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Containers 

Sure, the STL has iterators, algorithms, and function objects, but for most C++ 
programmers, it's the containers that stand out. More powerful and flexible than arrays, 
they grow (and often shrink) dynamically, manage their own memory, keep track of 
how many objects they hold, bound the algorithmic complexity of the operations they 
support, and much, much more. Their popularity is easy to understand. They're simply 
better than their competition, regardless of whether that competition comes from 
containers in other libraries or is a container type you'd write yourself. STL containers 
aren't just good. They're really good. 

This chapter is devoted to guidelines applicable to all the STL containers. Later 
chapters focus on specific container types. The topics addressed here include selecting 
the appropriate container given the constraints you face: avoiding the delusion that 
code written for one container type is likely to work with other container types: the 
significance of copying operations for objects in containers: difficulties that arise when 
pointers of auto_ptrs are stored in containers: the ins and outs of erasing: what you can 
and cannot accomplish with custom allocators: tips on how to maximize efficiency: 
and considerations for using containers in a threaded environment. 

That's a lot of ground to cover, but don't worry. The Items break it down into bite-
sized chunks, and along the way, you're almost sure to pick up several ideas you can 
apply to your code now. 

Item 1. Choose your containers with care. 

You know that C++ puts a variety of containers at your disposal, but do you realize 
just how varied that variety is? To make sure you haven't overlooked any of your 
options, here's a quick review. 

• The standard STL sequence containers, vector, string, deque, and list. 

• The standard STL associative containers, set, multiset, map and multimap. 

• The nonstandard sequence containers slist and rope. slist is a singly linked 
list, and rope is essentially a heavy-duty string. (A "rope" is a heavy-duty "string." 
Get it?) You'll find a brief overview of these   nonstandard (but commonly 
available) containers in Item 50. 

• The nonstandard associative containers hash_set, hash_multiset, hash_map, 
and hash_multimap.  I examine these widely available hash-table-based variants 
on the standard associative containers in Item 25. 

• vector<char> as a replacement for string. Item 13 describes the conditions 
under which such a replacement might make sense. 
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• vector as a replacement for the standard associative containers. As Item 23 
makes clear, there are times when vector can outperform the standard 
associative containers in both time and space. 

• Several standard non-STL containers, including arrays, bitset, valarray, stack, 
queue, and priority_queue. Because these are non-STL containers.  I have little 
to say about them in this book, though Item 16 mentions a case where arrays are 
preferable to STL containers and Item 18 explains why bitset may be better 
than vector<bool>. It's also worth bearing in mind that arrays can be used with 
STL algorithms, because pointers can be used as array iterators. 

That's a panoply of options, and it's matched in richness by the range of considerations 
that should go into choosing among them. Unfortunately, most discussions of the STL 
take a fairly narrow view of the world of containers, ignoring many issues relevant to 
selecting the one that is most appropriate. Even the Standard gets into this act, offering 
the following guidance for choosing among vector, deque, and list: 

vector, list, and deque offer the programmer different complexity trade-offs 
and should be used accordingly, vector is the type of sequence that should 
be used by default, list should be used when there are frequent insertions 
and deletions from the middle of the sequence, deque is the data structure of 
choice when most insertions and deletions take place at the beginning or at 
the end of the sequence. 

If your primary concern is algorithmic complexity. I suppose this constitutes 
reasonable advice, but there is so much more to be concerned with. 

In a moment, we'll examine some of the important container-related issues that 
complement algorithmic complexity, but first I need to introduce a way of categorizing 
the STL containers that isn't discussed as often as it should be. That is the distinction 
between contiguous-memory containers and node-based containers. 

Contiguous-memory containers (also known as array-based containers] store their 
elements in one or more (dynamically allocated) chunks of memory, each chunk 
holding more than one container element. If a new element is inserted or an existing 
element is erased, other elements in the same memory chunk have to be shifted up or 
down to make room for the new element or to fill the space formerly occupied by the 
erased element. This kind of movement affects both performance (see Items 5 and 14) 
and exception safety (as we'll soon see). The standard contiguous-memory containers 
are vector, string, and deque. The nonstandard rope is also a contiguous-memory 
container. 

Node-based containers store only a single element per chunk of (dynamically 
allocated) memory. Insertion or erasure of a container element affects only pointers to 
nodes, not the contents of the nodes themselves, so element values need not be moved 
when something is inserted or erased. Containers representing linked lists, such as list 
and slist, are node-based, as are all the standard associative containers. (They're 
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typically implemented as balanced trees.) The nonstandard hashed containers use 
varying node-based implementations, as you'll see in Item 25. 

With this terminology out of the way, we're ready to sketch some of the questions 
most relevant when choosing among containers. In this discussion, I omit 
consideration of non-STL-like containers (e.g., arrays, bitsets, etc.), because this is, 
after all, a book on the STL. 

• Do you need to be able to insert a new element at an arbitrary position in the 
container? If so, you need a sequence container: associative containers won't 
do. 

• Do you care how elements are ordered in the container? If not. a hashed 
container becomes a viable choice. Otherwise, you'll want to avoid hashed 
containers. 

• Must the container be part of standard C++? If so, that eliminates hashed 
containers, slist, and rope. 

• What category of iterators do you require? If they must be random access 
iterators, you're technically limited to vector, deque, and string, but you'd 
probably want to consider rope, too. (See Item 50 for information on rope.) If 
bidirectional iterators are required, you must avoid slist (see Item 50) as well as 
one common implementation of the hashed containers (see Item 25). 

•  Is it important to avoid movement of existing container elements when 
insertions or erasures take place? If so, you'll need to stay away from 
contiguous-memory containers (see Item 5). 

• Does the data in the container need to be layout-compatible with C? If so, 
you're limited to vectors (see Item 16). 

• Is lookup speed a critical consideration? If so, you'll want to look at hashed 
containers (see Item 25), sorted vectors (see Item 23), and the standard 
associative containers — probably in that order. 

• Do you mind if the underlying container uses reference counting? If so, you'll 
want to steer clear of string, because many string implementations are 
reference-counted  (see Item 13).  You'll need to avoid rope, too, because the 
definitive rope implementation is based on reference counting (see Item 50). 
You have to represent your strings somehow, of course, so you'll want to 
consider vector<char>. 

• Do you need transactional semantics for insertions and erasures? That is, do 
you require the ability to reliably roll back insertions and erasures? If so, you'll 
want to use a node-based container. If you need transactional semantics for 
multiple-element insertions (e.g., the range form — see Item 5), you'll want to 
choose list, because list is the only standard container that offers transactional 
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semantics for multiple-element insertions. Transactional semantics are 
particularly important for programmers interested in writing exception-safe 
code. (Transactional semantics can be achieved with contiguous-memory 
containers, too, but there is a performance cost, and the code is not as 
straightforward. To learn more about this, consult Item 17 of Sutter's 
Exceptional C++ [8].) 

• Do you need to minimize iterator, pointer, and reference invalidation? If so, 
you'll want to use node-based containers, because insertions   and erasures on 
such containers never invalidate iterators, pointers, or references (unless they 
point to an element you are erasing). In general, insertions or erasures on 
contiguous-memory containers may invalidate all iterators, pointers, and ref-
erences into the container. 

• Would it be helpful to have a sequence container with random access iterators 
where pointers and references to the data are not invalidated as long as nothing 
is erased and insertions take place only at the ends of the container? This is a 
very special case, but if it's your case, deque is the container of your dreams. 
(Interestingly, deque's iterators may be invalidated when insertions are made 
only at the ends of the container, deque is the only standard STL container 
whose iterators may be invalidated without also invalidating its pointers and 
references.) 

These questions are hardly the end of the matter. For example, they don't take into 
account the varying memory allocation strategies employed by the different container 
types. (Items 10 and 14 discuss some aspects of such strategies.) Still, they should be 
enough to convince you that, unless you have no interest in element ordering, stan-
dards conformance, iterator capabilities, layout compatibility with C lookup speed, 
behavioral anomalies due to reference counting, the ease of implementing 
transactional semantics, or the conditions under which iterators are invalidated, you 
have more to think about than simply the algorithmic complexity of container 
operations. Such complexity is important, of course, but it's far from the entire story. 

The STL gives you lots of options when it comes to containers. If you look beyond the 
bounds of the STL, there are even more options. Before choosing a container, be sure 
to consider all your options. A "default container"? I don't think so. 

Item 2. Beware the illusion of container-independent code. 

The STL is based on generalization. Arrays are generalized into containers and 
parameterized on the types of objects they contain. Functions are generalized into 
algorithms and parameterized on the types of iterators they use. Pointers are 
generalized into iterators and parameterized on the type of objects they point to. 

That's just the beginning. Individual container types are generalized into sequence and 
associative containers, and similar containers are given similar functionality. Standard 
contiguous-memory containers (see Item 1) offer random-access iterators, while 
standard node-based containers (again, see Item 1) provide bidirectional iterators. 
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Sequence containers support push_front and/or push_back, while associative 
containers don't. Associative containers offer logarithmic-time lower_bound, 
upper_bound, and equal_range member functions, but sequence containers don't. 

With all this generalization going on, it's natural to want to join the movement. This 
sentiment is laudable, and when you write your own containers, iterators, and 
algorithms, you'll certainly want to pursue it. Alas, many programmers try to pursue it 
in a different manner. Instead of committing to particular types of containers in their 
software, they try to generalize the notion of a container so that they can use, say, a 
vector, but still preserve the option of replacing it with something like a deque or a list 
later — all without changing the code that uses it. That is, they strive to write 
container-independent code. This kind of generalization, well-intentioned though it is, 
is almost always misguided. 

Even the most ardent advocate of container-independent code soon realizes that it 
makes little sense to try to write software that will work with both sequence and 
associative containers. Many member functions exist for only one category of 
container, e.g., only sequence containers support push_front or push_back, and only 
associative containers support count and lower_bound, etc. Even such basics as insert 
and erase have signatures and semantics that vary from category to category. For 
example, when you insert an object into a sequence container, it stays where you put it, 
but if you insert an object into an associative container, the container moves the object 
to where it belongs in the container's sort order. For another example, the form of erase 
taking an iterator returns a new iterator when invoked on a sequence container, but it 
returns nothing when invoked on an associative container. (Item 9 gives an example of 
how this can affect the code you write.) 

Suppose, then, you aspire to write code that can be used with the most common 
sequence containers: vector, deque, and list. Clearly, you must program to the 
intersection of their capabilities, and that means no uses of reserve or capacity (see 
Item 14), because deque and list don't offer them. The presence of list also means you 
give up operator[], and you limit yourself to the capabilities of bidirectional iterators. 
That, in turn, means you must stay away from algorithms that demand random access 
iterators, including sort, stable_sort, partial_sort, and nth_element (see Item 31). 

On the other hand, your desire to support vector rules out use of push_front and 
pop_front, and both vector and deque put the kibosh on splice and the member 
form of sort. In conjunction with the constraints above, this latter prohibition 
means that there is no form of sort you can call on your "generalized sequence 
container." 

That's the obvious stuff. If you violate any of those restrictions, your code will fail to 
compile with at least one of the containers you want to be able to use. The code that 
will compile is more insidious. 

The main culprit is the different rules for invalidation of iterators, pointers, and 
references that apply to different sequence containers. To write code that will work 
correctly with vector, deque, and list, you must assume that any operation invalidating 
iterators, pointers, or references in any of those containers invalidates them in the 
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container you're using. Thus, you must assume that every call to insert invalidates 
everything, because deque::insert invalidates all iterators and, lacking the ability to call 
capacity, vector::insert must be assumed to invalidate all pointers and references. (Item 
1 explains that deque is unique in sometimes invalidating its iterators without 
invalidating its pointers and references.) Similar reasoning leads to the conclusion that 
every call to erase must be assumed to invalidate everything. 

Want more? You can't pass the data in the container to a C interface, because only 
vector supports that (see Item 16). You can't instantiate your container with bool as the 
type of objects to be stored, because, as Item 18 explains, vector<bool> doesn't 
always behave like a vector, and it never actually stores bools. You can't assume list's 
constant-time insertions and erasures, because vector and deque take linear time to 
perform those operations. 

When all is said and done, you're left with a "generalized sequence container" where 
you can't call reserve, capacity, operator[], push_front, pop_front, splice, or any 
algorithm requiring random access iterators: a container where every call to insert and 
erase takes linear time and invalidates all iterators, pointers, and references: and a 
container incompatible with C where bools can't be stored. Is that really the kind of 
container you want to use in your applications? I suspect not. 

If you rein in your ambition and decide you're willing to drop support for list, you still 
give up reserve, capacity, push_front, and pop_front: you still must assume that all 
calls to insert and erase take linear time and invalidate everything; you still lose layout 
compatibility with C; and you still can't store bools. 

If you abandon the sequence containers and shoot instead for code that can work with 
different associative containers, the situation isn't much better. Writing for both set and 
map is close to impossible, because sets store single objects while maps store pairs of 
objects. Even writing for both set and multiset (or map and multimap) is tough. The 
insert member function taking only a value has different return types for sets/maps 
than for their multi cousins, and you must religiously avoid making any assumptions 
about how many copies of a value are stored in a container. With map and multimap, 
you must avoid using operator[], because that member function exists only for map. 

Face the truth: it's not worth it. The different containers are different, and they have 
strengths and weaknesses that vary in significant ways. They're not designed to be 
interchangeable, and there's little you can do to paper that over. If you try, you're 
merely tempting fate, and fate doesn't like to be tempted. 

Still, the day will dawn when you'll realize that a container choice you made was, er, 
suboptimal, and you'll need to use a different container type. You now know that when 
you change container types, you'll not only need to fix whatever problems your 
compilers diagnose, you'll also need to examine all the code using the container to see 
what needs to be changed in light of the new container's performance characteristics 
and rules for invalidation of iterators, pointers, and references. If you switch from a 
vector to something else, you'll also have to make sure you're no longer relying on 
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vector's C-compatible memory layout, and if you switch to a vector, you'll have to 
ensure that you're not using it to store bools. 

Given the inevitability of having to change container types from time to time, you can 
facilitate such changes in the usual manner: by encapsulating, encapsulating, 
encapsulating. One of the easiest ways to do this is through the liberal use of typedefs 
for container and iterator types. Hence, instead of writing this. 

 
class Widget {...};  
vector<Widget> vw;  
Widget bestWidget; 
…       //give bestWidget a value 
vector<Widget>::iterator i =                       // find a Widget with the 

find(vw.begin(), vw.end(), bestWidget);    // same value as bestWidget 

write this: 
 
class Widget {...); 
typedef vector<Widget> WidgetContainer;  
typedef WidgetContainer::iterator WCIterator; 
 
WidgetContainer vw;  
Widget bestWidget; 
... 
WCIterator i = find(vw.begin(), vw.end(), bestWidget); 

This makes it a lot easier to change container types, something that's especially 
convenient if the change in question is simply to add a custom allocator. (Such a 
change doesn't affect the rules for iterator/ pointer/reference invalidation.) 

 
class Widget {... }; 
template<typename T>                                         // see Item 10 for why this 
SpecialAllocator{...}                                              // needs to be a template 
typedef vector<Widget, SpecialAllocator<Widget> > WidgetContainer; typedef 
WidgetContainer::iterator WCIterator; 
WidgetContainer vw;                                                             // still works 
Widget bestWidget; 
… 
WCIterator i = find(vw.begin(), vw.end(), bestWidget);           // still works 

If the encapsulating aspects of typedefs mean nothing to you, you're still likely to 
appreciate the work they can save. For example, if you have an object of type 

map< string, 
vector<Widget>::iterator, 
CIStringCompare>   // CIStringCompare is "case- 
    // insensitive string compare;"  
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//Item 19 describes it 

and you want to walk through the map using const_iterators, do you really want to 
spell out 

 
map<string, vector<Widget>::iterator, CIStringCompare>::const_iterator 

more than once? Once you've used the STL a little while, you'll realize that typedefs 
are your friends. 

A typedef is just a synonym for some other type, so the encapsulation it affords is 
purely lexical. A typedef doesn't prevent a client from doing (or depending on) 
anything they couldn't already do (or depend on). You need bigger ammunition if you 
want to limit client exposure to the container choices you've made. You need classes. 

To limit the code that may require modification if you replace one container type with 
another, hide the container in a class, and limit the amount of container-specific 
information visible through the class interface. For example, if you need to create a 
customer list, don't use a list directly. Instead, create a CustomerList class, and hide a 
list in its private section: 

 
class CustomerList {  
private: 

typedef list<Customer> CustomerContainer; 
typedef CustomerContainer::iterator CCIterator; 
CustomerContainer customers; 

public: 
...       // limit the amount of list-specific 

//information visible through  
};                                            //this interface 

At first, this may seem silly. After all a customer list is a list, right? Well, maybe. Later 
you may discover that you don't need to insert or erase customers from the middle of 
the list as often as you'd anticipated, but you do need to quickly identify the top 20% 
of your customers — a task tailor-made for the nth_element algorithm (see Item 31). 
But nth_element requires random access iterators. It won't work with a list. In that 
case, your customer "list" might be better implemented as a vector or a deque. 

When you consider this kind of change, you still have to check every CustomerList 
member function and every friend to see how they'll be affected (in terms of 
performance and iterator/pointer/reference invalidation, etc.), but if you've done a 
good job of encapsulating CustomerList's implementation details, the impact on 
CustomerList clients should be small. You can't write container-independent code, but 
they might be able to. 
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Item 3. Make copying cheap and correct for objects in containers. 

Containers hold objects, but not the ones you give them. Furthermore, when you get an 
object from a container, the object you get is not the one that was in the container. 
Instead, when you add an object to a container (via. e.g.. insert or push_back. etc.), 
what goes into the container is a copy of the object you specify. When you get an 
object from a container (via. e.g.. front or back), what you set is a copy of what was 
contained. Copy in, copy out. That's the STL way. 

Once an object is in a container, it's not uncommon for it to be copied further. If you 
insert something into or erase something from a vector, string, or deque, existing 
container elements are typically moved (copied) around (see Items 5 and 14). If you 
use any of the sorting algorithms (see Item 31); next_permutation or 
previous_permutation; remove, unique, or their ilk (see Hem 32); rotate or reverse, 
etc., objects will be moved (copied) around. Yes, copying objects is the STL way. 

It may interest you to know how all this copying is accomplished. That's easy. An 
object is copied by using its copying member functions, in particular, its copy 
constructor and its copy assignment operator. (Clever names, no?) For a user-defined 
class like Widget, these functions are traditionally declared like this: 

 
class Widget {  
public: 
  ... 
  Widget(const Widget&);                              // copy constructor 
  Widget& operator=(const Widget&);           // copy assignment operator 
  ... 
} 

As always, if you don't declare these functions yourself, your compilers will declare 
them for you. Also as always, the copying of built-in types (e.g., ints, pointers, etc.) is 
accomplished by simply copying the underlying bits. (For details on copy constructors 
and assignment operators, consult any introductory book on C++. In Effective C++, 
Items 11 and 27 focus on the behavior of these functions.) 

With all this copying taking place, the motivation for this Item should now be clear. If 
you fill a container with objects where copying is expensive, the simple act of putting 
the objects into the container could prove to be a performance bottleneck. The more 
things get moved around in the container, the more memory and cycles you'll blow on 
making copies. Furthermore, if you have objects where "copying" has an 
unconventional meaning, putting such objects into a container will invariably lead to 
grief. (For an example of the kind of grief it can lead to. see Item 8.) 

In the presence of inheritance, of course, copying leads to slicing. That is, if you create 
a container of base class objects and you try to insert derived class objects into it, the 
derivedness of the objects will be removed as the objects are copied (via the base class 
copy constructor) into the container: 
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vector<Widget> vw; 
class SpecialWidget:   // SpecialWidget inherits from 

public Widget {...);   // Widget above 
SpecialWidget sw; 
vw.push_back(sw);    // sw is copied as a base class 

II object into vw. Its specialness  
// is lost during the copying 

The slicing problem suggests that inserting a derived class object into a container of 
base class objects is almost always an error. If you want the resulting object to act like 
a derived class object, e.g., invoke derived class virtual functions, etc., it is always an 
error. (For more background on the slicing problem, consult Effective C++. Item 22. 
For another example of where it arises in the STL, see Item 38.) 

An easy way to make copying efficient, correct, and immune to the slicing problem is 
to create containers of pointers instead of containers of objects. That is, instead of 
creating a container of Widget, create a container of Widget*. Copying pointers is fast, 
it always does exactly what you expect (it copies the bits making up the pointer), and 
nothing gets sliced when a pointer is copied. Unfortunately, containers of pointers 
have their own STL-related headaches. You can read about them in Items 7 and 33. As 
you seek to avoid those headaches while still dodging efficiency, correctness, and 
slicing concerns, you'll probably discover that containers of smart pointers are an 
attractive option. To learn more about this option, turn to Item 7. 

If all this makes it sound like the STL is copy-crazy, think again. Yes, the STL makes 
lots of copies, but it's generally designed to avoid copying objects unnecessarily. In 
fact, it's generally designed to avoid creating objects unnecessarily. Contrast this with 
the behavior of C's and C++'s only built-in container, the lowly array: 

 
Widget w[maxNumWidgets];     // create an array of maxNumWidgets 

   // Widgets, default-constructing each one 

This constructs maxNumWidgets Widget objects, even if we normally expect to use 
only a few of them or we expect to immediately overwrite each default-constructed 
value with values we get from someplace else (e.g.. a file). Using the STL instead of 
an array, we can use a vector that grows when it needs to: 

 
vector<Widget> vw;                        // create a vector with zero Widget 

// objects that will expand as needed 

We can also create an empty vector that contains enough space for maxNumWidgets 
Widgets, but where zero Widgets have been constructed: 

 
vector<Widget> vw; 
vw.reserve(maxNumWidgets);         // see Item 14 for details on reserve 
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Compared to arrays. STL containers are much more civilized. They create (by 
copying) only as many objects as you ask for, they do it only when you direct them to, 
and they use a default constructor only when you say they should. Yes, STL containers 
make copies, and yes, you need to understand that, but don't lose sight of the fact that 
they're still a big step up from arrays. 

Item 4. Call empty instead of checking size() against zero. 

For any container c, writing 
 
if (c.size() == 0)...  

is essentially equivalent to writing 
 
if (c.empty())... 

That being the case, you might wonder why one construct should be preferred to the 
other, especially in view of the fact that empty is typically implemented as an inline 
function that simply returns whether size returns 0. 

You should prefer the construct using empty, and the reason is simple: empty is a 
constant-time operation for all standard containers, but for some list implementations, 
size takes linear time. 

But what makes list so troublesome? Why can't it, too. offer a constant-time size? The 
answer has much to do with list's unique splicing functions. Consider this code: 

list<int> list1;  
list<int> Iist2; 
... 
list1.splice(                                                    // move ail nodes in Iist2 
  list1.end(), Iist2,                                          // from the first occurrence 
  find(list2.begin(), Iist2.end(), 5),                 // of 5 through the last 
  find(list2.rbegin(), Iist2.rend(), 10).base()   // occurrence of 10 to the 
);                                                                   //end of list1. See Item 28 

     // for info on the "base()" call 

This code won't work unless Iist2 contains a 10 somewhere beyond a 5, but let's 
assume that's not a problem. Instead, let's focus on this question: how many elements 
are in list1 after the splice? Clearly, list1 after the splice has as many elements as it did 
before the splice plus however many elements were spliced into it. But how many 
elements were spliced into it? As many as were in the range defined by 
find(list2.begin(), Iist2.end(), 5) and find(list2.rbegin(), Iist2.rend(), 10).base(). Okay, 
how many is that? Without traversing the range and counting them, there's no way to 
know. And therein lies the problem. 

Suppose you're responsible for implementing list, list isn't just any container, it's a 
standard container, so you know your class will be widely used. You naturally want 
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your implementation to be as efficient as possible. You figure that clients will 
commonly want to find out how many elements are in a list, so you'd like to make size 
a constant- time operation. You'd thus like to design list so it always knows how many 
elements it contains. 

At the same time, you know that of all the standard containers, only list offers the 
ability to splice elements from one place to another without copying any data. You 
reason that many list clients will choose list specifically because it offers high-
efficiency splicing. They know that splicing a range from one list to another can be 
accomplished in constant time, and you know that they know it, so you certainly want 
to meet their expectation that splice is a constant-time member function. 

This puts you in a quandary. If size is to be a constant-time operation, each list 
member function must update the sizes of the lists on which it operates. That includes 
splice. But the only way for splice to update the sizes of the lists it modifies is for it to 
count the number of elements being spliced, and doing that would prevent splice from 
achieving the constant-time performance you want for it. If you eliminate the 
requirement that splice update the sizes of the lists it's modifying, splice can be made 
constant-time, but then size becomes a linear-time operation. In general, it will have to 
traverse its entire data structure to see how many elements it contains. No matter how 
you look at it, something — size or splice — has to give. One or the other can be a 
constant-time operation, but not both. 

