policy developers should not have too
many problems maintaining these policies.

•	 Category-wide policies use a single domain definition for a set of applications that
implement the same functionality. This is popular for services that act very similarly
and whose user-role definitions can be described without really considering the
application-specific nature.

A good example of a category-wide policy is the policy for web servers. While this
policy was initially written for the Apache HTTP daemon, the policy has become
reusable for a number of web servers, such as the Cherokee, Hiawatha, Nginx, and
Lighttpd projects.

While such policies are easier to maintain, the downside of category-wide policies is
that they often have more broad privileges than really needed. As more applications
are joined in the category-wide policy, additional rules and privileges are added to
support those specific functions.

•	 Coarse-grained policies are used for applications or services whose behavior is
hard to define. End user domains are examples of coarse-grained policies, as are
unconfined domains.

When we are dealing with a new application, and we want to quickly assign
a decent-enough policy, the most common method is to see whether a category-wide
policy exists that we can reuse for the application.

374 Dealing with New Applications

Running applications in a specific policy
Let's consider the situation for the pgpool-II application. When we install it without
any additional changes, it will run with the unconfined_service_t domain, as
mentioned in the Marking domains as permissive section. But perhaps we can find
a suitable policy to run the pgpool-II application with, through which it is more confined.

As the pgpool-II solution is a load balance-like application for PostgreSQL databases,
it is likely we can run it in the PostgreSQL domain. If there are no PostgreSQL databases
running on the same system, then lending this domain for the pgpool-II application
might not do much harm. Let's see how well this goes:

1.	 The PostgreSQL policy uses the postgresql_exec_t SELinux type for its
executables, so let's assign that one to the pgpool binary:

chcon -t postgresql_exec_t /usr/bin/pgpool

2.	 If we try to start the pgpool system service, we might get one or more failures:

systemctl start pgpool
systemctl status pgpool
...
WARNING: Failed to open status file at: "/var/log/pgpool/
pgpool_status"
FATAL: could not read pid file

3.	 One of the failures mentioned is that the daemon cannot access its logs (in /var/
log/pgpool) while another complains about the process ID file (in /var/run/
pgpool) being unreachable. As these were previously created by an unconfined
domain, it is indeed likely that their context is wrong as well. Let's apply the
PostgreSQL-specific types to these locations:

chcon -R -t postgresql_log_t /var/log/pgpool

chcon -R -t postgresql_var_run_t /var/run/pgpool

4.	 After restarting pgpool, we notice it has a new failure:

systemctl start pgpool
systemctl status pgpool
...
LOG: Setting up socket for ::1.9999
FATAL: failed to create INET domain socket
DETAIL: bind on socket failed with error "Permission
denied"

Extending generated policies 375

This time, we get a permission failure, which most of the time implies that the
SELinux policy is refusing a certain action:

ausearch -i -m avc -ts recent
... avc: denied { name_bind } for pid=20065 comm=pgpool
src=9999 scontext=system_u:system_r:postgresql_t:s0
tcontext=system_u:object_r:jboss_management_port_t:s0
tclass=tcp_socket

The denial seems to reflect the information displayed earlier: pgpool wants to
listen on port 9999, but SELinux is refusing this.

5.	 Let's create a small policy enhancement to allow postgresql_t to bind
to this port:

(typeattributeset cil_gen_require jboss_management_
port_t)
(typeattributeset cil_gen_require postgresql_t)
(allow postgresql_t jboss_management_port_t (tcp_socket
(name_bind)))

6.	 Load this policy and restart pgpool. With this in place, pgpool starts up fine.

Of course, having the daemon launch without problems does not mean that it will
work without problems, so it is recommended to continue testing, using the service
as intended.

Finding out which policy can be reused for a process requires a bit of practice and
searching. For instance, you can query the policy for which domains are able to bind
to the port that the daemon needs. Or you can search for a domain that has a behavior
very similar to the application involved. In our example, we only had to allow the
domain to bind to port 9999. We could also use this information point to seek a different
policy—one that is allowed to bind to this port (such as the httpd_t domain) and see
whether that one fits better.

While this approach is trial and error, it could allow running the service in a more
confined domain than the unconfined domain would. A much better approach, however,
is to generate a new, custom policy and work from there.

Extending generated policies
When we assign a different policy to a new application, we are reusing and possibly
extending existing policies. We can go a step further and generate new policies, after
which we can further extend those policies, effectively moving into the realm of
developing new policies ourselves.

376 Dealing with New Applications

In Chapter 15, Using the Reference Policy, and Chapter 16, Developing Policies with SELinux
CIL, we will expand further into the policy development aspects for more fine-grained
control. By using policy generation tools, however, we can quickly create a first-draft
policy and adapt as needed.

An important caveat is that policy generation tools often limit themselves to
a single-policy format, either being reference policy style or CIL style. Administrators
and organizations should try to focus on a single style and stick with that so that the
learning curve for new developers and administrators isn't too high.

Understanding the limitations of generated policies
Policy generators, such as the udica tool we saw in Chapter 11, Enhancing the Security
of Containerized Workloads, often have a very specific purpose. For instance, the udica
tool focuses on generating new container SELinux domains and is only useful for those
containers. Generators will always have a specific target in mind for what their policies
should look like.

The generated policies are often application-level policies. Creating fine-grained policies
with generators is hard, and defining category-wide policies requires multiple steps and
occurrences, whereas generators often use single-step generations.

Furthermore, most generated policies only generally support role-based access controls
within SELinux: either a user is allowed the target SELinux domain and interacting with
it, or the user isn't allowed. Differentiating roles (such as application administrator versus
application user) are not often included in generated policies.

Administrators should be aware that generators also have to make assumptions about
how applications work. While this allows generators to be used for the majority of simple
services and applications, they are definitely not ready yet to substitute a knowledgeable
team of SELinux policy developers.

Introducing sepolicy generate
The sepolicy command is able to generate initial SELinux policy modules, which
administrators and developers can then fine-tune further. This generator will use some
resources on the system (such as the package database of the distribution) to better
understand which resources to include, and generates a number of SELinux policy files.

Extending generated policies 377

As there are different types of applications around, the sepolicy generate command
also requires the user to inform it about the application type. The following types are
currently supported:

•	 User applications are identified with the --application option. Such
applications are meant for end users to launch and interact with.

•	 System service applications are identified with the --init option. Applications
that run in daemon mode or with their own user are most often system service
applications.

•	 D-Bus system service applications are identified with the --dbus option. This type
of service is invoked by D-Bus.

•	 Common Gateway Interface (CGI) scripts or applications are supported through
the --cgi option. Using CGI-specific domains allows having CGI applications run
in their own domain, rather than extending the privileges of the web server domain
itself.

•	 Internet services daemon (inetd) applications are supported through the --inetd
option.

•	 Sandbox applications are like user applications but much more confined, and are
supported through the --sandbox option.

Next to application-level policy generation, sepolicy generate also supports
generating user domains and roles:

•	 Standard users with support for the graphical desktop can be generated using
the --desktop_user option. This is a common, non-administration-oriented
user role.

•	 A more lightweight, minimal user role that still supports the graphical desktop
can be generated using the --x_user option. This domain focuses on minimal
permissions and thus requires further extensions before they can be better put
to use.

•	 If no graphical user interface needs to be supported, then you can use the --term_
user option. This generates a confined user domain without desktop support.

•	 Administration-oriented user domains can be generated using the --admin_user
option. This is meant for broad administrative privileges.

•	 More confined administration domains can be generated using the --confined_
admin option. This allows you to generate user domains that have administrative
roles for a limited number of application domains, not to the system as a whole.

378 Dealing with New Applications

The generator also supports customizing existing domains further (using --customize)
or generating specific types (using --newtype).

Let's use sepolicy generate to generate a policy for the pgpool-II application.

Generating policies with sepolicy generate
The sepolicy generate command will create a skeleton SELinux policy, using the
reference policy code style. This policy can then be gradually extended with the privileges
the application needs.

Let's create and adapt the policy for pgool:

1.	 First, we tell sepolicy to generate a new policy, named pgpool, which is
intended for the /usr/bin/pgpool binary:

sepolicy generate -n pgpool --init /usr/bin/pgpool

2.	 Next, build the generated SELinux policy:

make -f /usr/share/selinux/devel/Makefile pgpool.pp

3.	 Load the policy in memory:

semodule -i pgpool.pp

4.	 Relabel the filesystem, or at least the locations mentioned in the generated
pgpool.fc file:

restorecon -RvF /usr/bin/pgpool /var/log/pgpool \
 /var/run/pgpool

5.	 Start the pgpool service:

systemctl start pgpool

After starting, be amazed that pgpool is running flawlessly.
Now, you might have the impression that this was too easy. Yes, it was. The default
SELinux policy that sepolicy generate provides is permissive, as you can see from
within the pgpool.te file:

permissive pgpool_t;

Summary 379

If we remove this statement, rebuild, and reload the policy, then we will notice the failures
coming up again, such as the process not being allowed to bind to the selected ports.
We can now use audit2allow, for instance, to help us extend the policy as needed:

cat /var/log/audit/audit.log | audit2allow -R

Gradually extend, rebuild, and reload the policy until the application works without
problems.

Summary
Linux administrators can use SELinux controls to prevent or confine access to
applications, but this is not always the requirement at hand. Being able to run the
application with the right set of permissions is, and what the right set is depends on the
user's intentions and the environment.

Within this chapter, we've learned how to apply the appropriate confinement to
application domains, ranging from very isolated container environments over regular
application domains, category-wide permission sets, and up to unconfined domains and
even permissive domains. We learned that this is done by first finding the appropriate
domain, understanding which labels the domain uses, and then assigning the right labels
to the files so that the application is executed in the right domain.

We also learned how to generate new policies (using sepolicy generate) ourselves
without immediately having to dive into a full SELinux policy development approach,
which is what we will consider in the final two chapters.

Questions
1.	 What is the difference between an unconfined domain and a permissive domain?

2.	 How can we run applications in a very restricted domain?

3.	 How can we easily switch the domain in which a service will run?

4.	 Why do policies generated by sepolicy seemingly run without problems?

15
Using the Reference

Policy
Up until now, we've covered how to interact with the SELinux subsystem and gradually
adjusted the SELinux policy to our liking. As we add more applications and users,
we notice that developing custom SELinux policies might help us tune the system
more to our liking. There are two main approaches to develop SELinux policies, and
using reference policy style development is one of them. The other is discussed
in Chapter 16, SELinux Common Intermediate Language.

To properly develop an SELinux policy, we'll learn how to use and understand the macros
that the reference policy provides, and apply the main coding and development style
patterns that the project requires to ensure consistency across SELinux policy modules.
We then apply this to two main types of modules: application policies and user policies.

In this chapter, we're going to cover the following main topics:

•	 Introducing the reference policy

•	 Using and understanding the policy macros

•	 Creating application-level policies

•	 Getting help with supporting tools

382 Using the Reference Policy

Technical requirements
The code files for this chapter can be found in our Git repository at https://github.
com/PacktPublishing/SELinux-System-Administration-Third-
Edition.

Check out the following video to see the Code in Action: https://bit.ly/3jcBDvI

Introducing the reference policy
The reference policy, available through https://github.com/SELinuxProject/
refpolicy, is the source SELinux policy for most, if not all, Linux distributions out
there. While it is possible that the plain reference policy will not work out of the box for
any Linux distribution (as many Linux distributions add their own touch to the policy,
or adjust it so it fits the applications and support tooling installed), the development
methodology, structure, and approach used by the reference policy are applicable to all
major distribution policies.

We recommend checking out the SELinux policy of your distribution to see and easily
modify SELinux policies for the system. In this chapter, we'll use a checkout of the
reference policy:

$ git clone https://github.com/SELinuxProject/refpolicy.git

The SELinux policy repositories for the Linux distributions should be documented by the
distributions themselves. A few example repositories are listed next:

•	 For CentOS, the policy repository can be found at https://github.com/
fedora-selinux/selinux-policy.

•	 For Gentoo Linux, the policy repository can be found at https://gitweb.
gentoo.org/proj/hardened-refpolicy.git/.

•	 For Debian, the policy repository can be found at https://salsa.debian.
org/cgzones/selinux-policy-debian.

•	 For Arch Linux, the policy repository can be found at https://github.com/
archlinuxhardened/selinux-policy-arch/.

If the Linux distribution does not have a publicly reachable repository for its SELinux
policy, we can often still obtain it through the packages themselves, as used in Chapter 12,
Working with SELinux Policies.

https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://github.com/PacktPublishing/SELinux-System-Administration-Third-Edition
https://bit.ly/3jcBDvI
https://github.com/SELinuxProject/refpolicy
https://github.com/SELinuxProject/refpolicy
https://github.com/fedora-selinux/selinux-policy
https://github.com/fedora-selinux/selinux-policy
https://gitweb.gentoo.org/proj/hardened-refpolicy.git/
https://gitweb.gentoo.org/proj/hardened-refpolicy.git/
https://salsa.debian.org/cgzones/selinux-policy-debian
https://salsa.debian.org/cgzones/selinux-policy-debian
https://github.com/archlinuxhardened/selinux-policy-arch/
https://github.com/archlinuxhardened/selinux-policy-arch/

Introducing the reference policy 383

While it is not the intention to do full policy rebuilds, we can easily copy over the
necessary policy files to our own development environment and fine-tune or extend the
policy as needed.

Navigating the policy
At its base directory, the reference policy hosts all the common files for building the
policies, explaining how to install them, and so forth. The policy itself is in the policy
folder, which contains three directories:

•	 flask contains the initial definitions used to jumpstart SELinux, such as listing the
supported classes, creating initial security identifiers, and more. We will not touch
this location further.

•	 modules contains the SELinux policy code and is the main location for all
policy rules.

•	 support contains macros and definitions that are reused across the policy and are
not associated with a single policy module.

If we enter the modules directory further, we get directories that represent the type
of modules or policies contained. This representation by itself is merely to have some
structure across the hundreds of modules that are developed:

•	 admin contains system administration related policy modules.

•	 apps contains general application policy modules.

•	 kernel contains core system policy modules (not just kernel related ones).

•	 roles contains SELinux role definitions and default user domain policy modules.

•	 services contains general service policy modules (and is by far the largest set of
policy modules).

•	 system contains common system related policy modules.

The interpretation of which folder a policy is placed in is left to the reference policy
project itself, and discussed on its mailing list when it is not obvious. As policy files are
required to have a unique name, we can find the appropriate location easily. For instance,
to see where the ipsec policy module is stored:

$ ls policy/modules/*/ipsec.te
policy/modules/system/ipsec.te

384 Using the Reference Policy

While browsing, you'll notice that the policy modules are always represented by three files,
which we describe next.

Structuring policy modules
If we analyze an SELinux policy module's code, such as for the dhcp module in the
services folder, we'll notice that it has three files associated with it:

•	 dhcp.te, which contains the type enforcement rules, and is the main area of
attention for most changes

•	 dhcp.fc, which contains the file context definitions, informing the policy which
files or resources need to be labeled with dhcp related SELinux types

•	 dhcp.if, which contains interface definitions, which are reusable functions
or macros that can be used in the dhcp SELinux policy code as well as elsewhere

Let's quickly see how each of these files is structured.

Understanding type enforcement files
The type enforcement file, dhcp.te in our example, has the following structure:

policy_module(dhcp, 1.18.2)

Declarations
SELinux booleans
SELinux types

Local policy
Internal SELinux rules
Core interfaced SELinux rules
SELinux boolean controlled SELinux rules
Non-blocking interfaced SELinux rules

Let's look at each of these areas with an example.

Declaring SELinux objects
The Declarations section in a policy tells us what SELinux types, or other SELinux
objects such as SELinux booleans and SELinux roles, are defined within this module.

