

Content
Containers ... 1

Item 1. Choose your containers with care... 1

Item 2. Beware the illusion of container-independent code................................ 4

Item 3. Make copying cheap and correct for objects in containers..................... 9

Item 4. Call empty instead of checking size() against zero. 11

Item 5. Prefer range member functions to their single-element counterparts... 12

Item 6. Be alert for C++'s most vexing parse... 20

Item 7. When using containers of newed pointers, remember to delete the
pointers before the container is destroyed. ... 22

Item 8. Never create containers of auto_ptrs. ... 27

Item 9. Choose carefully among erasing options. ... 29

Item 10. Be aware of allocator conventions and restrictions. 34

Item 11. Understand the legitimate uses of custom allocators........................ 40

Item 12. Have realistic expectations about the thread safety of STL containers.
 43

vector and string.. 48

Item 13. Prefer vector and string to dynamically allocated arrays.................. 48

Item 14. Use reserve to avoid unnecessary reallocations................................ 50

Item 15. Be aware of variations in string implementations. 52

Item 16. Know how to pass vector and string data to legacy APIs. 57

Item 17. Use "the swap trick" to trim excess capacity.................................... 60

Item 18. Avoid using vector<bool>. ... 62

Associative Containers.. 65

Item 19. Understand the difference between equality and equivalence.......... 65

 i

Item 20. Specify comparison types for associative containers of pointers. 69

Item 21. Always have comparison functions return false for equal values. ... 73

Item 22. Avoid in-place key modification in set and multiset. 76

Item 23. Consider replacing associative containers with sorted vectors. 81

Item 24. Choose carefully between map::operator[] and map-insert when
efficiency is important. ... 87

Item 25. Familiarize yourself with the nonstandard hashed containers.......... 91

Iterators ... 95

Item 26. Prefer iterator to const iterator, reverse_iterator, and
const_reverse_iterator. .. 95

Item 27. Use distance and advance to convert a container's const_iterators to
iterators. 98

Item 28. Understand how to use a reverse_iterator's base iterator................ 101

Item 29. Consider istreambuf_iterators for character-by-character input..... 103

Algorithms .. 106

Item 30. Make sure destination ranges are big enough................................. 106

Item 31. Know your sorting options. .. 111

Item 32. Follow remove-like algorithms by erase if you really want to remove
something. 116

Item 33. Be wary of remove-like algorithms on containers of pointers. 120

Item 34. Note which algorithms expect sorted ranges. 123

Item 35. Implement simple case-insensitive string comparisons via mismatch
or lexicographical compare... 126

Item 36. Understand the proper implementation of copy_if......................... 130

Item 37. Use accumulate or for_each to summarize ranges. 132

Functors, Functor Classes, Functions, etc... 138

Item 38. Design functor classes for pass-by-value. 138

Item 39. Make predicates pure functions. ... 141

 ii

Item 40. Make functor classes adaptable. ... 144

Item 41. Understand the reasons for ptr_fun, mem_fun, and mem_fun_ref. 148

Item 42. Make sure less<T> means operator<.. 151

Programming with the STL .. 155

Item 43. Prefer algorithm calls to hand-written loops. 155

Item 44. Prefer member functions to algorithms with the same names........ 162

Item 45. Distinguish among count, find, binary search, lower_bound,
upper_bound, and equal_range. .. 165

Item 46. Consider function objects instead of functions as algorithm
parameters. 173

Item 47. Avoid producing write-only code. .. 177

Item 48. Always #include the proper headers... 179

Item 49. Learn to decipher STL-related compiler diagnostics...................... 181

Item 50. Familiarize yourself with STL-related web sites............................ 187

 iii

Containers

Sure, the STL has iterators, algorithms, and function objects, but for most C++
programmers, it's the containers that stand out. More powerful and flexible than arrays,
they grow (and often shrink) dynamically, manage their own memory, keep track of
how many objects they hold, bound the algorithmic complexity of the operations they
support, and much, much more. Their popularity is easy to understand. They're simply
better than their competition, regardless of whether that competition comes from
containers in other libraries or is a container type you'd write yourself. STL containers
aren't just good. They're really good.

This chapter is devoted to guidelines applicable to all the STL containers. Later
chapters focus on specific container types. The topics addressed here include selecting
the appropriate container given the constraints you face: avoiding the delusion that
code written for one container type is likely to work with other container types: the
significance of copying operations for objects in containers: difficulties that arise when
pointers of auto_ptrs are stored in containers: the ins and outs of erasing: what you can
and cannot accomplish with custom allocators: tips on how to maximize efficiency:
and considerations for using containers in a threaded environment.

That's a lot of ground to cover, but don't worry. The Items break it down into bite-
sized chunks, and along the way, you're almost sure to pick up several ideas you can
apply to your code now.

Item 1. Choose your containers with care.

You know that C++ puts a variety of containers at your disposal, but do you realize
just how varied that variety is? To make sure you haven't overlooked any of your
options, here's a quick review.

• The standard STL sequence containers, vector, string, deque, and list.

• The standard STL associative containers, set, multiset, map and multimap.

• The nonstandard sequence containers slist and rope. slist is a singly linked
list, and rope is essentially a heavy-duty string. (A "rope" is a heavy-duty "string."
Get it?) You'll find a brief overview of these nonstandard (but commonly
available) containers in Item 50.

• The nonstandard associative containers hash_set, hash_multiset, hash_map,
and hash_multimap. I examine these widely available hash-table-based variants
on the standard associative containers in Item 25.

• vector<char> as a replacement for string. Item 13 describes the conditions
under which such a replacement might make sense.

 1

• vector as a replacement for the standard associative containers. As Item 23
makes clear, there are times when vector can outperform the standard
associative containers in both time and space.

• Several standard non-STL containers, including arrays, bitset, valarray, stack,
queue, and priority_queue. Because these are non-STL containers. I have little
to say about them in this book, though Item 16 mentions a case where arrays are
preferable to STL containers and Item 18 explains why bitset may be better
than vector<bool>. It's also worth bearing in mind that arrays can be used with
STL algorithms, because pointers can be used as array iterators.

That's a panoply of options, and it's matched in richness by the range of considerations
that should go into choosing among them. Unfortunately, most discussions of the STL
take a fairly narrow view of the world of containers, ignoring many issues relevant to
selecting the one that is most appropriate. Even the Standard gets into this act, offering
the following guidance for choosing among vector, deque, and list:

vector, list, and deque offer the programmer different complexity trade-offs
and should be used accordingly, vector is the type of sequence that should
be used by default, list should be used when there are frequent insertions
and deletions from the middle of the sequence, deque is the data structure of
choice when most insertions and deletions take place at the beginning or at
the end of the sequence.

If your primary concern is algorithmic complexity. I suppose this constitutes
reasonable advice, but there is so much more to be concerned with.

In a moment, we'll examine some of the important container-related issues that
complement algorithmic complexity, but first I need to introduce a way of categorizing
the STL containers that isn't discussed as often as it should be. That is the distinction
between contiguous-memory containers and node-based containers.

Contiguous-memory containers (also known as array-based containers] store their
elements in one or more (dynamically allocated) chunks of memory, each chunk
holding more than one container element. If a new element is inserted or an existing
element is erased, other elements in the same memory chunk have to be shifted up or
down to make room for the new element or to fill the space formerly occupied by the
erased element. This kind of movement affects both performance (see Items 5 and 14)
and exception safety (as we'll soon see). The standard contiguous-memory containers
are vector, string, and deque. The nonstandard rope is also a contiguous-memory
container.

Node-based containers store only a single element per chunk of (dynamically
allocated) memory. Insertion or erasure of a container element affects only pointers to
nodes, not the contents of the nodes themselves, so element values need not be moved
when something is inserted or erased. Containers representing linked lists, such as list
and slist, are node-based, as are all the standard associative containers. (They're

 2

typically implemented as balanced trees.) The nonstandard hashed containers use
varying node-based implementations, as you'll see in Item 25.

With this terminology out of the way, we're ready to sketch some of the questions
most relevant when choosing among containers. In this discussion, I omit
consideration of non-STL-like containers (e.g., arrays, bitsets, etc.), because this is,
after all, a book on the STL.

• Do you need to be able to insert a new element at an arbitrary position in the
container? If so, you need a sequence container: associative containers won't
do.

• Do you care how elements are ordered in the container? If not. a hashed
container becomes a viable choice. Otherwise, you'll want to avoid hashed
containers.

• Must the container be part of standard C++? If so, that eliminates hashed
containers, slist, and rope.

• What category of iterators do you require? If they must be random access
iterators, you're technically limited to vector, deque, and string, but you'd
probably want to consider rope, too. (See Item 50 for information on rope.) If
bidirectional iterators are required, you must avoid slist (see Item 50) as well as
one common implementation of the hashed containers (see Item 25).

• Is it important to avoid movement of existing container elements when
insertions or erasures take place? If so, you'll need to stay away from
contiguous-memory containers (see Item 5).

• Does the data in the container need to be layout-compatible with C? If so,
you're limited to vectors (see Item 16).

• Is lookup speed a critical consideration? If so, you'll want to look at hashed
containers (see Item 25), sorted vectors (see Item 23), and the standard
associative containers — probably in that order.

• Do you mind if the underlying container uses reference counting? If so, you'll
want to steer clear of string, because many string implementations are
reference-counted (see Item 13). You'll need to avoid rope, too, because the
definitive rope implementation is based on reference counting (see Item 50).
You have to represent your strings somehow, of course, so you'll want to
consider vector<char>.

• Do you need transactional semantics for insertions and erasures? That is, do
you require the ability to reliably roll back insertions and erasures? If so, you'll
want to use a node-based container. If you need transactional semantics for
multiple-element insertions (e.g., the range form — see Item 5), you'll want to
choose list, because list is the only standard container that offers transactional

 3

semantics for multiple-element insertions. Transactional semantics are
particularly important for programmers interested in writing exception-safe
code. (Transactional semantics can be achieved with contiguous-memory
containers, too, but there is a performance cost, and the code is not as
straightforward. To learn more about this, consult Item 17 of Sutter's
Exceptional C++ [8].)

• Do you need to minimize iterator, pointer, and reference invalidation? If so,
you'll want to use node-based containers, because insertions and erasures on
such containers never invalidate iterators, pointers, or references (unless they
point to an element you are erasing). In general, insertions or erasures on
contiguous-memory containers may invalidate all iterators, pointers, and ref-
erences into the container.

• Would it be helpful to have a sequence container with random access iterators
where pointers and references to the data are not invalidated as long as nothing
is erased and insertions take place only at the ends of the container? This is a
very special case, but if it's your case, deque is the container of your dreams.
(Interestingly, deque's iterators may be invalidated when insertions are made
only at the ends of the container, deque is the only standard STL container
whose iterators may be invalidated without also invalidating its pointers and
references.)

These questions are hardly the end of the matter. For example, they don't take into
account the varying memory allocation strategies employed by the different container
types. (Items 10 and 14 discuss some aspects of such strategies.) Still, they should be
enough to convince you that, unless you have no interest in element ordering, stan-
dards conformance, iterator capabilities, layout compatibility with C lookup speed,
behavioral anomalies due to reference counting, the ease of implementing
transactional semantics, or the conditions under which iterators are invalidated, you
have more to think about than simply the algorithmic complexity of container
operations. Such complexity is important, of course, but it's far from the entire story.

The STL gives you lots of options when it comes to containers. If you look beyond the
bounds of the STL, there are even more options. Before choosing a container, be sure
to consider all your options. A "default container"? I don't think so.

Item 2. Beware the illusion of container-independent code.

The STL is based on generalization. Arrays are generalized into containers and
parameterized on the types of objects they contain. Functions are generalized into
algorithms and parameterized on the types of iterators they use. Pointers are
generalized into iterators and parameterized on the type of objects they point to.

That's just the beginning. Individual container types are generalized into sequence and
associative containers, and similar containers are given similar functionality. Standard
contiguous-memory containers (see Item 1) offer random-access iterators, while
standard node-based containers (again, see Item 1) provide bidirectional iterators.

 4

Sequence containers support push_front and/or push_back, while associative
containers don't. Associative containers offer logarithmic-time lower_bound,
upper_bound, and equal_range member functions, but sequence containers don't.

With all this generalization going on, it's natural to want to join the movement. This
sentiment is laudable, and when you write your own containers, iterators, and
algorithms, you'll certainly want to pursue it. Alas, many programmers try to pursue it
in a different manner. Instead of committing to particular types of containers in their
software, they try to generalize the notion of a container so that they can use, say, a
vector, but still preserve the option of replacing it with something like a deque or a list
later — all without changing the code that uses it. That is, they strive to write
container-independent code. This kind of generalization, well-intentioned though it is,
is almost always misguided.

Even the most ardent advocate of container-independent code soon realizes that it
makes little sense to try to write software that will work with both sequence and
associative containers. Many member functions exist for only one category of
container, e.g., only sequence containers support push_front or push_back, and only
associative containers support count and lower_bound, etc. Even such basics as insert
and erase have signatures and semantics that vary from category to category. For
example, when you insert an object into a sequence container, it stays where you put it,
but if you insert an object into an associative container, the container moves the object
to where it belongs in the container's sort order. For another example, the form of erase
taking an iterator returns a new iterator when invoked on a sequence container, but it
returns nothing when invoked on an associative container. (Item 9 gives an example of
how this can affect the code you write.)

Suppose, then, you aspire to write code that can be used with the most common
sequence containers: vector, deque, and list. Clearly, you must program to the
intersection of their capabilities, and that means no uses of reserve or capacity (see
Item 14), because deque and list don't offer them. The presence of list also means you
give up operator[], and you limit yourself to the capabilities of bidirectional iterators.
That, in turn, means you must stay away from algorithms that demand random access
iterators, including sort, stable_sort, partial_sort, and nth_element (see Item 31).

On the other hand, your desire to support vector rules out use of push_front and
pop_front, and both vector and deque put the kibosh on splice and the member
form of sort. In conjunction with the constraints above, this latter prohibition
means that there is no form of sort you can call on your "generalized sequence
container."

That's the obvious stuff. If you violate any of those restrictions, your code will fail to
compile with at least one of the containers you want to be able to use. The code that
will compile is more insidious.

The main culprit is the different rules for invalidation of iterators, pointers, and
references that apply to different sequence containers. To write code that will work
correctly with vector, deque, and list, you must assume that any operation invalidating
iterators, pointers, or references in any of those containers invalidates them in the

 5

container you're using. Thus, you must assume that every call to insert invalidates
everything, because deque::insert invalidates all iterators and, lacking the ability to call
capacity, vector::insert must be assumed to invalidate all pointers and references. (Item
1 explains that deque is unique in sometimes invalidating its iterators without
invalidating its pointers and references.) Similar reasoning leads to the conclusion that
every call to erase must be assumed to invalidate everything.

Want more? You can't pass the data in the container to a C interface, because only
vector supports that (see Item 16). You can't instantiate your container with bool as the
type of objects to be stored, because, as Item 18 explains, vector<bool> doesn't
always behave like a vector, and it never actually stores bools. You can't assume list's
constant-time insertions and erasures, because vector and deque take linear time to
perform those operations.

When all is said and done, you're left with a "generalized sequence container" where
you can't call reserve, capacity, operator[], push_front, pop_front, splice, or any
algorithm requiring random access iterators: a container where every call to insert and
erase takes linear time and invalidates all iterators, pointers, and references: and a
container incompatible with C where bools can't be stored. Is that really the kind of
container you want to use in your applications? I suspect not.

If you rein in your ambition and decide you're willing to drop support for list, you still
give up reserve, capacity, push_front, and pop_front: you still must assume that all
calls to insert and erase take linear time and invalidate everything; you still lose layout
compatibility with C; and you still can't store bools.

If you abandon the sequence containers and shoot instead for code that can work with
different associative containers, the situation isn't much better. Writing for both set and
map is close to impossible, because sets store single objects while maps store pairs of
objects. Even writing for both set and multiset (or map and multimap) is tough. The
insert member function taking only a value has different return types for sets/maps
than for their multi cousins, and you must religiously avoid making any assumptions
about how many copies of a value are stored in a container. With map and multimap,
you must avoid using operator[], because that member function exists only for map.

Face the truth: it's not worth it. The different containers are different, and they have
strengths and weaknesses that vary in significant ways. They're not designed to be
interchangeable, and there's little you can do to paper that over. If you try, you're
merely tempting fate, and fate doesn't like to be tempted.

Still, the day will dawn when you'll realize that a container choice you made was, er,
suboptimal, and you'll need to use a different container type. You now know that when
you change container types, you'll not only need to fix whatever problems your
compilers diagnose, you'll also need to examine all the code using the container to see
what needs to be changed in light of the new container's performance characteristics
and rules for invalidation of iterators, pointers, and references. If you switch from a
vector to something else, you'll also have to make sure you're no longer relying on

 6

vector's C-compatible memory layout, and if you switch to a vector, you'll have to
ensure that you're not using it to store bools.

Given the inevitability of having to change container types from time to time, you can
facilitate such changes in the usual manner: by encapsulating, encapsulating,
encapsulating. One of the easiest ways to do this is through the liberal use of typedefs
for container and iterator types. Hence, instead of writing this.

class Widget {...};
vector<Widget> vw;
Widget bestWidget;
… //give bestWidget a value
vector<Widget>::iterator i = // find a Widget with the

find(vw.begin(), vw.end(), bestWidget); // same value as bestWidget

write this:

class Widget {...);
typedef vector<Widget> WidgetContainer;
typedef WidgetContainer::iterator WCIterator;

WidgetContainer vw;
Widget bestWidget;
...
WCIterator i = find(vw.begin(), vw.end(), bestWidget);

This makes it a lot easier to change container types, something that's especially
convenient if the change in question is simply to add a custom allocator. (Such a
change doesn't affect the rules for iterator/ pointer/reference invalidation.)

class Widget {... };
template<typename T> // see Item 10 for why this
SpecialAllocator{...} // needs to be a template
typedef vector<Widget, SpecialAllocator<Widget> > WidgetContainer; typedef
WidgetContainer::iterator WCIterator;
WidgetContainer vw; // still works
Widget bestWidget;
…
WCIterator i = find(vw.begin(), vw.end(), bestWidget); // still works

If the encapsulating aspects of typedefs mean nothing to you, you're still likely to
appreciate the work they can save. For example, if you have an object of type

map< string,
vector<Widget>::iterator,
CIStringCompare> // CIStringCompare is "case-
 // insensitive string compare;"

 7

//Item 19 describes it

and you want to walk through the map using const_iterators, do you really want to
spell out

map<string, vector<Widget>::iterator, CIStringCompare>::const_iterator

more than once? Once you've used the STL a little while, you'll realize that typedefs
are your friends.

A typedef is just a synonym for some other type, so the encapsulation it affords is
purely lexical. A typedef doesn't prevent a client from doing (or depending on)
anything they couldn't already do (or depend on). You need bigger ammunition if you
want to limit client exposure to the container choices you've made. You need classes.

To limit the code that may require modification if you replace one container type with
another, hide the container in a class, and limit the amount of container-specific
information visible through the class interface. For example, if you need to create a
customer list, don't use a list directly. Instead, create a CustomerList class, and hide a
list in its private section:

class CustomerList {
private:

typedef list<Customer> CustomerContainer;
typedef CustomerContainer::iterator CCIterator;
CustomerContainer customers;

public:
... // limit the amount of list-specific

//information visible through
}; //this interface

At first, this may seem silly. After all a customer list is a list, right? Well, maybe. Later
you may discover that you don't need to insert or erase customers from the middle of
the list as often as you'd anticipated, but you do need to quickly identify the top 20%
of your customers — a task tailor-made for the nth_element algorithm (see Item 31).
But nth_element requires random access iterators. It won't work with a list. In that
case, your customer "list" might be better implemented as a vector or a deque.

When you consider this kind of change, you still have to check every CustomerList
member function and every friend to see how they'll be affected (in terms of
performance and iterator/pointer/reference invalidation, etc.), but if you've done a
good job of encapsulating CustomerList's implementation details, the impact on
CustomerList clients should be small. You can't write container-independent code, but
they might be able to.

 8

Item 3. Make copying cheap and correct for objects in containers.

Containers hold objects, but not the ones you give them. Furthermore, when you get an
object from a container, the object you get is not the one that was in the container.
Instead, when you add an object to a container (via. e.g.. insert or push_back. etc.),
what goes into the container is a copy of the object you specify. When you get an
object from a container (via. e.g.. front or back), what you set is a copy of what was
contained. Copy in, copy out. That's the STL way.

Once an object is in a container, it's not uncommon for it to be copied further. If you
insert something into or erase something from a vector, string, or deque, existing
container elements are typically moved (copied) around (see Items 5 and 14). If you
use any of the sorting algorithms (see Item 31); next_permutation or
previous_permutation; remove, unique, or their ilk (see Hem 32); rotate or reverse,
etc., objects will be moved (copied) around. Yes, copying objects is the STL way.

It may interest you to know how all this copying is accomplished. That's easy. An
object is copied by using its copying member functions, in particular, its copy
constructor and its copy assignment operator. (Clever names, no?) For a user-defined
class like Widget, these functions are traditionally declared like this:

class Widget {
public:
 ...
 Widget(const Widget&); // copy constructor
 Widget& operator=(const Widget&); // copy assignment operator
 ...
}

As always, if you don't declare these functions yourself, your compilers will declare
them for you. Also as always, the copying of built-in types (e.g., ints, pointers, etc.) is
accomplished by simply copying the underlying bits. (For details on copy constructors
and assignment operators, consult any introductory book on C++. In Effective C++,
Items 11 and 27 focus on the behavior of these functions.)

With all this copying taking place, the motivation for this Item should now be clear. If
you fill a container with objects where copying is expensive, the simple act of putting
the objects into the container could prove to be a performance bottleneck. The more
things get moved around in the container, the more memory and cycles you'll blow on
making copies. Furthermore, if you have objects where "copying" has an
unconventional meaning, putting such objects into a container will invariably lead to
grief. (For an example of the kind of grief it can lead to. see Item 8.)

In the presence of inheritance, of course, copying leads to slicing. That is, if you create
a container of base class objects and you try to insert derived class objects into it, the
derivedness of the objects will be removed as the objects are copied (via the base class
copy constructor) into the container:

 9

vector<Widget> vw;
class SpecialWidget: // SpecialWidget inherits from

public Widget {...); // Widget above
SpecialWidget sw;
vw.push_back(sw); // sw is copied as a base class

II object into vw. Its specialness
// is lost during the copying

The slicing problem suggests that inserting a derived class object into a container of
base class objects is almost always an error. If you want the resulting object to act like
a derived class object, e.g., invoke derived class virtual functions, etc., it is always an
error. (For more background on the slicing problem, consult Effective C++. Item 22.
For another example of where it arises in the STL, see Item 38.)

An easy way to make copying efficient, correct, and immune to the slicing problem is
to create containers of pointers instead of containers of objects. That is, instead of
creating a container of Widget, create a container of Widget*. Copying pointers is fast,
it always does exactly what you expect (it copies the bits making up the pointer), and
nothing gets sliced when a pointer is copied. Unfortunately, containers of pointers
have their own STL-related headaches. You can read about them in Items 7 and 33. As
you seek to avoid those headaches while still dodging efficiency, correctness, and
slicing concerns, you'll probably discover that containers of smart pointers are an
attractive option. To learn more about this option, turn to Item 7.

If all this makes it sound like the STL is copy-crazy, think again. Yes, the STL makes
lots of copies, but it's generally designed to avoid copying objects unnecessarily. In
fact, it's generally designed to avoid creating objects unnecessarily. Contrast this with
the behavior of C's and C++'s only built-in container, the lowly array:

Widget w[maxNumWidgets]; // create an array of maxNumWidgets

 // Widgets, default-constructing each one

This constructs maxNumWidgets Widget objects, even if we normally expect to use
only a few of them or we expect to immediately overwrite each default-constructed
value with values we get from someplace else (e.g.. a file). Using the STL instead of
an array, we can use a vector that grows when it needs to:

vector<Widget> vw; // create a vector with zero Widget

// objects that will expand as needed

We can also create an empty vector that contains enough space for maxNumWidgets
Widgets, but where zero Widgets have been constructed:

vector<Widget> vw;
vw.reserve(maxNumWidgets); // see Item 14 for details on reserve

 10

Compared to arrays. STL containers are much more civilized. They create (by
copying) only as many objects as you ask for, they do it only when you direct them to,
and they use a default constructor only when you say they should. Yes, STL containers
make copies, and yes, you need to understand that, but don't lose sight of the fact that
they're still a big step up from arrays.

Item 4. Call empty instead of checking size() against zero.

For any container c, writing

if (c.size() == 0)...

is essentially equivalent to writing

if (c.empty())...

That being the case, you might wonder why one construct should be preferred to the
other, especially in view of the fact that empty is typically implemented as an inline
function that simply returns whether size returns 0.

You should prefer the construct using empty, and the reason is simple: empty is a
constant-time operation for all standard containers, but for some list implementations,
size takes linear time.

But what makes list so troublesome? Why can't it, too. offer a constant-time size? The
answer has much to do with list's unique splicing functions. Consider this code:

list<int> list1;
list<int> Iist2;
...
list1.splice(// move ail nodes in Iist2
 list1.end(), Iist2, // from the first occurrence
 find(list2.begin(), Iist2.end(), 5), // of 5 through the last
 find(list2.rbegin(), Iist2.rend(), 10).base() // occurrence of 10 to the
); //end of list1. See Item 28

 // for info on the "base()" call

This code won't work unless Iist2 contains a 10 somewhere beyond a 5, but let's
assume that's not a problem. Instead, let's focus on this question: how many elements
are in list1 after the splice? Clearly, list1 after the splice has as many elements as it did
before the splice plus however many elements were spliced into it. But how many
elements were spliced into it? As many as were in the range defined by
find(list2.begin(), Iist2.end(), 5) and find(list2.rbegin(), Iist2.rend(), 10).base(). Okay,
how many is that? Without traversing the range and counting them, there's no way to
know. And therein lies the problem.

Suppose you're responsible for implementing list, list isn't just any container, it's a
standard container, so you know your class will be widely used. You naturally want

 11

your implementation to be as efficient as possible. You figure that clients will
commonly want to find out how many elements are in a list, so you'd like to make size
a constant- time operation. You'd thus like to design list so it always knows how many
elements it contains.

At the same time, you know that of all the standard containers, only list offers the
ability to splice elements from one place to another without copying any data. You
reason that many list clients will choose list specifically because it offers high-
efficiency splicing. They know that splicing a range from one list to another can be
accomplished in constant time, and you know that they know it, so you certainly want
to meet their expectation that splice is a constant-time member function.

This puts you in a quandary. If size is to be a constant-time operation, each list
member function must update the sizes of the lists on which it operates. That includes
splice. But the only way for splice to update the sizes of the lists it modifies is for it to
count the number of elements being spliced, and doing that would prevent splice from
achieving the constant-time performance you want for it. If you eliminate the
requirement that splice update the sizes of the lists it's modifying, splice can be made
constant-time, but then size becomes a linear-time operation. In general, it will have to
traverse its entire data structure to see how many elements it contains. No matter how
you look at it, something — size or splice — has to give. One or the other can be a
constant-time operation, but not both.

Different list implementations resolve this conflict in different ways, depending on
whether their authors choose to maximize the efficiency of size or splice. If you
happen to be using a list implementation where a constant-time splice was given
higher priority than a constant-time size, you'll be better off calling empty than size,
because empty is always a constant-time operation. Even if you're not using such an
implementation, you might find yourself using such an implementation in the future.
For example, you might port your code to a different platform where a different
implementation of the STL is available, or you might just decide to switch to a
different STL implementation for your current platform.

No matter what happens, you can't go wrong if you call empty instead of checking to
see if size() == 0. So call empty whenever you need to know whether a container has
zero elements.

Item 5. Prefer range member functions to their single-element
counterparts.

Quick! Given two vectors, v1 and v2, what's the easiest way to make v1’s contents be
the same as the second half of v2's? Don't agonize over the definition of "half when v2
has an odd number of elements, just do something reasonable.

Time's up! If your answer was

v1.assign(v2.begin() + v2.size() /2, v2.end());

 12

or something quite similar, you get full credit and a gold star. If your answer involved
more than one function call, but didn't use any kind of loop, you get nearly full credit,
but no gold star. If your answer involved a loop, you've got some room for
improvement, and if your answer involved multiple loops, well, let's just say that you
really need this book.

By the way, if your response to the answer to the question included "Huh?", pay close
attention, because you're going to learn something really useful.

This quiz is designed to do two things. First, it affords me an opportunity to remind
you of the existence of the assign member function, a convenient beast that too many
programmers overlook. It's available for all the standard sequence containers (vector,
string, deque, and list). Whenever you have to completely replace the contents of a
container, you should think of assignment. If you're just copying one container to
another of the same type, operator= is the assignment function of choice, but as this
example demonstrates, assign is available for the times when you want to give a
container a completely new set of values, but operator= won't do what you want.

The second reason for the quiz is to demonstrate why range member functions are
superior to their single-element alternatives. A range member function is a member
function that, like STL algorithms, uses two iterator parameters to specify a range of
elements over which something should be done. Without using a range member
function to solve this Item's opening problem, you'd have to write an explicit loop,
probably something like this:

vector<Widget> v1, v2; // assume v1 and v2 are vectors

//of Widgets
v1.clear();
for (vector<Widget>::const_iterator ci = v2.begin() + v2.size() / 2;

 ci != v2.end();
 ++ci)

 v1.push_back(*ci);

Item 43 examines in detail why you should try to avoid writing explicit loops, but you
don't need to read that Item to recognize that writing this code is a lot more work than
is writing the call to assign. As we'll see shortly, the loop also happens to impose an
efficiency penalty, but we'll deal with that in a moment.

One way to avoid the loop is to follow the advice of Item 43 and employ an algorithm
instead:

v1.clear();
copy(v2.begin() + v2.size() / 2, v2.end(), back_inserter(v1));

Writing this is still more work than writing the call to assign. Furthermore, though no
loop is present in this code, one certainly exists inside copy (see Item 43). As a result,
the efficiency penalty remains. Again. I'll discuss that below. At this point, I want to

 13

digress briefly to observe that almost all uses of copy where the destination range is
specified using an insert iterator (i.e.. via inserter, back_inserter. or front_inserter) can
be — should be — replaced with calls to range member functions. Here, for example,
the call to copy can be replaced with a range version of insert:

v1 .insert(v1 .end(), v2.begin() + v2.size() / 2, v2.end());

This involves slightly less typing than the call to copy, but it also says more directly
what is happening: data is being inserted into v1. The call to copy expresses that, too,
but less directly. It puts the emphasis in the wrong place. The interesting aspect of
what is happening is not that elements are being copied, it's that v1 is having new data
added to it. The insert member function makes that clear. The use of copy obscures it.
There's nothing interesting about the fact that things are being copied, because the STL
is built on the assumption that things will be copied. Copying is so fundamental to the
STL. it's the topic of Item 3 in this book!

Too many STL programmers overuse copy, so the advice I just gave bears repeating:
Almost all uses of copy where the destination range is specified using an insert iterator
should be replaced with calls to range member functions.

• Returning to our assign example, we've already identified two reasons to prefer
range member functions to their single-element counterparts:

• It's generally less work to write the code using the range member functions.

• Range member functions tend to lead to code that is clearer and more
straightforward.

In short, range member functions yield code that is easier to write and easier to
understand. What's not to like'.'

Alas, some will dismiss these arguments as matters of programming style, and
developers enjoy arguing about style issues almost as much as they enjoy arguing
about which is the One True Editor. (As if there's any doubt. It's Emacs.) It would be
helpful to have a more universally agreed-upon criterion for establishing the
superiority of range member functions to their single-element counterparts. For the
standard sequence containers, we have one: efficiency. When dealing with the
standard sequence containers, application of single-element member functions makes
more demands on memory allocators, copies objects more frequently, and/or performs
redundant operations compared to range member functions that achieve the same end.

For example, suppose you'd like to copy an array of ints into the front of a vector. (The
data might be in an array instead of a vector in the first place, because the data came
from a legacy C API. For a discussion of the issues that arise when mixing STL
containers and C APIs, see Item 16.) Using the vector range insert function, it's
honestly trivial:

int data[numValues]; // assume numValues is

 14

// defined elsewhere
vector<int> v;
...
v.insert(v.begin(), data, data + numValues); // insert the ints in data

 //into v at the front

Using iterative calls to insert in an explicit loop, it would probably look more or less
like this:

vector<int>::iterator insertLoc(v.begin());
for (int i = 0; i < numValues; ++i) {

insertLoc = v.insert(insertLoc, data[i]);
}

Notice how we have to be careful to save the return value of insert for the next loop
iteration. If we didn't update insertLoc after each insertion, we'd have two problems.
First, all loop iterations after the first would yield undefined behavior, because each
insert call would invalidate insertLoc. Second, even if insertLoc remained valid, we'd
always insert at the front of the vector (i.e., at v.begin()), and the result would be that
the ints copied into v would end up in reverse order.

If we follow the lead of Item 43 and replace the loop with a call to copy, we get
something like this:

copy(data. data + numValues, inserter(v, v.begin()));

By the time the copy template has been instantiated, the code based on copy and the
code using the explicit loop will be almost identical, so for purposes of an efficiency
analysis, we'll focus on the explicit loop, keeping in mind that the analysis is equally
valid for the code employing copy. Looking at the explicit loop just makes it easier to
understand where the efficiency hits come from. Yes, that's "hits." plural, because the
code using the single-element version of insert levies up to three different performance
taxes on you, none of which you pay if you use the range version of insert.

The first tax consists of unnecessary function calls. Inserting numValues elements into
v one at a time naturally costs you numValues calls to insert. Using the range form of
insert, you pay for only one function call, a savings of numValues-1 calls. Of course,
it's possible that inlining will save you from this tax, but then again, it's possible that it
won't. Only one thing is sure. With the range form of insert, you definitely won't pay
it.

Inlining won't save you from the second tax, which is the cost of inefficiently moving
the existing elements in v to their final post-insertion positions. Each time insert is
called to add a new value to v. every element above the insertion point must be moved
up one position to make room for the new element. So the element at position p must
be moved up to position p+1, etc. In our example, we're inserting numValues elements
at the front of v. That means that each element in v prior to the insertions will have to

 15

be shifted up a total of numValues positions. But each will be shifted up only one
position each time insert is called, so each element will be moved a total of numValues
times. If v has n elements prior to the insertions, a total of n*numValues moves will
take place. In this example, v holds ints, so each move will probably boil down to an
invocation of memmove, but if v held a user-defined type like Widget, each move
would incur a call to that type's assignment operator or copy constructor. (Most calls
would be to the assignment operator, but each time the last element in the vector was
moved, that move would be accomplished by calling the element's copy constructor.)
In the general case, then, inserting numValues new objects one at a time into the front
of a vector<Widget> holding n elements exacts a cost of n*numValues function calls:
(n-l)*numValues calls to the Widget assignment operator and numValues calls to the
Widget copy constructor. Even if these calls are inlined, you're still doing the work to
move the elements in v numValues times.

In contrast, the Standard requires that range insert functions move existing container
elements directly into their final positions, i.e., at a cost of one move per element. The
total cost is n moves, numValues to the copy constructor for the type of objects in the
container, the remainder to that type's assignment operator. Compared to the single-
element insert strategy, the range insert performs n*(numValues-l) fewer moves.
Think about that for a minute. It means that if numValues is 100, the range form of
insert would do 99% fewer moves than the code making repeated calls to the single-
element form of insert!

Before I move on to the third efficiency cost of single-element member functions vis-
a-vis their range counterparts. I have a minor correction. What I wrote in the previous
paragraph is the truth and nothing but the truth, but it's not quite the whole truth. A
range insert function can move an element into its final position in a single move only
if it can determine the distance between two iterators without losing its place. This is
almost always possible, because all forward iterators offer this functionality, and
forward iterators are nearly ubiquitous. All iterators for the standard containers offer
forward iterator functionality. So do the iterators for the nonstandard hashed containers
(see Item 25). Pointers acting as iterators into arrays offer such functionality, too. In
fact, the only standard iterators that don't offer forward iterator capabilities are input
and output iterators. Thus, everything I wrote above is true except when the iterators
passed to the range form of insert are input iterators (e.g. istream_iterators — see Item
6). In that case only, range insert must move elements into their final positions one
place at a time, too, and its advantage in that regard ceases to exist. (For output
iterators, this issue fails to arise, because output iterators can't be used to specify a
range for insert.)

The final performance tax levied on those so foolish as to use repeated single-element
insertions instead of a single range insertion has to do with memory allocation, though
it has a nasty copying side to it, too. As Item 14 explains, when you try to insert an
element into a vector whose memory is full, the vector allocates new memory with
more capacity, copies its elements from the old memory to the new memory, destroys
the elements in the old memory, and deallocates the old memory. Then it adds the
element that is being inserted. Item 14 also explains that most vector implementations

 16

double their capacity each time they run out of memory, so inserting numValues new
elements could result in new memory being allocated up to log2numValues times. Item
14 notes that implementations exist that exhibit this behavior, so inserting 1000
elements one at a time can result in 10 new allocations (including their incumbent
copying of elements). In contrast (and. by now, predictably), a range insertion can
figure out how much new memory it needs before it starts inserting things (assuming it
is given forward iterators), so it need not reallocate a vector's underlying memory more
than once. As you can imagine, the savings can be considerable.

The analysis I've just performed is for vectors, but the same reasoning applies to
strings, too. For deques, the reasoning is similar, but deques manage their memory
differently from vectors and strings, so the argument about repeated memory
allocations doesn't apply. The argument about moving elements an unnecessarily large
number of times, however, generally does apply (though the details are different), as
does the observation about the number of function calls.

Among the standard sequence containers, that leaves only list, but here, too, there is a
performance advantage to using a range form of insert instead of a single-element
form. The argument about repeated function calls continues to be valid, of course, but,
because of the way linked lists work, the copying and memory allocation issues fail to
arise. Instead, there is a new problem: repeated superfluous assignments to the next
and prev pointers of some nodes in the list.

Each time an element is added to a linked list, the list node holding that element must
have its next and prev pointers set, and of course the node preceding the new node
(let's call it B, for "before") must set its next pointer and the node following the new
node (we'll call it A. for "after") must set its prev pointer:

When a series of new nodes is added one by one by calling list s single-element insert,
all but the last new node will set its next pointer twice. once to point to A. a second
time to point to the element inserted after it. A will set its prev pointer to point to a
new node each time one is inserted in front of it. If numValues nodes are inserted in
front of A. numValues-1 superfluous assignments will be made to the inserted nodes'
next pointers, and numValues-1 superfluous assignments will be made to A's prev
pointer. All told, that's 2*(numValues-l) unnecessary pointer assignments. Pointer
assignments are cheap, of course, but why pay for them if you don't have to?

 17

By now it should be clear that you don't have to, and the key to evading the cost is to
use list's range form of insert. Because that function knows how many nodes will
ultimately be inserted, it can avoid the superfluous pointer assignments, using only a
single assignment to each pointer to set it to its proper post-insertion value.

For the standard sequence containers, then, a lot more than programming style is on
the line when choosing between single-element insertions and range insertions. For the
associative containers, the efficiency case is harder to make, though the issue of extra
function call overhead for repeated calls to single-element insert continues to apply.
Furthermore, certain special kinds of range insertions may lead to optimization
possibilities in associative containers, too, but as far as I can tell, such optimizations
currently exist only in theory. By the time you read this, of course, theory may have
become practice, so range insertions into associative containers may indeed be more
efficient than repeated single-element insertions. Certainly they are never less
efficient, so you have nothing to lose by preferring them.

Even without the efficiency argument, the fact remains that using range member
functions requires less typing as you write the code, and it also yields code that is
easier to understand, thus enhancing your software's long-term maintainability. Those
two characteristics alone should convince you to prefer range member functions. The
efficiency edge is really just a bonus.

Having droned on this long about the wonder of range member functions, it seems
only appropriate that I summarize them for you. Knowing which member functions
support ranges makes it a lot easier to recognize opportunities to use them. In the
signatures below, the parameter type iterator literally means the iterator type for the
container, i.e. container::iterator. The parameter type InputIterator, on the other hand,
means that any input iterator is acceptable.

� Range construction. All standard containers offer a constructor of this form:

container::container(Inputlterator begin, // beginning of range
Inputlterator end): //end of range

When the iterators passed to this constructor are istream_iterators or
istreambuf_iterators (see Item 29), you may encounter C++'s most
astonishing parse, one that causes your compilers to interpret this construct
as a function declaration instead of as the definition of a new container
object. Item 6 tells you everything you need to know-about that parse,
including how to defeat it.

� Range insertion. All standard sequence containers offer this form of insert:

void container::insert(iterator position, // where to insert the range

Inputlterator begin, // start of range to insert
InputIterator end); // end of range to insert

 18

Associative containers use their comparison function to determine where
elements go, so they offer a signature that omits the position parameter:

void container::insert(lnputIterator begin, Inputlterator end);

When looking for ways to replace single-element inserts with range
versions, don't forget that some single-element variants camouflage
themselves by adopting different function names. For example, push_front
and push_back both insert single elements into containers, even though
they're not called insert. If you see a loop calling push_front or push_back,
or if you see an algorithm such as copy being passed front_inserter or
back_inserter as a parameter, you've discovered a place where a range form
of insert is likely to be a superior strategy.

� Range erasure. Every standard container offers a range form of erase, but the
return types differ for sequence and associative containers. Sequence containers
provide this,

iterator container::erase(iterator begin, iterator end);

while associative containers offer this:

void container::erase(iterator begin, iterator end);

Why the difference? The claim is that having the associative container
version of erase return an iterator (to the element following the one that
was erased) would incur an unacceptable performance penalty. I'm one of
many who find this claim specious, but the Standard says what the
Standard says, and what the Standard says is that sequence and associative
container versions of erase have different return types.

Most of this Item's efficiency analysis for insert has analogues for erase.
The number of function calls is still greater for repeated calls to single-
element erase than for a single call to range erase. Element values must still
be shifted one position at a time towards their final destination when using
single-element erase, while range erase can move them into their final
positions in a single move.

One argument about vector's and string's insert that tails to apply to erase
has to do with repeated allocations. (For erase, of course, it would concern
repeated deallocations.) That's because the memory for vectors and strings
automatically grows to accommodate new elements, but it doesn't
automatically shrink when the number of elements is reduced. (Item 17
describes how you may reduce the unnecessary memory held by a vector or
string.)

 19

One particularly important manifestation of range erase is the erase-remove
idiom. You can read all about it in Item 32.

� Range assignment. As I noted at the beginning of this Item, all standard
sequence containers offer a range form of assign:

void container::assign(lnputIterator begin, Inputlterator end);

So there you have it, three solid arguments for preferring range member functions to
their single-element counterparts. Range member functions are easier to write, they
express your intent more clearly, and they exhibit higher performance. That's a troika
that's hard to beat.

Item 6. Be alert for C++'s most vexing parse.

Suppose you have a file of ints and you'd like to copy those ints into a list. This seems
like a reasonable way to do it:

ifstream dataFile("ints.dat");
list<int> data(istream_iterator<int>(dataFile), // warning! this doesn't do

 istream_iterator<int>()); // what you think it does

The idea here is to pass a pair of istream_iterators to list's range constructor (see Item
5), thus copying the ints in the file into the list.

This code will compile, but at runtime, it won't do anything. It won't read any data out
of a file. It won't even create a list. That's because the second statement doesn't declare
a list and it doesn't call a constructor. What it does is ... well, what it does is so strange.
I dare not tell you straight out, because you won't believe me. Instead, I have to
develop the explanation, bit by bit. Are you sitting down? If not. you might want to
look around for a chair...

We'll start with the basics. This line declares a function f taking a double and returning
an int:

int f(double d);

This next line does the same thing. The parentheses around the parameter name d are
superfluous and are ignored:

int f(double (d)); // same as above; parens around d are ignored

The line below declares the same function. It simply omits the parameter name:

int f(double); // same as above; parameter name is omitted

 20

Those three declaration forms should be familiar to you. though the ability to put
parentheses around a parameter name may have been new. (It wasn't long ago that it
was new to me.)

Let's now look at three more function declarations. The first one declares a function g
taking a parameter that's a pointer to a function taking nothing and returning a double:

int g(double (*pf)()); // g takes a pointer to a function as a parameter

Here's another way to say the same thing. The only difference is that pf is declared
using non-pointer syntax (a syntax that's valid in both C and C++):

int g(double pf()); // same as above; pf is implicitly a pointer

As usual, parameter names may be omitted, so here's a third declaration for g, one
where the name pf has been eliminated:

int g(double ()); // same as above; parameter name is omitted

Notice the difference between parentheses around a parameter name (such as d in the
second declaration for f) and standing by themselves (as in this example). Parentheses
around a parameter name are ignored, but parentheses standing by themselves indicate
the existence of a parameter list: they announce the presence of a parameter that is
itself a pointer to a function.

Having warmed ourselves up with these declarations for f and g. we are ready to
examine the code that began this Item. Here it is again:

list<int> data(istream_iterator<int>(dataFile), istream_iterator<int>());

Brace yourself. This declares a function, data, whose return type is list<int>. The
function data takes two parameters:

� The first parameter is named dataFile. It's type is istream_iterator<int>. The
parentheses around dataFile are superfluous and are ignored.

� The second parameter has no name. Its type is pointer to function taking
nothing and returning an istream_iterator<int>.

Amazing, huh? But it's consistent with a universal rule in C++, which says that pretty
much anything that can be parsed as a function declaration will be. if you've been
programming in C++ for a while, you've almost certainly encountered another
manifestation of this rule. How many times have you seen this mistake?

class Widget {...}; // assume Widget has a default constructor
Widget w(); //'uh oh...

 21

This doesn't declare a Widget named w, it declares a function named w that takes
nothing and returns a Widget. Learning to recognize this faux pas is a veritable rite of
passage for C++ programmers.