Different list implementations resolve this conflict in different ways, depending on 
whether their authors choose to maximize the efficiency of size or splice. If you 
happen to be using a list implementation where a constant-time splice was given 
higher priority than a constant-time size, you'll be better off calling empty than size, 
because empty is always a constant-time operation. Even if you're not using such an 
implementation, you might find yourself using such an implementation in the future. 
For example, you might port your code to a different platform where a different 
implementation of the STL is available, or you might just decide to switch to a 
different STL implementation for your current platform. 

No matter what happens, you can't go wrong if you call empty instead of checking to 
see if size() == 0. So call empty whenever you need to know whether a container has 
zero elements. 

Item 5. Prefer range member functions to their single-element 
counterparts. 

Quick! Given two vectors, v1 and v2, what's the easiest way to make v1’s contents be 
the same as the second half of v2's? Don't agonize over the definition of "half when v2 
has an odd number of elements, just do something reasonable. 

Time's up! If your answer was 
 
v1.assign(v2.begin() + v2.size() /2, v2.end()); 
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or something quite similar, you get full credit and a gold star. If your answer involved 
more than one function call, but didn't use any kind of loop, you get nearly full credit, 
but no gold star. If your answer involved a loop, you've got some room for 
improvement, and if your answer involved multiple loops, well, let's just say that you 
really need this book. 

By the way, if your response to the answer to the question included "Huh?", pay close 
attention, because you're going to learn something really useful. 

This quiz is designed to do two things. First, it affords me an opportunity to remind 
you of the existence of the assign member function, a convenient beast that too many 
programmers overlook. It's available for all the standard sequence containers (vector, 
string, deque, and list). Whenever you have to completely replace the contents of a 
container, you should think of assignment. If you're just copying one container to 
another of the same type, operator= is the assignment function of choice, but as this 
example demonstrates, assign is available for the times when you want to give a 
container a completely new set of values, but operator= won't do what you want. 

The second reason for the quiz is to demonstrate why range member functions are 
superior to their single-element alternatives. A range member function is a member 
function that, like STL algorithms, uses two iterator parameters to specify a range of 
elements over which something should be done. Without using a range member 
function to solve this Item's opening problem, you'd have to write an explicit loop, 
probably something like this: 

 
vector<Widget> v1, v2;   // assume v1 and v2 are vectors 

//of Widgets 
v1.clear(); 
for ( vector<Widget>::const_iterator ci = v2.begin() + v2.size() / 2;  

 ci != v2.end(); 
 ++ci) 

  v1.push_back(*ci); 

Item 43 examines in detail why you should try to avoid writing explicit loops, but you 
don't need to read that Item to recognize that writing this code is a lot more work than 
is writing the call to assign. As we'll see shortly, the loop also happens to impose an 
efficiency penalty, but we'll deal with that in a moment. 

One way to avoid the loop is to follow the advice of Item 43 and employ an algorithm 
instead: 

 
v1.clear(); 
copy(v2.begin() + v2.size() / 2, v2.end(), back_inserter(v1 )); 

Writing this is still more work than writing the call to assign. Furthermore, though no 
loop is present in this code, one certainly exists inside copy (see Item 43). As a result, 
the efficiency penalty remains. Again. I'll discuss that below. At this point, I want to 
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digress briefly to observe that almost all uses of copy where the destination range is 
specified using an insert iterator (i.e.. via inserter, back_inserter. or front_inserter) can 
be — should be — replaced with calls to range member functions. Here, for example, 
the call to copy can be replaced with a range version of insert: 

 
v1 .insert(v1 .end(), v2.begin() + v2.size() / 2, v2.end()); 

This involves slightly less typing than the call to copy, but it also says more directly 
what is happening: data is being inserted into v1. The call to copy expresses that, too, 
but less directly. It puts the emphasis in the wrong place. The interesting aspect of 
what is happening is not that elements are being copied, it's that v1 is having new data 
added to it. The insert member function makes that clear. The use of copy obscures it. 
There's nothing interesting about the fact that things are being copied, because the STL 
is built on the assumption that things will be copied. Copying is so fundamental to the 
STL. it's the topic of Item 3 in this book! 

Too many STL programmers overuse copy, so the advice I just gave bears repeating: 
Almost all uses of copy where the destination range is specified using an insert iterator 
should be replaced with calls to range member functions. 

• Returning to our assign example, we've already identified two reasons to prefer 
range member functions to their single-element counterparts: 

• It's generally less work to write the code using the range member functions. 

• Range member functions tend to lead to code that is clearer and more 
straightforward. 

In short, range member functions yield code that is easier to write and easier to 
understand. What's not to like'.' 

Alas, some will dismiss these arguments as matters of programming style, and 
developers enjoy arguing about style issues almost as much as they enjoy arguing 
about which is the One True Editor. (As if there's any doubt. It's Emacs.) It would be 
helpful to have a more universally agreed-upon criterion for establishing the 
superiority of range member functions to their single-element counterparts. For the 
standard sequence containers, we have one: efficiency. When dealing with the 
standard sequence containers, application of single-element member functions makes 
more demands on memory allocators, copies objects more frequently, and/or performs 
redundant operations compared to range member functions that achieve the same end. 

For example, suppose you'd like to copy an array of ints into the front of a vector. (The 
data might be in an array instead of a vector in the first place, because the data came 
from a legacy C API. For a discussion of the issues that arise when mixing STL 
containers and C APIs, see Item 16.) Using the vector range insert function, it's 
honestly trivial: 

 
int data[numValues];     // assume numValues is 
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// defined elsewhere  
vector<int> v; 
... 
v.insert(v.begin(), data, data + numValues);   // insert the ints in data 

  //into v at the front 

Using iterative calls to insert in an explicit loop, it would probably look more or less 
like this: 

 
vector<int>::iterator insertLoc(v.begin());  
for (int i = 0; i < numValues; ++i) { 

insertLoc = v.insert(insertLoc, data[i]);  
} 

Notice how we have to be careful to save the return value of insert for the next loop 
iteration. If we didn't update insertLoc after each insertion, we'd have two problems. 
First, all loop iterations after the first would yield undefined behavior, because each 
insert call would invalidate insertLoc. Second, even if insertLoc remained valid, we'd 
always insert at the front of the vector (i.e., at v.begin()), and the result would be that 
the ints copied into v would end up in reverse order. 

If we follow the lead of Item 43 and replace the loop with a call to copy, we get 
something like this: 

 
copy(data. data + numValues, inserter(v, v.begin())); 

By the time the copy template has been instantiated, the code based on copy and the 
code using the explicit loop will be almost identical, so for purposes of an efficiency 
analysis, we'll focus on the explicit loop, keeping in mind that the analysis is equally 
valid for the code employing copy. Looking at the explicit loop just makes it easier to 
understand where the efficiency hits come from. Yes, that's "hits." plural, because the 
code using the single-element version of insert levies up to three different performance 
taxes on you, none of which you pay if you use the range version of insert. 

The first tax consists of unnecessary function calls. Inserting numValues elements into 
v one at a time naturally costs you numValues calls to insert. Using the range form of 
insert, you pay for only one function call, a savings of numValues-1 calls. Of course, 
it's possible that inlining will save you from this tax, but then again, it's possible that it 
won't. Only one thing is sure. With the range form of insert, you definitely won't pay 
it. 

Inlining won't save you from the second tax, which is the cost of inefficiently moving 
the existing elements in v to their final post-insertion positions. Each time insert is 
called to add a new value to v. every element above the insertion point must be moved 
up one position to make room for the new element. So the element at position p must 
be moved up to position p+1, etc. In our example, we're inserting numValues elements 
at the front of v. That means that each element in v prior to the insertions will have to 
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be shifted up a total of numValues positions. But each will be shifted up only one 
position each time insert is called, so each element will be moved a total of numValues 
times. If v has n elements prior to the insertions, a total of n*numValues moves will 
take place. In this example, v holds ints, so each move will probably boil down to an 
invocation of memmove, but if v held a user-defined type like Widget, each move 
would incur a call to that type's assignment operator or copy constructor. (Most calls 
would be to the assignment operator, but each time the last element in the vector was 
moved, that move would be accomplished by calling the element's copy constructor.) 
In the general case, then, inserting numValues new objects one at a time into the front 
of a vector<Widget> holding n elements exacts a cost of n*numValues function calls: 
(n-l)*numValues calls to the Widget assignment operator and numValues calls to the 
Widget copy constructor. Even if these calls are inlined, you're still doing the work to 
move the elements in v numValues times. 

In contrast, the Standard requires that range insert functions move existing container 
elements directly into their final positions, i.e., at a cost of one move per element. The 
total cost is n moves, numValues to the copy constructor for the type of objects in the 
container, the remainder to that type's assignment operator. Compared to the single-
element insert strategy, the range insert performs n*(numValues-l) fewer moves. 
Think about that for a minute. It means that if numValues is 100, the range form of 
insert would do 99% fewer moves than the code making repeated calls to the single-
element form of insert! 

Before I move on to the third efficiency cost of single-element member functions vis-
a-vis their range counterparts. I have a minor correction. What I wrote in the previous 
paragraph is the truth and nothing but the truth, but it's not quite the whole truth. A 
range insert function can move an element into its final position in a single move only 
if it can determine the distance between two iterators without losing its place. This is 
almost always possible, because all forward iterators offer this functionality, and 
forward iterators are nearly ubiquitous. All iterators for the standard containers offer 
forward iterator functionality. So do the iterators for the nonstandard hashed containers 
(see Item 25). Pointers acting as iterators into arrays offer such functionality, too. In 
fact, the only standard iterators that don't offer forward iterator capabilities are input 
and output iterators. Thus, everything I wrote above is true except when the iterators 
passed to the range form of insert are input iterators (e.g. istream_iterators — see Item 
6). In that case only, range insert must move elements into their final positions one 
place at a time, too, and its advantage in that regard ceases to exist. (For output 
iterators, this issue fails to arise, because output iterators can't be used to specify a 
range for insert.) 

The final performance tax levied on those so foolish as to use repeated single-element 
insertions instead of a single range insertion has to do with memory allocation, though 
it has a nasty copying side to it, too. As Item 14 explains, when you try to insert an 
element into a vector whose memory is full, the vector allocates new memory with 
more capacity, copies its elements from the old memory to the new memory, destroys 
the elements in the old memory, and deallocates the old memory. Then it adds the 
element that is being inserted. Item 14 also explains that most vector implementations 
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double their capacity each time they run out of memory, so inserting numValues new 
elements could result in new memory being allocated up to log2numValues times. Item 
14 notes that implementations exist that exhibit this behavior, so inserting 1000 
elements one at a time can result in 10 new allocations (including their incumbent 
copying of elements). In contrast (and. by now, predictably), a range insertion can 
figure out how much new memory it needs before it starts inserting things (assuming it 
is given forward iterators), so it need not reallocate a vector's underlying memory more 
than once. As you can imagine, the savings can be considerable. 

The analysis I've just performed is for vectors, but the same reasoning applies to 
strings, too. For deques, the reasoning is similar, but deques manage their memory 
differently from vectors and strings, so the argument about repeated memory 
allocations doesn't apply. The argument about moving elements an unnecessarily large 
number of times, however, generally does apply (though the details are different), as 
does the observation about the number of function calls. 

Among the standard sequence containers, that leaves only list, but here, too, there is a 
performance advantage to using a range form of insert instead of a single-element 
form. The argument about repeated function calls continues to be valid, of course, but, 
because of the way linked lists work, the copying and memory allocation issues fail to 
arise. Instead, there is a new problem: repeated superfluous assignments to the next 
and prev pointers of some nodes in the list. 

Each time an element is added to a linked list, the list node holding that element must 
have its next and prev pointers set, and of course the node preceding the new node 
(let's call it B, for "before") must set its next pointer and the node following the new 
node (we'll call it A. for "after") must set its prev pointer: 

 

When a series of new nodes is added one by one by calling list s single-element insert, 
all but the last new node will set its next pointer twice. once to point to A. a second 
time to point to the element inserted after it. A will set its prev pointer to point to a 
new node each time one is inserted in front of it. If numValues nodes are inserted in 
front of A. numValues-1 superfluous assignments will be made to the inserted nodes' 
next pointers, and numValues-1 superfluous assignments will be made to A's prev 
pointer. All told, that's 2*(numValues-l) unnecessary pointer assignments. Pointer 
assignments are cheap, of course, but why pay for them if you don't have to? 
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By now it should be clear that you don't have to, and the key to evading the cost is to 
use list's range form of insert. Because that function knows how many nodes will 
ultimately be inserted, it can avoid the superfluous pointer assignments, using only a 
single assignment to each pointer to set it to its proper post-insertion value. 

For the standard sequence containers, then, a lot more than programming style is on 
the line when choosing between single-element insertions and range insertions. For the 
associative containers, the efficiency case is harder to make, though the issue of extra 
function call overhead for repeated calls to single-element insert continues to apply. 
Furthermore, certain special kinds of range insertions may lead to optimization 
possibilities in associative containers, too, but as far as I can tell, such optimizations 
currently exist only in theory. By the time you read this, of course, theory may have 
become practice, so range insertions into associative containers may indeed be more 
efficient than repeated single-element insertions. Certainly they are never less 
efficient, so you have nothing to lose by preferring them. 

Even without the efficiency argument, the fact remains that using range member 
functions requires less typing as you write the code, and it also yields code that is 
easier to understand, thus enhancing your software's long-term maintainability. Those 
two characteristics alone should convince you to prefer range member functions. The 
efficiency edge is really just a bonus. 

Having droned on this long about the wonder of range member functions, it seems 
only appropriate that I summarize them for you. Knowing which member functions 
support ranges makes it a lot easier to recognize opportunities to use them. In the 
signatures below, the parameter type iterator literally means the iterator type for the 
container, i.e. container::iterator. The parameter type InputIterator, on the other hand, 
means that any input iterator is acceptable. 

� Range construction. All standard containers offer a constructor of this form: 
 

container::container( Inputlterator begin,        // beginning of range 
Inputlterator end):             //end of range 

When the iterators passed to this constructor are istream_iterators or 
istreambuf_iterators (see Item 29), you may encounter C++'s most 
astonishing parse, one that causes your compilers to interpret this construct 
as a function declaration instead of as the definition of a new container 
object. Item 6 tells you everything you need to know-about that parse, 
including how to defeat it. 

� Range insertion. All standard sequence containers offer this form of insert: 
 
void container::insert(iterator position,      // where to insert the range 

Inputlterator begin,      // start of range to insert 
InputIterator end);       // end of range to insert 
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Associative containers use their comparison function to determine where 
elements go, so they offer a signature that omits the position parameter: 

 
void container::insert(lnputIterator begin, Inputlterator end); 

When looking for ways to replace single-element inserts with range 
versions, don't forget that some single-element variants camouflage 
themselves by adopting different function names. For example, push_front 
and push_back both insert single elements into containers, even though 
they're not called insert. If you see a loop calling push_front or push_back, 
or if you see an algorithm such as copy being passed front_inserter or 
back_inserter as a parameter, you've discovered a place where a range form 
of insert is likely to be a superior strategy. 

� Range erasure. Every standard container offers a range form of erase, but the 
return types differ for sequence and associative containers. Sequence containers 
provide this, 

 
iterator container::erase(iterator begin, iterator end);  

while associative containers offer this:  
 

void container::erase(iterator begin, iterator end); 

Why the difference? The claim is that having the associative container 
version of erase return an iterator (to the element following the one that 
was erased) would incur an unacceptable performance penalty. I'm one of 
many who find this claim specious, but the Standard says what the 
Standard says, and what the Standard says is that sequence and associative 
container versions of erase have different return types. 

Most of this Item's efficiency analysis for insert has analogues for erase. 
The number of function calls is still greater for repeated calls to single-
element erase than for a single call to range erase. Element values must still 
be shifted one position at a time towards their final destination when using 
single-element erase, while range erase can move them into their final 
positions in a single move. 

One argument about vector's and string's insert that tails to apply to erase 
has to do with repeated allocations. (For erase, of course, it would concern 
repeated deallocations.) That's because the memory for vectors and strings 
automatically grows to accommodate new elements, but it doesn't 
automatically shrink when the number of elements is reduced. (Item 17 
describes how you may reduce the unnecessary memory held by a vector or 
string.) 
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One particularly important manifestation of range erase is the erase-remove 
idiom. You can read all about it in Item 32. 

� Range assignment. As I noted at the beginning of this Item, all standard 
sequence containers offer a range form of assign: 

 
void container::assign(lnputIterator begin, Inputlterator end); 

So there you have it, three solid arguments for preferring range member functions to 
their single-element counterparts. Range member functions are easier to write, they 
express your intent more clearly, and they exhibit higher performance. That's a troika 
that's hard to beat. 

Item 6. Be alert for C++'s most vexing parse. 

Suppose you have a file of ints and you'd like to copy those ints into a list. This seems 
like a reasonable way to do it: 

 
ifstream dataFile("ints.dat"); 
list<int> data(istream_iterator<int>(dataFile),   // warning! this doesn't do  

    istream_iterator<int>());               // what you think it does 

The idea here is to pass a pair of istream_iterators to list's range constructor (see Item 
5), thus copying the ints in the file into the list. 

This code will compile, but at runtime, it won't do anything. It won't read any data out 
of a file. It won't even create a list. That's because the second statement doesn't declare 
a list and it doesn't call a constructor. What it does is ... well, what it does is so strange. 
I dare not tell you straight out, because you won't believe me. Instead, I have to 
develop the explanation, bit by bit. Are you sitting down? If not. you might want to 
look around for a chair... 

We'll start with the basics. This line declares a function f taking a double and returning 
an int: 

 
int f(double d); 

This next line does the same thing. The parentheses around the parameter name d are 
superfluous and are ignored: 

 
int f(double (d));                 // same as above; parens around d are ignored 

 

The line below declares the same function. It simply omits the parameter name: 
 
int f(double);                      // same as above; parameter name is omitted 
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Those three declaration forms should be familiar to you. though the ability to put 
parentheses around a parameter name may have been new. (It wasn't long ago that it 
was new to me.) 

Let's now look at three more function declarations. The first one declares a function g 
taking a parameter that's a pointer to a function taking nothing and returning a double: 

 
int g(double (*pf)());          // g takes a pointer to a function as a parameter 

Here's another way to say the same thing. The only difference is that pf is declared 
using non-pointer syntax (a syntax that's valid in both C and C++): 

 
int g(double pf());               // same as above; pf is implicitly a pointer 

As usual, parameter names may be omitted, so here's a third declaration for g, one 
where the name pf has been eliminated: 

 
int g(double ());                  // same as above; parameter name is omitted 

Notice the difference between parentheses around a parameter name (such as d in the 
second declaration for f) and standing by themselves (as in this example). Parentheses 
around a parameter name are ignored, but parentheses standing by themselves indicate 
the existence of a parameter list: they announce the presence of a parameter that is 
itself a pointer to a function. 

Having warmed ourselves up with these declarations for f and g. we are ready to 
examine the code that began this Item. Here it is again: 

 
list<int> data(istream_iterator<int>(dataFile), istream_iterator<int>()); 

Brace yourself. This declares a function, data, whose return type is list<int>. The 
function data takes two parameters: 

� The first parameter is named dataFile. It's type is istream_iterator<int>. The 
parentheses around dataFile are superfluous and are ignored. 

� The second parameter has no name. Its type is pointer to function taking 
nothing and returning an istream_iterator<int>. 

Amazing, huh? But it's consistent with a universal rule in C++, which says that pretty 
much anything that can be parsed as a function declaration will be. if you've been 
programming in C++ for a while, you've almost certainly encountered another 
manifestation of this rule. How many times have you seen this mistake? 

 
class Widget {...};                     // assume Widget has a default constructor 
Widget w();                               //'uh oh... 
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This doesn't declare a Widget named w, it declares a function named w that takes 
nothing and returns a Widget. Learning to recognize this faux pas is a veritable rite of 
passage for C++ programmers. 

All of which is interesting (in its own twisted way), but it doesn't help us say what we 
want to say, which is that a list<int> object should be initialized with the contents of a 
file. Now that we know what parse we have to defeat, that's easy to express. It's not 
legal to surround a formal parameter declaration with parentheses, but it is legal to sur-
round an argument to a function call with parentheses, so by adding a pair of 
parentheses, we force compilers to see things our way: 

 
list<int> data((istream_iterator<int>(dataFile)),     // note new parens 
istream_iterator<int>0);                      // around first argument 

     // to list's constructor 

This is the proper way to declare data, and given the utility of istream_iterators and 
range constructors (again, see Item 5), it's worth knowing how to do it. 

Unfortunately, not all compilers currently know it themselves. Of the several I tested, 
almost half refused to accept data's declaration unless it was incorrectly declared 
without the additional parentheses! To placate such compilers, you could roll your 
eyes and use the declaration for data that I've painstakingly explained is incorrect, but 
that would be both unportable and short-sighted. After all, compilers that currently get 
the parse wrong will surely correct it in the future, right? (Surely!) 

A better solution is to step back from the trendy use of anonymous istream_iterator 
objects in data's declaration and simply give those iterators names. The following code 
should work everywhere: 

 
ifstream dataFile(" ints.dat"}; 
istream_iterator<int> dataBegin(dataFile); 
istream_iterator<int> dataEnd; 
list<int> data(dataBegin. dataEnd); 

This use of named iterator objects runs contrary to common STL programming style, 
but you may decide that's a price worth paying for code that's unambiguous to both 
compilers and the humans who have to work with them. 

Item 7. When using containers of newed pointers, remember to 
delete the pointers before the container is destroyed. 

Containers in the STL are remarkably smart. They serve up iterators for both forward 
and reverse traversals (via begin, end, rbegin, etc.): they tell you what type of objects 
they contain (via their value_type typedef); during insertions and erasures, they take 
care of any necessary memory management; they report both how many objects they 
hold and the most they may contain (via size and max_size, respectively); and of 
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course they automatically destroy each object they hold when they (the containers) are 
themselves destroyed. 

Given such brainy containers, many programmers stop worrying about cleaning up 
after themselves. Heck, they figure, their containers will do the worrying for them. In 
many cases, they're right, but when the containers hold pointers to objects allocated 
with new, they're not right enough. Sure, a container of pointers will destroy each 
element it contains when it (the container) is destroyed, but the "destructor" for a 
pointer is a no-op! It certainly doesn't call delete. 

As a result, the following code leads straight to a resource leak: 
 
void doSomething()  
{  

vector<Widget*> vwp; 
for (int i = 0; i < SOME_MAGIC_NUMBER; ++i)  

   vwp.push_back(new Widget); 
…      // use vwp 

}       //Widgets are leaked here! 
 

Each of vwp's elements is destroyed when vwp goes out of scope, but that doesn't 
change the fact that delete was never used for the objects conjured up with new. Such 
deletion is your responsibility, not that of your vector. This is a feature. Only you 
know whether the pointers should be deleted. 

Usually, you want them to be. When that's the case, making it happen seems easy 
enough: 

 
void doSomething()  
{ 

vector<Widget*> vwp; 
…    // as before 
for (vector<Widget*>::iterator i = vwp.begin(); 
 i != vwp.end(), 

++i) { 
  delete *i; 
 } 
 

This works, but only if you're not terribly picky about what you mean by "works". One 
problem is that the new for loop does pretty much what for_each does, but it's not as 
clear as using for_each (see Item 43). Another is that the code isn't exception safe. If 
an exception is thrown between the time vwp is filled with pointers and the time you 
get around to deleting them, you've leaked resources again. Fortunately, both problems 
can be overcome. 
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To turn your for_each-like loop into an actual use of for_each, you need to turn delete 
into a function object. That's child's play, assuming you have a child who likes to play 
with the STL: 

 
template<typename T> 

struct DeleteObject:              // Item 40 describes why 
public unary_function<const T*, void> {            //this inheritance is here 

 
void operator()(const T* ptr) const 

delete ptr; 
} 

}; 
 

Now you can do this: 
 
void doSomething()  
{ 

… // as before 
for_each(vwp.begin(), vwp.end(), DeleteObject<Widget>); 

} 
 

Unfortunately, this makes you specify the type of objects that DeleteObject will be 
deleting (in this case. Widget). That's annoying, vwp is a vector<Widget*>, so of 
course DeleteObject will be deleting Widget* pointers! Duh! This kind of redundancy 
is more than just annoying, because it can lead to bugs that are difficult to track down. 
Suppose, for example, somebody ill-advisedly decides to inherit from string: 

 
class SpecialString: public string { ...}; 

This is risky from the get-go, because string, like all the standard STL containers, 
lacks a virtual destructor, and publicly inheriting from classes without virtual 
destructors is a major C++ no-no. (For details, consult any good book on C++. in 
Effective C++. the place to look is Item 14.) Still, some people do this kind of thing, 
so lets consider how the following code would behave: 

 
void doSomething() 
{ 

deque<SpecialString*> dssp; 
… 
for_each( dssp.begin(), dssp.end(),      // undefined behavior! Deletion 

DeleteObject<string>());         //of a derived object via a base  
}                                                                   // class pointer where there is 

    //no virtual destructor 
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Note how dssp is declared to hold SpecialString* pointers, but the author of the 
for_each loop has told DeleteObject that it will be deleting string* pointers. It's easy to 
understand how such an error could arise. SpecialString undoubtedly acts a lot like a 
string, so one can forgive its clients If they occasionally forget that they are using 
SpecialStrings instead of strings. 