Introducing the reference policy 385

The following declarations are common in SELinux policies:

•	 The first declaration in the dhcp SELinux policy declares an SELinux boolean for
this module. It is best practice to start the boolean with the SELinux policy module
name, although in this case the choice is made to explicitly use dhcpd rather than
dhcp to make it obvious for administrators it is about the DHCP daemon and not
possible clients or other use cases:

<desc>
<p>Determine whether DHCP daemon can use LDAP
backends</p>
</desc>
gen_tunable(dhcpd_use_ldap, false)

The SELinux boolean is accompanied by a specifically structured comment.
Comments within the reference policy that use a double hash prefix (##) will be
parsed by the build code and used to update information outside of the SELinux
policy. In this case, the description of the SELinux boolean is created, which will be
made visible later on through commands such as semanage boolean.

Once a module is loaded that defines an SELinux policy, other modules can use this
boolean as well.

•	 Some domains might also declare a role attribute, which allows easy management
of which roles are allowed to use the domain:

attribute_role dhcpd_roles;

•	 The rest of the declarations in the dhcp SELinux policy declare the SELinux types
that the policy owns:

type dhcpd_t; # The SELinux domain for the daemon
type dhcpd_exec_t; # The executable label for the daemon
init_daemon_domain(dhcpd_t, dhcpd_exec_t)
 # Linking the executable to the domain

SELinux policy modules in the reference policy only declare the types and
other objects that they own, not those they use. The objects used but defined by
other modules should always be hidden away and interacted with through the
interface calls.

While other definitions can be added to the section as well, these are the most common.
Next up are the local policy rules.

386 Using the Reference Policy

Adding the domain's local rules
The local policy within the type enforcement defines the allowed behavior of the domains
owned by the SELinux policy module. For the dhcp SELinux policy module, this is only
focusing on the dhcpd_t SELinux domain. Other SELinux policy modules, especially
if they offer a more fine-grained policy structure, will do this for several of its own
SELinux domains, or even SELinux user roles.

Let's go through the SELinux policy rules for the dhcp.te example we are looking at:

•	 The policy starts with the internal SELinux rules, which are interactions between
the SELinux types owned by the SELinux policy module itself:

allow dhcpcd_t self:process { getcap signal_perms };
manage_files_pattern(dhcpd_t, dhcpd_tmp_t, dhcpd_tmp_t)

The most simple rules are the standard allow rules, similar to those that
audit2allow would recommend. These allow rules can refer to support macros
(such as signal_perms), which we'll discuss in the Using and understanding
the policy macros section. The second line, which is a call to manage_files_
pattern, is also a support macro.

•	 The second set of local policy definitions are the core interfaced SELinux rules:

kernel_read_system_state(dhcpd_t)

These calls use the code that another SELinux policy module has defined in its
interface file. In the case of the kernel_read_system_state interface, this will
grant the dhcpd_t SELinux domain the rights to read proc_t labeled resources.
As proc_t is not defined by the dhcp SELinux policy module, an interface call has
to be used.

Core interfaced SELinux rules are rules that should at all times be available to the
system. Unlike application related SELinux policy modules, which can be disabled
or unloaded, these core rules are associated with type definitions that cannot be
removed from the system or disabled at will.

•	 The third set of local policy definitions are the SELinux boolean controlled calls:

tunable_policy(`dhcpd_use_ldap', `
 # If boolean is true
 sysnet_use_ldap(dhcpd_t)
', `
 # If boolean is false
')

Introducing the reference policy 387

Here, the SELinux interface calls (which can also be standard rules such as allow
rules) are surrounded by a tunable_policy() call, which identifies the SELinux
boolean (in our case dhcpd_use_ldap) that will influence the SELinux policy
rules. Most policy modules will only have a single block (for the rules that are
activated if the SELinux boolean is true) but it is possible to have two blocks,
where the second one defines the rules in case the SELinux boolean is false.

•	 The final set of local policy definitions are the non-blocking interfaced SELinux rules:

optional_policy(`
 bind_read_dnssec_keys(dhcpd_t)
')

These are the calls that use definitions provided by other SELinux policy modules,
but where these SELinux policy modules might not be loaded on the system.

In our example, the bind_read_dnssec_keys() call allows the dhcpd_t
SELinux domain to read dnssec_t labeled resources, as defined by the bind
SELinux policy module. However, BIND might not be installed on the system, and
the Linux distribution might thus not have its policy loaded. So this call is optional
and only active if the bind SELinux policy module is loaded.

The type enforcement file is the file that will change most often. The file context definition
file, which we discuss next, is a close second.

Declaring file contexts
The file context definition file, with the .fc suffix, tells the SELinux subsystem
what SELinux types have to be associated with the file resources on the system. This
information is used by tools such as restorecon to reset the context appropriately.

The rules inside the file are generally grouped based on the directory for which the rules
apply. Each rule is structured like so:

<path expression> [<type/class>] <context>

Let's see what these entries imply:

•	 The path expressions are the same ones we saw in Chapter 4, Using File Contexts
and Process Domains. Keep in mind that characters such as dot (.) have a specific
meaning (in this case, it reflects any possible character) so that paths that really
require a dot inside must escape the dot.

388 Using the Reference Policy

•	 The type/class is an optional setting. If omitted, then it means any possible class
is used. The most common values to use are regular files (--), directories (-d),
sockets (-s), and symbolic links (-l).

•	 The context is a reference to the target SELinux type for this resource. In the
reference policy, these context references always need to be encased by the
gen_context() macro, which will add or remove the sensitivity depending
on the MLS or MCS support built inside the policy.

Let's look at a simple example from the dhcp SELinux policy module:

/var/named/data(/.*)? gen_context(system_u:object_r:named_
cache_t,s0)

In this example, the /var/named/data directory, and any resource below it, will be
labeled with the named_cache_t SELinux type.

The last file that is associated with an SELinux policy module is the interface definition file.

Exposing SELinux rules through interfaces
Interfaces within an SELinux policy module are meant to support a more flexible,
modular development of SELinux policies across different modules. Whenever a domain
or SELinux role needs to interact with resources that are defined in a different SELinux
policy module, that module should create a properly named interface for the interaction.

Interfaces should be accompanied by a minimal amount of documentation, although this
documentation is only used when building the documentation of the entire policy. When
this is done, the resulting documentation is made available on the system, for instance in
/usr/share/doc/selinux-policy/html.

Let's look at the definition for the dhcpd_domtrans() interface:

##
<summary>
##	 Execute a domain transition to run dhcpd.
</summary>
<param name="domain">
##	 <summary>
##	 Domain allowed to transition.
##	 </summary>
</param>
#
interface(`dhcpd_domtrans',`
 gen_require(`

Introducing the reference policy 389

 type dhcpd_t, dhcpd_exec_t;
 ')

 corecmd_search_bin($1)
 domtrans_pattern($1, dhcpd_exec_t, dhcpd_t)
')

As is best practice, the interface name starts with the SELinux policy name and is
followed by the action that is allowed. Sometimes, this action is suffixed with the target
resource. The interface itself can reference the arguments passed along to the interface
using $1 (first argument), $2 (second argument), and so on. So a call such as dhcpd_
domtrans(init_t) will have the interface called, where $1 is substituted with
init_t.

Let's look at a few examples with common actions:

•	 Domain transitions allow a domain to transition to another domain. If the SELinux
policy module only manages a single domain, then there is no target resource
defined (as with dhcpd_domtrans()). If there are multiple domains, then the
target resource will define which domain (as with bind_domtrans_ndc()) to
allow a domain transition to the ndc_t SELinux domain.

•	 Permission interactions generally refer to the permission at hand and, if it is
possible to misinterpret to which resource the permission refers, the target resource
is listed. So dhcpd_setattr_state_files() allows the domain to set the
attributes of the dhcpd_state_t labeled resources, whereas bind_signal()
allows the domain to send signals to the named_t labeled processes. Most of the
interface definitions will be permission interactions.

•	 Role-oriented interfaces will grant the associated SELinux role and SELinux
domain all the privileges needed to perform a functional role for the SELinux
domain. For instance, the dhcpd_admin() role will allow managing the dhcpd
related resources, starting and stopping the dhcpd service, and so on.

Suppose you want to grant this to the web administration role, then the call within
the web administration SELinux policy module could look like so:

optional_policy(`
 dhcpd_admin(webadm_r, webadm_t)
')

390 Using the Reference Policy

While developing SELinux policies, it is recommended to look into the interface
definitions of the SELinux policy modules to see which ones exist and what they
provide. Policy developers will put often requested permissions in such interfaces, so
the available interfaces give a good view of what you will most likely need for your own
SELinux policy module.

The interface definitions are also made available on the system at /usr/share/
selinux/devel/include so that you can create and modify SELinux policy modules
even without checking out the main source repository. Whenever we build a reference
policy style module, we use a command like the following:

$ make -f /usr/share/selinux/devel/Makefile <name>.pp

This will cause the build process to look for the interfaces inside the /usr/share/
selinux/devel/include location, as well as inside the current working directory.

Using and understanding the policy macros
Across the various SELinux policy definitions, we have come across macros that are not
tied to a specific SELinux policy module. These are support macros, available inside the
policy/support/*.spt files.

The most common macros are those declared inside the obj_perm_sets.spt file
(which group common permissions for the same class in a single definition) and the
*_patterns.spt files (which group permissions across different classes in a single
definition).

Making use of single-class permission groups
Single-class permission groups allow developers to ignore possible extensions of
the SELinux supported permissions as time goes by. For instance, if you want to allow
a domain to execute a certain resource, it is most often not enough to allow the execute
permission. You also need the open and read permissions (as otherwise, the domain
cannot read the executable) and the map permission (to allow mapping the file in
memory).

If you were to put all these permissions in your own SELinux policy module, then the rule
could look like so:

allow dhcpd_t dhcpd_exec_t:file { getattr open map read execute
ioctl execute_no_trans };

Using and understanding the policy macros 391

If, later on, the SELinux policy is extended with an additional permission that is associated
with executing resources, then you will need to look for and update these permissions all
over the different SELinux policy modules.

So the reference policy moves all these permissions in a macro called exec_file_
perms, defined as follows:

define(`exec_file_perms',`{ getattr open map read execute ioctl
execute_no_trans }')

With this macro defined, our policy line can be simplified as follows:

allow dhcpd_t dhcpd_exec_t:file { exec_file_perms };

If at any point the permissions need to be extended, all that has to happen is to extend the
macro definition itself, and the SELinux policy modules can be left untouched.

Calling permission groups
While single-class permission groups are a good use for simplifying policy development,
permission groups that cover multiple classes are even more common.

For instance, if a domain needs full management privileges (implying read, write, as
well as creating and removing resources) on resources inside /var/lib/dhcpd, then
not only are these privileges needed on the files inside that directory (which are labeled
with the dhcpd_state_t SELinux type), but you also need read/write permissions on
the directory itself.

Such a privilege definition would result in something like so:

allow $1 dhcpd_state_t:dir { rw_dir_perms };
allow $1 dhcpd_state_t:file { manage_file_perms };

Rather than declaring these as separate calls, they can be put into a single one that groups
the two:

manage_files_pattern($1, dhcpd_state_t, dhcpd_state_t)

SELinux policy developers best get acquainted with the various macros available to allow
for rapid and efficient SELinux policy development.

392 Using the Reference Policy

Creating application-level policies
Application-level policies provide confinement for applications or services. There are
a number of different types of application-level policies around:

•	 End user application policies, which focus on accessing end user data, and will often
call various userdom_* interfaces (which are provided through the system/
userdomain.if file). Most of these applications are inside the apps/ directory).

•	 Administration applications, which are still user-facing, are more likely to enable
interacting with system services and resources.

•	 Services, which are generally daemonized applications, often interact mostly with
their own resources and have a simpler structure.

When we covered the sepolicy generate command in Chapter 14, Dealing with
New Applications, we could select these types (and more) to generate a simple skeleton for
those applications.

Let's look into some example policies and identify useful calls that you might need when
developing your own policies.

Constructing network-facing service policies
Services that are network-facing (meaning they can be interacted with from outside
the system itself) are the first set of services that need to be confined. Hence, building
SELinux policy modules for network-facing services should be a primary focus of any
Linux administrator that needs to ensure the confinement of applications that do not have
a working policy yet.

If we look at the OpenVPN service, then we find that there is an SELinux policy under
services/openvpn.te that we can look into.

Identifying the resources that the service interacts with
As a policy starts with identifying the types and other SELinux objects, we need to
consider the resources on the system that the service interacts with. When comparing
service policies with each other, you'll notice that the definitions are often very similar:

•	 The main domain type and its entry point executable are declared first. Depending
on the type of service, it contains a call as to how it would be started: as a system
service (using init_daemon_domain()) or through the D-Bus system bus
(using dbus_system_domain()).

Creating application-level policies 393

•	 The configuration files for the service (such as openvpn_etc_t), which could
also differentiate between read-only files and read-write (such as openvpn_etc_
rw_t).

•	 Runtime files (which are generally stored in /var/run) such as openvpn_
runtime_t.

•	 Temporary files (which are generally stored in /tmp or /var/tmp) such as
openvpn_tmp_t.

•	 Log files (which are generally stored in /var/log) such as openvpn_var_
log_t.

Each of the type declarations is followed by a call that marks the type appropriately. For
instance, the logging_log_file() call will associate the type with the logfile SELinux
attribute. This allows general logfile management domains to deal with the newly created
resource through this attribute.

Handling the internal SELinux rules
With the resources declared, we have to define the internal SELinux rules within the
SELinux policy. These rules tell SELinux what the domain can do with its own resources,
and how SELinux should behave when the resources are interacted with.

We will generally have two sets of internal rules declared. One is the fine-grained
permissions of the domain itself, such as if the domain is allowed to have any capabilities,
creating sockets, and so on. The development of these rules is trial-and-error based: start
with close to no permissions, see what AVC denials come up, extend the policy, and
repeat.

The other set of internal rules focuses on the interaction with the types declared earlier
on. This not only includes which permissions the domain has (such as through the
manage_files_pattern() calls) but also whether transitions have to occur.

Setting the right set of transitions is one of the more important first steps to take while
developing application policies because audit2allow and AVC denials generally do
not consider the fact that a target resource has the wrong type assigned. So when we have
a service that creates files in /tmp (which is labeled as tmp_t), we really want the target
files to be labeled correctly (such as openvpn_tmp_t) and not inherit the tmp_t label
from the directory:

allow openvpn_t openvpn_tmp_t:file manage_file_perms;
files_tmp_filetrans(openvpn_t, openvpn_tmp_t, file)

394 Using the Reference Policy

File transitions should be declared for all the resources involved. If a transition has to
occur for both files and directories, you can mix the classes in a single call like so:

files_tmp_filetrans(openvpn_t, openvpn_tmp_t, { file dir })

We can also tell SELinux that a transition should only occur if a specific filename is used:

logging_log_filetrans(openvpn_t, openvpn_status_t, file,
"openvpn-status.log")

It is really recommended to first consider the file transitions (and other resource
transitions) before expanding the actual permissions for the domain to make sure that
we are not tempted to allow the domain privileges to general types when that is not
necessary.

Adding network related permissions
While developing and expanding the policy, several core functions will be added, such
as the kernel_* calls to allow processes to interact with the proc_t resources, system
control settings, and more. Tools such as audit2allow will reasonably be able to deduce
the right interfaces to call, although it does not hurt to review the interfaces to make sure
not too many privileges are assigned.

Network related permissions on the other hand might require some more attention.
As we saw in Chapter 5, Controlling Network Communications, SELinux can dynamically
address certain network flows based on the system configuration.