All of which is interesting (in its own twisted way), but it doesn't help us say what we
want to say, which is that a list<int> object should be initialized with the contents of a
file. Now that we know what parse we have to defeat, that's easy to express. It's not
legal to surround a formal parameter declaration with parentheses, but it is legal to sur-
round an argument to a function call with parentheses, so by adding a pair of
parentheses, we force compilers to see things our way:

list<int> data((istream_iterator<int>(dataFile)), // note new parens
istream_iterator<int>0); // around first argument

 // to list's constructor

This is the proper way to declare data, and given the utility of istream_iterators and
range constructors (again, see Item 5), it's worth knowing how to do it.

Unfortunately, not all compilers currently know it themselves. Of the several I tested,
almost half refused to accept data's declaration unless it was incorrectly declared
without the additional parentheses! To placate such compilers, you could roll your
eyes and use the declaration for data that I've painstakingly explained is incorrect, but
that would be both unportable and short-sighted. After all, compilers that currently get
the parse wrong will surely correct it in the future, right? (Surely!)

A better solution is to step back from the trendy use of anonymous istream_iterator
objects in data's declaration and simply give those iterators names. The following code
should work everywhere:

ifstream dataFile(" ints.dat"};
istream_iterator<int> dataBegin(dataFile);
istream_iterator<int> dataEnd;
list<int> data(dataBegin. dataEnd);

This use of named iterator objects runs contrary to common STL programming style,
but you may decide that's a price worth paying for code that's unambiguous to both
compilers and the humans who have to work with them.

Item 7. When using containers of newed pointers, remember to
delete the pointers before the container is destroyed.

Containers in the STL are remarkably smart. They serve up iterators for both forward
and reverse traversals (via begin, end, rbegin, etc.): they tell you what type of objects
they contain (via their value_type typedef); during insertions and erasures, they take
care of any necessary memory management; they report both how many objects they
hold and the most they may contain (via size and max_size, respectively); and of

 22

course they automatically destroy each object they hold when they (the containers) are
themselves destroyed.

Given such brainy containers, many programmers stop worrying about cleaning up
after themselves. Heck, they figure, their containers will do the worrying for them. In
many cases, they're right, but when the containers hold pointers to objects allocated
with new, they're not right enough. Sure, a container of pointers will destroy each
element it contains when it (the container) is destroyed, but the "destructor" for a
pointer is a no-op! It certainly doesn't call delete.

As a result, the following code leads straight to a resource leak:

void doSomething()
{

vector<Widget*> vwp;
for (int i = 0; i < SOME_MAGIC_NUMBER; ++i)

 vwp.push_back(new Widget);
… // use vwp

} //Widgets are leaked here!

Each of vwp's elements is destroyed when vwp goes out of scope, but that doesn't
change the fact that delete was never used for the objects conjured up with new. Such
deletion is your responsibility, not that of your vector. This is a feature. Only you
know whether the pointers should be deleted.

Usually, you want them to be. When that's the case, making it happen seems easy
enough:

void doSomething()
{

vector<Widget*> vwp;
… // as before
for (vector<Widget*>::iterator i = vwp.begin();
 i != vwp.end(),

++i) {
 delete *i;
 }

This works, but only if you're not terribly picky about what you mean by "works". One
problem is that the new for loop does pretty much what for_each does, but it's not as
clear as using for_each (see Item 43). Another is that the code isn't exception safe. If
an exception is thrown between the time vwp is filled with pointers and the time you
get around to deleting them, you've leaked resources again. Fortunately, both problems
can be overcome.

 23

To turn your for_each-like loop into an actual use of for_each, you need to turn delete
into a function object. That's child's play, assuming you have a child who likes to play
with the STL:

template<typename T>

struct DeleteObject: // Item 40 describes why
public unary_function<const T*, void> { //this inheritance is here

void operator()(const T* ptr) const

delete ptr;
}

};

Now you can do this:

void doSomething()
{

… // as before
for_each(vwp.begin(), vwp.end(), DeleteObject<Widget>);

}

Unfortunately, this makes you specify the type of objects that DeleteObject will be
deleting (in this case. Widget). That's annoying, vwp is a vector<Widget*>, so of
course DeleteObject will be deleting Widget* pointers! Duh! This kind of redundancy
is more than just annoying, because it can lead to bugs that are difficult to track down.
Suppose, for example, somebody ill-advisedly decides to inherit from string:

class SpecialString: public string { ...};

This is risky from the get-go, because string, like all the standard STL containers,
lacks a virtual destructor, and publicly inheriting from classes without virtual
destructors is a major C++ no-no. (For details, consult any good book on C++. in
Effective C++. the place to look is Item 14.) Still, some people do this kind of thing,
so lets consider how the following code would behave:

void doSomething()
{

deque<SpecialString*> dssp;
…
for_each(dssp.begin(), dssp.end(), // undefined behavior! Deletion

DeleteObject<string>()); //of a derived object via a base
} // class pointer where there is

 //no virtual destructor

 24

Note how dssp is declared to hold SpecialString* pointers, but the author of the
for_each loop has told DeleteObject that it will be deleting string* pointers. It's easy to
understand how such an error could arise. SpecialString undoubtedly acts a lot like a
string, so one can forgive its clients If they occasionally forget that they are using
SpecialStrings instead of strings.

We can eliminate the error (as well as reduce the number of keystrokes required of
DeleteObject's clients) by having compilers deduce the type of pointer being passed to
DeleteObject::operator(). All we need to do is move the templatization from
DeleteObject to its operator():

struct DeleteObject { // templatization and base

// class removed here
template<typename T> II templatization added here
void operator()(const T* ptr) const
{

delete ptr;
}

}

Compilers know the type of pointer being passed to DeleteObject::operator(), so we
have them automatically instantiate an operator() taking that type of pointer. The
downside to this type deduction is that we give up the ability to make DeleteObject
adaptable (see Item 40). Considering how DeleteObject is designed to be used, it's
difficult to imagine how that could be a problem.

With this new version of DeleteObject, the code for SpecialString clients looks like
this:

void doSomething()
{

deque<SpecialString*> dssp;
…
for_each(dssp.begin(), dssp.end(),
DeleteObject ()); // ah! well-defined behavior!

}

Straightforward and type-safe, just the way we like it.

But still not exception-safe. If an exception is thrown after the Special-Strings are
newed but before invocation of the call to for_each, it's Leakapalooza. That problem
can be addressed in a variety of ways, but the simplest is probably to replace the
container of pointers with a container of smart pointers, typically reference-counted
pointers. (If you're unfamiliar with the notion of smart pointers, you should be able to

 25

find a description in any intermediate or advanced C++ book. In More Effective C++,
the material is in Item 28.)

The STL itself contains no reference-counting smart pointer, and writing a good one
— one that works correctly all the time — is tricky1 enough that you don't want to do it
unless you have to. I published the code for a reference-counting smart pointer in
More Effective C++ in 1996, and despite basing it on established smart pointer
implementations and submitting it to extensive pre-publication reviewing by
experienced developers, a small parade of valid bug reports has trickled in for years.
The number of subtle ways in which reference-counting smart pointers can fail is
remarkable. (For details, consult the More Effective C++ errata list [28].)

Fortunately, there's rarely a need to write your own, because proven implementations
are not difficult to find. One such smart pointer is shared_ptr in the Boost library (see
Item 50). With Boost's shared_ptr, this Item's original example can be rewritten as
follows:

void doSomething()
{

typedef boost::shared_ ptr<Widget> SPW; //SPW = "shared_ptr
// to Widget"

vector<SPW> vwp;
for (int i = 0; i < SOME_MAGIC_NUMBER; ++i)

vwp.push_back(SPW new Widget); // create a SPW from a
// Widget*, then do a
//push_back on it

… // use vwp
} // no Widgets are leaked here, not

 // even if an exception is thrown
 //in the code above

One thing you must never be fooled into thinking is that you can arrange for pointers
to be deleted automatically by creating containers of auto_ptrs. That's a horrible
thought, one so perilous. I've devoted Item 8 to why you should avoid it.

All you really need to remember is that STL containers are smart, but they're not smart
enough to know whether to delete the pointers they contain. To avoid resource leaks
when you have containers of pointers that should be deleted, you must either replace
the pointers with smart reference-counting pointer objects (such as Boost's shared_ptr)
or you must manually delete each pointer in the container before the container is
destroyed.

Finally, it may have crossed your mind that if a struct like DeleteObject can make it
easier to avoid resource leaks for containers holding pointers to objects, it should be
possible to create a similar DeleteArray struct to make it easier to avoid resource leaks
for containers holding pointers to arrays. Certainly it is possible, but whether it is
advisable is a different matter. Item 13 explains why dynamically allocated arrays are

 26

almost always inferior to vector and string objects, so before you sit down to write
DeleteArray, please review Item 13 first. With luck, you'll decide that DeleteArray is a
struct whose time will never come.

Item 8. Never create containers of auto_ptrs.

Frankly, this Item shouldn't need to be in Effective STL. Containers of auto_ptr
(COAPs) are prohibited. Code attempting to use them shouldn't compile. The C++
Standardization Committee expended untold effort to arrange for that to be the case.1 I
shouldn't have to say anything about COAPs, because your compilers should have
plenty to say about such containers, and all of it should be uncomplimentary.

Alas, many programmers use STL platforms that fail to reject COAPs. Alas even
more, many programmers see in COAPs the chimera of a simple, straightforward,
efficient solution to the resource leaks that often accompany containers of pointers (see
Items 7 and 33). As a result, many programmers are tempted to use COAPs, even
though it's not supposed to be possible to create them.

I'll explain in a moment why the spectre of COAPs was so alarming that the
Standardization Committee took specific steps to make them illegal. Right now. I want
to focus on a disadvantage that requires no knowledge of auto_ptr, or even of
containers: COAPs aren't portable. How could they be? The Standard for C++ forbids
them, and better STL platforms already enforce this. It's reasonable to assume that as
time goes by. STL platforms that currently fail to enforce this aspect of the Standard
will become more compliant, and when that happens, code that uses COAPs will be
even less portable than it is now. If you value portability (and you should), you'll reject
COAPs simply because they fail the portability test.

But maybe you're not of a portability mind-set. If that's the case, kindly allow me to
remind you of the unique — some would say bizarre — definition of what it means to
copy an auto_ptr.

When you copy an auto_ptr. ownership of the object pointed to by the auto_ptr is
transferred to the copying auto_ptr. and the copied auto_ptr is set to NULL. You read
that right: to copy an auto_ptr is to change its value:

auto_ptr<Widget> pw1 (new Widget); // pwl1points to a Widget
auto_ptr<Widget> pw2(pw1); // pw2 points to pw1's Widget;

 // pw1 is set to NULL. (Ownership
 // of the Widget is transferred
 //from pw1 to pw2.)

pw1 = pw2; // pw1 now points to the Widget
// again; pw2 is set to NULL

1 If you’re interested in the tortured history of auto_ptr standardization, point your web browser to the auto_ptr
Update page [29] at the More Effective C++ Web site.

 27

This is certainly unusual, and perhaps it's interesting, but the reason you (as a user of
the STL) care is that it leads to some very surprising behavior. For example, consider
this innocent-looking code, which creates a vector of auto_ptr<Widget> and then sorts
it using a function that compares the values of the pointed-to Widgets:

bool widgetAPCompare(const auto_ptr<Widget>& lhs,

const auto_ptr<Widget>& rhs) {
return *lhs < *rhs; //for this example, assume that

} // operator< exists for Widgets
vector<auto_ptr<Widget> > widgets; // create a vector and then fill it

//with auto_ptrs to Widgets;
// remember that this should
//not compile!

Sort(widgets.begin(), widgets.end(), // sort the vector
widgetAPCompare);

Even-thing here looks reasonable, and conceptually, everything is reasonable, but the
results need not be reasonable at all. For example, one or more of the auto_ptrs in
widgets may have been set to NULL during the sort. The act of sorting the vector may
have changed its contents' It is worthwhile understanding how this can be.

It can be because one approach to implementing sort — a common approach, as it
turns out — is to use some variation on the quicksort algorithm. The fine points of
quicksort need not concern us, but the basic idea is that to sort a container, some
element of the container is chosen as the "pivot element." then a recursive sort is done
on the values greater than and less than or equal to the pivot element. Within sort, such
an approach could look something like this:

template<class RandomAccesslterator, // this declaration for

class Compare> // sort is copied straight
void sort(RandomAccesslterator first, // out of the Standard

RandomAccesslterator last,
Compare comp)

{
// this typedef is described below
typedef typename iterator_traits<RandomAccesslterator>::value_type

ElementType;
RandomAccesslterator i;
… // make i point to the pivot element
ElementType pivotValue(*); //copy the pivot element into a

// local temporary variable; see
//discussion below

… //do the rest of the sorting work
}

 28

Unless you're an experienced reader of STL source code, this may look intimidating,
but it's really not that bad. The only tricky pan is the reference to
iterator_traits<RandomAccesslterator>::value_type, and that's just the fancy STL way
of referring to the type of object pointed to by the iterators passed to sort. (When we
refer to iterator_traits<RandomAccesslterator>::value_type. we must precede it by
typename. because it's the name of a type that's dependent on a template parameter, in
this case. RandomAccesslterator. For more information about this use of typename,
turn to page 7.)

The troublesome statement in the code above is this one.

ElementType pivotValue(*i);

because it copies an element from the range being sorted into a local temporary object.
In our case, the element is an auto_ptr<Widget>, so this act of copying silently sets the
copied auto_ptr — the one in the vector — to NULL. Furthermore, when pivotValue
goes out of scope, it will automatically delete the Widget it points to. By the time the
call to sort returns, the contents of the vector will have chanced, and at least one
Widget will have been deleted. It's possible that several vector elements will have been
set to NULL and several Widgets will have been deleted, because quicksort is a
recursive algorithm, so it could well have copied a pivot element at each level of
recursion.

This is a nasty trap to fall into, and that's why the Standardization Committee worked
so hard to make sure you're not supposed to be able to fall into it. Honor its work on
your behalf, then, by never creating containers of auto_ptrs, even if your STL
platforms allow it.

If your goal is a container of smart pointers, this doesn't mean you're out of luck.
Containers of smart pointers are fine, and Item 50 describes where you can find smart
pointers that mesh well with STL containers. It's just that auto_ptr is not such a smart
pointer. Not at all.

Item 9. Choose carefully among erasing options.

Suppose you have a standard STL container, c, that holds ints.

Container<int> c;

and you'd like to get rid of all the objects in c with the value 1963. Surprisingly, the
way to accomplish this task varies from container type to container type: no single
approach works for all of them.

If you have a contiguous-memory container (vector, deque, or string — see Item 1),
the best approach is the erase-remove idiom (see Item 32):

 29

c.erase(remove(c.begin(), c.end(), 1963), // the erase-remove idiom is
 c.end()); //the best way to get rid of

// elements with a specific
// value when c is a vector,
//string, or deque

This approach works for lists, too, but, as Item 44 explains, the list member function
remove is more efficient:

c. remove(1963); //the remove member function is the

// best way to get rid of elements with
// a specific value when c is a list

When c is a standard associative container (i.e.. a set. multiset, map. or multimap), the
use of anything named remove is completely wrong. Such containers have no member
function named remove, and using the remove algorithm might overwrite container
values (see Item 32), potentially corrupting the container. (For details on such
corruption, consult Item 22, which also explains why Irving to use remove on maps
and multimaps won't compile, and trying to use it on sets and multisets may not
compile.)

No, for associative containers, the proper way to approach the problem is to call erase:

c.erase(1963); // the erase member function is the
 // best way to get rid of elements with

// a specific value when c is a
// standard associative container

Not only does this do the right thing, it does it efficiently, taking only logarithmic
time. (The remove-based techniques for sequence containers require linear time.)
Furthermore, the associative container erase member function has the advantage of
being based on equivalence instead of equality, a distinction whose importance is
explained in Item 19.

Let's now revise the problem slightly. Instead of getting rid of every object in c that
has a particular value, let's eliminate every object for which the following predicate
(see Item 39) returns true:

bool badValue(int x); // returns whether x is "bad"

For the sequence containers (vector, string, deque, and list), all we need to do is
replace each use of remove with remove_if, and we're done:

c.erase(remove_if(c.begin(), c.end(), badValue), // this is the best way to

 c.end()); // get rid of objects

 30

 //where badValue
 // returns true when c is
 //a vector, string, or
 // deque

c.remove_if(badValue); // this is the best way to get rid of
 // objects where badValue returns
 //true when c is a list

For the standard associative containers, it's not quite so straightforward. There are two
ways to approach the problem, one easier to code, one more efficient. The easier-but-
less-efficient solution uses remove_copy_if to copy the values we want into a new
container, then swaps the contents of the original container with those of the new one:

AssocContainer<int> c; // c is now one of the
…… // standard associative

 //containers
AssocContainer<int> goodValues; // temporary container

// to hold unremoved
//values

remove_copy_if(c.begin(), c.end(), // copy unremoved
 inserter(goodValues, // values from c to

 goodValues.end()), //goodValues
 badValue):

c.swap(goodValues): // swap the contents of
// c and goodValues

The drawback to this approach is that it involves copying all the elements that aren't
being removed, and such copying might cost us more than we're interested in paying.

We can dodge that bill by removing the elements from the original container directly.
However, because associative containers offer no member function akin to remove_if,
we must write a loop to iterate over the elements in c.erasing elements as we go.

Conceptually, the task is simple, and in fact, the code is simple, too. Unfortunately, the
code that does the job correctly is rarely the code that springs to mind. For example,
this is what many programmers come up with first:

AssocContainer<int> c;
......
for (AssocContainer<int>::iterator i = c.begin(); // clear, straightforward,

i!= c.end(); // and buggy code to
++i) { // erase every element

 if (badValue(*i)) c.erase(i); // in c where badValue
} // returns true; don't

// do this!

 31

Alas, this has undefined behavior. When an element of a container is erased, all
iterators that point to that element are invalidated. Once c.erase(i) returns, i has been
invalidated. That's bad news for this loop, because after erase returns, i is incremented
via the ++i part of the for loop.

To avoid this problem, we have to make sure we have an iterator to the next element of
c before we call erase. The easiest way to do that is to use postfix increment on i when
we make the call:

AssocContainer<int> c;
……
for (AssocContainer<int>::iterator i = c.begin(); //the 3rd part of the for

 i != c.end(); // loop is empty; i is now
 /*nothing*/){ //incremented below
 if (badValue(*I)) c.erase(i++); //for bad values, pass the

else ++i; //current i to erase and
} // increment i as a side

 // effect; for good values,
 //just increment i

This approach to calling erase works, because the value of the expression i++ is i's old
value, but as a side effect, i is incremented. Hence, we pass i's old (unincremented)
value to erase, but we also increment i itself before erase begins executing. That's
exactly what we want. As I said, the code is simple, it's just not what most
programmers come up with the first time they try.

Let's now revise the problem further. Instead of merely erasing each element for which
badValue returns true, we also want to write a message to a log file each time an
element is erased.

For the associative containers, this is as easy as easy can be, because it requires only a
trivial modification to the loop we just developed:

ofstream logFile; // log file to write to
AssocContainer<int> c;
…
for (AssocContainer<int>::iterator i = c.begin(); // loop conditions are the

 i !=c.end();){ //same as before
if (badValue(*i)){
 logFile << "Erasing " << *i <<'\n'; // write log file
 c.erase(i++); // erase element
}
else ++i;

}

 32

It's vector, string, and deque that now give us trouble. We can't use the erase-remove
idiom any longer, because there's no way to get erase or remove to write the log file.
Furthermore, we can't use the loop we just developed for associative containers,
because it yields undefined behavior for vectors, strings, and deques! Recall that for
such containers, invoking erase not only invalidates all iterators pointing to the erased
element, it also invalidates all iterators beyond the erased element. In our case, that
includes all iterators beyond i. It doesn't matter if we write i++, ++I, or anything else
you can think of, because none of the resulting iterators is valid.

We must take a different tack with vector, string, and deque. In particular, we must
take advantage of erase's return value. That return value is exactly what we need: it's a
valid iterator pointing to the element following the erased element once the erase has
been accomplished. In other words, we write this:

for (SeqContainer<int>::iterator i = c.beqin();
 i != c.end();){
 if (badValue(*i)){
 logFile << "Erasing " << *i << '\n';

 i = c.erase(i); // keep i valid by assigning
 } //erase's return value to it
 else ++i;

}

This works wonderfully, but only for the standard sequence containers. Due to
reasoning one might question (Item 5 does), erase's return type for the standard
associative containers is void. For those containers, you have to use the postincrement-
the-iterator-you-pass-to-erase technique. (Incidentally, this kind of difference between
coding for sequence containers and coding for associative containers is an example of
why it's generally ill-advised to try to write container-independent code — see Item 2.)

Lest you be left wondering what the appropriate approach for list is, it turns out that
for purposes of iterating and erasing, you can treat list like a vector/string/deque or you
can treat it like an associative container: both approaches work for list. The convention
is to work with list in the same way as vector, string, and deque, because these are all
sequence containers. Experienced STL hands would find it odd to come across list
code that iterates and erases using the associative container technique.

If we take stock of everything we've covered in this Item, we come to the following
conclusions:

� To eliminate all objects in a container that have a particular value:

If the container is a vector, string, or deque, use the erase-remove idiom.

If the container is a list, use list::remove.

If the container is a standard associative container, use its erase member
function.

 33

� To eliminate all objects in a container that satisfy a particular predicate:

If the container is a vector, string, or deque, use the erase-remove_if idiom.

If the container is a list, use list::remove_if.

If the container is a standard associative container, use remove_copy_if and
swap, or write a loop to walk the container elements, being sure to
postincrement your iterator when you pass it to erase.

� To do something inside the loop (in addition to erasing objects):

If the container is a standard sequence container, write a loop to walk the
container elements, being sure to update your iterator with erase's return value
each time von call it.

If the container is a standard associative container, write a loop to walk the
container elements, being sure to postincrement your iterator when you pass it
to erase.

As you can see, there's more to erasing container elements effectively than just calling
erase. The best way to approach the matter depends on how you identify which objects
to erase, the type of container they're stored in. and what (if anything) you want to do
while you're erasing them. As long as you're careful and heed the advice in this Item,
you'll have no trouble. If you're not careful, you run the risk of producing code that's
needlessly inefficient or that yields undefined behavior.

Item 10. Be aware of allocator conventions and restrictions.

Allocators are weird. They were originally developed as an abstraction for memory
models that would allow library developers to ignore the distinction between near and
far pointers in certain 16-bit operating systems (i.e., DOS and its pernicious spawn),
but that effort failed. Allocators were also designed to facilitate the development of
memory managers that are full-fledged objects, but it turned out that that approach led
to efficiency degradations in some parts of the STL. To avoid the efficiency hits, the
C++ Standardization Committee added wording to the Standard that emasculated
allocators as objects, yet simultaneously expressed the hope that they would suffer no
loss of potency from the operation.

There's more. Like operator new and operator new[], STL allocators are responsible
for allocating (and deallocating) raw memory, but an allocator's client interface bears
little resemblance to that of operator new, operator new[], or even malloc. Finally (and
perhaps most remarkable), most of the standard containers never ask their associated
allocator for memory. Never. The end result is that allocators are, well, allocators are
weird.

That's not their fault, of course, and at any rate, it doesn't mean they're useless.
However, before 1 explain what allocators are good for (that's the topic of Item 11). I

 34

need to explain what they're not good for. There are a number of things that allocators
seem to be able to do, but can't, and it's important that you know the boundaries of the
field before you try to start playing. If you don't, you'll get injured for sure. Besides,
the truth about allocators is so peculiar, the mere act of summarizing it is both
enlightening and entertaining. At least I hope it is.

The list of restrictions on allocators begins with their vestigial typedefs for pointers
and references. As I mentioned, allocators were originally conceived of as abstractions
for memory models, and as such it made sense for allocators to provide typedefs for
pointers and references in the memory model they defined. In the C++ standard, the
default allocator for objects of type T (cunningly known as allocator<T>) offers the
typedefs allocator<T>::pointer and allocator<T>::reference, and it is expected that
user-defined allocators will provide these typedefs, too.

Old C++ hands immediately recognize that this is suspect, because there's no way to
fake a reference in C++. Doing so would require the ability to overload operator,
("operator dot"), and that's not permitted. In addition, creating objects that act like
references is an example of the use of proxy objects, and proxy objects lead to a
number of problems. (One such problem motivates Item 18. For a comprehensive dis-
cussion of proxy objects, turn to Item 30 of More Effective C++, where you can read
about when they work as well as when they do not.)

In the case of allocators in the STL, it's not any technical shortcomings of proxy
objects that render the pointer and reference typedefs impotent, it's the fact that the
Standard explicitly allows library implementers to assume that every allocator's
pointer typedef is a synonym for T* and every allocator's reference typedef is the same
as T&. That's right, library implementers may ignore the typedefs and use raw pointers
and references directly! So even if you could somehow find a way to write an allocator
that successfully provided new pointer and reference types, it wouldn't do any good,
because the STL implementations you were using would be free to ignore your
typedefs. Neat, huh?

While you're admiring that quirk of standardization, I'll introduce another. Allocators
are objects, and that means they may have member functions, nested types and
typedefs (such as pointer and reference), etc., but the Standard says that an
implementation of the STL is permitted to assume that all allocator objects of the same
type are equivalent and always compare equal. Offhand, that doesn't sound so awful,
and there's certainly good motivation for it. Consider this code:

template<typename T> // a user-defined allocator
class SpecialAllocator {...}; // template
typedef SpecialAllocator<Widget> SAW; // SAW = "SpecialAllocator

// for Widgets"
list<Widget, SAW> L1;
list<Widget, SAW> L2:
…
L1.splice(L1 .begin(), L2); // move L2's nodes to the

 35

//front of L1

Recall that when list elements are spliced from one list to another, nothing is copied.
Instead, a few pointers are adjusted, and the list nodes that used to be in one list find
themselves in another. This makes splicing operations both fast and exception-safe. In
the example above, the nodes that were in L2 prior to the splice are in L1 after the
splice.

When L1 is destroyed, of course, it must destroy all its nodes (and deallocate their
memory), and because it now contains nodes that were originally part of L2. L1's
allocator must deallocate the nodes that were originally allocated by L2's allocator.
Now it should be clear why the Standard permits implementers of the STL to assume
that allocators of the same type are equivalent. It's so memory allocated by one
allocator object (such as L2's) may be safely deallocated by another allocator object
(such as L1's). Without being able to make such an assumption, splicing operations
would be more difficult to implement. Certainly they wouldn't be as efficient as they
can be now. (The existence of splicing operations affects other parts of the STL, too.
For another example, see Item 4.)

That's all well and good, but the more you think about it. the more you'll realize just
how draconian a restriction it is that STL implementations may assume that allocators
of the same type are equivalent. It means that portable allocator objects — allocators
that will function correctly under different STL implementations — may not have
state. Let's be explicit about this: it means that portable allocators may not have any
nonstatic data members, at least not any that affect their behavior. None. Nada. That
means, for example, you can't have one SpecialAllocator<int> that allocates from one
heap and a different SpecialAllocator<int> that allocates from a different heap. Such
allocators wouldn't be equivalent, and STL implementations exist where attempts to
use both allocators could lead to corrupt runtime data structures.

Notice that this is a runtime issue. Allocators with state will compile just fine. They
just may not run the way you expect them to. The responsibility for ensuring that all
allocators of a given type are equivalent is yours. Don't expect compilers to issue a
warning if you violate this constraint.

In fairness to the Standardization Committee, I should point out that it included the
following statement immediately after the text that permits STL implementers to
assume that allocators of the same type are equivalent:

Implementors are encouraged to supply libraries that ... support non-equal
instances. In such implementations. ... the semantics of containers and
algorithms when allocator instances compare non-equal are
implementation-defined.

This is a lovely sentiment, but as a user of the STL who is considering the
development of a custom allocator with state, it offers you next to nothing. You can
take advantage of this statement only if (1) you know that the STL implementations
you are using support inequivalent allocators, (2) you are willing to delve into their

 36

documentation to determine whether the implementation-defined behavior of "non-
equal" allocators is acceptable to you, and (3) you're not concerned about porting your
code to STL implementations that may take advantage of the latitude expressly
extended to them by the Standard. In short, this paragraph — paragraph 5 of section
20.1.5. for those who insist on knowing — is the Standard's "1 have a dream" speech
for allocators. Until that dream becomes common reality, programmers concerned
about portability will limit themselves to custom allocators with no state.

I remarked earlier that allocators are like operator new in that they allocate raw
memory, but their interface is different. This becomes apparent if you look at the
declaration of the most common forms of operator new and allocator<T>::allocate:

void* operator new(size_t bytes);
pointer allocator<T>::allocate(size_type numObjects);
 // recall that "pointer" is a typedef

// that's virtually always T*

Both take a parameter specifying how much memory to allocate, but in the case of
operator new, this parameter specifies a certain number of bytes, while in the case of
allocator<T>::allocate, it specifies how many T objects are to fit in the memory. On a
platform where sizeof(int) ==4, for example, you'd pass 4 to operator new if you
wanted enough memory to hold an int, but you'd pass 1 to allocator<int>::allocate.
(The type of this parameter is size_t in the case of operator new. while it's
allocator<T>:size_type in the case of allocate. In both cases, it's an unsigned integral
value, and typically allocator<T>::size_type is a typedef for size_t. anyway.) There's
nothing "wrong" about this discrepancy, but the inconsistent conventions between
operator new and allocator<T>::allocate complicate the process of applying experience
with custom versions of operator new to the development of custom allocators.

operator new and allocator<T>:allocate differ in return types, too. operator new returns
a void*, which is the traditional C++ way of representing a pointer to uninitialized
memory. allocator<T>::allocate returns a T* (via the pointer typedef), which is not
only untraditional, it's premeditated fraud. The pointer returned from
allocator<T>::allocate doesn't point to a T object, because no T has yet been
constructed! Implicit in the STL is the expectation that allocator<T>::allocate's caller
will eventually construct one or more T objects in the memory it returns (possibly via
allocator<T>::construct, via uninitialized_fill, or via some application of
raw_storage_iterators), though in the case of vector::reserve or string::reserve, that
may never happen (see Item 14). The difference in return type between operator new
and allocator<T>::allocate indicates a change in the conceptual model for uninitialized
memory, and it again makes it harder to apply knowledge about implementing
operator new to the development of custom allocators.

That brings us to the final curiosity of STL allocators, that most of the standard
containers never make a single call to the allocators with which they are instantiated.
Here are two examples:

 37

list<int> L; // same as list<int, allocator<int> >;
 // allocator<int> is never asked to
 // allocate memory!

set<Widget, SAW> s; // recall that SAW is a typedef for
 //SpecialAllocator<Widget>; no
 // SAW will ever allocate memory!

This oddity is true for list and all the standard associative containers (set. multiset,
map. and multimap). That's because these are node-based containers, i.e., containers
based on data structures in which a new node is dynamically allocated each time a
value is to be stored. In the case of list, the nodes are list nodes. In the case of the
standard associative containers, the nodes are usually tree nodes, because the standard
associative containers are typically implemented as balanced binary search trees.

Think for a moment about how a list<T> is likely to be implemented. The list itself
will be made up of nodes, each of which holds a T object as well as pointers to the
next and previous nodes in the list:

template<typename T, // possible list
typename Allocator = allocator<T> > // implementation
class list{
private:
 Allocator alloc; // allocator for objects of type T

 struct ListNode{ // nodes in the linked list
 T data:
 ListNode *prev;
 ListNode *next;
 };
 …

 };

When a new node is added to the list, we need to get memory for it from an allocator,
but we don't need memory for a T. we need memory for a ListNode that contains a T.
That makes our Allocator object all but useless, because it doesn't allocate memory for
ListNodes, it allocates memory for Ts. Now you understand why list never asks its
Allocator to do any allocation: the allocator can't provide what list needs.

What list needs is a way to get from the allocator type it has to the corresponding
allocator for ListNodes. This would be tough were it not that, by convention, allocators
provide a typedef that does the job. The typedef is called other, but it's not quite that
simple, because other is a typedef nested inside a struct called rebind, which itself is a
template nested inside the allocator — which itself is a template!

Please don't try to think about that last sentence. Instead, look at the code below, then
proceed directly to the explanation that follows.

 38

template<typename T> // the standard allocator is declared
class allocator { // like this, but this could be a user-
public: // written allocator template, too
 template<typename U>
 struct rebind{
 typedef allocator<U> other;
 }
 …
}

In the code implementing list<T>, there is a need to determine the type of the allocator
for ListNodes that corresponds to the allocator we have for Ts. The type of the
allocator we have for Ts is the template parameter Allocator. That being the case, the
type of the corresponding allocator for ListNodes is this:

Allocator::rebind<ListNode>::other

Stay with me here. Every allocator template A (e.g.. std::allocator. SpecialAllocator.
etc.) is expected to have a nested struct template called rebind. rebind takes a single
type parameter, U, and defines nothing but a typedef, other. other is simply a name for
A<U>. As a result, list<T> can get from its allocator for T objects (called Allocator) to
the corresponding allocator for ListNode objects by referring to
Allocator::rebind<ListNode>::other.

Maybe this makes sense to you, maybe it doesn't. (If you stare at it long enough, it
will, but you may have to stare a while. I know I had to.) As a user of the STL who
may want to write a custom allocator, you don't really need to know how it works.
What you do need to know is that if you choose to write allocators and use them with
the standard containers, your allocators must provide the rebind template, because
standard containers assume it will be there. (For debugging purposes, it's also helpful
to know why node-based containers of T objects never ask for memory from the
allocators for T objects.)

Hallelujah! We are finally done examining the idiosyncrasies of allocators. Let us
therefore summarize the things you need to remember if you ever want to write a
custom allocator.

� Make your allocator a template, with the template parameter T representing the
type of objects for which you are allocating memory.

� Provide the typedefs pointer and reference, but always have pointer be T* and
reference be T&.

� Never give your allocators per-object state. In general, allocators should have
no nonstatic data members.

� Remember that an allocator's allocate member functions are passed the
number of objects for which memory is required, not the number of bytes

 39

needed. Also remember that these functions return T* pointers Ma the pointer
typedef), even though no T objects have yet been constructed.

� Be sure to provide the nested rebind template on which standard containers
depend.

Most of what you have to do to write your own allocator is reproduce a fair amount of
boilerplate code, then tinker with a few member functions, notably allocate and
deallocate. Rather than writing the boilerplate from scratch, I suggest you begin with
the code at Josuttis' sample allocator web page [23] or in Austern's article, "What Are
Allocators Good For?" [24].

Once you've digested the information in this Item, you'll know a lot about what
allocators cannot do, but that's probably not what you want to know. Instead, you'd
probably like to know what allocators can do. That's a rich topic in its own right, a
topic I call "Item 11."

Item 11. Understand the legitimate uses of custom allocators.

So you've benchmarked, profiled, and experimented your way to the conclusion that
the default STL memory manager (i.e., allocator<T>) is too slow, wastes memory, or
suffers excessive fragmentation for your STL needs, and you're certain you can do a
better job yourself. Or you discover that allocator<T> takes precautions to be thread-
safe, but you're interested only in single-threaded execution and you don't want to pay
for the synchronization overhead you don't need. Or you know that objects in certain
containers are typically used together, so you'd like to place them near one another in a
special heap to maximize locality of reference. Or you'd like to set up a unique heap
that corresponds to shared memory, then put one or more containers in that memory so
they can be shared by other processes. Congratulations! Each of these scenarios
corresponds to a situation where custom allocators are well suited to the problem.

For example, suppose you have special routines modeled after malloc and free for
managing a heap of shared memory.

void* mallocShared(size_t bytesNeeded);
void freeShared(void *ptr);

and you'd like to make it possible to put the contents of STL containers in that shared
memory. No problem:

template<typename T>
class SharedMemoryANocator {
public:
 …
 pointer allocate(size_type numObiects, const void *localityHint = 0)
 {

return static_cast<pointer>(mallocShared(numObiects* sizeof(T)));

 40

 }

 void deallocate(pointer ptrToMemory, size_ type numObjects)
 {

freeShared(ptrToMiemory);
 }
 …
};

For information on the pointer type as well as the cast and the multiplication inside
allocate, see Item 10.

You could use SharedMemoryAllocator like this:
// convenience typedef
typedef vector<double, SharedMemoryAllocator<double> >

SharedDoubleVec;
…
{ // begin some block
 SharedDoubleVec v: // create a vector whose elements

 // are in shared memory
 … // end the block
}

The wording in the comment next to v's definition is important. v is using a
SharedMemoryAllocator, so the memory v allocates to hold its elements will come
from shared memory, v itself, however — including all its data members — will
almost certainly not be placed in shared memory, v is just a normal stack-based object,
so it will be located in whatever memory the runtime system uses for all normal stack-
based objects. That's almost never shared memory. To put both v's contents and v itself
into shared memory, you'd have to do something like this:

void *pVectorMemory = // allocate enough shared
mallocShared(sizeof(SharedDoubleVec)); // memory to hold a
 // SharedDoubleVec object
SharedDoubleVec *pv = // use "placement new" to
 new (pVectorMemory) SharedDoubleVec; // create a SharedDoubleVec
 // object in the memory;

 // see below

// use the object (via pv)
…

pv->~SharedDoubleVec(); // destroy the object in the

 // shared memory
freeShared(pVectorMemory); // deallocate the initial
 // chunk of shared memory

 41

I hope the comments make clear how this works. Fundamentally, you acquire some
shared memory, then construct a vector in it that uses shared memory for its own
internal allocations. When you're done with the vector, you invoke its destructor, then
release the memory the vector occupied. The code isn't terribly complicated, but it's a
lot more demanding than just declaring a local variable as we did above. Unless you
really need a container (as opposed to its elements) to be in shared memory, I
encourage you to avoid this manual four-step allocate/construct/destroy/deallocate
process.

In this example, you've doubtless noticed that the code ignores the possibility that
mallocShared might return a null pointer. Obviously, production code would have to
take such a possibility into account. Also, construction of the vector in the shared
memory is accomplished by "placement new." If you're unfamiliar with placement
new, your favorite C++ text should be able to introduce you. If that text happens to be
More Effective C++, you'll find that the pleasantries are exchanged in Item 8.

As a second example of the utility of allocators, suppose you have two heaps,
identified by the classes Heap1 and Heap2. Each heap class has static member
functions for performing allocation and deallocation:

class Heap1 {
public:
 …

static void* alloc(size_t numBytes, const void *memoryBlockToBeNear);
static void dealloc(void *ptr);
…

};

class Heap2 { ... }; // has the same alloc/dealloc interface

Further suppose you'd like to co-locate the contents of some STL containers in
different heaps. Again, no problem. First you write an allocator designed to use classes
like Heap1 and Heap2 for the actual memory management:

template<typenameT, typename Heap>
SpecificHeapAllocator {
public:
 pointer allocate(size_type numObjects, const void *localityHint = 0)
 {

return static_cast<pointer> (Heap::alloc(numObjects * sizeof(T),
 localityHint));

 }
 void deallocate(pointer ptrToMemory, size_type numObjects)
 {

Heap::dealloc(ptrToMemory);
 }
 …

 42

};

Then you use SpecialHeapAllocator to cluster containers' elements together:

vector<int, SpecificHeapAIlocator<int, Heap1 > > v; // put both v's and
set<int, SpecificHeapAllocator<int Heap1 > > s; //s's elements in
 //Heap1
list< Widget,

SpecificHeapAllocator<Widget, Heap2> > L; // put both L's and
map< int, string, less<int>, // m's elements in

SpecificHeapAllocator<pair<const int, string>, // Heap2
 Heap2> > m;

In this example, it's quite important that Heap1 and Heap2 be types and not objects.
The STL offers a syntax for initializing different STL containers with different
allocator objects of the same type, but I'm not going to show you what it is. That's
because if Heap1 and Heap2 were objects instead of types, they'd be inequivalent
allocators, and that would violate the equivalence constraint on allocators that is
detailed in Item 10.

As these examples demonstrate, allocators are useful in a number of contexts. As long
as you obey the constraint that all allocators of the same type must be equivalent,
you'll have no trouble employing custom allocators to control general memory
management strategies, clustering relationships, and use of shared memory' and other
special heaps.

Item 12. Have realistic expectations about the thread safety of STL
containers.

The world of standard C++ is rather sheltered and old-fashioned. In this rarefied
world, all executables are statically linked. Neither memory-mapped files nor shared
memory exist. There are no window systems, no networks, no databases, no other
processes. That being the case, you should not be surprised to learn that the Standard
says not a word about threading. The first expectation you should have about the
thread safety of the STL, then, is that it will vary from implementation to
implementation.

Of course, multithreaded programs are common, so most STL vendors strive to make
their implementations work well in a threaded environment. Even when they do a good
job, however, much of the burden remains on your shoulders, and it's important to
understand why. There's only so much STL vendors can do to ease your
multithreading pain, and you need to know what it is.

The gold standard in support for multithreading in STL containers (and the aspiration
of most vendors) has been defined by SGI and is published at their STL Web Site[|21].
In essence, it says that the most you can hope for from an implementation is the
following.

 43

� Multiple readers are safe. Multiple threads may simultaneously read the
contents of a single container, and this will work correctly. Naturally, there
must not be any writers acting on the container during the reads.

� Multiple writers to different containers are safe. Multiple threads may
simultaneously write to different containers.

That's all, and let me make clear that this is what you can hope for, not what you can
expect. Some implementations offer these guarantees, but some do not.

Writing multithreaded code is hard, and many programmers wish that STL
implementations were completely thread safe out of the box. Were that the case,
programmers might hope to be relieved of the need to attend to concurrency control
themselves. There's no doubt this would be convenient state of affairs, but it would
also be very difficult to achieve. Consider the following ways a library might try to
implement such comprehensive container thread safety:

� Lock a container for the duration of each call to its member functions.

� Lock a container for the lifetime of each iterator it returns (via, e.g.., calls to
begin or end).

� Lock a container for the duration of each algorithm invoked on that container.
(This actually makes no sense, because, as Item 32 explains, algorithms have no
way to identify the container on which they are operating. Nevertheless, we'll
examine this option here, because it's instructive to see why it wouldn't work
even if it were possible.)

Now consider the following code. It searches a vector<int> for the first occurrence of
the value 5, and, if it finds one, changes that value to 0.

vector<int> v;
vector<int>::iterator first5(find(v.begin(), v.end(), 5)); // Line 1
if (first5 !=v.end()){ //Line 2
*first5 = 0; // Line 3
}

In a multithreaded environment, it's possible that a different thread will modify the
data in v immediately after completion of Line 1. If that were to happen, the test of
first5 against v.end on Line 2 would be meaningless, because v's values would be
different from what they were at the end of Line 1. In fact, such a test could yield
undefined results, because another thread could have intervened between Lines 1 and 2
and invalidated first5, perhaps by performing an insertion that caused the vector to
reallocate its underlying memory. (That would invalidate all the vector's iterators. For
details on this reallocation behavior, turn to Item 14.) Similarly, the assignment to
*first5 on Line 3 is unsafe, because another thread might execute between Lines 2 and
3 in such a way as to invalidate firsts, perhaps by erasing the element it points to (or at
least used to point to).

 44

None of the approaches to locking listed above would prevent these problems. The
calls to begin and end in Line 1 both return too quickly to offer any help, the iterators
they generate last only until the end of that line, and find also returns at the end of that
line.

For the code above to be thread safe, v must remain locked from Line 1 through Line
3, and it's difficult to imagine how an STL implementation could deduce that
automatically. Bearing in mind the typically high cost of synchronization primitives
(e.g.. semaphores, mutexes, etc.), it's even more difficult to imagine how an
implementation could do it without imposing a significant performance penalty on
programs that knew a priori — that were designed in such a way — that no more than
one thread had access to v during the course of Lines 1-3.

Such considerations explain why you can't expect any STL implementation to make
your threading woes disappear. Instead, you'll have to manually take charge of
synchronization control in these kinds of scenarios. In this example, you might do it
like this:

vector<int> v;
…
getMutexFor(v);
vector<int>::iterator first5(find(v.begin(), v.end(), 5));
if (first5 != v.end()) { // this is now safe
 *first5 = 0; // so is this
}
releaseMutexFor(v);

A more object-oriented solution is to create a Lock class that acquires a mutex in its
constructor and releases it in its destructor, thus minimizing the chances that a call to
getMutexFor will go unmatched by a call to releaseMutexFor. The essence of such a
class (really a class template) is this:

template<typename Container> // skeletal template for classes
class Lock { // that acquire and release mutexes
public: // for containers; many details

 // have been omitted
 Lock(const Containers container)
 : c(container)
 {
 getMutexFor(c); // acquire mutex in the constructor
 }

 ~Lock()
 {
 releaseMutexFor(c); // release it in the destructor
 }

 45

private:
 const Container& c;
};

The idea of using a class (like Lock) to manage the lifetime of resources (such as
mutexes) is generally known as resource acquisition is initialization, and you should
be able to read about it in any comprehensive C++ textbook. A good place to start is
Stroustrup's The C++ Programming Language [7], because Stroustrup popularized the
idiom, but you can also turn to Item 9 of More Effective C++. No matter what source
you consult, bear in mind that the above Lock is stripped to the bare essentials. An
industrial-strength version would require a number of enhancements, but such a
fleshing-out would have nothing to do with the STL. Furthermore, this minimalist
Lock is enough to see how we could apply it to the example we've been considering:

vector<int> v;
…
{ // create new block;
 Lock<vector<int> > lock(v); // acquire mutex
 vector<int>::iterator first5(find(v.begin(), v.end(), 5));
 if (first5 != v.end()) {
 *first5 = 0;
 }
} // close block, automatically
 // releasing the mutex

Because a Lock object releases the container's mutex in the Lock's destructor, it's
important that the Lock be destroyed as soon as the mutex should be released. To
make that happen, we create a new block in which to define the Lock, and we close
that block as soon as we no longer need the mutex. This sounds like we're just trading
the need to call releaseMutexFor with the need to close a new block, but that's not an
accurate assessment. If we forget to create a new block for the Lock, the mutex will
still be released, but it may happen later than it should — when control reaches the end
of the enclosing block. If we forget to call releaseMutexFor, we never release the
mutex.