We can eliminate the error (as well as reduce the number of keystrokes required of 
DeleteObject's clients) by having compilers deduce the type of pointer being passed to 
DeleteObject::operator(). All we need to do is move the templatization from 
DeleteObject to its operator(): 

 
struct DeleteObject {     // templatization and base 

// class removed here 
template<typename T>   II templatization added here 
void operator()(const T* ptr) const  
{  

delete ptr; 
} 

} 
 

Compilers know the type of pointer being passed to DeleteObject::operator(), so we 
have them automatically instantiate an operator() taking that type of pointer. The 
downside to this type deduction is that we give up the ability to make DeleteObject 
adaptable (see Item 40). Considering how DeleteObject is designed to be used, it's 
difficult to imagine how that could be a problem. 

With this new version of DeleteObject, the code for SpecialString clients looks like 
this: 
 

void doSomething()  
{  

deque<SpecialString*> dssp; 
… 
for_each( dssp.begin(), dssp.end(), 
DeleteObject ());                              // ah! well-defined behavior! 

} 
 

Straightforward and type-safe, just the way we like it. 

But still not exception-safe. If an exception is thrown after the Special-Strings are 
newed but before invocation of the call to for_each, it's Leakapalooza. That problem 
can be addressed in a variety of ways, but the simplest is probably to replace the 
container of pointers with a container of smart pointers, typically reference-counted 
pointers. (If you're unfamiliar with the notion of smart pointers, you should be able to 
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find a description in any intermediate or advanced C++ book. In More Effective C++, 
the material is in Item 28.) 

The STL itself contains no reference-counting smart pointer, and writing a good one 
— one that works correctly all the time — is tricky1 enough that you don't want to do it 
unless you have to. I published the code for a reference-counting smart pointer in 
More Effective C++ in 1996, and despite basing it on established smart pointer 
implementations and submitting it to extensive pre-publication reviewing by 
experienced developers, a small parade of valid bug reports has trickled in for years. 
The number of subtle ways in which reference-counting smart pointers can fail is 
remarkable. (For details, consult the More Effective C++ errata list [28].) 

Fortunately, there's rarely a need to write your own, because proven implementations 
are not difficult to find. One such smart pointer is shared_ptr in the Boost library (see 
Item 50). With Boost's shared_ptr, this Item's original example can be rewritten as 
follows: 

 
void doSomething() 
{ 

typedef boost::shared_ ptr<Widget> SPW; //SPW = "shared_ptr 
//             to Widget" 

vector<SPW> vwp; 
for (int i = 0; i < SOME_MAGIC_NUMBER; ++i) 

vwp.push_back(SPW new Widget);   // create a SPW from a 
// Widget*, then do a 
//push_back on it 

…       // use vwp 
}                                                                  // no Widgets are leaked here, not 

   // even if an exception is thrown 
   //in the code above 

One thing you must never be fooled into thinking is that you can arrange for pointers 
to be deleted automatically by creating containers of auto_ptrs. That's a horrible 
thought, one so perilous. I've devoted Item 8 to why you should avoid it. 

All you really need to remember is that STL containers are smart, but they're not smart 
enough to know whether to delete the pointers they contain. To avoid resource leaks 
when you have containers of pointers that should be deleted, you must either replace 
the pointers with smart reference-counting pointer objects (such as Boost's shared_ptr) 
or you must manually delete each pointer in the container before the container is 
destroyed. 

Finally, it may have crossed your mind that if a struct like DeleteObject can make it 
easier to avoid resource leaks for containers holding pointers to objects, it should be 
possible to create a similar DeleteArray struct to make it easier to avoid resource leaks 
for containers holding pointers to arrays. Certainly it is possible, but whether it is 
advisable is a different matter. Item 13 explains why dynamically allocated arrays are 
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almost always inferior to vector and string objects, so before you sit down to write 
DeleteArray, please review Item 13 first. With luck, you'll decide that DeleteArray is a 
struct whose time will never come. 

Item 8. Never create containers of auto_ptrs. 

Frankly, this Item shouldn't need to be in Effective STL. Containers of auto_ptr 
(COAPs) are prohibited. Code attempting to use them shouldn't compile. The C++ 
Standardization Committee expended untold effort to arrange for that to be the case.1 I 
shouldn't have to say anything about COAPs, because your compilers should have 
plenty to say about such containers, and all of it should be uncomplimentary. 

Alas, many programmers use STL platforms that fail to reject COAPs. Alas even 
more, many programmers see in COAPs the chimera of a simple, straightforward, 
efficient solution to the resource leaks that often accompany containers of pointers (see 
Items 7 and 33). As a result, many programmers are tempted to use COAPs, even 
though it's not supposed to be possible to create them. 

I'll explain in a moment why the spectre of COAPs was so alarming that the 
Standardization Committee took specific steps to make them illegal. Right now. I want 
to focus on a disadvantage that requires no knowledge of auto_ptr, or even of 
containers: COAPs aren't portable. How could they be? The Standard for C++ forbids 
them, and better STL platforms already enforce this. It's reasonable to assume that as 
time goes by. STL platforms that currently fail to enforce this aspect of the Standard 
will become more compliant, and when that happens, code that uses COAPs will be 
even less portable than it is now. If you value portability (and you should), you'll reject 
COAPs simply because they fail the portability test. 

But maybe you're not of a portability mind-set. If that's the case, kindly allow me to 
remind you of the unique — some would say bizarre — definition of what it means to 
copy an auto_ptr. 

When you copy an auto_ptr. ownership of the object pointed to by the auto_ptr is 
transferred to the copying auto_ptr. and the copied auto_ptr is set to NULL. You read 
that right: to copy an auto_ptr is to change its value: 

 
auto_ptr<Widget> pw1 (new Widget);    // pwl1points to a Widget 
auto_ptr<Widget> pw2(pw1);                 // pw2 points to pw1's Widget; 

  // pw1 is set to NULL. (Ownership  
  // of the Widget is transferred  
 //from pw1 to pw2.) 

pw1 = pw2;                                           // pw1 now points to the Widget 
// again; pw2 is set to NULL 

                                              
1 If you’re interested in the tortured history of auto_ptr standardization, point your web browser to the auto_ptr 
Update page [29] at the More Effective C++ Web site. 
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This is certainly unusual, and perhaps it's interesting, but the reason you (as a user of 
the STL) care is that it leads to some very surprising behavior. For example, consider 
this innocent-looking code, which creates a vector of auto_ptr<Widget> and then sorts 
it using a function that compares the values of the pointed-to Widgets: 

 
bool widgetAPCompare(const auto_ptr<Widget>& lhs,  

const auto_ptr<Widget>& rhs) { 
return *lhs < *rhs;    //for this example, assume that 

}      // operator< exists for Widgets 
vector<auto_ptr<Widget> > widgets;     // create a vector and then fill it 

//with auto_ptrs to Widgets;  
// remember that this should 
//not compile! 

Sort(widgets.begin(), widgets.end(),         // sort the vector  
widgetAPCompare); 

Even-thing here looks reasonable, and conceptually, everything is reasonable, but the 
results need not be reasonable at all. For example, one or more of the auto_ptrs in 
widgets may have been set to NULL during the sort. The act of sorting the vector may 
have changed its contents' It is worthwhile understanding how this can be. 

It can be because one approach to implementing sort — a common approach, as it 
turns out — is to use some variation on the quicksort algorithm. The fine points of 
quicksort need not concern us, but the basic idea is that to sort a container, some 
element of the container is chosen as the "pivot element." then a recursive sort is done 
on the values greater than and less than or equal to the pivot element. Within sort, such 
an approach could look something like this: 

 
template<class RandomAccesslterator,              // this declaration for 

class Compare>                                 // sort is copied straight 
void sort( RandomAccesslterator first,                 // out of the Standard 

RandomAccesslterator last, 
Compare comp) 

{ 
// this typedef is described below  
typedef typename iterator_traits<RandomAccesslterator>::value_type 

ElementType;  
RandomAccesslterator i; 
…     // make i point to the pivot element 
ElementType pivotValue(*);          //copy the pivot element into a 

// local temporary variable; see  
//discussion below 

…     //do the rest of the sorting work  
} 
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Unless you're an experienced reader of STL source code, this may look intimidating, 
but it's really not that bad. The only tricky pan is the reference to 
iterator_traits<RandomAccesslterator>::value_type, and that's just the fancy STL way 
of referring to the type of object pointed to by the iterators passed to sort. (When we 
refer to iterator_traits<RandomAccesslterator>::value_type. we must precede it by 
typename. because it's the name of a type that's dependent on a template parameter, in 
this case. RandomAccesslterator. For more information about this use of typename, 
turn to page 7.) 

 

The troublesome statement in the code above is this one.  
 
ElementType pivotValue(*i); 

because it copies an element from the range being sorted into a local temporary object. 
In our case, the element is an auto_ptr<Widget>, so this act of copying silently sets the 
copied auto_ptr — the one in the vector — to NULL. Furthermore, when pivotValue 
goes out of scope, it will automatically delete the Widget it points to. By the time the 
call to sort returns, the contents of the vector will have chanced, and at least one 
Widget will have been deleted. It's possible that several vector elements will have been 
set to NULL and several Widgets will have been deleted, because quicksort is a 
recursive algorithm, so it could well have copied a pivot element at each level of 
recursion. 

This is a nasty trap to fall into, and that's why the Standardization Committee worked 
so hard to make sure you're not supposed to be able to fall into it. Honor its work on 
your behalf, then, by never creating containers of auto_ptrs, even if your STL 
platforms allow it. 

If your goal is a container of smart pointers, this doesn't mean you're out of luck. 
Containers of smart pointers are fine, and Item 50 describes where you can find smart 
pointers that mesh well with STL containers. It's just that auto_ptr is not such a smart 
pointer. Not at all. 

Item 9. Choose carefully among erasing options. 

Suppose you have a standard STL container, c, that holds ints.  
 
Container<int> c; 

and you'd like to get rid of all the objects in c with the value 1963. Surprisingly, the 
way to accomplish this task varies from container type to container type: no single 
approach works for all of them. 

If you have a contiguous-memory container (vector, deque, or string — see Item 1), 
the best approach is the erase-remove idiom (see Item 32): 
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c.erase( remove(c.begin(), c.end(), 1963),      // the erase-remove idiom is 
          c.end());                                             //the best way to get rid of 

// elements with a specific  
// value when c is a vector,  
//string, or deque 

This approach works for lists, too, but, as Item 44 explains, the list member function 
remove is more efficient: 

 
c. remove(1963);                        //the remove member function is the 

// best way to get rid of elements with 
// a specific value when c is a list 

When c is a standard associative container (i.e.. a set. multiset, map. or multimap), the 
use of anything named remove is completely wrong. Such containers have no member 
function named remove, and using the remove algorithm might overwrite container 
values (see Item 32), potentially corrupting the container. (For details on such 
corruption, consult Item 22, which also explains why Irving to use remove on maps 
and multimaps won't compile, and trying to use it on sets and multisets may not 
compile.) 
 

No, for associative containers, the proper way to approach the problem is to call erase: 
 
c.erase(1963);                                // the erase member function is the 
      // best way to get rid of elements with 

// a specific value when c is a  
// standard associative container 

Not only does this do the right thing, it does it efficiently, taking only logarithmic 
time. (The remove-based techniques for sequence containers require linear time.) 
Furthermore, the associative container erase member function has the advantage of 
being based on equivalence instead of equality, a distinction whose importance is 
explained in Item 19. 

Let's now revise the problem slightly. Instead of getting rid of every object in c that 
has a particular value, let's eliminate every object for which the following predicate 
(see Item 39) returns true: 

 
bool badValue(int x);                         // returns whether x is "bad" 
 

For the sequence containers (vector, string, deque, and list), all we need to do is 
replace each use of remove with remove_if, and we're done: 

 
c.erase(remove_if(c.begin(), c.end(), badValue),  // this is the best way to  

   c.end());                                                 // get rid of objects 
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  //where badValue  
  // returns true when c is  
  //a vector, string, or  
  // deque 

c.remove_if(badValue);                    // this is the best way to get rid of 
       // objects where badValue returns  
       //true when c is a list 

For the standard associative containers, it's not quite so straightforward. There are two 
ways to approach the problem, one easier to code, one more efficient. The easier-but-
less-efficient solution uses remove_copy_if to copy the values we want into a new 
container, then swaps the contents of the original container with those of the new one: 

 
AssocContainer<int> c;                                            // c is now one of the 
……                          // standard associative  

                     //containers 
AssocContainer<int> goodValues;                            // temporary container 

// to hold unremoved 
//values 

remove_copy_if(c.begin(), c.end(),                          // copy unremoved 
 inserter( goodValues,                   // values from c to 

 goodValues.end()),       //goodValues 
 badValue): 

c.swap(goodValues):                                               // swap the contents of 
// c and goodValues 

The drawback to this approach is that it involves copying all the elements that aren't 
being removed, and such copying might cost us more than we're interested in paying. 

We can dodge that bill by removing the elements from the original container directly. 
However, because associative containers offer no member function akin to remove_if, 
we must write a loop to iterate over the elements in c.erasing elements as we go. 

Conceptually, the task is simple, and in fact, the code is simple, too. Unfortunately, the 
code that does the job correctly is rarely the code that springs to mind. For example, 
this is what many programmers come up with first: 

 
AssocContainer<int> c; 
...... 
for (AssocContainer<int>::iterator i = c.begin();      // clear, straightforward, 

i!= c.end();                                                       // and buggy code to 
++i) {                                                                // erase every element 

   if (badValue(*i)) c.erase(i);                                  // in c where badValue 
}                                                                              // returns true; don't 

// do this! 
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Alas, this has undefined behavior. When an element of a container is erased, all 
iterators that point to that element are invalidated. Once c.erase(i) returns, i has been 
invalidated. That's bad news for this loop, because after erase returns, i is incremented 
via the ++i part of the for loop. 

To avoid this problem, we have to make sure we have an iterator to the next element of 
c before we call erase. The easiest way to do that is to use postfix increment on i when 
we make the call: 

 
AssocContainer<int> c; 
…… 
for (AssocContainer<int>::iterator i = c.begin();   //the 3rd part of the for  

 i != c.end();                                                   // loop is empty; i is now 
       /*nothing*/ ){                                                 //incremented below 
  if (badValue(*I)) c.erase(i++);                           //for bad values, pass the 

else ++i;                                                       //current i to erase and 
}                                                                          // increment i as a side 

        // effect; for good values, 
        //just increment i 

This approach to calling erase works, because the value of the expression i++ is i's old 
value, but as a side effect, i is incremented. Hence, we pass i's old (unincremented) 
value to erase, but we also increment i itself before erase begins executing. That's 
exactly what we want. As I said, the code is simple, it's just not what most 
programmers come up with the first time they try. 

Let's now revise the problem further. Instead of merely erasing each element for which 
badValue returns true, we also want to write a message to a log file each time an 
element is erased. 

For the associative containers, this is as easy as easy can be, because it requires only a 
trivial modification to the loop we just developed: 

 
ofstream logFile;                                                  // log file to write to 
AssocContainer<int> c; 
… 
for (AssocContainer<int>::iterator i = c.begin();   // loop conditions are the 

   i !=c.end();){                                                //same as before 
if (badValue(*i)){ 
  logFile << "Erasing " << *i <<'\n';                  // write log file 
  c.erase(i++);                                                  // erase element 
} 
else ++i;  

} 
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It's vector, string, and deque that now give us trouble. We can't use the erase-remove 
idiom any longer, because there's no way to get erase or remove to write the log file. 
Furthermore, we can't use the loop we just developed for associative containers, 
because it yields undefined behavior for vectors, strings, and deques! Recall that for 
such containers, invoking erase not only invalidates all iterators pointing to the erased 
element, it also invalidates all iterators beyond the erased element. In our case, that 
includes all iterators beyond i. It doesn't matter if we write i++, ++I, or anything else 
you can think of, because none of the resulting iterators is valid. 

We must take a different tack with vector, string, and deque. In particular, we must 
take advantage of erase's return value. That return value is exactly what we need: it's a 
valid iterator pointing to the element following the erased element once the erase has 
been accomplished. In other words, we write this: 

for (SeqContainer<int>::iterator i = c.beqin();  
 i != c.end();){ 
   if (badValue(*i)){ 
       logFile << "Erasing " << *i << '\n'; 

 i = c.erase(i);                                         // keep i valid by assigning 
   }                                                                 //erase's return value to it 
   else ++i; 

} 

This works wonderfully, but only for the standard sequence containers. Due to 
reasoning one might question (Item 5 does), erase's return type for the standard 
associative containers is void. For those containers, you have to use the postincrement-
the-iterator-you-pass-to-erase technique. (Incidentally, this kind of difference between 
coding for sequence containers and coding for associative containers is an example of 
why it's generally ill-advised to try to write container-independent code — see Item 2.) 

Lest you be left wondering what the appropriate approach for list is, it turns out that 
for purposes of iterating and erasing, you can treat list like a vector/string/deque or you 
can treat it like an associative container: both approaches work for list. The convention 
is to work with list in the same way as vector, string, and deque, because these are all 
sequence containers. Experienced STL hands would find it odd to come across list 
code that iterates and erases using the associative container technique. 

If we take stock of everything we've covered in this Item, we come to the following 
conclusions: 

� To eliminate all objects in a container that have a particular value: 

If the container is a vector, string, or deque, use the erase-remove idiom. 

If the container is a list, use list::remove. 

If the container is a standard associative container, use its erase member 
function. 
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� To eliminate all objects in a container that satisfy a particular predicate: 

If the container is a vector, string, or deque, use the erase-remove_if idiom. 

If the container is a list, use list::remove_if. 

If the container is a standard associative container, use remove_copy_if and 
swap, or write a loop to walk the container elements, being sure to 
postincrement your iterator when you pass it to erase. 

� To do something inside the loop (in addition to erasing objects): 

If the container is a standard sequence container, write a loop to walk the 
container elements, being sure to update your iterator with erase's return value 
each time von call it. 

If the container is a standard associative container, write a loop to walk the 
container elements, being sure to postincrement your iterator when you pass it 
to erase. 

As you can see, there's more to erasing container elements effectively than just calling 
erase. The best way to approach the matter depends on how you identify which objects 
to erase, the type of container they're stored in. and what (if anything) you want to do 
while you're erasing them. As long as you're careful and heed the advice in this Item, 
you'll have no trouble. If you're not careful, you run the risk of producing code that's 
needlessly inefficient or that yields undefined behavior. 

Item 10. Be aware of allocator conventions and restrictions. 

Allocators are weird. They were originally developed as an abstraction for memory 
models that would allow library developers to ignore the distinction between near and 
far pointers in certain 16-bit operating systems (i.e., DOS and its pernicious spawn), 
but that effort failed. Allocators were also designed to facilitate the development of 
memory managers that are full-fledged objects, but it turned out that that approach led 
to efficiency degradations in some parts of the STL. To avoid the efficiency hits, the 
C++ Standardization Committee added wording to the Standard that emasculated 
allocators as objects, yet simultaneously expressed the hope that they would suffer no 
loss of potency from the operation. 

There's more. Like operator new and operator new[], STL allocators are responsible 
for allocating (and deallocating) raw memory, but an allocator's client interface bears 
little resemblance to that of operator new, operator new[], or even malloc. Finally (and 
perhaps most remarkable), most of the standard containers never ask their associated 
allocator for memory. Never. The end result is that allocators are, well, allocators are 
weird. 

That's not their fault, of course, and at any rate, it doesn't mean they're useless. 
However, before 1 explain what allocators are good for (that's the topic of Item 11). I 
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need to explain what they're not good for. There are a number of things that allocators 
seem to be able to do, but can't, and it's important that you know the boundaries of the 
field before you try to start playing. If you don't, you'll get injured for sure. Besides, 
the truth about allocators is so peculiar, the mere act of summarizing it is both 
enlightening and entertaining. At least I hope it is. 

The list of restrictions on allocators begins with their vestigial typedefs for pointers 
and references. As I mentioned, allocators were originally conceived of as abstractions 
for memory models, and as such it made sense for allocators to provide typedefs for 
pointers and references in the memory model they defined. In the C++ standard, the 
default allocator for objects of type T (cunningly known as allocator<T>) offers the 
typedefs allocator<T>::pointer and allocator<T>::reference, and it is expected that 
user-defined allocators will provide these typedefs, too. 

Old C++ hands immediately recognize that this is suspect, because there's no way to 
fake a reference in C++. Doing so would require the ability to overload operator, 
("operator dot"), and that's not permitted. In addition, creating objects that act like 
references is an example of the use of proxy objects, and proxy objects lead to a 
number of problems. (One such problem motivates Item 18. For a comprehensive dis-
cussion of proxy objects, turn to Item 30 of More Effective C++, where you can read 
about when they work as well as when they do not.) 

In the case of allocators in the STL, it's not any technical shortcomings of proxy 
objects that render the pointer and reference typedefs impotent, it's the fact that the 
Standard explicitly allows library implementers to assume that every allocator's 
pointer typedef is a synonym for T* and every allocator's reference typedef is the same 
as T&. That's right, library implementers may ignore the typedefs and use raw pointers 
and references directly! So even if you could somehow find a way to write an allocator 
that successfully provided new pointer and reference types, it wouldn't do any good, 
because the STL implementations you were using would be free to ignore your 
typedefs. Neat, huh? 

While you're admiring that quirk of standardization, I'll introduce another. Allocators 
are objects, and that means they may have member functions, nested types and 
typedefs (such as pointer and reference), etc., but the Standard says that an 
implementation of the STL is permitted to assume that all allocator objects of the same 
type are equivalent and always compare equal. Offhand, that doesn't sound so awful, 
and there's certainly good motivation for it. Consider this code: 

 
template<typename T>                                      // a user-defined allocator 
class SpecialAllocator {...};                                  // template 
typedef SpecialAllocator<Widget> SAW;           // SAW = "SpecialAllocator 

//               for Widgets" 
list<Widget, SAW> L1;  
list<Widget, SAW> L2: 
… 
L1.splice(L1 .begin(), L2);                                  // move L2's nodes to the 
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//front of L1 

Recall that when list elements are spliced  from one list to another, nothing is copied. 
Instead, a few pointers are adjusted, and the list nodes that used to be in one list find 
themselves in another. This makes splicing operations both fast and exception-safe. In 
the example above, the nodes that were in L2 prior to the splice are in L1 after the 
splice. 

When L1 is destroyed, of course, it must destroy all its nodes (and deallocate their 
memory), and because it now contains nodes that were originally part of L2. L1's 
allocator must deallocate the nodes that were originally allocated by L2's allocator. 
Now it should be clear why the Standard permits implementers of the STL to assume 
that allocators of the same type are equivalent. It's so memory allocated by one 
allocator object (such as L2's) may be safely deallocated by another allocator object 
(such as L1's). Without being able to make such an assumption, splicing operations 
would be more difficult to implement. Certainly they wouldn't be as efficient as they 
can be now. (The existence of splicing operations affects other parts of the STL, too. 
For another example, see Item 4.) 

That's all well and good, but the more you think about it. the more you'll realize just 
how draconian a restriction it is that STL implementations may assume that allocators 
of the same type are equivalent. It means that portable allocator objects — allocators 
that will function correctly under different STL implementations — may not have 
state. Let's be explicit about this: it means that portable allocators may not have any 
nonstatic data members, at least not any that affect their behavior. None. Nada. That 
means, for example, you can't have one SpecialAllocator<int> that allocates from one 
heap and a different SpecialAllocator<int> that allocates from a different heap. Such 
allocators wouldn't be equivalent, and STL implementations exist where attempts to 
use both allocators could lead to corrupt runtime data structures. 