It is likely that systems who do not have specific controls in place, such as labelled
networking or SECMARK, will find that three interface calls could allow the application
to work as intended:

corenet_tcp_bind_generic_node(openvpn_t)
corenet_tcp_bind_openvpn_port(openvpn_t)
corenet_tcp_connect_http_port(openvpn_t)

These three interface calls allow the domain to be network-oriented (corenet_tcp_
bind_generic_node), listen to the OpenVPN port (corenet_tcp_bind_
openvpn_port), as well as connecting, as a client, to HTTP ports (corenet_tcp_
connect_http_port).

But other calls exist that you might need to add, even though they are currently not
detected. They might become necessary when the system is tuned further, such as adding
support for labeled networking or introducing SECMARK filtering.

Creating application-level policies 395

The first set is to allow sending and receiving packets on generic nodes (hosts) and
interfaces:

corenet_tcp_sendrecv_generic_node(openvpn_t)
corenet_tcp_sendrecv_generic_if(openvpn_t)

For NetLabel support, you might need to add support to receive labeled network packets:

corenet_all_recvfrom_netlabel(openvpn_t)

For SECMARK support, you need to add support for sending and receiving SECMARK
labeled packets:

corenet_sendrecv_openvpn_server_packets(openvpn_t)
corenet_sendrecv_http_client_packets(openvpn_t)

These calls might not show up in early tests, but could be needed later on, and it is
recommended to consider the impact of labeled networking and SECMARK on your
policy from the beginning.

Building the service interface methods
We next focus our efforts on the interface methods. These are used to facilitate other
SELinux policy modules to interact with the domain we're developing, although they can
also be used to simplify policy development for your own policy.

The three most common interfaces to define, and which other policy developers will
assume exist, are the following:

•	 A domain transition interface, such as openvpn_domtrans, allowing the
given SELinux domain to execute the appropriate binaries or scripts and have the
executed commands or applications run in our domain (and as such transition from
the source domain to ours).

•	 A run interface, such as openvpn_run, which is like the domain transition
interface (and in fact will call it) but also allows our domain for the role. Without
this interface, some roles might not be able to transition even if they call the domain
transition interface.

•	 An administration interface, such as openvpn_admin, which will be assigned to
user roles/domains to allow them to administer our service. This will allow the user
to interact with the processes of our domain (including killing the processes, tracing
their actions, and so on) as well as to administer the files and resources used.

396 Using the Reference Policy

Within the interfaces, we need to declare the SELinux objects that we are going to
explicitly reference. This allows the SELinux subsystem to validate whether the code is
applicable or not: if the objects are not present in the current policy, then this interface
is not valid and will not be used. Declaring objects is done with the gen_require()
macro:

interface(`openvpn_run',`
 gen_require(`
 attribute_role openvpn_roles;
 ')
 openvpn_domtrans($1)
 roleattribute $2 openvpn_roles;
')

Other interfaces can be added as needed. While you can add interfaces already just in
case, be aware that once you define an interface it can be used by other policies, and
you might not be made aware of this if you are not developing all policies yourself.
If you, later on, want to change the behavior of interfaces or remove them, you might
break other policies.

Addressing user applications
If we develop end user applications, their structure will be very similar to those for more
service-oriented applications. Content-wise, however, there are a few areas of attention to
consider. Let's use the apps/thunderbird.te policy as an example:

•	 The first thing we notice is that many resource defining interfaces are prefixed
with userdom_. For instance, a temporary file is not files_tmp_file() but
userdom_user_tmp_file(). This will ensure that the resources are known as
user-managed temporary files and not regular system temporary files.

•	 Another important addition is the support for the X Desktop Group (XDG)
locations. The XDG locations, defined in the XDG Base Directory specification
at https://specifications.freedesktop.org/basedir-spec/
basedir-spec-latest.html, standardize which end user locations are used
for what purpose. For instance, inside ~/.cache, application cache data is stored,
whereas configuration data is in ~/.config.

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

Creating application-level policies 397

The use of the XDG locations is supported through the xdg SELinux policy
module, which enables support for types of user content as well: regular documents,
downloads, music, pictures, and videos. This distinction allows developing SELinux
policies that are only able to interact with that specific end user content and not all
the user's data.

For instance, the thunderbird application is able to manage download data (which
by default is located in ~/Downloads) through the following:

xdg_manage_downloads(thunderbird_t)

•	 To easily establish user content access, user applications should also call the
userdom_user_content_access_template() template. This will
automatically create booleans as well, which administrators can toggle. For instance,
for the thunderbird SELinux policy, this will create thunderbird_manage_
generic_user_content. If set, then thunderbird can not only access the
downloads-related resources but all user resources.

•	 Another template that user application policies will need if they are graphical in
nature, is xserver_user_x_domain_template(). This template will generate
X server related SELinux objects for the application, and allow the application to use
the graphical environment on the server.

Important note
The reference policy makes a distinction between regular interfaces and
templates. Interfaces grant privileges to the domains and roles that are passed
to it. Templates on the other hand will generate new objects, such as SELinux
booleans, types, attributes, and more. Code-wise, templates cannot be part of
boolean-triggered statements (as they do not just add type enforcement rules).

When the baseline of a user application policy is drafted, including the preceding
templates, then expanding the policy through trial and error should suffice. Do make sure,
however, that all resources on the user location for which you are testing the application
are correctly labeled, as otherwise, the denials might trick you into granting more
privileges to the domain than necessary.

398 Using the Reference Policy

Adding user-level policies
If we want to create custom user and role policies, then the most confusing choice
is the choice of user template to pick. This template creates a role and user domain with
a specific purpose in mind, and grants a number of permissions by default:

Figure 15.1 – Relationship between user domain templates

The most common templates to pick for user/role policies are the following:

•	 userdom_restricted_user_template() for (by default) unprivileged end
user roles.

•	 userdom_admin_user_template() for (by default) highly privileged end
user roles.

The other templates can be used as well, especially if more fine-grained controls over the
roles and user domains are needed. Note, however, that the privileges assigned by the
templates are mentioned as by default. If we want to create a role and user domain for
administrating a specific service, then we do not want to use userdom_admin_user_
template(), as this will grant many more privileges than needed.

Getting help with supporting tools 399

As an example, consider the roles/dbadm.te SELinux policy for the database
administration role. This role is based upon the userdom_base_user_template()
interface to ensure minimal permissions are granted. The role is not meant to be used in
a direct fashion (login), but rather transitioned toward (for instance, through the
newrole command, or through well-defined role transitions within the policy).

Getting help with supporting tools
There are tools out there that help in developing SELinux policies, and if needed we can
build our own support tools as well. Let's see what support environments we can use.

Verifying code with selint
While SELinux policies can be functionally working, validating whether the code itself is
proper and follows best practices is important to ensure that the code is maintainable in
the long run.

One of the tools that support validating SELinux policy code is selint, as offered from
https://github.com/TresysTechnology/selint. Once built and installed,
selint offers insights into four main areas:

•	 Convention checks validate whether the SELinux policy follows the reference policy
convention on how code should be structured and documented.

•	 Style checks give hints for code style that might be wrong, and where the developer
might have intended a different behavior.

•	 Warnings are triggered when the code has bad calls that might trigger runtime
issues or security issues.

•	 Errors catch construction faults that will result in compile issues or runtime issues.

This allows the use of selint in automated build processes, as well as facilitating the
development of policies.

Calling selint is simple:

$ selint minecraft.te
minecraft.te: 31: (C): Permissions in av rule not ordered
 (signull before execmem) (C-005)
minecraft.te: 118: (C): Require block used in te file (use an
 interface call instead) (S-001)

https://github.com/TresysTechnology/selint

400 Using the Reference Policy

In this case, two convention malpractices were detected. One is in the ordering of
permissions, while another has an explicit require block mentioned for a domain
that is not part of that policy module.

Querying the interfaces and macros locally
To help in finding the right interface or macro, we also want to quickly be able to show
interface and macro information. With some shell scripting, we can create a few functions
that help us along.

The functions are provided as code together with this book. You might want to change
the path that the POLICY_LOCATION variable points to at the beginning of the script.
By default, it points to the system-installed interface and macros, but you can point it to
repository checkouts as well:

POLICY_LOCATION="/usr/share/selinux/devel"

Source the file to have access to the helper functions:

$ source ./localfuncs

The helper functions you can use are the following:

•	 With sefindif you can search for an SELinux interface that has a specific
SELinux rule inside. You can use regular expressions to find the appropriate one.

For instance, to find the interface that grants a domain the privileges to manage
certificate files (for readability, we only show the interface code; it will be prefixed
with the location where it found it):

$ sefindif "manage.* cert_t"
interface(`miscfiles_manage_all_certs',`
 manage_files_pattern($1, cert_type, cert_type)
 manage_lnk_files_pattern($1, cert_type, cert_type)
interface(`miscfiles_manage_generic_cert_dirs',`
 manage_dirs_pattern($1, cert_t, cert_t)
interface(`miscfiles_manage_generic_cert_files',`
 manage_files_pattern($1, cert_t, cert_t)
 manage_lnk_files_pattern($1, cert_t, cert_t)

Getting help with supporting tools 401

•	 With seshowif the interface in its entirety (excluding the comment) is displayed.

For instance, to show the miscfiles_manage_all_certs() interface, use the
following code:

$ seshowif miscfiles_manage_all_certs
interface(`miscfiles_manage_all_certs',`
 gen_require(`
 attribute cert_type;
 ')
 allow $1 cert_type:dir list_dir_perms;
 manage_files_pattern($1, cert_type, cert_type)
 manage_lnk_files_pattern($1, cert_type, cert_type)
')

•	 With sefinddef and seshowdef, the same is possible but for the supporting
macros.

For instance, to see the content of the admin_pattern() helper macro, use the
following code:

$ seshowdef admin_pattern
define(`admin_pattern',`
 manage_dirs_pattern($1,$2,$2)
 manage_files_pattern($1,$2,$2)
 manage_lnk_files_pattern($1,$2,$2)
 manage_fifo_files_pattern($1,$2,$2)
 manage_sock_files_pattern($1,$2,$2)
 relabel_dirs_pattern($1,$2,$2)
 relabel_files_pattern($1,$2,$2)
 relabel_lnk_files_pattern($1,$2,$2)
 relabel_fifo_files_pattern($1,$2,$2)
 relabel_sock_files_pattern($1,$2,$2)
')

While such functions do not offer the same versatility as a full-fledged policy editor suite
would, they can help in quickly finding the right interface or macro.

402 Using the Reference Policy

Summary
The reference policy is the most common source for SELinux policy development, and
with years of development effort and maintenance, it has grown to be a full policy set
with a vivid development community, and active support by various tools (including
audit2allow, as well as the selint application).

We've learned how policies are generally structured, and how to start building SELinux
policy modules for the most common use cases: application services, end user
applications, and user roles. To help us in developing these policies, we've seen that
selint can do code-style analysis, whereas some shell scripts can help us parse the
interface files for quick help.

In our final chapter, we will look into CIL style SELinux development.

Questions
1.	 Why don't Linux distributions use the reference policy natively?

2.	 What are the three main policy files needed for an SELinux module, and what is
their purpose?

3.	 Why is a permission set such as exec_file_perms preferred over explicitly
listing the permissions?

4.	 What is the difference between interfaces and templates?

5.	 Why is the database administration role defined in dbadm.te not using
userdom_admin_user_template?

16
Developing Policies

with SELinux CIL
While the reference policy is the most frequently used language and development style for
SELinux policies, the Common Intermediate Language (CIL) is a powerful, but more
low-level language construct to use to develop SELinux policies. Low-level as it might be
though, it is still very much readable and well supported, as SELinux tools will use CIL
under the hood when using other languages.

Since CIL is the main language used, we know it can be used to build entire policies. Sadly,
there are no supporting constructs available for developers to use, unlike the reference
policy. However, we can still learn how to customize the current policy, creating specific
definitions that are not possible with the more common reference policy, and even build
a complete application policy if we choose.

In this chapter, we're going to cover the following main topics:

•	 Introducing CIL

•	 Creating fine-grained definitions

•	 Building complete application policies

404 Developing Policies with SELinux CIL

Technical requirements
Check out the following video to see the Code in Action: https://bit.ly/3dLYP2Q

Introducing CIL
CIL has been designed to be the main language to have policies built in, and is the lowest
readable format. After CIL, the SELinux code is transformed in binary to send off to the
Linux kernel (and SELinux subsystem) for loading in memory.

Administrators might be inclined to think that the binary files, generated when building
a SELinux policy module using the reference policy method, are the final binaries.
However, as we've seen in Chapter 1, Fundamental SELinux Concepts, the semodule
command converts and translates this into CIL before building the final format.

Let's see how these translations work and what we can learn from them.

Translating .pp files to CIL
When a non-CIL SELinux policy module is loaded, the semodule command is designed
to first consider the module as an unknown format, and extract the High Level Language
(HLL) information from it. HLL is an abstract term that the SELinux utilities use to define
any SELinux source format that it knows how to convert to CIL later on. Currently, only
.pp files are supported as an HLL.

As the HLL format of the SELinux policy modules built by reference policy (or the other
classic SELinux development) is the same as the module generated, this phase often just
involves creating a copy. We can see this when we compare an HLL file with the original:

$ cp /var/lib/selinux/targeted/active/modules/400/pgpool/hll
pgpool.hll.bz2

$ bunzip2 pgpool.hll.bz2

$ sha512sum pgpool.pp pgpool.hll
b81ba4ac...c0db pgpool.pp
b81ba4ac...c0db pgpool.hll

Once it has converted or extracted the data, semodule will convert it to CIL code.
For each supported HLL, a convertor is available in /usr/libexec/selinux/hll.
Currently, only the pp command is available, which is used to convert this older style
into CIL.

https://bit.ly/3dLYP2Q

Introducing CIL 405

Let's see this in action:

$ /usr/libexec/selinux/hll/pp pgpool.pp
(type pgpool_t)
(roletype object_r pgpool_t)
(type pgpool_exec_t)
...
(filecon "/var/run/pgpool(/.*)?" any (system_u object_r pgpool_
var_run_t ((s0) (s0))))

So, in essence, when we are developing reference policy style modules, they will
be converted into CIL anyway. The resulting CIL code, however, does not have any
facilitating constructions inside. For instance, all permissions are expanded, and all
interactions with other resources or types outside of the SELinux policy module are listed
as well. There are no longer any supporting macros or interfaces. In the Building complete
application policies section, we'll see that CIL does support abstractions, so the current
observation is only due to the translation that the pp command performs.

Understanding CIL syntax
When we develop CIL, the most obvious observation is that it likes brackets. CIL uses
S-expression syntax, popularized by Lisp, which results in tree-structured data. The first
identifier in an expression that tells CIL what the construction is about.

Let's take a look at the last statement we received when converting the pgpool.pp binary
into CIL, now formatted for convenience:

(filecon
 "/var/run/pgpool(/.*)?"
 any
 (
 system_u
 object_r
 pgpool_var_run_t
 (
 (s0)
 (s0)
)
)
)

406 Developing Policies with SELinux CIL

If we look at this statement in detail, we can deduce the following:

•	 We have a filecon statement, which takes three arguments: the path expression,
the type of resources to which it applies, and the SELinux context to associate
with it.

•	 The SELinux context has four fields associated with it: the SELinux user, the
SELinux role, the SELinux type, and the SELinux sensitivity range.

•	 The SELinux sensitivity range has two values, a low-end and a high-end value.

This statement is equivalent to what the reference policy would define in the file context
part of the policy module (the file with the .fc suffix) like so:

/var/run/pgpool(/.*)? gen_context(system_u:object_r:pgpool_
var_run_t,s0)

Luckily, we do not need to seek and interpret the code just to understand and see what is
going on. The SELinux project has extensive CIL documentation available, explaining how
the language works and what it all supports. The information is available at https://
github.com/SELinuxProject/selinux/tree/master/secilc/docs. Keep
in mind though that CIL policy development is still in its infancy, so coverage of the CIL
constructs that are not used by the HLL conversion mechanics is very low.

Let's now see what we can do with CIL.