Furthermore, the Lock-based approach is robust in the presence of exceptions. C++
guarantees that local objects are destroyed if an exception is thrown, so Lock will
release its mutex even if an exception is thrown while we re using the Lock object. If
we relied on manual calls to getMutexFor and releaseMutexFor, we'd never relinquish
the mutex if an exception was thrown after calling getMutexFor but before calling
releaseMutexFor.

Exceptions and resource management are important, but they're not the subject of this
Item. This Item is about thread safety in the STL. When it comes to thread safely and
STL containers, you can hope for a library implementation that allows multiple readers
on one container and multiple writers on separate containers. You can't hope for the

 46

library to eliminate the need for manual concurrency control, and you can't rely on any
thread support at all.

 47

vector and string
All the STL containers are useful, but if you're like most C++ programmers, you'll find
yourself reaching for vector and string more often than their compatriots. That's to be
expected, vector and string are designed to replace most applications of arrays, and
arrays are so useful, they've been included in every commercially successful
programming language from COBOL to Java.

The Items in this chapter cover vectors and strings from a number of perspectives. We
begin with a discussion of why the switch from arrays is worthwhile, then look at ways
to improve vector and string performance, identify important variations in string
implementations, examine how to pass vector and string data to APIs that understand
only C, and learn how to eliminate excess memory allocation. We conclude with an
examination of an instructive anomaly, vector<bool>, the little vector that couldn't.

Each of the Items in this chapter will help you take the two most useful containers in
the STL and refine their application. By the time we're done, you'll know how to make
them serve you even better.

Item 13. Prefer vector and string to dynamically allocated arrays.

The minute you decide to use new for a dynamic allocation, you adopt the following
responsibilities:

1. You must make sure that somebody will later delete the allocation. Without a
subsequent delete, your new will yield a resource leak.

2. You must ensure that the correct form of delete is used. For an allocation of a
single object, "delete" must be used. For an array allocation, "delete []" is required.
If the wrong form of delete is used, results will be undefined. On some platforms,
the program will crash at runtime. On others, it will silently blunder forward,
sometimes leaking resources and corrupting memory' as it goes.

3. You must make sure that delete is used exactly once. If an allocation is deleted
more than once, results are again undefined.

That's quite a set of responsibilities, and I can't understand why you'd want to adopt
them if it wasn't necessary. Thanks to vector and string, it isn't necessary anywhere
near as often as it used to be.

Any time you find yourself getting ready to dynamically allocate an array (i.e.. plotting
to write "new T[...]"), you should consider using a vector or a string instead. (In
general, use string when T is a character type and use vector when it's not, though later
in this Item, we'll encounter a scenario where a vector<char> may be a reasonable
design choice.) vector and string eliminate the burdens above, because they manage
their own memory. Their memory grows as elements are added to these containers,

 48

and when a vector or string is destroyed, its destructor automatically destroys the
elements in the container and deallocates the memory holding those elements.

In addition, vector and string are full-fledged STL sequence containers, so they put at
your disposal the complete arsenal of STL algorithms that work on such containers.
True, arrays can be used with STL algorithms, too, but arrays don't offer member
functions like begin, end, and size, nor do they have nested typedefs like iterator,
reverse_iterator, or value_type. And of course char* pointers can hardly compete with
the scores of specialized member functions proffered by string. The more you work
with the STL, the more jaundiced the eye with which you'll come to view built-in
arrays.

If you're concerned about the legacy code you must continue to support, all of which is
based on arrays, relax and use vectors and strings anyway. Item 16 shows how easy it
is to pass the data in vectors and strings to APIs that expect arrays, so integration with
legacy code is generally not a problem.

Frankly. I can think of only one legitimate cause for concern in replacing dynamically
allocated arrays with vectors or strings, and it applies only to strings. Many string
implementations employ reference counting behind the scenes (see Item 15). a strategy
that eliminates some unnecessary memory allocations and copying of characters and
that can improve performance for many applications. In fact, the ability to optimize
strings via reference counting was considered so important, the C++ Standardization
Committee took specific steps to make sure it was a valid implementation.

Alas, one programmer's optimization is another's pessimization, and if you use
reference-counted strings in a multithreaded environment, you may find that the time
saved by avoiding allocations and copying is dwarfed by the time spent on behind-the-
scenes concurrency control. (For details, consult Sutter's article. "Optimizations That
Aren't (In a Multithreaded World)" [20].) If you're using reference-counted strings in a
multithreaded environment, then, it makes sense to keep an eye out for performance
problems arising from their support for thread safety.

To determine whether you're using a reference-counting implementation for string, it's
often easiest to consult the documentation for your library. Because reference counting
is considered an optimization, vendors generally tout it as a feature. An alternative is
to look at the source code for your libraries' implementations of string. I don't gener-
ally recommend trying to figure things out from library source code, but sometimes it's
the only way to find out what you need to know. If you choose this approach,
remember that string is a typedef for basic_string<char> (and wstring is a typedef for
basic_string<wchar_t>), so what you really want to look at is the template
basic_string. The easiest thing to check is probably the class's copy constructor. Look
to see if it increments a reference count somewhere. If it does, string is reference
counted. If it doesn't, either string isn't reference counted or you misread the code.
Ahem.

If the string implementations available to you are reference counted and you are
running in a multithreaded environment where you've determined that string's

 49

reference counting support is a performance problem, you have at least three
reasonable choices, none of which involves abandoning the STL. First, check to see if
your library implementation is one that makes it possible to disable reference counting,
often by changing the value of a preprocessor variable. This won't be portable, of
course, but given the amount of work involved, it's worth investigating. Second, find
or develop an alternative string implementation (or partial implementation) that doesn't
use reference counting. Third, consider using a vector<char> instead of a string, vector
implementations are not allowed to be reference counted, so hidden multithreading
performance issues fail to arise. Of course, you forgo string's fancy member functions
if you switch to vector<char>, but most of that functionality is available through STL
algorithms anyway, so you're-not so much giving up functionality as you are trading
one syntax for another.

The upshot of all this is simple. If you're dynamically allocating arrays, you're
probably taking on more work than you need to. To lighten your load, use vectors or
strings instead.

Item 14. Use reserve to avoid unnecessary reallocations.

One of the most marvelous things about STL containers is that they automatically
grow to accommodate as much data as you put into them, provided only that you don't
exceed their maximum size. (To discover this maximum, just call the aptly named
max_size member function.) For vector and string, growth is handled by doing the
moral equivalent of a realloc whenever more space is needed. This realloc-like
operation has four parts:

1. Allocate a new block of memory that is some multiple of the container's current
capacity. In most implementations, vector and string capacities grow by a factor of
two each time. i.e. their capacity is doubled each time the container must be
expanded.

2. Copy all the elements from the container's old memory into its new memory.

3. Destroy the objects in the old memory.

4. Deallocate the old memory.

Given all that allocation, deallocation, copying, and destruction. It should not stun you
to learn that these steps can be expensive. Naturally, you don't want to perform them
any more frequently than you have to. If that doesn't strike you as natural, perhaps it
will when you consider that each time these steps occur, all iterators, pointers, and
references into the vector or string are invalidated. That means that the simple act of
inserting an element into a vector or string may also require updating other data
structures that use iterators, pointers, or references into the vector or string being
expanded.

The reserve member function allows you to minimize the number of reallocations that
must be performed, thus avoiding the costs of real location and

 50

iterator/pointer/reference invalidation. Before 1 explain how reserve can do that,
however, let me briefly recap four interrelated member functions that are sometimes
confused. Among the standard containers, only vector and string offer all of these
functions.

� size() tells you how many elements are in the container. It does not tell you how
much memory the container has allocated for the elements it holds.

� capacity() tells you how many elements the container can hold in the memory it
has already allocated. This is how many total elements the container can hold in
that memory, not how many more elements it can hold. If you'd like to find out
how much unoccupied memory a vector or string has, you must subtract size()
from capacity(). If size and capacity return the same value, there is no empty
space in the container, and the next insertion (via insert or push_back. etc.) will
trigger the reallocation steps above.

� resize(size_t n) forces the container to change to n the number of elements it
holds. After the call to resize, size will return n. If n is smaller than the current
size, elements at the end of the container will be destroyed. If n is larger than
the current size, new default-constructed elements will be added to the end of
the container. If n is larger than the current capacity, a reallocation will take
place before the elements are added.

� reserve(size_t n) forces the container to change its capacity to at least n.
provided n is no less than the current size. This typically forces a reallocation,
because the capacity needs to be increased. (If n is less than the current
capacity, vector ignores the call and does nothing, string may reduce its
capacity to the maximum of size() and n. but the string's size definitely remains
unchanged. In my experience, using reserve to trim the excess capacity from a
string is generally less successful than using "the swap trick." which is the topic
of Item 17.)

This recap should make it clear that reallocations (including their constituent raw
memory allocations and deallocations, object copying and destruction, and
invalidation of iterators, pointers, and references) occur whenever an element needs to
be inserted and the container's capacity is insufficient. The key to avoiding
reallocations, then, is to use reserve to set a container's capacity to a sufficiently large
value as soon as possible, ideally right after the container is constructed.

For example, suppose you'd like to create a vector<int> holding the values 1-1000.
Without using reserve, you might do it like this:

vector<int> v;
for (int i = 1; i <= 1000; ++i) v.push_back(i);

In most STL implementations, this code will result in between two and 10
reallocations during the course of the loop. (There's no magic to the number 10. Recall

 51

that vectors typically double in capacity each time a reallocalion occurs, and 1000 is
roughly 210.)

Modifying the code to use reserve gives us this:

vector<int> v;
v.reserve(1000);
for (int i = 1; i <= 1000; ++i) v.push_back(i);

This should result in zero reallocations during the loop.

The relationship between size and capacity makes it possible to predict when an
insertion will cause a vector or string to perform a reallocation, and that, in turn, makes
it possible to predict when an insertion will invalidate iterators, pointers, and
references into a container. For example, given this code.

string s;
…
if (s.size() < s.capacity()) {

s.push_back(‘x’);
}

the call to push_back can't invalidate iterators, pointers, or references into the string,
because the string's capacity is guaranteed to be greater than its size. If, instead of
performing a push_back, the code did an insert into an arbitrary location in the string,
we'd still be guaranteed that no reallocation would take place during the insertion, but,
in accord with the usual rule for iterator invalidation accompanying a string insertion,
all iterators/pointers/references from the insertion point to the end of the string would
be invalidated.

Getting back to the main point of this Item, there are two common ways to use reserve
to avoid unneeded reallocations. The first is applicable when you know exactly or
approximately how many elements will ultimately end up in your container. In that
case, as in the vector code above, you simply reserve the appropriate amount of space
in advance. The second way is to reserve the maximum space you could ever need.
then, once you've added all your data, trim off any excess capacity. The trimming part
isn't difficult, but I'm not going to show it here, because there's a trick to it. To learn
the trick, turn to Item 17.

Item 15. Be aware of variations in string implementations.

Bjarne Stroustrup once wrote an article with the curious title. "Sixteen Ways to Stack a
Cat" [27]. It turns out that there are almost as many ways to implement strings. As
experienced and sophisticated software engineers, of course, we're supposed 10 pooh-
pooh "implementation details." but if Einstein is right and God is in the details, reality
requires that we sometimes get religion. Even when the details don't matter, having
some idea about them puts us in a position to be sure they don't matter.

 52

For example, what is the size of a string object? In other words, what value does
sizeof(string) return? This could be an important question if you're keeping a close eye
on memory consumption, and you're thinking of replacing a raw char* pointer with a
string object.

The news about sizeof(string) is "interesting." which is almost certainly what you do
not want to hear if you're concerned about space. While it's not uncommon to find
string implementations in which strings are the same size as char* pointers, it's also
easy to find string implementations where each string is seven times that size. Why the
difference? To understand that, we have to know what data a string is likely to store as
well as where it might decide to store it.

Virtually every string implementation holds the following information:

� The size of the string, i.e., the number of characters it contains.

� The capacity of the memory holding the string's characters. (For a review of
the difference between a string's size and its capacity, see Item 14.)

� The value of the string, i.e., the characters making up the string. In addition, a
string may hold

� A copy of its allocator. For an explanation of why this field is optional, turn to
Item 10 and read about the curious rules governing allocators.

string implementations that depend on reference counting also contain

� The reference count for the value.

Different string implementations put these pieces of information together in different
ways. To demonstrate what I mean. I'll show you the data structures used by four
different string implementations. There's nothing special about these selections. They
all come from STL implementations that are commonly used. They just happen to be
the string implementations in the first four libraries I checked.

In implementation A. each string object contains a copy of its allocator, the string's
size, its capacity, and a pointer to a dynamically allocated buffer containing both the
reference count (the "RefCnt") and the string's value. In this implementation, a string
object using the default allocator is lour times the size of a pointer. With a custom
allocator, the string object would be bigger by about the size of the allocator object:

 53

Implementation B's string objects are the same size as a pointer, because they contain
nothing but a pointer to a struct. Again, this assumes that the default allocator is used.
As in Implementation A. if a custom allocator is used, the string object's size will
increase by about the size of the allocator object. In this implementation, use of the
default allocator requires no space, thanks to an optimization present here but not
present in Implementation A.

The object pointed to by B's string contains the string's size, capacity, and reference
count, as well as a pointer to a dynamically allocated buffer holding the string's value.
The object also contains some additional data related to concurrency control in
multithreaded systems. Such data is outside our purview here, so I've just labeled that
part of the data structure "Other:"

The box for "Other" is larger than the other boxes, because I've drawn the boxes to
scale. If one box is twice the size of another, the larger box uses twice as many bytes
as the smaller one, in Implementation B. the data for concurrency control is six times
the size of a pointer.

string objects under Implementation C are always the size of pointer, but this pointer
points to a dynamically allocated buffer containing everything related to the string: its
size, capacity, reference count, and value. There is no per-object allocator support. The
buffer also holds some data concerning the shareability of the value, a topic we'll not
consider here, so I've labeled it "X". (If you're interested in why a reference counted
value might not be shareable in the first place, consult Item 29 of More Effective
C++.)

 54

Implementation D's string objects are seven times the size of a pointer (still assuming
use of the default allocator). This implementation employs no reference counting, but
each string contains an internal buffer large enough to represent string values of up to
15 characters. Small strings can thus be stored entirely within the string object, a
feature sometimes known as the "small string optimization." When a string's capacity
exceeds 15. the first part of the buffer is used as a pointer to dynamically allocated
memory, and the string's value resides in that memory:

These diagrams do more than just prove 1 can read source code and draw pretty
pictures. They also allow you to deduce that creation ot a string in a statement such as
this.

string s("Perse"); // Our dog is named "Persephone" but we
// usually just call her "Perse" Visit her web site
// at http://www.aristeia.com/Persephone/

will cost you zero dynamic allocations under Implementation D. one under
Implementations A and C. and two under Implementation B (one for the object pointed
to by the string object, one for the character buffer pointed to by that object). If you're
concerned about the number of times you dynamically allocate and deallocate
memory, or if you're concerned about the memory overhead that often accompanies
such allocations, you might want to shy away from Implementation B. On the other
hand, the fact that Implementation B's data structure includes specific support for
concurrency control in multithreaded systems might mean that it meets your needs
better than implementations A or C. the number of dynamic allocations
notwithstanding. (Implementation D requires no special support for multithreading,
because it doesn't use reference counting. For more on the interaction of threading and
reference counted strings, see Item 13. For information on what you may reasonably
hope for in the way of threading support in STL containers, consult Item 12.)

In a design based on reference counting, everything outside the string object can be
shared by multiple strings (if they have the same value), so something else we can
observe from the diagrams is that Implementation A offers less sharing than B or C. In
particular, Implementations B and C can share a string's size and capacity, thus
potentially reducing the amortized per-object cost of storing that data. Interestingly,
the fact that Implementation C fails to support per-object allocators means that it is the
only implementation that can share allocators: all strings must use the same one!

 55

(Again, for details on the rules governing allocators, turn to Item 10.) Implementation
D shares no data across string objects.

An interesting aspect of string behavior you can't fully deduce from the diagrams is the
policy regarding memory allocation for small strings. Some implementations refuse to
allocate memory for fewer than a certain number of characters, and Implementations
A. C. and D are among them. Look again at this statement:

string s("Perse"); // s is a string of size 5

implementation A has a minimum allocation size of 32 characters, so though s's size is
5 under all implementations, its capacity under Implementation A is 31. (The 32nd
character is presumably reserved for a trailing null, thus making it easy to implement
the c_str member function.) Implementation C also has a minimum, but it's 16. and no
space is reserved for a trailing null, so under Implementation C. s's capacity is 16.
Implementation D's minimum buffer size is also 16, including room for a trailing null.
Of course, what distinguishes Implementation D in this area is that the memory for
strings with capacity less than 16 is contained within the string object itself. Imple-
mentation B has no minimum allocation, and under Implementation B, s's capacity is
7. (Why it's not 6 or 5. I don't know. I didn't read the source code that closely, sorry.)

I hope it's obvious that the various implementations' policies on minimum allocations
might be important to you if you expect to have lots of short strings and either (1) your
release environment has very little memory or (2) you are concerned about locality of
reference and want to cluster strings on as few pages as possible.

Clearly, string implementations have more degrees of freedom than are apparent at
first glance, and equally clearly, different implementers have taken advantage of this
design flexibility in different ways. Let's summarize the things that vary:

� string values may or may not be reference counted. By default, many
implementations do use reference counting, but they usually offer a way to turn
it off, often via a preprocessor macro. Item 13 gives an example of specific
conditions under which you might want to turn it off, but you might want to do
so for other reasons, too. For example, reference counting helps only when
strings are frequently copied, and some applications just don't copy strings often
enough to justify the overhead.

� string objects may range in size from one to at least seven times the size of
char* pointers.

� Creation of a new string value may require zero, one, or two dynamic
allocations.

� string objects may or may not share information on the string's size and
capacity.

� strings may or may not support per-object allocators.

 56

� Different implementations have different policies regarding minimum
allocations for character buffers.

Now, don't get me wrong. I think string is one of the most important components of
the standard library, and I encourage you to use it as often as you can. Item 13, for
example, is devoted to why you should use string in place of dynamically allocated
character arrays. At the same time, if you're to make effective use of the STL, you
need to be aware of the variability in string implementations, especially if you're
writing code that must run on different STL platforms and you face stringent
performance requirements.

Besides, string seems so conceptually simple. Who'd have thought the
implementations could be so interesting?

Item 16. Know how to pass vector and string data to legacy APIs.

Since C++ was standardized in 1998, the C++ elite haven't been terribly subtle in their
attempt to nudge programmers away from arrays and towards vectors. They've been
similarly overt in trying to get developers to shift from char* pointers to string objects.
There are good reasons for making these changes, including the elimination of
common programming errors (see Item 13) and the ability to take full advantage of the
power of the STL algorithms (see. e.g., Item 31).

Still, obstacles remain, and one of the most common is the existence of legacy C APIs
that traffic in arrays and char* pointers instead of vector and string objects. Such APIs
will exist for a long time, so we must make peace with them if we are to use the STL
effectively.

Fortunately, it's easy. If you have a vector v and you need to get a pointer to the data in
v that can be viewed as an array, just use &v[0]. For a string s, the corresponding
incantation is simply s.c_str(). But read on. As the fine print in advertising often points
out, certain restrictions apply.

Given

vector<int> v;

the expression v[0] yields a reference to the first element in the vector, so &v[0] is a
pointer to that first element. The elements in a vector are constrained by the C++
Standard to be stored in contiguous memory, just like an array, so if we wish to pass v
to a C API that looks something like this.

void doSomething(const int* pInts, size_t numlnts);

we can do it like this:

doSomething(&v[0], v.size());

 57

Maybe. Probably. The only sticking point is if v is empty. If it is, v.size() is zero, and
&v[0] attempts to produce a pointer to something that does not exist. Not good.
Undefined results. A safer way to code the call is this:

if (!v.empty()) {

doSomething(&v[0], v.size());
}

If you travel in the wrong circles, you may run across shady characters who will tell
you that you can use v.begin() in place of &v[0], because (these loathsome creatures
will tell you) begin returns an iterator into the vector, and for vectors, iterators are
really pointers. That's often true, but as Item 50 reveals, it's not always true, and you
should never rely on it. The return type of begin is an iterator, not a pointer, and you
should never use begin when you need to get a pointer to the data in a vector. If you're
determined to type v.begin() for some reason, type &*v.begin(), because that will yield
the same pointer as &v[0], though it's more work for you as a typist and more obscure
for people trying to make sense of your code. Frankly, if you're hanging out with
people who tell you to use v.begin() instead of &v[0], you need to rethink your social
circle.

The approach to getting a pointer to container data that works for vectors isn't reliable
for strings, because (1) the data for strings are not guaranteed to be stored in
contiguous memory, and (2) the internal representation of a string is not guaranteed to
end with a null character. This explains the existence of the string member function
c_str, which returns a pointer to the value of the string in a form designed for C. We
can thus pass a string s to this function.

void doSomething(const char *pString);

like this:

doSomething(s.c_str());

This works even if the string is of length zero. In that case, c_str will return a pointer
to a null character. It also works If the string has embedded nulls. If it does, however,
doSomething is likely to interpret the first embedded null as the end of the string,
string objects don't care if they contain null characters, but char*-based C APIs do.

Look again at the doSomething declarations:

void doSomething(const int* pints, size_t numlnts);
void doSomething(const char *pString);

In both cases, the pointers being passed are pointers to const. The vector or string data
are being passed to an API that will read it, not modify it. This is by far the safest
thing to do. For strings, it's the only thing to do, because there is no guarantee that
c_str yields a pointer to the internal representation of the string data: it could return a

 58

pointer to an unmodifiable copy of the string's data, one that's correctly formatted for a
C API. (If this makes the efficiency hairs on the back of your neck rise up in alarm,
rest assured that the alarm is probably false. I don't know of any contemporary library
implementation that takes advantage of this latitude.)

For a vector, you have a little more flexibility. If you pass v to a C API that modifies
v's elements, that's typically okay, but the called routine must not attempt to change
the number of elements in the vector. For example, it must not try to "create" new
elements in a vector's unused capacity. If it does, v will become internally inconsistent,
because it won't know its correct size any longer. v.size() will yield incorrect results.
And if the called routine attempts to add data to a vector whose size and capacity (see
Item 14) are the same, truly horrible things could happen. I don't even want to
contemplate them. They're just too awful.

Did you notice my use of the word "typically" in the phrase "that's typically okay" in
the preceding paragraph? Of course you did. Some vectors have extra constraints on
their data, and if you pass a vector to an API that modifies the vector's data, you must
ensure that the additional constraints continue to be satisfied. For example, Item 23
explains how sorted vectors can often be a viable alternative to associative containers,
but it's important for such vectors to remain sorted. If you pass a sorted vector to an
API that may modify the vector's data, you'll need to take into account that the vector
may no longer be sorted after the call has returned.

If you have a vector that you'd like to initialize with elements from a C API, you can
take advantage of the underlying layout compatibility of vectors and arrays by passing
to the API the storage for the vector's elements:

// C API: this function takes a pointer to an array of at most arraySize
// doubles and writes data to it. It returns the number of doubles written,
// which is never more than maxNumDoubles.
size_t fillArray(double *pArray, size_t arraySize);

vector<double> vd(maxNumDoubles); // create a vector whose

// size is maxNumDoubles
vd.resize(fillArray(&vd[0], vd.size())); // have fillArray write data

// into vd, then resize vd
//to the number of
// elements fillArray wrote

This technique works only for vectors, because only vectors are guaranteed to have the
same underlying memory layout as arrays. If you want to initialize a string with data
from a C API, however, you can do it easily enough. Just have the API put the data
into a vector<char>, then copy the data from the vector to the string:

// C API: this function takes a pointer to an array of at most arraySize
// chars and writes data to it. It returns the number of chars written,
// which is never more than maxNumChars.

 59

size_t fillString(char 'pArray, size_t arraySize);
vector<char> vc(maxNumChars); // create a vector whose

// size is maxNumChars
size_t charsWritten = fillString(&vc[0], vc.size()); // have fillString write

//into vc
string s(vc.begin(), vc.begin()+charsWritten); // copy data from vc to s

 // via range constructor
 // (see Item 5)

In fact, the idea of having a C API put data into a vector and then copying the data into
the STL container you really want it in always works:

size_t fillArray(double *pArray, size_t arraySize); // as above
vector<double> vd(maxNumDoubles); // also as above
vd.resize(fillArray(&vd[0], vd.size());
deque<double> d(vd.begin(), vd.end()); // copy data into

//deque
list<double> l(vd.begin(), vd.end()); // copy data into list
set<double> s(vd.begin(), vd.end()); // copy data into set

Furthermore, this hints at how STL containers other than vector or string can pass their
data to C APIs. Just copy each container's data into a vector, then pass it to the API:

void doSomething(const int* pints, size_t numlnts); // C API (from above)
set<int> intSet; // set that will hold
… // data to pass to API
vector<int> v(intSet.begin(), intSet.end()); // copy set data into

 // a vector
if (!v.empty()) doSomething(&v[0], v.size()); // pass the data to

 //the API

You could copy the data into an array, too, then pass the array to the C API, but why
would you want to? Unless you know the size of the container during compilation,
you'd have to allocate the array dynamically, and Item 13 explains why you should
prefer vectors to dynamically allocated arrays anyway.

Item 17. Use "the swap trick" to trim excess capacity.

So you're writing software to support the TV game show Give Me Lots Of Money —
Now!, and you're keeping track of the potential contestants, whom you have stored in a
vector:

class Contestant {...};
vector<Contestant> contestants;

 60

When the show puts out a call for new contestants, it's inundated with applicants, and
your vector quickly acquires a lot of elements. As the show's producers vet the
prospective players, however, a relatively small number of viable candidates get
moved to the front of the vector (perhaps via partial_sort or partition — see Item 31),
and the candidates no longer in the running are removed from the vector (typically by
calling a range form of erase — see Item 5). This does a fine job of reducing the size
of the vector, but it does nothing to reduce its capacity. If your vector held a hundred
thousand potential candidates at some point, its capacity would continue to be at least
100.000, even if later it held only, say, 10.

To avoid having your vector hold onto memory it no longer needs, you'd like to have a
way to reduce its capacity from the maximum it used to the amount it currently needs.
Such a reduction in capacity is commonly known as "shrink to fit." Shrink-to-fit is
easy to program, but the code is — how shall I put this? — something less than intui-
tive. Let me show it to you, then I'll explain how it works.

This is how you trim the excess capacity from your contestants vector:

vector<Contestant>(contestants).swap(contestants);

The expression vector<Contestant>(contestants) creates a temporary vector that is a
copy of contestants: vector's copy constructor does the work. However, vector's copy
constructor allocates only as much memory as is needed for the elements being copied,
so this temporary vector has no excess capacity. We then swap the data in the
temporary vector with that in contestants, and by the time we're done, contestants has
the trimmed capacity of the temporary, and the temporary holds the bloated capacity
that used to be in contestants. At that point (the end of the statement), the temporary
vector is destroyed, thus freeing the memory formerly used by contestants. Voila!
Shrink-to-fit.

The same trick is applicable to strings:

string s;
… //make s large, then erase most

//of its characters
string(s).swap(s); // do a "shrink-to-fit" on s

Now, the language police require that I inform you that there's no guarantee that this
technique will truly eliminate excess capacity. Implementers are free to give vectors
and strings excess capacity if they want to, and sometimes they want to. For example,
they may have a minimum capacity below which they never go, or they may constrain
a vector's or string's capacity to be a power of two. (In my experience, such anomalies
are more common in string implementations than in vector implementations. For
examples, see Item 15.) This approach to "shrink-to-fit," then, doesn't really mean
"make the capacity as small as possible." it means "make the capacity as small as this
implementation is willing to make it given the current size of the container." Short of

 61

switching to a different implementation of the STL, however, this is the best you can
do. so when you think "shrink-to-fit" for vectors and strings, think "the swap trick."

As an aside, a variant of the swap trick can be used both to clear a container and to
reduce its capacity to the minimum your implementation offers. You simply do the
swap with a temporary vector or string that is default-constructed:

vector<Contestant> v;
string s;
… // use v and s
vector<Contestant>().swap(v); //clear v and minimize its capacity
string().swap(s); // clear s and minimize its capacity

One final observation about the swap trick, or, rather, about swap in general.
Swapping the contents of two containers also swaps their iterators, pointers, and
references. Iterators, pointers, and references that used to point to elements in one
container remain valid and point to the same elements — but in the other container—
after the swap.

Item 18. Avoid using vector<bool>.

As an STL container, there are really only two things wrong with vector<bool>. First,
it's not an STL container. Second, it doesn't hold bools. Other than that, there's not
much to object to.

An object doesn't become an STL container just because somebody says it's one. An
object becomes an STL container only if it fulfills all the container requirements laid
down in section 23.1 of the Standard for C++. Among the requirements is that if c is a
container of objects of type T and c supports operator[], the following must compile:

T *p = &c[0]; // initialize a T* with the address

 // of whatever operator[] returns

In other words, if you use operator[] to get at one of the T objects in a Container<T>,
you can get a pointer to that object by taking its address. (This assumes that T hasn't
perversely overloaded operators.) II vector<bool> is to be a container, then, this code
must compile:

vector<bool> v;
bool *pb = &v[0]; // initialize a bool* with the address of

// what vector<bool>::operator[] returns

But it won't compile. It won't, because vector<bool> is a pseudo-container that
contains not actual bools, but a packed representation of bools that is designed to save
space. In a typical implementation, each "bool" stored in the "vector" occupies a single
bit, and an eight-bit byte holds eight "bools." Internally, vector<bool> uses the moral
equivalent of bitfields to represent the bools it pretends to be holding.

 62

Like bools, bitfields represent only two possible values, but there is an important
difference between true bools and bitfields masquerading as bools. You may create a
pointer to a real bool, but pointers to individual bits are forbidden.

References to individual bits are forbidden, too, and this posed a problem for the
design of vector<bool>'s interface, because the return type of vector<T>::operator[] is
supposed to be T&. That wouldn't be a problem if vector<bool> really held bools, but
because it doesn't, vector<bool>::operator() would need somehow to return a reference
to a bit, and there's no such thing.

To deal with this difficulty, vector<bool>::operator[] returns an object that acts like a
reference to a bit, a so-called proxy object. (You don't need to understand proxy
objects to use the STL. but they're a C++ technique worth knowing about. For
information about them, consult Item 30 of More Effective C++ as well as the "Proxy"
chapter in Gamma et al.'s Design Patterns [6].) Stripped down to the bare essentials,
vector<bool> looks like this:

template <typename Allocator>
vector<bool, Allocator> {
public:

class reference {...}; // class to generate proxies for
// references to individual bits

reference operator[](size_type n); // operator[] returns a proxy
…

}

Now it's clear why this code won't compile:

vector<bool> v;
bool *pb = &v[0]; // error! the expression on tne right is

// of type vector<bool>::reference*,
// not bool*

Because it won't compile, vector<bool> fails to satisfy the requirements for STL
containers. Yes, vector<bool> is in the Standard, and yes, it almost satisfies the
requirements for STL containers, but almost just isn't good enough. The more you
write your own templates designed to work with the STL, the more you'll appreciate
that. The day will come. I assure you, when you'll write a template that will work only
if taking the address of a container element yields a pointer to the contained type, and
when that day comes, you'll suddenly understand the difference between being a
container and almost being a container.

You may wonder why vector<bool> is in the Standard, given that it's not a container
and all. The answer has to do with a noble experiment that failed, but let me defer that
discussion for a moment while I address a more pressing question. To wit, if
vector<bool> should be avoided because it's not a container, what should you use
when you need a vector<bool>?

 63

The standard library provides two alternatives that suffice almost all the time. The first
is deque<bool>. A deque offers almost everything a vector does (the only notable
omissions are reserve and capacity), and a deque<bool> is an STL container that really
contains bools. Of course, the underlying memory for a deque isn't contiguous, so you
can't pass the data behind a deque<bool> to a C API2 that expects an array of bool (see
Item 16), but you couldn't do that with a vector<bool> anyway because there's no
portable way to get at the data for a vector<bool>. (The techniques that work for
vectors in Item 16 fail to compile for vector<bool>. because they depend on being able
to get a pointer to the type of element contained in the vector. Have I mentioned that a
vector<bool> doesn't contain bools?)

The second alternative to vector<bool> is bitset. bitset isn't an STL container, but it is
part of the standard C++ library. Unlike STL containers, its size (number of elements)
is fixed during compilation, so there is no support for inserting or erasing elements.
Furthermore, because it's not an STL container, it offers no support for iterators. Like
vector<bool>, however, it uses a compact representation that devotes only a single bit
to each value it contains. It offers vector<bool>'s special flip member function, as well
as a number of other special member functions that make sense for collections of bits.
If you can live without iterators and dynamic changes in size, you'll probably find that
a bit-set will serve you well.

And now let me discuss the noble experiment that failed, the one that left behind as its
residue the STL non-container vector<bool>. I mentioned earlier that proxy objects are
often useful in C++ software development. The members of the C++ Standardization
Committee were well aware of this, so they decided to develop vector<bool> as a
demonstration of how the STL could support containers whose elements are accessed
via proxies. With this example in the Standard, they reasoned, practitioners would
have a ready reference for implementing their own proxy-based containers.

Alas, what they discovered was that it was not possible to create proxy-based
containers that satisfy all the requirements of STL containers. For one reason or
another, however, their failed attempt at developing one remained in the Standard. One
can speculate on why vector<bool> was retained, but practically speaking, it doesn't
matter. What does matter is this: vector<bool> doesn't satisfy the requirements of an
STL container; you're best off not using it; and deque<bool> and bitset are alternative
data structures that will almost certainly satisfy your need for the capabilities promised
by vector<bool>.

2 This would presumably be a C99API, because bool was added to C only as of the version of the language

 64

Associative Containers

Somewhat like the polychromatic horse in The Wizard of Oz movie, the associative
containers are creatures of a different color. True, they share many characteristics with
the sequence containers, but they differ in a number of fundamental ways. For
example, they automatically keep themselves sorted: they view their contents through
the lens of equivalence instead of equality: sets and maps reject duplicate entries: and
maps and multimaps generally ignore half of each object they contain. Yes. the
associative containers are containers, but if you'll excuse my likening vectors and
strings to Kansas, we are definitely not in Kansas any more.

In the Items that follow, I explain the critical notion of equivalence, describe an
important restriction on comparison functions, motivate custom comparison functions
for associative containers of pointers, discuss the official and practical sides of key
constness, and offer advice on improving the efficiency of associative containers.

At the end of the chapter, I examine the STL's lack of containers based on hash tables,
and I survey two common (nonstandard) implementations. Though the STL proper
doesn't offer hash tables, you need not write your own or do without. High-quality
implementations are readily available.

Item 19. Understand the difference between equality and
equivalence.

The STL is awash in comparisons of objects to see if they have the same value. For
example, when you ask find to locate the first object in a range with a particular value,
find has to be able to compare two objects to see if the value of one is the same as the
value of the other. Similarly, when you attempt to insert a new element into a set. set-
insert has to be able to determine whether that element's value is already in the set.

The find algorithm and set's insert member function are representative of many
functions that must determine whether two values are the same. Yet they do it in
different ways, find's definition of "the same" is equality, which is based on
operator==. set::insert's definition of "the same" is equivalence, which is usually based
on operators. Because these are different definitions, it's possible for one definition to
dictate that two objects have the same value while the other definition decrees that
they do not. As a result, you must understand the difference between equality and
equivalence if you are to make effective use of the STL.

Operationally, the notion of equality is based on operator==. If the expression "x == y"
returns true, x and y have equal values, otherwise they don't. That's pretty
straightforward, though it's useful to bear in mind that just because x and y have equal
values does not necessarily imply that all of their data members have equal values. For
example, we might have a Widget class that internally keeps track of its last time of
access.

class Widget {

 65

public:
 …
private:

TimeStamp lastAccessed;
…

};

and we might have an operator== for Widgets that ignores this field:

bool operator==(const Widget& lhs, const Widget& rhs) {

// code that ignores the lastAccessed field
}

In that case, two Widgets would have equal values even if their lastAccessed fields
were different.

Equivalence is based on the relative ordering of object values in a sorted range.
Equivalence makes the most sense if you think about it in terms of the sort order that is
pan of even' standard associative container (i.e.. set. multiset, map. and multimap).
Two objects x and y have equivalent values with respect to the sort order used by an
associative container c if neither precedes the other in c's sort order. That sounds
complicated, but in practice, it's not. Consider, as an example, a set<Widget> s. Two
Widgets w1 and w2 have equivalent values with respect to s if neither precedes the
other in s's sort order. The default comparison function for a set<Widget> is
less<Widget>, and by default less<Widget> simply calls operator< for Widgets, so w1
and w2 have equivalent values with respect to operator if the following expression is
true:

!(w1 < w2) // it's not true that w1 < w2
&& //and
!(w2<w1) //it's not true that w2 < w1

This makes sense: two values are equivalent (with respect to some ordering criterion)
if neither precedes the other (according to that criterion).

In the general case, the comparison function for an associative container isn't
operator< or even less, it's a user-defined predicate. (See Item 39 for more information
on predicates.) Every standard associative container makes its sorting predicate
available through its key_comp member function, so two objects x and y have
equivalent values with respect to an associative container c's sorting criterion if the
following evaluates to true:

!c.key_comp()(x, y) && !c.key_comp()(y, x) // it's not true that x precedes
 // y in c's sort order and it's

// also not true that y precedes
// x in c's sort order

 66

The expression !c.key_comp()(x, y) looks nasty, but once you understand that
c.key_comp() is returning a function (or a function object), the nastiness dissipates.
!c.key_comp()(x, y) is just calling the function (or function object) returned by
key_comp, and it's passing x and y as arguments. Then it negates the result,
c.key_comp()(x, y) returns true only when x precedes y in c's sort order, so
!c.key_comp()(x, y) is true only when x doesn't precede y in c's sort order.

To fully grasp the implications of equality versus equivalence, consider a case-
insensitive set<string>, i.e., a set<string> where the set's comparison function ignores
the case of the characters in the strings. Such a comparison function would consider
"STL" and "stL" to be equivalent. Item 35 shows how to implement a function,
ciStringCompare, that performs a case-insensitive comparison, but set wants a
comparison function type, not an actual function. To bridge this gap, we write a
functor class whose operator() calls ciStringCompare:

struct CiStringCompare: // class for case-insensitive
 public //string comparisons:
 binary_function<string, string, bool> { // see Item 40 for info on
 //this base class
 bool operator()(const string& lhs,
 const string& rhs) const
 {
 return ciStringCompare(lhs, rhs); // see Item 35 for how

 } //ciStringCompare is
 // implemented
 }

Given CIStringCompare, it's easy to create a case-insensitive set<string>:
set<string, CIStringCompare> ciss; // ciss = "case-insensitive

 // string set”

If we insert "Persephone" and "persephone" into the set, only the first string is added,
because the second one is equivalent to the first:

ciss.insert("Persephone"); // a new element is added to the set
ciss.insert("persephone"); // no new element is added to the set

If we now search for the string "persephone" using set's find member function, the
search will succeed,

if (ciss.find("persephone") != ciss.end())... // this test will succeed

but if we use the non-member find algorithm, the search will fail:
if (find(ciss.begin(), ciss.end(),

"persephone") != ciss.end())... // this test will fail

 67

That's because "persephone" is equivalent to "Persephone" (with respect to the
comparison functor CIStringCompare), but it's not equal to it (because
string("'persephone") !=string("Persephone")). This example demonstrates one reason
why you should follow the advice in Item 44 and prefer member functions (like
set::find) to their non-member counterparts (like find).

You might wonder why the standard associative containers are based on equivalence
instead of equality. After all, most programmers have an intuition about equality that
they lack for equivalence. (Were that not the case, there'd be no need for this Item.)
The answer is simple at first glance, but the more closely you look, the more subtle it
becomes.

The standard associative containers are kept in sorted order, so each container must
have a comparison function (less, by default) that defines how to keep things sorted.
Equivalence is defined in terms of this comparison function, so clients of a standard
associative container need to specify only one comparison function (the one deter-
mining the sort order) for any container they use. If the associative containers used
equality to determine when two objects have the same value, each associative
container would need, in addition to its comparison function for sorting, a second
comparison function for determining when two values are equal. (By default, this
comparison function would presumably be equal_to, but it's interesting to note that
equal_to is never used as a default comparison function in the STL. When equality is
needed in the STL, the convention is to simply call operator== directly. For example,
this is what the non-member find algorithm does.)

Let's suppose we had a set-like STL container called set2CF. "set with two comparison
functions." The first comparison function would be used to determine the sort order of
the set. the second would be used to determine whether two objects had the same
value. Now consider this set2CF:

set2CF<string, CIStringCompare, equal_to<string> > s;

Here, s sorts its strings internally without regard to case, and the equality criterion is
the intuitive one: two strings have the same value if they are equal to one another. Let's
insert our two spellings of Hades' reluctant bride (Persephone) into s:

s.insert("Persephone");
s.insert("persephone");

What should this do? If we observe that "Persephone" != "persephone" and insert them
both into s, what order should they go in? Remember that the sorting function can't tell
them apart. Do we insert them in some arbitrary order, thus giving up the ability to
traverse the contents of the set in deterministic order? (This inability to traverse asso-
ciative container elements in a deterministic order already afflicts multisets and
multimaps, because the Standard places no constraints on the relative ordering of
equivalent values (for multisets) or keys (for multimaps).) Or do we insist on a

 68

deterministic ordering of s's contents and ignore the second attempted insertion (the
one for "persephone")? If we do that, what happens here?

if (s.find(“persephone") != s.end())... // does this test succeed or fail?

Presumably find employs the equality check, but if we ignored the second call to insert
in order to maintain a deterministic ordering of the elements in s. this find will fail,
even though the insertion of "persephone" was ignored on the basis of its being a
duplicate value!

The long and short of it is that by using only a single comparison function and by
employing equivalence as the arbiter of what it means for two values to be "the same."
the standard associative containers sidestep a whole host of difficulties that would
arise if two comparison functions were allowed. Their behavior may seem a little odd
at first (especially when one realizes that member and non-member find may return
different results), but in the long run, it avoids the kind of confusion that would arise
from mixing uses of equality and equivalence within standard associative containers.

Interestingly, once you leave the realm of sorted associative containers, the situation
changes, and the issue of equality versus equivalence can be — and has been —
revisited. There are two common designs for nonstandard (but widely available)
associative containers based on hash tables. One design is based on equality, while the
other is based on equivalence. I encourage you to turn to Item 25 to learn more about
these containers and the design decisions they've adopted.

Item 20. Specify comparison types for associative containers of
pointers.

Suppose you have a set of string* pointers and you insert the names of some animals
into the set:

set<string*> ssp; // ssp = "set of string ptrs"
ssp.insert(newstring("Anteater"));
ssp.insert(newstring("Wombat"));
ssp.insert(new string(“Lemur"));
ssp.insert(newstring("Penguin"));

You then write the following code to print the contents of the set. expecting the strings
to come out in alphabetical order. After all, sets keep their contents sorted.

for (set<string*>::const_iterator i = ssp.begin(); // you expect to see

i != ssp.end(); // this: "Anteater"
++i) //"Lemur”,"'Penguin”,

 cout << *i << endl; //"Wombat"

The comment describes what you expect to see, but you don't see that at all. Instead,
you see four hexadecimal numbers. They are pointer values. Because the set holds

 69

pointers, *i isn't a string, it's a pointer to a string. Let this be a lesson that reminds you
to adhere to the guidance of Item 43 and avoid writing your own loops. If you'd used a
call to the copy algorithm instead,

copy(ssp.begin(), ssp.end(), // copy the strings in

ostream_iterator<string>(cout, "\n")); // ssp to cout (but this
 //won't compile)

you'd not only have typed fewer characters, you'd have found out about your error
sooner, because this call to copy won't compile, ostream_iterator insists on knowing
the type of object being printed, so when you tell it it's a string (by passing that as the
template parameter), your compilers detect the mismatch between that and the type of
objects stored in ssp (which is string*), and they refuse to compile the code. Score
another one for type safety.

If you exasperatedly change the *i in your explicit loop to **i, you might get the
output you want, but you probably won't. Yes, the animal names will be printed, but
the chances of their coming out in alphabetical order are only 1 in 24. ssp keeps its
contents in sorted order, but it holds pointers, so it sorts by pointer value, not by string
value. There are 24 possible permutations for four pointer values, so there are 24
possible orders for the pointers to be stored in. Hence the odds of 1 in 24 of your
seeing the strings in alphabetical order.3

To surmount this problem, it helps to recall that

set<string*> ssp;

is shorthand for this:

set<string*, less<string*> > ssp;

Well, to be completely accurate, it's shorthand for

set<string*, less<string*>, allocator<string*> > ssp;

but allocators don't concern us in this Item, so we'll ignore them.

If you want the string* pointers to be stored in the set in an order determined by the
string values, you can't use the default comparison functor class less<string*>. You
must instead write your own comparison functor class, one whose objects take string*
pointers and order them by the values of the strings they point to. Like this:

struct StringPtrLess:

3 Practically speaking, the 24 permutations are not equally likely, so the “1 in 24” statement is a bit misleading.
Still, there are 24 different orders, and you could get any one of them.