Notice that this is a runtime issue. Allocators with state will compile just fine. They 
just may not run the way you expect them to. The responsibility for ensuring that all 
allocators of a given type are equivalent is yours. Don't expect compilers to issue a 
warning if you violate this constraint. 

In fairness to the Standardization Committee, I should point out that it included the 
following statement immediately after the text that permits STL implementers to 
assume that allocators of the same type are equivalent: 

Implementors are encouraged to supply libraries that ... support  non-equal  
instances.   In such implementations. ... the semantics   of   containers   and   
algorithms   when   allocator instances compare non-equal are 
implementation-defined. 

This is a lovely sentiment, but as a user of the STL who is considering the 
development of a custom allocator with state, it offers you next to nothing. You can 
take advantage of this statement only if (1) you know that the STL implementations 
you are using support inequivalent allocators, (2) you are willing to delve into their 
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documentation to determine whether the implementation-defined behavior of "non-
equal" allocators is acceptable to you, and (3) you're not concerned about porting your 
code to STL implementations that may take advantage of the latitude expressly 
extended to them by the Standard. In short, this paragraph — paragraph 5 of section 
20.1.5. for those who insist on knowing — is the Standard's "1 have a dream" speech 
for allocators. Until that dream becomes common reality, programmers concerned 
about portability will limit themselves to custom allocators with no state. 

I remarked earlier that allocators are like operator new in that they allocate raw 
memory, but their interface is different. This becomes apparent if you look at the 
declaration of the most common forms of operator new and allocator<T>::allocate: 

 
void* operator new(size_t bytes); 
pointer allocator<T>::allocate(size_type numObjects); 
     // recall that "pointer" is a typedef  

// that's virtually always T* 

Both take a parameter specifying how much memory to allocate, but in the case of 
operator new, this parameter specifies a certain number of bytes, while in the case of 
allocator<T>::allocate, it specifies how many T objects are to fit in the memory. On a 
platform where sizeof(int) ==4, for example, you'd pass 4 to operator new if you 
wanted enough memory to hold an int, but you'd pass 1 to allocator<int>::allocate. 
(The type of this parameter is size_t in the case of operator new. while it's 
allocator<T>:size_type in the case of allocate. In both cases, it's an unsigned integral 
value, and typically allocator<T>::size_type is a typedef for size_t. anyway.) There's 
nothing "wrong" about this discrepancy, but the inconsistent conventions between 
operator new and allocator<T>::allocate complicate the process of applying experience 
with custom versions of operator new to the development of custom allocators. 

operator new and allocator<T>:allocate differ in return types, too. operator new returns 
a void*, which is the traditional C++ way of representing a pointer to uninitialized 
memory. allocator<T>::allocate returns a T* (via the pointer typedef), which is not 
only untraditional, it's premeditated fraud. The pointer returned from 
allocator<T>::allocate doesn't point to a T object, because no T has yet been 
constructed! Implicit in the STL is the expectation that allocator<T>::allocate's caller 
will eventually construct one or more T objects in the memory it returns (possibly via 
allocator<T>::construct, via uninitialized_fill, or via some application of 
raw_storage_iterators), though in the case of vector::reserve or string::reserve, that 
may never happen (see Item 14). The difference in return type between operator new 
and allocator<T>::allocate indicates a change in the conceptual model for uninitialized 
memory, and it again makes it harder to apply knowledge about implementing 
operator new to the development of custom allocators. 

That brings us to the final curiosity of STL allocators, that most of the standard 
containers never make a single call to the allocators with which they are instantiated. 
Here are two examples: 
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list<int> L;                                          // same as list<int, allocator<int> >; 
  // allocator<int> is never asked to  
  // allocate memory! 

set<Widget, SAW> s;                          // recall that SAW is a typedef for 
    //SpecialAllocator<Widget>; no  
    // SAW will ever allocate memory! 

This oddity is true for list and all the standard associative containers (set. multiset, 
map. and multimap). That's because these are node-based containers, i.e., containers 
based on data structures in which a new node is dynamically allocated each time a 
value is to be stored. In the case of list, the nodes are list nodes. In the case of the 
standard associative containers, the nodes are usually tree nodes, because the standard 
associative containers are typically implemented as balanced binary search trees. 

Think for a moment about how a list<T> is likely to be implemented. The list itself 
will be made up of nodes, each of which holds a T object as well as pointers to the 
next and previous nodes in the list: 

template<typename T,                                                    // possible list 
typename Allocator = allocator<T> >      // implementation 
class list{ 
private: 
  Allocator alloc;                                    // allocator for objects of type T 
   
  struct ListNode{                                  // nodes in the linked list 
    T data: 
    ListNode *prev;  
    ListNode *next; 
  }; 
  … 

  }; 

When a new node is added to the list, we need to get memory for it from an allocator, 
but we don't need memory for a T. we need memory for a ListNode that contains a T. 
That makes our Allocator object all but useless, because it doesn't allocate memory for 
ListNodes, it allocates memory for Ts. Now you understand why list never asks its 
Allocator to do any allocation: the allocator can't provide what list needs. 

What list needs is a way to get from the allocator type it has to the corresponding 
allocator for ListNodes. This would be tough were it not that, by convention, allocators 
provide a typedef that does the job. The typedef is called other, but it's not quite that 
simple, because other is a typedef nested inside a struct called rebind, which itself is a 
template nested inside the allocator — which itself is a template! 

Please don't try to think about that last sentence. Instead, look at the code below, then 
proceed directly to the explanation that follows. 
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template<typename T>                        // the standard allocator is declared 
class allocator {                                    // like this, but this could be a user- 
public:                                                  // written allocator template, too 
    template<typename U>  
    struct rebind{ 
       typedef allocator<U> other; 
    } 
   … 
} 

In the code implementing list<T>, there is a need to determine the type of the allocator 
for ListNodes that corresponds to the allocator we have for Ts. The type of the 
allocator we have for Ts is the template parameter Allocator. That being the case, the 
type of the corresponding allocator for ListNodes is this: 

Allocator::rebind<ListNode>::other 

Stay with me here. Every allocator template A (e.g.. std::allocator. SpecialAllocator. 
etc.) is expected to have a nested struct template called rebind. rebind takes a single 
type parameter, U, and defines nothing but a typedef, other. other is simply a name for 
A<U>. As a result, list<T> can get from its allocator for T objects (called Allocator) to 
the corresponding allocator for ListNode objects by referring to 
Allocator::rebind<ListNode>::other. 

Maybe this makes sense to you, maybe it doesn't. (If you stare at it long enough, it 
will, but you may have to stare a while. I know I had to.) As a user of the STL who 
may want to write a custom allocator, you don't really need to know how it works. 
What you do need to know is that if you choose to write allocators and use them with 
the standard containers, your allocators must provide the rebind template, because 
standard containers assume it will be there. (For debugging purposes, it's also helpful 
to know why node-based containers of T objects never ask for memory from the 
allocators for T objects.) 

Hallelujah! We are finally done examining the idiosyncrasies of allocators. Let us 
therefore summarize the things you need to remember if you ever want to write a 
custom allocator. 

� Make your allocator a template, with the template parameter T representing the 
type of objects for which you are allocating memory. 

� Provide the typedefs pointer and reference, but always have pointer be T* and 
reference be T&. 

� Never give your allocators per-object state. In general, allocators should have 
no nonstatic data members. 

� Remember that an   allocator's   allocate member functions are passed the 
number of objects for which memory is required, not the number of bytes 
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needed. Also remember that these functions return T* pointers Ma the pointer 
typedef), even though no T objects have yet been constructed. 

� Be sure to provide the nested rebind template on which standard containers 
depend. 

Most of what you have to do to write your own allocator is reproduce a fair amount of 
boilerplate code, then tinker with a few member functions, notably allocate and 
deallocate. Rather than writing the boilerplate from scratch, I suggest you begin with 
the code at Josuttis' sample allocator web page [23] or in Austern's article, "What Are 
Allocators Good For?" [24]. 

Once you've digested the information in this Item, you'll know a lot about what 
allocators cannot do, but that's probably not what you want to know. Instead, you'd 
probably like to know what allocators can do. That's a rich topic in its own right, a 
topic I call "Item 11." 

Item 11. Understand the legitimate uses of custom allocators. 

So you've benchmarked, profiled, and experimented your way to the conclusion that 
the default STL memory manager (i.e., allocator<T>) is too slow, wastes memory, or 
suffers excessive fragmentation for your STL needs, and you're certain you can do a 
better job yourself. Or you discover that allocator<T> takes precautions to be thread-
safe, but you're interested only in single-threaded execution and you don't want to pay 
for the synchronization overhead you don't need. Or you know that objects in certain 
containers are typically used together, so you'd like to place them near one another in a 
special heap to maximize locality of reference. Or you'd like to set up a unique heap 
that corresponds to shared memory, then put one or more containers in that memory so 
they can be shared by other processes. Congratulations! Each of these scenarios 
corresponds to a situation where custom allocators are well suited to the problem. 

For example, suppose you have special routines modeled after malloc and free for 
managing a heap of shared memory. 

 
void* mallocShared(size_t bytesNeeded);  
void freeShared(void *ptr); 

and you'd like to make it possible to put the contents of STL containers in that shared 
memory. No problem: 

 
template<typename T> 
class SharedMemoryANocator { 
public: 
  … 
  pointer allocate(size_type numObiects, const void *localityHint = 0) 
  {  

return static_cast<pointer>(mallocShared(numObiects* sizeof(T))); 
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      } 
 
  void deallocate(pointer ptrToMemory, size_ type numObjects) 
  { 

freeShared(ptrToMiemory); 
  } 
  … 
}; 

For information on the pointer type as well as the cast and the multiplication inside 
allocate, see Item 10. 

You could use SharedMemoryAllocator like this: 
// convenience typedef  
typedef vector<double, SharedMemoryAllocator<double> >  

SharedDoubleVec; 
… 
{                                                              // begin some block 
  SharedDoubleVec v:                            // create a vector whose elements 

   // are in shared memory 
  …             // end the block 
} 
 

The wording in the comment next to v's definition is important. v is using a 
SharedMemoryAllocator, so the memory v allocates to hold its elements will come 
from shared memory, v itself, however — including all its data members — will 
almost certainly not be placed in shared memory, v is just a normal stack-based object, 
so it will be located in whatever memory the runtime system uses for all normal stack-
based objects. That's almost never shared memory. To put both v's contents and v itself 
into shared memory, you'd have to do something like this: 

void *pVectorMemory =                                  // allocate enough shared 
mallocShared(sizeof(SharedDoubleVec));     // memory to hold a 
                                                                       // SharedDoubleVec object 
SharedDoubleVec *pv =                                // use "placement new" to 
  new (pVectorMemory) SharedDoubleVec;  // create a SharedDoubleVec 
                                                                      // object in the memory;  

                                                                // see below 
 

// use the object (via pv) 
… 
 
pv->~SharedDoubleVec();                            // destroy the object in the 

    // shared memory 
freeShared(pVectorMemory);                       // deallocate the initial 
                                                                      // chunk of shared memory 
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I hope the comments make clear how this works. Fundamentally, you acquire some 
shared memory, then construct a vector in it that uses shared memory for its own 
internal allocations. When you're done with the vector, you invoke its destructor, then 
release the memory the vector occupied. The code isn't terribly complicated, but it's a 
lot more demanding than just declaring a local variable as we did above. Unless you 
really need a container (as opposed to its elements) to be in shared memory, I 
encourage you to avoid this manual four-step allocate/construct/destroy/deallocate 
process. 

In this example, you've doubtless noticed that the code ignores the possibility that 
mallocShared might return a null pointer. Obviously, production code would have to 
take such a possibility into account. Also, construction of the vector in the shared 
memory is accomplished by "placement new." If you're unfamiliar with placement 
new, your favorite C++ text should be able to introduce you. If that text happens to be 
More Effective C++, you'll find that the pleasantries are exchanged in Item 8. 

As a second example of the utility of allocators, suppose you have two heaps, 
identified by the classes Heap1 and Heap2. Each heap class has static member 
functions for performing allocation and deallocation: 

class Heap1 {  
public: 
  … 

static void* alloc(size_t numBytes, const void *memoryBlockToBeNear);   
static void dealloc(void *ptr); 
… 

}; 
 
class Heap2 { ... };                            // has the same alloc/dealloc interface 

Further suppose you'd like to co-locate the contents of some STL containers in 
different heaps. Again, no problem. First you write an allocator designed to use classes 
like Heap1 and Heap2 for the actual memory management: 

 
template<typenameT, typename Heap> 
SpecificHeapAllocator { 
public: 
  pointer allocate(size_type numObjects, const void *localityHint = 0)  
  { 

return static_cast<pointer> (Heap::alloc(numObjects * sizeof(T),  
 localityHint)); 

  } 
  void deallocate(pointer ptrToMemory, size_type numObjects) 
  { 

Heap::dealloc(ptrToMemory); 
  } 
  … 
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}; 
 

Then you use SpecialHeapAllocator to cluster containers' elements together: 
 
vector<int, SpecificHeapAIlocator<int, Heap1 > > v;        // put both v's and 
set<int, SpecificHeapAllocator<int Heap1 > > s;              //s's elements in 
                                                                                         //Heap1 
list< Widget, 

SpecificHeapAllocator<Widget, Heap2> > L;            // put both L's and 
map< int, string, less<int>,                                               // m's elements in 

SpecificHeapAllocator<pair<const int, string>,          // Heap2  
       Heap2> > m; 

In this example, it's quite important that Heap1 and Heap2 be types and not objects. 
The STL offers a syntax for initializing different STL containers with different 
allocator objects of the same type, but I'm not going to show you what it is. That's 
because if Heap1 and Heap2 were objects instead of types, they'd be inequivalent 
allocators, and that would violate the equivalence constraint on allocators that is 
detailed in Item 10. 

As these examples demonstrate, allocators are useful in a number of contexts. As long 
as you obey the constraint that all allocators of the same type must be equivalent, 
you'll have no trouble employing custom allocators to control general memory 
management strategies, clustering relationships, and use of shared memory' and other 
special heaps. 

Item 12. Have realistic expectations about the thread safety of STL 
containers. 

The world of standard C++ is rather sheltered and old-fashioned. In this rarefied 
world, all executables are statically linked. Neither memory-mapped files nor shared 
memory exist. There are no window systems, no networks, no databases, no other 
processes. That being the case, you should not be surprised to learn that the Standard 
says not a word about threading. The first expectation you should have about the 
thread safety of the STL, then, is that it will vary from implementation to 
implementation. 

Of course, multithreaded programs are common, so most STL vendors strive to make 
their implementations work well in a threaded environment. Even when they do a good 
job, however, much of the burden remains on your shoulders, and it's important to 
understand why. There's only so much STL vendors can do to ease your 
multithreading pain, and you need to know what it is. 

The gold standard in support for multithreading in STL containers (and the aspiration 
of most vendors) has been defined by SGI and is published at their STL Web Site[|21]. 
In essence, it says that the most you can hope for from an implementation is the 
following. 
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� Multiple readers are safe. Multiple threads may simultaneously read the 
contents of a single container, and this will work correctly. Naturally, there 
must not be any writers acting on the container during the reads. 

� Multiple writers to different containers are safe.   Multiple threads may 
simultaneously write to different containers. 

That's all, and let me make clear that this is what you can hope for, not what you can 
expect. Some implementations offer these guarantees, but some do not. 

Writing multithreaded code is hard, and many programmers wish that STL 
implementations were completely thread safe out of the box. Were that the case, 
programmers might hope to be relieved of the need to attend to concurrency control 
themselves. There's no doubt this would be convenient state of affairs, but it would 
also be very difficult to achieve. Consider the following ways a library might try to 
implement such comprehensive container thread safety: 

� Lock a container for the duration of each call to its member functions. 

� Lock a container for the lifetime of each iterator it returns (via, e.g.., calls to 
begin or end). 

� Lock a container for the duration of each algorithm invoked on that container. 
(This actually makes no sense, because, as Item 32 explains, algorithms have no 
way to identify the container on which they are operating. Nevertheless, we'll 
examine this option here, because it's instructive to see why it wouldn't work 
even if it were possible.) 

Now consider the following code. It searches a vector<int> for the first occurrence of 
the value 5, and, if it finds one, changes that value to 0. 

 
vector<int> v; 
vector<int>::iterator first5(find(v.begin(), v.end(), 5));                // Line 1 
if (first5 !=v.end()){                                                                    //Line 2 
*first5 = 0;                                                                               // Line 3 
} 

In a multithreaded environment, it's possible that a different thread will modify the 
data in v immediately after completion of Line 1. If that were to happen, the test of 
first5 against v.end on Line 2 would be meaningless, because v's values would be 
different from what they were at the end of Line 1. In fact, such a test could yield 
undefined results, because another thread could have intervened between Lines 1 and 2 
and invalidated first5, perhaps by performing an insertion that caused the vector to 
reallocate its underlying memory. (That would invalidate all the vector's iterators. For 
details on this reallocation behavior, turn to Item 14.) Similarly, the assignment to 
*first5 on Line 3 is unsafe, because another thread might execute between Lines 2 and 
3 in such a way as to invalidate firsts, perhaps by erasing the element it points to (or at 
least used to point to). 
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None of the approaches to locking listed above would prevent these problems. The 
calls to begin and end in Line 1 both return too quickly to offer any help, the iterators 
they generate last only until the end of that line, and find also returns at the end of that 
line. 

For the code above to be thread safe, v must remain locked from Line 1 through Line 
3, and it's difficult to imagine how an STL implementation could deduce that 
automatically. Bearing in mind the typically high cost of synchronization primitives 
(e.g.. semaphores, mutexes, etc.), it's even more difficult to imagine how an 
implementation could do it without imposing a significant performance penalty on 
programs that knew a priori — that were designed in such a way — that no more than 
one thread had access to v during the course of Lines 1-3. 

Such considerations explain why you can't expect any STL implementation to make 
your threading woes disappear. Instead, you'll have to manually take charge of 
synchronization control in these kinds of scenarios. In this example, you might do it 
like this: 

vector<int> v; 
… 
getMutexFor(v); 
vector<int>::iterator first5(find(v.begin(), v.end(), 5)); 
if (first5 != v.end()) {                                                          // this is now safe 
     *first5 = 0;                                                                    // so is this 
} 
releaseMutexFor(v); 

A more object-oriented solution is to create a Lock class that acquires a mutex in its 
constructor and releases it in its destructor, thus minimizing the chances that a call to 
getMutexFor will go unmatched by a call to releaseMutexFor. The essence of such a 
class (really a class template) is this: 

 
template<typename Container>          // skeletal template for classes 
class Lock {                                          // that acquire and release mutexes 
public:                                                  // for containers; many details 

     // have been omitted 
    Lock(const Containers container)  
    : c(container) 
    {  
        getMutexFor(c);                            // acquire mutex in the constructor 
    } 
 
    ~Lock()  
    { 
        releaseMutexFor(c);                        // release it in the destructor 
    } 
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private:  
    const Container& c; 
}; 
 

The idea of using a class (like Lock) to manage the lifetime of resources (such as 
mutexes) is generally known as resource acquisition is initialization, and you should 
be able to read about it in any comprehensive C++ textbook. A good place to start is 
Stroustrup's The C++ Programming Language [7], because Stroustrup popularized the 
idiom, but you can also turn to Item 9 of More Effective C++. No matter what source 
you consult, bear in mind that the above Lock is stripped to the bare essentials. An 
industrial-strength version would require a number of enhancements, but such a 
fleshing-out would have nothing to do with the STL. Furthermore, this minimalist 
Lock is enough to see how we could apply it to the example we've been considering: 

vector<int> v; 
… 
{                                                                   // create new block; 
    Lock<vector<int> > lock(v);                       // acquire mutex 
    vector<int>::iterator first5(find(v.begin(), v.end(), 5)); 
    if (first5 != v.end()) {  
        *first5 = 0; 
    } 
}                                                                    // close block, automatically  
                                                                      // releasing the mutex 

Because a Lock object releases the container's mutex in the Lock's destructor, it's 
important that the Lock be destroyed as soon as the mutex should be released. To 
make that happen, we create a new block in which to define the Lock, and we close 
that block as soon as we no longer need the mutex. This sounds like we're just trading 
the need to call releaseMutexFor with the need to close a new block, but that's not an 
accurate assessment. If we forget to create a new block for the Lock, the mutex will 
still be released, but it may happen later than it should — when control reaches the end 
of the enclosing block. If we forget to call releaseMutexFor, we never release the 
mutex. 

Furthermore, the Lock-based approach is robust in the presence of exceptions. C++ 
guarantees that local objects are destroyed if an exception is thrown, so Lock will 
release its mutex even if an exception is thrown while we re using the Lock object. If 
we relied on manual calls to getMutexFor and releaseMutexFor, we'd never relinquish 
the mutex if an exception was thrown after calling getMutexFor but before calling 
releaseMutexFor. 

Exceptions and resource management are important, but they're not the subject of this 
Item. This Item is about thread safety in the STL. When it comes to thread safely and 
STL containers, you can hope for a library implementation that allows multiple readers 
on one container and multiple writers on separate containers. You can't hope for the 
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library to eliminate the need for manual concurrency control, and you can't rely on any 
thread support at all. 
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vector and string 
All the STL containers are useful, but if you're like most C++ programmers, you'll find 
yourself reaching for vector and string more often than their compatriots. That's to be 
expected, vector and string are designed to replace most applications of arrays, and 
arrays are so useful, they've been included in every commercially successful 
programming language from COBOL to Java. 

The Items in this chapter cover vectors and strings from a number of perspectives. We 
begin with a discussion of why the switch from arrays is worthwhile, then look at ways 
to improve vector and string performance, identify important variations in string 
implementations, examine how to pass vector and string data to APIs that understand 
only C, and learn how to eliminate excess memory allocation. We conclude with an 
examination of an instructive anomaly, vector<bool>, the little vector that couldn't. 

Each of the Items in this chapter will help you take the two most useful containers in 
the STL and refine their application. By the time we're done, you'll know how to make 
them serve you even better. 

Item 13. Prefer vector and string to dynamically allocated arrays. 

The minute you decide to use new for a dynamic allocation, you adopt the following 
responsibilities: 

1. You must make sure that somebody will later delete the allocation. Without a 
subsequent delete, your new will yield a resource leak. 

2. You must ensure that the correct form of delete is used. For an allocation of a 
single object, "delete" must be used. For an array allocation, "delete []" is required. 
If the wrong form of delete is used, results will be undefined. On some platforms, 
the program will crash at runtime. On others, it will silently blunder forward, 
sometimes leaking resources and corrupting memory' as it goes. 

3. You must make sure that delete is used exactly once. If an allocation is deleted 
more than once, results are again undefined. 

That's quite a set of responsibilities, and I can't understand why you'd want to adopt 
them if it wasn't necessary. Thanks to vector and string, it isn't necessary anywhere 
near as often as it used to be. 

Any time you find yourself getting ready to dynamically allocate an array (i.e.. plotting 
to write "new T[...]"), you should consider using a vector or a string instead. (In 
general, use string when T is a character type and use vector when it's not, though later 
in this Item, we'll encounter a scenario where a vector<char> may be a reasonable 
design choice.) vector and string eliminate the burdens above, because they manage 
their own memory. Their memory grows as elements are added to these containers, 
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and when a vector or string is destroyed, its destructor automatically destroys the 
elements in the container and deallocates the memory holding those elements. 

In addition, vector and string are full-fledged STL sequence containers, so they put at 
your disposal the complete arsenal of STL algorithms that work on such containers. 
True, arrays can be used with STL algorithms, too, but arrays don't offer member 
functions like begin, end, and size, nor do they have nested typedefs like iterator, 
reverse_iterator, or value_type. And of course char* pointers can hardly compete with 
the scores of specialized member functions proffered by string. The more you work 
with the STL, the more jaundiced the eye with which you'll come to view built-in 
arrays. 

If you're concerned about the legacy code you must continue to support, all of which is 
based on arrays, relax and use vectors and strings anyway. Item 16 shows how easy it 
is to pass the data in vectors and strings to APIs that expect arrays, so integration with 
legacy code is generally not a problem. 

Frankly. I can think of only one legitimate cause for concern in replacing dynamically 
allocated arrays with vectors or strings, and it applies only to strings. Many string 
implementations employ reference counting behind the scenes (see Item 15). a strategy 
that eliminates some unnecessary memory allocations and copying of characters and 
that can improve performance for many applications. In fact, the ability to optimize 
strings via reference counting was considered so important, the C++ Standardization 
Committee took specific steps to make sure it was a valid implementation. 