Creating fine-grained definitions
Throughout this book, most small SELinux policy adjustments have been made using CIL.
These are small, fine-grained definitions that require little development effort, and have
the benefit of being directly loadable.

Depending on roles or types
The CIL language requires some order in how types or roles are linked in the policy.
Sometimes, when we develop CIL policies, the order of the types might not be
addressed properly.

To work around this issue, a default attribute called cil_gen_require is used. When
types or roles are assigned to the cil_gen_require attribute, they are automatically
linked correctly in the policy. This is not a CIL requirement though, but a convention that
the SELinux utilities use.

The attribute actually exists twice, once as a type attribute and once as a role attribute.

https://github.com/SELinuxProject/selinux/tree/master/secilc/docs
https://github.com/SELinuxProject/selinux/tree/master/secilc/docs

Creating fine-grained definitions 407

They might have the same name, but are two different attributes:

(roleattributeset cil_gen_require system_r)
(typeattributeset cil_gen_require direct_run_init)

The functions used, roleattributeset and typeattributeset, assign the second
argument (which is the attribute name) to the third argument (which is the role or type).
Roles or types can be attributes themselves, as shown for the direct_run_init
attribute.

For developers, it is recommended to always have the types or roles that you are going
to use made part of the cil_gen_require attribute, and to use attributes as much as
possible to simplify development activities. Rather than granting all possible allow rules
to each and every domain that can interact with your policy resources, grant them to an
attribute, and then assign this attribute to the domains. This creates a much smaller policy
and is easier to maintain.

Defining a new port type
When more intricate SELinux policies are developed, there are a few settings that
we cannot add in a SELinux module—at least not when using the traditional or reference
policy style coding. When we want to use these, we need to rebuild the entire policy and
make the adjustments in the so-called base policy; the main and first policy loaded before
the modules are added. This, however, requires access to the full SELinux policy sources
and a process to use them (as you will overwrite the Linux distribution's SELinux policy
and should make sure that any system update does not overwrite your policy again).

One way to establish whether a statement is supported in a SELinux module, besides
just testing it out, is to look at the online documentation. As an example, let's take the
port declaration statement portcon, which is part of the network-oriented statements.
This statement is documented on https://selinuxproject.org/page/
NetworkStatements, where we can see that portcon is not valid in a module policy,
nor can it be toggled through a SELinux Boolean.

Luckily, this is not the case when using CIL. Let's create a custom port type, for example,
pgpool_port_t, and map it to a free port, say, TCP port 50123:

; Port type

(type pgpool_port_t)
; Some attributes to match the current SELinux policy
requirements
(typeattributeset defined_port_type pgpool_port_t)
(typeattributeset reserved_port_type pgpool_port_t)

https://selinuxproject.org/page/NetworkStatements
https://selinuxproject.org/page/NetworkStatements

408 Developing Policies with SELinux CIL

(typeattributeset port_type pgpool_port_t)
; Our dependency mappings
(roleattributeset cil_gen_require object_r)
(typeattributeset cil_gen_require pgpool_port_t)
; Make sure object_r is allowed for pgpool_port_t
(roletype object_r pgpool_port_t)
; The port mapping itself
(portcon tcp 50123 (system_u object_r pgpool_port_t ((s0)
(s0))))

Before we load the policy, we can clearly see that this port is not an assigned one:

seinfo --port 50123 | grep tcp
 portcon tcp 32768-60999 system_u:object_r:ephemeral_port_t:s0

As we've seen throughout this book, we can load this policy file immediately, without
having to build or compile it:

semodule -i pgpool_port.cil

After loading, the type is assigned to the port, and we can use it to fine-tune our
SELinux policies:

seinfo --port 50123 | grep tcp
 portcon tcp 50123 system_u:object_r:pgpool_port_t:s0
 portcon tcp 32768-60999 system_u:object_r:ephemeral_port_t:s0

semanage port -l | grep 50123
pgpool_port_t tcp 50123

Many of the constraints that policy developers had when using the traditional SELinux
style development no longer apply to CIL. As the SELinux utilities convert all high-level
constructs to CIL, it is possible that SELinux developers might remove these constraints
altogether, although this has to be carefully assessed to make sure no unwanted side
effects arise.

Adding constraints to the policy
Another area that was not accessible for regular policy developers was to add constraints
to the policy. Constraints limit actions based on the entire SELinux context (and not just
types), and they are the closest thing we can find to negating existing rules.

Creating fine-grained definitions 409

Important note
We do not recommend adding constraints to an existing policy just to work
around rules that we don't like. Constraints are not visible in regular policy
queries, as with sesearch. Administrators might be very confused when
sesearch indicates that an action is allowed while the system is refusing to
allow it.

With CIL, we can add constraints to a live policy to do exactly that. Keep in mind though
that constraints don't actually allow anything – they merely put limits on what the
SELinux subsystem will see as a valid action. A constraint statement that supports reading
any possible type does not actually allow this, as there still need to be type enforcement
rules in place to actually allow these actions.

For instance, if we want to remove the staff_t domain's ability to read the /etc/
passwd file (which has the SELinux type, passwd_file_t), then we can add in
a constraint that supports the reading of all possible types, unless the source domain is
staff_t, in which case we support the reading of all possible types except passwd_
file_t:

(constrain (file (read))
 (or
 (and
 (eq t1 staff_t)
 (not (eq t2 passwd_file_t))
)
 (not (eq t1 staff_t))
)
)

Once loaded, we can confirm that the constraint is active:

seinfo --constrain | grep passwd_file_t
constrain file read (t1 == staff_t and not ((t2 == passwd_
file_t)) or not (t1 == staff_t)));

And indeed, trying to read the passwd file is prohibited:

$ cat /etc/passwd
cat: /etc/passwd: Permission denied

410 Developing Policies with SELinux CIL

To show how the use of constraints is confusing for administrators, let's see what
sesearch has to say on this:

sesearch -A -s staff_t -t passwd_file_t -c file -p read;
allow nsswitch_domain passwd_file_t:file { ... read };
allow staff_t passwd_file_t:file { ... read };

So, while the policy has two rules that would allow it (one for the nsswitch_domain
attribute, and one explicitly for the staff_t domain), the constraint has limited this
action, but this is not obvious from the sesearch output.

Building complete application policies
We can build complete application policies with CIL as well. However, keep in mind that
there are no interfaces or support macros out there that we can use to rapidly develop
policies. Furthermore, there are no templates or suchlike available to jumpstart such
initiatives.

But that shouldn't stop us, and it will allow us to show a few more details of the CIL
language. We will also see that the CIL language does support interface constructs
(they are even recommended), but the community has not yet fully embraced it through
a reference policy-like project.

Using namespaces
The CIL language supports namespaces, which allows for a higher flexibility in developing
policies. The generated CIL policies always use the main, global namespace, so we will not
find examples of namespaces in the generated policies.

We can, however, show how this works easily. Let's create a skeleton file that will contain
our CIL-developed pgpool policy:

; Dependencies

; Pgpool support
(block pgpool
 ; Declarations
 (type domain)

 ; Local policy

 ; Behavior

Building complete application policies 411

 ; File contexts
)

The namespace created in the preceding code is the pgpool namespace, identified
through the block statement. Namespaces in CIL are hierarchical. If we want, we could
create a namespace within pgpool by nesting another block statement within.

When we encounter namespaces in general constructions, we need to use the dot
separator. In the example, we have defined a type called domain inside the pgpool
namespace. If we would want to query it later through sesearch, the full name would
be pgpool.domain (which would have the same purpose as the pgpool_t name in
a more classically developed policy).

Informational note
In subsequent code listings of the policy, we will only show the added and most
relevant statements rather than including all previously added statements.
Without supporting interfaces (which CIL calls macros), the policy file will
quickly become quite large, which does not aid readability. By focusing on the
relevant and added statements, the development pattern for CIL policies is
easier to explain.

As the main policy has all objects within the global namespace, we will need to refer
explicitly to this global namespace. This is done by prefixing the name with a dot.
For instance, if we want to assign the pgpool.domain type to the system_r role,
our policy needs to be adjusted with the following:

(roleattributeset cil_gen_require system_r)
(block pgpool
 (type domain)
 (roletype .system_r domain)
)

Here, the roletype statement is used to assign the domain type (defined in the
pgpool namespace) to the system_r role (defined in the global namespace).

Extending the policy with attribute assignments
When we develop a policy, it is recommended to use attributes as much as possible.
Many attributes will automatically grant the necessary privileges to jumpstart a policy
development, reducing the number of allow statements that need to take part of
the policy.

412 Developing Policies with SELinux CIL

The main reference policy, which is still in use on the system as a whole, defines quite
a few attributes, as seen in all previous chapters. So, let's assign the daemon attribute to
our domain:

(typeattributeset cil_gen_require daemon)
(block pgpool
 (type domain)
 (typeattributeset .daemon domain)
)

By assigning the daemon attribute, all existing policy rules for daemons are automatically
applied to the pgpool.domain SELinux domain.

To find out which attributes are sensible to add, we can take a peek at existing
daemon domains:

seinfo -t postgresql_t -x
Types: 1
 type postgresql_t, nsswitch_domain, can_change_object_
identity, corenet_unlabeled_type, domain, kernel_system_state_
reader, netlabel_peer_type, daemon, syslog_client_type, pcmcia_
typeattr_1;

Now, we do not need to blindly take up all attributes, starting instead with those we feel
confident with.

Adding entry point information
Our next step is to add entry point information to the policy. This is a necessary step
before we can start testing out, because we want the domain to become active. For that
to happen, it has to be executable by the init system (or systemd) and transition to the
domain we've just declared.

Let's start by defining our entrypoint type (pgpool.exec) and associate it with the
right attributes:

(roleattributeset cil_gen_require object_r)
(typeattributeset cil_gen_require file_type)
(typeattributeset cil_gen_require direct_init_entry)
(block pgpool
 (type exec)
 (roletype .object_r exec)
 (typeattributeset .file_type exec)
 (typeattributeset .direct_init_entry exec)

Building complete application policies 413

 (allow domain exec (file (entrypoint ioctl read getattr lock
map execute open)))

 (typetransition .initrc_domain exec process domain)
)

In this code block, we've performed several steps to ensure that a transition will occur:

•	 We've associated the pgpool.exec type with the file_type attribute (which is
a generic attribute for files) and the direct_init_entry attribute (which is for
file types that are used to launch system services).

•	 We've marked the pgpool.exec type as entrypoint for the pgpool.domain
type, as well as granted this domain the necessary privileges to read, open, and
execute the pgpool.exec labeled resources (as needed for a starting process).

•	 We've declared a type transition so that any initrc_domain labeled process that
executes the pgpool.exec labeled resource will result in a domain transition
toward pgpool.domain.

We can now finish this step by adding a file context definition:

(block pgpool
 (filecon "/usr/bin/pgpool" file
 (.system_u .object_r exec ((s0) (s0)))
)
)

With these changes made, we can load the policy and relabel the file:

restorecon -v /usr/bin/pgpool
Relabeled /usr/bin/pgpool from system_u:object_r:bin_t:s0 to
system_u:object_r:pgpool.exec:s0

We can now attempt to start the pgpool service, and hope that it fails (as that will show
that the transition was successful, given that the pgpool.domain SELinux domain
hardly has sufficient privileges to successfully start the entire service).

Gradually extending the policy further
Once the domain transitions are successful, we can gradually extend the policy further
through trial and error, just like we would do when developing SELinux policies using
the reference policy style. However, rather than using audit2allow to guide us, we will
need to interpret the denials ourselves and see how to better approach it.

414 Developing Policies with SELinux CIL

Consider the failures that appear after starting the service:

ausearch -i -m avc -ts recent
(Output reformatted for readability)
avc: denied { map } for scontext=pgpool.domain
 tcontext=ld_so_t
 tclass=file
avc: denied { read write open } for scontext=pgpool.domain
 tcontext=null_device_t
 tclass=chr_file

Now, rather than immediately adding allow rules for these types, let's see how this is
accomplished for other daemons on the system:

sesearch -A -s postgresql_t -t ld_so_t -c file -p map
allow domain file_type:file map; [domain_can_mmap_files]:True
allow domain ld_so_t:file { execute getattr ioctl map open read
};

So, this permission is based on the domain attribute, which we indeed forgot to add to
the policy. Let's rectify this and retry:

(typeattributeset cil_gen_require domain)
(block pgpool
 (type domain)
 (typeattributeset .domain domain)
)

In this example, we can also see clearly what the impact is of the namespaces within
CIL. We assigned the (global namespace-hosted) domain attribute to the (pgpool
namespace-hosted) domain type. They are both named domain, but have a different
namespace. This also shows how important attributes are.

Of course, not all privileges can be granted through attributes. By adding the target types
as a dependency, we can directly include allow statements in our policy, like we did with
the entrypoint declaration.

For instance, if we would want to explicitly allow our domain to signal the
postgresql_t domain, execute the following command:

(typeattributeset cil_gen_require postgresql_t)
(block pgpool
 (allow domain .postgresql_t (process (signal)))
)

Building complete application policies 415

As we are adding more and more privileges to the policy, we might want to optimize
some of the definitions. There are two optimizations supported by CIL, and they are, not
unsurprisingly, aligned with the reference policy's simplifications as CIL was developed by
the same community.

Introducing permission sets
The first simplification we can do is to simplify the permission sets we use. Remember the
allow rule we added to allow our domain to execute its entrypoint file:

(allow domain exec
 (file
 (entrypoint ioctl read getattr lock map execute open)
)
)

Were we to use a reference policy-style approach, we would combine many of these
permissions through the exec_file_perms macro. Well, CIL supports something
similar, through a statement called classpermissionset.

If we want to simulate the reference policy-style approach completely, we would define
classpermissionset in the global namespace, and use it, as follows:

(classpermission exec_file_perms)
(classpermissionset exec_file_perms (file (ioctl read getattr
lock map execute open)))
(block pgpool
 (allow domain exec (file (entrypoint)))
 (allow domain exec exec_file_perms)
)

In this example, we've defined classpermissionset in the global namespace, and
then referred to it. Unlike the reference policy, however, we cannot just add exec_file_
perms inside the permissions together with entrypoint. The classpermissionset
statement has an explicit reference to the class associated with it. The allow statement in
CIL is therefore a separate one that does not contain a class reference itself.

Furthermore, in the example, you will also notice that we did not prefix the exec_file_
perms name with a dot, to refer to the global namespace. While we can prefix it perfectly
to be consistent with the rest of the policy, using a dot prefix is not mandatory if there is
no possible collision. If no local definition for a name exists within the current namespace,
the policy will then check whether the parent namespace (and, hence, also the global
namespace) has the name defined.

416 Developing Policies with SELinux CIL

So, while the preceding policy will work just fine, we do recommend to prefix the global
namespace-oriented names with a dot to make sure no local override would confuse the
policy later on.

Adding macros
The final simplification we can introduce is to add macros. CIL has an explicit support for
macros, which allows them to be part of the loaded policy, and not just be referred to on
the filesystem. With CIL macros, the code is part of the policy itself. There is no need to
refer to the CIL code while building policies.

While this is a best practice that is aligned with object-oriented programming (as we can
add macros to our namespaces so that they remain within the same object), the downside
is that the current SELinux utilities are not able to quickly show which macros (and which
interface they require) are available in the policy.

Now, let's enhance our pgpool policy with a domain transition macro, similar to the
pgpool_domtrans() interface that would be created through a reference policy-style
development:

(block pgpool
 (macro domtrans ((type SOURCEDOMAIN))
 (allow SOURCEDOMAIN exec exec_file_perms)
 (allow SOURCEDOMAIN domain (process (transition)))
 (typetransition SOURCEDOMAIN exec process domain)
)
)

The macro definition itself starts with a name (in our case, domtrans) followed by the
interface. This interface defines how many arguments are passed to the macro, and which
type they have. In our example, only one argument is passed, and it is a SELinux type.