 70

public binary_function<const string*, // see Item 40 for the
 const string*, //reason for this base
 bool> { //class

bool operator()(const string *ps1, const string *ps2) const
{
 return *ps1 < *ps2;
}

};

Then you can use StringPtrLess as ssp's comparison type:

typedef set<string*, StringPtrLess> StringPtrSet;
StringPtrSet ssp: // create a set of strings and order

 // them as defined by StringPtrLess
 // insert the same four strings as
 // before

Now your loop will finally do what you want it to do (provided you've fixed the earlier
problem whereby you used *i instead of **i):

for (StringPtrSet::const_iterator i = ssp.begin(); // prints "Anteater",

 i != ssp.end(); // "Lemur"
 ++i) //"Penguin"
cout <<" i << endl; //"Wombat"

If you want to use an algorithm instead, you could write a function that knows how to
dereference string* pointers before printing them, then use that function in conjunction
with for_each:

void print(const string *ps) // print to cout the
{ // object pointed to

cout << *ps << endl; //by ps
}
for_each(ssp.begin(), ssp.end(), print); // invoke print on each

 //element in ssp

Or you could get fancy and write a generic dereferencing functor class, then use that
with transform and an ostream_iterator:

//when functors of this type are passed a T*, they return a const T&
struct Dereference {

template <typename T>
const T& operator()(const T *ptr) const
{

return *ptr;

 71

}
};
transform(ssp.begin(), ssp.end(), // "transform" each

ostream_iterator<string>(cout, "\n"), // element in ssp by
Dereference()); // dereferencing it,

// writing the results
// to cout

Replacement of loops with algorithms, however, is not the point, at least not for this
Item. (It is the point for Item 43.) The point is that anytime you create a standard
associative container of pointers, you must bear in mind that the container will be
sorted by the values of the pointers. Only rarely will this be what you want, so you'll
almost always want to create your own functor class to serve as a comparison type.

Notice that I wrote "comparison type." You may wonder why you have to go to the
trouble of creating a functor class instead of simply writing a comparison function for
the set. For example, you might think to try

bool stringPtrLess(const string* ps1, //would-be comparison

 const string* ps2) // function for string*
{ //pointers to be sorted by
 return *ps1 < *ps2; //string value
}

set<string, stringPtrLess> ssp; // attempt to use StringPtrLess

// as ssp's comparison function;
//this won't compile

The problem here is that each of the set template's three parameters is a type.
Unfortunately, stringPtrLess isn't a type, it's a function. That's why the attempt to use
StringPtrLess as set's comparison function won't compile, set doesn't want a function,
it wants a type that it can internally instantiate to create a function.

Anytime you create associative containers of pointers, figure you're probably going to
have to specify the container's comparison type, too. Most of the time, your
comparison type will just dereference the pointers and compare the pointed-to objects
(as is done in StringPtrLess above). That being the case, you might as well keep a
template for such comparison functors close at hand. Like this;

struct DereferenceLess {

template <typename PtrType>
bool operator()(PtrType pT1, // parameters are passed by

 PtrType pT2) const // value, because we expect them
 { // to be (or to act like) pointers

return *pT1 < *pT2;
 }

 72

};

Such a template eliminates the need to write classes like StringPtrLess. because we can
use DereferenceLess instead:

set<string*, DereferenceLess> ssp; // behaves the same as

// set<string*, StringPtrLess>

Oh, one more thing. This Item is about associative containers of pointers, but it applies
equally well to containers of objects that act like pointers, e.g., smart pointers and
iterators. If you have an associative container of smart pointers or of iterators, plan on
specifying the comparison type for it. too. Fortunately, the solution for pointers tends
to work for pointeresque objects, too. Just as DereferenceLess is likely to be suitable
as the comparison type for an associative container of T*, it's likely to work as the
comparison type for containers of iterators and smart pointers to T objects, too.

Item 21. Always have comparison functions return false for equal
values.

Let me show you something kind of cool. Create a set where less_equal is the
comparison type, then insert 10 into the set:

set<int, less_equal<int> > s; // s is sorted by "<="
s.insert(10); //insert the value 10

Now try inserting 10 again:

s.insert(10);

For this call to insert, the set has to figure out whether 10 is already present. We know
that it is. but the set is dumb as toast, so it has to check. To make it easier to
understand what happens when the set does this, we'll call the 10 that was initially
inserted 10A and the 10 that we're trying to insert 10B.

The set runs through its internal data structures looking for the place to insert 10B. It
ultimately has to check 10B to see if it's the same as 10A. The definition of "the same"
for associative containers is equivalence (see Item 19), so the set tests to see whether
10B is equivalent to 10A. When performing this test, it naturally uses the set's
comparison function. In this example, that's operator<=, because we specified
less_equal as the set's comparison function, and less_equal means operators. The set
thus checks to see whether this expression is true:

!(10A<= 10B)&&!(10B<= 10A) //test 10Aand 10B for equivalence

Well, 10A and 10B are both 10, so it's clearly true that 10A <= 10B. Equally clearly, 10B
<= 10A. The above expression thus simplifies to

 73

!(true)&&!(true)

and that simplifies to

false && false

which is simply false. That is, the set concludes that 10A and 10B are not equivalent,
hence not the same, and it thus goes about inserting 10B into the container alongside
10A. Technically, this action yields undefined behavior, but the nearly universal
outcome is that the set ends up with two copies of the value 10, and that means it's not
a set any longer. By using less_equal as our comparison type, we've corrupted the
container! Furthermore, any comparison function where equal values return true will
do the same thing. Equal values are, by definition, not equivalent! Isn't that cool?

Okay, maybe your definition of cool isn't the same as mine. Even so, you'll still want
to make sure that the comparison functions you use for associative containers always
return false for equal values. You'll need to be vigilant, however. It's surprisingly easy
to run afoul of this constraint.

For example, Item 20 describes how to write a comparison function for containers of
string* pointers such that the container sorts its contents by the values of the strings
instead of the values of the pointers. That comparison function sorts them in ascending
order, but let's suppose you're in need of a comparison function for a container of
string* pointers that sorts in descending order. The natural thing to do is to grab the
existing code and modify it. If you're not careful, you might come up with this, where
I've highlighted the changes to the code in Item 20:

struct StringPtrGreater: // highlights show how
 public binary_function<const string*, // this code was changed

 const string*, // from page 89. Beware,
 bool> { // this code is flawed!

bool operator()(const string *ps1, const string *ps2) const
{
 return !(*ps1 <*ps2); //just negate the old test;
} // this is incorrect!

};

The idea here is to reverse the sort order by negating the test inside the comparison
function. Unfortunately, negating "<" doesn't give you ">" (which is what you want), it
gives you ">=". And you now understand that ">=", because it will return true for
equal values, is an invalid comparison function for associative containers.

The comparison type you really want is this one:

struct StringPtrGreater: // this is a valid
 public binary_function<const string*, // comparison type for

 const string*, // associative containers

 74

 bool> {
bool operator()(const string *ps1, const string *ps2) const
{

return *ps2 < *ps1; //return whether *ps2
} //precedes *ps1 (i.e., swap

 //the order of the
}; // operands)

To avoid falling into this trap, all you need to remember is that the return value of a
comparison function indicates whether one value precedes another in the sort order
defined by that function. Equal values never precede one another, so comparison
functions should always return false for equal values.

Sigh.

I know what you're thinking. You're thinking. "Sure, that makes sense for set and map,
because those containers can't hold duplicates. But what about multiset and multimap?
Those containers may contain duplicates, so what do 1 care if the container thinks that
two objects of equal value aren't equivalent? It will store them both, which is what the
multi containers are supposed to do. No problem, right?"

Wrong. To see why, let's go back to the original example, but this time we'll use a
multiset:

multiset<int, less_equal<int> > s; // s is still sorted by "<="
s.insert(10); //insert 10A
s.insert(10); // insert 10B

s now has two copies of 10 in it, so we'd expect that if we do an equal_range on it,
we'll get back a pair of iterators that define a range containing both copies. But that's
not possible equal_range, its name notwithstanding, doesn't identify a range of equal
values, it identifies a range of equivalent values. In this example, s's comparison
function says that 10A and 10B are not equivalent, so there's no way that both can be in
the range identified by equal_range.

You see? Unless your comparison functions always return false for equal values, you
break all standard associative containers, regardless of whether they are allowed to
store duplicates.

Technically speaking, comparison functions used to sort associative containers must
define a “strict weak ordering” over the objects they compare. (Comparison functions
passed to algorithms like sort (see Item 31) are similarly constrained.) If you're
interested in the details of what it means to be a strict weak ordering, you can find
them in many comprehensive STL references, including Josuttis’ The C++ Standard
Library [3]. Austern's Generic Programming and the STL [4], and the SGI STL Web
Site [21]. I've never found the details terribly illuminating, but one of the requirements
of a strict weak ordering bears directly on this Item. That requirement is that any

 75

function defining a strict weak ordering must return false if it's passed two copies of
the same value.

Hey! That is this Item!

Item 22. Avoid in-place key modification in set and multiset.

The motivation for this Item is easy to understand. Like all the standard associative
containers, set and multiset keep their elements in sorted order, and the proper
behavior of these containers is dependent on their remaining sorted. If you change the
value of an element in an associative container (e.g.. change a 10 to a 1000), the new
value might not be in the correct location, and that would break the sorted-ness of the
container. Simple, right?

It's especially simple for map and multimap, because programs that attempt to change
the value of a key in these containers won't compile:

map<int, string> m;
…
m.begin()->first = 10; // error! map keys can't be changed
multimap<int, string> mm;
…
mm.begin()->first = 20; // error! multimap keys can't

 //be changed, either

That's because the elements in an object of type map<K, V> or multi-map<K, V> are
of type pair<const K, V>. Because the type of the key is const K. it can't be changed.
(Well, you can probably change it if you employ a const_cast, as we'll see below.
Believe it or not, sometimes that's what you want to do.)

But notice that the title of this Item doesn't mention map or multimap. There's a reason
for that. As the example above demonstrates, in-place key modification is impossible
for map and multimap (unless you use a cast), but it may be possible for set and
multiset. For objects of type set<T> or multiset<T>, the type of the elements stored in
the container is simply T, not const T. Hence, the elements in a set or multiset may be
changed anytime you want to. No cast is required. (Actually, things aren't quite that
straightforward, but we'll come to that presently. There's no reason to get ahead of
ourselves. First we crawl. Later we crawl on broken glass.)

Let us begin with an understanding of why the elements in a set or multiset aren't
const. Suppose we have a class for employees:

class Employee {
public:

…
const string& named const; // get employee name
void setName(const string£ name;; // set employee name

 76

const string& titled const; // get employee title
void setTitlelconst(string& title); // set employee title
int idNumber() const; // get employee ID number
…

}

As you can see, there are various bits of information we can get about employees. Let
us make the reasonable assumption, however, that each employee has a unique ID
number, a number that is returned by the idNumber function. To create a set of
employees, then, it could easily make sense to order the set by ID number only, like
this:

struct IDNumberLess:

public binary_function<Employee, Employee, bool> { // see Item 40

bool operator()(const Employees lhs,

 const Employee& rhs) const
{

return lhs.idNumber() < rhs.idNumber();
}

};

typedef set<Employee, IDNumberLess> EmplDSet;
EmplDSet se; // se is a set of employees

 // sorted by ID number

Practically speaking, the employee ID number is the key for the elements in this set.
The rest of the employee data is just along for the ride. That being the case, there's no
reason why we shouldn't be able to change the title of a particular employee to
something interesting. Like so:

Employee selectedID; // variable to hold employee
… // with selected ID number
EmplDSet-iterator i = se.find(selectedlD);
if (i != se.end()){

i->setTitle("Corporate Deity"); // give employee new title
}

Because all we're doing here is changing an aspect of an employee that is unrelated to
the way the set is sorted (a non-key pan of the employee), this code can't corrupt the
set. That's why it's legal. But making it legal precludes having the elements of a
set/multiset be const. And that's why they aren't.

Why, you might wonder, doesn't the same logic apply to the keys in maps and
multimaps? Wouldn't it make sense to create a map from employees to, say, the
country in which they live, a map where the comparison function was IDNumberLess,

 77

just as in the previous example? And given such a map, wouldn't it be reasonable to
change an employee s title without affecting the employee's ID number, just as in the
previous example?

To be brutally frank, I think it would. Being equally frank, however, it doesn't matter
what I think. What matters is what the Standardization Committee thought, and what it
thought is that map/multimap keys should be const and set/multiset values shouldn't
be. Because the values in a set or multiset are not const, attempts to change them may
compile. The purpose of this Item is to alert you that if you do change an element in a
set or multiset, you must be sure not to change a key part — a part of the element that
affects the sortedness of the container. If you do, you may corrupt the container, using
the container will yield undefined results, and it will be your fault. On the other hand,
this constraint applies only to the key parts of the contained objects. For all other parts
of the contained elements, it's open season: change away!

Except for the broken glass. Remember the broken glass I referred to earlier? We're
there now. Grab some bandages and follow me. Even if set and multiset elements
aren't const, there are ways for implementations to keep them from being modified.
For example, an implementation could have operator* for a set<T>::iterator return a
const T&. That is, it could have the result of dereferencing a set iterator be a reference-
to-const element of the set. Under such an implementation, there'd be no way to
modify set or multiset elements, because all the ways of accessing the elements would
add a const before letting you at them.

Are such implementations legal? Arguably yes. And arguably no. The Standard is
inconsistent in this area, and in accord with Murphy's Law, different implementers
have interpreted it in different ways. The result is that it's not uncommon to find STL
implementations where this code, which 1 earlier claimed should compile, won't
compile:

EmplDSet se; //as before, se is a set of employees

// sorted by ID number
Employee selectedID; // as before, selectedID is a dummy

// employee with the selected ID
// number

…
EmplDSet::iterator i = se.find(selectedlD);
if (i != se.end()){

i->setTitle("Corporate Deity"); // some STL implementations will
 // reject this line

Because of the equivocal state of the Standard and the differing interpretations it has
engendered, code that attempts to modify elements in a set or multiset isn't portable.

So where do we stand? Encouragingly, things aren't complicated:

 78

� If portability is not a concern, you want to change the value of an element in a
set or multiset, and your STL implementation will let you get away with it. go
ahead and do it. Just be sure not to change a key part of the element, i.e., a part
of the element that could affect the sortedness of the container.

� If you value portability, assume that the elements in sets and multisets cannot
be modified, at least not without a cast.

Ah, casts. We've seen that it can be entirely reasonable to change a non-key portion of
an element in a set or a multiset, so I feel compelled to show you how to do it. How to
do it correctly and portably, that is. It's not hard, but it requires a subtlety too many
programmers overlook: you must cast to a reference. As an example, look again at the
setTitle call we just saw that failed to compile under some implementations:

EmplDSet::iterator i = se.find(selectedlD);
if (i != se.end()) {

i->setTitle("Corporate Deity"); // some STL implementations will
} // reject this line because *i is const

To get this to compile and behave correctly, we must cast away the constness of *i.
Here's the correct way to do it:

if (i != se.end()) { // cast away

const_cast<Employee&>(*i).setTitle("Corporate Deity"); //constness
} //of*i

This takes the object pointed to by i, tells your compilers to treat the result of the cast
as a reference to a (non-const) Employee, then invoke setTitle on the reference. Rather
than explain why this works. I'll explain why an alternative approach fails to behave
the way people often expect it to.

Many people come up with this code.

if (i !=se.end()){ //cast *i

static_cast<Employee>(*i).setTitle("Corporate Deity"); //to an
} //Employee

which is equivalent to the following:

if (i != se.end()) { // same as above,
 ((Employee)(*i)). setTitle("Corporate Deity"); // but using C
} // cast syntax

Both of these compile, and because these are equivalent, they're wrong for the same
reason. At runtime, they don't modify *i! In both cases, the result of the cast is a
temporary anonymous object that is a copy of *i. and setTitle is invoked on the
anonymous object, not on *i! *i isn't modified, because setTitle is never invoked on

 79

that object, it's invoked on a copy of that object. Both syntactic forms are equivalent to
this:

if (i != se.end()){
Employee tempCopy(*i); //copy *i into tempCopy
tempCopy.setTitle("Corporate Deity"); // modify tempCopy

}

Now the importance of a cast to a reference should be clear. By casting to a reference,
we avoid creating a new object. Instead, the result of the cast is a reference to an
existing object, the object pointed to by i. When we invoke setTitle on the object
indicated by the reference, we're invoking setTitle on *i, and that's exactly what we
want. What I've just written is fine for sets and multisets, but when we turn to maps
and multimaps, the plot thickens. Recall that a map<K, V> or a multimap<K, V>
contains elements of type pair<const K, V>. That const means that the first component
of the pair is defined to be const, and that means that attempts to cast away its
constness are undefined. In theory, an STL implementation could write such values to
a read-only memory location (such as a virtual memory page that, once written, is
made write-protected by a system call), and attempts to cast away its constness would,
at best, have no effect. I've never heard of an implementation that does that, but if
you're a stickler for following the rules laid down by the Standard, you'll never try to
cast away the constness of a map or multimap key.

You've surely heard that casts are dangerous, and I hope this book makes clear that I
believe you should avoid them whenever you can. To perform a cast is to shuck
temporarily the safety of the type system, and the pitfalls we've discussed exemplify
what can happen when you leave your safety net behind.

Most casts can be avoided, and that includes the ones we've just considered. If you
want to change an element in a set, multiset, map, or multimap in a way that always
works and is always safe, do it in five simple steps:

1. Locate the container element you want to change. If you're not sure of the best
way to do that, Item 45 offers guidance on how to perform an appropriate
search.

2. Make a copy of the element to be modified. In the case of a map or multimap.
be sure not to declare the first component of the copy const. After all, you want
to change it!

3. Remove the element from the container, typically via a call to erase (see Item
9).

4. Modify the copy so it has the value you want to be in the container.

5. Insert the new value into the container. If the location of the new element in the
container's sort order is likely to be the same or adjacent to that of the removed
element, use the "hint" form of insert to improve the efficiency of the insertion

 80

from logarithmic-time to constant-time. Use the iterator you got from Step 1 as
the hint.

Here's the same tired employee example, this time written in a safe, portable manner:

EmplDSet se; // as before, se is a set of employees

 // sorted by ID number
Employee selectedID; // as before, selectedID is a dummy

// employee with the desired ID number
…

EmplDSet::iterator i =

se.find(selectedlD); // Step 1: find element to change
if(i!=se.end()){

Employee e(*i); // Step 2: copy the element
se.erase(i++); // Step 3: remove the element;

 // increment the iterator to maintain
 // its validity (see Item 9)

e.setTitle("Corporate Deity"); // Step 4: modify the copy
se.insert(i, e); // Step 5: insert new value; hint that its

// location is the same as that of the
} //original element

You'll excuse my putting it this way, but the key thing to remember is that with set and
multiset, if you perform any in-place modifications of container elements, you are
responsible for making sure that the container remains sorted.

Item 23. Consider replacing associative containers with sorted
vectors.

Many STL programmers, when faced with the need for a data structure offering fast
lookups, immediately think of the standard associative containers, set, multiset, map,
and multimap. That's fine, as far as it goes, but it doesn't go far enough. If lookup
speed is really important, it's almost certainly worthwhile to consider the nonstandard
hashed containers as well (see Item 25). With suitable hashing functions, hashed
containers can be expected to offer constant-time lookups. (With poorly chosen
hashing functions or with table sizes that are too small, the performance of hash table
lookups may degrade significantly, but this is relatively uncommon in practice.) For
many applications, the expected constant-time lookups of hashed containers are
preferable to the guaranteed logarithmic-time lookups that are the hallmark of set, map
and their multi companions.

Even if guaranteed logarithmic-time lookup is what you want, the standard associative
containers still may not be your best bet. Countterintuitively, it's not uncommon for the
standard associative containers to offer performance that is inferior to that of the lowly
vector. If you want to make effective use of the STL, you need to understand when and
how a vector can offer faster lookups than a standard associative container.

 81

The standard associative containers are typically implemented as balanced binary
search trees. A balanced binary search tree is a data structure that is optimized for a
mixed combination of insertions, erasures, and lookups. That is, it's designed for
applications that do some insertions, then some lookups, then maybe some more inser-
tions, then perhaps some erasures, then a few more lookups, then more insertions or
erasures, then more lookups, etc. The key characteristic of this sequence of events is
that the insertions, erasures, and lookups are all mixed up. In general, there's no way to
predict what the next operation on the tree will be.

Many applications use their data structures in a less chaotic manner. Their use of data
structures fall into three distinct phases, which can be summarized like this:

1. Setup. Create a new data structure by inserting lots of elements into it. During
this phase, almost all operations are insertions and erasures. Lookups are rare or
nonexistent.

2. Lookup. Consult the data structure to find specific pieces of information.
During this phase, almost all operations are lookups.. Insertions and erasures
are rare or nonexistent.

3. Reorganize. Modify the contents of the data structure, perhaps by erasing all
the current data and inserting new data in its place. Behaviorally, this phase is
equivalent to phase 1. Once this phase is completed, the application returns to
phase 2.

For applications that use their data structures in this way, a vector is likely to offer
better performance (in both time and space) than an associative container. But not just
any vector will do. It has to be a sorted vector, because only sorted containers work
correctly with the lookup algorithms binary_search, lower_bound, equaL_range; etc.
(see Item 34). But why should a binary search through a (sorted) vector offer better
performance than a binary search through a binary search tree? Because some things
are trite but true, and one of them is that size matters. Others are less trite but no less
true, and one of those is that locality of reference matters, too.

Consider first the size issue. Suppose we need a container to hold Widget objects, and,
because lookup speed is important to us, we are considering both an associative
container of Widgets and a sorted vector<Widget>. If we choose an associative
container, we'll almost certainly be using a balanced binary tree. Such a tree would be
made up of tree nodes, each holding not only a Widget, but also a pointer to the node's
left child, a pointer to its right child, and (typically) a pointer to its parent. That means
that the space overhead for storing a Widget in an associative container would be at
least three pointers.

In contrast, there is no overhead when we store a Widget in a vector: we simply store a
Widget. The vector itself has overhead, of course, and there may be empty (reserved)
space at the end of the vector (see Item 14), but the per-vector overhead is typically
insignificant (usually three machine words, e.g., three pointers or two pointers and an
int). and the empty space at the end can be lopped off via "the swap trick" if necessary

 82

(see Item 17). Even if the extra space is not eliminated, it's unimportant for the
analysis below, because that memory won't be referenced when doing a lookup.

Assuming our data structures are big enough, they'll be split across multiple memory
pages, but the vector will require fewer pages than the associative container. That's
because the vector requires no per-Widget overhead, while the associative container
exacts three pointers per Widget. To see why this is important, suppose you're working
on a system where a Widget is 12 bytes in size, pointers are 4 bytes, and a memory'
page holds 4096 (4K) bytes. Ignoring the per-container overhead, you can fit 341
Widgets on a page when they are stored in a vector, but you can fit at most 170 when
they are stored in an associative container. You'll thus use about twice as much
memory ior the associative container as you would for the vector. If you're working in
an environment where virtual memory is available, it's easy to see how that can
translate into a lot more page faults, therefore a system that is significantly slower for
large sets of data.

I'm actually being optimistic about the associative containers here, because I'm
assuming that the nodes in the binary trees are clustered together on a relatively small
set of memory pages. Most STL implementations use custom memory managers
(implemented on top of the containers' allocators — see Items 10 and 11) to achieve
such clustering, but if your STL implementation fails to take steps to improve locality
of reference among tree nodes, the nodes could end up scattered all over your address
space. That would lead to even more page faults. Even with the customary clustering
memory managers, associative containers tend to have more problems with page
faults, because, unlike contiguous-memory containers such as vector, node-based
containers find it more difficult to guarantee that container elements that are close to
one another in a container's traversal order are also close to one another in physical
memory. Yet this is precisely the kind of memory organization that minimizes page
faults when performing a binary search.

Bottom line: storing data in a sorted vector is likely to consume less memory than
storing the same data in a standard associative container, and searching a sorted vector
via binary search is likely to be faster than searching a standard associative container
when page faults are taken into account.

Of course, the big drawback of a sorted vector is that it must remain sorted! When a
new element is inserted, everything beyond the new element must be moved up by
one. That's as expensive as it sounds, and it gets even more expensive if the vector has
to reallocate its underlying memory (see Item 14), because then all the elements in the
vector typically have to be copied. Similarly, if an element is removed from the vector,
all the elements beyond it must be moved down. Insertions and erasures are expensive
for vectors, but they're cheap for associative containers. That's why it makes sense to
consider using a sorted vector instead of an associative container only when you know
that your data structure is used in such a way that lookups are almost never mixed with
insertions and erasures.

 83

This Item has featured a lot of text, but it's been woefully short on examples, so let's
take a look at a code skeleton for using a sorted vector instead of a set:

vector<Widget> vw; // alternative to set<Widget>
…… //Setup phase: lots of

// insertions, few lookups
sort(vw.begin(), vw.end()); // end of Setup phase. (When

// simulating a multiset, you
// might prefer stable_sort
// instead; see Item 31.)

Widget w; // object for value to look up
…… //start Lookup phase
if (binary_search(vw.begin(), vw.end(), w))... // lookup via binary_search
vector<Widget>::iterator i =
 lower_bound(vw.begin(), vw.end(), w); // lookup via lower_bound;
if (i != vw.endO && !(*i < w)}... // see Item 45 for an explana-

 //tion of the"!(*i < w)" test
pair<vector<Widget>::iterator,
vector<Widget>::iterator> range =

equal_range(vw.begin(), vw.end(), w); // lookup via equal_range
if (range.first != range.second)...
… // end Lookup phase, start

// Reorganize phase
sort(vw.begin(), vw.end()); // begin new Lookup phase...

As you can see, it's all pretty straightforward. The hardest thing about it is deciding
among the search algorithms (e.g.. binary_search, lower_bound, etc.), and Item 45
helps you do that.

Things get a bit more interesting when you decide to replace a map or multimap with a
vector, because the vector must hold pair objects. After all, that's what map and
multimap hold. Recall, however, that if you declare an object of type map<K, V> (or
its multimap equivalent), the type of elements stored in the map is pair<const K, V>.
To emulate a map or multimap using a vector, you must omit the const, because when
you sort the vector, the values of its elements will get moved around via assignment,
and that means that both components of the pair must be assignable. When using a
vector to emulate a map<K, V>, then, the type of the data stored in the vector will be
pair<K, V>, not pair<const K, V>.

maps and multimaps keep their elements in sorted order, but they look only at the key
part of the element (the first component of the pair) for sorting purposes, and you must
do the same when sorting a vector. You'll need to write a custom comparison function
for your pairs, because pair's operator< looks at both components of the pair.

 84

Interestingly, you'll need a second comparison function for performing lookups. The
comparison function you'll use for sorting will take two pair objects, but lookups are
performed given only a key value. The comparison function for lookups, then, must
take an object of the key type (the value being searched for) and a pair (one of the
pairs stored in the vector) — two different types. As an additional twist, you can't
know whether the key value or the pair will be passed as the first argument, so you
really need two comparison functions for lookups: one where the key value is passed
first and one where the pair is passed first.

Here's an example of how to put all the pieces together:

typedef pair<string, int> Data; // type held in the "map"

 // in this example
class DataCompare { // class for comparison
public: //functions

bool operator()(const Data& lhs, // comparison func
const Data& rhs) const //for sorting

{
return keyLess(lhs.first, rhs.first); // keyLess is below

}

bool operator()(const Data& Ihs, // comparison func
 const Data::first_type& k) const // for lookups

{ //(form 1)
return keyLess(lhs.first, k);

}

bool operator()(const Data::first_type& k, // comparison func

 const Data& rhs) const // for lookups
{ // (form 2)

return keyLessfk, rhs.first);
}

private:

bool keyLess(const Data::first_type& k1, // the "real"
const Data::first_type& k2) const // comparison

{ //function
return k1 < k2;

 }
};

In this example, we assume that our sorted vector will be emulating a map<string,
int>. The code is pretty much a literal translation of the discussion above, except for
the presence of the member function key-Less. That function exists to ensure
consistency between the various operator!) functions. Each such function simply
compares two key values, so rather than duplicate the logic, we put the test inside

 85

keyLess and have the operator() functions return whatever keyLess does. This
admirable act of software engineering enhances the maintainability of DataCompare.
but there is a minor drawback. Its provision for opera-tort) functions with different
parameter types renders the resulting function objects unadaptable (see Item 40). Oh
well.

Using a sorted vector as a map is essentially the same as using it as a set. The only
major difference is the need to use DataCompare objects as comparison functions:

vector<Data> vd; //alternative to

//map<string, int>
… //Setup phase: lots of

// insertions, few lookups

sort(vd.begin(), vd.end(), DataCompare()); //end of Setup phase. (When

// simulating a multimap, you
// might prefer stable_sort
 //instead;see Item 31.)

string s; // object for value to look up

… //start Lookup phase

if (binary_search(vd.begin(), vd.end(), s,

DataCompare()))... // lookup via binary_search

vector<Data>::iterator i =
lower_bound(vd.begin(), vd.end(), s,

DataCompare()); // lookup via lower_bound;
if (i != vd.end() && !(i->first < s))... // again, see Item 45 for info

// on the "!(i->first < s)" test

pair<vector<Data>::iterator,

 vector<Data>::iterator> range =
 equal_range(vd.begin(), vd.end(), s,

DataCompare()); // lookup via equal_range
if (range.first != range.second)...

… //end Lookup phase, start

// Reorganize phase
sort(vd.begin(), vd.end(), DataCompare()); // begin new Lookup phase...

As you can see, once you've written DataCompare, things pretty much fall into place.
And once in place, they'll often run taster and use less memory than the corresponding
design using a real map as long as your program uses the data structure in the phased
manner described on page 101. If your program doesn't operate on the data structure

 86

in a phased manner, use of a sorted vector instead of a standard associative container
will almost certainly end up wasting time.

Item 24. Choose carefully between map::operator[] and map-insert
when efficiency is important.

Let's suppose we have a Widget class that supports default construction as well as
construction and assignment from a double:

class Widget {
public:

Widget();
Widget(double weight);
Widget& operator=(double weight);
…

}

Let's now suppose we'd like to create a map from ints to Widgets, and we'd like to
initialize the map with particular values. This simplicity itself:

map<int, Widget> m;
m[1] = 1.50;
m[2] = 3.67;
m[3] = 10.5;
m[4]=45.8;
m[5] = 0.0003;

In fact, the only thing simpler is forgetting what's really going on. That's too bad,
because what's going on could incur a considerable performance hit.

The operator[] function for maps is a novel creature, unrelated to the operator[]
functions for vectors, deques, and strings and equally unrelated to the built-in
operator[] that works with arrays. Instead, map::operator[] is designed to facilitate
"add or update" functionality. That is, given

map<K, V> m;

the expression
m[k] = v;

checks to see if the key k is already in the map. If not, it's added, along with v as its
corresponding value. If k is already in the map, its associated value is updated to v.

The way this works is that operator[] returns a reference to the value object associated
with k. v is then assigned to the object to which the reference (the one returned from
operator[]) refers. This is straightforward when an existing key's associated value is

 87

being updated, because there's already a value object to which operator[] can return a
reference. But if k isn't yet in the map, there's no value object for operator[] to refer to.
In that case, it creates one from scratch by using the value type's default constructor,
operator[] then returns a reference to this newly-created object.

Let's look again at the first part of our original example:

map<int, Widget> m;
m[1] = 1.50;

The expression m[1] is shorthand for m.operator[](1), so this is a call to
map::operator[]. That function must return a reference to a Widget, because m's
mapped type is Widget. In this case, m doesn't yet have anything in it, so there is no
entry in the map for the key 1. operator[] therefore default-constructs a Widget to act
as the value associated with 1, then returns a reference to that Widget. Finally, the
Widget becomes the target of an assignment: the assigned value is 1.50.

In other words, the statement

m[1] = 1.50;

is functionally equivalent to this:

typedef map<int, Widget> IntWidgetMap; // convenience

// typedef
pair<lntWidgetMap::iterator, bool> result = // create new map

m.insert(lntWidgetMap::value_type(1, Widget())); // entry with key 1
 //and a default-

 // constructed value
 // object; see below
 //for a comment on

 // value_type

result.first->second = 1.50; // assign to the
 // newly-constructed
 // value object

Now it should be clear why this approach may degrade performance. We first default-
construct a Widget, then we immediately assign it a new value. If it's measurably more
efficient to construct a Widget with the value we want instead of default-constructing
the Widget and then doing the assignment, we'd be better off replacing our use of
operator[] (including its attendant construction plus assignment) with a straightforward
call to insert:

m.insert(lntWidgetMap::value_type(1,1.50));

 88

This has precisely the same ultimate effect as the code above, except it typically saves
you three function calls: one to create a temporary default-constructed Widget object,
one to destruct that temporary object, and one to Widget's assignment operator. The
more expensive those function calls, the more you save by using map-insert instead of
map::operator[].

The code above takes advantage of the value_type typedef that's provided by every
standard container. There's nothing particularly significant about this typedef. but it's
important to remember that for map and multimap (as well as the nonstandard
containers hash_map, and hash_multimap — see Item 25), the type of the contained
elements will always be some kind of pair.

I remarked earlier that operator[] is designed to facilitate "add or update" functionality,
and we now understand that when an "add" is performed, insert is more efficient than
operator[]. The situation is reversed when we do an update, i.e., when an equivalent
key (see Item 19) is already in the map. To see why that is the case, look at our update
options:

m[k] = v; // use operator[]

 // to update k's
 //value to be v

m.insert(
IntWidgetMap::value_type(k, v)).first->second = v; // use insert to

// update k's
//value to be v

The syntax alone is probably enough to convince you to favor operator(), but we're
focusing on efficiency here, so we'll overlook that. The call to insert requires an
argument of type IntWidgetMap::value_type (i.e.. pair<int, Widget>), so when we call
insert, we must construct and destruct an object of that type. That costs us a pair
constructor and destructor. That, in turn, entails a Widget construction and destruction,
because a pair<int, Widget> itself contains a Widget object, operator[] uses no pair
object, so it constructs and destructs no pair and no Widget.

Efficiency considerations thus lead us to conclude that insert is preferable to operator[]
when adding an element to a map, and both efficiency and aesthetics dictate that
operator[] is preferable when updating the value of an element that's already in the
map. It would be nice if the STL provided a function that offered the best of both
worlds, i.e., efficient add-or-update functionality in a syntactically attractive package.
For example, it's not hard to envision a calling interface such as this:

iterator affectedPair = // if key k isn't in map m, efficiently

efficientAddOrUpdate(m, k, v); // add pair (k,v) to m; otherwise
 // efficiently update to v the value
 // associated with k. Return an
 // iterator to the added or
 // modified pair

 89

There's no function like this in the STL, but, as the code below demonstrates, it's not
terribly hard to write yourself. The comments summarize what's going on, and the
paragraphs that follow provide some additional explanation.

template< typename MapType, // type of map

typename KeyArgType, // see below for why
typename ValueArgtype> // KeyArgType and

// ValueArgtype are type
typename MapType::iterator // parameters
efficientAddOrUpdate(MapType& m,

const KeyArgType& k,
const ValueArgtype& v)

{
typename MapType::iterator Ib = // find where k is or should

m.lower_bound(k); // be; see page 7 for why
// "typename" is needed
 // here

if(lb != m.end() && // if Ib points to a pair
!(m.key_comp()(k, lb->first))) { // whose key is equiv to k...

lb->second = v; // update the pair's value
return Ib; // and return an iterator

} //to that pair
else{

typedef typename MapType::value_type MVT;
return m.insert(lb, MVT(k, v)); // add pair(k, v) to m and

} //return an iterator to the
} //new map element

To perform an efficient add or update, we need to be able to find out if k's value is in
the map; if so, where it is; and if not, where it should be inserted. That job is tailor-
made for lower_bound (see Item 45), so that's the function we call. To determine
whether lower_bound found an element with the key we were looking for. we perform
the second half of an equivalence test (see Item 19), being sure to use the correct
comparison function for the map: that comparison function is available via
map::key_comp. The result of the equivalence test tells us whether we're performing
an add or an update.

If it's an update, the code is straightforward. The insert branch is more interesting,
because it uses the "hint" form of insert. The construct m.insertdb, MVT(k, v)) "hints"
that lb identifies the correct insertion location for a new element with key equivalent to
k. and the Standard guarantees that if the hint is correct, the insertion will occur in
constant, rather than logarithmic, time. In efficientAddOrUpdate, we know that lb
identifies the proper insertion location, so the call to insert is guaranteed to be a
constant-time operation.

 90

An interesting aspect of this implementation is that KeyArgType and ValueArgType
need not be the types stored in the map. They need only be convertible to the types
stored in the map. The alternative would be to eliminate the type parameters
KeyArgType and ValueArgType, using instead MapType::key_type and
MapType::mapped_type. However, if we did that, we might force unnecessary type
conversions to occur at the point of call. For instance, look again at the definition of
the map we've been using in this Item's examples:

map<int, Widget> m; //as before

And recall that Widget accepts assignment from a double:

class Widget { //also as before
public:

…
Widget& operator=(double weight);
…

};

Now consider this call to efficientAddOrUpdate:
efficientAddOrUpdate(m, 10,1.5);

Suppose that it's an update operation, i.e., m already contains an element whose key is
10. In that case, the template above deduces that ValueArgType is double, and the
body of the function directly assigns 1.5 as a double to the Widget associated with the
key 10. That's accomplished by an invocation of Widget::operator=(double). If we had
used MapType::mapped_type as the type of efficientAddOrUpdate's third parameter,
we'd have converted 1.5 to a Widget at the point of call, and we'd thus have paid for a
Widget construction (and subsequent destruction) we didn't need.

Subtleties in the implementation of efficientAddOrUpdate may be interesting, but
they're not as important as the main point of this Item, which is that you should choose
carefully between map::operator[] and map-insert when efficiency is important. If
you're updating an existing map element, operator[] is preferable, but if you're adding
a new element, insert has the edge.

Item 25. Familiarize yourself with the nonstandard hashed
containers.

It generally doesn't take much time for STL programmers to begin to wonder.
"Vectors, lists, maps, sure, but where are the hash tables?" Alas, there aren't any hash
tables in the standard C++ library. Even-one agrees that this is unfortunate, but the
Standardization Committee felt that the work needed to add them would have unduly
delayed completion of the Standard. It's a foregone conclusion that the next version of
the Standard will include hash tables, but for the time being, the STL doesn't do
hashing.

 91

If you like hash tables, however, take heart. You need not do without or roll your own.
STL-compatible hashed associative containers are available from multiple sources, and
they even have de facto standard names: hash_set, hash_multiset, hash_map, and
hash_multimap.

Behind these common names, different implementations, er, differ. They differ in their
interfaces, their capabilities, their underlying data structures, and the relative
efficiency of the operations they support. It's still possible to write reasonably portable
code using hash tables, but it's not as easy as it would be had the hashed containers
been standardized. (Now you know why standards are important.)

Of the several available implementations for hashed containers, the two most common
are from SGI (see Item 50) and Dinkumware (see Appendix B). so in what follows, 1
restrict myself to the designs of the hashed containers from these vendors. STLport
(again, see Item 50) also offers hashed containers, but the STLport hashed containers
are based on those from SGI. For purposes of this Item, assume that whatever I write
about the SGI hashed containers applies to the STLport hashed containers, too.

Hashed containers are associative containers, so it should not surprise you that, like all
associative containers, they need to know the type of objects stored in the container,
the comparison function for such objects, and the allocator for these objects. In
addition, hashed containers require specification of a hashing function. That suggests
the following declaration for hashed containers:

template<typename T,

typename HashFunction,
typename CompareFunction,
typename Allocator = allocator<T> >

class hash_container;

This is quite close to the SGI declaration for hashed containers, the primary difference
being that SGI provides default types for HashFunction and CompareFunction. The
SGI declaration for hash_set looks essentially like this (I've tweaked it a bit for
presentation purposes):

template<typename T,

typename HashFunction = hash<T>,
typename CompareFunction = equa_ to<T>,
typename Allocator = allocator<T> >

class hash_set;

A noteworthy aspect of the SGI design is the use of equal_to as the default comparison
function. This is a departure from the conventions of the standard associative
containers, where the default comparison function is less. This design decision
signifies more than a simple change in default comparison functions. SGI's hashed
containers determine whether two objects in a hashed container have the same value
by testing for equality, not equivalence (see Item 19). For hashed containers, this is not

 92

an unreasonable decision, because hashed associative containers, unlike their standard
(typically tree-based) counterparts, are not kept in sorted order.

The Dinkumware design for hashed containers adopts some different strategies. It still
allows you to specify object types, hash function types, comparison function types,
and allocator types, but it moves the default hash and comparison functions into a
separate traits-like class called hash_compare, and it makes hash_compare the default
argument for the HashingInfo parameter of the container templates. (If you're
unfamiliar with the notion of a "traits" class, open a good STL reference like Josuttis'
The C++ Standard Library [3] and study the motivation and implementation of the
char_traits and iterator_traits templates.)

For example, here's the Dinkumware hash_set declaration (again, tweaked for
presentation):

template<typename T, typename CompareFunction>
class hash_compare;

template<typename T,

typename HashingInfo = hash_compare<T, less<T> >;
typename Allocator = allocator<T> >

class hash_set;

The interesting part of this interface design is the use of HashingInfo. The container's
hashing and comparison functions are stored there, but the HashingInfo type also holds
enums controlling the minimum number of buckets in the table as well as the
maximum allowable ratio of container elements to buckets. When this ratio is
exceeded, the number of buckets in the table is increased, and some elements in the
table are rehashed. (SGI provides member functions that afford similar control over
the number of table buckets and, hence, the ratio of table elements to buckets.)

After some tweaks for presentation, hash_compare (the default value for HashingInfo)
looks more or less like this:

template<typename T, typename CompareFunction = less<T> >
class hash_compare {
public:

enum {
bucket_size = 4, // max ratio of elements to buckets
min_buckets = 8 // minimum number of buckets

 };
size_t operator()(const T&) const; // hash function
bool operator()(const T&, // comparison function

 const T&) const;
… // a few things omitted, including);

 //the use of CompareFunction
}

 93

The overloading of operator() (in this case, to implement both the hashing and
comparison functions) is a strategy that crops up more frequently than you might
imagine. For another application of the same idea, take a look at Item 23.

The Dinkumware design allows you to write your own hash_compare-like class
(possibly by deriving from hash_compare itself), and as long as your class provides
definitions for bucket_size, min_buckets. two operator() functions (one taking one
argument, one taking two), plus a few things I've left out, you can use it to control the
configuration and behavior of a Dinkumware hash_set or hash_multiset. Configuration
control for hash_map and hash_multimap is similar.

Notice that with both the SGI and the Dinkumware designs, you can leave all the
decision-making to the implementations and simply write something like this:

hash_set<int> intTable; // create a hashed set of ints

For this to compile, the hash table must hold an integral type (such as int), because the
default hashing functions are generally limited to integral types. (SGI's default hashing
function is slightly more flexible. Item 50 will tell you where to find all the details.)

Under the hood, the SGI and Dinkumware implementations go their very separate
ways. SGI employs a conventional open hashing scheme composed of an array (the
buckets) of pointers to singly linked lists of elements. Dinkumware also employs open
hashing, but it's design is based on a novel data structure consisting of an array of
iterators (essentially the buckets) into a doubly linked list of elements, where adjacent
pairs of iterators identify the extent of the elements in each bucket. (For details,
consult Plauger's aptly titled column. "Hash Tables" [16].)

As a user of these implementations, it's likely you'll be interested in the fact that the
SGI implementation stores the table elements in singly linked lists, while the
Dinkumware implementation uses a doubly linked list. The difference is noteworthy,
because it affects the iterator categories for the two implementations. SGI's hashed
containers offer forward iterators, so you forgo the ability to perform reverse
iterations: there are no rbegin or rend member functions in SGI's hashed containers.
The iterators for Dinkumware's hashed containers are bidirectional, so they offer both
forward and reverse traversals. In terms of memory usage, the SGI design is a bit more
parsimonious than that from Dinkumware.

Which design is best for you and your applications? I can't possibly know. Only you
can determine that, and this Item hasn't tried to give you enough information to come
to a reasonable conclusion. Instead, the goal of this Item is to make sure you know that
though the STL itself lacks hashed containers. STL-compatible hashed containers
(with varying interfaces, capabilities, and behavioral trade-offs) are not difficult to
come by. In the case of the SGI and STLport implementations, you can even come by
them for free, because they're available for free download.

 94

Iterators
At first glance, iterators appear straightforward. Look more closely, however, and
you'll notice that the standard STL containers offer four different iterator types:
iterator, const_iterator, reverse_iterator, and const_reverse_iterator. From there it's
only a matter of time until you note that of these four types, only one is accepted by
containers in certain forms of insert and erase. That's when the questions begin. Why
four iterator types? What is the relationship among them? Are they interconvertible?
Can the different types be mixed in calls to algorithms and STL utility functions? How
do these types relate to containers and their member functions?

This chapter answers these questions, and it introduces an iterator type that deserves
more notice than it usually gets: istreambuf_iterator. If you like the STL, but you're
unhappy with the performance of istream_iterators when reading character streams,
istreambuf_iterator could be just the tool you're looking for.

Item 26. Prefer iterator to const iterator, reverse_iterator, and
const_reverse_iterator.

As you know, every standard container offers four types of iterator. For a
container<T>, the type iterator acts like a T*, while const_iterator acts like a const T*
(which you may also see written as a T const *: they mean the same thing).
Incrementing an iterator or a const_iterator moves you to the next element in the
container in a traversal starting at the front of the container and proceeding to the back,
reverse_iterator and const_reverse_iterator also act like T* and const T*, respectively,
except that incrementing these iterator types moves you to the next element in the
container in a traversal from back to front.

Let me show you two things. First, take a look at some signatures for insert and erase
in vector<T>:

iterator insert(iterator position, const T& x);
iterator erase(iterator position);
iterator erase(iterator rangeBegin, iterator rangeEnd);

Every standard container offers functions analogous to these, though the return types
vary, depending on the container type. The thing to notice is that these functions
demand parameters of type iterator. Not const_iterator, not reverse_iterator, not
const_reverse_iterator. Always iterator. Though containers support four iterator types,
one of those types has privileges the others do not have. That type is iterator, iterator is
special.

The second thing I want to show you is this diagram, which displays the conversions
that exist among iterator types.