Alas, one programmer's optimization is another's pessimization, and if you use 
reference-counted strings in a multithreaded environment, you may find that the time 
saved by avoiding allocations and copying is dwarfed by the time spent on behind-the-
scenes concurrency control. (For details, consult Sutter's article. "Optimizations That 
Aren't (In a Multithreaded World)" [20].) If you're using reference-counted strings in a 
multithreaded environment, then, it makes sense to keep an eye out for performance 
problems arising from their support for thread safety. 

To determine whether you're using a reference-counting implementation for string, it's 
often easiest to consult the documentation for your library. Because reference counting 
is considered an optimization, vendors generally tout it as a feature. An alternative is 
to look at the source code for your libraries' implementations of string. I don't gener-
ally recommend trying to figure things out from library source code, but sometimes it's 
the only way to find out what you need to know. If you choose this approach, 
remember that string is a typedef for basic_string<char> (and wstring is a typedef for 
basic_string<wchar_t>), so what you really want to look at is the template 
basic_string. The easiest thing to check is probably the class's copy constructor. Look 
to see if it increments a reference count somewhere. If it does, string is reference 
counted. If it doesn't, either string isn't reference counted or you misread the code. 
Ahem. 

If the string implementations available to you are reference counted and you are 
running in a multithreaded environment where you've determined that string's 
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reference counting support is a performance problem, you have at least three 
reasonable choices, none of which involves abandoning the STL. First, check to see if 
your library implementation is one that makes it possible to disable reference counting, 
often by changing the value of a preprocessor variable. This won't be portable, of 
course, but given the amount of work involved, it's worth investigating. Second, find 
or develop an alternative string implementation (or partial implementation) that doesn't 
use reference counting. Third, consider using a vector<char> instead of a string, vector 
implementations are not allowed to be reference counted, so hidden multithreading 
performance issues fail to arise. Of course, you forgo string's fancy member functions 
if you switch to vector<char>, but most of that functionality is available through STL 
algorithms anyway, so you're-not so much giving up functionality as you are trading 
one syntax for another. 

The upshot of all this is simple. If you're dynamically allocating arrays, you're 
probably taking on more work than you need to. To lighten your load, use vectors or 
strings instead. 

Item 14. Use reserve to avoid unnecessary reallocations. 

One of the most marvelous things about STL containers is that they automatically 
grow to accommodate as much data as you put into them, provided only that you don't 
exceed their maximum size. (To discover this maximum, just call the aptly named 
max_size member function.) For vector and string, growth is handled by doing the 
moral equivalent of a realloc whenever more space is needed. This realloc-like 
operation has four parts: 

1. Allocate a new block of memory that is some multiple of the container's current 
capacity. In most implementations, vector and string capacities grow by a factor of 
two each time. i.e. their capacity is doubled each time the container must be 
expanded. 

2. Copy all the elements from the container's old memory into its new memory. 

3. Destroy the objects in the old memory. 

4. Deallocate the old memory. 

Given all that allocation, deallocation, copying, and destruction. It should not stun you 
to learn that these steps can be expensive. Naturally, you don't want to perform them 
any more frequently than you have to. If that doesn't strike you as natural, perhaps it 
will when you consider that each time these steps occur, all iterators, pointers, and 
references into the vector or string are invalidated. That means that the simple act of 
inserting an element into a vector or string may also require updating other data 
structures that use iterators, pointers, or references into the vector or string being 
expanded. 

The reserve member function allows you to minimize the number of reallocations that 
must be performed, thus avoiding the costs of real location and 
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iterator/pointer/reference invalidation. Before 1 explain how reserve can do that, 
however, let me briefly recap four interrelated member functions that are sometimes 
confused. Among the standard containers, only vector and string offer all of these 
functions. 

� size() tells you how many elements are in the container. It does not tell you how 
much memory the container has allocated for the elements it holds. 

� capacity() tells you how many elements the container can hold in the memory it 
has already allocated. This is how many total elements the container can hold in 
that memory, not how many more elements it can hold. If you'd like to find out 
how much unoccupied memory a vector or string has, you must subtract size() 
from capacity(). If size and capacity return the same value, there is no empty 
space in the container, and the next insertion (via insert or push_back. etc.) will 
trigger the reallocation steps above. 

� resize(size_t n) forces the container to change to n the number of elements it 
holds. After the call to resize, size will return n. If n is smaller than the current 
size, elements at the end of the container will be destroyed. If n is larger than 
the current size, new default-constructed elements will be added to the end of 
the container. If n is larger than the current capacity, a reallocation will take 
place before the elements are added. 

� reserve(size_t n) forces the container to change its capacity to at least n. 
provided n is no less than the current size. This typically forces a reallocation, 
because the capacity needs to be increased. (If n is less than the current 
capacity, vector ignores the call and does nothing, string may reduce its 
capacity to the maximum of size() and n. but the string's size definitely remains 
unchanged. In my experience, using reserve to trim the excess capacity from a 
string is generally less successful than using "the swap trick." which is the topic 
of Item 17.) 

This recap should make it clear that reallocations (including their constituent raw 
memory allocations and deallocations, object copying and destruction, and 
invalidation of iterators, pointers, and references) occur whenever an element needs to 
be inserted and the container's capacity is insufficient. The key to avoiding 
reallocations, then, is to use reserve to set a container's capacity to a sufficiently large 
value as soon as possible, ideally right after the container is constructed. 

For example, suppose you'd like to create a vector<int> holding the values 1-1000. 
Without using reserve, you might do it like this: 

 
vector<int> v; 
for (int i = 1; i <= 1000; ++i) v.push_back(i); 

In most STL implementations, this code will result in between two and 10 
reallocations during the course of the loop. (There's no magic to the number 10. Recall 
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that vectors typically double in capacity each time a reallocalion occurs, and 1000 is 
roughly 210.) 

Modifying the code to use reserve gives us this: 
 
vector<int> v; 
v.reserve(1000); 
for (int i = 1; i <= 1000; ++i) v.push_back(i);  

This should result in zero reallocations during the loop. 

The relationship between size and capacity makes it possible to predict when an 
insertion will cause a vector or string to perform a reallocation, and that, in turn, makes 
it possible to predict when an insertion will invalidate iterators, pointers, and 
references into a container. For example, given this code. 

string s; 
… 
if (s.size() < s.capacity()) {  

s.push_back(‘x’); 
} 

the call to push_back can't invalidate iterators, pointers, or references into the string, 
because the string's capacity is guaranteed to be greater than its size. If, instead of 
performing a push_back, the code did an insert into an arbitrary location in the string, 
we'd still be guaranteed that no reallocation would take place during the insertion, but, 
in accord with the usual rule for iterator invalidation accompanying a string insertion, 
all iterators/pointers/references from the insertion point to the end of the string would 
be invalidated. 

Getting back to the main point of this Item, there are two common ways to use reserve 
to avoid unneeded reallocations. The first is applicable when you know exactly or 
approximately how many elements will ultimately end up in your container. In that 
case, as in the vector code above, you simply reserve the appropriate amount of space 
in advance. The second way is to reserve the maximum space you could ever need. 
then, once you've added all your data, trim off any excess capacity. The trimming part 
isn't difficult, but I'm not going to show it here, because there's a trick to it. To learn 
the trick, turn to Item 17. 

Item 15. Be aware of variations in string implementations. 

Bjarne Stroustrup once wrote an article with the curious title. "Sixteen Ways to Stack a 
Cat" [27]. It turns out that there are almost as many ways to implement strings. As 
experienced and sophisticated software engineers, of course, we're supposed 10 pooh-
pooh "implementation details." but if Einstein is right and God is in the details, reality 
requires that we sometimes get religion. Even when the details don't matter, having 
some idea about them puts us in a position to be sure they don't matter. 
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For example, what is the size of a string object? In other words, what value does 
sizeof(string) return? This could be an important question if you're keeping a close eye 
on memory consumption, and you're thinking of replacing a raw char* pointer with a 
string object. 

The news about sizeof(string) is "interesting." which is almost certainly what you do 
not want to hear if you're concerned about space. While it's not uncommon to find 
string implementations in which strings are the same size as char* pointers, it's also 
easy to find string implementations where each string is seven times that size. Why the 
difference? To understand that, we have to know what data a string is likely to store as 
well as where it might decide to store it. 

Virtually every string implementation holds the following information: 

� The size of the string, i.e., the number of characters it contains. 

� The capacity of the memory holding the string's characters. (For a review of 
the difference between a string's size and its capacity, see Item 14.) 

� The value of the string, i.e., the characters making up the string. In addition, a 
string may hold 

� A copy of its allocator. For an explanation of why this field is optional, turn to 
Item 10 and read about the curious rules governing allocators. 

string implementations that depend on reference counting also contain 

� The reference count for the value. 

Different string implementations put these pieces of information together in different 
ways. To demonstrate what I mean. I'll show you the data structures used by four 
different string implementations. There's nothing special about these selections. They 
all come from STL implementations that are commonly used. They just happen to be 
the string implementations in the first four libraries I checked. 

In implementation A. each string object contains a copy of its allocator, the string's 
size, its capacity, and a pointer to a dynamically allocated buffer containing both the 
reference count (the "RefCnt") and the string's value. In this implementation, a string 
object using the default allocator is lour times the size of a pointer. With a custom 
allocator, the string object would be bigger by about the size of the allocator object:  
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Implementation B's string objects are the same size as a pointer, because they contain 
nothing but a pointer to a struct. Again, this assumes that the default allocator is used. 
As in Implementation A. if a custom allocator is used, the string object's size will 
increase by about the size of the allocator object. In this implementation, use of the 
default allocator requires no space, thanks to an optimization present here but not 
present in Implementation A. 

The object pointed to by B's string contains the string's size, capacity, and reference 
count, as well as a pointer to a dynamically allocated buffer holding the string's value. 
The object also contains some additional data related to concurrency control in 
multithreaded systems. Such data is outside our purview here, so I've just labeled that 
part of the data structure "Other:" 

 

The box for "Other" is larger than the other boxes, because I've drawn the boxes to 
scale. If one box is twice the size of another, the larger box uses twice as many bytes 
as the smaller one, in Implementation B. the data for concurrency control is six times 
the size of a pointer. 

string objects under Implementation C are always the size of pointer, but this pointer 
points to a dynamically allocated buffer containing everything related to the string: its 
size, capacity, reference count, and value. There is no per-object allocator support. The 
buffer also holds some data concerning the shareability of the value, a topic we'll not 
consider here, so I've labeled it "X". (If you're interested in why a reference counted 
value might not be shareable in the first place, consult Item 29 of More Effective 
C++.) 
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Implementation D's string objects are seven times the size of a pointer (still assuming 
use of the default allocator). This implementation employs no reference counting, but 
each string contains an internal buffer large enough to represent string values of up to 
15 characters. Small strings can thus be stored entirely within the string object, a 
feature sometimes known as the "small string optimization." When a string's capacity 
exceeds 15. the first part of the buffer is used as a pointer to dynamically allocated 
memory, and the string's value resides in that memory: 

 

These diagrams do more than just prove 1 can read source code and draw pretty 
pictures. They also allow you to deduce that creation ot a string in a statement such as 
this. 

string s("Perse");          // Our dog is named "Persephone" but we 
// usually just call her "Perse" Visit her web site  
// at http://www.aristeia.com/Persephone/ 

will cost you zero dynamic allocations under Implementation D. one under 
Implementations A and C. and two under Implementation B (one for the object pointed 
to by the string object, one for the character buffer pointed to by that object). If you're 
concerned about the number of times you dynamically allocate and deallocate 
memory, or if you're concerned about the memory overhead that often accompanies 
such allocations, you might want to shy away from Implementation B. On the other 
hand, the fact that Implementation B's data structure includes specific support for 
concurrency control in multithreaded systems might mean that it meets your needs 
better than implementations A or C. the number of dynamic allocations 
notwithstanding. (Implementation D requires no special support for multithreading, 
because it doesn't use reference counting. For more on the interaction of threading and 
reference counted strings, see Item 13. For information on what you may reasonably 
hope for in the way of threading support in STL containers, consult Item 12.) 

In a design based on reference counting, everything outside the string object can be 
shared by multiple strings (if they have the same value), so something else we can 
observe from the diagrams is that Implementation A offers less sharing than B or C. In 
particular, Implementations B and C can share a string's size and capacity, thus 
potentially reducing the amortized per-object cost of storing that data. Interestingly, 
the fact that Implementation C fails to support per-object allocators means that it is the 
only implementation that can share allocators: all strings must use the same one! 
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(Again, for details on the rules governing allocators, turn to Item 10.) Implementation 
D shares no data across string objects. 

An interesting aspect of string behavior you can't fully deduce from the diagrams is the 
policy regarding memory allocation for small strings. Some implementations refuse to 
allocate memory for fewer than a certain number of characters, and Implementations 
A. C. and D are among them. Look again at this statement: 

 
string s("Perse");                                       // s is a string of size 5 

implementation A has a minimum allocation size of 32 characters, so though s's size is 
5 under all implementations, its capacity under Implementation A is 31. (The 32nd 
character is presumably reserved for a trailing null, thus making it easy to implement 
the c_str member function.) Implementation C also has a minimum, but it's 16. and no 
space is reserved for a trailing null, so under Implementation C. s's capacity is 16. 
Implementation D's minimum buffer size is also 16, including room for a trailing null. 
Of course, what distinguishes Implementation D in this area is that the memory for 
strings with capacity less than 16 is contained within the string object itself. Imple-
mentation B has no minimum allocation, and under Implementation B, s's capacity is 
7. (Why it's not 6 or 5. I don't know. I didn't read the source code that closely, sorry.) 

I hope it's obvious that the various implementations' policies on minimum allocations 
might be important to you if you expect to have lots of short strings and either (1) your 
release environment has very little memory or (2) you are concerned about locality of 
reference and want to cluster strings on as few pages as possible. 

Clearly, string implementations have more degrees of freedom than are apparent at 
first glance, and equally clearly, different implementers have taken advantage of this 
design flexibility in different ways. Let's summarize the things that vary: 

� string values may or may not be reference counted. By default, many 
implementations do use reference counting, but they usually offer a way to turn 
it off, often via a preprocessor macro. Item 13 gives an example of specific 
conditions under which you might want to turn it off, but you might want to do 
so for other reasons, too. For example, reference counting helps only when 
strings are frequently copied, and some applications just don't copy strings often 
enough to justify the overhead. 

� string objects may range in size from one to at least seven times the size of 
char* pointers. 

� Creation of a new string value may require zero, one, or two dynamic 
allocations. 

� string objects may or may not share information on the string's size and 
capacity. 

� strings may or may not support per-object allocators. 
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� Different implementations have different policies regarding minimum 
allocations for character buffers. 

Now, don't get me wrong. I think string is one of the most important components of 
the standard library, and I encourage you to use it as often as you can. Item 13, for 
example, is devoted to why you should use string in place of dynamically allocated 
character arrays. At the same time, if you're to make effective use of the STL, you 
need to be aware of the variability in string implementations, especially if you're 
writing code that must run on different STL platforms and you face stringent 
performance requirements. 

Besides, string seems so conceptually simple. Who'd have thought the 
implementations could be so interesting? 

Item 16. Know how to pass vector and string data to legacy APIs. 

Since C++ was standardized in 1998, the C++ elite haven't been terribly subtle in their 
attempt to nudge programmers away from arrays and towards vectors. They've been 
similarly overt in trying to get developers to shift from char* pointers to string objects. 
There are good reasons for making these changes, including the elimination of 
common programming errors (see Item 13) and the ability to take full advantage of the 
power of the STL algorithms (see. e.g., Item 31). 

Still, obstacles remain, and one of the most common is the existence of legacy C APIs 
that traffic in arrays and char* pointers instead of vector and string objects. Such APIs 
will exist for a long time, so we must make peace with them if we are to use the STL 
effectively. 

Fortunately, it's easy. If you have a vector v and you need to get a pointer to the data in 
v that can be viewed as an array, just use &v[0]. For a string s, the corresponding 
incantation is simply s.c_str(). But read on. As the fine print in advertising often points 
out, certain restrictions apply. 

Given 
 
vector<int> v; 

the expression v[0] yields a reference to the first element in the vector, so &v[0] is a 
pointer to that first element. The elements in a vector are constrained by the C++ 
Standard to be stored in contiguous memory, just like an array, so if we wish to pass v 
to a C API that looks something like this. 

void doSomething(const int* pInts, size_t numlnts);  

we can do it like this: 
 
doSomething(&v[0], v.size()); 
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Maybe. Probably. The only sticking point is if v is empty. If it is, v.size() is zero, and 
&v[0] attempts to produce a pointer to something that does not exist. Not good. 
Undefined results. A safer way to code the call is this: 

 
if (!v.empty()) { 

doSomething(&v[0], v.size()); 
} 

If you travel in the wrong circles, you may run across shady characters who will tell 
you that you can use v.begin() in place of &v[0], because (these loathsome creatures 
will tell you) begin returns an iterator into the vector, and for vectors, iterators are 
really pointers. That's often true, but as Item 50 reveals, it's not always true, and you 
should never rely on it. The return type of begin is an iterator, not a pointer, and you 
should never use begin when you need to get a pointer to the data in a vector. If you're 
determined to type v.begin() for some reason, type &*v.begin(), because that will yield 
the same pointer as &v[0], though it's more work for you as a typist and more obscure 
for people trying to make sense of your code. Frankly, if you're hanging out with 
people who tell you to use v.begin() instead of &v[0], you need to rethink your social 
circle. 

The approach to getting a pointer to container data that works for vectors isn't reliable 
for strings, because (1) the data for strings are not guaranteed to be stored in 
contiguous memory, and (2) the internal representation of a string is not guaranteed to 
end with a null character. This explains the existence of the string member function 
c_str, which returns a pointer to the value of the string in a form designed for C. We 
can thus pass a string s to this function. 

 
void doSomething(const char *pString);  

like this: 
 
doSomething(s.c_str()); 

This works even if the string is of length zero. In that case, c_str will return a pointer 
to a null character. It also works If the string has embedded nulls. If it does, however, 
doSomething is likely to interpret the first embedded null as the end of the string, 
string objects don't care if they contain null characters, but char*-based C APIs do. 

Look again at the doSomething declarations: 
 
void doSomething(const int* pints, size_t numlnts);  
void doSomething(const char *pString); 

In both cases, the pointers being passed are pointers to const. The vector or string data 
are being passed to an API that will read it, not modify it. This is by far the safest 
thing to do. For strings, it's the only thing to do, because there is no guarantee that 
c_str yields a pointer to the internal representation of the string data: it could return a 
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pointer to an unmodifiable copy of the string's data, one that's correctly formatted for a 
C API. (If this makes the efficiency hairs on the back of your neck rise up in alarm, 
rest assured that the alarm is probably false. I don't know of any contemporary library 
implementation that takes advantage of this latitude.) 

For a vector, you have a little more flexibility. If you pass v to a C API that modifies 
v's elements, that's typically okay, but the called routine must not attempt to change 
the number of elements in the vector. For example, it must not try to "create" new 
elements in a vector's unused capacity. If it does, v will become internally inconsistent, 
because it won't know its correct size any longer. v.size() will yield incorrect results. 
And if the called routine attempts to add data to a vector whose size and capacity (see 
Item 14) are the same, truly horrible things could happen. I don't even want to 
contemplate them. They're just too awful. 

Did you notice my use of the word "typically" in the phrase "that's typically okay" in 
the preceding paragraph? Of course you did. Some vectors have extra constraints on 
their data, and if you pass a vector to an API that modifies the vector's data, you must 
ensure that the additional constraints continue to be satisfied. For example, Item 23 
explains how sorted vectors can often be a viable alternative to associative containers, 
but it's important for such vectors to remain sorted. If you pass a sorted vector to an 
API that may modify the vector's data, you'll need to take into account that the vector 
may no longer be sorted after the call has returned. 

If you have a vector that you'd like to initialize with elements from a C API, you can 
take advantage of the underlying layout compatibility of vectors and arrays by passing 
to the API the storage for the vector's elements: 

 
// C API: this function takes a pointer to an array of at most arraySize  
// doubles and writes data to it. It returns the number of doubles written,  
// which is never more than maxNumDoubles.  
size_t fillArray(double *pArray, size_t arraySize); 
 
vector<double> vd(maxNumDoubles);   // create a vector whose 

// size is maxNumDoubles 
vd.resize(fillArray(&vd[0], vd.size()));                  // have fillArray write data 

// into vd, then resize vd  
//to the number of  
// elements fillArray wrote 

This technique works only for vectors, because only vectors are guaranteed to have the 
same underlying memory layout as arrays. If you want to initialize a string with data 
from a C API, however, you can do it easily enough. Just have the API put the data 
into a vector<char>, then copy the data from the vector to the string: 

 
// C API: this function takes a pointer to an array of at most arraySize  
// chars and writes data to it. It returns the number of chars written,  
// which is never more than maxNumChars.  
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size_t fillString(char 'pArray, size_t arraySize); 
vector<char> vc(maxNumChars);   // create a vector whose 

// size is maxNumChars 
size_t charsWritten = fillString(&vc[0], vc.size());     // have fillString write 

//into vc 
string s(vc.begin(), vc.begin()+charsWritten);   // copy data from vc to s 

  // via range constructor  
  // ( see Item 5) 

In fact, the idea of having a C API put data into a vector and then copying the data into 
the STL container you really want it in always works: 

 
size_t fillArray(double *pArray, size_t arraySize);         // as above 
vector<double> vd(maxNumDoubles);                          // also as above  
vd.resize(fillArray(&vd[0], vd.size()); 
deque<double> d(vd.begin(), vd.end());                        // copy data into 

//deque 
list<double> l(vd.begin(), vd.end());                               // copy data into list 
set<double> s(vd.begin(), vd.end());                              // copy data into set 

Furthermore, this hints at how STL containers other than vector or string can pass their 
data to C APIs. Just copy each container's data into a vector, then pass it to the API: 

 
void doSomething(const int* pints, size_t numlnts);    // C API (from above) 
set<int> intSet;                                                            // set that will hold 
…                 // data to pass to API 
vector<int> v(intSet.begin(), intSet.end());                  // copy set data into 

     // a vector 
if (!v.empty()) doSomething(&v[0], v.size());                // pass the data to 

     //the API 

You could copy the data into an array, too, then pass the array to the C API, but why 
would you want to? Unless you know the size of the container during compilation, 
you'd have to allocate the array dynamically, and Item 13 explains why you should 
prefer vectors to dynamically allocated arrays anyway. 

Item 17. Use "the swap trick" to trim excess capacity. 

So you're writing software to support the TV game show Give Me Lots Of Money — 
Now!, and you're keeping track of the potential contestants, whom you have stored in a 
vector: 

 
class Contestant {...};  
vector<Contestant> contestants; 
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When the show puts out a call for new contestants, it's inundated with applicants, and 
your vector quickly acquires a lot of elements. As the show's producers vet the 
prospective players, however, a relatively small number of viable candidates get 
moved to the front of the vector (perhaps via partial_sort or partition — see Item 31), 
and the candidates no longer in the running are removed from the vector (typically by 
calling a range form of erase — see Item 5). This does a fine job of reducing the size 
of the vector, but it does nothing to reduce its capacity. If your vector held a hundred 
thousand potential candidates at some point, its capacity would continue to be at least 
100.000, even if later it held only, say, 10. 

To avoid having your vector hold onto memory it no longer needs, you'd like to have a 
way to reduce its capacity from the maximum it used to the amount it currently needs. 
Such a reduction in capacity is commonly known as "shrink to fit." Shrink-to-fit is 
easy to program, but the code is — how shall I put this? — something less than intui-
tive. Let me show it to you, then I'll explain how it works. 

This is how you trim the excess capacity from your contestants vector:  
 
vector<Contestant>(contestants).swap(contestants); 

The expression vector<Contestant>(contestants) creates a temporary vector that is a 
copy of contestants: vector's copy constructor does the work. However, vector's copy 
constructor allocates only as much memory as is needed for the elements being copied, 
so this temporary vector has no excess capacity. We then swap the data in the 
temporary vector with that in contestants, and by the time we're done, contestants has 
the trimmed capacity of the temporary, and the temporary holds the bloated capacity 
that used to be in contestants. At that point (the end of the statement), the temporary 
vector is destroyed, thus freeing the memory formerly used by contestants. Voila! 
Shrink-to-fit. 