The macro is then followed by the code that is applied. The argument itself is referenced
in the code (SOURCEDOMAIN) and will be substituted with the argument that is given
later on, when the macro is explicitly called. While our example uses a capitalized
variable name, this is not mandatory, and only serves as a visual statement of what will
be substituted.

Building complete application policies 417

In another CIL policy, we can refer to this macro through the call statement. For
instance, to allow the postgresql_t domain to transition to the pgpool.domain
SELinux domain, we would add the following call statement to our policy:

; Equivalent to "pgpool_domtrans(postgresql_t)" in refpolicy
(typeattributeset cil_gen_require postgresql_t)
(call pgpool.domtrans (postgresql_t))

CIL macros provide all that is needed to generate the same simplicity in developing
SELinux policies as we have within the reference policy, and even more as there are many
constraints not applicable to CIL policies.

While it is possible that this will happen in the future, it is not planned at this moment for
a number of reasons:

•	 The current reference policy has a significant amount of code in it, which would all
need to be reworked. Furthermore, Linux distributions have extended this policy
with many of their own additions, so the work needed to rewrite the SELinux
policy code into CIL is significant. Not impossible, but not a feat to accomplish
in a few weeks.

•	 Almost all of the information and documentation online that helps developers
in writing SELinux policies is based upon the current reference policy. This major
source of information would become stale the moment a switch occurs, and the
amount of documentation available online for CIL-based policy development
is still pretty slim.

•	 The CIL policy, while very powerful, is also a bit more complex due to its
S-expressions. The design intention of CIL was not to replace SELinux policy
development with CIL, but to allow higher level languages to be developed that
translate and convert into CIL easily. Hence, if a rework is going to be done anyway,
it is much more likely that a user- and development-friendly language will be
designed that can be easily converted into CIL.

As the SELinux development progresses, both on the policy level as well as in terms of
user space and kernel support, we can expect more additions to be added to CIL and to
its supporting tools.

418 Developing Policies with SELinux CIL

Summary
CIL for SELinux is a powerful, lower-level syntax and language that is used to express
all possible SELinux policy code. The SELinux userspace utilities will automatically
convert existing policies into CIL code, but through this conversion, a lot of CIL
constructs are not used: the conversion only uses a smaller set of CIL capabilities
to establish a valid translation.

The more advanced CIL capabilities, such as namespace support, macros, and the
permission sets through the classpermissionset statement, are useful when
developing our own, CIL-based SELinux policies. In this chapter, we've learned
how to use CIL to build complete application policies. Because there is no reference
policy-like framework to simplify development, we had to write all of the necessary
code constructs ourselves.

While this means that developing CIL-based policies is more resource intensive, we did
also see that CIL has a few benefits that reference policy-style development cannot deal
with, such as the ability to declare ports or add SELinux constraints to an active policy.

We ended the chapter with a brief overview of why CIL-based development is not more
widely used, but we will notice continuous improvements within SELinux on this matter
in the foreseeable future.

This concludes our book and the information we have to offer to you. However, it is only
the start of a journey, not the end. SELinux is a widely used technology, and we hope that
this book provides you with the right material and knowledge to understand, grow, and
contribute to the ecosystem. Thank you for your interest and your dedication.

Questions
1.	 How do we know CIL is here to stay?

2.	 Is the cil_gen_require attribute mandatory for CIL development?

3.	 What are examples of declarations that developers can do with CIL but not with
other SELinux language styles?

4.	 How can we create similar support constructions such as interfaces in CIL?

Assessments

Chapter 1
1.	 The most important difference is that, with a DAC system, the user has full control

over who gets which kind of access to the user's data. It is left to the discretion of
the user, hence the name. With MAC systems, the system administrator (or security
administrator) defines how accesses are handled and enforced. Access is mandated
by a policy, and users cannot work around this if the administrator does not allow it.

2.	 Linux has introduced hooks inside its kernel code, which developers can subscribe
to with their own code. These hooks are part of the Linux Security Module (LSM)
framework, an extensible framework that is natively part of the Linux kernel.

SELinux is one of the MAC technologies that use this LSM framework (and the
hooks it offers) to provide mandatory access control capabilities to the Linux kernel
and its applications. Other technologies also exist, including AppArmor.

The SELinux subsystem code itself is also made part of the main Linux kernel,
as are the main other LSM implementations, although this is not a mandatory
requirement for LSM-capable technologies. It does, however, support the notion
that SELinux is a well-established, open source technology.

3.	 The four fields of an SELinux context are as follows: the SELinux user, the SELinux
role, the SELinux type, and the sensitivity level (or the sensitivity range). The
sensitivity level might not always be present: Linux distributions might opt to
disable support for sensitivities in their policies. In that case, the SELinux context
will only have the first three fields.

4.	 SELinux has the concept of a role, which SELinux types can be associated with.
As SELinux mostly focuses on the types to handle its enforcement (SELinux is
mostly a type enforcement system), the role-based access control is implemented
by limiting the types that a role can be associated with.

420 Assessments

A user that has a DBA-related role will only be able to interact with the system from
within DBA-associated types. As that role does not have any associations with other
types, the user cannot acquire the privileges of these other types either.

5.	 While there is a project called the reference policy, most Linux distributions will
deviate from this policy for several reasons. The main reason why no single SELinux
policy exists is because SELinux is a fine-grained system, and thus can be tweaked
and adjusted to fit the design and usage principles of a Linux distribution.

Asking why no single SELinux policy exists for all Linux distributions is almost the
same as asking why there are multiple Linux distributions. Each distribution has its
own focus, design, principles, and decisions behind it, and the SELinux policy needs
to be aligned with these in order to be successful.

Chapter 2
1.	 Administrators should first analyze the situation to see why a problem is being

triggered. Perhaps the problem is due to an incorrectly assigned context, or the
process has not been started using the correct methods.

If the denial itself were to be allowed, administrators should create an update to the
SELinux policy (just like they would update firewall rules as required).

If this is not feasible, then administrators should consider putting SELinux in
permissive mode, but only for that particular application that is causing problems.

If that is also not feasible, then administrators should put the system in permissive
mode, but making sure that this is accepted by the organization and security
principles of the environment.

Only if even this is not feasible or solves the problem should an administrator shake
their head, curse the higher powers, and disable SELinux.

2.	 If the system has the audit daemon running, then SELinux logging will be part
of the audit logs. They can be displayed using tools such as ausearch, or read
directly from the system at /var/log/audit.

If no audit daemon is running, then the SELinux log events will be picked up by
the system logger or be available through the kernel ring buffer. The kernel ring
buffer can be read using the dmesg command. If the system logger is picking up
the events, they will most likely reside in /var/log/messages.

Chapter 2 421

3.	 Applications that actively query the SELinux policy or SELinux system will link with
the libselinux library. If that is the case, then this can be seen using readelf,
ldd, or objdump, showing that /lib64/libselinux.so.1 (or similar) is
used:

$ ldd /bin/ls | grep selinux
libselinux.so.1 => /lib64/libselinux.so.1
(0x00005d415f3f03f0)

While applications could build statically (meaning they include the necessary code
in their final build and will not show any dynamic linking with the libselinux
library), this is more the exception than the rule for most Linux systems.

4.	 The AVC, or Access Vector Cache, is a cache that contains the recent and most
frequently used enforcement checks, allowing the SELinux subsystem to query more
rapidly whether an action can be granted. Without the AVC, the SELinux subsystem
would need to go through the entire policy over and over again for each action that
is taken on the system.

Suffice to say that this would slow down the system tremendously.

5.	 No, there are a couple of other log events that administrators should look out for
when specifically dealing with SELinux. One is USER_AVC, which is used for
AVC-like events, but triggered from an application that uses the SELinux policy,
and does the enforcements itself (rather than through the Linux kernel). The other
one is SELINUX_ERR, which is used when an internal error or violation is triggered
that is not related to regular type enforcement.

Other event types that are closely related, but are not exclusive to SELinux, exist
as well. For instance, MAC_POLICY_LOAD, MAC_POLICY_CHANGE, and MAC_
STATUS are events that are triggered whenever a MAC system state or policy
is changed.

422 Assessments

Chapter 3
1.	 There is an intermediate step needed to associate a role with a Linux account, and

that is the SELinux user. A Linux account (or login) is mapped to an SELinux user.
The SELinux user is then mapped to one or more SELinux roles that that SELinux
user can be in.

If we want to assign an additional role to a Linux user, we need to add it to the
SELinux role that that Linux account is mapped to. However, if more Linux
accounts are mapped to the same SELinux user, then we first need to make sure that
all these accounts are indeed allowed to use this role. If not, a dedicated SELinux
user has to be created for the Linux account.

2.	 Yes, the mappings are considered when a user logs in through a particular service.
It is possible for administrators to tune the mappings to be dependent on the
service, as seen in the Customizing logins toward services section.

3.	 Most SELinux domains do not allow the SELinux user of a context to be changed.
This allows the tracking of activities based on the SELinux user, even when the
regular Linux user has changed their user ID. Note that this is not exclusive to
SELinux, however. Linux does support a distinction between the real user ID
(which stays static as much as possible) and the effective user ID (which can change,
for instance, when executing a setuid application).

SELinux users also allow granularity as regards the SELinux policy, for instance,
when using user-based access control. In that case, SELinux users cannot access
resources that are owned by a different SELinux user.

4.	 PAM is a flexible, modular system that Linux uses to authenticate users. Rather
than having all the different technologies and services on a system implement
authentication over and over again, they use PAM to handle the authentication flow.
Administrators only then need to focus on PAM or PAM-related configurations to
ensure that their systems are properly accessed.

For SELinux, PAM is needed to allow the authentication to check the mappings
(between Linux users and SELinux users), which is supported through pam_
selinux.so.

Chapter 4 423

Chapter 4
1.	 The most common option is -Z, and is supported by tools such as ls, mv, and ps.

The same character is also used by systemd's tmpfiles application to explicitly set
SELinux contexts on resources. However, while this is the most commonly used
option, not all tools follow this convention, so we recommend to always consult the
tool's help or manual page.

2.	 In most cases, the context is stored as an extended attribute of the file or directory
within the filesystem. This extended attribute is the security.selinux attribute,
and can be queried with tools such as getfattr or stat.

However, not all filesystems support extended attributes. In that case, the SELinux
context is obtained through the mount options of that filesystem, and all resources
on the filesystem then use the same context.

3.	 The chcon application directly alters the SELinux context for a file, but does
not adjust the system's file context definitions. If, at any point in time, the system
or an administrator relabels the file or the entire filesystem (which is a common
remediation for SELinux issues), then the SELinux context of the file is changed back.

Hence, chcon is only recommended for transient SELinux context changes or to
validate whether a context change solves an issue. Once confident that the new
context is needed, it should be registered in the system's file context definition
through semanage fcontext.

4.	 Yes. While SELinux's tools have the concept of most specific rule wins for the context
definitions provided by the Linux distribution, this concept does not apply to file
context definitions that are local to the system (in other words, executed by the
system administrator).

For locally defined file context definitions, the first rule that matches a patch will be
used, regardless of the context definitions that follow.

5.	 If you only want to relabel a selected set of files, such as recursive applications
to a given directory, the restorecon command should be used. If the entire
filesystem needs to be relabeled, either use fixfiles (CentOS and related
distributions) or rlpkg (Gentoo).

Another method is to create an empty file called /.autorelabel and reboot the
system. The system will detect this file, relabel the entire filesystem, remove this file,
and then reboot again.

424 Assessments

6.	 The source domain needs the transition privilege vis-à-vis the target domain.
It also requires the execute privilege on the executable file. This executable file has
to be marked as an entry point for the target domain. Finally, the role for which
a transition is to occur has to have the target domain as an allowed type.

7.	 Multiple SELinux types can be assigned an SELinux attribute, and the SELinux
policy can then use this attribute as a source or target for its rules. Such
attribute-based rules then automatically apply to all types assigned from
this attribute.

Chapter 5
1.	 The command to apply a type to a TCP port is created with semanage. For

instance, to apply the ssh_port_t type to TCP port 10122, execute the following
command:

semanage port -a -t ssh_port_t -p tcp 10122

However, this only works as long as the port itself is not already explicitly mapped
to an SELinux type. You can query whether this is the case with sepolicy, for
example:

sepolicy network -p 10122

If the port is part of an unreserved range, then it can be altered.

2.	 No, SECMARK is local to the system. Once a network packet is received by the
Linux host, the SECMARK rules will associate a label with that network packet, but
this label is only retained in memory on the system itself. Once a packet leaves the
Linux system, it will not show any trace of SECMARK labeling.

3.	 The subcommands used by semanage are ibendport (to apply a label or
sensitivity to an InfiniBand network port) and ibpkey (to apply a label or
sensitivity to a partition key).

4.	 While labeled IPsec itself does not require specialized equipment, it does require
all participating hosts to have the same view on what each label implies. This means
that all hosts, in the case of SELinux-based labeling, need to have SELinux active,
and preferably with exactly the same SELinux policy.

Chapter 6 425

Chapter 6
1.	 Ansible (using setype within the file module) and Puppet (using seltype in

its file module) are the only two tools that have native support for explicitly setting
SELinux contexts on resources. However, Chef will automatically relabel resources
according to the defined file context rules, but you cannot natively override this
behavior.

2.	 Except for SaltStack, all orchestration tools have support for community-built and
community-supported modules that extend native support of the tools. Ansible's
Galaxy, Puppet's Forge, and Chef 's Supermarket are the main communities for these
customizations.

All orchestration tools (including SaltStack) are flexible enough to use commands
and simple checks to check state and make changes, effectively allowing
administrators to customize the definitions to their liking.

3.	 All tools have their own view and design on how they approach things. Ansible, for
instance, pushes its changes to the remote nodes, whereas the others generally use
remote agents to connect to the central system to obtain the latest changes. SaltStack
even supports both approaches.

While all tools have some SELinux support included, some have many more
SELinux features enabled out of the box than others. Luckily, through the use of the
community-supported additions (modules), the SELinux support for almost all of
the orchestration tools can easily be augmented.

Chapter 7
1.	 The unit files in /usr/lib/systemd/system are managed by the Linux

distribution itself. Whenever a new update to the software is deployed on the
system, these files are overwritten.

Modifications to unit files should be placed in /etc/systemd/system instead,
as they overrule the settings in /usr/lib/systemd, and software deployments
should not place any of their unit files in that location.

2.	 The application is tmpfiles, and is part of the systemd suite. To have it reset
a context, a configuration file has to be created (in /etc/tmpfiles.d for locally
defined changes) and use the z directive (to reset the context of a single file) or the
Z directive (to recursively set the context of an entire directory).

426 Assessments

3.	 The journalctl command allows filtering on variables that it obtained from
the event itself. One of these variables is the SELinux context of the service that
generated the event.

To filter on a particular value, you use the variable name as an argument to the
journalctl command like so:

journalctl _SELINUX_CONTEXT=system_u:system_r:init_t:s0

If you do not know what SELinux context to use, then the Bash completion might
be of assistance. Just declare _SELINUX_CONTEXT= in the preceding command,
and then press Tab twice to see all the valid values.

4.	 If the SELinux policy itself does not have a proper named file transition rule in
place (which would automatically have the node created with the correct SELinux
context), then you can tell udev to do this for you.

Find the udev rule that would create the device node for the device, and copy
this rule into /etc/udev/rules.d. Then, update the rule by adding
a SECLABEL{selinux}= action, like so:

KERNEL=="fd0", ...,
SECLABEL{selinux}="system_u:object_r:my_device_t:s0"

Such rules have to be placed in /etc/udev/rules.d rather than /usr/lib/
udev/rules.d as the latter location is managed by the distribution, and new
installations or updates will overwrite the files located therein.