 95

The diagram shows that there are implicit conversions from iterator to const_iterator.
from iterator to reverse_iterator, and from reverse_iterator to const_reverse_iterator. It
also shows that a reverse_iterator may be converted into an iterator by using the
reverse_iterator's base member function, and a const_reverse_iterator may similarly be
converted into a const_iterator via base. The diagram does not show that the iterators
obtained from base may not be the ones you want. For the story on that, turn to Item
28.

You'll observe that there is no way to get from a const_iterator to an iterator or from a
const_reverse_iterator to a reverse_iterator. This is important, because it means that if
you have a const_iterator or a const_reverse_iterator, you'll find it difficult to use those
iterators with some container member functions. Such functions demand iterators, and
since there's no conversion path from the const iterator types back to iterator, the const
iterator types are largely useless if you want to use them to specify insertion positions
or elements to be erased.

Don't be fooled into thinking that this means const iterators are useless in general.
They're not. They're perfectly useful with algorithms, because algorithms don't usually
care what kind of iterators they work with, as long as they are of the appropriate
category, const iterators are also acceptable for many container member functions. It's
only some forms of insert and erase that are picky.

I wrote that const iterators are "largely" useless if you want to specify insertion
positions or elements to be erased. The implication is that they are not completely
useless. That's true. They can be useful if you can find a way to get an iterator from a
const_iterator or from a const_reverse_iterator. That's often possible. It isn't always
possible, however, and even when it is, the way to do it isn't terribly obvious. It may
not be terribly efficient, either. The topic is meaty enough to justify its own Item, so
turn to Item 27 if you're interested in the details. For now, we have enough information
to understand why it often makes sense to prefer iterators to const and reverse
iterators:

� Some versions of insert and erase require iterators. If you want to call those
functions, you're going to have to produce iterators, const and reverse iterators
won't do.

� It's not possible to implicitly convert a const iterator to an iterator, and the
technique described in Item 27 for generating an iterator from a const_iterator is
neither universally applicable nor guaranteed to be efficient.

 96

� Conversion from a reverse_iterator to an iterator may require iterator
adjustment after the conversion. Item 28 explains when and why.

All these things conspire to make working with containers easiest, most efficient, and
least likely to harbor subtle bugs if you prefer iterators to their const and reverse
colleagues.

Practically speaking, you are more likely to have a choice when it comes to iterators
and const_iterators. The decision between iterator and reverse_iterator is often made
for you. You either need a front-to-back traversal or a back-to-front traversal, and
that's pretty much that. You choose the one you need, and if that means choosing
reverse_iterator, you choose reverse_iterator and use base to convert it to an iterator
(possibly preceded by an offset adjustment — see Item 28) when you want to make
calls to container member functions that require iterators.

When choosing between iterators and const_iterators, there are reasons to choose
iterators even when you could use a const_iterator and when you have no need to use
the iterator as a parameter to a container member function. One of the most irksome
involves comparisons between iterators and const_iterators. I hope we can all agree
that this is reasonable code:

typedef deque<int> IntDeque; //STL container and
typedef lntDeque::iterator Iter; // iterator types are easier
typedef lntDeque::const_iterator Constlter; // to work with if you

// use some typedefs
Iter i;
Constlter ci;
… //make i and ci point into

// the same container
if (i == ci) ... //compare an iterator

// and a const_iterator

All we're doing here is comparing two iterators into a container, the kind of
comparison that's the bread and butter of the STL. The only twist is that one object is
of type iterator and one is of type const_iterator. This should be no problem. The
iterator should be implicitly convened into a const_iterator. and the comparison should
be performed between two const_iterators.

With well-designed STL implementations, this is precisely what happens, but with
other implementations, the code will not compile. The reason is that such
implementations declare operator== for const_iterators as a member function instead
of as a non-member function, but the cause of the problem is likely to be of less
interest to you than the workaround, which is to swap the order of the iterators, like
this:

if (ci == i)... // workaround for when the

// comparison above won't compile

 97

This kind of problem can arise whenever you mix iterators and const_iterators (or
reverse_iterators and const_reverse_iterators) in the same expression, not just when
you are comparing them. For example, if you try to subtract one random access iterator
from another.

if (i - ci >= 3)... // if i is at least 3 beyond ci...

your (valid) code may be (incorrectly) rejected if the iterators aren't of the same type.
The workaround is what you'd expect (swap the order of i and ci), but in this case you
have to take into account that you can't just replace i - ci with ci - i:

if (ci - 3 <=i)... //workaround for when the above

 //won't compile

The easiest way to guard against these kinds of problems is to minimize your minimize
of iterator types, and that, in turn, leads back to preferring iterators to const_iterators.
From the perspective of const correctness (a worthy perspective, to be sure), staying
away from const_iterators simply to avoid potential implementation shortcomings (all
of which have workarounds) seems unjustified, but in conjunction with the anointed
status of iterators in some container member functions, it's hard to avoid the practical
conclusion that const_iterators arc not only less useful than iterators, sometimes
they're just not worth the trouble.

Item 27. Use distance and advance to convert a container's
const_iterators to iterators.

Item 26 points out that some container member functions that take iterators as
parameters insist on iterators: const_iterators won't do. So what do you do if you have
a const_iterator in hand and you want to, say, insert a new value into a container at the
position indicated by the iterator? Somehow you've got to turn your const_iterator into
an iterator, and you have to take an active role in doing it, because, as Item 26
explains, there is no implicit conversion from const_iterator to iterator.

I know what you're thinking. You're thinking. "When all else fails, get a bigger
hammer." In the world of C++, that can mean only one thing: casting. Shame on you
for such thoughts. Where do you get these ideas?

Let us confront this cast obsession of yours head on. Look what happens when you try
to cast a const_iterator to an iterator:

typedef deque<int> IntDeque; //convenience typedefs
typedef lntDeque::iterator Iter;
typedef lntDeque::const_iterator Constlter;
Constlter ci; // ci is a const_iterator
…
Iter i(ci); // error! no implicit conversion from

// const_iterator to iterator
Iter i(const_cast<lter>(ci)); // still an error! can't cast a

 98

// const_iterator to an iterator

This example happens to use deque, but the outcome would be the same for list. Set,
multiset, map, multimap, and the hashed containers described in Item 25. The line
using the cast might compile in the case of vector or string, but those are special cases
we'll consider in a moment.

The reason the cast won't compile is that for these container types, iterator and
const_iterator are different classes, barely more closely related to one another than
string and complex<double>. Trying to cast one type to the other is nonsensical, and
that's why the const_cast is rejected, static_cast, reinterpret_cast, and a C-style cast
would lead to the same end.

Alas, the cast that won't compile might compile if the iterators' container were a vector
or a string. That's because it is common for implementations of these containers to use
pointers as iterators. For such implementations, vector<T>::iterator is a typedef for T*.
vector<T>::const_iterator is a typedef for const T*, string-iterator is a typedef for
char*, and string::const_iterator is a typedef for const char*. With such
implementations, the const_cast from a const_iterator to an iterator will compile and
do the right thing, because the cast is converting a const T* into a T*. Even under such
implementations, however, reverse_iterators and const_reverse_iterators are true
classes, so you can't const_cast a const_reverse_iterator to a reverse_iterator. Also, as
Item 50 explains, even implementations where vector and string iterators are pointers
might use that representation only when compiling in release mode. All these factors
lead to the conclusion that casting const iterators to iterators is ill-advised even for
vector and string, because its portability is doubtful.

If you have access to the container a const_iterator came from, there is a safe, portable
way to get its corresponding iterator, and it involves no circumvention of the type
system. Here's the essence of the solution, though it must be modified slightly before it
will compile:

typedef deque<int> IntDeque; //as before
typedef IntDeque::iterator Iter;
typedef IntDeque::const_iterator Constlter;
IntDeque d;
Constlter ci;
… // make ci point into d
Iter i(d.begin()); // initialize i to d.begin()
advanced distance(i, ci)) //move i up to where ci is

// (but see below for why this must
// be tweaked before it will compile)

This approach is so simple and direct, it's startling. To get an iterator pointing to the
same container element as a const_iterator, create a new iterator at the beginning of the
container, then move it forward it until it's as far from the beginning of the container as
the const_iterator is! This task is facilitated by the function templates advance and dis-

 99

tance, both of which are declared in <iterator>, distance reports how far apart two
iterators into the same container are, and advance moves an iterator a specified
distance. When i and ci point into the same container, the expression advance(i,
distance(i, ci)) makes i and ci point to the same place in the container.

Well, it would if it would compile, but it won't. To see why, look at the declaration for
distance:

template <typename InputIterator>
typename iterator_traits<InputIterator>::difference_type
distance(Inputlterator first, Inputlterator last);

Don't get hung up on the fact that the return type of the function is 56 characters long
and mentions dependent types like difference_type. Instead, focus your attention on
the uses of the type parameter Input-Iterator:

template <typename InputIterator>
typename iterator_traits<InputIterator>::difference_type
distance(Inputlterator first, Inputlterator last);

When faced with a call to distance, your compilers must deduce the type represented
by InputIterator by examining the arguments used in the call. Look again at the call to
distance in the code I said wasn't quite right:

advance(i distance(i, ci)); // move i up to where ci is

Two parameters are passed to distance, i and ci. i is of type Iter, which is a typedef for
deque<int>::iterator. To compilers, that implies that InputIterator in the call to distance
is deque<int>::iterator. ci, however, is of type ConstIter, which is a typedef for
deque<int>::const_iterator. That implies that InputIterator is of type
deque<int>::const_iterator. It's not possible for InputIterator to be two different types
at the same time, so the call to distance falls, typically yielding some long-winded
error message that may or may not indicate that the compiler couldn't figure out what
type InputIterator is supposed to be.

To get the call to compile, you must eliminate the ambiguity. The easiest way to do
that is to explicitly specify the type parameter to be used by distance, thus obviating
the need for your compilers to figure it out for themselves:

advance(i, distance<ConstIter>(i, ci)); //figure the distance between

// i and ci (as const_iterators),
// then move i that distance

 100

We now know how to use advance and distance to get an iterator corresponding to a
const_iterator, but we have so far sidestepped a question of considerable practical
interest: How efficient is this technique? The answer is simple. It's as efficient as the
iterators allow it to be. For random access iterators (such as those sported by vector,
string, and deque), it's a constant-time operation. For bidirectional iterators (i.e., those
for all other standard containers and for some implementations of the hashed
containers (see Item 25)), it's a linear-time operation.

Because it may take linear time to produce an iterator equivalent to a const_iterator.
and because it can't be done at all unless the container for the const_iterator is
available when the const_iterator is, you may wish to rethink designs that require
producing iterators from const_iterators. Such considerations, in fact, help motivate
Item 26, which advises you to prefer iterators over const and reverse iterators when
dealing with containers.

Item 28. Understand how to use a reverse_iterator's base iterator.

Invoking the base member function on a reverse_iterator yields the "corresponding"
iterator, but it's not really clear what that means. As an example, take a look at this
code, which puts the numbers 1-5 in a vector, sets a reverse_iterator to point to the 3,
and initializes an iterator to the reverse_iterator's base:

vector<int> v;
v.reserve(5); // see Item 14

for(int i = 1;i <= 5;++i){ //put 1-5 in the vector

v.push_back(i);
}

vector<int>::reverse_iterator ri = // make ri point to the 3

find(v.rbegin(), v.rend(), 3);

vector<int>::iterator i(ri.base()); // make i the same as ri's base

After executing this code, things can be thought of as looking like this:

This picture is nice, displaying the characteristic offset of a reverse_iterator and its
corresponding base iterator that mimics the offset of rbegin() and rend() with respect
to begin() and end(), but it doesn't tell you everything you need to know. In particular,

 101

it doesn't explain how to use i to perform operations you'd like to perform on ri. As
Item 26 explains, some container member functions accept only iterators as iterator
parameters, so if you want to, say, insert a new-element at the location identified by ri,
you can't do it directly: vector's insert function won't take reverse_iterators. You'd
have a similar problem if you wanted to erase the element pointed to by ri. The erase
member functions reject reverse_iterators, insisting instead on iterators. To perform
insertions or erasures, you must convert reverse_iterators into iterators via base, then
use the iterators to get the jobs done.

So let's suppose you do want to insert a new element into v at the position indicated by
ri. In particular, let's assume you want to insert the value 99. Bearing in mind that ri is
part of a traversal from right to left in the picture above and that insertion takes place
in front of the element indicated by the iterator used to specify the insertion position,
we'd expect the 99 to end up in front of the 3 with respect to a reverse traversal. After
the insertion, then, v would look like this:

Of course, we can't use ri to indicate where to insert something, because it's not an
iterator. We must use i instead. As noted above, when ri points at 3. i (which is
ri.base()) points at 4. That's exactly where i needs to point for an insertion if the
inserted value is to end up where it would have had we been able to use ri to specify
the insertion location. Conclusion?

� To emulate insertion at a position specified by a reverse_iterator ri, insert at the
position ri.base() instead. For purposes of insertion, ri and ri.base() are
equivalent, and ri.base() is truly the iterator corresponding to ri.

Let us now consider erasing an element. Look again at the relationship between ri and
i in the original vector (i.e., prior to the insertion of 99):

If we want to erase the element pointed to by ri. we can't just use i. because i doesn't
point to the same element as ri. Instead, we must erase the element preceding i. Hence.

� To emulate erasure at a position specified by a reverse_iterator ri, erase at the
position preceding ri.base() instead. For purposes of erasure, ri and ri.base() are
nor equivalent, and ri.base() is nor the iterator corresponding to ri.

It's worth looking at the code to perform such an erasure, because it holds a surprise.

 102

vector<int> v;
… // as above, put 1 -5 in v
vector<int>::reverse_iterator ri = // as above, make ri point to the 3

find(v.rbegin(), v.rend(), 3);
v.erase(--ri.base()); // attempt to erase at the position

// preceding ri.base(); for a vector,
// this will typically nor compile

There's nothing wrong with this design. The expression --ri.base() correctly specifies
the element we'd like to erase. Furthermore, this code will work with every standard
container except vector and string. It might work with vector and string, too, but for
many vector and string implementations, it won't compile. In such implementations,
iterators (and const_iterators) are implemented as built-in pointers, so the result of
ri.base() is a pointer.

Both C and C++ dictate that pointers returned from functions shall not be modified, so
for STL platforms where string and vector iterators are pointers, expressions like -
ri.base() won't compile. To portably erase something at a position specified by a
reverse_iterator, then, you must take pains to avoid modifying base's return value. No
problem. If you can't decrement the result of calling base, just increment the
reverse_iterator and then call base!

… // as above
v.erase(++ri).base()); // erase the element pointed to by

// ri; this should always compile

Because this approach works with every standard container, it is the preferred
technique for erasing an element pointed to by a reverse_iterator.

It should now be clear that it's not accurate to say that a reverse_iterator's base member
function returns the "corresponding" iterator. For insertion purposes, it does, but for
erasure purposes, it does not. When converting reverse_iterators to iterators, it's
important that you know what you plan to do with the resulting iterator, because only
then can you determine whether the iterator you have is the one you need.

Item 29. Consider istreambuf_iterators for character-by-character
input.

Let's suppose you'd like to copy a text file into a string object. This seems like a pretty
reasonable way to do it:

ifstream inputFile("interestingData.txt");
string fileData((istream_iterator<char>(inputFile)), // read inputFile into

 istream_iterator<char>()); // fileData; see below
 //for why this isn't
 //quite right and see
 // Item 6 for a warning

 103

 //about this syntax

It wouldn't take long before you'd notice that this approach fails to copy whitespace in
the file into the string. That's because istream_iterators use operator<< functions to do
the actual reading, and. by default, operator<< functions skip whitespace.

Assuming you'd like to retain the whitespace, all you need to do is override the default.
Just clear the skipws flag for the input stream:

ifstream inputFile("interestingData.txt");
inputFile.unset(ios::skipws); //disable the skipping of

// whitespace in inputFile
string fileData((istream_iterator<char>(inputFile)), istream_iterator<char>()};

Now all the characters in inputFile are copied into fileData.

Alas, you may discover that they aren't copied as quickly as you'd like. The operator<<
functions on which istream_iterators depend perform formatted input, and that means
they must undertake a fair amount of work on your behalf each time you call one.
They have to create and destroy sentry objects (special iostream objects that perform
setup and cleanup activities for each call to operator<<), they have to check stream
flags that might affect their behavior (e.g.. skipws), they have to perform
comprehensive checking for read errors, and. if they encounter a problem, they have to
check the stream's exception mask to determine whether an exception should be
thrown. Those are all important activities if you're performing formatted input, but if
all you want to do is grab the next character from the input stream, it's overkill.

A more efficient approach is to use one of the STL's best kept secrets:
istreambuf_iterators. You use istreambuf_iterators like istream_iterators but where
istream_iterator<char> objects use operator<< to read individual characters from an
input stream. istreambuf_iterator<char> objects go straight to the stream's buffer and
read the next character directly. (More specifically, an istreambuf_iterator<char>
object reading from an istream s will call s.rdbuf()->sgetc() to read s's next character.)
Modifying our file-reading code to use istreambuf_iterators is so easy, most Visual
Basic programmers need no more than two tries to get it right:

ifstream inputFile("interestingData.txt");
string fileData((istreambuf_iterator<char>(inputFile)),
istreambuf_iterator<char>());

Notice how there's no need to "unset" the skipws flag here, istreambuf_iterators never
skip any characters. Whatever's next in the stream buffer, that's what they grab.

Compared to istream_iterators, they grab it quickly — up to 40% faster in the simple
benchmarks I performed, though don't be surprised if your mileage varies. Don't be
surprised if the speed advantage increases over time, too, because istreambuf_iterators
inhabit a seldom-visited corner of the STL where implementers haven't yet spent a lot

 104

of time on optimizations. For example, in one implementation I used,
istreambuf_iterators were only about 5% faster than istream_iterators on my primitive
tests. Such implementations clearly have lots of room to streamline their
istreambuf_iterator implementations. If you need to read the characters in a stream one
by one, you don't need the power of formatted input, and you care about how long it
takes to read the stream, typing three extra characters per iterator is a small price to
pay for what is often a significant increase in performance. For unformatted character-
by-character input, you should always consider istreambuf_iterators.

While you're at it, you should also consider ostreambuf_iterators for the corresponding
unformatted character-by-character output operations. They avoid the overhead (and
flexibility) of their ostream_iterator cousins, so they generally outperform them, too.

 105

Algorithms

I noted at the beginning of Chapter 1 that containers get the lion's share of the STL
acclaim. In a sense, that's understandable. The containers are remarkable
accomplishments, and they make life easier for legions of C++ programmers on a
daily basis. Still, the STL algorithms are significant in their own right, equally capable
of lightening a developer's burden. In fact, given that there are over 100 algorithms, it's
easy to argue that they offer programmers a more finely honed tool set than the
containers (a mere eight strong) could ever hope to match. Perhaps their number is part
of the problem. Making sense of eight distinct container types is surely less work than
remembering 70 algorithm names and trying to keep track of which does what.

I have two primary goals in this chapter. First, I want to introduce you to some lesser-
known algorithms by showing you how they can make your life easier. Rest assured
that I'm not going to punish you with lists of names to memorize. The algorithms I
show you are in this chapter because they solve common problems, like performing
case-insensitive string comparisons, efficiently finding the n most desirable objects in
a container, summarizing the characteristics of all the objects in a range, and
implementing the behavior of copy_if (an algorithm from the original HP STL that
was dropped during standardization).

My second goal is to show you how to avoid common usage problems with the
algorithms. You can't call remove, for example, or its cousins remove_if and unique
unless you understand exactly what these algorithms do (and do not do). This is
especially true when the range from which you're removeing something holds pointers.
Similarly, a number of algorithms work only with sorted ranges, so you need to under-
stand which ones they are and why they impose that constraint. Finally, one of the
most common algorithm-related mistakes involves asking an algorithm to write its
results to a place that doesn’t exist, so I explain how this absurdity can come about and
how to ensure that you're not afflicted.

By the end of the chapter, you may not hold algorithms in the same high regard you
probably already accord containers, but I'm hopeful you'll be willing to let them share
the limelight more often than you have in the past.

Item 30. Make sure destination ranges are big enough.

STL containers automatically expand themselves to hold new objects as they are added
(via insert, push_front, push_back, etc.). This works so well, some programmers lull
themselves into the belief that they never have to worry about making room for objects
in containers, because the containers themselves take care of things. If only it were so!
The problems arise when programmers think about inserting objects into containers,
but don't tell the STL what they're thinking. Here's a common way this can manifest
itself:

int transmogrify(int x); // this function produces

 106

// some new value from x
vector<int> values;
… //put data into values
vector<int> results; // apply transmogrify to
transform(values.begin(), values.end(), // each object in values,

 results.end(), // appending the return
 transmogrify); // values to results; this

//code has a bug!

In this example, transform is told that the beginning of its destination range is
results.end(), so that's where it starts writing the results of invoking transmogrify on
every element of values. Like every algorithm that uses a destination range, transform
writes its results by making assignments to the elements in the destination range,
transform will thus apply transmogrify to values[0] and assign the result to
*results.end(). It will then apply transmogrify to values[1] and assign the result to
*(results.end()+1). This can lead only to disaster, because there is no object at
*results.end(), much less at *(results.end()+1)! The call to transform is wrong, because
it's asking for assignments to be made to objects that don't exist. (Item 50 explains how
a debugging implementation of the STL can detect this problem at runtime.)
Programmers who make this kind of mistake almost always intend for the results of
the algorithm they're calling to be inserted into the destination container. If that's what
you want to happen, you have to say so. The STL is a library, not a psychic. In this
example, the way to say "please put transform's results at the end of the container
called results" is to call back_inserter to generate the iterator specifying the beginning
of the destination range:

vector<int> results; // apply transmogrify to
transform(values.begin(), values.end(), //each object in values,

 back_inserter(results), //inserting the return
 transmogrify); // values at the end of

// results

Internally, the iterator returned by back_inserter causes push_back to be called, so you
may use back_inserter with any container offering push_back (i.e., any of the standard
sequence containers: vector, string, deque, and list). If you'd prefer to have an
algorithm insert things at the front of a container you can use front_inserter. Internally,
front_inserter makes use of push_front, so front_inserter works only for the containers
offering that member function (i.e. deque and list):

… //same as before
list<int> results; // results is now a list
transform(values.begin(), values.end(), // insert transform's

front_inserter(results), //results at the front of
transmogrify); // results in reverse order

 107

Because front_inserter causes each object added to results to be push_fronted, the
order of the objects in results will be the reverse of the order of the corresponding
objects in values. This is one reason why front_inserter isn't used as often as
back_inserter. Another reason is that vector doesn't offer push_front, so front_inserter
can't be used with vectors.

If you want transform to put its output at the front of results, but you also want the
output to be in the same order as the corresponding objects in values, just iterate over
values in reverse order:

list<int> results; // same as before
transform(values.rbegin(). values.rend(), //insert transform's

front_inserter(results), // results at the front of
transmogrify); // results; preserve the

// relative object ordering

Given that front_inserter lets you force algorithms to insert their results at the front of
a container and back_inserter lets you tell them to put their results at the back of a
container, it's little surprise that inserter allows you to force algorithms to insert their
results into containers at arbitrary locations:

vector<int> values; //as before
…
vector<int> results; // as before, except now
… //results has some data

// in it prior to the call to
//transform

transform(values.begin{), values.end(), // insert the
inserter(results, results.begin() + results.size()/2) , // results of
transmogrify); //the trans-

 // mogrifica-
//tions at
//the middle
// of results

Regardless of whether you use back_inserter, front_inserter, or inserter, each insertion
into the destination range is done one object at a time. Item 5 explains that this can be
expensive for contiguous-memory containers (vector, string, and deque), but Item 5's
suggested solution (using range member functions) can't be applied when it's an algo-
rithm doing the inserting. In this example, transform will write to its destination range
one value at a time, and there's nothing you can do to change that.

When the container into which you're inserting is a vector or a string, you can
minimize the expense by following the advice of Item 14 and calling reserve in
advance. You'll still have to absorb the cost of shifting elements up each time an

 108

insertion takes place, but at least you'll avoid the need to reallocate the container's
underlying memory:

vector<int> values; // as above
vector<int> results;
…
results.reserve(results.size() + values.size()); // ensure that results has

 // the capacity for at least
 //values.size() more
 //elements

transform(values.begin(), values.end(), //as above,
inserter(results, results.begin() + results.size() / 2), // but results
 transmogrify); //won't do

 //any reallo-
 //cations

When using reserve to improve the efficiency of a series of insertions, always
remember that reserve increases only a container's capacity: the container's size
remains unchanged. Even after calling reserve, you must use an insert iterator (e.g.,
one of the iterators returned from back_inserter, front_inserter, or inserter) with an
algorithm when you want that algorithm to add new elements to a vector or string.

To make this absolutely clear, here is the wrong way to improve the efficiency of the
example at the beginning of this Item (the one where we append to results the outcome
of transmogrifying the data in values):

vector<int> values; //as above
vector<int> results;
…
results.reserve(results.size() + values.size()); // as above
transform(values.begin(), values.end(), //write the results of

 results.end(), //the transmogrifications
 transmogrify); // to uninitialized memory;

// behavior is undefined!

In this code, transform blithely attempts to make assignments to the raw, uninitialized
memory at the end of results. In general, this will fail at runtime, because assignment
is an operation that makes sense only between two objects, not between one object and
a chunk of primordial bits. Even if this code happens to do what you want it to, results
won't know about the new "objects" transform "created" in its unused capacity. As far
as results would be aware, its size would be the same after the call to transform as it
was before. Similarly, its end iterator would point to the same place it did prior to the
call to transform. Conclusion? Using reserve without also using an insert iterator leads
to undefined behavior inside algorithms as well as to corrupted containers.

 109

The correct way to code this example uses both reserve and an insert iterator:
vector<int> values; //as above
vector<int> results;
results.reserve(results.size() + values.size()); // as above
transform(values.begin(), values.end(), //write the results of

 back_inserter(results), // the transmogrifications
 transmogrify); // to the end of results,

 // avoiding reallocations
 //during the process

So far, I've assumed that you want algorithms like transform to insert their results as
new elements into a container. This is a common desire, but sometimes you want to
overwrite the values of existing container elements instead of inserting new ones.
When that's the case, you don't need an insert iterator, but you still need to follow the
advice of this Item and make sure your destination range is big enough.

For example, suppose you want transform to overwrite results' elements. As long as
results has at least as many elements as values does, that's easy. If it doesn't, you must
either use resize to make sure it does.

vector<int> values;
vector<int> results;
…
if (results.size() < values.size()){ //make sure results is at

results.resize(values..size()); // least as big as values is
}

transform(values.begin(), values.end(), // overwrite the first

results.begin(), // values.size() elements of
transmogrify); // results

or you can clear results and then use an insert iterator in the usual fashion:

…
results.clear() ; //destroy all elements in

// results
results.reserve(values.size()); // reserve enough space
transform(values.begin(), values.end(), // put transform's return

pack_inserter(results), // values into results
transmogrify);

This Item has demonstrated a number of variations on a theme, but I hope the
underlying melody is what sticks in your mind. Whenever you use an algorithm
requiring specification of a destination range, ensure that the destination range is big

 110

enough already or is increased in size as the algorithm runs. To increase the size as
you go, use insert iterators, such as ostream_iterators or those returned by
back_inserter, front_inserter, or inserter. That's all you need to remember.

Item 31. Know your sorting options.

How can I sort thee? Let me count the ways.

When many programmers think of ordering objects, only a single algorithm comes to
mind: sort. (Some programmers think of qsort. but once they've read Item 46, they
recant and replace thoughts of qsort with those of sort.)

Now, sort is a wonderful algorithm, but there's no point in squandering wonder where
you don't need it. Sometimes you don't need a full son. For example, if you have a
vector of Widgets and you'd like to select the 20 highest-quality Widgets to send to
your most loyal customers, you need to do only enough sorting to identify the 20 best
Widgets; the remainder can remain unsorted. What you need is a partial sort, and
there's an algorithm called partial_sort that does exactly what the name suggests:

bool qualityCompare(const Widget& lhs, const Widget& rhs)
{

// return whether lhs's quality is greater than rhs's quality
}
…
partial_sort (widgets.begin(), // put the best 20 elements

widgets.begin() + 20, // (in order) at the front of
widgets.end(), // widgets
qualityCompare);

… // use widgets...

After the call to partial_sort, the first 20 elements of widgets are the best in the
container and are in order, i.e., the highest-quality Widget is widgets[0], the next
highest is widgets[1], etc. That makes it easy to send your best Widget to your best
customer, the next best Widget to your next best customer, etc.

If all you care about is that the 20 best Widgets go to your 20 best customers, but you
don't care which Widget goes to which customer, partial_sort gives you more than you
need. In that case, all you need is the 20 best Widgets in any order. The STL has an
algorithm that does exactly what you want, though the name isn't likely to spring to
mind. It's called nth_element.

nth_element sorts a range so that the element at position ri (which you specify) is the
one that would be there if the range had been fully sorted. In addition, when
nth_element returns, none of the elements in the positions up to n follow the element at
position n in the sort order, and none of the elements in positions following n precede
the element at position n in the sort order. If that sounds complicated, it's only because
I have to select my words carefully. I'll explain why in a moment, but first let's look at

 111

how to use nth_element to make sure the best 20 Widgets are at the front of the
widgets vector:

nth_element (widgets.begin(), // put the best 20 elements

 widgets.begin() + 20, // at the front of widgets,
 widgets.end(), // but don't worry about
 qualityCompare); //their order

As you can see, the call to nth_element is essentially identical to the call to
partial_sort. The only difference in their effect is that partial_sort sorts the elements in
positions 1-20, while nth_element doesn't. Both algorithms, however, move the 20
highest-quality Widgets to the front of the vector.

That gives rise to an important question. What do these algorithms do when there are
elements with the same level of quality? Suppose, for example, there are 12 elements
with a quality rating of 1 (the best possible) and 15 elements with a quality rating of 2
(the next best). In that case, choosing the 20 best Widgets involves choosing the 12
with a rating of 1 and 8 of the 15 with a rating of 2. How should partial_sort and
nth_element determine which of the 15 to put in the top 20? For that matter, how
should sort figure out which order to put elements in when multiple elements have
equivalent values?

partial_sort and nth_element order elements with equivalent values any way they want
to, and you can't control this aspect of their behavior. (See Item 19 for what it means
for two values to be equivalent.) In our example, when faced with the need to choose
Widgets with a quality rating of 2 to put into the last 8 spots in the vector's top 20,
they'd choose whichever ones they wanted. That's not unreasonable. If you ask for the
20 best Widgets and some Widgets are equally good, you're in no position to complain
as long as the 20 you get back are at least as good as the ones you didn't.

For a full sort, you have slightly more control. Some sorting algorithms are stable. In a
stable sort, if two elements in a range have equivalent values, their relative positions
are unchanged after sorting. Hence, if Widget A precedes Widget B in the (unsorted)
widgets vector and both have the same quality rating, a stable sorting algorithm will
guarantee that after the vector is sorted, Widget A still precedes Widget B. An
algorithm that is not stable would not make this guarantee.

partial_sort is not stable. Neither is nth_element, sort, too, fails to offer stability, but
there is an algorithm, stable_sort, that does what its name suggests. If you need
stability when you sort, you'll probably want to use stable_sort. The STL does not
contain stable versions of partial_sort or nth_element.

Speaking of nth_element, this curiously named algorithm is remarkably versatile. In
addition to letting you find the top n elements of a range, it can also be used to find the
median value in a range or to find the value at a particular percentile:

 112

vector<Widget>::iterator begin(widgets.begin()); // convenience vars
vector<Widget>::iterator end(widgets.end()); //for widgets' begin

// and end iterators
vector<Widget>::iterator goalPosition; // iter indicating where
 // the widget of interest
 // is located

// The following code finds the Widget with
//the median level of quality
goalPosition = begin + widgets.size() / 2; // the widget of interest

// would be in the middle
 // of the sorted vector

nth_element(begin, goalPosition, end, // find the median quality

qualityCompare); //value in widgets

… // goalPosition now points

// to the Widget with a
// median level of quality

//The following code finds the Widget with
// a level of quality at the 75th percentile

vector<Widget>::size_type goalOffset = // figure out how far from

0.25 * widgets.size(); //the beginning the
 // Widget of interest is

nth_element(begin, begin + goalOffset, end, // find the quality value at

qualityCompare); //the75th percentile

… // goalPosition now points

// to the Widget with the
// 75th percentile level of
// quality

sort, stable_sort, and partial_sort are great if you really need to put things in order, and
nth_element fills the bill when you need to identify the top n elements or the element
at a particular position, but sometimes you need something similar to nth_element. but
not quite the same. Suppose, for example, you didn't need to identify the 20 highest-
quality Widgets. Instead, you needed to identify all the Widgets with a quality rating
of 1 or 2. You could, of course, son the vector by quality and then search for the first

 113

one with a quality rating worse than 2. That would identify the beginning of a range of
poor-quality Widgets.

A full son can be a lot of work, however, and that much work is not necessary tor this
job. A better strategy is to use the partition algorithm, which reorders element in a
range so that all elements satisfying a panicular criterion are at the beginning of the
range.

For example, to move all the Widgets with a quality rating of 2 or better to the front of
widgets, we define a function that identifies which Widgets make the grade.

bool hasAcceptableQuality(const Widget& w)
{

// return whether w has a quality rating of 2 or better;
}

then pass that function to partition:

vector<Widget>::iterator goodEnd = // move all widgets satisfying

partition(widgets.begin(), // hasAcceptableQuality to
widgets.end(), // the front of widgets, and
hasAcceptableQuality); // return an iterator to the first

// widget that isn't satisfactory

After this call, the range from widgets.begin() to goodEnd holds all the Widgets with a
quality of 1 or 2, and the range from goodEnd to widgets.end() contains all the
Widgets with lower quality ratings. If it were important to maintain the relative
positions of Widgets with equivalent quality levels during the partitioning, we'd
naturally reach for stable_partition instead of partition.

The algorithms sort, stable_sort, partial_sort, and nth_element require random access
iterators, so they may be applied only to vectors, strings, deques, and arrays. It makes
no sense to sort elements in standard associative containers, because such containers
use their comparison functions to remain sorted at all times. The only container where
we might like to use sort, stable_sort, partial_sort, or nth_element, but can't, is list, and
list compensates somewhat by offering its sort member function. (Interestingly,
list::sort performs a stable sort.) If you want to sort a list, then, you can, but if you
want to use partial_sort, or nth_element on the objects in a list, you have to do it
indirectly. One indirect approach is to copy the elements into a container with random
access iterators, then apply the desired algorithm to that. Another is to create a
container of list::iterators, use the algorithm on that container, then access the list
elements via the iterators. A third is to use the information in an ordered container of
iterators to iteratively splice the list's elements into the positions you'd like them to be
in. As you can see, there are lots of options.

 114

partition and stable_partition differ from sort. stable_sort, partial_sort, and
nth_element in requiring only bidirectional iterators. You can therefore use partition
and stable_partition with any of the standard sequence containers.

Let's summarize your sorting options.

� If you need to perform a full sort on a vector, string, deque, or array, you can
use sort or stable_sort.

� If you have a vector, string, deque, or array and you need to put only the top n
elements in order, partial_sort is available.

� If you have a vector, string, deque, or array and you need to identify the
element at position n or you need to identify the top n elements without putting
them in order. nth_element is at your beck and call.

� If you need to separate the elements of a standard sequence container or an
array into those that do and do not satisfy some criterion, you're probably
looking for partition or stable_partition.

� If your data is in a list, you can use partition and stable_partition directly, and
you can use list-sort in place of sort and stable_sort. If you need the effects
offered by partial_sort or nth_element, you'll have to approach the task
indirectly, but there are a number of options, as I sketched above.

In addition, you can keep things sorted at all times by storing your data in a standard
associative container. You might also consider the standard non-STL container
priority_queue, which also keeps its elements ordered all the time. (priority_queue is
traditionally considered part of the STL, but, as I noted in the Introduction, my
definition of "the STL" requires that STL containers support iterators, and
priority_queue doesn't do iterators.)

"But what about performance?", you wonder. Excellent question. Broadly speaking,
algorithms that do more work take longer to do it. and algorithms that must sort stably
take longer than algorithms that can ignore stability. We can order the algorithms
we've discussed in this Item as follows, with algorithms that tend to use fewer
resources (time and space) listed before those that require more:

1. partition 4. partial_sort

2. stable_partition 5. sort

3. nth_element 6. stable_sort

My advice on choosing among the sorting algorithms is to make your selection based
on what you need to accomplish, not on performance considerations. If you choose an
algorithm that does only what you need to do (e.g., a partition instead of a full sort),

 115

you're likely to end up with code that's not only the clearest expression of what you
want to do. it's also the most efficient way to accomplish it using the STL.

Item 32. Follow remove-like algorithms by erase if you really want to
remove something.

I begin this Item with a review of remove, because remove is the most confusing
algorithm in the STL. Misunderstanding remove is easy, and it's important to dispel all
doubt about what remove does, why it does it. and how it goes about doing it.

Here is the declaration for remove:

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,

 const T& value);

Like all algorithms, remove receives a pair of iterators identifying the range of
elements over which it should operate. It does not receive a container, so remove
doesn't know which container holds the elements it's looking at. Furthermore, it's not
possible for remove to discover that container, because there is no way to go from an
iterator to the container corresponding to that iterator.

Think for a moment about how one eliminates elements from a container. The only
way to do it is to call a member function on that container, almost always some form
of erase, (list has a couple of member functions that eliminate elements and are not
named erase, but they're still member functions.) Because the only way to eliminate an
element from a container is to invoke a member function on that container, and
because remove cannot know the container holding the elements on which it is
operating, it is not possible for remove to eliminate elements from a container. That
explains the otherwise baffling observation that removeing elements from a container
never changes the number of elements in the container:

vector<int> v; // create a vector<int> and fill it with
v.reserve(10); //the values 1-10. (See Item 14 for an
for (int i = 1; i <= 10; ++i) { //explanation of the reserve call.)

v.push_back(i);
}
cout << v.size(); //prints 10
v[3] = v[5] = v[9] = 99; // set 3 elements to 99
remove(v.begin(), v.end(), 99); // remove all elements with value 99
cout << v.size(); // still prints 10!

To make sense of this example, memorize the following:

remove doesn't "really" remove anything, because it can't.

Repetition is good for you:

 116

remove doesn't "really" remove anything, because it can't.

remove doesn't know the container it's supposed to remove things from, and without
that container, there's no way for it to call the member functions that are necessary if
one is to "really" remove something.

That explains what remove doesn't do, and it explains why it doesn't do it. What we
need to review now is what remove does do.

Very briefly, remove moves elements in the range it's given until all the "unremoved"
elements are at the front of the range (in the same relative order they were in
originally). It returns an iterator pointing one past the last "unremoved" element. This
return value is the "new logical end" of the range.

In terms of our example, this is what v looks like prior to calling remove.

and if we store remove's return value in a new iterator called newEnd.

vector<int>::iterator newEnd(remove(v.begin(), v.end(), 99) ;

this is what v looks like after the call:

Here I've used question marks to indicate the values of elements that have been
conceptually removed from v but continue to exist.

It seems logical that if the "unremoved" elements are in v between v.begin() and
newEnd, the "removed" elements must be between new-End and v.end(). This is nor
the case! The "removed" values aren't necessarily in v any longer at all. remove
doesn't change the order of the elements in a range so that all the "removed" ones are
at the end, it arranges for all the "unremoved" values to be at the beginning. Though
the Standard doesn't require it, the elements beyond the new logical end of the range
typically retain their old values. After calling remove, v looks like this in every
implementation I know:

 117

As you can see, two of the "99" values that used to exist in v are no longer there, while
one "99" remains. In general, after calling remove, the values removed from the range
may or may not continue to exist in the range. Most people find this surprising, but
why? You asked remove to get rid of some values, so it did. You didn't ask it to put the
removed values in a special place where you could get at them later, so it didn't.
What's the problem? (If you don't want to lose any values, you should probably be
calling partition instead of remove, partition is described in Item 31.)

remove's behavior sounds spiteful, but it's simply a fallout of the way the algorithm
operates. Internally, remove walks down the range, overwriting values that are to be
"removed" with later values that are to be retained. The overwriting is accomplished
by making assignments to the elements holding the values to be overwritten.

You can think of remove as performing a kind of compaction, where the values to be
removed play the role of holes that are filled during compaction. For our vector v. it
plays out as follows.

1. remove examines v[0], sees that its value isn't supposed to be removed, and
moves on to v[l]. It does the same for v[1] and v[2].

2. It sees that v[3] should be removed, so it notes that v[3]'s value may be
overwritten, and it moves on to v[4]. This is akin to noting that v[3] is a "hole"
that needs to be filled.

3. It sees that v[4]'s value should be retained, so it assigns v[4] to v[3], notes that
v[4] may now be overwritten, and moves on to v[5]. Continuing the compaction
analogy, it "fills" v[3] with v[4] and notes that v[4] is now a hole.

4. It finds that v[5] should be removed, so it ignores it and moves on to v[6]. It
continues to remember that v[4] is a hole waiting to be filled.

5. It sees that v[6] is a value that should be kept, so it assigns v[6] to v[4].
remembers that v[5] is now the next hole to be filled, and moves on to v[7].

6. In a manner analogous to the above, it examines v[7], v[8] and v[9]. It assigns
v[7] to v[5] and v[8] to v[6], ignoring v[9], because the value at v[9] is to be
removed.

7. It returns an iterator indicating the next element to be overwritten, in this case
the element at v[7].

You can envision the values moving around in v as follows:

 118

As Item 33 explains, the fact that remove overwrites some of the values it is removing
has important repercussions when those values are pointers. For this Item, however,
it's enough to understand that remove doesn't eliminate any elements from a container,
because it can't. Only container member functions can eliminate container elements,
and that's the whole point of this Item: You should follow remove by erase if you
really want to remove something.

The elements you want to erase are easy to identify. They're the elements of the
original range that start at the "new logical end" of the range and continue until the real
end of the range. To get rid of these elements, all you need to do is call the range form
of erase (see Item 5) with these two iterators. Because remove itself conveniently
returns the iterator for the new logical end of the range, the call is straightforward:

vector<int> v; // as before
v.erase(remove(v.begin(), v.end(), 99), v.end()); // really remove all

// elements with value 99
cout << v.size(); //now returns 7

Passing remove's return value as the first argument to the range form of erase is so
common, it's idiomatic. In fact, remove and erase are so closely allied, the two are
merged in the list member function remove. This is the only function in the STL
named remove that eliminates elements from a container:

list<int> li; //create a list

//put some values into it
li.remove(99); // eliminate all elements with value 99:

// this really removes elements, so li s
// size may change

Frankly, calling this function remove is an inconsistency in the STL. The analogous
function in the associative containers is called erase, and list's remove should be called
erase, too. It's not, however, so we all have to get used to it. The world in which we
frolic may not be the best of all possible worlds, but it is the one we've got. (On the
plus side. Item 44 points out, that, for lists, calling the remove member function is
more efficient than applying the erase-remove idiom.)

Once you understand that remove can't "really" remove things from a container, using
it in conjunction with erase becomes second nature. The only other thing you need to
bear in mind is that remove isn't the only algorithm for which this is the case. There
are two other "remove-like" algorithms: remove_if and unique.

The similarity between remove and remove_if is so straightforward. I won't dwell on
it, but unique also behaves like remove. It is asked to remove things (adjacent repeated
values) from a range without having access to the container holding the range's
elements. As a result, you must also pair calls to unique with calls to erase if you really
want to remove elements from a container, unique is also analogous to remove in its
interaction with list. Just as list::remove really removes things (and does so more

 119

efficiently than the erase-remove idiom). list::unique really removes adjacent
duplicates (also with greater efficiency than would erase-unique).

Item 33. Be wary of remove-like algorithms on containers of
pointers.

So you conjure up a bunch of dynamically allocated Widgets, each of which may be
certified, and you store the resulting pointers in a vector:

class Widget{
public:
 …

bool isCertified() const; // whether the Widget is certified
…

};
vector<Widget*> v; // create a vector and fill it with
… //pointers to dynamically
v.push_back(new Widget); // allocated Widgets

Alter working with v for a while, you decide to get rid of the uncertified Widgets,
because you don't need them any longer. Bearing in mind Item 43's admonition to
prefer algorithm calls to explicit loops and having read Item 32's discourse on the
relationship between remove and erase, your thoughts naturally turn to the erase-
remove idiom, though in this case it's remove_if you employ:

v.erase(remove_if(v.begin(), v.end(), // erase ptrs to

not1(mem_fun(&Widget::isCertified))), // uncertified
v.end()); //Widgets; see

 // Item 41 for
 // info on
 //mem_fun.

Suddenly you begin to worry about the call to erase, because you dimly recall Item 7's
discussion of how destroying a pointer in a container fails to delete what the pointer
points to. This is a legitimate worry, but in this case, it comes too late. By the time
erase is called, there's an excellent chance you have already leaked resources. Worry
about erase, yes, but first, worry about remove_if.

Let's assume that prior to the remove_if call, v looks like this, where I've indicated the
uncertified Widgets.

 120

After the call to remove_if, v will typically look like this (including the iterator
returned from remove_if):

If this transformation makes no sense, kindly turn to Item 32, because it explains
exactly what happens when remove — or, in this case, remove_if — is called.

The reason for the resource leak should now be apparent. The "removed" pointers to
Widgets B and C have been overwritten by later "unremoved" pointers in the vector.
Nothing points to the two uncertified Widgets, they can never be deleted, and their
memory and other resources are leaked.

Once both remove_if and erase have returned, the situations looks as follows:

This makes the resource leak especially obvious, and it should now be clear why you
should try to avoid using remove and similar algorithms (i.e., remove_if and unique)
on containers of dynamically allocated pointers. In many cases, you'll find that the
partition algorithm (see Item 31) is a reasonable alternative.