The same trick is applicable to strings:  
 
string s; 
…     //make s large, then erase most  

//of its characters 
string(s).swap(s);                    // do a "shrink-to-fit" on s 

Now, the language police require that I inform you that there's no guarantee that this 
technique will truly eliminate excess capacity. Implementers are free to give vectors 
and strings excess capacity if they want to, and sometimes they want to. For example, 
they may have a minimum capacity below which they never go, or they may constrain 
a vector's or string's capacity to be a power of two. (In my experience, such anomalies 
are more common in string implementations than in vector implementations. For 
examples, see Item 15.) This approach to "shrink-to-fit," then, doesn't really mean 
"make the capacity as small as possible." it means "make the capacity as small as this 
implementation is willing to make it given the current size of the container." Short of 
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switching to a different implementation of the STL, however, this is the best you can 
do. so when you think "shrink-to-fit" for vectors and strings, think "the swap trick." 

As an aside, a variant of the swap trick can be used both to clear a container and to 
reduce its capacity to the minimum your implementation offers. You simply do the 
swap with a temporary vector or string that is default-constructed: 

 
vector<Contestant> v;  
string s; 
…       // use v and s 
vector<Contestant>().swap(v);    //clear v and minimize its capacity 
string().swap(s);                                 // clear s and minimize its capacity 

One final observation about the swap trick, or, rather, about swap in general. 
Swapping the contents of two containers also swaps their iterators, pointers, and 
references. Iterators, pointers, and references that used to point to elements in one 
container remain valid and point to the same elements — but in the other container— 
after the swap. 

Item 18. Avoid using vector<bool>. 

As an STL container, there are really only two things wrong with vector<bool>. First, 
it's not an STL container. Second, it doesn't hold bools. Other than that, there's not 
much to object to. 

An object doesn't become an STL container just because somebody says it's one. An 
object becomes an STL container only if it fulfills all the container requirements laid 
down in section 23.1 of the Standard for C++. Among the requirements is that if c is a 
container of objects of type T and c supports operator[], the following must compile: 

 
T *p = &c[0];                                       // initialize a T* with the address 

  // of whatever operator[] returns 

In other words, if you use operator[] to get at one of the T objects in a Container<T>, 
you can get a pointer to that object by taking its address. (This assumes that T hasn't 
perversely overloaded operators.) II vector<bool> is to be a container, then, this code 
must compile: 

 
vector<bool> v; 
bool *pb = &v[0];                         // initialize a bool* with the address of 

// what vector<bool>::operator[] returns 

But it won't compile. It won't, because vector<bool> is a pseudo-container that 
contains not actual bools, but a packed representation of bools that is designed to save 
space. In a typical implementation, each "bool" stored in the "vector" occupies a single 
bit, and an eight-bit byte holds eight "bools." Internally, vector<bool> uses the moral 
equivalent of bitfields to represent the bools it pretends to be holding. 
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Like bools, bitfields represent only two possible values, but there is an important 
difference between true bools and bitfields masquerading as bools. You may create a 
pointer to a real bool, but pointers to individual bits are forbidden. 

References to individual bits are forbidden, too, and this posed a problem for the 
design of vector<bool>'s interface, because the return type of vector<T>::operator[] is 
supposed to be T&. That wouldn't be a problem if vector<bool> really held bools, but 
because it doesn't, vector<bool>::operator() would need somehow to return a reference 
to a bit, and there's no such thing. 

To deal with this difficulty, vector<bool>::operator[] returns an object that acts like a 
reference to a bit, a so-called proxy object. (You don't need to understand proxy 
objects to use the STL. but they're a C++ technique worth knowing about. For 
information about them, consult Item 30 of More Effective C++ as well as the "Proxy" 
chapter in Gamma et al.'s Design Patterns [6].) Stripped down to the bare essentials, 
vector<bool> looks like this: 

 
template <typename Allocator> 
vector<bool, Allocator> {  
public: 

class reference {...};    // class to generate proxies for 
// references to individual bits 

reference operator[](size_type n);       // operator[] returns a proxy 
… 

} 

Now it's clear why this code won't compile:  
 
vector<bool> v; 
bool *pb = &v[0];                     // error! the expression on tne right is 

// of type vector<bool>::reference*,  
// not bool* 

Because it won't compile, vector<bool> fails to satisfy the requirements for STL 
containers. Yes, vector<bool> is in the Standard, and yes, it almost satisfies the 
requirements for STL containers, but almost just isn't good enough. The more you 
write your own templates designed to work with the STL, the more you'll appreciate 
that. The day will come. I assure you, when you'll write a template that will work only 
if taking the address of a container element yields a pointer to the contained type, and 
when that day comes, you'll suddenly understand the difference between being a 
container and almost being a container. 

You may wonder why vector<bool> is in the Standard, given that it's not a container 
and all. The answer has to do with a noble experiment that failed, but let me defer that 
discussion for a moment while I address a more pressing question. To wit, if 
vector<bool> should be avoided because it's not a container, what should you use 
when you need a vector<bool>? 
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The standard library provides two alternatives that suffice almost all the time. The first 
is deque<bool>. A deque offers almost everything a vector does (the only notable 
omissions are reserve and capacity), and a deque<bool> is an STL container that really 
contains bools. Of course, the underlying memory for a deque isn't contiguous, so you 
can't pass the data behind a deque<bool> to a C API2 that expects an array of bool (see 
Item 16), but you couldn't do that with a vector<bool> anyway because there's no 
portable way to get at the data for a vector<bool>. (The techniques that work for 
vectors in Item 16 fail to compile for vector<bool>. because they depend on being able 
to get a pointer to the type of element contained in the vector. Have I mentioned that a 
vector<bool> doesn't contain bools?) 

The second alternative to vector<bool> is bitset. bitset isn't an STL container, but it is 
part of the standard C++ library. Unlike STL containers, its size (number of elements) 
is fixed during compilation, so there is no support for inserting or erasing elements. 
Furthermore, because it's not an STL container, it offers no support for iterators. Like 
vector<bool>, however, it uses a compact representation that devotes only a single bit 
to each value it contains. It offers vector<bool>'s special flip member function, as well 
as a number of other special member functions that make sense for collections of bits. 
If you can live without iterators and dynamic changes in size, you'll probably find that 
a bit-set will serve you well. 

And now let me discuss the noble experiment that failed, the one that left behind as its 
residue the STL non-container vector<bool>. I mentioned earlier that proxy objects are 
often useful in C++ software development. The members of the C++ Standardization 
Committee were well aware of this, so they decided to develop vector<bool> as a 
demonstration of how the STL could support containers whose elements are accessed 
via proxies. With this example in the Standard, they reasoned, practitioners would 
have a ready reference for implementing their own proxy-based containers. 

Alas, what they discovered was that it was not possible to create proxy-based 
containers that satisfy all the requirements of STL containers. For one reason or 
another, however, their failed attempt at developing one remained in the Standard. One 
can speculate on why vector<bool> was retained, but practically speaking, it doesn't 
matter. What does matter is this: vector<bool> doesn't satisfy the requirements of an 
STL container; you're best off not using it; and deque<bool> and bitset are alternative 
data structures that will almost certainly satisfy your need for the capabilities promised 
by vector<bool>. 

                                              
2 This would presumably be a C99API, because bool was added to C only as of the version of the language 
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Associative Containers 

Somewhat like the polychromatic horse in The Wizard of Oz movie, the associative 
containers are creatures of a different color. True, they share many characteristics with 
the sequence containers, but they differ in a number of fundamental ways. For 
example, they automatically keep themselves sorted: they view their contents through 
the lens of equivalence instead of equality: sets and maps reject duplicate entries: and 
maps and multimaps generally ignore half of each object they contain. Yes. the 
associative containers are containers, but if you'll excuse my likening vectors and 
strings to Kansas, we are definitely not in Kansas any more. 

In the Items that follow, I explain the critical notion of equivalence, describe an 
important restriction on comparison functions, motivate custom comparison functions 
for associative containers of pointers, discuss the official and practical sides of key 
constness, and offer advice on improving the efficiency of associative containers. 

At the end of the chapter, I examine the STL's lack of containers based on hash tables, 
and I survey two common (nonstandard) implementations. Though the STL proper 
doesn't offer hash tables, you need not write your own or do without. High-quality 
implementations are readily available. 

Item 19. Understand the difference between equality and 
equivalence. 

The STL is awash in comparisons of objects to see if they have the same value. For 
example, when you ask find to locate the first object in a range with a particular value, 
find has to be able to compare two objects to see if the value of one is the same as the 
value of the other. Similarly, when you attempt to insert a new element into a set. set-
insert has to be able to determine whether that element's value is already in the set. 

The find algorithm and set's insert member function are representative of many 
functions that must determine whether two values are the same. Yet they do it in 
different ways, find's definition of "the same" is equality, which is based on 
operator==. set::insert's definition of "the same" is equivalence, which is usually based 
on operators. Because these are different definitions, it's possible for one definition to 
dictate that two objects have the same value while the other definition decrees that 
they do not. As a result, you must understand the difference between equality and 
equivalence if you are to make effective use of the STL. 

Operationally, the notion of equality is based on operator==. If the expression "x == y" 
returns true, x and y have equal values, otherwise they don't. That's pretty 
straightforward, though it's useful to bear in mind that just because x and y have equal 
values does not necessarily imply that all of their data members have equal values. For 
example, we might have a Widget class that internally keeps track of its last time of 
access. 

class Widget {  

 65



public: 
 … 
private:  

TimeStamp lastAccessed; 
… 

}; 

and we might have an operator== for Widgets that ignores this field: 
 
bool operator==(const Widget& lhs, const Widget& rhs) {  

// code that ignores the lastAccessed field 
} 

In that case, two Widgets would have equal values even if their lastAccessed fields 
were different. 

Equivalence is based on the relative ordering of object values in a sorted range. 
Equivalence makes the most sense if you think about it in terms of the sort order that is 
pan of even' standard associative container (i.e.. set. multiset, map. and multimap). 
Two objects x and y have equivalent values with respect to the sort order used by an 
associative container c if neither precedes the other in c's sort order. That sounds 
complicated, but in practice, it's not. Consider, as an example, a set<Widget> s. Two 
Widgets w1 and w2 have equivalent values with respect to s if neither precedes the 
other in s's sort order. The default comparison function for a set<Widget> is 
less<Widget>, and by default less<Widget> simply calls operator< for Widgets, so w1 
and w2 have equivalent values with respect to operator if the following expression is 
true: 

 
!(w1 < w2)                                               // it's not true that w1 < w2 
&&                                                          //and 
!(w2<w1)                                               //it's not true that w2 < w1 

This makes sense: two values are equivalent (with respect to some ordering criterion) 
if neither precedes the other (according to that criterion). 

In the general case, the comparison function for an associative container isn't 
operator< or even less, it's a user-defined predicate. (See Item 39 for more information 
on predicates.) Every standard associative container makes its sorting predicate 
available through its key_comp member function, so two objects x and y have 
equivalent values with respect to an associative container c's sorting criterion if the 
following evaluates to true: 

!c.key_comp()(x, y) && !c.key_comp()(y, x) // it's not true that x precedes 
       // y in c's sort order and it's  

// also not true that y precedes  
// x in c's sort order 
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The expression !c.key_comp()(x, y) looks nasty, but once you understand that 
c.key_comp() is returning a function (or a function object), the nastiness dissipates. 
!c.key_comp()(x, y) is just calling the function (or function object) returned by 
key_comp, and it's passing x and y as arguments. Then it negates the result, 
c.key_comp()(x, y) returns true only when x precedes y in c's sort order, so 
!c.key_comp()(x, y) is true only when x doesn't precede y in c's sort order. 

To fully grasp the implications of equality versus equivalence, consider a case-
insensitive set<string>, i.e., a set<string> where the set's comparison function ignores 
the case of the characters in the strings. Such a comparison function would consider 
"STL" and "stL" to be equivalent. Item 35 shows how to implement a function, 
ciStringCompare, that performs a case-insensitive comparison, but set wants a 
comparison function type, not an actual function. To bridge this gap, we write a 
functor class whose operator() calls ciStringCompare: 

 
struct CiStringCompare:                                   // class for case-insensitive 
  public                                                              //string comparisons: 
  binary_function<string, string, bool> {            // see Item 40 for info on 
                                                                         //this base class  
  bool operator()(const string& lhs,  
                           const string& rhs) const 
  { 
     return ciStringCompare(lhs, rhs);                  // see Item 35 for how 

      }                                                                      //ciStringCompare is  
                                                                               // implemented 
    } 

Given CIStringCompare, it's easy to create a case-insensitive set<string>: 
set<string, CIStringCompare> ciss;   // ciss = "case-insensitive 

 // string set” 

If we insert "Persephone" and "persephone" into the set, only the first string is added, 
because the second one is equivalent to the first: 

 
ciss.insert("Persephone");              // a new element is added to the set 
ciss.insert("persephone");               // no new element is added to the set 

If we now search for the string "persephone" using set's find member function, the 
search will succeed, 

 
if (ciss.find("persephone") != ciss.end())...         // this test will succeed 

but if we use the non-member find algorithm, the search will fail: 
if (find( ciss.begin(), ciss.end(), 

"persephone") != ciss.end())...                  // this test will fail 
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That's because "persephone" is equivalent to "Persephone" (with respect to the 
comparison functor CIStringCompare), but it's not equal to it (because 
string("'persephone") !=string("Persephone")). This example demonstrates one reason 
why you should follow the advice in Item 44 and prefer member functions (like 
set::find) to their non-member counterparts (like find). 

You might wonder why the standard associative containers are based on equivalence 
instead of equality. After all, most programmers have an intuition about equality that 
they lack for equivalence. (Were that not the case, there'd be no need for this Item.) 
The answer is simple at first glance, but the more closely you look, the more subtle it 
becomes. 

The standard associative containers are kept in sorted order, so each container must 
have a comparison function (less, by default) that defines how to keep things sorted. 
Equivalence is defined in terms of this comparison function, so clients of a standard 
associative container need to specify only one comparison function (the one deter-
mining the sort order) for any container they use. If the associative containers used 
equality to determine when two objects have the same value, each associative 
container would need, in addition to its comparison function for sorting, a second 
comparison function for determining when two values are equal. (By default, this 
comparison function would presumably be equal_to, but it's interesting to note that 
equal_to is never used as a default comparison function in the STL. When equality is 
needed in the STL, the convention is to simply call operator== directly. For example, 
this is what the non-member find algorithm does.) 

Let's suppose we had a set-like STL container called set2CF. "set with two comparison 
functions." The first comparison function would be used to determine the sort order of 
the set. the second would be used to determine whether two objects had the same 
value. Now consider this set2CF: 

 
set2CF<string, CIStringCompare, equal_to<string> > s; 

Here, s sorts its strings internally without regard to case, and the equality criterion is 
the intuitive one: two strings have the same value if they are equal to one another. Let's 
insert our two spellings of Hades' reluctant bride (Persephone) into s: 

 
s.insert("Persephone");  
s.insert("persephone"); 

What should this do? If we observe that "Persephone" != "persephone" and insert them 
both into s, what order should they go in? Remember that the sorting function can't tell 
them apart. Do we insert them in some arbitrary order, thus giving up the ability to 
traverse the contents of the set in deterministic order? (This inability to traverse asso-
ciative container elements in a deterministic order already afflicts multisets and 
multimaps, because the Standard places no constraints on the relative ordering of 
equivalent values (for multisets) or keys (for multimaps).) Or do we insist on a 
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deterministic ordering of s's contents and ignore the second attempted insertion (the 
one for "persephone")? If we do that, what happens here? 

 
if (s.find(“persephone") != s.end())...          // does this test succeed or fail? 

Presumably find employs the equality check, but if we ignored the second call to insert 
in order to maintain a deterministic ordering of the elements in s. this find will fail, 
even though the insertion of "persephone" was ignored on the basis of its being a 
duplicate value! 

The long and short of it is that by using only a single comparison function and by 
employing equivalence as the arbiter of what it means for two values to be "the same." 
the standard associative containers sidestep a whole host of difficulties that would 
arise if two comparison functions were allowed. Their behavior may seem a little odd 
at first (especially when one realizes that member and non-member find may return 
different results), but in the long run, it avoids the kind of confusion that would arise 
from mixing uses of equality and equivalence within standard associative containers. 

Interestingly, once you leave the realm of sorted associative containers, the situation 
changes, and the issue of equality versus equivalence can be — and has been — 
revisited. There are two common designs for nonstandard (but widely available) 
associative containers based on hash tables. One design is based on equality, while the 
other is based on equivalence. I encourage you to turn to Item 25 to learn more about 
these containers and the design decisions they've adopted. 

Item 20. Specify comparison types for associative containers of 
pointers. 

Suppose you have a set of string* pointers and you insert the names of some animals 
into the set: 

 
set<string*> ssp;                                                 // ssp = "set of string ptrs" 
ssp.insert(newstring("Anteater"));  
ssp.insert(newstring("Wombat"));  
ssp.insert(new string(“Lemur"));  
ssp.insert(newstring("Penguin")); 

You then write the following code to print the contents of the set. expecting the strings 
to come out in alphabetical order. After all, sets keep their contents sorted. 

 
for (set<string*>::const_iterator i = ssp.begin();        // you expect to see 

i != ssp.end();                                                      // this: "Anteater" 
++i)                                                                    //"Lemur”,"'Penguin”,   

    cout << *i << endl;                                                //"Wombat" 

The comment describes what you expect to see, but you don't see that at all. Instead, 
you see four hexadecimal numbers. They are pointer values. Because the set holds 
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pointers, *i isn't a string, it's a pointer to a string. Let this be a lesson that reminds you 
to adhere to the guidance of Item 43 and avoid writing your own loops. If you'd used a 
call to the copy algorithm instead, 

 
copy(ssp.begin(), ssp.end(),                            // copy the strings in 

ostream_iterator<string>(cout, "\n"));        // ssp to cout (but this 
               //won't compile) 

you'd not only have typed fewer characters, you'd have found out about your error 
sooner, because this call to copy won't compile, ostream_iterator insists on knowing 
the type of object being printed, so when you tell it it's a string (by passing that as the 
template parameter), your compilers detect the mismatch between that and the type of 
objects stored in ssp (which is string*), and they refuse to compile the code. Score 
another one for type safety. 

If you exasperatedly change the *i in your explicit loop to **i, you might get the 
output you want, but you probably won't. Yes, the animal names will be printed, but 
the chances of their coming out in alphabetical order are only 1 in 24. ssp keeps its 
contents in sorted order, but it holds pointers, so it sorts by pointer value, not by string 
value. There are 24 possible permutations for four pointer values, so there are 24 
possible orders for the pointers to be stored in. Hence the odds of 1 in 24 of your 
seeing the strings in alphabetical order.3 

To surmount this problem, it helps to recall that 
 
set<string*> ssp; 

is shorthand for this: 
 
set<string*, less<string*> > ssp; 

Well, to be completely accurate, it's shorthand for 
 
set<string*, less<string*>, allocator<string*> > ssp;  

but allocators don't concern us in this Item, so we'll ignore them. 

If you want the string* pointers to be stored in the set in an order determined by the 
string values, you can't use the default comparison functor class less<string*>. You 
must instead write your own comparison functor class, one whose objects take string* 
pointers and order them by the values of the strings they point to. Like this: 

 
struct StringPtrLess: 

                                              
3 Practically speaking, the 24 permutations are not equally likely, so the “1 in 24” statement is a bit misleading. 
Still, there are 24 different orders, and you could get any one of them. 
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public binary_function<const string*,                // see Item 40 for the 
       const string*,                //reason for this base 
       bool> {                         //class 

bool operator()(const string *ps1, const string *ps2) const  
{ 
    return *ps1 < *ps2; 
} 

}; 
 

Then you can use StringPtrLess as ssp's comparison type: 
 
typedef set<string*, StringPtrLess> StringPtrSet; 
StringPtrSet ssp:                                // create a set of strings and order 

   // them as defined by StringPtrLess 
   // insert the same four strings as  
   // before 

Now your loop will finally do what you want it to do (provided you've fixed the earlier 
problem whereby you used *i instead of **i): 

 
for (StringPtrSet::const_iterator i = ssp.begin();      // prints "Anteater", 

  i != ssp.end();                                                   // "Lemur" 
  ++i)                                                                 //"Penguin" 
cout <<" i << endl;                                            //"Wombat" 

If you want to use an algorithm instead, you could write a function that knows how to 
dereference string* pointers before printing them, then use that function in conjunction 
with for_each: 

 
void print(const string *ps)                                     // print to cout the 
{                                                                        // object pointed to 

cout << *ps << endl;                                           //by ps 
} 
for_each(ssp.begin(), ssp.end(), print);                    // invoke print on each 

      //element in ssp 

Or you could get fancy and write a generic dereferencing functor class, then use that 
with transform and an ostream_iterator: 

 
//when functors of this type are passed a T*, they return a const T&  
struct Dereference { 

template <typename T> 
const T& operator()(const T *ptr) const 
{ 

return *ptr;  
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} 
}; 
transform( ssp.begin(), ssp.end(),                                   // "transform" each 

ostream_iterator<string>(cout, "\n"),       // element in ssp by 
Dereference());                                               // dereferencing it, 

// writing the results  
// to cout 

Replacement of loops with algorithms, however, is not the point, at least not for this 
Item. (It is the point for Item 43.) The point is that anytime you create a standard 
associative container of pointers, you must bear in mind that the container will be 
sorted by the values of the pointers. Only rarely will this be what you want, so you'll 
almost always want to create your own functor class to serve as a comparison type. 

Notice that I wrote "comparison type." You may wonder why you have to go to the 
trouble of creating a functor class instead of simply writing a comparison function for 
the set. For example, you might think to try 

 
bool stringPtrLess( const string* ps1,           //would-be comparison 

     const string* ps2)           // function for string* 
{                                                                     //pointers to be sorted by 
     return *ps1 < *ps2;                                   //string value 
} 
 
set<string, stringPtrLess> ssp;                  // attempt to use StringPtrLess 

// as ssp's comparison function;  
//this won't compile 

The problem here is that each of the set template's three parameters is a type. 
Unfortunately, stringPtrLess isn't a type, it's a function. That's why the attempt to use 
StringPtrLess as set's comparison function won't compile, set doesn't want a function, 
it wants a type that it can internally instantiate to create a function. 

Anytime you create associative containers of pointers, figure you're probably going to 
have to specify the container's comparison type, too. Most of the time, your 
comparison type will just dereference the pointers and compare the pointed-to objects 
(as is done in StringPtrLess above). That being the case, you might as well keep a 
template for such comparison functors close at hand. Like this; 

 
struct DereferenceLess { 

template <typename PtrType> 
bool operator()(PtrType pT1,            // parameters are passed by 

     PtrType pT2) const  // value, because we expect them  
     {                                                          // to be (or to act like) pointers 

return *pT1 < *pT2; 
 } 
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}; 

Such a template eliminates the need to write classes like StringPtrLess. because we can 
use DereferenceLess instead: 

 
set<string*, DereferenceLess> ssp;             // behaves the same as 

// set<string*, StringPtrLess> 

Oh, one more thing. This Item is about associative containers of pointers, but it applies 
equally well to containers of objects that act like pointers, e.g., smart pointers and 
iterators. If you have an associative container of smart pointers or of iterators, plan on 
specifying the comparison type for it. too. Fortunately, the solution for pointers tends 
to work for pointeresque objects, too. Just as DereferenceLess is likely to be suitable 
as the comparison type for an associative container of T*, it's likely to work as the 
comparison type for containers of iterators and smart pointers to T objects, too. 

Item 21. Always have comparison functions return false for equal 
values. 

Let me show you something kind of cool. Create a set where less_equal is the 
comparison type, then insert 10 into the set: 

 
set<int, less_equal<int> > s;                  // s is sorted by "<=" 
s.insert(10);                                            //insert the value 10 

Now try inserting 10 again:  
 
s.insert(10); 

For this call to insert, the set has to figure out whether 10 is already present. We know 
that it is. but the set is dumb as toast, so it has to check. To make it easier to 
understand what happens when the set does this, we'll call the 10 that was initially 
inserted 10A and the 10 that we're trying to insert 10B. 

The set runs through its internal data structures looking for the place to insert 10B. It 
ultimately has to check 10B to see if it's the same as 10A. The definition of "the same" 
for associative containers is equivalence (see Item 19), so the set tests to see whether 
10B is equivalent to 10A. When performing this test, it naturally uses the set's 
comparison function. In this example, that's operator<=, because we specified 
less_equal as the set's comparison function, and less_equal means operators. The set 
thus checks to see whether this expression is true: 

 
!(10A<= 10B)&&!(10B<= 10A)               //test 10Aand 10B for equivalence 

Well, 10A and 10B are both 10, so it's clearly true that 10A <= 10B. Equally clearly, 10B 
<= 10A. The above expression thus simplifies to 
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!(true)&&!(true)  

and that simplifies to  
 
false && false 

which is simply false. That is, the set concludes that 10A and 10B are not equivalent, 
hence not the same, and it thus goes about inserting 10B into the container alongside 
10A. Technically, this action yields undefined behavior, but the nearly universal 
outcome is that the set ends up with two copies of the value 10, and that means it's not 
a set any longer. By using less_equal as our comparison type, we've corrupted the 
container! Furthermore, any comparison function where equal values return true will 
do the same thing. Equal values are, by definition, not equivalent! Isn't that cool? 