5.	 No. The SELinux policy is only checked by D-Bus if the D-Bus policy file itself refers
to an SELinux context (using the busconfig > selinux > associate XML
entities). If no SELinux mapping is defined in the policy, then D-Bus cannot know
which association to validate.

This is unlike the message flows, however, which are immediately governed by
D-Bus through the SELinux policy.

6.	 Apache can be made SELinux-aware because it has a modular design, and allows
third-party modules to be applied to its own environment. While no SELinux
support is enabled within the core Apache code, additional modules (such as mod_
selinux) can be added that do enable SELinux support.

Chapter 8 427

Chapter 8
1.	 It is, although it is not natively enabled. SEPostgreSQL is offered through one of the

additionally supplied modules within PostgreSQL called sepgsql. As such, it is
part of the default technology, but not enabled by default.

2.	 As the sepgsql module requires a session context, the PostgreSQL database needs
to either only be accessed from the local system (using the Unix domain sockets),
or labeled networking needs to be enabled and set up in the network.

Without labeled networking, any remote connection to the database will fail to
provide any context information, and sepgsql will refuse the connection.

3.	 When a database object is created in PostgreSQL, it will automatically receive an
SELinux label. Administrators or database owners can change the labels using the
SECURITY LABEL statement in PostgreSQL:

db_test=# SECURITY LABEL ON COLUMN tb_users.phash IS
'system_u:object_r:sepgsql_secret_table_t:s0';

To query the current label, consult the pg_seclabels table in PostgreSQL:
db_test=# SELECT objname,provider,label FROM pg_seclabels
WHERE objname='tb_users.phash';

If you do not know the object name by heart, use LIKE and use % as a glob
character.

4.	 The sepgsql module does not interact with the Linux audit subsystem, relying
instead on the logging capabilities and interface used by PostgreSQL. As a result,
any decision logging that sepgsql does will be found in the PostgreSQL
system logs.

Chapter 9
1.	 The unique idea that sVirt has that differentiates it from a more standard SELinux

configuration is to use SELinux's MCS support to the next level. By randomly
assigning two categories to a guest, sVirt can deal with isolating thousands
of guests even when far fewer categories are available to use.

428 Assessments

2.	 The two main security measures that SELinux implements on top of the
virtualization layer are as follows:

- Intra-guest isolation, ensuring that guests cannot attack one another, or leak
information between guests

- Guest/host isolation, ensuring that guests can only access and interact with the
resources on the host that are needed

While both are, of course, also implemented within the hypervisor code, any design
flaw could lead to high-impact problems. By implementing these isolations within
SELinux, we use the strength of the SELinux subsystem as an independent (and
much more flexible) access control system.

3.	 The virt_image_t label is used for guest images when the guest is not running.
Once it is running, the image is relabeled to svirt_image_t and assigned the
correct set of categories. The virt_content_t label, on the other hand, is used
for read-only media, such as CD images.

4.	 The labels can be changed by editing the guest's XML information:

virsh edit myGuestName

At the end of the XML file presented, the appropriate seclabel tags can be added
to define target labels.

5.	 Vagrant, by default, does not have support for sVirt, but thanks to its plugin model,
we can install the libvirt plugin for Vagrant. Once installed, Vagrant will use libvirt
as its virtualization layer, automatically allowing us to use sVirt with Vagrant.

Chapter 10
1.	 SELinux works within the Linux kernel. Xen, however, is a hypervisor that sits

between the hardware and the operating systems and does not use a full operating
system as its base (unlike, for instance, QEMU and KVM).

When we interact with Xen through Linux, we are actually interacting with Xen
through the dom0 guest. Within this guest, SELinux can be running (and we even
recommend it), but SELinux will remain within the virtualized guest.

Xen, however, copied the SELinux approach and implemented it in its Xen Security
Module framework.

Chapter 11 429

2.	 You can assign a label to a Xen guest by editing its configuration file (inside /etc/
xen) and adding the seclabel parameter, like so:

seclabel = 'system_u:system_r:prot_domU_t'

You will need to relaunch the guest for the changes to take effect. Once the guest is
booted again (using xl create), you can see its active label using xl list -Z.

What are the common Xen commands that deal with XSM labels?

The common commands to use are the following:

- With xl list -Z, we can list the guests and their currently assigned labels.

- With xl getenforce, we can query the current enforcement state of XSM.

- With xl setenforce, we can set the new enforcement state of XSM.

- With xl dmesg, we can see the Xen logging, including the XSM AVC log entries.

- With flask-get-bool, we can query the current XSM-FLASK Booleans and
their values.

- With flask-set-bool, we can set a new value for an XSM-FLASK Boolean.

- With flask-label-pci, we can assign a new XSM-FLASK type to
a PCI device.

We can also use SELinux tools that can analyze a policy file, such as seinfo
or sesearch.

3.	 The command to load a custom policy is xl loadpolicy,
or flask-loadpolicy. As long as the new policy file is not put in /boot
to be automatically picked up, this loaded policy will only be active until
a reboot is done, or until a new policy is loaded.

Chapter 11
1.	 The machinectl command does not allow administrators to change the SELinux

type of the running containers. This results in all containers running by default under
an unconfined domain, whereas we want confined domains to be used—preferably
even with sVirt support so that containers cannot influence one another either.

430 Assessments

2.	 When a container is launched with a location mapping, we should use the :Z
option (in case of a private mapping) or the :z option (in case of a shared mapping)
to ensure that the resources are relabeled with a container-accessible SELinux type:

podman run -dit --name postgresql-test -v /srv/db/
postgresql-test:/bitnami/postgresql:Z -p 5432:5432
postgresql

Without this option, the label of the resource remains untouched, which generally
means that the container runtime cannot access the resource at all.

3.	 We can use the udica application to generate a custom policy. The application
uses the information that is provided from a podman inspect (or docker
inspect) command, which shows the current container definition, and builds
a custom policy specific to that container.

The policy, once loaded, can then be used by the container through the
--security-opt argument.

4.	 The main place for SELinux settings is inside the manifest under the spec
configuration parameter. There, we can create the securityContext definition,
which supports SELinux options through the seLinuxOptions object.

Chapter 12
1.	 When SELinux Booleans are changed through the /sys/fs/selinux/

booleans filesystem, the changes are not automatically committed. For that to
occur, you also need to write the value 1 into /sys/fs/selinux/commit_
pending_bools.

2.	 The sesearch command is used to query the active policy, and can be used to
query the impact of SELinux Booleans as well. Add the -b <boolean> argument
to limit the query to rules that are influenced by the SELinux Boolean.

3.	 When an SELinux policy module is loaded, it is assigned a priority that tells the
system whether it should be the active module. Administrators can load new
modules at a higher priority to test them out, and remove them again, without
risking that no proper SELinux rules are active on the system at all.

Likewise, administrators can load a policy at a lower priority, ensuring that it is not
yet active, and later on remove the module at the higher priority so that the newly
loaded policy becomes active.

This is unlike enabling or disabling modules, which affects all priorities.

Chapter 13 431

4.	 The SELinux utility audit2allow transforms all SELinux-related audit events
into SELinux policy code. The code can use both the legacy style (using -M) or the
reference policy style (using -R -M). Regardless of the style chosen, a loadable
SELinux policy module (with the suffix .pp) will be created:

grep btmp /var/log/audit/audit.log | audit2allow -R \
 -M custom_staff_su_faillog

The resulting file (custom_staff_su_faillog.pp) can be loaded using
semodule -i.

Chapter 13
1.	 The seinfo application is used to query the policy for its type content, but not for

its rules. For instance, you list the types within the policy with seinfo, but you
don't query what these types can do.

The sesearch application, on the other hand, is used to query the rules within the
policy, but does not reveal anything about the various definitions inside the policy
that are not really rules (such as attribute definitions and supported classes).

Hence, the main difference is that seinfo focuses on the structure of the policy,
whereas sesearch focuses on the enforcements defined within the policy.

2.	 Reaching a domain implies domain transitions. Hence, what we are looking for
is how you can transition from your current domain (say staff_t) to the target
domain (say unconfined_t) and through which means—generally, this is done
by executing a binary or script that triggers a type transition.

Analyzing domain transitions can be done using apol (the graphical user
interface), sedta, or sepolicy transition. However, the latter might not
reveal the correct paths, so it is recommended to use sedta or apol for this.

3.	 Information flow analysis has to take up considerably more paths than a domain
transition. Domain transitions are between process domains, and only a small
number of actions can trigger a transition. Information flow, on the other hand,
can be effected over many, many actions.

Such analysis not only needs to consider read and write statements, but also file
descriptor usage, socket usage, signaling, the locking and unlocking of resources,
and more besides. As a result, information flow analysis uses permission maps to
identify the various permissions to check, and how important (weight) a permission
is for an information flow analysis session.

432 Assessments

4.	 Not using the tools currently at hand. The tool that compares policies, sediff,
shows the differences between the policies, but is not, by itself, capable of generating
SELinux policies that contain the differences between policies.

Furthermore, SELinux policy modules can only add additional rules to the active
policy, not remove them. Hence, even if sediff generated compatible output,
it would still not be able to generate any statements that would remove existing
rules from the active policy.

Chapter 14
1.	 An unconfined domain is still fully controlled and enforced by SELinux. It is called

unconfined because such domains are granted extensive privileges by the SELinux
policy. However, unlike what the name implies, they are still somewhat confined.

Permissive domains, on the contrary, are not confined. SELinux will only log
violations against the policy, but it will not enforce them.

2.	 The SELinux sandbox utility can be used to run applications in a very restricted
domain. The utility will both force the application to run in a very restricted domain
(sandbox_t for regular, non-graphical end user applications, or sandbox_
xserver_t for graphical applications), as well as isolate or hide access to other
system resources through the use of Linux's namespaces.

3.	 When the init system (such as systemd) launches a daemon, it will execute a specific
binary or script for it. The label of this binary or script will generally define the
target domain. For instance, if the resource is labeled with bin_t, then systemd
will make sure that the target service runs as unconfined_service_t.
If it is labeled with postgresql_exec_t, then the target service will run
with the postgresql_t type.

While other permissions are also involved (such as the source context requiring
transition permissions to the target), unless we are building a new policy from
scratch, switching domains will be as simple as changing the label for its executable
resource, and relabeling its main locations on the filesystem (such as log locations
and runtime information).

4.	 The default skeleton application that sepolicy generate builds contains the
permissive statement, which implies that the policy will run in a permissive
mode. Since this means SELinux will not enforce any controls, it is very likely that
the application will work flawlessly with this policy enabled.

Chapter 15 433

That is, however, not the target state, and administrators will need to remove the
permissive setting from the policy and adjust as needed.

Chapter 15
1.	 Many Linux distributions add services and tools that fit the distribution's purpose

and principles, yet which might be contradictory to what the reference policy is
about. For instance, Red Hat Enterprise Linux and its derived Linux distributions
will enable unconfined domains for many applications, whereas the reference policy
will strive toward confinement of all applications.

As a result, many Linux distributions base their policy on the reference policy, but
augment and adjust it for their specific purpose.

2.	 The three main policy files are the following:

- A type enforcement file, with the suffix .te, which contains the rules for the
SELinux policy module, focusing on its owned domains.

- An interface file, with the suffix .if, which exposes the interaction patterns
and privileges vis-à-vis the domains and resources owned by this SELinux policy
module. These interfaces are then used by other SELinux policy modules.

- A context file, with the suffix .fc, which contains the file contexts for the various
paths related to this SELinux policy module.

Policy modules can be created with only a single file. In that case, the build system
will assume that the other files are empty.

3.	 The use of a permission set allows policy developers to easily adjust and extend the
permission set when needed, without having to change all possible SELinux policy
module code entries.

This is especially critical when a new permission is added by Linux (and the
SELinux subsystem). For instance, suppose that the memory map system call (map)
was not present yet, and is introduced later. We would need to add the map privilege
to all execute calls. By using permission sets, we can add this to the appropriate
permission set only.

4.	 Interfaces will grant privileges to domains or roles. They do not add or remove
SELinux objects to the policy. Templates, on the other hand, will generate new
SELinux types, roles, Booleans, or other objects. As a consequence, templates are
not allowed to be called from within any Boolean-triggered block.

434 Assessments

5.	 The database administration role does not use userdom_admin_user_
template because it is not a system-wide administration role, but very specific to
databases. userdom_admin_user_template would grant the role many more
privileges than are needed to administer databases.

Chapter 16
1.	 The SELinux Common Intermediate Language (CIL) is not an extension to

SELinux that can be easily removed. It is at the heart of SELinux policy development
and support, although mainly under the hood: all SELinux policy modules that are
loaded on the system are first converted into CIL before actually being loaded
in memory.

The CIL format is the only format used to interact with the Linux kernel and the
SELinux subsystem. Because it is used as part of the SELinux user space utilities,
it is not always as obvious to administrators or developers, but it is definitely a core
component within SELinux.

2.	 No, it is not mandatory, but is recommended. The attribute is used to refer to types
and roles in a modular fashion, and to ensure that these references are valid. CIL
internally requires types and roles to be defined before they are used, and without
using an attribute to force such declarations, the order of loading modules might
result in failures.

While other attributes could be declared for this purpose, or other means
introduced, the use of the cil_gen_require attribute is supported through the
SELinux user space utilities. As such, aligning with this practice is recommended.

3.	 With CIL, developers can create additional port mappings, declaring a new type
and assigning it to an available port. With other SELinux language styles, this is only
possible when rebuilding the entire policy rather than through the modules.

Another example is to introduce constraints. SELinux constraints are not supported
to be loaded in SELinux modules using other language styles. However, while
constraints are a powerful construct within SELinux, they can be confusing for
administrators as constraint-related failures do not result in obvious messages, and
administrators who query the current policy for allow rules may notice that allow
rules exist even though things still fail.