If you can't avoid using remove on such containers, one way to eliminate this problem
is to delete the pointers and set them to null prior to applying the erase-remove idiom,
then eliminate all the null pointers in the container:

 121

void delAndNullifyUncertified(Widget*& pWidget) // if *pWidget is an
{ // uncertified Widget,

if (!pWidget->isCertified()) { // delete the pointer
delete pWidget; //and set it to null pWidget
= 0;

}
}

for_each(v.begin(), v.end(), //delete and set to

 delAndNullifyUncertified); // null all ptrs to
// uncertified widgets

v.erase(remove(v.begin(), v.end(), // eliminate null ptrs

static_cast<Widget*>(0)), // from v; 0 must be
 v.end()); //cast to a ptr so C++

// correctly deduces
// the type of
// remove's 3rd param

Of course, this assumes that the vector doesn't hold any null pointers you'd like to
retain. If it does, you'll probably have to write your own loop that erases pointers as
you go. Erasing elements from a container as you traverse that container has some
subtle aspects to it, so be sure to read Item 9 before considering that approach.

If you're willing to replace the container of pointers with a container of smart pointers
that perform reference counting, the remove-related difficulties wash away, and you
can use the erase-remove idiom directly:

template<typename T> // RCSP = "Reference Counting
class RCSP { ...}; // Smart Pointer"

typedef RCSP< Widget> RCSPW; // RCSPW = "RCSP to Widget"

vector<RCSPW > v; // create a vector and fill it with
… //smart pointers to dynamically
v.push_back(RCSPW(new Widget)); // allocated Widgets
…
v.erase(remove_if(v.begin(), v.end(), // erase the ptrs

not1 (mem_fun(&Widget::isCertified))), // to uncertified
 v.end()); // Widgets; no

//resources are
//leaked

For this to work, it must be possible to implicitly convert your smart pointer type (e.g.,
RCSP<Widget>) to the corresponding built-in pointer type (e.g., Widget*). That's
because the container holds smart pointers, but the member function being called (e.g..

 122

Widget::isCertified) insists on built-in pointers. If no implicit conversion exists, your
compilers will squawk.

If you don't happen to have a reference counting smart pointer template in your
programming toolbox, you owe it to yourself to check out the shared_ptr template in
the Boost library. For an introduction to Boost, take a look at Item 50.

Regardless of how you choose to deal with containers of dynamically allocated
pointers, be it by reference counting smart pointers, manual deletion and nullification
of pointers prior to invoking a remove-like algorithm, or some technique of your own
invention, the guidance of this Item remains the same: Be wary of remove-like
algorithms on containers of pointers. Failure to heed this advice is just asking for
resource leaks.

Item 34. Note which algorithms expect sorted ranges.

Not all algorithms are applicable to all ranges. For example, remove (see Items 32 and
33) requires forward iterators and the ability to make assignments through those
iterators. As a result, it can't be applied to ranges demarcated by input iterators, nor to
maps or multimaps, nor to some implementations of set and multiset (see Item 22).
Similarly, many of the sorting algorithms (see Item 31) demand random access
iterators, so it's not possible to invoke these algorithms on the elements of a list.

If you violate these kinds of rules, your code won't compile, an event likely to be
heralded by lengthy and incomprehensible error messages (see Item 49). Other
algorithm preconditions, however, are more subtle. Among these, perhaps the most
common is that some algorithms require ranges of sorted values. It's important that
you adhere to this requirement whenever it applies, because violating it leads not to
compiler diagnostics, but to undefined runtime behavior.

A few algorithms can work with sorted or unsorted ranges, but they are most useful
when they operate on sorted ranges. You should understand how these algorithms
work, because that will explain why sorted ranges suit them best.

Some of you, I know, are into brute-force memorization, so here's a list of the
algorithms that require the data on which they operate to be sorted:

binary_search lower_bound

upper_bound equal_range

set_union Set_intersection

set_difference set_symmetric_difference

Merge inplace_merge

includes

In addition, the following algorithms are typically used with sorted ranges, though they
don't require them:

unique unique_copy

 123

We'll see shortly that the definition of "sorted" has an important constraint, but first, let
me try to make sense of this collection of algorithms. It's easier to remember which
algorithms work with sorted ranges if you understand why such ranges are needed.

The search algorithms binary_search, lower_bound, upper_bound, and equal_range
(see Item 45) require sorted ranges, because they look for values using binary search.
Like the C library's bsearch, these algorithms promise logarithmic-time lookups, but in
exchange, you must give them values that have already been put into order.

Actually, it's not quite true that these algorithms promise logarithmic-time lookup.
They guarantee such performance only when they are passed random access iterators.
If they're given less powerful iterators

(such as bidirectional iterators), they still perform only a logarithmic number of
comparisons, but they run in linear time. That's because, lacking the ability to perform
"iterator arithmetic." they need linear time to move from place to place in the range
being searched.

The quartet of algorithms set_union, set_intersection, set_difference, and
set_symmetric_difference offer linear-time performance of the set-theoretical
operations their names suggest. Why do they demand sorted ranges? Because without
them, they couldn't do their work in linear time. If you're beginning to detect a trend
suggesting that algorithms requiring sorted ranges do so in order to offer better
performance than they'd be able to guarantee for ranges that might not be sorted,
you're right. Stay tuned. The trend will continue.

merge and inplace_merge perform what is in effect a single pass of the mergesort
algorithm: they read two sorted ranges and produce a new sorted range containing all
the elements from both source ranges. They run in linear time, something they couldn't
do if they didn't know that the source ranges were already sorted.

The final algorithm that requires sorted source ranges is includes. It's used to
determine whether all the objects in one range are also in another range. Because
includes may assume that both its ranees art-sorted, it promises linear-time
performance. Without that guarantee, it would generally run slower.

Unlike the algorithms we've just discussed, unique and unique_copy offer well-defined
behavior even on unsorted ranges. But look at how the Standard describes unique's
behavior (the italics are mine):

Eliminates all but the first element from every consecutive group of equal
elements.

In other words, if you want unique to eliminate all duplicates from a range (i.e., to
make all values in the range "unique"), you must first make sure that all duplicate
values are next to one another. And guess what? That's one of the things sorting does.
In practice, unique is usually employed to eliminate all duplicate values from a range,
so you'll almost always want to make sure that the range you pass unique (or

 124

unique_copy) is sorted. (Unix developers will recognize a striking similarity between
STL's unique and Unix's uniq, a similarity I suspect is anything but coincidental.)

Incidentally, unique eliminates elements from a range the same way remove does,
which is to say that it only "sort of eliminates them. If you aren't sure what this means,
please turn to Items 32 and 33 immediately. It is not possible to overemphasize the
importance of understanding what remove and remove-like algorithms (including
unique) do. Having a basic comprehension is not sufficient. If you don't know what
they do, you will get into trouble.

Which brings me to the fine print regarding what it means for a range to be sorted.
Because the STL allows you to specify comparison functions to be used during
sorting, different ranges may be sorted in different ways. Given two ranges of ints, for
example, one might be sorted the default way (i.e., in ascending order) while the other
is sorted using greater<int>, hence in descending order. Given two ranges of Widgets,
one might be sorted by price and another might be sorted by age. With so many
different ways to sort things, it's critical that you give the STL consistent sorting-
related information to work with. If you pass a sorted range to an algorithm that also
takes a comparison function, be sure that the comparison function you pass behaves
the same as the one you used to sort the range.

Here's an example of what you do not want to do:

vector<int> v; //create a vector, put some
… //data into it, sort it into
sort(v.begin(), v.end(), greater<int>()); // descending order

… //work with the vector

// (without changing it)
bool a5Exists = // search for a 5 in the vector,
binary_search(v.begin(), v.end(), 5); // assuming it's sorted in

//ascending order!

By default, binary_search assumes that the range it's searching is sorted by "<" (i.e.,
the values are in ascending order), but in this example, the vector is sorted in
descending order. You should not be surprised to learn that you get undefined results
when you invoke binary_search (or lower_bound, etc.) on a range of values that is
sorted in a different order from what the algorithm expects.

To get the code to behave correctly, you must tell binary_search to use the same
comparison function that sort did:

bool a5Exists = //search for a 5
binary_search(v.begin(), v.end(), 5. greater<int>()); //using greater as

 //the comparison
 //function

 125

All the algorithms that require sorted ranges (i.e., all the algorithms in this Item except
unique and unique_copy) determine whether two values are "the same" by using
equivalence, just like the standard associative containers (which are themselves
sorted). In contrast, the default way in which unique and unique_copy determine
whether two objects are "the same" is by using equality, though you can override this
default by passing these algorithms a predicate defining an alternative definition of
"the same." For a detailed discussion of the difference between equivalence and
equality, consult Item 19.

The eleven algorithms that require sorted ranges do so in order to offer greater
efficiency than would otherwise be possible. As long as you remember to pass them
only sorted ranges, and as long as you make sure that the comparison function used by
the algorithms is consistent with the one used to do the sorting, you'll revel in trouble-
free search, set, and merge operations, plus you'll find that unique and unique_copy
eliminate all duplicate values, as you almost certainly want them to.

Item 35. Implement simple case-insensitive string comparisons via
mismatch or lexicographical compare.

One of the most frequently asked questions by STL newbies is "How-do I use the STL
to perform case-insensitive string comparisons?" This is a deceptively simple question.
Case-insensitive string comparisons are either really easy or really hard, depending on
how general you want to be. If you're willing to ignore internationalization issues and
restrict your concern to the kinds of strings strcmp is designed for, the task is easy. If
you want to be able to handle strings of characters in languages where strcmp wouldn't
apply (i.e.. strings holding text in just about any language except English) or where
programs use a locale other than the default, the task is very hard.

In this Item, I'll tackle the easy version of the problem, because that suffices to
demonstrate how the STL can be brought to bear. (A harder version of the problem
involves no more of the STL. Rather, it involves locale-dependent issues you can read
about in Appendix A.) To make the easy problem somewhat more challenging, I'll
tackle it twice. Programmers desiring case-insensitive string comparisons often need
two different calling interfaces, one similar to strcmp (which returns a negative
number, zero, or a positive number), the other akin to operators (which returns true or
false). I'll therefore show how to implement both calling interfaces using STL
algorithms.

First, however, we need a way to determine whether two characters are the same,
except for their case. When internationalization issues are taken into account, this is a
complicated problem. The following character-comparing (unction is a simplistic
solution, but it's akin to

the strcmp approach to string comparison, and since in this Item I consider only strings
where a strcmp-like approach is appropriate, internationalization issues don't count,
and this function will do:

 126

int ciCharCompare(char c1, char c2) // case-insensitively compare chars
{ // c1 and c2, returning -1 if c1 < c2,

//0 if c1==c2, and 1 if c1 > c2
int Ic1 = tolower(static_cast<unsigned char>(c1)); //see below for
int Ic2 = tolower(static_cast<unsigned char>(c2)); // info on these

// statements
if (Ic1 < Ic2) return -1;
if (lc1 > Ic2) return 1;
return 0;

}

This function follows the lead of strcmp in returning a negative number, zero, or a
positive number, depending on the relationship between c1 and c2. Unlike strcmp,
ciCharCompare converts both parameters to lower case before performing the
comparison. That's what makes it a case-insensitive character comparison.

Like many functions in <cctype> (and hence <ctype.h>), tolower's parameter and
return value is of type int. but unless that int is EOF, its value must be representable as
an unsigned char. In both C and C++, char may or may not be signed (it's up to the
implementation), and when char is signed, the only way to ensure that its value is
representable as an unsigned char is to cast it to one before calling tolower. That
explains the casts in the code above. (On implementations where char is already
unsigned, the casts are no-ops.) It also explains the use of int instead of char to store
tolower's return value.

Given ciCharCompare, it's easy to write the first of our two case-insensitive string
comparison functions, the one offering a strcmp-like interface. This function,
ciStringCompare, returns a negative number, zero, or a positive number, depending on
the relationship between the strings being compared. It's built around the mismatch
algorithm, because mismatch identifies the first position in two ranges where the
corresponding values are not the same.

Before we can call mismatch, we have to satisfy its preconditions. In particular, we
have to make sure that if one string is shorter than the other, the shorter string is the
first range passed. We'll therefore farm the real work out to a function called
ciStringCompareImpl and have ciStringCompare simply make sure the arguments are
passed in the correct order, adjusting the return value if the arguments have to be
swapped:

int ciStringCompareImpl(const string& s1, //see below for

const string& s2); // implementation

int ciStringCompare(const string& s1, const string& s2)
{

if (s1.size() <= s2.size()) return ciStringCompareImpl(s1, s2);
else return -ciStringCompareImpl(s2, s1);

}

 127

In ciStringCompareImpl, the heavy lifting is performed by mismatch. It returns a pair
of iterators indicating the locations in the ranges where corresponding characters first
fail to match:

int ciStringCompareImpl(const string& si, const strings s2)
{

typedef pair<string::const_iterator, // PSCI = "pair of
string::const_iterator> PSCI; // string::const_iterator"

PSCI p= mismatch(//see below for an

 s1.begin(), s1.end(), //explanation of why
 s2.begin(), //we need not2;see
 not2(ptr_fun(ciCharCompare))); //Item 41 for why we

// need ptr_fun
if (p.first== s1.end()) { //if true, either s1 and

if (p.second == s2.end()) return 0; // s2 are equal or
else return -1; //s1 is shorter than s2

}

return ciCharCompare(*p.first, *p.second); //the relationship of the

} //strings is the same as
//that of the
//mismatched chars

With any luck, the comments make pretty clear what is going on. Fundamentally, once
you know the first place where the strings differ, it's easy to determine which string, if
either, precedes the other. The only thing that may seem odd is the predicate passed to
mismatch, which is not2(ptr_fun(ciCharCompare)). This predicate is responsible for
returning true when the characters match, because mismatch will stop when the
predicate return false. We can't use ciCharCompare for this purpose, because it returns
-1, 1, or 0, and it returns 0 when the characters match, just like strcmp. If we passed
ciCharCompare as the predicate to mismatch, C++ would convert ciCharCompare's
return type to bool, and of course the bool equivalent of zero is false, precisely the
opposite of what we want! Similarly, when ciCharCompare returned 1 or –1, that
would be interpreted as true, because, as in C, all nonzero integral values are
considered true. Again, this would be the opposite of what we want. To fix this
semantic inversion, we throw a not2 and a ptr_fun in front of ciCharCompare, and we
all live happily ever after.

Our second approach to ciStringCompare yields a conventional STL predicate: such a
function could be used as a comparison function in associative containers. The
implementation is short and sweet, because all we have to do is modify
ciCharCompare to give us a character-comparison function with a predicate interface,

 128

then turn the job of performing a string comparison over to the algorithm with the sec-
ond-longest name in the STL. lexicographical_compare:

bool ciCharLess(char c1, char c2) // return whether c1
{ // precedes c2 in a case-return

// insensitive comparison; tolower(static_cast<unsigned char>(c1)) <
//Item 46 explains why a tolower(static_cast<unsigned char>(c2)); //
function object might

} //be preferable to this
//function

bool ciStringCompare(const string& s1, const string& s2)
{

return lexicographical_compare(s1.begin(), s1.end(), //see below for
s2.begin(), s2.end(), // a discussion of
ciCharLess); //this algorithm

} //call

No, I won't keep you in suspense any longer. The longest algorithm name is
set_symmetric_difference.

If you're familiar with the behavior of lexicographical_compare, the code above is as
clear as clear can be. If you're not, it's probably about as clear as concrete. Fortunately,
it's not hard to replace the concrete with glass.

lexicographical_compare is a generalized version of strcmp. Where strcmp works only
with character arrays, however, lexicographical_compare works with ranges of values
of any type. Also, while strcmp always compares two characters to see if their
relationship is equal, less than, or greater than one another. Lexicographical_compare
may be passed an arbitrary predicate that determines whether two values satisfy a user-
defined criterion.

In the call above, lexicographical_compare is asked to find the first position where s1
and s2 differ, based on the results of calls to ciCharLess. If, using the characters at that
position, ciCharLess returns true, so does lexicographical_compare; if, at the first
position where the characters differ, the character from the first string precedes the
corresponding character from the second string, the first string precedes the second
one. Like strcmp, lexicographical_compare considers two ranges of equal values to be
equal, hence it returns false for such ranges: the first range does not precede the
second. Also like strcmp, if the first range ends before a difference in corresponding
values is found. lexicographical_compare returns true: a prefix precedes any range for
which it is a prefix.

Enough about mismatch and lexicographical_compare. Though I focus on portability
in this book. I would be remiss if I failed to mention that case-insensitive string
comparison functions are widely available as nonstandard extensions to the standard C
library. They typically have names like stricmp or strcmpi, and they typically offer no
more support for internationalization than the functions we've developed in this Item.
If you're willing to sacrifice some portability, you know that your strings never contain

 129

embedded nulls, and you don't care about internationalization, you may find that the
easiest way to implement a case-insensitive string comparison doesn't use the STL at
all. Instead, it converts both strings to const char* pointers (see Item 16) and then uses
stricmp or strcmpi on the pointers:

int ciStringCompare(const string& s1, const string& s2)
{

return stricmp (s1.c_str(),s2.c_str()); //the function name on
} // your system might

//not be stricmp

Some may call this a hack, but stricmp/strcmpi, being optimized to do exactly one
thing, typically run much faster on long strings than do the general-purpose algorithms
mismatch and lexicographical_compare. If that's an important consideration for you,
you may not care that you're trading standard STL algorithms for nonstandard C
functions. Sometimes the most effective way to use the STL is to realize that other
approaches are superior.

Item 36. Understand the proper implementation of copy_if.

One of the more interesting aspects of the STL is that although there are 11 algorithms
with "copy" in their names.

copy copy_backward
replace_copy reverse_copy
replace_copy_if unique_copy
remove_copy rotate_copy
remove_copy_if partial_sort_copy_unintialized_copy
ran

none of them is copy_if. That means you can replace, copy_if, you can
remove_copy_if, you can both copy_backward and reverse_copy, but if you simply
want to copy the elements of a range that satisfy a predicate, you're on your own.

For example, suppose you have a function to determine whether a Widget is defective:

bool isDefective(const Widget& w);

and you'd like to write all the defective Widgets in a vector to cerr. If copy_if existed,
you could simply do this:

vector<Widget> widgets;
…
copy_if(widgets.begin(), widgets.end(), //'this won't compile;

 ostream_iterator<Widget>(cerr, "\n"), // there is no copyif
 isDefective); // in the STL

 130

Ironically, copy_if was part of the original Hewlett Packard STL that formed the basis
for the STL that is now part of the standard C++ library. In one of those quirks that
occasionally makes history interesting, during the process of winnowing the HP STL
into something of a size manageable for standardization, copy_if was one of the things
that got left on the cutting room floor.

In The C++ Programming Language [7J. Stroustrup remarks that it's trivial to write
copy_if, and he's right, but that doesn't mean that it's necessarily easy to come up with
the correct trivia. For example, here's a reasonable-looking copy_if that many people
(including me) have been known to come up with:

template< typename Inputlterator, // a not-quite-right

typename Outputlterator, // implementation of
typename Predicate> // copy_if

Outputlterator copy_if(InputIterator begin,

 Inputlterator end,
 Outputlterator destBegin, Predicate p)

{
return remove_copy_if(begin, end, destBegin, not1(p));

}

This approach is based on the observation that although the STL doesn't let you say
"copy everything where this predicate is true." it does let you say "copy everything
except where this predicate is nor true." To implement copy_if, then, it seems that all
we need to do is throw a not1 in front of the predicate we'd like to pass to copy_if,
then pass the resulting predicate to remove_copy_if. The result is the code above.

If the above reasoning were valid, we could write out our defective Widgets this way:

copy_if(widgets.begin(), widgets.end(), // well-intentioned code

ostream_iterator<Widget>(cerr, "\n"), // that will not compile
isDefective);

Your STL platforms will take a jaundiced view of this code, because it tries to apply
not1 to isDefective. (The application takes place inside copy_if). As Item 41 tries to
make clear, not1 can't be applied directly to a function pointer: the function pointer
must first be passed through ptr_fun. To call this implementation of copy_if, you must
pass not just a function object, but an adaptable function object. That's easy enough to
do, but clients of a would-be STL algorithm shouldn't have to. Standard STL
algorithms never require that their functors be adaptable, and neither should copy_if.
The above implementation is decent, but it's not decent enough.

Here's the correct trivial implementation of copy_if:

template< typename Inputlterator, // a correct

 131

typename Outputlterator, // implementation of
typename Predicate> //copy_if

Outputlterator copy_if(Inputlterator begin,
 Inputlterator end,
 Outputlterator destBegin,
 Predicate p)

{
while (begin != end) {
 if (p(*begin))*destBegin++ = *begin;
 ++begin;
}

return destBegin;

}

Given how useful copy_if is, plus the fact that new STL programmers tend to expect it
to exist anyway, there's a good case to be made for putting copy_if — the correct one!
— into your local STL-related utility library and using it whenever it's appropriate.

Item 37. Use accumulate or for_each to summarize ranges.

Sometimes you need to boil an entire range down to a single number, or, more
generally, a single object. For commonly needed information, special-purpose
algorithms exist to do the jobs, count tells you how

many elements are in a range, for example, while count_if tells you how many
elements satisfy a predicate. The minimum and maximum values in a range are
available via min_element and max_element.

At times, however, you need to summarize a range in some custom manner, and in
those cases, you need something more flexible than count, count_if, min_element, or
max_element. For example, you might want the sum of the lengths of the strings in a
container. You might want the product of a range of numbers. You might want the
average coordinates of a range of points. In each of these cases, you need to
summarize a range, but you need to be able to define the summary you want. Not a
problem. The STL has the algorithm for you. It's called accumulate. You might not be
familiar with accumulate, because, unlike most algorithms, it doesn't live in
<algorithm>. Instead, it's located with three other "numeric algorithms" in <numeric>.
(The three others are inner_product, adjacent_difference, and partial_sum.)

Like many algorithms, accumulate exists in two forms. The form taking a pair of
iterators and an initial value returns the initial value plus the sum of the values in the
range demarcated by the iterators:

list<double> Id; // create a list and put
… // some doubles into it

 132

double sum = accumulate(ld.begin(), Id.end(), 0.0); // calculate their sum,
//starting at 0.0

In this example, note that the initial value is specified as 0.0, not simply 0. That's
important. The type of 0.0 is double, so accumulate internally uses a variable of type
double to store the sum it's computing. Had the call been written like this:

double sum = accumulate(ld.begin(), Id.end(), 0); // calculate their sum,

// starting at 0; this //is
not correct!

the initial value would be the int 0, so accumulate would internally use an int to store
the value it was computing. That int would ultimately become accumulate's return
value, and it would be used to initialize the variable sum. The code would compile and
run, but sum's value would be incorrect. Instead of holding the true sum of a list of
doubles, it would hold the result of adding all the doubles together, but converting the
result to an int after each addition.

accumulate requires only input iterators, so you can use it even with istream_iterators
and istreambuf_iterators (see Item 29):

cout << "The sum of the ints on the standard input is" // print the sum of

 << accumulate(istream_iterator<int>(cin), // the ints in cin
 istream_iterator<int>(),
 0);

It is this default behavior of accumulate that causes it to be labeled a numeric
algorithm. But when accumulate is used in its alternate form. one taking an initial
summary value and an arbitrary summarization function, it becomes much more
general.

As an example, consider how to use accumulate to calculate the sum of the lengths of
the strings in a container. To compute the sum, accumulate needs to know two things.
First, as above, it must know the starting sum. In our case, it is zero. Second, it must
know how to update this sum each time a new string is seen. To do that, we write a
function that takes the sum so far and the new string and returns the updated sum:

string::size_type // see below for info
stringLengthSum(string::size_type sumSoFar, // on string::size_type

const strings s)
{

return sumSoFar + s.size();
}

The body of this function reveals that what is going on is trivial, but you may find
yourself bogged down in the appearances of string::size_type. Don't let that happen.
Every standard STL container has a typedef called size_type that is the container's type

 133

for counting things. This is the type returned by the container's size function, for
example. For all the standard containers, size_type must be size_t. but. in theory,
nonstandard STL-compatible containers might use a different type for size_type
(though I have a hard time imagining why they'd want to). For standard containers,
you can think of Container::size_type as a fancy way of writing size_t.

stringLengthSum is representative of the summarization functions accumulate works
with. It takes a summary value for the range so far as well as the next element of the
range, and it returns the new summary value. In general, that means the function will
take parameters of different types. That's what it does here. The summary so far (the
sum of the lengths of the strings already seen) is of type string::size_type, while the
type of the elements being examined is string. As is typically the case, the return type
here is the same as that of the function's first parameter, because it's the updated
summary value (the one taking the latest element into account).

We can use stringLengthSum with accumulate like this:
set<string> ss; // create container of strings,
… // and populate it
string::size_type lengthSum = // set lengthSum to the result

accumulate(ss.begin(), ss.end() //of calling StringLengthSum on
 0 stringLengthSum); // each element in ss, using 0

// as the initial summary value

Nifty, huh? Calculating the product of a range of numbers is even easier, because we
don't have to write our own summation function. We can use the standard multiplies
functor class:

vector<float> vf; // create container of floats
… //and populate it
float product = // set product to the result of
accumulate(vf.begin(), vf.end(), //calling multiplies<float> on

 1.0, multiplies<float>(// each element in vf, using 1.0
// as the initial summary value

The only tricky thing here is remembering to use one (as a floating point numbers, not
as an int!) as the initial summary value instead of zero. If we used zero as the starting
value, the result would always be zero, because zero times anything is zero, right?

Our final example is a bit more ambitious. It involves finding the average of a range of
points, where a point looks like this:

struct Point {

Point(double initX, double initY): x(initX), y(initY) {}
double x, y;

};

 134

The summation function will be an object of a functor class called PointAverage, but
before we look at PointAverage, let's look at its use in the call to accumulate:

list<Point> Ip;
…
Point avg = //average the points in Ip

accumulate(lp.begin(), lp.end(),
Point(0, 0), PointAverage()) ;

Simple and straightforward, the way we like it. In this case, the initial summary value
is a Point object located at the origin, and all we need to remember is not to take that
point into account when computing the average of the range.

PointAverage works by keeping track of the number of points it has seen, as well as
the sum of their x and y components. Each time it is called, it updates these values and
returns the average coordinates of the points so far examined, because it is called
exactly once for each point in the range, it divides the x and y sums by the number of
points in the range: the initial point value passed to accumulate is ignored, as it should
be:

class PointAverage:

public binary_function<Point, Point, Point> { // see Item 40
public:

PointAverage(): xSum(0), ySum(0), numPoints(0) {}

const Point operator()(const Point& avgSoFar, const Point& p) {
++numPoints;
xSum += p.x;
ySum += p.y;
return Point(xSum/numPoints, ySum/numPoints);

}
private:

size_t numPoints;
double xSum;
double ySum;

};

This works fine, and it is only because I sometimes associate with an inordinately
demented group of people (many of them on the Standardization Committee) that I can
envision STL implementations where it could fail. Nevertheless. PointAverage runs
afoul of paragraph 2 of section 26.4.1 of the Standard, which, as I'm sure you recall,
forbids side effects in the function passed to accumulate. Modification of the member
variables numPoints, xSum, and ySum constitutes a side effect, so, technically
speaking, the code I've just shown you yields undefined results. In practice, it's hard to
imagine it not working, but I'm surrounded by menacing language lawyers as I write
this, so I've no choice but to spell out the fine print on this matter.

 135

That's okay, because it gives me a chance to mention for_each. another algorithm that
can be used to summarize ranges and one that isn't constrained by the restrictions
imposed on accumulate. Like accumulate, for_each takes a range and a function
(typically a function object) to invoke on each element of the range, but the function
passed to for_each receives only a single argument (the current range element), and
for_each returns its function when it's done. (Actually, it returns a copy of its function
— see Item 38.1 Significantly, the function passed to (and later returned from)
for_each may have side effects.

Ignoring the side effects issue, for each differs from accumulate in two primary ways.
First, the name accumulate suggests an algorithm that produces a summary of a range,
for each sounds like you simply want to do something to even; element of a range,
and. of course, that is the algorithm's primary application. Using for_each to
summarize a range is legitimate, but it's not as clear as accumulate.

Second, accumulate returns the summary we want directly, while for_each returns a
function object, and we must extract the summary information we want from this
object. In C++ terms, that means we must add a member function to the functor class
to let us retrieve the summary information we're after.

Here's the last example again, this time using for_each instead of accumulate:

struct Point {...); // as before

class PointAverage:

public unary_function<Point, void> { // see Item 40
public:

PointAverage(): xSum(0), ySum(0), numPoints(0) {}

void operator()(const Point& p)
{

++numPoints;
xSum += p.x;
ySum += p.y;

}

Point result() const
{

return Point(xSum/numPoints, ySum/numPoints);
 }
private:

size_t numPoints;
double xSum;
double ySum;

};
list<Point> Ip;

 136

…
Point avg = for_each(lp.begin(), lp.end(), PointAverage()).result ;

Personally, I prefer accumulate for summarizing, because I think it most clearly
expresses what is going on, but for_each works, too, and the issue of side effects
doesn't dog for_each as it does accumulate. Both algorithms can be used to summarize
ranges. Use the one that suits you best.

You may be wondering why for_each's function parameter is allowed to have side
effects while accumulate's is not. This is a probing question, one that strikes at the
heart of the STL. Alas, gentle reader, there are some mysteries meant to remain
beyond our ken. Why the difference between accumulate and for_each? I've vet to hear
a convincing explanation.

 137

Functors, Functor Classes, Functions, etc.

Like it or not, functions and function-like objects — functors — pervade the STL.
Associative containers use them to keep their elements in order, algorithms such as
find_if use them to control their behavior, components like for_each and transform are
meaningless without them, and adapters like not1 and bind2nd actively produce them.

Yes, everywhere you look in the STL, you see functors and functor classes. Including
in your source code. It's not possible to make effective use of the STL without
knowing how to write well-behaved functors. That being the case, most of this chapter
is devoted to explaining how to make your functors behave the way the STL expects
them to. One Item, however, is devoted to a different topic, one sure to appeal to those
who've wondered about the need to litter their code with ptr_fun, mem_fun, and
mem_fun_ref. Start with that Item (Item 41), if you like, but please don't stop there.
Once you understand those functions, you'll need the information in the remaining
Items to ensure that your functors work properly with them, as well as with the rest of
the STL.

Item 38. Design functor classes for pass-by-value.

Neither C nor C++ allows you to truly pass functions as parameters to other functions.
Instead, you must pass pointers to functions. For example, here's a declaration for the
standard library function qsort:

void qsort(void *base, size_t nmemb, size_t size,
 int (*cmpfcn)(const void*, const void*));

Item 46 explains why the sort algorithm is typically a better choice than the qsort
function, but that's not at issue here. What is at issue is the declaration for qsort's
parameter cmpfcn. Once you've squinted past all the asterisks, it becomes clear that the
argument passed as cmpfcn, which is a pointer to a function, is copied (i.e.. passed by
value) from the call site to qsort. This is representative of the rule followed by the
standard libraries for both C and C++, namely, that function pointers are passed by
value.

STL function objects are modeled after function pointers, so the convention in the STL
is that function objects, too, are passed by value (i.e.. copied) when passed to and from
functions. This is perhaps best demonstrated by the Standard's declaration of for_each.
an algorithm which both takes and returns a function object by value:

template<class Inputlterator,

class Function>
Function //note return-by-value
for_each(Inputlterator first,

Inputlterator last,
Function f); // note pass-by-value

 138

In truth, the pass-by-value case is not quite this iron-clad, because for_each's caller
could explicitly specify the parameter types at the point of the call. For example, the
following would cause for_each to pass and return its functor by reference:

class DoSomething:

public unary_function<int, void> { // Item 40 explains base class
void operator()(int x) {...}
…

};

typedef deque<int>::iterator DequeIntIter; //convenience typedef
deque<int> di;
…
DoSomething d: // create a function object
…
for_each<DequeIntIter, // call for_each with type

DoSomething&>(di.begin(), // parameters of DequeIntIter
di.end(), //and DoSomething&;
d); //this forces d to be

 // passed and returned
 // by reference

Users of the STL almost never do this kind of thing, however, and some
implementations of some STL algorithms won't even compile if function objects are
passed by reference. For the remainder of this Item, I'm going to pretend that function
objects are always passed by value. In practice, that's virtually always true.

Because function objects are passed and returned by value, the onus is on you to make
sure that your function objects behave well when passed that way (i.e., copied). This
implies two things. First, your function objects need to be small. Otherwise they will
be too expensive to copy. Second, your function objects must be monomorphic (i.e.,
not polymorphic) — they must not use virtual functions. That's because derived class
objects passed by value into parameters of base class type suffer from the slicing
problem: during the copy, their derived parts are removed. (For another example of
how the slicing problem affects your use of the STL, see Item 3.)

Efficiency is important, of course, and so is avoiding the slicing" problem, but not all
functors are small, and not all are monomorphic, either. One of the advantages of
function objects over real functions is that functors can contain as much state as you
need. Some function objects are naturally hefty, and it's important to be able to pass
such functors to STL algorithms with the same ease as we pass their anorexic
counterparts.

The prohibition on polymorphic functors is equally unrealistic. C++ supports
inheritance hierarchies and dynamic binding, and these features are as useful when
designing functor classes as anyplace else. Functor classes without inheritance would

 139

be like, well, like C++ without the "++". Surely there's a way to let function objects be
big and/or polymorphic, yet still allow them to mesh with the pass-functors-by-value
convention that pervades the STL.

There is. Take the data and/or the polymorphism you'd like to put in your functor
class, and move it into a different class. Then give your functor class a pointer to this
new class. For example, if you'd like to create a polymorphic functor class containing
lot of data.

template<typename T>
class BPFC: // BPFC = " Big Polymorphic

public // Functor Class"
unary_function<T, void> { // Item 40 explains this

// base class
private:

Widget w; // this class has lots of data,
Int x; //so it would be inefficient
… //to pass it by value

public:
virtual void operator()(const T& val) const; // this is a virtual function,
… //so slicing would be bad

};

create a small, monomorphic class that contains a pointer to an implementation class,
and put all the data and virtual functions in the implementation class:

template<typename T> //new implementation class
class BPFCImpl{ //for modified BPFC
private:

Widget w; // all the data that used to
int x; //be in BPFC are now here
…
virtual ~BPFCImpl(); //polymorphic classes need

//virtual destructors

virtual void operator()(const T& val) const;
friend class BPFC<T>; // let BPFC access the data
};

template<typename T>
class BPFC: // small, monomorphic

public unary_function<T, void> { // version of BPFC
private:

BPFCImpl<T> *pImpl; //this is BPFC’s only data
public:

 140

void operator()(const T& val) const //this is now nonvirtual;
{ //it forwards to BPFCImpl

pImpl->operator() (val);
 }
…
}

The implementation of BPFC::operator() exemplifies how all BPFC would-be virtual
functions are implemented: they call their truly virtual counterparts in BPFCImpl. The
result is a functor class (BPFC) that's small and monomorphic, yet has access to a
large amount of state and acts polymorphically.

I'm glossing over a fair number of details here, because the basic technique I've
sketched is well known in C++ circles. Effective C++ treats it in Item 34. In Design
Patterns by Gamma et al. [6], this is called the "Bridge Pattern." Sutter calls this the
"Pimpl Idiom" in his Exceptional C++[8].

From an STL point of view, the primary thing to keep in mind is that functor classes
using this technique must support copying in a reasonable fashion. If you were the
author of BPFC above, you'd have to make sure that its copy constructor did
something reasonable about the BPFCImpl object it points to. Perhaps the simplest
reasonable thing would be to reference count it. using something like Boost's
shared_ptr, which you can read about in Item 50.

In fact, for purposes of this Item, the only thing you'd have to worry about would be
the behavior of BPFC's copy constructor, because function objects arc always copied
— passed by value, remember? — when passed to or returned from functions in the
STL. That means two things. Make them small, and make them monomorphic.

Item 39. Make predicates pure functions.

I hate to do this to you, but we have to start with a short vocabulary lesson.

� A predicate is a function that returns bool (or something that can be implicitly
converted to bool). Predicates are widely used in the STL. The comparison
functions for the standard associative containers are predicates, and predicate
functions are commonly passed as parameters to algorithms like find_if and the
various sorting algorithms. (For an overview of the sorting algorithms, turn to
Item 31.)

� A pure function is a function whose return value depends only on its
parameters. If f is a pure function and x and y are objects, the return value of
f(x, y) can change only if the value of x or y changes.

In C++, all data consulted by pure functions are either passed in as parameters
or are constant for the life of the function. (Naturally, such constant data should
be declared const.) If a pure function consulted data that might change between
calls, invoking the function at different times with the same parameters might

 141

yield different results, and that would be contrary to the definition of a pure
function.

That should be enough to make it clear what it means to make predicates pure
functions. All I have to do now is convince you that the advice is well founded. To
help me do that, I hope you'll forgive me for burdening you with one more term.

� A predicate class is a functor class whose operator() function is a predicate, i.e.,
its operator() returns true or false. As you might expect, any place the STL
expects a predicate, it will accept either a real predicate or an object of a
predicate class.

That’s it. I promise! Now we're ready to study why this Item offers guidance worth
following.

Item 38 explains that function objects are passed by value, so you should design
function objects to be copied. For function objects that are predicates, there is another
reason to design them to behave well when they are copied. Algorithms may make
copies of functors and hold on to them a while before using them, and some algorithm
implementations take advantage of this freedom. A critical repercussion of this
observation is that predicate functions must be pure functions.

To appreciate why this is the case, let's suppose you were to violate this constraint.
Consider the following (badly designed) predicate class. Regardless of the arguments
that are passed, it returns true exactly once: the third time it is called. The rest of the
time it returns false.

class BadPredicate: // see Item 40 for info
public unary_function<Widget, bool> { // on the base class
public:

BadPredicate(): timesCalled(0) {} // init timesCalled to 0
bool operator()(const Widget&)
{

return ++timesCalled == 3;
}

private:
size_t timesCalled;

};

Suppose we use this class to eliminate the third Widget from a vector<Widget>:

vector<Widget> vw; // create vector and put some

//Widgets into it
vw.erase(remove_if(vw.begin(), // eliminate the third Widget;

vw.end(), // see Item 32 for info on how
BadPredicate()), //erase and remove_if relate

 vw.end());

 142

This code looks quite reasonable, but with many STL implementations, it will
eliminate not just the third element from vw, it will also eliminate the sixth!

To understand how this can happen, it's helpful to see how remove_if is often
implemented. Bear in mind that remove_if does not have to be implemented this way.

template <typename Fwdlterator, typename Predicate>
Fwdlterator remove_if(Fwdlterator begin, Fwdlterator end, Predicate p)
{

begin = find_if(begin, end, p);
if (begin == end) return begin;
else {

Fwdlterator next = begin;
return remove_copy_if(++next, end. begin, p);

 }
}

The details of this code are not important, but note that the predicate p is passed first to
find_if, then later to remove_copy_if. In both cases, of course, p is passed by value —
is copied — into those algorithms. (Technically, this need not be true, but practically,
it is true. For details, see Item 38.)

The initial call to remove_if (the one in the client code that wants to eliminate the third
element from vw) creates an anonymous BadPredicate object, one with its internal
timesCalled member set to zero. This object (known as p inside remove_if) is then
copied into find_if, so find_if also receives a BadPredicate object with a timesCalled
value of 0. find_if "calls" that object until it returns true, so it calls it three times,
find_if then returns control to remove_if. Remove_if continues to execute and
ultimately calls remove_copy_if, passing as a predicate another copy of p. But p's
timesCalled member is still 0! Find_if never called p. it called only a copy of p. As a
result, the third time remove_copy_if calls its predicate, it, too, will return true. And
that's why remove_if will ultimately remove two Widgets from vw instead of just one.

The easiest way to keep yourself from tumbling into this linguistic crevasse is to
declare your operator() functions const in predicate classes. If you do that, your
compilers won't let you change any class data members:

class BadPredicate:

public unary_function<Widget, bool> {
public:

bool operator()(const Widget&) const
{

return ++timesCalled == 3; // error! can't change local data
} //in a const member function

}

 143

Because this is such a straightforward way of preventing the problem we just
examined. I very nearly entitled this Item "Make operator() const in predicate classes."
But that doesn't go far enough. Even const member functions may access mutable data
members, non-const local static objects, non-const class static objects, non-const
objects at namespace scope, and non-const global objects. A well-designed predicate
class ensures that its operator() functions are independent of those kinds of objects,
too. Declaring operator() const in predicate classes is necessary for correct behavior,
but it's not sufficient. A well-behaved operator() is certainly const, but it's more than
that. It's also a pure function.

Earlier in this Item, I remarked that any place the STL expects a predicate function, it
will accept either a real function or an object of a predicate class. That's true in both
directions. Any place the STL will accept an object of a predicate class, a predicate
function (possibly modified by ptr_fun — see Item 41) is equally welcome. We now
understand that operator!) functions in predicate classes should be pure functions, so
this restriction extends to predicate functions, too. This function is as bad a predicate
as the objects generated from the Bad-Predicate class:

bool anotherBadPredicate(const Widget&, const Widget&)
{

static int timesCalled = 0; //No! No! No! No! No! No! No!
return ++timesCalled == 3; // Predicates should be pure functions,

} //and pure functions have no state

Regardless of how you write your predicates, they should always be pure functions.

Item 40. Make functor classes adaptable.

Suppose I have a list of Widget* pointers and a function to determine whether such a
pointer identifies a Widget that is interesting:

list<Widget*> widgetPtrs;
bool islnteresting(const Widget *pw);

If I'd like to find the first pointer to an interesting Widget in the list, it'd be easy:

list<Widget*>::iterator i = find_if(widgetPtrs.begin(), widgetPtrs.end(),

islnteresting);
if (i != widgetPtrs.end()) {

… // process the first
} // interesting

// pointer-to-widget

If I'd like to find the first pointer to a Widget, that is not interesting, however, the
obvious approach fails to compile:

list<Widget*>::iterator i =

 144

find_if(widgetPtrs.begin(), widgetPtrs.end(),
 not1(islnteresting)); //error! won't compile

Instead, I must apply ptr_fun to islnteresting before applying not1:

list<Widget*>::iterator i =

find_if(widgetPtrs.begin(), widgetPtrs.end(),
not1(ptr_func(islnteresting))); //fine

if (i != widgetPtrs.end()) {
… //process the first

} //dull ptr-to-Widget

That leads to some questions. Why do I have to apply ptr_fun to islnteresting before
applying not1? What does ptr_fun do for me, and how does it make the above work?

The answer is somewhat surprising. The only thing ptr_fun does is make some
typedefs available. That's it. These typedefs are required by not1, and that's why
applying not1 to ptr_fun works, but applying not1 to islnteresting directly doesn't
work. Being a lowly function pointer, islnteresting lacks the typedefs that not1
demands.

Not1 isn't the only component in the STL making such demands. Each of the four
standard function adapters (not1, not2, bind1st, and bind2nd) requires the existence of
certain typedefs, as do any non-standard STL-compatible adapters written by others
(e.g., those available from SGI and Boost — see Item 50). Function objects that
provide the necessary typedefs are said to be adaptable, while function objects lacking
these typedefs are not adaptable. Adaptable function objects can be used in more
contexts than can function objects that are not adaptable, so you should make your
function objects adaptable whenever you can. It costs you nothing, and it may buy
clients of your functor classes a world of convenience.

I know. I know. I'm being coy, constantly referring to "certain typedefs" without
telling you what they are. The typedefs in question are argument_type,
first_argument_type, second_argument_type, and result_type, but it's not quite that
straightforward, because different kinds of functor classes are expected to provide
different subsets of these names. In all honesty, unless you're writing your own
adapters (a topic not covered in this book), you don't need to know anything about
these typedefs. That's because the conventional way to provide them is to inherit them
from a base class, or. more precisely, a base struct. For functor classes whose
operator() takes one argument, the struct to inherit from is std::unary_function. For
functor classes whose operator() takes two arguments, the struct to inherit from is
std::binary_function.

Well, sort of. unary_function and binary_function are templates, so you can't inherit
from them directly. Instead, you must inherit from structs they generate, and that
requires that you specify some type arguments. For unary_function, you must specify

 145

the type of parameter taken by your functor class s operated), as well as its return type.
For binary_function, you specify three types: the types of your operator's first and
second parameters, and your operator's return type.

Here are a couple of examples:

template<typename T>
class MeetsThreshold: public std::unary_function<Widget, bool>{
private:

const T threshold;
public:

MeetsThreshold(const T& threshold);
bool operator()(const Widget&) const;
…

};

struct WidgetNameCompare:

std::binary_function<Widget, Widget, bool>{
bool operator()(const Widget& lhs, const Widget& rhs) const;

};

In both cases, notice how the types passed to unary_function or binary_function are
the same as the types taken and returned by the functor class's operator!), though it is a
bit of an oddity that operator's return type is passed as the last argument to
unary_function or binary_function.

You may have noticed that MeetsThreshold is a class, while WidgetNameCompare is
a struct. MeetsThreshold has internal state (its threshold data member), and a class is
the logical way to encapsulate such information. WidgetNameCompare has no state,
hence no need to make anything private. Authors of functor classes where everything
is public often declare structs instead of classes, probably for no other reason than to
avoid typing "public" in front of the base class and the operator() function. Whether to
declare such functors as classes or structs is purely a matter of personal style. If you're
still refining your personal style and would like to emulate the pros, note that stateless
functor classes within the STL itself (e.g.. less<T>. plus<T>. etc.) are generally
written as structs. Look again at WidgetNameCompare:

struct WidgetNameCompare:

std::binary_function<Widget, Widget, bool> {
bool operator()(cost Widget& lhs, const Widget& rhs) const;

}

Even though operator's arguments are of type const Widget&, the type passed to
binary_function is Widget. In general, non-pointer types passed to unary_function or
binary_function have consts and references stripped off. (Don't ask why. The reasons

 146

are neither terribly good nor terribly interesting. If you're dying to know anyway, write
some programs where you don't strip them off, then dissect the resulting compiler
diagnostics. If, having done that, you're still interested in the matter, visit boost.org
(see Item 50) and check out their work on call traits and function object adapters.)