Okay, maybe your definition of cool isn't the same as mine. Even so, you'll still want 
to make sure that the comparison functions you use for associative containers always 
return false for equal values. You'll need to be vigilant, however. It's surprisingly easy 
to run afoul of this constraint. 

For example, Item 20 describes how to write a comparison function for containers of 
string* pointers such that the container sorts its contents by the values of the strings 
instead of the values of the pointers. That comparison function sorts them in ascending 
order, but let's suppose you're in need of a comparison function for a container of 
string* pointers that sorts in descending order. The natural thing to do is to grab the 
existing code and modify it. If you're not careful, you might come up with this, where 
I've highlighted the changes to the code in Item 20: 

struct StringPtrGreater:                                       // highlights show how 
     public binary_function<const string*,             // this code was changed 

      const string*,             // from page 89. Beware, 
           bool> {                      // this code is flawed! 

 
bool operator()(const string *ps1, const string *ps2) const 
{ 
    return !(*ps1 <*ps2);                                   //just negate the old test; 
}                                                                      // this is incorrect! 

};                                                                       

The idea here is to reverse the sort order by negating the test inside the comparison 
function. Unfortunately, negating "<" doesn't give you ">" (which is what you want), it 
gives you ">=". And you now understand that ">=", because it will return true for 
equal values, is an invalid comparison function for associative containers. 

The comparison type you really want is this one: 
 
struct StringPtrGreater:                                       // this is a valid 
     public binary_function<const string*,             // comparison type for 

                                    const string*,             // associative containers 
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                                          bool> {  
bool operator()(const string *ps1, const string *ps2) const 
{ 

return *ps2 < *ps1;                                 //return whether *ps2 
}                                                                    //precedes *ps1 (i.e., swap 

                                                         //the order of the  
};                                                                         // operands) 

To avoid falling into this trap, all you need to remember is that the return value of a 
comparison function indicates whether one value precedes another in the sort order 
defined by that function. Equal values never precede one another, so comparison 
functions should always return false for equal values. 

Sigh. 

I know what you're thinking. You're thinking. "Sure, that makes sense for set and map, 
because those containers can't hold duplicates. But what about multiset and multimap? 
Those containers may contain duplicates, so what do 1 care if the container thinks that 
two objects of equal value aren't equivalent? It will store them both, which is what the 
multi containers are supposed to do. No problem, right?" 

Wrong. To see why, let's go back to the original example, but this time we'll use a 
multiset: 

 
multiset<int, less_equal<int> > s;                          // s is still sorted by "<=" 
s.insert(10);                                                            //insert 10A 
s.insert(10);                                                            // insert 10B 

s now has two copies of 10 in it, so we'd expect that if we do an equal_range on it, 
we'll get back a pair of iterators that define a range containing both copies. But that's 
not possible equal_range, its name notwithstanding, doesn't identify a range of equal 
values, it identifies a range of equivalent values. In this example, s's comparison 
function says that 10A and 10B are not equivalent, so there's no way that both can be in 
the range identified by equal_range. 

You see? Unless your comparison functions always return false for equal values, you 
break all standard associative containers, regardless of whether they are allowed to 
store duplicates. 

Technically speaking, comparison functions used to sort associative containers must 
define a “strict weak ordering” over the objects they compare. (Comparison functions 
passed to algorithms like sort (see Item 31) are similarly constrained.) If you're 
interested in the details of what it means to be a strict weak ordering, you can find 
them in many comprehensive STL references, including Josuttis’ The C++ Standard 
Library [3]. Austern's Generic Programming and the STL [4], and the SGI STL Web 
Site [21]. I've never found the details terribly illuminating, but one of the requirements 
of a strict weak ordering bears directly on this Item. That requirement is that any 
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function defining a strict weak ordering must return false if it's passed two copies of 
the same value. 

Hey! That is this Item! 

Item 22. Avoid in-place key modification in set and multiset. 

The motivation for this Item is easy to understand. Like all the standard associative 
containers, set and multiset keep their elements in sorted order, and the proper 
behavior of these containers is dependent on their remaining sorted. If you change the 
value of an element in an associative container (e.g.. change a 10 to a 1000), the new 
value might not be in the correct location, and that would break the sorted-ness of the 
container. Simple, right? 

It's especially simple for map and multimap, because programs that attempt to change 
the value of a key in these containers won't compile: 

 
map<int, string> m; 
… 
m.begin()->first = 10;    // error! map keys can't be changed 
multimap<int, string> mm; 
… 
mm.begin()->first = 20;    // error! multimap keys can't 

 //be changed, either 

That's because the elements in an object of type map<K, V> or multi-map<K, V> are 
of type pair<const K, V>. Because the type of the key is const K. it can't be changed. 
(Well, you can probably change it if you employ a const_cast, as we'll see below. 
Believe it or not, sometimes that's what you want to do.) 

But notice that the title of this Item doesn't mention map or multimap. There's a reason 
for that. As the example above demonstrates, in-place key modification is impossible 
for map and multimap (unless you use a cast), but it may be possible for set and 
multiset. For objects of type set<T> or multiset<T>, the type of the elements stored in 
the container is simply T, not const T. Hence, the elements in a set or multiset may be 
changed anytime you want to. No cast is required. (Actually, things aren't quite that 
straightforward, but we'll come to that presently. There's no reason to get ahead of 
ourselves. First we crawl. Later we crawl on broken glass.) 

Let us begin with an understanding of why the elements in a set or multiset aren't 
const. Suppose we have a class for employees: 

 
class Employee {  
public: 

… 
const string& named const;                         // get employee name 
void setName(const string£ name;;             // set employee name 
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const string& titled const;                            // get employee title 
void setTitlelconst(string& title);                  // set employee title 
int idNumber() const;                                   // get employee ID number 
… 

} 

As you can see, there are various bits of information we can get about employees. Let 
us make the reasonable assumption, however, that each employee has a unique ID 
number, a number that is returned by the idNumber function. To create a set of 
employees, then, it could easily make sense to order the set by ID number only, like 
this: 

 
struct IDNumberLess:  

public binary_function<Employee, Employee, bool> {     // see Item 40 
 
bool operator()( const Employees lhs, 

      const Employee& rhs) const  
{  

return lhs.idNumber() < rhs.idNumber(); 
} 

}; 
 
typedef set<Employee, IDNumberLess> EmplDSet; 
EmplDSet se;                                                 // se is a set of employees 

  // sorted by ID number 

Practically speaking, the employee ID number is the key for the elements in this set. 
The rest of the employee data is just along for the ride. That being the case, there's no 
reason why we shouldn't be able to change the title of a particular employee to 
something interesting. Like so: 

 
Employee selectedID;                                   // variable to hold employee 
…                  // with selected ID number 
EmplDSet-iterator i = se.find(selectedlD);  
if (i != se.end()){  

i->setTitle("Corporate Deity");                    // give employee new title 
} 
 

Because all we're doing here is changing an aspect of an employee that is unrelated to 
the way the set is sorted (a non-key pan of the employee), this code can't corrupt the 
set. That's why it's legal. But making it legal precludes having the elements of a 
set/multiset be const. And that's why they aren't. 

Why, you might wonder, doesn't the same logic apply to the keys in maps and 
multimaps? Wouldn't it make sense to create a map from employees to, say, the 
country in which they live, a map where the comparison function was IDNumberLess, 
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just as in the previous example? And given such a map, wouldn't it be reasonable to 
change an employee s title without affecting the employee's ID number, just as in the 
previous example? 

To be brutally frank, I think it would. Being equally frank, however, it doesn't matter 
what I think. What matters is what the Standardization Committee thought, and what it 
thought is that map/multimap keys should be const and set/multiset values shouldn't 
be. Because the values in a set or multiset are not const, attempts to change them may 
compile. The purpose of this Item is to alert you that if you do change an element in a 
set or multiset, you must be sure not to change a key part — a part of the element that 
affects the sortedness of the container. If you do, you may corrupt the container, using 
the container will yield undefined results, and it will be your fault. On the other hand, 
this constraint applies only to the key parts of the contained objects. For all other parts 
of the contained elements, it's open season: change away! 

Except for the broken glass. Remember the broken glass I referred to earlier? We're 
there now. Grab some bandages and follow me. Even if set and multiset elements 
aren't const, there are ways for implementations to keep them from being modified. 
For example, an implementation could have operator* for a set<T>::iterator return a 
const T&. That is, it could have the result of dereferencing a set iterator be a reference-
to-const element of the set. Under such an implementation, there'd be no way to 
modify set or multiset elements, because all the ways of accessing the elements would 
add a const before letting you at them. 

Are such implementations legal? Arguably yes. And arguably no. The Standard is 
inconsistent in this area, and in accord with Murphy's Law, different implementers 
have interpreted it in different ways. The result is that it's not uncommon to find STL 
implementations where this code, which 1 earlier claimed should compile, won't 
compile: 

 
EmplDSet se;   //as before, se is a set of employees 

// sorted by ID number 
Employee selectedID;           // as before, selectedID is a dummy 

// employee with the selected ID  
// number 

… 
EmplDSet::iterator i = se.find(selectedlD);  
if (i != se.end()){ 

i->setTitle("Corporate Deity");            // some STL implementations will 
         // reject this line 

Because of the equivocal state of the Standard and the differing interpretations it has 
engendered, code that attempts to modify elements in a set or multiset isn't portable. 

So where do we stand? Encouragingly, things aren't complicated: 
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� If portability is not a concern, you want to change the value of an element in a 
set or multiset, and your STL implementation will let you get away with it. go 
ahead and do it. Just be sure not to change a key part of the element, i.e., a part 
of the element that could affect the sortedness of the container. 

� If you value portability, assume that the elements in sets and multisets cannot 
be modified, at least not without a cast. 

Ah, casts. We've seen that it can be entirely reasonable to change a non-key portion of 
an element in a set or a multiset, so I feel compelled to show you how to do it. How to 
do it correctly and portably, that is. It's not hard, but it requires a subtlety too many 
programmers overlook: you must cast to a reference. As an example, look again at the 
setTitle call we just saw that failed to compile under some implementations: 

 
EmplDSet::iterator i = se.find(selectedlD);  
if (i != se.end()) { 

i->setTitle("Corporate Deity");        // some STL implementations will 
}                                                           // reject this line because *i is const 

To get this to compile and behave correctly, we must cast away the constness of *i. 
Here's the correct way to do it: 

 
if (i != se.end()) {                                                                       // cast away 

const_cast<Employee&>(*i).setTitle("Corporate Deity");   //constness 
}                                                                                                 //of*i 

This takes the object pointed to by i, tells your compilers to treat the result of the cast 
as a reference to a (non-const) Employee, then invoke setTitle on the reference. Rather 
than explain why this works. I'll explain why an alternative approach fails to behave 
the way people often expect it to. 

Many people come up with this code. 
 
if (i !=se.end()){                                                                            //cast *i 

static_cast<Employee>(*i).setTitle("Corporate Deity");        //to an 
}                                                                                                  //Employee 

which is equivalent to the following: 
 
if (i != se.end()) {                                                             // same as above, 
    ((Employee)(*i)). setTitle("Corporate Deity");              // but using C 
}                                                                                       // cast syntax 

Both of these compile, and because these are equivalent, they're wrong for the same 
reason. At runtime, they don't modify *i! In both cases, the result of the cast is a 
temporary anonymous object that is a copy of *i. and setTitle is invoked on the 
anonymous object, not on *i! *i isn't modified, because setTitle is never invoked on 
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that object, it's invoked on a copy of that object. Both syntactic forms are equivalent to 
this: 

if (i != se.end()){ 
Employee tempCopy(*i);                              //copy *i into tempCopy 
tempCopy.setTitle("Corporate Deity");          // modify tempCopy 

} 

Now the importance of a cast to a reference should be clear. By casting to a reference, 
we avoid creating a new object. Instead, the result of the cast is a reference to an 
existing object, the object pointed to by i. When we invoke setTitle on the object 
indicated by the reference, we're invoking setTitle on *i, and that's exactly what we 
want. What I've just written is fine for sets and multisets, but when we turn to maps 
and multimaps, the plot thickens. Recall that a map<K, V> or a multimap<K, V> 
contains elements of type pair<const K, V>. That const means that the first component 
of the pair is defined to be const, and that means that attempts to cast away its 
constness are undefined. In theory, an STL implementation could write such values to 
a read-only memory location (such as a virtual memory page that, once written, is 
made write-protected by a system call), and attempts to cast away its constness would, 
at best, have no effect. I've never heard of an implementation that does that, but if 
you're a stickler for following the rules laid down by the Standard, you'll never try to 
cast away the constness of a map or multimap key. 

You've surely heard that casts are dangerous, and I hope this book makes clear that I 
believe you should avoid them whenever you can. To perform a cast is to shuck 
temporarily the safety of the type system, and the pitfalls we've discussed exemplify 
what can happen when you leave your safety net behind. 

Most casts can be avoided, and that includes the ones we've just considered. If you 
want to change an element in a set, multiset, map, or multimap in a way that always 
works and is always safe, do it in five simple steps: 

1. Locate the container element you want to change. If you're not sure of the best 
way to do that, Item 45 offers guidance on how to perform an appropriate 
search. 

2. Make a copy of the element to be modified. In the case of a map or multimap. 
be sure not to declare the first component of the copy const. After all, you want 
to change it! 

3. Remove the element from the container, typically via a call to erase (see Item 
9). 

4. Modify the copy so it has the value you want to be in the container. 

5. Insert the new value into the container. If the location of the new element in the 
container's sort order is likely to be the same or adjacent to that of the removed 
element, use the "hint" form of insert to improve the efficiency of the insertion 
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from logarithmic-time to constant-time. Use the iterator you got from Step 1 as 
the hint. 

Here's the same tired employee example, this time written in a safe, portable manner: 
 
EmplDSet se;                             // as before, se is a set of employees 

     // sorted by ID number 
Employee selectedID;                // as before, selectedID is a dummy 

// employee with the desired ID number 
… 
 
EmplDSet::iterator i =  

se.find(selectedlD);                     // Step 1: find element to change 
if(i!=se.end()){  

Employee e(*i);                            // Step 2: copy the element 
se.erase(i++);                              // Step 3: remove the element; 

 // increment the iterator to maintain  
 // its validity (see Item 9) 

e.setTitle("Corporate Deity");      // Step 4: modify the copy 
se.insert(i, e);                              // Step 5: insert new value; hint that its 

// location is the same as that of the  
}                                                        //original element 

You'll excuse my putting it this way, but the key thing to remember is that with set and 
multiset, if you perform any in-place modifications of container elements, you are 
responsible for making sure that the container remains sorted. 

Item 23. Consider replacing associative containers with sorted 
vectors. 

Many STL programmers, when faced with the need for a data structure offering fast 
lookups, immediately think of the standard associative containers, set, multiset, map, 
and multimap. That's fine, as far as it goes, but it doesn't go far enough. If lookup 
speed is really important, it's almost certainly worthwhile to consider the nonstandard 
hashed containers as well (see Item 25). With suitable hashing functions, hashed 
containers can be expected to offer constant-time lookups. (With poorly chosen 
hashing functions or with table sizes that are too small, the performance of hash table 
lookups may degrade significantly, but this is relatively uncommon in practice.) For 
many applications, the expected constant-time lookups of hashed containers are 
preferable to the guaranteed logarithmic-time lookups that are the hallmark of set, map 
and their multi companions.  

Even if guaranteed logarithmic-time lookup is what you want, the standard associative 
containers still may not be your best bet. Countterintuitively, it's not uncommon for the 
standard associative containers to offer performance that is inferior to that of the lowly 
vector. If you want to make effective use of the STL, you need to understand when and 
how a vector can offer faster lookups than a standard associative container. 
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The standard associative containers are typically implemented as balanced binary 
search trees. A balanced binary search tree is a data structure that is optimized for a 
mixed combination of insertions, erasures, and lookups. That is, it's designed for 
applications that do some insertions, then some lookups, then maybe some more inser-
tions, then perhaps some erasures, then a few more lookups, then more insertions or 
erasures, then more lookups, etc. The key characteristic of this sequence of events is 
that the insertions, erasures, and lookups are all mixed up. In general, there's no way to 
predict what the next operation on the tree will be. 

Many applications use their data structures in a less chaotic manner. Their use of data 
structures fall into three distinct phases, which can be summarized like this: 

1. Setup. Create a new data structure by inserting lots of elements into it. During 
this phase, almost all operations are insertions and erasures. Lookups are rare or 
nonexistent. 

2. Lookup. Consult the data structure to find specific pieces of information. 
During this phase, almost all operations are lookups.. Insertions and erasures 
are rare or nonexistent. 

3. Reorganize. Modify the contents of the data structure, perhaps by erasing all 
the current data and inserting new data in its place. Behaviorally, this phase is 
equivalent to phase 1. Once this phase is completed, the application returns to 
phase 2. 

For applications that use their data structures in this way, a vector is likely to offer 
better performance (in both time and space) than an associative container. But not just 
any vector will do. It has to be a sorted vector, because only sorted containers work 
correctly with the lookup algorithms binary_search, lower_bound, equaL_range; etc. 
(see Item 34). But why should a binary search through a (sorted) vector offer better 
performance than a binary search through a binary search tree? Because some things 
are trite but true, and one of them is that size matters. Others are less trite but no less 
true, and one of those is that locality of reference matters, too. 

Consider first the size issue. Suppose we need a container to hold Widget objects, and, 
because lookup speed is important to us, we are considering both an associative 
container of Widgets and a sorted vector<Widget>. If we choose an associative 
container, we'll almost certainly be using a balanced binary tree. Such a tree would be 
made up of tree nodes, each holding not only a Widget, but also a pointer to the node's 
left child, a pointer to its right child, and (typically) a pointer to its parent. That means 
that the space overhead for storing a Widget in an associative container would be at 
least three pointers. 

In contrast, there is no overhead when we store a Widget in a vector: we simply store a 
Widget. The vector itself has overhead, of course, and there may be empty (reserved) 
space at the end of the vector (see Item 14), but the per-vector overhead is typically 
insignificant (usually three machine words, e.g., three pointers or two pointers and an 
int). and the empty space at the end can be lopped off via "the swap trick" if necessary 
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(see Item 17). Even if the extra space is not eliminated, it's unimportant for the 
analysis below, because that memory won't be referenced when doing a lookup. 

Assuming our data structures are big enough, they'll be split across multiple memory 
pages, but the vector will require fewer pages than the associative container. That's 
because the vector requires no per-Widget overhead, while the associative container 
exacts three pointers per Widget. To see why this is important, suppose you're working 
on a system where a Widget is 12 bytes in size, pointers are 4 bytes, and a memory' 
page holds 4096 (4K) bytes. Ignoring the per-container overhead, you can fit 341 
Widgets on a page when they are stored in a vector, but you can fit at most 170 when 
they are stored in an associative container. You'll thus use about twice as much 
memory ior the associative container as you would for the vector. If you're working in 
an environment where virtual memory is available, it's easy to see how that can 
translate into a lot more page faults, therefore a system that is significantly slower for 
large sets of data. 

I'm actually being optimistic about the associative containers here, because I'm 
assuming that the nodes in the binary trees are clustered together on a relatively small 
set of memory pages. Most STL implementations use custom memory managers 
(implemented on top of the containers' allocators — see Items 10 and 11) to achieve 
such clustering, but if your STL implementation fails to take steps to improve locality 
of reference among tree nodes, the nodes could end up scattered all over your address 
space. That would lead to even more page faults. Even with the customary clustering 
memory managers, associative containers tend to have more problems with page 
faults, because, unlike contiguous-memory containers such as vector, node-based 
containers find it more difficult to guarantee that container elements that are close to 
one another in a container's traversal order are also close to one another in physical 
memory. Yet this is precisely the kind of memory organization that minimizes page 
faults when performing a binary search. 

Bottom line: storing data in a sorted vector is likely to consume less memory than 
storing the same data in a standard associative container, and searching a sorted vector 
via binary search is likely to be faster than searching a standard associative container 
when page faults are taken into account. 

Of course, the big drawback of a sorted vector is that it must remain sorted! When a 
new element is inserted, everything beyond the new element must be moved up by 
one. That's as expensive as it sounds, and it gets even more expensive if the vector has 
to reallocate its underlying memory (see Item 14), because then all the elements in the 
vector typically have to be copied. Similarly, if an element is removed from the vector, 
all the elements beyond it must be moved down. Insertions and erasures are expensive 
for vectors, but they're cheap for associative containers. That's why it makes sense to 
consider using a sorted vector instead of an associative container only when you know 
that your data structure is used in such a way that lookups are almost never mixed with 
insertions and erasures. 
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This Item has featured a lot of text, but it's been woefully short on examples, so let's 
take a look at a code skeleton for using a sorted vector instead of a set: 

 
vector<Widget> vw;                                       // alternative to set<Widget> 
……      //Setup phase: lots of  

// insertions, few lookups 
sort(vw.begin(), vw.end());                             // end of Setup phase. (When 

// simulating a multiset, you  
// might prefer stable_sort  
// instead; see Item 31.) 

Widget w;                                                       // object for value to look up 
……      //start Lookup phase  
if (binary_search(vw.begin(), vw.end(), w))... // lookup via binary_search 
vector<Widget>::iterator i = 
   lower_bound(vw.begin(), vw.end(), w);    // lookup via lower_bound;  
if (i != vw.endO && !(*i < w)}...                        // see Item 45 for an explana- 

 //tion of the"!(*i < w)" test 
pair<vector<Widget>::iterator, 
vector<Widget>::iterator> range = 

equal_range(vw.begin(), vw.end(), w);    // lookup via equal_range  
if (range.first != range.second)... 
…       // end Lookup phase, start  

// Reorganize phase 
sort(vw.begin(), vw.end());                              // begin new Lookup phase... 
 

As you can see, it's all pretty straightforward. The hardest thing about it is deciding 
among the search algorithms (e.g.. binary_search, lower_bound, etc.), and Item 45 
helps you do that. 

Things get a bit more interesting when you decide to replace a map or multimap with a 
vector, because the vector must hold pair objects. After all, that's what map and 
multimap hold. Recall, however, that if you declare an object of type map<K, V> (or 
its multimap equivalent), the type of elements stored in the map is pair<const K, V>. 
To emulate a map or multimap using a vector, you must omit the const, because when 
you sort the vector, the values of its elements will get moved around via assignment, 
and that means that both components of the pair must be assignable. When using a 
vector to emulate a map<K, V>, then, the type of the data stored in the vector will be 
pair<K, V>, not pair<const K, V>. 

maps and multimaps keep their elements in sorted order, but they look only at the key 
part of the element (the first component of the pair) for sorting purposes, and you must 
do the same when sorting a vector. You'll need to write a custom comparison function 
for your pairs, because pair's operator< looks at both components of the pair. 
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Interestingly, you'll need a second comparison function for performing lookups. The 
comparison function you'll use for sorting will take two pair objects, but lookups are 
performed given only a key value. The comparison function for lookups, then, must 
take an object of the key type (the value being searched for) and a pair (one of the 
pairs stored in the vector) — two different types. As an additional twist, you can't 
know whether the key value or the pair will be passed as the first argument, so you 
really need two comparison functions for lookups: one where the key value is passed 
first and one where the pair is passed first. 

Here's an example of how to put all the pieces together: 
 
typedef pair<string, int> Data;                              // type held in the "map" 

      // in this example 
class DataCompare {                                            // class for comparison 
public:                                                                   //functions 

bool operator()(const Data& lhs,                    // comparison func 
const Data& rhs) const        //for sorting  

{ 
return keyLess(lhs.first, rhs.first);       // keyLess is below 

} 
 

bool operator()(const Data& Ihs,                    // comparison func 
 const Data::first_type& k) const          // for lookups 

{                                                                      //(form 1) 
return keyLess(lhs.first, k);  

}  
 
bool operator()(const Data::first_type& k,      // comparison func 

 const Data& rhs) const         // for lookups 
{                                                                       // (form 2) 

return keyLessfk, rhs.first);  
} 

 
private:  

bool keyLess(const Data::first_type& k1,        // the "real" 
const Data::first_type& k2) const          // comparison 

{                                                                       //function 
return k1 < k2; 

 } 
}; 

In this example, we assume that our sorted vector will be emulating a map<string, 
int>. The code is pretty much a literal translation of the discussion above, except for 
the presence of the member function key-Less. That function exists to ensure 
consistency between the various operator!) functions. Each such function simply 
compares two key values, so rather than duplicate the logic, we put the test inside 
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keyLess and have the operator() functions return whatever keyLess does. This 
admirable act of software engineering enhances the maintainability of DataCompare. 
but there is a minor drawback. Its provision for opera-tort) functions with different 
parameter types renders the resulting function objects unadaptable (see Item 40). Oh 
well. 