Chapter 16 435

4.	 CIL supports macros, which are made part of the SELinux module (and the
namespace), and which can be called using the call statement from elsewhere
in the SELinux policy. We can create macros as part of a module to be similar to
interfaces in reference policy, while creating macros as part of the global namespace
to be similar to the support macros in reference policy.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Linux Security and Hardening

Donald Tevault

ISBN: 978-1-83898-177-8

•	 Create locked-down user accounts with strong passwords

•	 Configure firewalls with iptables, UFW, nftables, and firewalld

•	 Protect your data with different encryption technologies

•	 Harden the secure shell service to prevent security break-ins

•	 Use mandatory access control to protect against system exploits

•	 Harden kernel parameters and set up a kernel-level auditing system

•	 Apply OpenSCAP security profiles and set up intrusion detection

•	 Configure securely the GRUB 2 bootloader and BIOS/UEFI

https://www.packtpub.com/product/mastering-linux-security-and-hardening-second-edition/9781838981778

438 Other Books You May Enjoy

Cybersecurity Attacks – Red Team Strategies

Johann Rehberger

ISBN: 978-1-83882-886-8

•	 Understand the risks associated with security breaches

•	 Implement strategies for building an effective penetration testing team

•	 Map out the homefield using knowledge graphs

•	 Hunt credentials using indexing and other practical techniques

•	 Gain blue team tooling insights to enhance your red team skills

•	 Communicate results and influence decision makers with appropriate data

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

https://www.packtpub.com/product/cybersecurity-attacks-red-team-strategies/9781838828868

Index

Symbols
.pp files

 translating, to CIL 404, 405

A
access vector cache (AVC) 59
administration interface 395
AKARI 24
anonymous pipes 143
Ansible

about 179
configuring 180, 181
installing 180
role, creating 181
role, testing 181
SELinux settings, using 185, 186
used, for assigning SELinux contexts

to file system resources 182
used, for loading custom

SELinux policies 183, 184
used, for SELinux system

administration 179
working 179, 180

Ansible modules 179

Ansible playbooks 179
Ansible roles 180
Apache

mod_selinux module, using 236
Apache Extension Tool 237
AppArmor 24
application-level policies

about 373
creating 392

applications
policies, assigning 372
running, in explicit unconfined

domain 364, 365
running, in specific policy 374, 375
running, without restrictions 362

AT_SECURE 132
audit2allow

about 329
used, for creating policies 328-330
used, for generating reference

policy style modules 331, 332

B
Bell-LaPadula model 35
bounded domain 134

440 Index

C
capabilities 26
capability 24
catalog 191
category-wide policies 373
change root (chroot) 233
Chef

configuring 198
development environment,

preparing 200, 201
installing 198
SELinux cookbook, creating 201, 202
SELinux settings, using 204, 205
server core, configuring 199
server core, installing 199
used, for assigning SELinux contexts

to file system resources 203
used, for loading custom

SELinux policies 203, 204
used, for system automation 197
working 197
workstation, installing 198, 199

Chef client 198
Chef server 198
Chef, system types

Chef client 198
Chef server 198
Chef workstation 198

Chef workstation 198
CIL, application policies

building 410
entry point information,

adding 412, 413
extending, through trial

and error 414, 415

extending, with attribute
assignments 412

macros, adding 416, 417
namespaces, using 410, 411
permission sets 415, 416

CIPSO label
domain-specific mappings, adding 172
enabling, with NetLabel 170
enabling, with SELinux 170

CIPSO mappings
configuring 171, 172

coarse-grained policies 373
Cockpit application

about 228
installing 229
user logins, restricting 229, 230

code
verifying, with selint 399

Common Architecture Label IPv6
Security Option (CALIPSO) 173

Common Gateway Interface
(CGI) scripts 377

Common Intermediate Language (CIL)
about 37, 326, 404
.pp files, translating 404, 405
syntax 405, 406

Common IP Security Option (CIPSO) 70
CONNection MARKings

(CONNMARK) 150
constraints

about 136, 138
learning 138, 139

container hosting environment
tuning 312

container management
facilitating, with machinectl 305, 306

Container Runtime Interface
for OCI (CRI-O) 307

Index 441

containers
SELinux domain, modifying 310
using, with SELinux 308, 309

container_t privileges
toggling, with SELinux booleans 312

control groups (cgroups) 266, 302
cookbook 198
Cron services

about 230
user-specific, switching between

generic contexts 231, 232
custom domains

creating, with udica 311, 312
customizable types 120
custom XSM policies

applying 299, 300

D
daemons

running, in explicit unconfined
domain 365, 366

database management system (DBMS) 21
Data Definition Language (DDL) 261
datagram sockets 144
data sensitivity 266
D-Bus

about 224, 225
communication 224
message flows 227
service acquisition, controlling

with SELinux 226, 227
D-Bus, types

session-specific D-Bus 224
system-wide D-Bus 224

default distribution policy
replacing 333, 334

denial information
about 72
audit2why, using 75
emails, sending 74, 75
handling 77, 78
object class 67
permissions 66
permissive mode 67
Process ID (PID) 66
process name 66
SELinux action 66
source context 66
systemd-journal, interacting with 76, 77
target context 66
target device 66
target file inode number 66
target name 66
troubleshooting, with

setroubleshoot 73, 74
Denial of Service (DoS) 74
discretionary 20
discretionary access control (DAC)

about 20, 65
extending, with SELinux 25

domain
about 30, 31, 275
marking, as permissive 368, 369

Domain 0 (dom0) 286
domain complexity

about 372
application-level policies 373
category-wide policies 373
coarse-grained policies 373
fine-grained policies 372

Domain of Interpretation (DOI) 170
domain permissions

about 136
querying 137, 138

442 Index

domain transition 127
domain transition analysis

about 349
apol, using 350, 351
investigating 349
sedta, using 351, 352
sepolicy, using 352-354

domain transition interface 395
domain transitions 389
dominated roles 89

E
eBPF maps

about 155
securing 155

eBPF programs
about 155
securing 155

Enterprise Linux Repository
(ELRepo) 287

Executable and Linkable
Format (ELF) 132

existing policies
replacing 328
updating 328

explicit unconfined domain
applications, running in 364, 365
daemons, running in 365, 366

eXpress Data Path (XDP) 156
extended attribute (xattr) 106
extended Berkeley Packet Filter (eBPF)

about 154
assessing 154
traffic, filtering with bpfilter 156, 157
working 154, 155

extended permission rules 341

Extra Packages for Enterprise
Linux (EPEL) 180

F
facts 191
file contexts

declaring 387, 388
Filesystem in Userspace (FUSE) 269
fine-grained definitions

constraints, adding to policy 409
creating 406
port type, defining 407, 408
roles or types 406, 407

fine-grained policies 372
first-in, first-out (FIFO) 143
Flux Advanced Security Kernel

(FLASK) 293
Foreign Data Wrapper (FDW) 261

G
generated policies

extending 375
limitations 376
sepolicy generate command 376, 377

Gentoo
reference link 287

GNU C library (glibc) 132
Grand Unified Boot loader (GRUB2) 287
greatest lower bound, largest

upper bound (glblub) 45
Group Identifier (GID) 217

Index 443

H
Hardware Virtual Machine (HVM) 291
high-level language (HLL) 39, 404
Host Channel Adapters (HCA) 158
host intrusion detection 51
host intrusion prevention 51
HyperText Transfer Protocol (HTTP) 68

I
idempotent task 176
InfiniBand 157
InfiniBand networks

memory, accessing 158
protecting 158, 159
securing 157

InfiniBand partitions
access controlling 161, 162

InfiniBand port 158
InfiniBand subnet

managing 159, 160
information flow analysis

about 354
analyzing 354
apol, using 355-357
seinfoflow, using 357
sepolicy communicate, using 357

Information Protocol Security (IPsec) 71
interface labels 148
interfaces

querying, locally 400, 401
SELinux rules, exposing

through 388, 389
International Obfuscated C Code Contest

download link 370
Internet Key Exchange version

2 (IKEv2) 170

Internet Relay Chat (IRC) 72
internet services daemon (inetd)

applications 377
IPsec

setting up 169
IPv6 CALIPSO 173

J
Java Virtual Machine (JVM) 265
Just-In-Time (JIT) 155

K
Kernel-based Virtual Machine

(KVM) 264
kernel probes (kprobes) 155
Kubernetes

configuring, with SELinux
support 313-315

SELinux support, leveraging 313

L
labeled IPsec

enabling 169
using, with SELinux 167, 168

labeled IPsec event 71
labeled networking

about 163
fallback labeling, with NetLabel 163
flow, limiting on network interface 164
old-style controls, using 166, 167
peer communication, accepting

from selected hosts 165
peer-to-peer flow, verifying 165

labels
assigning, to packets 151, 152

444 Index

least-privilege model 26
legacy style modules

building 332
libvirt

categories, controlling 278, 279
configuring, for sVirt 273-275
enhancing, with SELinux 271
guest, modifying for SELinux

labels 276, 277
resource labels, customizing 278
shared resources, versus

dedicated resources 272
storage pool locations,

modifying 279, 281
Vagrant tool, using 281

libvirt architecture
assessing 272, 273

libvirt-compatible box
installing 282, 283

libvirt plugin
deploying 281
reference link 281

Linux Containers project 302
Linux firewalling 148
Linux kernel configuration

reference link 287
Linux security 20, 21
Linux Security Module (LSM)

22-25, 55, 292
Linux system

SELinux, enabling 27, 28
LoadPin 24
local CIPSO

using 173
Lockdown 24
LXC 302

M
machinectl

container management,
facilitating 305, 306

MAC_POLICY_LOAD event 69
macros

about 331, 416
querying, locally 400, 401

MAC_STATUS event 70
mandatory 21
mandatory access control (MAC) 21
MCS constrained 259
MCS translation daemon (mcstransd) 90
minions 186
mod_selinux module

about 236, 237
Apache SELinux sensitivity,

configuring 238
domains, modifying 239, 240
end users, mapping to domains 239
using, with Apache 236

Multi-Category Security (MCS)
about 36, 257, 270
access, limiting to columns based

on categories 258, 259
user domain, constraining for sensitivity

range manipulation 259
using 257

Multi-Level Security (MLS)
about 35, 257
access, limiting to columns based

on categories 258, 259
using 257

mutual exclusions (mutexes) 142

Index 445

N
named file transitions 110
named pipes 143
namespaces 370
netfilter 148, 149
NetLabel

used, for enabling CIPSO label 170
NetLabel event 70
Netlink sockets 144, 145
network-facing service policies

constructing 392
internal SELinux rules, handling 393
network related permissions,

adding 394, 395
resources, identifying 392
service interface methods,

building 395, 396
nftables

transitioning to 153, 154
node labels 148
No New Privilege (NNP) 134

O
Open Container Initiative (OCI) 307
OpenSSH daemon

about 232
Linux users, chrooting 233-235
logging in, as sysadm_r role 233

P
PAM services

about 96
access, prohibiting in

permissive mode 98
Cockpit application 228

configuring 228
contexts, assigning 97
Cron services 230
directories, polyinstantiating 99, 100
OpenSSH daemon 232

ParaVirtualized (PV) 291
Partition Key (P_Key) 161
peer-to-peer flow

verifying 166
permission groups

calling 391
permission interactions 389
permissive domains 55
Personally Identifiable

Information (PII) 252
Pluggable Authentication

Modules (PAM) 87
podman

configuring 306
selecting, over Docker 306, 308

pods
SELinux contexts, setting for 315-317

policies
assigning, to applications 372
comparing 358
creating, with audit2allow 328-330
generating, with sepolicy generate

command 378, 379
sediff, using to compare 358

policy capabilities 133
policy macros

using 390
policy module priority 326
policy modules

handling 325
listing 326, 327
loading 327, 328
removing 327, 328

446 Index

structuring 384
policy repository, Arch Linux

reference link 382
policy repository, CentOS

reference link 382
policy repository, Debian

reference link 382
policy repository, Gentoo Linux

reference link 382
policy store 40
polyinstantiation 99
PostgreSQL

about 244
reconfiguring, with

SEPostgreSQL 244-246
SEPostgreSQL, tuning 248
test account, creating 246, 247

process communications
connection contexts, listing 147
controlling 142
conversing, over UNIX

domain sockets 144
Netlink sockets 145
SCTP sockets, dealing with 145, 146
shared memory, using 142
TCP sockets, dealing with 145, 146
through pipes 143
UDP sockets, dealing with 145, 146

Puppet
about 191
configuring 192, 193
installing 192, 193
SELinux settings, using 196, 197
used, for assigning SELinux contexts

to file system resources 194
used, for automating system

management 191
used, for creating SELinux class 193, 194

used, for loading custom
SELinux policies 195

used, for testing SELinux class 193, 194
working 191

Puppet Development Kit (PDK) 193
Puppet Forge 191
Puppet manifests 191
Puppet master 191
Puppet modules 191

Q
QEMU copy-on-write (QCOW2) 275
Quality of Service (QoS) 74, 161

R
recipes 198
Red Hat Enterprise Linux (RHEL) 73
reference policy

about 382
navigating 383

reference policy style modules
building 332
generating, with audit2allow 331, 332

remote command execution (RCE) 27
Remote Direct Memory Access

(RDMA) 158
role-oriented interfaces 389
root privileges

restricting 26
run interface 395

S
SafeSetId 24
Salt execution modules 186
SaltStack

about 186
configuring 187

Index 447

installing 187, 188
SELinux settings, using 190, 191
used, for assigning SELinux contexts

to file system resources 189
used, for creating SELinux state 188, 189
used, for loading custom

SELinux policies 190
used, for testing SELinux state 188, 189
utilizing, to configure SELinux 186
working 186

Salt State file 186
sandbox command

using 370-372
sandboxed applications

sandbox command, using 370-372
SELinux sandbox 370
using 369

scope of transitions
environment, executing 132
limiting 131
Linux’s NO_NEW_PRIVS,

using 134, 135
unconstrained transitions,

disabling 132, 134
Secure Shell (SSH) 57
secure virtualization (sVirt) 267

usage, of MCS 270, 271
used, for configuring libvirt 273-275

security association database (SAD) 167
security association (SA) 167
Security-Enhanced Linux (SELinux)

about 96
access, enforcing through types 31
allow rules, querying 341, 342
apol workspaces, using 348, 349
audit events 58, 59
ausearch command, using 71, 72
AVC, tuning 60, 61

browsing, with apol 345-348
configuration settings 177
configuring, with SaltStack 186
containers, using with 308, 309
context, dissecting 30, 31
database-specific object classes 250
database-specific object

permissions 250, 251
default types, using 252-254
denial information, reading 65-68
domain access, granting

through roles 32, 33
enabling, on Linux system 27, 28
error recovering 178
file contexts, settings 178
framework, comparing 178
idempotent task 176
information flow, controlling

through sensitivity 35, 36
kernel boot parameters, using 54
labeled IPsec, using 167, 168
Linux audit, configuring 62-64
local rules, adding of domain 386, 387
local system logger, configuring 64, 65
logging 61, 62
logging and auditing 57
other type rules, querying 343
permissive or enforcing mode,

switching 52, 53
policy and state management 177
policy files, using 336
policy object information,

displaying 337-339
protection, disabling for

single service 55, 56
resources and objects, labeling 28-30
role-related rules, querying 344
roles, limiting through users 34, 35

448 Index

sepgsql permissions 251
sepgsql-specific functions, using 257
sesearch 340, 341
single-step analysis, performing 336
state, setting 50-52
switching on and off 50
target settings and policies 176
trusted procedures, creating 255-257
type transition rules, querying 342
used, for enabling CIPSO label 170
used, for extending DAC 25
using, with systemd’s container

support 302, 303
vulnerabilities, impact reducing 26, 27

Security-Enhanced PostgreSQL
(SEPostgreSQL)

about 244
fallback label, creating for

remote sessions 260
integrating, into network 259, 260
reference link 244
troubleshooting 249
tuning, in PostgreSQL 248
used, for reconfiguring

PostgreSQL 244-246
Security Identifiers (SID) 130, 339
SECurity MARKings (SECMARK)

about 148, 150
implementing 150

security policy database (SPD) 167
security policy information (SPI) 170
selint

code, verifying 399
reference link 399

SELinux-aware applications 56, 57
SELinux booleans

container_t privileges, toggling 312
impact, inspecting 325

listing 322, 323
values, modifying 323, 324
working with 322

SELinux Booleans 53
SELinux context

setting, for pods 315-317
using 304, 305

SELinux development mode 52
SELinux domain

modifying, of container 310
SELINUX_ERR event 69
SELinux event types

about 68
labeled IPsec event 71
MAC_CONFIG_CHANGE event 70
MAC_POLICY_LOAD event 69
MAC_STATUS event 70
NetLabel event 70
SELINUX_ERR event 69
USER_AVC event 68

SELinux file context expressions
about 115
customizable types, using 120
file_contexts files, compiling 121
local modifications, exchanging 122
modifying 117, 118
recursive context operations,

optimizing 119
using 116, 117

SELinux file contexts
about 104
categories, placing on on files

and directories 113
copying 110-112
extended attribute (xattr),

backing up 114
extended attribute (xattr), restoring 114
filesystem, relabeling 123

Index 449

fixfiles tools, using 123
information, obtaining 105-107
inheriting 109
modifying 112, 113, 122
mount options, using 114, 115
moving 110-112
multilevel security, using

on files 113, 114
rlpkg tools, using 123
setfiles tools, using 123
setting, at boot with tmpfiles 124, 125
setting up 108
setting, with restorecond 124
transition rules, querying 109, 110
types, interpreting 107, 108