The rules change when operator() takes pointer parameters. Here's a struct analogous
to WidgetNameCompare, but this one works with Widget* pointers:

struct PtrWidgetNameCompare:

std::binary_function<const Widget*, const Widget*, bool> {
bool operator()(const Widget* lhs, const Widget" rhs) const;

}

Here, the types passed to binary_function are the same as the types taken by
operator(). The general rule for functor classes taking or returning pointers is to pass to
unary_function or binary_function whatever types operator)) takes or returns.

Let's not forget the fundamental reason for all this unary_function and binary_function
base class gobbledegook. These classes supply typedefs that are required by function
object adapters, so inheritance from those classes yields adaptable function objects.
That lets us do things like this:

list<Widget> widgets;
…
list<Widget>::reverse_iterator i1 = //find the last widget

find_if(widgets.rbegin(), widgets.rend(), // that fails to meet the
 not1(MeetsThreshold<int>(10))); //threshold of 10

 // (whatever that means)
Widget w(constructor arguments);
list<Widget>::iterator i2 = // find the first widget

find_if(widgets.begin(), widgets.end(), //that precedes w in the
bind2nd(WidgetNameCompare(), w); //sort order defined by

 //WidgetNameCompare

Had we failed to have our functor classes inherit from unary_function or
binary_function, neither of these examples would compile, because not1 and bind2nd
both work only with adaptable function objects.

STL function objects are modeled on C++ functions, and a C++ function has only one
set of parameter types and one return type. As a result, the STL implicitly assumes that
each functor class has only one operator() function, and it's the parameter and return
types for this function that should be passed to unary_function or binary_function (in
accord with the rules for reference and pointer types we just discussed). This means
that, tempting though it might be, you shouldn't try to combine the functionality of
WidgetNameCompare and PtrWidgetNameCompare by creating a single struct with
two operator() functions. If you did, the functor would be adaptable with respect to at
most one of its calling forms (whichever one you used when passing parameters to

 147

binary_function), and a functor that's adaptable only half the time might just as well
not be adaptable at all.

Sometimes it makes sense to give a functor class multiple invocation forms (thereby
abandoning adaptability), and Items 7, 20, 23, and 25 give examples of situations
where that is the case. Such functor classes are the exception, however, not the rule.
Adaptability is important, and you should strive to facilitate it each time you write a
functor class.

Item 41. Understand the reasons for ptr_fun, mem_fun, and
mem_fun_ref.

What is it with this ptr_fun/mem_fun/mem_fun_ref stuff? Sometimes you have to use
these functions, sometimes you don't, and what do they do, anyway? They just seem to
sit there, pointlessly hanging around function names like ill-fitting garments. They're
unpleasant to type, annoying to read, and resistant to comprehension. Are these things
additional examples of STL artifacts (such as the ones described in Items 10 and 18).
or just some syntactic joke foisted on us by members of a Standardization Committee
with too much free time and a twisted sense of humor?

Calm yourself. The names are less than inspired, but ptr_fun, mem_fun, and
mem_fun_ref do important jobs, and as far as syntactic-jokes go, one of the primary
tasks of these functions is to paper over one of C++'s inherent syntactic
inconsistencies.

If I have a function f and an object x, I wish to invoke f on x. and I'm outside x's
member functions. C++ gives me three different syntaxes for making the call:

f(x); //Syntax #1: when f is a non-member function
x.f(); //Syntax #2: when f is a member

//function and x is an object or
//a reference to an object

p->f(); //syntax #3: when f is a member
//function and p is a pointer to x

Now, suppose I have a function that can test Widgets.

void test(Widget& w); // test w and mark it as "failed" if

 // it doesn't pass the test

and I have a container of Widgets:

vector<Widget> vw; // vw holds widgets

To test every Widget in vw, I can use for_each in the obvious manner:

for_each(vw.begin(), vw.end(), test); // Call #1 (compiles)

 148

But imagine that test is a member function of Widget instead of a non-member
function, i.e., that Widget supports self-testing:

class Widget {
public:

void test(); // perform a self-test; mark *this
//as "failed" if it doesn't pass

};

in a perfect world. I'd also be able to use for_each to invoke Widget::test on each
object in vw:

for_each(vw.begin(), vw.end(),
&Widget::test); // Call #2 (won't compile)

In fact, if the world were really perfect. I'd be able to use for_each to invoke
Widget::test on a container of Widget* pointers, too:

list<Widget*> Ipw; // lpw holds pointers to widgets
for_each(lpw.begin(), Ipw.end(),

&Widget::test); //Call #3 (also won't compile)

But think of what would have to happen in this perfect world. Inside the for_each
function in Call #1, we'd be calling a non-member function with an object, so we'd
have to use Syntax #1. Inside the for_each function in Call #2, we'd have to use Syntax
#2, because we'd have an object and a member function. And inside the for_each
function in Call #3, we'd need to use Syntax #3, because we'd be dealing with a mem-
ber function and a pointer to an object. We'd therefore need three different versions of
for_each, and how perfect would that world be?

In the world we do have, we possess only one version of for_each. It's not hard to
envision an implementation:

template<typename Inputlterator, typename Function>
Function for_each(Inputlterator begin, Inputlterator end, Function f)
{

while (begin != end) f(*begin++);
}

Here I've highlighted the fact that for_each uses Syntax #1 when making the call. This
is a universal convention in the STL: functions and function objects are always
invoked using the syntactic form for non-member functions. This explains why Call #1
compiles while Calls *2 and #3 don't. It's because STL algorithms (including for_each)
hardwire in Syntax #1, and only Call #1 is compatible with that syntax.

Perhaps it's now clear why mem_fun and mem_fun_ref exist. They arrange for
member functions (which must ordinarily be called using Syntax #2 or #3) to be called
using Syntax # 1.

 149

The way mem_fun and mem_fun_ref do this is simple, though it's a little clearer if you
take a look at a declaration for one of these functions. They're really function
templates, and several variants of the mem_fun and mem_fun_ref templates exist,
corresponding to different numbers of parameters and the constness (or lack thereof)
of the member functions they adapt. Seeing one declaration is enough to understand
how things are put together:

template<typename R, typename C> // declaration for mem_fun for
mem_fun_t<R,C> // non-const member functions
mem_fun(R (C::*pmf)()); // taking no parameters. C is the

 //class, R is the return type of the
 // pointed-to member function

mem_fun takes a pointer to a member function, pmf, and returns an object of type
mem_fun_t. This is a functor class that holds the member function pointer and offers
an operator)) that invokes the pointed-to member function on the object passed to
operator)). For example, in this code,

list<Widget*> Ipw; //same as above
…
for_each(lpw.begin(), Ipw.end(),

mem_fun(&Widget::test)); // this will now compile

for_each receives an object of type mem_fun_t holding a pointer to Widget::test. For
each Widget* pointer in lpw, for_each "calls" the mem_fun_t object using Syntax #1,
and that object immediately invokes Widget::test on the Widget* pointer using Syntax
#3.

Overall, mem_fun adapts Syntax #3, which is what Widget::test requires when used
with a Widget* pointer, to Syntax # 1, which is what for_each uses. It's thus no
wonder that classes like mem_fun_t are known as function object adapters. It should
not surprise you to learn that, completely analogously with the above, the
mem_fun_ref functions adapt Syntax #2 to Syntax #1 and generate adapter objects, of
type mem_fun_ref_t.

The objects produced by mem_fun and mem_fun_ref do more than allow STL
components to assume that all functions are called using a single syntax. They also
provide important typedefs, just like the objects produced by ptr_fun. The story behind
these typedefs is told in Item 40, so I won't repeat it here. However, this puts us in a
position to understand why this call compiles.

for_each(vw.begin(), vw.end(), test); //as above, Call #1;

 //this compiles

while these do not:

 150

for_each(vw.begin(), vw.end(), &Widget::test); // as above, Call #2;
//doesn't compile

for_each(lpw.begin(), Ipw.end(), &Widget::test); // as above, Call #3;
//doesn't compile

The first call (Call #1) passes a real function, so there's no need to adapt its calling
syntax for use by for_each: the algorithm will inherently call it using the proper
syntax. Furthermore, for_each makes no use of the typedefs that ptr_fun adds, so it's
not necessary to use ptr_fun when passing test to for_each. On the other hand, adding
the typedefs can't hurt anything, so this will do the same thing as the call above:

for_each(vw.begin(), vw.end(), ptr_fun(test)); // compiles and behaves

 //like Call #1 above

If you get confused about when to use ptr_fun and when not to, consider using it every
time you pass a function to an STL component. The STL won't care, and there is no
runtime penalty. About the worst that can be said is that some people reading your
code might raise an eyebrow when they see an unnecessary use of ptr_fun. How much
that bothers you depends. I suppose, on your sensitivity to raised eyebrows.

An alternative strategy with respect to ptr_fun is to use it only when you're forced to.
If you omit it when the typedefs are necessary, your compilers will balk at your code.
Then you'll have go back and add it.

The situation with mem_fun and mem_fun_ref is fundamentally different. You must
employ them whenever you pass a member function to an STL component, because, in
addition to adding typedefs (which may or may not be necessary), they adapt the
calling syntaxes from the ones normally used with member functions to the one used
even-where in the STL. If you don't use them when passing member function pointers,
your code will never compile.

Which leaves just the names of the member function adapters, and here, finally, we
have a genuine historical STL artifact. When the need for these kinds of adapters first
became apparent, the people working on the STL focused on containers of pointers.
(Given the drawbacks of such containers described in Items 7. 20. and 33. this might
seem surprising, but remember that containers of pointers support polymorphism,
while containers of objects do not.) They needed an adapter for member functions, so
they chose mem_fun. Only later did they realize that they needed a different adapter
for containers of objects, so they hacked up the name mem_fun_ref for that. No. it's
not very elegant, but these things happen. Tell me you've never given any of your
components a name that you later realized was, er, difficult to generalize... .

Item 42. Make sure less<T> means operator<

As all Widget-savvy people are aware. Widgets have both a weight and a maximum
speed:

 151

class Widget {
public:
 …

size_t weight() const;
size_t maxSpeed() const;
…

}

Also well known is that the natural way to sort Widgets is by weight. operator< for
Widgets reflects this:

bool operator<(const Widget& lhs, const Widget& rhs)
{

return Ihs.weight() < rhs.weight();
)

But suppose we'd like to create a multiset<Widget> where the Widgets are sorted by
maximum speed. We know that the default comparison function for multiset<Widget>
is less<Widget>, and we know that less<Widget>, by default, does its work by calling
operator< for Widgets. That being the case, it seems clear that one way to get a
multiset<Widget> sorted by maximum speed is to sever the tie between less<Widget>
and operator< by specializing less<Widget> to look only at a Widget's maximum
speed:

template<> //This is a specialization
struct std::less<Widget>: // of std::less for Widget;

public //it's also a very bad idea
std::binary_function< Widget,

 Widget //See Item 40 for info
 bool> { //on this base class

bool operator()(const Widget& lhs, const Widget& rhs) const
{

return lhs.maxSpeed() < rhs.maxSpeed();
 }
};

This both looks ill-advised and is ill-advised, but it may not be ill-advised for the
reason you think. Does it surprise you that it compiles at all? Many programmers point
out that the above isn't just a specialization of a template, it's a specialization of a
template in the std namespace. "Isn't std supposed to be sacred, reserved for library
implementers and beyond the reach of mere programmers?" they ask. "Shouldn't
compilers reject this attempt to tamper with the workings of the C++ immortals?" they
wonder.

 152

As a general rule, trying to modify components in std is indeed forbidden (and doing
so typically transports one to the realm of undefined behavior), but under some
circumstances, tinkering is allowed. Specifically, programmers are allowed to
specialize templates in std for user-defined types. Almost always, there are alternatives
that are superior to specializing std templates, but on rare occasions, it's a reasonable
thing to do. For instance, authors of smart pointer classes often want their classes to
act like built-in pointers for sorting purposes, so it's not uncommon to see
specializations of std::less for smart pointer types. The following, for example, is part
of the Boost library's shared_ptr. a smart pointer you can read about in Items 7 and 50:

namespace std {

template<typename T> // this is a spec, of std::less
struct less< boost::shared_ptr<T> >: // for boost::shared_ptr<T>

public // (boost is a namespace
binary function<boost::shared_ptr<T>,

 boost::shared_ptr<T>, // this is the customary
 bool> { //base class (see Item 40.

bool operator()(const boost::shared_ptr<T>& a,
 const boost::shared_ptr<T>& b) const

{
return less<T*>()(a.get(),b.get()); // shared_ptr::get returns

} //the built-in pointer that s
 // in the shared_ptr object

};
}

This isn't unreasonable, and it certainly serves up no surprises, because this
specialization of less merely ensures that sorting smart pointers behaves the same as
sorting their built-in brethren. Alas, our tentative specialization of less for Widget does
serve up surprises.

C++ programmers can be forgiven certain assumptions. They assume that copy
constructors copy, for example. (As Item 8 attests, failure to adhere to this convention
can lead to astonishing behavior.) They assume that taking the address of an object
yields a pointer to that object. (Turn to Item 18 to read about what can happen when
this isn't true.) They assume that adapters like bind1st and not2 may be applied to
function objects. (Item 40 explains how things break when this isn't the case.) They
assume that operator+ adds (except for strings, but there's a long history of using "+"
to mean string concatenation), that operator- subtracts, that operator== compares. And
they assume that using less is tantamount to using operators operator< is more than
just the default way to implement less, it's what programmers expect less to do.
Having less do something other than call operator< is a gratuitous violation of
programmers' expectations. It runs contrary to what has been called "the principle of
least astonishment." It's callous. It's mean. It's bad. You shouldn't do it. Especially
when there's no reason to. There's not a place in the STL using less where you can't

 153

specify a different comparison type instead. Returning to our original example of a
multiset<Widget> ordered by maximum speed, all we need to do to get what we want
is create a functor class called almost anything except less that performs the
comparison we're interested in. Why, here's one now:

struct MaxSpeedCompare:

public binary_function<Widget, Widget, bool> {

bool operator()(const Widget& lhs, const Widget& rhs) const
{

return lhs.maxSpeed() < rhs.maxSpeed();
 }
};

To create our multiset, we use MaxSpeedCompare as the comparison type, thus
avoiding use of the default comparison type (which is. of course. less<Widget>):

multiset<Widget, MaxSpeedCompare> widgets;

This code says exactly what it means. It creates a multiset of Widgets sorted as defined
by the functor class MaxSpeedCompare.

Contrast that until this:

multiset<Widget> widgets;

This says that widgets is a multiset of Widgets sorted in the default manner.
Technically, that means it uses less<Widget>, but virtually everybody is going to
assume that really means it's sorted by operator<.

Don't mislead all those programmers by playing games with the definition of less. If
you use less (explicitly or implicitly), make sure it means operators If you want to sort
objects using some other criterion, create a special functor class that's not called less.
It's really as simple as that.

 154

Programming with the STL

It's traditional to summarize the STL as consisting of containers, iterators, algorithms,
and function objects, but programming with the STL is much more than that.
Programming with the STL is knowing when to use loops, when to use algorithms, and
when to use container member functions. It's knowing when equal_range is a better
way to search than lower_bound, knowing when lower_bound is preferable to find,
and knowing when find beats equal_range. It's knowing how to improve algorithm
performance by substituting functors for functions that do the same thing. It's knowing
how to avoid unportable or incomprehensible code. It's even knowing how to read
compiler error messages that run to thousands of characters. And it's knowing about
Internet resources for STL documentation, STL extensions, even complete STL
implementations.

Yes, programming with the STL involves knowing many things. This chapter gives
you much of the knowledge you need.

Item 43. Prefer algorithm calls to hand-written loops.

Even' algorithm takes at least one pair of iterators that specify a range of objects over
which to do something. min_element finds the smallest value in the range, for
example, while accumulate summarizes some information about the range as a whole
(see Item 37) and partition separates all the elements of a range into those that do and
do not satisfy some criterion (see Item 31). For algorithms to do their work, they must
examine every object in the range(s) they are passed, and they do this in the way you'd
expect: they loop from the beginning of the range(s) to the end. Some algorithms, such
as find and find_if, may return before they complete the traversal, but even these
algorithms internally contain a loop. After all, even find and find_if must look at every
element of a range before they can conclude that what they are looking for is not
present.

Internally, then, algorithms are loops. Furthermore, the breadth of STL algorithms
means that many tasks you might naturally code as loops could also be written using
algorithms. For example, if you have a Widget class that supports redrawing.

class Widget {
public:
 …

void redraw() const;
…

};

and you'd like to redraw all the Widgets in a list, you could do it with a loop, like this,

list<Widget> Iw;

 155

…
for (list<Widget>::iterator i = Iw.begin(); i != Iw.end(); ++i) {

i->redraw();
}

but you could also do it with the for_each algorithm:

for_each(Iw.begin(), Iw.end() // see Item 41 for info

mem_fun_ref(&Widget::redraw)); //on mem_fun_ref

For many C++ programmers, writing the loop is more natural than calling the
algorithm, and reading the loop is more comfortable than making sense of
mem_fun_ref and the taking of Widget::redraw's address. Yet this Item argues that the
algorithm call is preferable. In fact, this Item argues that calling an algorithm is usually
preferable to any hand-written loop. Why?

There are three reasons:

� Efficiency: Algorithms are often more efficient than the loops programmers
produce.

� Correctness: Writing loops is more subject to errors than is calling algorithms.

� Maintainability: Algorithm calls often yield code that is clearer and more
straightforward than the corresponding explicit loops.

The remainder of this Item lays out the case for algorithms.

From an efficiency perspective, algorithms can beat explicit loops in three ways, two
major, one minor. The minor way involves the elimination of redundant computations.
Look again at the loop we just saw:

for (list<Widget>::iterator i = lw.begin(); i != lw.end(); ++ i){
 i->redraw();
}

I've highlighted the loop termination test to emphasize that each time around the loop,
i will be checked against lw.end(). That means that each time around the loop, the
function list-end will be invoked. But we don't need to call end more than once,
because we're not modifying the list. A single call to end would suffice, and. if we
look again at the algorithm invocation, we'll see that that's exactly how many times
end is evaluated:

for_each(Iw.begin(), Iw.end(), // this call evaluates

mem_fun_ref(&Widget::redraw)); // Iw.end() exactly once

To be fair, STL implementers understand that begin and end (and similar functions,
such as size) are used frequently, so they're likely to design them for maximal

 156

efficiency. They'll almost certainly inline them and strive to code them so that most
compilers will be able to avoid repeated computations by hoisting their results out of
loops like the one above. Experience shows that implementers don't always succeed,
however, and when they don't, the avoidance of repeated computations is enough to
give the algorithm a performance edge over the hand-written loop.

But that's the minor efficiency argument. The first major argument is that library
implementers can take advantage of their knowledge of container implementations to
optimize traversals in a way that no library user ever could. For example, the objects in
a deque are typically stored (internally) in one or more fixed-size arrays. Pointer-based
traversals of these arrays are faster than iterator-based traversals. but only library
implementers can use pointer-based traversals, because only they know the size of the
internal arrays and how to move from one array to the next. Some STLs contain
algorithm implementations that take their deque's internal data structures into account,
and such implementations have been known to clock in at more than 20% faster than
the "normal" implementations of the algorithms.

The point is not that STL implementations are optimized for deques (or any other
specific container type), but that implementers know more about their implementations
than you do, and they can take advantage of this knowledge in algorithm
implementations. If you shun algorithm calls in favor of your own loops, you forgo the
opportunity to benefit from any implementation-specific optimizations they may have
provided.

The second major efficiency argument is that all but the most trivial STL algorithms
use computer science algorithms that are more sophisticated — sometimes much more
sophisticated — than anything the average C++ programmer will be able to come up
with. It's next to impossible to beat sort or its kin (see Item 31): the search algorithms
for sorted ranges (see Items 34 and 45) are equally good: and even such mundane tasks
as eliminating some objects from contiguous-memory containers are more efficiently
accomplished using the erase-remove idiom than the loops most programmers come
up with (see Item 9).

If the efficiency argument for algorithms doesn't persuade you, perhaps you're more
amenable to a plea based on correctness. One of the trickier things about writing your
own loops is making sure you use only iterators that (a) are valid and (b) point where
you want them to. For example, suppose you have an array (presumably due to a
legacy C API — see Item 16), and you'd like to take each array element, add 41 to it,
then insert it into the front of a deque. Writing your own loop, you might come up with
this (which is a variant on an example from Item 16):

// C API: this function takes a pointer to an array of at most arraySize
//doubles and writes data to it. It returns the number of doubles written.

size_t fillArray(double *pArray, size_t arraySize);
double data[maxNumDoubles]; // create local array of

// max possible size

 157

deque<double> d; // create deque, put
… // data into it
size_t numDoubles =

fillArray(data, maxNumDoubles); // get array data from API

for (size_t i = 0; i < numDoubles; ++i) { // for each i in data,
d.insert(d.begin(), data[i] + 41); // insert data[i]+41 at the

} // front of d; this code
// has a bug!

This works, as long as you're happy with a result where the newly inserted elements
are in the reverse order of the corresponding elements in data. Because each insertion,
location is d.begin(), the last element inserted will go at the front of the deque!

If that's not what you wanted (and admit it. it's not), you might think to fix it like this:

deque<double>::iterator insertLocation = d.begin(); // remember d's

// begin iterator
for (size_t i = 0; i < numDoubles; ++I){ // insert data[i]+41

d.insert(insertLocation ++, data[u] + 41); //at insertLocation, then
} //increment

// insertLocation; this
// code is also buggy!

This looks like a double win, because it not only increments the iterator specifying the
insertion position, it also eliminates the need to call begin each time around the loop:
that eliminates the minor efficiency hit we discussed earlier. Alas, this approach runs
into a different problem: it yields undefined results. Each time deque-insert is called, it
invalidates all iterators into the deque, and that includes insertLocation. After the first
call to insert, insertLocation is invalidated, and subsequent loop iterations are allowed
to head straight to looneyland.

Once you puzzle this out (possibly with the aid of STLport's debug mode, which is
described in Item 50). you might come up with the following:

deque<double>::iterator insertLocation =

d.begin(); //as before
for (size_t i = 0; i < numDoubles; ++i) { // update insertLocation

insertLocation = // each time insert is
d.insert(insertLocation, data[i] + 41); // called to keep the

++insertLocation; // iterator valid, then
} // increment it

This code finally does what you want, but think about how much work it took to get
here! Compare that to the following call to transform:

 158

transform(data, data + numDoubles, // copy all elements
inserter(d, d.begin()), // from data to the front
 bind2nd(plus<int>(), 41)); //of d, adding 41 to each

The "bind2nd(plus<int>0,41)" might take you a couple of minutes to get right
(especially if you don't use STL's binders very often), but the only iterator-related
worries you have are specifying the beginning and end of the source range (which was
never a problem) and being sure to use inserter as the beginning of the destination
range (see Item 30). In practice, figuring out the correct initial iterators for source and
destination ranges is usually easy, or at least a lot easier than making sure the body of
a loop doesn't inadvertently invalidate an iterator you need to keep using.

This example is representative of a broad class of loops that are difficult to write
correctly, because you have to be on constant alert for iterators that are incorrectly
manipulated or are invalidated before you're done using them. To see a different
example of how inadvertent iterator invalidation can lead to trouble, turn to Item 9.
which describes the subtleties involved in writing loops that call erase.

Given that using invalidated iterators leads to undefined behavior, and given that
undefined behavior has a nasty habit of failing to show itself during development and
testing, why run the risk if you don't have to? Turn the iterators over to the algorithms,
and let them worry, about the vagaries of iterator manipulation.

I've explained why algorithms can be more efficient than hand-written loops, and I've
described why such loops must navigate a thicket of iterator-related difficulties that
algorithms avoid. With luck, you are now an algorithm believer. Yet luck is fickle, and
I'd prefer a more secure conviction before 1 rest my case. Let us therefore move on to
the issue of code clarity. In the long run, the best software is the clearest software, the
software that is easiest to understand, the software that can most readily be enhanced,
maintained, and molded to fit new circumstances. The familiarity of loops
notwithstanding, algorithms have an advantage in this long-term competition.

The key to their edge is the power of a known vocabulary. There are 70 algorithm
names in the STL — a total of over 100 different function templates, once overloading
is taken into account. Each of those algorithms carries out some well-defined task, and
it is reasonable to expect professional C++ programmers to know (or be able to look
up! what each does. Thus, when a programmer sees a transform call, that programmer
recognizes that some function is being applied to every object in a range, and the
results of those calls are being written somewhere. When the programmer sees a call to
replace_if, he or she knows that all the objects in a range that satisfy some predicate
are being modified. When the programmer comes across an invocation of partition, she
or he understands that the objects in a range are being moved around so that all the
objects satisfying a predicate are grouped together (see Item 31). The names of STL
algorithms convey a lot of semantic information, and that makes them clearer than any
random loop can hope to be.

When you see a for, while, or do, all you know is that some kind of loop is coming up.
To acquire even the faintest idea of what that loop does, you have to examine it. Not

 159

so with algorithms. Once you see a call to an algorithm, the name alone sketches the
outline of what it does. To understand exactly what will happen, of course, you must
inspect the arguments being passed to the algorithm, but that's often less work than
trying to divine the intent of a general looping construct.. Simply put, algorithm names
suggest what they do. "for." "while." and "do" don't. In fact, this is true of any
component of the standard C or C++ library. Without doubt, you could write your own
implementations of strlen, memset, or bsearch, if you wanted to, but you don't. Why

not? Because (1) somebody has already written them, so there's no point in your doing
it again; (2) the names are standard, so everybody knows what they do; and (3) you
suspect that your library implementer knows some efficiency tricks you don't know,
and you're unwilling to give up the possible optimizations a skilled library
implementer might provide. Just as you don't write your own versions of strlen et al. it
makes no sense to write loops that duplicate functionality already present in STL
algorithms.

I wish that were the end of the story, because I think it's a strong finish. Alas, this is a
tale that refuses to go gentle into that good night.

Algorithm names are more meaningful than bare loops, it's true, but specifying what to
do during an iteration can be clearer using a loop than using an algorithm. For
example, suppose you'd like to identify the first element in a vector whose value is
greater than some x and less than some y. Here's how you could do it using a loop:

vector<int> v;
int x, y;
vector<int>::iterator i = v.begin(); // iterate from v.begin() until an
for(; i != v.end(); ++i) { // appropriate value is found or

if (*i > x && *i < y) break; // v.end() is reached
}
… //i now points to the value or is

 // the same as v.end()

It is possible to pass this same logic to find_if, but it requires that you use a
nonstandard function object adapter like SGI's compose2 (see Item 50):

vector<int> iterator i =

find_if(v.begin(), v.end(), //find the first value val
 compose2(logical_and<bool>(), // where the "and" of

 bind2nd(greater<int>(), x), // val > x and
 bind2nd(less<int>(), y))); // val < y II is true

Even if this didn't use nonstandard components, many programmers would object that
it's nowhere near as clear as the loop, and I have to admit to being sympathetic to that
view (see Item 47).

 160

The find_if call can be made less imposing by moving the test logic into a separate
functor class.

template<typename T>
class BetweenValues:
 public unary_function<T, bool> { //see Item 40
public:
 BetweenValues(const T& lowValue,
 Const T& highValue) //have the ctor save
 :lowVal(lowValue), highVal(highValue) //values to be between
 {}

 bool operator()(const T& val) const //return whether
 { //val is between the
 return val > lowVal && val < highVal; //saved values
 }

private:
 T lowVal;
 T highVal;
};
…
vector<int> iterator i = find_if(v.begin(), v.end(),
 BetweenValues<int>(x, y));

but this has its own drawbacks. First, creating the BetweenValues template is a lot
more work than writing the loop body. Just count the lines. Loop body: one;
BetweenValues template: fourteen. Not a very good ratio. Second, the details of what
find_if is looking for are now physically separate from the call. To really understand
the call to find_if, one must look up the definition of BetweenValues, but
BetweenValues must be defined outside the function containing the call to find_if. If
you try to declare BetweenValues inside the function containing the call to find_if, like
this,

{ //begin of the function
 …
 template<typename T>
 class BetweenValues : public unary_function<T, bool> {…};

vector<int>::iterator i = find_if(v.begin(), v.end(),
 BetweenValues<int>(x, y));

 …
} //end of function

 161

you'll discover that it won't compile, because templates can't be declared inside
functions. If you try to avoid that restriction by making BetweenValues a class instead
of a template,

{ //begin of the function
 …
 class BetweenValues : public unary_function<T, bool> {…};

vector<int>::iterator i = find_if(v.begin(), v.end(),
 BetweenValues<int>(x, y));

 …
} //end of function

you'll find that you're still out of luck, because classes defined inside functions are
known as local classes, and local class types can't be bound to template type
arguments (such as the type of the functor taken by find_if). Sad as it may seem,
functor classes and functor class templates are not allowed to be defined inside
functions, no matter how convenient it would be to be able to do it. In the ongoing
tussle between algorithm calls and hand-written loops, the bottom line on code clarity
is that it all depends on what you need to do inside the loop. If you need to do
something an algorithm already does, or if you need to do something very similar to
what an algorithm does, the algorithm call is clearer. If you need a loop that does
something fairly simple, but would require a confusing tangle of binders and adapters
or would require a separate functor class if you were to use an algorithm, you're
probably better off just writing the loop. Finally, if you need to do something fairly
long and complex inside the loop, the scales tilt back toward algorithms, because long,
complex computations should generally be moved into separate functions, anyway.
Once you've moved the loop body into a separate function, you can almost certainly
find a way to pass that function to an algorithm (often for_each) such that the resulting
code is direct and straightforward.

If you agree with this Item that algorithm calls are generally preferable to hand-written
loops, and if you also agree with Item 5 that range member functions are preferable to
loops that iteratively invoke single-element member functions, an interesting
conclusion emerges: well-crafted C+- programs using the STL contain far fewer loops
than equivalent programs not using the STL. This is a good thing. Any time we can
replace low-level words like for, while, and do with higher-level terms like insert, find,
and for_each, we raise the level of abstraction in our software and thereby make it
easier to write, document, enhance, and maintain.

Item 44. Prefer member functions to algorithms with the same
names.

Some containers have member functions with the same names as STL algorithms. The
associative containers offer count, find, lower_bound. upper_bound, and equal_range,
while list offers remove, remove_if, unique, sort, merge, and reverse. Most of the time,
you'll want to use the member functions instead of the algorithms. There are two
reasons for this. First, the member functions are faster. Second, they integrate better

 162

with the containers (especially the associative containers) than do the algorithms.
That's because algorithms and member functions that share the same name typically do
not do exactly the same thing.

We'll begin with an examination of the associative containers. Suppose you have a
set<int> holding a million values and you'd like to find the first occurrence of the
value 727, if there is one. Here are the two most obvious ways to perform the search:

set<int> s; // create set, put
… //1,000,000 values

 // into it
set<int>::iterator i = s.find(727); // use find member
if (i != s.end())... //function
set<int>::iterator i = find(s.begin(), s.end(), 727); // use find algorithm
if(i!=s.end())...

The find member function runs in logarithmic time, so, regardless of whether 727 is in
the set, set::find will perform no more than about 40 comparisons looking for it, and
usually it will require only about 20. In contrast, the find algorithm runs in linear time,
so it will have to perform 1.000.000 comparisons if 727 isn't in the set. Even if 727 is
in the set, the find algorithm will perform, on average, 500,000 comparisons to locate
it. The efficiency score is thus

Member find: About 40 (worst case) to about 20 (average case)

Algorithm find: 1 ,000,000 (worst case) to 500,000 (average case)

As in golf, the low score wins, and as you can see, this matchup is not much of a
contest.

I have to be a little cagey about the number of comparisons required by member find,
because it's partially dependent on the implementation used by the associative
containers. Most implementations use red-black trees, a form of balanced tree that may
be out of balance by up to a factor of two. In such implementations, the maximum
number of comparisons needed to search a set of a million values is 38, but for the vast
majority of searches, no more than 22 comparisons is required. An implementation
based on perfectly balanced trees would never require more than 21 comparisons, but
in practice, the overall performance of such perfectly balanced trees is inferior to that
of red-black trees. That's why most STL implementations use red-black trees.

Efficiency isn't the only difference between member and algorithm find. As Item 19
explains, STL algorithms determine whether two objects have the same value by
checking for equality, while associative containers use equivalence as their "sameness"
test. Hence, the find algorithm searches for 727 using equality, while the find member
function searches using equivalence. The difference between equality and equivalence
can be the difference between a successful search and an unsuccessful search. For
example, Item 19 shows how using the find algorithm to look for something in an

 163

associative container could fail even when the corresponding search using the find
member function would succeed! You should therefore prefer the member form of
find, count. lower_bound, etc., over their algorithm eponyms when you work with
associative containers, because they offer behavior that is consistent with the other
member functions of those containers. Due to the difference between equality and
equivalence, algorithms don't offer such consistent behavior.

This difference is especially pronounced when working with maps and multimaps,
because these containers hold pair objects, yet their member functions look only at the
key part of each pair. Hence, the count member function counts only pairs with
matching keys (a "match." naturally, is determined by testing for equivalence); the
value part of each pair is ignored. The member functions find, lower_bound,
upper_bound, and equal_range behave similarly. If you use the count algorithm,
however, it will look for matches based on (a) equality and (b) both components of the
pair: find. lower_bound, etc., do the same thing. To gel the algorithms to look at only
the key part of a pair, you have to jump through the hoops described in Item 23 (which
would also allow you to replace equality testing with equivalence testing). On the
other hand, if you are really concerned with efficiency, you may decide that Item 23's
gymnastics, in conjunction with the logarithmic-time lookup algorithms of Item 34,
are a small price to pay for an increase in performance. Then again, if you're really
concerned with efficiency, you'll want to consider the non-standard hashed containers
described in Item 25, though there you'll again confront the difference between
equality and equivalence.

For the standard associative containers, then, choosing member functions over
algorithms with the same names offers several benefits.

First, you get logarithmic-time instead of linear-time performance. Second, you
determine whether two values are "the same" using equivalence, which is the natural
definition for associative containers. Third, when working with maps and multimaps,
you automatically deal only with key values instead of with (key. value) pairs. This
triumvirate makes the case for preferring member functions pretty iron-clad.

Let us therefore move on to list member functions that have the same names as STL
algorithms. Here the story is almost completely about efficiency. Each of the
algorithms that list specializes (remove, remove_if. unique, sort, merge, and reverse)
copies objects, but list-specific versions copy nothing: they simply manipulate the
pointers connecting list nodes. The algorithmic complexity of the algorithms and the
member functions is the same, but, under the assumption that manipulating pointers is
less expensive than copying objects, list's versions of these functions should offer
better performance.

It's important to bear in mind that the list member functions often behave differently
from their algorithm counterparts. As Item 32 explains, calls to the algorithms remove,
remove_if, and unique must be followed by calls to erase if you really want to
eliminate objects from a container, but list's remove, remove_if, and unique member
functions honestly get rid of elements: no subsequent call to erase is necessary.

 164

A significant difference between the sort algorithm and list's sort function is that the
former can't be applied to lists. Being only bidirectional iterators, list's iterators can't
be passed to sort. A gulf also exists between the behavior of the merge algorithm and
list's merge. The algorithm isn't permitted to modify its source ranges, but list-merge
always modifies the lists it works on.

So there you have it. When faced with a choice between an STL algorithm or a
container member function with the same name, you should prefer the member
function. It's almost certain to be more efficient, and it's likely to be better integrated
with the container's usual behavior, too.

Item 45. Distinguish among count, find, binary search, lower_bound,
upper_bound, and equal_range.

So you want to look for something, and you have a container or you have iterators
demarcating a range where you think it's located. How do you conduct the search?
Your quiver is fairly bursting with arrows: count, count_if, find, find_if,
binary_search, lower_bound, upper_bound, and equal_range. Decisions, decisions!
How do you choose?

Easy. You reach for something that's fast and simple. The faster and simpler, the
better.

For the time being, we'll assume that you have a pair of iterators specifying a range to
be searched. Later, we'll consider the case where you have a container instead of a
range.

In selecting a search strategy, much depends on whether your iterators define a sorted
range. If they do, you can get speedy (usually logarithmic-time — see Item 34)
lookups via binary_search, lower_bound, upper_bound, and equal_range. If the
iterators don't demarcate a sorted range, you're limited to the linear-time algorithms
count, count_if, find, and find_if. In what follows, I'll ignore the _if variants of count
and find, just as I'll ignore the variants of binary_search, lower_ and upper_bound, and
equal_range taking a predicate. Whether you rely on the default search predicate or
you specify your own, the considerations for choosing a search algorithm are the same.

If you have an unsorted range, your choices are count or find. They answer slightly
different questions, so it's worth taking a closer look at them, count answers the
question, "Is the value there, and if so, how many copies are there?" while find
answers the question. "Is it there, and if so, where is it?"

Suppose all you want to know is whether some special Widget value w is in a list.
Using count, the code looks like this:

list<Widget> Iw; // list of Widgets
Widget w; //special Widget value
…
if (count(lw.begin(), Iw.end(), w)) {

 165

 … // w is in Iw
}else {

… // it's not
}

This demonstrates a common idiom: using count as an existence test, count returns
either zero or a positive number, so we rely on the conversion of nonzero values to
true and zero to false. It would arguably be clearer to be more explicit about what we
are doing.

if (count(lw.begin(), Iw.end(), w) != 0)...

and some programmers do write it that way, but it's quite common to rely on the
implicit conversion, as in the original example.

Compared to that original code, using find is slightly more complicated, because you
have to test find's return value against the list's end iterator:

if (find(lw.begin(), Iw.end(), w) != lw.end()){
 …
} else {
 …
}

For existence testing, the idiomatic use of count is slightly simpler 10 code. At the
same time, it's also less efficient when the search is successful, because find stops once
it's found a match, while count must continue to the end of the range looking for
additional matches. For most programmers, find's edge in efficiency is enough to
justify the slight increase in usage complexity.

Often, knowing whether a value is in a range isn't enough. Instead, you'll want to know
the first object in the range with the value. For example, you might want to print the
object, you might want to insert something in front of it, or you might want to erase it
(but see Item 9 for guidance on erasing while iterating). When you need to know not
just whether a value exists but also which object (or objects) has that value, you need
find:

list<Widget>::iterator i =find(lw.begin(), Iw.end(), w);
if (i!= lw.end()) {

… // found it, i points to the first one
} else {
… //didn't find it
}

For sorted ranges, you have other choices, and you'll definitely want to use them,
count and find run in linear time, but the search algorithms for sorted ranges
(binary_search, lower_bound, upper_bound, and equal_range) run in logarithmic time.

 166

The shift from unsorted ranges to sorted ranges leads to another shift: from using
equality to determine whether two values are the same to using equivalence. Item 19
comprises a discourse on equality versus equivalence, so I won't repeat it here. Instead.
I'll simply note that the count and find algorithms both search using equality, while
binary_search, lower_bound, upper_bound, and equal_range employ equivalence.

To test for the existence of a value in a sorted range, use binary_search. Unlike
bsearch in the standard C library (and hence also in the standard C++ library),
binary_search returns only a bool: whether the value was found. binary_search
answers the question. "Is it there?" and its answer is either yes or no. If you need more
information than that, you need a different algorithm.

Here's an example of binary_search applied to a sorted vector. (You can read about the
virtues of sorted vectors in Item 23.)

vector<Widget> vw; // create vector, put
… //data into it, sort the
sort(vw.begin(). vw.end()); //data
Widget w; //value to search for
…
if (binary_search(vw.begin(), vw.end(), w)){

… //w is in vw
}else{

// it's not
}

If you have a sorted range and your question is, "Is it there, and if so, where is it?" you
want equal_range, but you may think you want lower_bound. We'll discuss
equal_range shortly, but first, let's examine lower_bound as a way of locating values in
a range.

When you ask lower_bound to look for a value, it returns an iterator pointing to either
the first copy of that value (if it's found) or to the proper insertion location for that
value (if it's not). lower_bound thus answers the question. "Is it there? If so, where is
the first copy, and if it's not, where would it go?" As with find, the result of
lower_bound must be tested to see if it's pointing to the value you're looking for.
Unlike find, you can't just test lower_bound's return value against the end iterator.
Instead, you must test the object lower_bound identifies to see if that's the value you
want.

Many programmers use lower_bound like this:

vector<Widget>::iterator i = low_bound(vw.begin(), vw.end(), w);
if (i != vw.end() && *i == w){ //make sure i points to an object;

 // make sure the object has the
 // correct value; this has a bug!

… // found the value, i points to the

 167

 // first object with that value
} else{

… // not found
}

This works most of the time, but it's not really correct. Look again at the test to
determine whether the desired value was found:

if (i != vw.end() && *i == w)…

This is an equality test, but lower_bound searched using equivalence. Most of the time,
tests for equivalence and equality yield the same results, but Item 19 demonstrates that
it's not that hard to come up with situations where equality and equivalence are
different. In such situations the code above is wrong.

To do things properly, you must check to see if the iterator returned from lower_bound
points to an object with a value that is equivalent to the one you searched for. You
could do that manually (Item 19 shows, you how, and Item 24 provides an example of
when it can be worthwhile), but it can get tricky, because you have to be sure to use
the same comparison function that lower_bound used. In general, that could be an
arbitrary function (or function object). If you passed a comparison function to
lower_bound, you'd have to be sure to use the same comparison function in your hand-
coded equivalence test. That would mean that if you changed the comparison function
you passed to lower_bound, you'd have to make the corresponding change in your
check for equivalence. Keeping the comparison functions in sync isn't rocket science,
but it is another thing to remember, and I suspect you already have plenty you're
expected to keep in mind.

There is an easier way: use equal_range, equal_range returns a pair of iterators, the
first equal to the iterator lower_bound would return, the second equal to the one
upper_bound would return (i.e., the one-past-the-end iterator for the range of values
equivalent to the one searched for), equal_range, then, returns a pair of iterators that
demarcate the range of values equivalent to the one you searched for. A well-named
algorithm, no? (equivalent_range would be better, of course, but equal_range is still
pretty good.)

There are two important observations about equal_range's return value. First, if the two
iterators are the same, that means the range of objects is empty: the value wasn't found.
That observation is the key to using equal_range to answer the question, "Is it there?"
You use it like this:

vector<Widget> vw;
...
sort(vw.begin(), vw.end());

typedef vector<Widget>::iterator VWIter; // convenience typedefs
typedef pair<VWIter, VWIter> VWIterPair;

 168

VWIterPair p = equal_ range(vw.begin(), vw.end(), w);
if (p.first != p.second) { //if equal_range didn’t return

… //an empty range...
//found it, p.first points to the
// first one and p.second
// points to one past the last

} else {
… // not found, both p.first and

// p.second point to the
} // insertion location for

// the value searched for

This code uses only equivalence, so it is always correct.

The second thing to note about equal_range's return value is that the distance between
its iterators is equal to the number of objects in the range, i.e., the objects with a value
equivalent to the one that was searched for. As a result, equal_range not only does the
job of find for sorted ranges, it also replaces count. For example, to locate the Widgets
in vw with a value equivalent to w and then print out how many such Widgets exist,
you could do this:

VWIterPair p = equal_range(vw.begin(), vw.end(), w);
cout << "There are " << distance(p.first, p.second)

 << " elements in vw equivalent to w.";

So far, our discussion has assumed we want to search for a value in a range, but
sometimes we're more interested in finding a location in a range. For example, suppose
we have a Timestamp class and a vector of Timestamps that's sorted so that older
timestamps come first:

class Timestamp {...};
bool operator<(const Timestamp& lhs, // returns whether lhs

 const Timestamp& rhs); // precedes rhs in time
vector<Timestamp> vt; // create vector, fill it with
… //data, sort it so that older
sort(vt.begin(), vt.end()); // times precede newer ones

Now suppose we have a special timestamp, ageLimit, and we want to remove from vt
all the timestamps that are older than ageLimit. In this case, we don't want to search vt
for a Timestamp equivalent to ageLimit, because there might not be any elements with
that exact value. Instead, we need to find a location in vt: the first element that is no
older than ageLimit. This is as easy as easy can be, because lower_bound will give us
precisely what we need:

Timestamp ageLimit:
vt.erase(vt.begin(), lower_bound(vt.begin(), //eliminate from vt all

 169

 vt.end(), // objects that precede
 ageLimit)); //ageLimit's value

If our requirements change slightly so that we want to eliminate all the timestamps that
are at least as old as ageLimit, we need to find the location of the first timestamp that
is younger than ageLimit. That s a job tailor-made for upper_bound:

vt.erase(vt.begin(), upper_bound(vt.begin(), // eliminate from vt all

 vt.end(), //objects that precede
 ageLimit}); //or are equivalent

 //to ageLimit's value

upper_bound is also useful if you want to insert things into a sorted range so that
objects with equivalent values are stored in the order in which they were inserted. For
example, we might have a sorted list of Person objects, where the objects are sorted by
name:

class Person {
public:

…
const string& name() const;
…

};

struct PersonNameLess:

public binary_function<Person, Person, bool> { // see Item 40 bool
operator()(const Persons lhs, const Person& rhs) const
{

return lhs.name() < rhs.name();
}

};

list<Person> Ip;
lp.sort(PersonNameLess()); //sort Ip using

// PersonNameLess

To keep the list sorted the way we desire (by name, with equivalent names stored in
the order in which they are inserted), we can use upper_bound to specify the insertion
location:

Person newPerson;
lp.insert(upper_bound(lp.begin(), // insert newPerson after

 lp.end(), //the last object in Ip
 newPerson, //that precedes or is
 PersonNameLess()), // equivalent to

newPerson); // newPerson

 170

This works fine and is quite convenient, but it's important not to be misled by this use
of upper_bound into thinking that we're magically looking up an insertion location in a
list in logarithmic time. We're no-Item 34 explains that because we're working with a
list, the lookup takes linear time, but it performs only a logarithmic number of
comparisons.

Up to this point, we have considered only the case where you have a pair of iterators
defining a range to be searched. Often you have a container, not a range. In that case,
you must distinguish between the sequence and associative containers. For the
standard sequence containers (vector, string, deque, and list), you follow the advice
we've outlined in this Item, using the containers' begin and end iterators to demarcate
the range.

The situation is different for the standard associative containers (set, multiset, map.
and multimap), because they offer member functions for searching that are generally
better choices than the STL algorithms. Item 44 goes into the details of why they are
better choices, but briefly, it's because they're faster and they behave more naturally.
Fortunately, the member functions usually have the same names as the corresponding
algorithms, so where the foregoing discussion recommends you choose algorithms
named count, find, equal_range, lower_bound, or upper_bound, you simply select the
same-named member functions when searching associative containers. binary_search
calls for a different strategy, because there is no member function analogue to this
algorithm. To test for the existence of a value in a set or map, use count in its idiomatic
role as a test for membership:

set<Widget> s; // create set, put data into it
…
Widget w; // w still holds the value to search for
…
if (s.count(w) {
 … //a value equivalent to w exists }else{
}else{

… //no such value exists
}

To test for the existence of a value in a multiset or multimap, find is generally superior
to count, because find can stop once it's found a single object with the desired value,
while count, in the worst case, must examine every object in the container.

However, count's role for counting things in associative containers is secure. In
particular, it's a better choice than calling equal_range and applying distance to the
resulting iterators. For one thing, it's clearer: count means "count." For another, it's
easier: there's no need to create a pair and pass its components to distance. For a third,
it's probably a little faster.

Given everything we've considered in this Item, where do we stand? The following
table says it all.

 171

In the column summarizing how to work with sorted ranges, the frequency with which
equal_range occurs may be surprising. That frequency arises from the importance of
testing for equivalence when searching. With lower_bound and upper_bound, it's too
easy to fall back on equality tests, but with equal_range, testing only for equivalence is
the natural thing to do. In the second row for sorted ranges, equal_range beats out find
for an additional reason: equal, range runs in logarithmic time, while find takes linear
time.

For multisets and multimaps, the table lists both find and lower_bound as candidates
when you're looking for the first object with a particular value, find is the usual choice
for this job, and you may have noticed that it's the one listed in the table for sets and
maps. For the multi containers, however, find is not guaranteed to identify the first
element in the container with a given value if more than one is present: its charter is
only to identify one of those elements. If you really need to find the first, object with a
given value, you'll want to employ lower_bound, and you'll have to manually perform
the second half of the equivalence test, described in Item 19 to confirm that you've
found the value you were looking for. (You could avoid the manual equivalence test
by using equal_range, but calling equal_range is more expensive than call-ins
lower_bound.)

Selecting among count, find, binary_search, lower_bound, upper_bound, and
equal_range is easy. Choose the algorithm or member function that offers you the
behavior and performance you need and that requires the least amount of work when

 172

you call it. Follow that advice (or consult the table), and you should never get
confused.

Item 46. Consider function objects instead of functions as algorithm
parameters.

One of the complaints about programming in high-level languages is that as the level
of abstraction gets higher, the efficiency of the generated code gets lower. In fact,
Alexander Stepanov (the inventor of the STL) once produced a small benchmark suite
that tried to measure the "abstraction penalty" of C++ vis-a-vis C. Among other things,
the results of that benchmark revealed that it's nearly universal for the code generated
for manipulating a class containing a double to be less efficient than the corresponding
code for manipulating a double directly. It may thus come as a surprise to learn that
passing STL function objects — objects masquerading as functions — to algorithms
typically yields code that is more efficient than passing real functions.

For example, suppose you need to son a vector of doubles in descending order. The
straightforward STL way to do it is via the sort algorithm and a function object of type
greater<double>:

vector<double> v;
…
sort(v.begin(), v.end(), greater<double>());

If you're wary of the abstraction penalty, you might decide to eschew the function
object in favor of a real function, a function that's not only real, it's inline:

inline
bool doubleGreater(double d1, double d2)
{

return dl > d2;
}
…
sort(v.begin(), v.end(), doubleGreater);

Interestingly, if you were to compare the performance of the two calls to sort (one
using greater<double>, one using doubleGreater), you'd almost certainly find that the
one using greater<double> was faster. For instance, I timed the two calls to sort on a
vector of a million doubles using four different STL platforms, each set to optimize for
speed, and the version using greater<double> was faster every time. At worst, it was
50% faster, at best it was 160% faster. So much for the abstraction penalty.

The explanation for this behavior is simple: inlining. If a function object's operator()
function has been declared inline (either explicitly via inline or implicitly by defining
it in its class definition), the body of that function is available to compilers, and most
compilers will happily inline that function during template instantiation of the called
algorithm. In the example above, greater<double>::operator() is an inline function, so

 173

compilers inline-expand it during instantiation of sort. As a result, sort contains zero
function calls, and compilers are able to perform optimizations on this call-free code
that are otherwise not usually attempted. (For a discussion of the interaction between
inlining and compiler optimization, see Item 33 of Effective C++ and chapters 8-10 of
Bulka and Mayhew's Efficient C++ [10].)

The situation is different for the call to sort using doubleGreater. To see how it's
different, we must recall that there's no such thing as passing a function as a parameter
to another function. When we try to pass a function as a parameter, compilers silently
convert the function into a pointer to that function, and it's the pointer we actually
pass. Hence, the call

sort(v.begin(), v.end(), doubleGreater);

doesn't pass doubleGreater to sort, it passes a pointer to doubleGreater. When the sort
template is instantiated, this is the declaration for the function that is generated:

void sort(vector<double>::iterator first, // beginning of range
vector<double>::iterator last, // end of range
bool (*comp)(double, double)); //comparison function

Because comp is a pointer to a function, each time it's used inside sort, compilers make
an indirect function call — a call through a pointer. Most compilers won't try to inline
calls to functions that are invoked through function pointers, even if, as in this
example, such functions have been declared inline and the optimization appears to be
straightforward. Why not? Probably because compiler vendors have never felt that it
was worthwhile to implement the optimization. You have to have a little sympathy for
compiler vendors. They have lots of demands on their time, and they can't do
everything. Not that this should stop you from asking them for it.

The fact that function pointer parameters inhibit inlining explains an observation that
long-time C programmers often find hard to believe: C++'s sort virtually always
embarrasses C's qsort when it comes to speed. Sure. C++ has function and class
templates to instantiate and funny-looking operator() functions to invoke while C
makes a simple function call, but all that C++ "overhead" is absorbed during compila-
tion. At runtime, sort makes inline calls to its comparison function (assuming the
comparison function has been declared inline and its body is available during
compilation) while qsort calls its comparison function through a pointer. The end
result is that sort runs faster. In my tests on a vector of a million doubles, it ran up to
670% faster, but don't take my word for it, try it yourself. It's easy to verify that when
comparing function objects and real functions as algorithm parameters, there's an
abstraction bonus.

There's another reason to prefer function objects to functions as algorithm parameters,
and it has nothing to do with efficiency. It has to do with getting your programs to
compile. For whatever reason, it's not uncommon for STL platforms to reject perfectly
valid code, either through shortcomings in the compiler or the library or both. For

 174

example, one widely used STL platform rejects the following (valid) code to print to
cout the length of each string in a set:

set<string> s;
…
transform(s.begin(), s.end(),
ostream_iterator<string::size_type>(cout, "\n"),

 mem_fun_ref(&string::size));

The cause of the problem is that this particular STL platform has a bug in its handling
of const member functions (such as string::size). A workaround is to use a function
object instead:

struct StringSize:

public unary_function<string, string::size_type>{ // see Item 40
string::size_type operator const strings s) const
{

return s.size();
}

};

transform(s.begin(), s.end(),

ostream_iterator<string::size_type>(cout, "\n"),
StringSize());

There are other workarounds for this problem, but this one does more than just
compile on every STL platform I know. It also facilitates inlining the call to
string::size, something that would almost certainly not take place in the code above
where mem_fun_ref(&string::size) is passed to transform. In other words, creation of
the functor class StringSize does more than sidestep compiler conformance problems,
it's also likely to lead to an increase in performance.

Another reason to prefer function objects to functions is that they can help you avoid
subtle language pitfalls. Occasionally, source code that looks reasonable is rejected by
compilers for legitimate, but obscure, reasons. There are situations, for example, when
the name of an instantiation of a function template is not equivalent to the name of a
function. Here's one such situation:

template<typename FPType> // return the average
FPTypeaverage(FPType val1, FPType val2) //of 2 floating point
{ // numbers

return (val1 + val2)/2;
}

template<typename Inputlter1,

typename Inputlter2>

 175

void writeAverages(InputIter1 begin1, //write the pairwise
 Inputlter1 end1, //averages of 2
 Inputlter2 begin2, //sequences to a
 ostream& s) // stream

{
transform(

begin1, end1, begin2,
ostream_iterator<typename iterator_traits
<lnputlter1>::value_type> (s, "\n"),
average<typename iteraror_traits
<inputiter1 >::value_type > // error?

);
}

Many compilers accept this code, but the C++ Standard appears to forbid it. The
reasoning is that there could, in theory, be another function template named average
that takes a single type parameter. If there were, the expression average<typename
iterator_traits<lnputIter1>::value_type> would be ambiguous, because it would not be
clear which template to instantiate. In this particular example, no ambiguity is present,
but some compilers reject the code anyway, and they are allowed to do that. No matter.
The solution to the problem is to fall back on a function object:

template<typename FPType>
struct Average:

public binary_function<FPType, FPType, FPType>{ // see Item 40
FPType operator()(FPType val1. FPType val2) const
{

return average(val 1 , val2);
 }

template<typename InputIter1, typename Inputlter2>
void writeAverages(lnputlter1 begin1, Inputlter1 end1,

 Inputlter2 begin2, ostream& s)
{

transform(
begin1, end1, begin2,
ostream_iterator<typename iterator_traits<lnputIter1>
::value_type>(s, “\n”),
Average<typename iterator_traits<InputIter1 >
::value_type>()

);
 }

Every compiler should accept this revised code. Furthermore, calls to
Average::operator() inside transform are eligible for inlining, something that would

 176

not be true for an instantiation of average above, because average is a template for
functions, not function objects.

Function objects as parameters to algorithms thus offer more than greater efficiency.
They're also more robust when it comes to getting your code to compile. Real
functions are useful, of course, but when it comes to effective STL programming,
function objects are frequently more useful.

Item 47. Avoid producing write-only code.

Suppose you have a vector<int>, and you'd like to get rid of all the elements in the
vector whose value is less than x, except that elements preceding the last occurrence of
a value at least as big as y should be retained. Does the following instantly spring to
mind?

vector<int> v;
int x, y;
…
v.erase(

remove_if(find_if(v.rbegin(), v.rend(),
 bind2nd(greater_equal<int>(), y)).base(),
 v.end(),
 bind2nd(less<int>(), x)),

v.end());

One statement, and the job is done. Clear and straightforward. No problem. Right?

Well, let's step back for a moment. Does this strike you as reasonable, maintainable
code? "No!" shriek most C++ programmers, fear and loathing in their voices. "Yes!"
squeal a few, delight evident in theirs. And therein lies the problem. One programmer's
vision of expressive purity is another programmer's demonic missive from Hell.

As I see it. there are two causes for concern in the code above. First. it's a rat's nest of
function calls. To see what I mean, here is the same statement, but with all the function
names replaced by fn. each n corresponding to one of the functions:

v.f1 (f2(f3(v.f4(), v.f5(), f6(f7(), y)),.f8(), v.f9(), f6(f10(), x)), v.f9());

This looks unnaturally complicated, because I've removed the indentation present in
the original example, but I think it's safe to say that any statement involving twelve
function calls to ten different functions would be considered excessive by most C++
software developers. Programmers weaned on functional languages such as Scheme
might feel differently, however, and my experience has been that the majority of
programmers who view the original code without raising an eyebrow-have a strong
functional programming background. Most C++ programmers lack this background, so
unless your colleagues are versed in the ways of deeply nested function calls, code like
the erase call above is almost sure to confound the next person who is forced to make
sense of what you have written.

 177

The second drawback of the rode is the significant STL background needed to
understand it. It uses the less common if forms of find and remove, it uses reverse
iterators (see Item 26), it converts reverse_iterators to iterators (see Item 28), it uses
bind2nd. it creates anonymous function objects, and it employs the erase-remove
idiom (see Item 32). Experienced STL programmers can swallow that combination
without difficulty, but far more C++ developers will have their eyes glaze over before
they've taken so much as a bite. If your colleagues are well-steeped in the ways of the
STL, using erase, remove_if, find_if, base, and bind2nd in a single statement may be
fine, but if you want your code to be comprehensible by C++ programmers with a
more mainstream background. I encourage you to break it down into more easily
digestible chunks.

Here's one way you could do It. (The comments aren't just for this book. I'd put them
in the code, too.)

typedef vector<int>::iterator VecIntIter;

//initialize rangeBegin to the first element in v that's greater than
//or equal to the last occurrence of y. If no such element exists,
// initialize rangeBegin to v.begin()

VecIntIter rangeBegin = find_if(v.rbegin(), v.rend(),

bind2nd(greater_equal<int>(), y)).base();

// from rangeBegin to v.end(), erase everything with a value less than x
v.erase(remove_if(rangeBegin, v.end(), bind2nd(less<int>(), x)), v.end());

This is still likely to confuse some people, because it relies on an understanding of the
erase-remove idiom, but between the comments in the code and a good STL reference
(e.g., Josuttis' The C++ Standard Library [3] or SGI's STL web site [21]), every C++
programmer should be able to figure out what's going on without too much difficulty.

When transforming the code, it's important to note that I didn't abandon algorithms and
try to write my own loops. Item 43 explains why that's generally an inferior option,
and its arguments apply here. When writing source code, the goal is to come up with
code that is meaningful to both compilers and humans and that offers acceptable
performance. Algorithms are almost always the best way to achieve that goal.
However. Item 43 also explains how the increased use of algorithms naturally leads to
an increased tendency to nest function calls and to throw in binders and other functor
adapters. Look again at the problem specification that opened this Item:

Suppose you have a vector<int>, and you'd like to get rid of all the elements
in the vector whose value is less than x, except that elements preceding the
last occurrence of a value at least as big as y should be retained.

The outline of a solution does spring to mind:

 178

Finding the last occurrence of a value in a vector calls for some application of find or
find_if with reverse iterators.

Getting rid of elements calls for either erase or the erase-remove idiom.

Put those two ideas together, and you get this pseudocode, where "something"
indicates a placeholder for code that hasn't yet been fleshed out:

v.erase(remove_if(find_if(v.rbegin(), v.rend(), something).base(),

 v.end(),
something)),
v.end());

Once you've got that, figuring out the somethings isn't terribly difficult, and the next
thing you know, you have the code in the original example. That's why this kind of
statement is often known as "write-only" code. As you write the code, it seems
straightforward, because it's a natural outgrowth of some basic ideas (e.g., the erase-
remove idiom plus the notion of using find with reverse iterators). Readers, however,
have great difficulty in decomposing the final product back into the ideas on which it
is based. That's the calling card of write-only code: it's easy to write, but it's hard to
read and understand.

Whether code is write-only depends on who's reading it. As I noted, some C++
programmers think nothing of the code in this Item. If that's typical in the environment
in which you work and you expect it to be typical in the future, feel free to unleash
your most advanced STL programming inclinations. However, if your colleagues are
less comfortable with a functional programming style and are less experienced with
the STL, scale back your ambitions and write something more along the lines of the
two-statement alternative I showed earlier.

It's a software engineering truism that code is read more often than it is written.
Equally well established is that software spends far more time in maintenance than it
does in development. Software that cannot be read and understood cannot be
maintained, and software that cannot be maintained is hardly worth having. The more
you work with the STL, the more comfortable you'll become with it, and the more
you'll feel the pull to nest function calls and create function objects on the fly. There's
nothing wrong with that, but always bear in mind that the code you write today will be
read by somebody — possibly you — someday in the future. Prepare for that day.

Use the STL, yes. Use it well. Use it effectively. But avoid producing write-only code.
In the lone run, such code is anything but effective.

Item 48. Always #include the proper headers.

Among the minor frustrations of STL programming is that it is easy to create software
that compiles on one platform, yet requires additional #include directives on others.
This annoyance stems from the fact that the Standard for C++ (unlike the Standard for

 179

C) fails to dictate which standard headers must or may be #included by other standard
headers. Given such flexibility, different implementers have chosen to do different
things.

To give you some idea of what this means in practice, I sat down one day with five
STL platforms (let's call them A. B. C, D, and E), and I spent a little time throwing toy
programs at them to see which standard headers I could omit and still get a successful
compilation. This indirectly told me which headers #include other headers. This is
what I found:

� With A and C. <vector> #includes <string>.

� With C, <algorithm> #includes <string>.

� With C and D. <iostream> #includes <iterator>.

� With D. <iostream> #includes <string> and <vector>.

� With D and E. <string> #includes <algorithm>.

� With all five implementations. <set> #includes <functional>.

Except for the case of <set> #includeing <functional>, I didn't find a way to get a
program with a missing header past implementation B. According to Murphy's Law,
then, you will always develop under a platform like A. C. D. or E and you will always
be porting to a platform like B, especially when the pressure for the port is greatest and
the time to accomplish it is least. Naturally.

But don't blame your compilers or library implementations for your porting woes. It's
your fault if you're missing required headers. Any time you refer to elements of
namespace std. you are responsible for having #included the appropriate headers. If
you omit them, your code might compile anyway, but you'll still be missing necessary
headers, and other STL platforms may justly reject your code.

To help you remember what's required when, here's a quick summary of what's in each
standard STL-related header:

� Almost all the containers are declared in headers of the same name, i.e., vector
is declared in <vector>. list is declared in <list>, etc. The exceptions are <set>
and <map>. <set> declares both set and multiset, and <map> declares both map
and multimap.

� All but four algorithms are declared in <algorithm>. The exceptions are
accumulate (see Item 37), inner_product, adjacent_difference, and partial_sum.
Those algorithms are declared in <numeric>.

� Special kinds of iterators, including istream_iterators and istreambuf_iterators
(see Item 29), are declared in <iterator>.

 180

� Standard functors (e.g., less<T>) and functor adapters (e.g., not1, bind2nd) are
declared in <functional>.

Any time you use any of the components in a header, be sure to provide the
corresponding #include directive, even if your development platform lets you get away
without it. Your diligence will pay off in reduced stress when you find yourself porting
to a different platform.

Item 49. Learn to decipher STL-related compiler diagnostics.

It's perfectly legal to define a vector with a particular size.

vector<int> v(10); //create a vector of size 10

and strings act a lot like vectors, so you might expect to be able to do this:
string s(10); //attempt to create a string of size 10

This won't compile. There is no string constructor taking an in: argument. One of my
STL platforms tells me that like this:

example.cpp(20): error C2664:'__thiscall std::basic_string<char, struct
std::char_traits<char>,class std::allocator<char> >::std::basic_string<char,
struct std::char_traits<char>,class std::allocator<char> >(const class
std::allocator<char> &)': cannot convert parameter 1 from 'const int1 to 'const
class std::allocator<char> &' Reason: cannot convert from 'const int' to 'const
class std::allocator<char>
No constructor could take the source type, or constructor overload resolution
was ambiguous

Isn't that wonderful? The first part of the message looks as if a cat walked across the
keyboard, the second part mysteriously refers to an allocator never mentioned in the
source code, and the third part says the constructor call is bad. The third part is
accurate, of course, bin let's first focus our attention on the result of the purported
feline stroll, because it's representative of diagnostics you'll frequently set when using
strings.

string isn't a class, it's a typedef. In particular, it's a typedef for this:

basic_string<char, char_traits<char>, allocator<char> >

That's because the C++ notion of a string has been generalized to mean sequences of
arbitrary character types with arbitrary character characteristics ("traits") and stored in
memory allocated by arbitrary allocators. All string-like objects in C++ are really
instantiations of the template basic_string, and that's why most compilers refer to the
type basic_string when they issue diagnostics about programs making erroneous use of
strings. (A few compilers are kind enough to use the name string in diagnostics, but
most aren't.) Often, such diagnostics will explicitly note that basic_string (and the
attendant helper templates char_traits and allocator) are in the std namespace, so it's
not uncommon to see errors involving strings yield diagnostics that mention this type:

 181

std::basic_string<char, std::char_traits<char>, std::allocator<char> >

This is quite close to what's used in the compiler diagnostic above, but different
compilers use variations on the theme. Another STL platform I uses refers to strings
this way.

basic_string<char, string_char_traits<char>,

__default_alloc_template<false,0> >

The names string_char_traits and __default_alloc_template are nonstandard, but that's
life. Some STL implementations deviate from the standard. If you don't like the
deviations in your current STL implementation, consider replacing it with a different
one. Item 50 gives examples of places you can go for alternative implementations.

Regardless of how a compiler diagnostic refers to the string type, the technique for
reducing the diagnostic to something meaningful is the same: globally replace the
basic_string gobbledegook with the text "string". If you're using a command-line
compiler, it's usually easy to do this is with a program like sed or a scripting language
like perl, python, or ruby. (You'll find an example of such a script in Zolman's article.
"An STL Error Message Decryptor for Visual C++" [26].) In the case of the diagnostic
above, we globally replace

std::basic_string<char, struct std::char_traits<char>,
class std::allocator<char> >

 with string and we end up with this:
example.cpp(20): error C2664:'__thiscall string::string(const class
std::allocator<char> &)': cannot convert parameter 1 from 'const int1 to const
class std::allocator<char> &'

This makes clear (or at least clearer) that the problem is in the type of the parameter
passed to the string constructor, and even though the mysterious reference to
allocator<char> remains, it should be easy to look up the constructor forms for string
to see that none exists taking only a size.

By the way, the reason for the mysterious reference to an allocator is that each
standard container has a constructor taking only an allocator. In the case of string, it's
one of three constructors that can be called with one argument, but for some reason,
this compiler figures that the one taking an allocator is the one you're trying to call.
The compiler figures wrong, and the diagnostic is misleading. Oh well.

As for the constructor taking only an allocator, please don't use it. That constructor
makes it easy to end up with containers of the same type but with inequivalent
allocators. In general, that s bad. Very bad. To find out why, turn to Item 11 .

Now let's tackle a more challenging diagnostic. Suppose you're implementing an email
program that allows users to refer to people by nicknames instead of by email

 182

addresses. For example, such a program would make it possible to use The Big
Cheese" as a synonym for the email address of the President of the United States
(which happens to be president@whitehouse.gov). Such a program might use a map
from nicknames to email addresses, and it might offer a member function
showEmailAddress that displays the email address associated with a given nickname:

class NiftyEmailProgram {
private:

typedef map<string, string> NicknameMap;
NicknameMap nicknames; // map from nicknames to

//email addresses public:
void showEmailAddress(const string& nickname) const

public:
 …
 void showEmailAddress(const string& nickname) const;
};

Inside showEmailAddress, you'll need to find the map entry associated with a
particular nickname, so you might write this:

void
NiftyEmailProgram::showEmailAddress(const string& nickname) const
{
 …

NicknameMap::iterator i = nicknames. find(nickname);
if (i != nicknames. end()) ...
…

}

Compilers don't like this, and with good reason, but the reason isn't obvious. To help
you figure it out. here's what one STL platform helpfully emits:

example.cppd 7>: error C2440: 'initializing': cannot convert from ‘class
std::_Tree<class std::basic_string<char, struct std::char_traits<char>,class
std::allocator<char> >,struct std::pair<class std::basic_string<char, struct
std::char_traits<char>,class std::allocator<char> > const .class
std::basic_string<char, struct std::char_traits<char>,class std::allocator<char> >
>,struct std::map<class std::basic_string<char, struct
std::char_traits<char>,class std::allocator<char> >.class std::basic_string<char,
struct std::char_traits<char>,class std::allocator<char> >,struct
std::less<classstd::basic_string<char,structstd::char_traits<char>, class
std::allocator<char> > >,class std::allocator<class std::basic_string<char, struct,
std::char_traits<char>,class std::allocator<char> > > >::_Kfn, struct
std::less<class std::basic_string<char, struct std::char_traits<char>,class
std::allocator<char> > >,class std::allocator<class std::basic_string<char, struct,
std::char_traits<char>,class std::allocator<char> > > >::const_iterator' to 'class
std::_Tree<class std::basic_string<char, struct std::char_traits<char>,class

 183

std::allocator<char> >,struct std::pair<class std::basic_string<char, struct
std::char_traits<char>,class std::allocator<char> > const .class
std::basic_string<char, struct std::char_traits<char>,class std::allocator<char> >
>,struct std::map<class std::basic_string<char, struct
std::char_traits<char>,class std::allocator<char> >,class std::basic_string<char,
struct std::char_traits<char>,class std::allocator<char> >,struct
std::less<classstd::basic_string<char,structstd::char_traits<char> .class
std::allocator<char> > >,class std::allocator<class std::basic_string<char,struct
std::char_traits<char>,class std::allocator<char> > > >::_Kfn, struct
std::less<class std::basic_string<char, struct std::char_traits<char>,class
std::allocator<char> > >,class std::allocator<class std::basic_string<char, struct
std::char_traits<char>,class std::allocator<char> > > >::iterator'
No constructor could take the source type, or constructor overload resolution
was ambiguous

At 2095 characters long, this message looks fairly gruesome, but I've seen worse. One
of my favorite STL platforms produces a diagnostic of 4812 characters for this
example. As you might guess, features other than its error messages are what have
engendered my fondness for it.

Let's reduce this mess to something manageable. We begin with the replacement of the
basic_string gibberish with string. That yields this:

example.cpp) 7): error C2440: 'initializing': cannot convert from 'class
std::_Tree<class string, struct std::pair<class string const ,class string >,struct
std::map<class string, class string, struct std::less<class string >,class
std::allocator<class string > >::_Kfn, struct std::less<class string >,class
std::allocator<class string > >::const_iterator' to 'class std::_Tree<class string,
struct std::pair<class string const .class string >,struct std::map<class string,
class string, struct std::less<class string >,class std::allocator<class string >
>::_Kfn,struct std::less<class string >,class std::allocator<class string >
>::iterator' No constructor could take the source type, or constructor overload
resolution was ambiguous

Much better. Now a svelte 745 characters long, we can start to actually look at the
message. One of the things that is likely to catch our eye is the mention of the template
std::_Tree. The Standard says nothing about a template called _Tree, but the leading
underscore in tin-name followed by a capital letter jogs our memory that such names
are reserved for implementers. This is an internal template used to implement some
part of the STL.

In fact, almost all STL implementations use some kind of underlying template to
implement the standard associative containers (set, multiset, map, and multimap). In
the same way that source code using string typically leads to diagnostics mentioning
basic_string, source code using a standard associative container often leads to
diagnostics mentioning some underlying tree template. In this case, it's called _Tree,
but other implementations I know use __tree or __rb_tree, the latter reflecting the use
of red-black trees, the most common type of balanced tree used in STL
implementations.

 184

Setting _Tree aside for a moment, the message above mentions a type we should
recognize: std::map<class string, class string, struct std::less<class string>, class
std::allocator<class string > >. This is precisely the type of map we are using, except
that the comparison and allocator types (which we chose not to specify when we
defined the map) are shown. The error message will be easier to understand if we
replace that type with our typedef for it, NicknameMap. That leads to this:

example.cpp(17): error C2440: 'initializing': cannot convert from 'class
std::_Tree<class string, struct std::pair<class string const, class string >,struct
NicknameMap::_Kfn, struct std::less<class string >,class std::allocator<class
string > >::const_iterator' to 'class std::_Tree<class string, struct std::pair<class
string const ,class string >,struct NicknameMap::_Kfn, struct std::less<class
string >,class std::allocator<class string > >::iterator'

No constructor could take the source type, or constructor overload resolution
was ambiguous

This message is shorter, but not much clearer. We need to do something with _Tree.
Because _Tree is an implementation-specific template, the only way to know the
meaning of its template parameters is to read the source code, and there's no reason to
go rummaging through implementation-specific source code if we don't have to. Let's
try simply replacing all the stuff passed to _Tree with SOMETHING to see what we
get. This is the result:

example.cpp(1 7): error C2440: 'initializing': cannot convert from 'class
std::_Tree<SOMETHING>::const_iterator to 'class
std::_Tree<SOMETHING>::iterator'

No constructor could take the source type, or constructor overload resolution
was ambiguous

This is something we can work with. The compiler is complaining that we're trying to
convert some kind of const iterator into an iterator, a clear violation of const
correctness. Let's look again at the offending code, where I've highlighted the line
raising the compiler's ire:

class NiftyEmailProgram {
private:

typedef map<string, string> NicknameMap;
NicknameMap nicknames;

public:
 …

void showEmailAddress(const string& nickname) const;
 };

void NiftyEmailProgram::showEmailAddress

((const string& nickname) const
{

 185

 ...
NicknameMap::iterator i = nicknames.find(nickname);
if (i != nicknames.end())...
…

}

The only interpretation that makes any sense is that we're trying to initialize i (which is
an iterator) with a const_iterator returned from map-find. That seems odd. because
we're calling find on nicknames, and nicknames is a non-const object, find should thus
return a non-const iterator.

Look again. Yes, nicknames is declared as a non-const map, but showEmailAddress is
a const member function, and inside a const member function, all non-static data
members of the class become const! Inside showEmailAddress, nicknames is a const
map. Suddenly the error message makes sense. We're trying to generate an iterator into
a map we've promised not to modify. To fix the problem, we must either make i a
const_iterator or we must make showEmailAddress a non-const member function.
Both solutions are probably less challenging than ferreting out the meaning of the error
message.

In this Item, I've shown textual substitutions to reduce the complexity of error
messages, but once you've practiced a little, you'll be able to perform the substitutions
in your head most of the time. I'm no musician (I have trouble turning on the radio),
but I'm told that good musicians can sight-read several bars at a glance: they don t
need to look at individual notes. Experienced STL programmers develop a similar
skill. They can internally translate things like std::basic_string<char, struct
std::char_traits<char>,class std::allocator<char> > into string without thinking about it.
You, too, will develop this skill, but until you do, remember that you can almost
always reduce compiler diagnostics to something comprehensible by replacing lengthy
template-based type names with shorter mnemonics. In many cases, all you have to do
is replace typedef expansions with typedef names you're already using. That's what we
did when we replaced std::map<class string, class string, struct std::less<class string
>,class std::allocator<class string > > with NicknameMap.

Here are a few other hints that should help you make sense of STL-related compiler
messages:

� For vector and string, iterators are usually pointers, so compiler diagnostics will
likely refer to pointer types if you've made a mistake with an iterator. For
example, if your source code refers to vector<double>::iterators, compiler
messages will almost certainly mention double* pointers. (An exception is
when you're using the STL implementation from STLport and you're running in
debug mode. In that case, vector and string iterators are not pointers. For more
on STLport and its debug mode, turn to Item 50.)

 186

� Messages mentioning back_insert_iterator, front_insert_iterator, or
insert_iterator almost always mean you've made a mistake calling
back_inserter, front_inserter, or inserter, respectively, (back_inserter returns an
object of type back_insert_iterator, front_inserter returns an object of type
front_insert_iterator, and inserter returns an object of type insert_iterator. For
information on the use of these inserters, consult Item 30.) If you didn't call
these functions, some function you called (directly or indirectly) did.

� Similarly, if you get a message mentioning binder1st or binder2nd, you've
probably made a mistake using bind1st or bind2nd. (bind1st returns an object of
type binder1st, and bind2nd returns an object of type binder2nd.)

� Output iterators (e.g., ostream_iterators, ostreambuf_iterators (see Item 29),
and the iterators returned from back_inserter, front_inserter, and inserter) do
their outputting or inserting work inside assignment operators, so if you've
made a mistake with one of these iterator types, you're likely to get a
message complaining about something inside an assignment operator you've
never heard of. To see what I mean, try compiling this code:

vector<string*> v; // try to print a container
copy(v.begin(), v.end(), // of string' pointers as

ostream_iterator<string>(cout, "\n")); // string objects

� If you get an error message originating from inside the implementation of an
STL algorithm (i.e., the source code giving rise 10 the error is in <algorithm>),
there's probably something wrong with the types you're trying to use with that
algorithm. For example, you ay be passing iterators of the wrong category. To
see how such usage errors are reported, edify (and amuse!) yourself by feeding
this to your compilers:

list<int>::iterator i1, i2; //pass bidirectional iterators to
sort(i1, i2); //an algorithm requiring random

 // access iterators

� If you're using a common STL component like vector, string, or the for_each
algorithm, and a compiler says it has no idea what you're talking about, you've
probably failed to #include a required header file. As Item 48 explains, this
problem can befall code that has been compiling smoothly for quite some time
if you port it to a new platform.

Item 50. Familiarize yourself with STL-related web sites.

The Internet is rife with STL information. Ask your favorite search engine to look for
"STL", and it's sure to return hundreds of links, some of which may actually be
relevant. For most STL programmers, however, no searching is necessary. The
following sites are likely to rise to the top of almost everybody's most-frequently-used
list:

 187

• The SGI STL site, http://www.sgi.com/tech/stl/.

• The STLport site, http://www.stlport.org/.

• The Boost site, http://www.boost.org/.

What follows are brief descriptions of why these sites are worth book-marking.

The SGI STL Web Site

SGI's STL web site tops the list, and for good reason. It offers comprehensive
documentation on every component of the STL. For many programmers, this site is
their on-line reference manual, regardless of which STL platform they are using. (The
reference documentation was put together by Matt Austern, who later extended and
polished it for his Generic Programming and the STL [4].) The material here covers
more than just the STL components themselves. Effective STL's discussion of thread
safety in STL containers (see Item 12), for example, is based on the treatment of the
topic at the SGI STL web site.

The SGI site offers something else for STL programmers: a freely downloadable
implementation of the STL. This implementation has been ported to only a handful of
compilers, but the SGI distribution is also the basis for the widely ported STLport
distribution, about which I write more in a moment. Furthermore, the SGI
implementation of the STL offers a number of nonstandard components that can make
STL programming even more powerful, flexible, and fun. Foremost among these are
the following:

� The hashed associative containers hash_set, hash_multiset, hash_map, and
hash_multimap. For more information about these containers, turn to Item 25.

� A singly linked list container, slist. This is implemented as you'd imagine, and
iterators point to the list nodes you'd expect them to point to. Unfortunately, this
makes it expensive to implement the insert and erase member functions,
because both require adjustment of the next pointer of the node preceding the
node pointed to by the iterator. In a doubly linked list (such as the standard list
container), this isn't a problem, but in a singly linked list, going "back" one
node is a linear-time operation. For SGI's, slist, insert and erase take linear
instead of constant time, a considerable drawback. SGI addresses the problem
through the nonstandard (but constant-time) member functions insert_after and
erase_after. Notes SGI.

If you find that insert_after and erase_after aren't adequate for your
needs and that you often need to use insert and erase in the middle of
the list, you should probably use list instead of slist.

Dinkumware also offers a singly linked list, container called slist, but it uses a
different iterator implementation that preserves the constant-time performance
of insert and erase. For more information on Dinkumware, consult Appendix B.

 188

� A string-like container for very large strings. The container is called rope,
because a rope is a heavy-duty string, don't you see? SGI describes ropes this
way:

Ropes are a scalable string implementation: they are designed for
efficient operations that involve the string as a whole. Operations such
as assignment, concatenation, and substring take time that is nearly
independent of the length of the string. Unlike C strings, ropes are a
reasonable representation for very long strings, such as edit buffers or
mail messages.

Under the hood, ropes are implemented as trees of reference-counted substring,
and each substring is stored as a char array. One interesting aspect of the rope
interface is that the begin and end member functions always return
const_iterators. This is to discourage clients from performing operations that
change individual characters. Such operations are expensive, ropes are
optimized for actions that involve entire strings (e.g.. assignment, concatena-
tion, and taking substrings, as mentioned above): single-character operations
perform poorly.

� A variety of nonstandard function objects and adapters. The original HP
STL implementation included more functor classes than made it into standard
C++. Two of the more widely missed by old-time STL hackers are select1st and
select2nd, because they are so useful for working with maps and multimaps.
Given a pair, select1st returns its first component and select2nd returns its sec-
ond. These nonstandard functor class templates can be used as follows:

map<int, string> m;
…
// write all the map keys to cout
transform(m.begin(), m.end(),

ostream_iterator<int>(cout, "\n"),
select1st<map<int, string>::value type>());

//create a vector and copy all the values in the map into it
vector<string> v;
transform(m.begin(), m.end(), back_inserter(v),

select2nd<map<int, string>::value_type>());

As you can see, select1st and select2nd make it easy to use algorithm calls in
places where you might otherwise have to write your own loops (see Item 43),
but, if you use these functors, the fact that they are nonstandard leaves you open
to the charge that you are writing unportable and unmaintainable code (see Item
47). Diehard STL aficionados don't care. They consider it an injustice that
select1st and select2nd didn't make it into the Standard in the first place.

 189

Other nonstandard function objects that are part of the SGI implementation
include identity, project1st, project2nd, compose1 and compose2. To find out
what these do, you'll have to visit the web site, though you'll find an example
use of compose2 on page 187 of this book. By now, I hope it's clear that visiting
the SGI web site will certainly be rewarding.

SGI’s library implementation goes beyond the STL. Their goal is the development of a
complete implementation of the standard C + + library, except for the parts inherited
from C. (SGI assumes you already have a standard C library at your disposal.) As a
result, another noteworthy download available from SGI is an implementation of the
C++ iostreams library. As you might expect, this implementation integrates well with
SGI's implementation of the STL, but it also features performance that's superior to
that of many iostream implementations that ship with C++ compilers.

The STLport Web Site

STLport's primary selling point is that it offers a modified version of SGI's STL
implementation (including iostreams, etc.) that's been ported to more than 20
compilers. Like SGI's library, STLport's is available for free download. If you're
writing code that has to work on multiple platforms, you may be able to save yourself
a wheelbarrow of grief by standardizing on the STLport implementation and using it
with all your compilers.

Most of STLport's modifications to SGI's code base focus on improved portability, but
STLport's STL is also the only implementation I know that offers a "debug mode" to
help detect improper use of the STL — uses that compile but lead to undefined
runtime behavior. For example, Item 30 uses this example in its discussion of the
common mistake of writing beyond the end of a container:

int transmogrify(int x); // this function produces

 // some new value from x
 vector<int> values;
… //put data into values
vector<int> results;
transform(values.begin(), values.end(), // this will attempt to

 results.end(), // write beyond the
 transmogrify); // end of results!

This will compile, but when run. it yields undefined results. If you're lucky, something
horrible will happen inside the call to transform, and debugging the problem will be
relatively straightforward. If you're not lucky, the call to transform will trash data
somewhere in your address space, but you won't discover that until later. At that point,
determining the cause of the memory corruption will be — shall we say? —
challenging.

 190

STLport's debug mode all but eliminates the challenge. When the above call to
transform is executed, the following message is generated (assuming STLport is
installed in the directory C:\STLport):

C:\STLport\stlport\stl\debug itorator.h:265 STL assertion failure :
_Dereferenceable(*this)

The program then stops, because STLport debug mode calls abort if it encounters a
usage error. If you'd prefer to have an exception thrown instead, you can configure
STLport to do things your way.

Admittedly, the above error message isn't as clear as it might be. and it's unfortunate
that the reported file and line correspond to the location of the internal STL assertion
instead of the line calling transform, but this is still a lot better than running past the
call to transform, then trying to figure out why your data structures are corrupt. With
STLport's debug mode, all you need to do fire up your debugger and walk the call
stack back into the code you wrote, then determine what you did wrong. Finding the
offending source line is generally not a problem.

STLport's debug mode detects a variety of common errors, including passing invalid
ranges to algorithms, attempting to read from an empty container, using an iterator
from one container as the argument to a second container's member function, etc. It
accomplishes this magic by having iterators and their containers track one another.
Given two iterators, it's thus possible to check to see if they come from the same
container, and when a container is modified, it's possible to invalidate the appropriate
set of iterators.

Because STLport uses special iterator implementations in debug mode, iterators for
vector and string are class objects instead of raw pointers. Hence, using STLport and
compiling in debug mode is a good way to make sure that nobody is getting sloppy
about the difference between pointers and iterators for these container types. That
alone may be reason enough to give STLport's debug mode a try.

The Boost Web Site

In 1997, when the closing bell rang on the process that led to the International
Standard for C++, some people were disappointed that library features they'd
advocated hadn't made the cut. Some of these people were members of the Committee
itself, so they set out to lay the foundation for additions to the standard library during
the second round of standardization. The result is Boost, a web site whose mission is
to "provide free, peer-reviewed. C++ libraries. The emphasis is on portable libraries
which work well with the C++ Standard Library.' Behind the mission is a motive:

To the extent a library becomes "existing practice", the likelihood increases that
someone will propose it for future standardization. Submitting a library to Boost.org is
one way to establish existing practice...

 191

In other words, Boost offers itself as a vetting mechanism to help separate the sheep
from the goats when it comes to potential additions to the standard C++ library. This is
a worthy service, and we should all be grateful.

Another reason to be grateful is the collection of libraries you'll find at Boost. I won't
attempt to describe them all here, not least because new ones will doubtless have been
added by the time you read these words. For STL users, however, two kinds of
libraries are particularly relevant. The first is the smart pointer library featuring
shared_ptr, the template for reference-counted smart pointers that, unlike the standard
library's auto_ptr, may safely be stored in STL containers (see Item 8). Boost's smart
pointer library also offers shared_array, a reference-counted smart pointer for
dynamically allocated arrays, but Item 13 argues that dynamically allocated arrays are
inferior to vectors and strings, and I hope you find its argument persuasive.

Boost's second attraction for STL fans is its bevy of STL-related function objects and
associated facilities. These libraries comprise a fundamental redesign and
reimplementation of the ideas behind STL function objects and adapters, and the
results eliminate a host of restrictions that artificially limit the utility of the standard
functors. As an example of such a restriction, you'll find that if you try to use bind2nd
with mem_fun or mem_fun_ref (see Item 41) to bind an object to a member function's
parameter and that member function takes its parameter by reference, your code is
unlikely to compile. You'll find the same if you try to use not1 or not2 with ptr_fun
and a function declaring a by-reference parameter. The cause in both cases is that
during template instantiation, most STL platforms generate a reference to a reference,
and references to references are not legal in C++. (The Standardization Committee is
mulling over a change in the Standard to address this matter.) Here s an example of
what has become known as "the reference-to-reference problem:"

class Widget {
public:

…
int readStream(istream& stream); // readStream takes
… //its parameter by };

} // reference

vector<Widget*> vw;
…
for_each(//most STL platforms

vw.begin(), vw.end(), // try to generate a
bind2nd(mem_fun(&Widget::readStream), cin) // reference to a

 // reference in this
 //call; such code
 // won't compile

Boost's function objects avoid this and other issues, plus they expand the
expressiveness of function objects considerably. If you're intrigued by the potential of

 192

STL function objects and you want to explore it further, hurry over to Boost right
away. If you abhor function objects and think they exist only to pacify a vocal
minority of Lisp apologists turned C++ programmers, hurry over to Boost anyway.
Boost's function object libraries are important, but they make up only a small part of
what you'll find at the site.

 193

	Effective STL: 50 Specific Ways to Improve Your Use of Standard Template Library
	Content
	Containers
	1. Choose your containers with care
	2. Beware illusion of container-independent code
	3. Make copying cheap & correct for objects in containers
	4. Call empty instead of checking size() against zero
	5. Prefer range member functions to their single-element counterparts
	6. Be alert for C++'s most vexing parse
	7. When using containers of newed pointers, remember to delete pointers before container is destroyed
	8. Never create containers of auto_ptrs
	9. Choose carefully among erasing options
	10. Be aware of allocator conventions & restrictions
	11. Understand legitimate uses of custom allocators
	12. Have realistic expectations about thread safety of STL containers

	Vector & String
	13. Prefer vector & string to dynamically allocated arrays
	14. Use reserve to avoid unnecessary reallocations
	15. Be aware of variations in string implementations
	16. Know how to pass vector & string data to legacy APIs.
	17. Use "swap trick" to trim excess capacity
	18. Avoid using vector<bool>

	Associative Containers
	19. Understand difference between equality & equivalence
	20. Specify comparison types for associative containers of pointers
	21. Always have comparison functions return false for equal values
	22. Avoid in-place key modification in set & multiset
	23. Consider replacing associative containers with sorted vectors
	24. Choose carefully between map::operator[] & map-insert when efficiency is important
	25. Familiarize yourself with nonstandard hashed containers

	Iterators
	26. Prefer iterator to const iterator, reverse_iterator & const_reverse_iterator
	27. Use distance & advance to convert container's const_iterators to iterators
	28. Understand how to use reverse_iterator's base iterator
	29. Consider istreambuf_iterators for character-by-character input

	Algorithms
	30. Make sure destination ranges are big enough
	31. Know your sorting options
	32. Follow remove-like algorithms by erase if you really want to remove something
	33. Be wary of remove-like algorithms on containers of pointers
	34. Note which algorithms expect sorted ranges
	35. Implement simple case-insensitive string comparisons via mismatch or lexicographical compare
	36. Understand proper implementation of copy_if
	37. Use accumulate or for_each to summarize ranges

	Functors, Functor Classes, Functions, etc.
	38. Design functor classes for pass-by-value
	39. Make predicates pure functions
	40. Make functor classes adaptable
	41. Understand reasons for ptr_fun, mem_fun & mem_fun_ref
	42. Make sure less<T> means operator<

	Programming with STL
	43. Prefer algorithm calls to hand-written loops
	44. Prefer member functions to algorithms with same names
	45. Distinguish among count, find, binary search, lower_bound, upper_bound & equal_range
	46. Consider function objects instead of functions as algorithm parameters
	47. Avoid producing write-only code
	48. Always #include proper headers
	49. Learn to decipher STL-related compiler diagnostics
	50. Familiarize yourself with STL-related web sites