SELinux objects
declaring 384, 385

SELinux policies
content, defining 45, 46
cross-user sharing, limiting 43
defining 36, 37
distinguishing between 41
distributing 36, 37
distributing, through modules 39
MLS, enabling 41
modules, bundling in policy store 40
policy versions, incrementing 44, 45
reference link 37
unconfined domains, enabling 42, 43
unknown permissions,

dealing with 41, 42
writing 37, 38

SELinux policy
tuning 261

SELinux policy, for CentOS
URL 334

SELinux process context
about 125

domain transition 127-129
implementing 126
initial context, querying 130
memory protections, tweaking 130, 131
other transitions 130
target context, verifying 129

SELinux roles
about 83
access, managing through sudo 94
contexts, defining 91, 93
contexts, validating with

getseuser command 93
handling 91
runcon command, using 95
switching, to system role 96
switching, with newrole 93

SELinux rules
exposing, through interfaces 388-390

SELinux sandbox 370
SELinux-secured virtualization 264
SELinux support

Kubernetes, configuring with 313-315
SELinux system administration

Ansible, using 179
SELinux users

about 35, 83
accessible domains, listing 89
categories, managing 90, 91
creating 87-89
login, customizing for services 86, 87
login, mapping 84-86
mappings, listing 83, 84

semaphore 142
sensible module names

using 330, 331
sepolicy generate command

about 377
used, for generating policies 378, 379

450 Index

session ID (SID) 61
session-specific D-Bus 224
single-class permission groups

using 390, 391
Smack 24
socket buffers (skb) 156
Stream Control Transmission

Protocol (SCTP) 146
streaming sockets 144
stub domains (stubdoms) 296
Subnet Manager (SM) 158
system automation

Chef, using 197
system calls 22
systemd 210
systemd container

initializing 303
systemd device management

tuning 210, 211
systemd logging

about 220
logs, querying 220
SELinux-related information,

retrieving 220
setroubleshoot integration,

using with journal 221
tuning 210, 211

systemd services
device files, handling 221
files, relabeling 216, 217
implementing 212
SELinux context, setting for

service 213, 214
SELinux label, setting on

device node 223
SELinux, requiring for service 215, 216
socket-based activation, using 218
transient services, using 215

tuning 210, 211
udev rules, using 221, 222
unit files 212, 213
unit operation access 219

system management
automating, with Puppet 191

system-wide D-Bus 224

T
Tiny Code Generator (TCG) 268
TOMOYO Linux 24
transient services 215
Trusted Computer System Evaluation

Criteria (TSEC) 22
type 30
type attributes

about 136
defining 136

type bounds 133
type enforcement 31
type enforcement files 384
type transitions 342

U
udica

custom domains, creating 311, 312
unconfined domain

about 362
extending 367
new application, marking

to run as 363, 364
working 362, 363

UNIX domain sockets 144
unnamed pipes 143
unprivileged domains (domU) 286

Index 451

user applications
adding 396, 397

USER_AVC event 68
user-based access control (UBAC) 34
User Identifier (UID) 217
user-level policies

adding 398
user-managed temporary files 396
user-oriented SELinux context 82
userspace object managers 211

V
Vagrant boxes

configuring 283
reference link 282

Vagrant tool
deploying 281
reference link 281
using, with libvirt 281

virtual file system (VFS) 143
virtualization

about 264, 265
domains, reusing 267, 268
fine-tuning, with SELinux

policy 268-270
risks, reviewing 266, 267

virtualization layers
guest 265
host 265
hypervisor 265
image 265
virtual machine 265

virtualization, types
application virtualization 265
full-system emulation 264
native virtualization 264
OS-level containerization 265

OS-level virtualization 265
paravirtualization 265

Virtual Local Area Networks
(VLANs) 158

Virtual Network Computing (VNC) 275

X
X Desktop Group (XDG) 396
Xen

about 286
building, from source 288-290
executing, with Xen-enabled

Linux kernel 287
installing 287
unprivileged guest, creating 290, 292

Xen hypervisor 286
Xen Security Modules (XSM)

about 286, 292, 293
booleans, using 298
hardware resources, labeling 299
logs, querying 297
manipulating 296
policy, querying 298, 299
state, defining 296

XSM-enabled Xen
executing 293
rebuilding 293, 295

XSM-FLASK 293
XSM labels

rebuilding 295

Y
Yama 24

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Using SELinux
	Chapter 1: Fundamental SELinux Concepts
	Technical requirements
	Providing more security for Linux
	Introducing Linux Security Modules (LSM)
	Extending regular DAC with SELinux
	Restricting root privileges
	Reducing the impact of vulnerabilities
	Enabling SELinux support

	Labeling all resources and objects
	Dissecting the SELinux context
	Enforcing access through types
	Granting domain access through roles
	Limiting roles through users
	Controlling information flow through sensitivities

	Defining and distributing policies
	Writing SELinux policies
	Distributing policies through modules
	Bundling modules in a policy store

	Distinguishing between policies
	Supporting MLS
	Dealing with unknown permissions
	Supporting unconfined domains
	Limiting cross-user sharing
	Incrementing policy versions
	Different policy content

	Summary
	Questions

	Chapter 2: Understanding SELinux Decisions and Logging
	Technical requirements
	Switching SELinux on and off
	Setting the global SELinux state
	Switching to permissive or enforcing mode
	Using kernel boot parameters
	Disabling SELinux protections for a single service
	Understanding SELinux-aware applications

	SELinux logging and auditing
	Following audit events
	Tuning the AVC
	Uncovering more logging
	Configuring Linux auditing
	Configuring the local system logger
	Reading SELinux denials
	Other SELinux-related event types
	Using ausearch

	Getting help with denials
	Troubleshooting with setroubleshoot
	Sending emails when SELinux denials occur
	Using audit2why
	Interacting with systemd-journal
	Using common sense

	Summary
	Questions

	Chapter 3: Managing User Logins
	Technical requirements
	User-oriented SELinux contexts
	SELinux users and roles
	Listing SELinux user mappings
	Mapping logins to SELinux users
	Customizing logins for services
	Creating SELinux users
	Listing accessible domains
	Managing categories

	Handling SELinux roles
	Defining allowed SELinux contexts
	Validating contexts with getseuser
	Switching roles with newrole
	Managing role access through sudo
	Reaching other domains using runcon
	Switching to the system role

	SELinux and PAM
	Assigning contexts through PAM
	Prohibiting access during permissive mode
	Polyinstantiating directories

	Summary
	Questions

	Chapter 4: Using File Contexts and Process Domains
	Technical requirements
	Introduction to SELinux file contexts
	Getting context information
	Interpreting SELinux context types

	Keeping or ignoring contexts
	Inheriting the default contexts
	Querying transition rules
	Copying and moving files
	Temporarily changing file contexts
	Placing categories on files and directories
	Using multilevel security on files
	Backing up and restoring extended attributes
	Using mount options to set SELinux contexts

	SELinux file context expressions
	Using context expressions
	Registering file context changes
	Optimizing recursive context operations
	Using customizable types
	Compiling the different file_contexts files
	Exchanging local modifications

	Modifying file contexts
	Using setfiles, rlpkg, and fixfiles
	Relabeling the entire filesystem
	Automatically setting context with restorecond
	Setting SELinux context at boot with tmpfiles

	The context of a process
	Getting a process context
	Transitioning toward a domain
	Verifying a target context
	Other supported transitions
	Querying initial contexts
	Tweaking memory protections

	Limiting the scope of transitions
	Sanitizing environments on transition
	Disabling unconstrained transitions
	Using Linux's NO_NEW_PRIVS

	Types, permissions, and constraints
	Understanding type attributes
	Querying domain permissions
	Learning about constraints

	Summary
	Questions

	Chapter 5: Controlling Network Communications
	Technical requirements
	Controlling process communications
	Using shared memory
	Communicating locally through pipes
	Conversing over UNIX domain sockets
	Understanding netlink sockets
	Dealing with TCP, UDP, and SCTP sockets
	Listing connection contexts

	Linux firewalling and SECMARK support
	Introducing netfilter
	Implementing security markings
	Assigning labels to packets
	Transitioning to nftables
	Assessing eBPF

	Securing high-speed InfiniBand networks
	Directly accessing memory
	Protecting InfiniBand networks
	Managing the InfiniBand subnet
	Controlling access to InfiniBand partitions

	Understanding labeled networking
	Fallback labeling with NetLabel
	Limiting flows based on the network interface
	Accepting peer communication from selected hosts
	Verifying peer-to-peer flow
	Using old-style controls

	Using labeled IPsec with SELinux
	Setting up regular IPsec
	Enabling labeled IPsec

	Supporting CIPSO with NetLabel and SELinux
	Configuring CIPSO mappings
	Adding domain-specific mappings
	Using local CIPSO definitions
	Supporting IPv6 CALIPSO

	Summary
	Questions

	Chapter 6: Configuring SELinux through Infrastructure-as-Code Orchestration
	Technical requirements
	Introducing the target settings and policies
	The idempotency of actions
	Policy and state management
	SELinux configuration settings
	Setting file contexts
	Recovering from mistakes
	Comparing frameworks

	Using Ansible for SELinux system administration
	How Ansible works
	Installing and configuring Ansible
	Creating and testing the Ansible role
	Assigning SELinux contexts to filesystem resources with Ansible
	Loading custom SELinux policies with Ansible
	Using Ansible's out-of-the-box SELinux support

	Utilizing SaltStack to configure SELinux
	How SaltStack works
	Installing and configuring SaltStack
	Creating and testing our SELinux state with SaltStack
	Assigning SELinux contexts to filesystem resources with SaltStack
	Loading custom SELinux policies with SaltStack
	Using SaltStack's out-of-the-box SELinux support

	Automating system management with Puppet
	How Puppet works
	Installing and configuring Puppet
	Creating and testing the SELinux class with Puppet
	Assigning SELinux contexts to filesystem resources with Puppet
	Loading custom SELinux policies with Puppet
	Using Puppet's out-of-the-box SELinux support

	Wielding Chef for system automation
	How Chef works
	Installing and configuring Chef
	Creating the SELinux cookbook
	Assigning SELinux contexts to filesystem resources with Chef
	Loading custom SELinux policies with Chef
	Using Chef's out-of-the-box SELinux support

	Summary
	Questions

	Section 2:
SELinux-Aware Platforms
	Chapter 7: Configuring Application-Specific SELinux Controls
	Technical requirements
	Tuning systemd services, logging, and device management
	Service support in systemd
	Logging with systemd
	Handling device files

	Communicating over D-Bus
	Understanding D-Bus
	Controlling service acquisition with SELinux
	Governing message flows

	Configuring PAM services
	Cockpit
	Cron
	OpenSSH

	Using mod_selinux with Apache
	Introducing mod_selinux
	Configuring the general Apache SELinux sensitivity
	Mapping end users to specific domains
	Changing domains based on source

	Summary
	Questions

	Chapter 8: SEPostgreSQL – Extending PostgreSQL with SELinux
	Technical requirements
	Introducing PostgreSQL and sepgsql
	Reconfiguring PostgreSQL with sepgsql
	Creating a test account
	Tuning sepgsql inside PostgreSQL
	Troubleshooting sepgsql

	Understanding SELinux's database-specific object classes and permissions
	Understanding sepgsql permissions
	Using the default supported types
	Creating trusted procedures
	Using sepgsql-specific functions

	Using MCS and MLS
	Limiting access to columns based on categories
	Constraining the user domain for sensitivity range manipulation

	Integrating SEPostgreSQL into the network
	Creating a fallback label for remote sessions
	Tuning the SELinux policy

	Summary
	Questions

	Chapter 9: Secure Virtualization
	Technical requirements
	Understanding SELinux-secured virtualization
	Introducing virtualization
	Reviewing the risks of virtualization
	Reusing existing virtualization domains
	Fine-tuning virtualization-supporting SELinux policy
	Understanding sVirt's use of MCS

	Enhancing libvirt with SELinux support
	Differentiating between shared and
dedicated resources
	Assessing the libvirt architecture
	Configuring libvirt for sVirt
	Changing a guest's SELinux labels
	Customizing resource labels
	Controlling available categories
	Changing the storage pool locations

	Using Vagrant with libvirt
	Deploying Vagrant and the libvirt plugin
	Installing a libvirt-compatible box
	Configuring Vagrant boxes

	Summary
	Questions

	Chapter 10: Using Xen Security Modules with FLASK
	Technical requirements
	Understanding Xen and XSM
	Introducing the Xen hypervisor
	Installing Xen
	Creating an unprivileged guest
	Understanding Xen Security Modules

	Running XSM-enabled Xen
	Rebuilding Xen with XSM support
	Using XSM labels
	Manipulating XSM

	Applying custom XSM policies
	Summary
	Questions

	Chapter 11: Enhancing the Security of Containerized Workloads
	Technical requirements
	Using SELinux with systemd's container support
	Initializing a systemd container
	Using a specific SELinux context
	Facilitating container management with machinectl

	Configuring podman
	Selecting podman over Docker
	Using containers with SELinux
	Changing a container's SELinux domain
	Creating custom domains with udica
	Toggling container_t privileges with SELinux booleans
	Tuning the container hosting environment

	Leveraging Kubernetes' SELinux support
	Configuring Kubernetes with SELinux support
	Setting SELinux contexts for pods

	Summary
	Questions

	Section 3:
Policy Management
	Chapter 12: Tuning SELinux Policies
	Technical requirements
	Working with SELinux booleans
	Listing SELinux booleans
	Changing boolean values
	Inspecting the impact of a boolean

	Handling policy modules
	Listing policy modules
	Loading and removing policy modules

	Replacing and updating existing policies
	Creating policies using audit2allow
	Using sensible module names
	Generating reference policy style modules with audit2allow
	Building reference policy - style modules
	Building legacy-style modules
	Replacing the default distribution policy

	Summary
	Questions

	Chapter 13: Analyzing Policy Behavior
	Technical requirements
	Performing single-step analysis
	Using different SELinux policy files
	Displaying policy object information
	Understanding sesearch
	Querying allow rules
	Querying type transition rules
	Querying other type rules
	Querying role-related rules
	Browsing with apol
	Using apol workspaces

	Investigating domain transitions
	Using apol for domain transition analysis
	Using sedta for domain transition analysis
	Using sepolicy for domain transition analysis

	Analyzing information flow
	Using apol for information flow analysis
	Using seinfoflow for information flow analysis
	Using sepolicy communicate for simple information flow analysis

	Comparing policies
	Using sediff to compare policies

	Summary
	Questions

	Chapter 14: Dealing with New Applications
	Technical requirements
	Running applications without restrictions
	Understanding how unconfined domains work
	Making new applications run as an unconfined domain
	Extending unconfined domains
	Marking domains as permissive

	Using sandboxed applications
	Understanding the SELinux sandbox
	Using the sandbox command

	Assigning common policies to new applications
	Understanding domain complexity
	Running applications in a specific policy

	Extending generated policies
	Understanding the limitations of generated policies
	Introducing sepolicy generate
	Generating policies with sepolicy generate

	Summary
	Questions

	Chapter 15: Using the Reference Policy
	Technical requirements
	Introducing the reference policy
	Navigating the policy
	Structuring policy modules

	Using and understanding the policy macros
	Making use of single-class permission groups
	Calling permission groups

	Creating application-level policies
	Constructing network-facing service policies
	Addressing user applications

	Adding user-level policies
	Getting help with supporting tools
	Verifying code with selint
	Querying the interfaces and macros locally

	Summary
	Questions

	Chapter 16: Developing Policies with SELinux CIL
	Technical requirements
	Introducing CIL
	Translating .pp files to CIL
	Understanding CIL syntax

	Creating fine-grained definitions
	Depending on roles or types
	Defining a new port type
	Adding constraints to the policy

	Building complete application policies
	Using namespaces
	Extending the policy with attribute assignments
	Adding entry point information
	Gradually extending the policy further
	Introducing permission sets
	Adding macros

	Summary
	Questions

	Assessments
	Other Books You May Enjoy
	Index