Using a sorted vector as a map is essentially the same as using it as a set. The only 
major difference is the need to use DataCompare objects as comparison functions: 

 
vector<Data> vd;     //alternative to  

//map<string, int> 
…       //Setup phase: lots of  

// insertions, few lookups 
 
sort(vd.begin(), vd.end(), DataCompare());   //end of Setup phase. (When  

// simulating a multimap, you  
// might prefer stable_sort  
 //instead;see Item 31.) 

 
string s;      // object for value to look up  
 
…       //start Lookup phase 
 
if (binary_search(vd.begin(), vd.end(), s,  

DataCompare()))...  // lookup via binary_search 
 

vector<Data>::iterator i =  
lower_bound(vd.begin(), vd.end(), s, 

DataCompare());   // lookup via lower_bound; 
if (i != vd.end() && !(i->first < s))...  // again, see Item 45 for info  

// on the "!(i->first < s)" test 
 
pair<vector<Data>::iterator, 

 vector<Data>::iterator> range =  
  equal_range(vd.begin(), vd.end(), s,  

DataCompare());   // lookup via equal_range 
if (range.first != range.second)... 
 
…       //end Lookup phase, start  

// Reorganize phase 
sort(vd.begin(), vd.end(), DataCompare());    // begin new Lookup phase... 

As you can see, once you've written DataCompare, things pretty much fall into place. 
And once in place, they'll often run taster and use less memory than the corresponding 
design using a real map as long as your program uses the data structure in the phased 
manner described on page 101. If your program doesn't operate on the data structure 
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in a phased manner, use of a sorted vector instead of a standard associative container 
will almost certainly end up wasting time. 

Item 24. Choose carefully between map::operator[] and map-insert 
when efficiency is important. 

Let's suppose we have a Widget class that supports default construction as well as 
construction and assignment from a double: 

 
class Widget {  
public: 

Widget(); 
Widget(double weight); 
Widget& operator=(double weight); 
… 

} 

Let's now suppose we'd like to create a map from ints to Widgets, and we'd like to 
initialize the map with particular values. This simplicity itself: 

 
map<int, Widget> m; 
m[1] = 1.50;  
m[2] = 3.67;  
m[3] = 10.5;  
m[4]=45.8;  
m[5] = 0.0003; 
 

In fact, the only thing simpler is forgetting what's really going on. That's too bad, 
because what's going on could incur a considerable performance hit. 

The operator[] function for maps is a novel creature, unrelated to the operator[] 
functions for vectors, deques, and strings and equally unrelated to the built-in 
operator[] that works with arrays. Instead, map::operator[] is designed to facilitate 
"add or update" functionality. That is, given 

 
map<K, V> m;  

the expression 
m[k] = v; 

checks to see if the key k is already in the map. If not, it's added, along with v as its 
corresponding value. If k is already in the map, its associated value is updated to v. 

The way this works is that operator[] returns a reference to the value object associated 
with k. v is then assigned to the object to which the reference (the one returned from 
operator[]) refers. This is straightforward when an existing key's associated value is 
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being updated, because there's already a value object to which operator[] can return a 
reference. But if k isn't yet in the map, there's no value object for operator[] to refer to. 
In that case, it creates one from scratch by using the value type's default constructor, 
operator[] then returns a reference to this newly-created object. 

Let's look again at the first part of our original example: 
 
map<int, Widget> m; 
m[1] = 1.50; 

The expression m[1] is shorthand for m.operator[](1), so this is a call to 
map::operator[]. That function must return a reference to a Widget, because m's 
mapped type is Widget. In this case, m doesn't yet have anything in it, so there is no 
entry in the map for the key 1. operator[] therefore default-constructs a Widget to act 
as the value associated with 1, then returns a reference to that Widget. Finally, the 
Widget becomes the target of an assignment: the assigned value is 1.50. 

In other words, the statement 
 
m[1 ] = 1.50;  

is functionally equivalent to this: 
 
typedef map<int, Widget> IntWidgetMap;               // convenience 

// typedef 
pair<lntWidgetMap::iterator, bool> result =             // create new map 

m.insert(lntWidgetMap::value_type(1, Widget()));  // entry with key 1 
    //and a default- 

             // constructed value  
    // object; see below  
    //for a comment on  

             // value_type 
 

result.first->second = 1.50;                                          // assign to the 
   // newly-constructed  
    // value object 

Now it should be clear why this approach may degrade performance. We first default-
construct a Widget, then we immediately assign it a new value. If it's measurably more 
efficient to construct a Widget with the value we want instead of default-constructing 
the Widget and then doing the assignment, we'd be better off replacing our use of 
operator[] (including its attendant construction plus assignment) with a straightforward 
call to insert: 

 
m.insert(lntWidgetMap::value_type(1,1.50)); 
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This has precisely the same ultimate effect as the code above, except it typically saves 
you three function calls: one to create a temporary default-constructed Widget object, 
one to destruct that temporary object, and one to Widget's assignment operator. The 
more expensive those function calls, the more you save by using map-insert instead of 
map::operator[]. 

The code above takes advantage of the value_type typedef that's provided by every 
standard container. There's nothing particularly significant about this typedef. but it's 
important to remember that for map and multimap (as well as the nonstandard 
containers hash_map, and hash_multimap — see Item 25), the type of the contained 
elements will always be some kind of pair. 

I remarked earlier that operator[] is designed to facilitate "add or update" functionality, 
and we now understand that when an "add" is performed, insert is more efficient than 
operator[]. The situation is reversed when we do an update, i.e., when an equivalent 
key (see Item 19) is already in the map. To see why that is the case, look at our update 
options: 

 
m[k] = v;         // use operator[] 

 // to update k's 
 //value to be v 

m.insert( 
IntWidgetMap::value_type(k, v)).first->second = v; // use insert to 

// update k's  
//value to be v 

The syntax alone is probably enough to convince you to favor operator(), but we're 
focusing on efficiency here, so we'll overlook that. The call to insert requires an 
argument of type IntWidgetMap::value_type (i.e.. pair<int, Widget>), so when we call 
insert, we must construct and destruct an object of that type. That costs us a pair 
constructor and destructor. That, in turn, entails a Widget construction and destruction, 
because a pair<int, Widget> itself contains a Widget object, operator[] uses no pair 
object, so it constructs and destructs no pair and no Widget. 

Efficiency considerations thus lead us to conclude that insert is preferable to operator[] 
when adding an element to a map, and both efficiency and aesthetics dictate that 
operator[] is preferable when updating the value of an element that's already in the 
map. It would be nice if the STL provided a function that offered the best of both 
worlds, i.e., efficient add-or-update functionality in a syntactically attractive package. 
For example, it's not hard to envision a calling interface such as this: 

 
iterator affectedPair =                            // if key k isn't in map m, efficiently 

efficientAddOrUpdate(m, k, v);        // add pair (k,v) to m; otherwise 
      // efficiently update to v the value  
      // associated with k. Return an  
      // iterator to the added or  
      // modified pair 
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There's no function like this in the STL, but, as the code below demonstrates, it's not 
terribly hard to write yourself. The comments summarize what's going on, and the 
paragraphs that follow provide some additional explanation. 

 
template< typename MapType,                         // type of map 

typename KeyArgType,                    // see below for why 
typename ValueArgtype>                 // KeyArgType and 

// ValueArgtype are type 
typename MapType::iterator                              // parameters 
efficientAddOrUpdate(MapType& m, 

const KeyArgType& k,  
const ValueArgtype& v)  

{ 
typename MapType::iterator Ib =               // find where k is or should 

m.lower_bound(k);                           // be; see page 7 for why 
// "typename" is needed  
 // here 
 

if(lb != m.end() &&                                      // if Ib points to a pair 
!(m.key_comp()(k, lb->first))) {             // whose key is equiv to k... 
 
lb->second = v;                                    // update the pair's value 
return Ib;                                              // and return an iterator 

}                                                                 //to that pair 
else{ 

typedef typename MapType::value_type MVT; 
return m.insert(lb, MVT(k, v));          // add pair(k, v) to m and 

}                                                                  //return an iterator to the 
}                                                                         //new map element 

To perform an efficient add or update, we need to be able to find out if k's value is in 
the map; if so, where it is; and if not, where it should be inserted. That job is tailor-
made for lower_bound (see Item 45), so that's the function we call. To determine 
whether lower_bound found an element with the key we were looking for. we perform 
the second half of an equivalence test (see Item 19), being sure to use the correct 
comparison function for the map: that comparison function is available via 
map::key_comp. The result of the equivalence test tells us whether we're performing 
an add or an update. 

If it's an update, the code is straightforward. The insert branch is more interesting, 
because it uses the "hint" form of insert. The construct m.insertdb, MVT(k, v)) "hints" 
that lb identifies the correct insertion location for a new element with key equivalent to 
k. and the Standard guarantees that if the hint is correct, the insertion will occur in 
constant, rather than logarithmic, time. In efficientAddOrUpdate, we know that lb 
identifies the proper insertion location, so the call to insert is guaranteed to be a 
constant-time operation. 
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An interesting aspect of this implementation is that KeyArgType and ValueArgType 
need not be the types stored in the map. They need only be convertible to the types 
stored in the map. The alternative would be to eliminate the type parameters 
KeyArgType and ValueArgType, using instead MapType::key_type and 
MapType::mapped_type. However, if we did that, we might force unnecessary type 
conversions to occur at the point of call. For instance, look again at the definition of 
the map we've been using in this Item's examples: 

 
map<int, Widget> m;                                        //as before 

And recall that Widget accepts assignment from a double: 
 
class Widget {                                                         //also as before 
public: 

… 
Widget& operator=(double weight); 
… 

}; 
 

Now consider this call to efficientAddOrUpdate: 
efficientAddOrUpdate(m, 10,1.5); 

Suppose that it's an update operation, i.e., m already contains an element whose key is 
10. In that case, the template above deduces that ValueArgType is double, and the 
body of the function directly assigns 1.5 as a double to the Widget associated with the 
key 10. That's accomplished by an invocation of Widget::operator=(double). If we had 
used MapType::mapped_type as the type of efficientAddOrUpdate's third parameter, 
we'd have converted 1.5 to a Widget at the point of call, and we'd thus have paid for a 
Widget construction (and subsequent destruction) we didn't need. 

Subtleties in the implementation of efficientAddOrUpdate may be interesting, but 
they're not as important as the main point of this Item, which is that you should choose 
carefully between map::operator[] and map-insert when efficiency is important. If 
you're updating an existing map element, operator[] is preferable, but if you're adding 
a new element, insert has the edge. 

Item 25. Familiarize yourself with the nonstandard hashed 
containers. 

It generally doesn't take much time for STL programmers to begin to wonder. 
"Vectors, lists, maps, sure, but where are the hash tables?" Alas, there aren't any hash 
tables in the standard C++ library. Even-one agrees that this is unfortunate, but the 
Standardization Committee felt that the work needed to add them would have unduly 
delayed completion of the Standard. It's a foregone conclusion that the next version of 
the Standard will include hash tables, but for the time being, the STL doesn't do 
hashing. 
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If you like hash tables, however, take heart. You need not do without or roll your own. 
STL-compatible hashed associative containers are available from multiple sources, and 
they even have de facto standard names: hash_set, hash_multiset, hash_map, and 
hash_multimap. 

Behind these common names, different implementations, er, differ. They differ in their 
interfaces, their capabilities, their underlying data structures, and the relative 
efficiency of the operations they support. It's still possible to write reasonably portable 
code using hash tables, but it's not as easy as it would be had the hashed containers 
been standardized. (Now you know why standards are important.) 

Of the several available implementations for hashed containers, the two most common 
are from SGI (see Item 50) and Dinkumware (see Appendix B). so in what follows, 1 
restrict myself to the designs of the hashed containers from these vendors. STLport 
(again, see Item 50) also offers hashed containers, but the STLport hashed containers 
are based on those from SGI. For purposes of this Item, assume that whatever I write 
about the SGI hashed containers applies to the STLport hashed containers, too. 

Hashed containers are associative containers, so it should not surprise you that, like all 
associative containers, they need to know the type of objects stored in the container, 
the comparison function for such objects, and the allocator for these objects. In 
addition, hashed containers require specification of a hashing function. That suggests 
the following declaration for hashed containers: 

 
template<typename T, 

typename HashFunction, 
typename CompareFunction, 
typename Allocator = allocator<T> >  

class hash_container; 

This is quite close to the SGI declaration for hashed containers, the primary difference 
being that SGI provides default types for HashFunction and CompareFunction. The 
SGI declaration for hash_set looks essentially like this (I've tweaked it a bit for 
presentation purposes): 

 
template<typename T, 

typename HashFunction = hash<T>,  
typename CompareFunction = equa_ to<T>,  
typename Allocator = allocator<T> > 

class hash_set; 

A noteworthy aspect of the SGI design is the use of equal_to as the default comparison 
function. This is a departure from the conventions of the standard associative 
containers, where the default comparison function is less. This design decision 
signifies more than a simple change in default comparison functions. SGI's hashed 
containers determine whether two objects in a hashed container have the same value 
by testing for equality, not equivalence (see Item 19). For hashed containers, this is not 
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an unreasonable decision, because hashed associative containers, unlike their standard 
(typically tree-based) counterparts, are not kept in sorted order. 

The Dinkumware design for hashed containers adopts some different strategies. It still 
allows you to specify object types, hash function types, comparison function types, 
and allocator types, but it moves the default hash and comparison functions into a 
separate traits-like class called hash_compare, and it makes hash_compare the default 
argument for the HashingInfo parameter of the container templates. (If you're 
unfamiliar with the notion of a "traits" class, open a good STL reference like Josuttis' 
The C++ Standard Library [3] and study the motivation and implementation of the 
char_traits and iterator_traits templates.) 

For example, here's the Dinkumware hash_set declaration (again, tweaked for 
presentation): 

 
template<typename T, typename CompareFunction>  
class hash_compare; 
 
template<typename T, 

typename HashingInfo = hash_compare<T, less<T> >; 
typename Allocator = allocator<T> >  

class hash_set; 

The interesting part of this interface design is the use of HashingInfo. The container's 
hashing and comparison functions are stored there, but the HashingInfo type also holds 
enums controlling the minimum number of buckets in the table as well as the 
maximum allowable ratio of container elements to buckets. When this ratio is 
exceeded, the number of buckets in the table is increased, and some elements in the 
table are rehashed. (SGI provides member functions that afford similar control over 
the number of table buckets and, hence, the ratio of table elements to buckets.) 

After some tweaks for presentation, hash_compare (the default value for HashingInfo) 
looks more or less like this: 
 

template<typename T, typename CompareFunction = less<T> > 
class hash_compare { 
public: 

enum { 
bucket_size = 4,               // max ratio of elements to buckets 
min_buckets = 8               // minimum number of buckets 

 }; 
size_t operator()(const T&) const;       // hash function 
bool operator()(const T&,                   // comparison function 

    const T&) const; 
…         // a few things omitted, including ); 

   //the use of CompareFunction 
} 
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The overloading of operator() (in this case, to implement both the hashing and 
comparison functions) is a strategy that crops up more frequently than you might 
imagine. For another application of the same idea, take a look at Item 23. 

The Dinkumware design allows you to write your own hash_compare-like class 
(possibly by deriving from hash_compare itself), and as long as your class provides 
definitions for bucket_size, min_buckets. two operator() functions (one taking one 
argument, one taking two), plus a few things I've left out, you can use it to control the 
configuration and behavior of a Dinkumware hash_set or hash_multiset. Configuration 
control for hash_map and hash_multimap is similar. 

Notice that with both the SGI and the Dinkumware designs, you can leave all the 
decision-making to the implementations and simply write something like this: 

 
hash_set<int> intTable;                         // create a hashed set of ints 

For this to compile, the hash table must hold an integral type (such as int), because the 
default hashing functions are generally limited to integral types. (SGI's default hashing 
function is slightly more flexible. Item 50 will tell you where to find all the details.) 

Under the hood, the SGI and Dinkumware implementations go their very separate 
ways. SGI employs a conventional open hashing scheme composed of an array (the 
buckets) of pointers to singly linked lists of elements. Dinkumware also employs open 
hashing, but it's design is based on a novel data structure consisting of an array of 
iterators (essentially the buckets) into a doubly linked list of elements, where adjacent 
pairs of iterators identify the extent of the elements in each bucket. (For details, 
consult Plauger's aptly titled column. "Hash Tables" [16].) 

As a user of these implementations, it's likely you'll be interested in the fact that the 
SGI implementation stores the table elements in singly linked lists, while the 
Dinkumware implementation uses a doubly linked list. The difference is noteworthy, 
because it affects the iterator categories for the two implementations. SGI's hashed 
containers offer forward iterators, so you forgo the ability to perform reverse 
iterations: there are no rbegin or rend member functions in SGI's hashed containers. 
The iterators for Dinkumware's hashed containers are bidirectional, so they offer both 
forward and reverse traversals. In terms of memory usage, the SGI design is a bit more 
parsimonious than that from Dinkumware. 

Which design is best for you and your applications? I can't possibly know. Only you 
can determine that, and this Item hasn't tried to give you enough information to come 
to a reasonable conclusion. Instead, the goal of this Item is to make sure you know that 
though the STL itself lacks hashed containers. STL-compatible hashed containers 
(with varying interfaces, capabilities, and behavioral trade-offs) are not difficult to 
come by. In the case of the SGI and STLport implementations, you can even come by 
them for free, because they're available for free download. 
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Iterators 
At first glance, iterators appear straightforward. Look more closely, however, and 
you'll notice that the standard STL containers offer four different iterator types: 
iterator, const_iterator, reverse_iterator, and const_reverse_iterator. From there it's 
only a matter of time until you note that of these four types, only one is accepted by 
containers in certain forms of insert and erase. That's when the questions begin. Why 
four iterator types? What is the relationship among them? Are they interconvertible? 
Can the different types be mixed in calls to algorithms and STL utility functions? How 
do these types relate to containers and their member functions? 

This chapter answers these questions, and it introduces an iterator type that deserves 
more notice than it usually gets: istreambuf_iterator. If you like the STL, but you're 
unhappy with the performance of istream_iterators when reading character streams, 
istreambuf_iterator could be just the tool you're looking for. 

Item 26. Prefer iterator to const iterator, reverse_iterator, and 
const_reverse_iterator. 

As you know, every standard container offers four types of iterator. For a 
container<T>, the type iterator acts like a T*, while const_iterator acts like a const T* 
(which you may also see written as a T const *: they mean the same thing). 
Incrementing an iterator or a const_iterator moves you to the next element in the 
container in a traversal starting at the front of the container and proceeding to the back, 
reverse_iterator and const_reverse_iterator also act like T* and const T*, respectively, 
except that incrementing these iterator types moves you to the next element in the 
container in a traversal from back to front. 

Let me show you two things. First, take a look at some signatures for insert and erase 
in vector<T>: 

 
iterator insert(iterator position, const T& x); 
iterator erase(iterator position); 
iterator erase(iterator rangeBegin, iterator rangeEnd); 
 

Every standard container offers functions analogous to these, though the return types 
vary, depending on the container type. The thing to notice is that these functions 
demand parameters of type iterator. Not const_iterator, not reverse_iterator, not 
const_reverse_iterator. Always iterator. Though containers support four iterator types, 
one of those types has privileges the others do not have. That type is iterator, iterator is 
special. 

The second thing I want to show you is this diagram, which displays the conversions 
that exist among iterator types. 
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The diagram shows that there are implicit conversions from iterator to const_iterator. 
from iterator to reverse_iterator, and from reverse_iterator to const_reverse_iterator. It 
also shows that a reverse_iterator may be converted into an iterator by using the 
reverse_iterator's base member function, and a const_reverse_iterator may similarly be 
converted into a const_iterator via base. The diagram does not show that the iterators 
obtained from base may not be the ones you want. For the story on that, turn to Item 
28. 

You'll observe that there is no way to get from a const_iterator to an iterator or from a 
const_reverse_iterator to a reverse_iterator. This is important, because it means that if 
you have a const_iterator or a const_reverse_iterator, you'll find it difficult to use those 
iterators with some container member functions. Such functions demand iterators, and 
since there's no conversion path from the const iterator types back to iterator, the const 
iterator types are largely useless if you want to use them to specify insertion positions 
or elements to be erased. 

Don't be fooled into thinking that this means const iterators are useless in general. 
They're not. They're perfectly useful with algorithms, because algorithms don't usually 
care what kind of iterators they work with, as long as they are of the appropriate 
category, const iterators are also acceptable for many container member functions. It's 
only some forms of insert and erase that are picky. 

I wrote that const iterators are "largely" useless if you want to specify insertion 
positions or elements to be erased. The implication is that they are not completely 
useless. That's true. They can be useful if you can find a way to get an iterator from a 
const_iterator or from a const_reverse_iterator. That's often possible. It isn't always 
possible, however, and even when it is, the way to do it isn't terribly obvious. It may 
not be terribly efficient, either. The topic is meaty enough to justify its own Item, so 
turn to Item 27 if you're interested in the details. For now, we have enough information 
to understand why it often makes sense to prefer iterators to const and reverse 
iterators: 

� Some versions of insert and erase require iterators. If you want to call those 
functions, you're going to have to produce iterators, const and reverse iterators 
won't do. 

� It's not possible to implicitly convert a const iterator to an iterator, and the 
technique described in Item 27 for generating an iterator from a const_iterator is 
neither universally applicable nor guaranteed to be efficient. 
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� Conversion from a reverse_iterator to an iterator may require iterator 
adjustment after the conversion. Item 28 explains when and why. 

All these things conspire to make working with containers easiest, most efficient, and 
least likely to harbor subtle bugs if you prefer iterators to their const and reverse 
colleagues. 

Practically speaking, you are more likely to have a choice when it comes to iterators 
and const_iterators. The decision between iterator and reverse_iterator is often made 
for you. You either need a front-to-back traversal or a back-to-front traversal, and 
that's pretty much that. You choose the one you need, and if that means choosing 
reverse_iterator, you choose reverse_iterator and use base to convert it to an iterator 
(possibly preceded by an offset adjustment — see Item 28) when you want to make 
calls to container member functions that require iterators. 

When choosing between iterators and const_iterators, there are reasons to choose 
iterators even when you could use a const_iterator and when you have no need to use 
the iterator as a parameter to a container member function. One of the most irksome 
involves comparisons between iterators and const_iterators. I hope we can all agree 
that this is reasonable code: 

 
typedef deque<int> IntDeque;                             //STL container and 
typedef lntDeque::iterator Iter;                             // iterator types are easier 
typedef lntDeque::const_iterator Constlter;          // to work with if you 

// use some typedefs  
Iter i;  
Constlter ci; 
…        //make i and ci point into  

// the same container 
if (i == ci ) ...                                                         //compare an iterator 

// and a const_iterator 

All we're doing here is comparing two iterators into a container, the kind of 
comparison that's the bread and butter of the STL. The only twist is that one object is 
of type iterator and one is of type const_iterator. This should be no problem. The 
iterator should be implicitly convened into a const_iterator. and the comparison should 
be performed between two const_iterators. 

With well-designed STL implementations, this is precisely what happens, but with 
other implementations, the code will not compile. The reason is that such 
implementations declare operator== for const_iterators as a member function instead 
of as a non-member function, but the cause of the problem is likely to be of less 
interest to you than the workaround, which is to swap the order of the iterators, like 
this: 

 
if (ci == i)...                                           // workaround for when the 

// comparison above won't compile 

 97



This kind of problem can arise whenever you mix iterators and const_iterators (or 
reverse_iterators and const_reverse_iterators) in the same expression, not just when 
you are comparing them. For example, if you try to subtract one random access iterator 
from another. 

 
if (i - ci >= 3)...                                  // if i is at least 3 beyond ci... 

your (valid) code may be (incorrectly) rejected if the iterators aren't of the same type. 
The workaround is what you'd expect (swap the order of i and ci), but in this case you 
have to take into account that you can't just replace i - ci with ci - i: 

 
if (ci - 3 <=i)...                                       //workaround for when the above 

 //won't compile 

The easiest way to guard against these kinds of problems is to minimize your minimize 
of iterator types, and that, in turn, leads back to preferring iterators to const_iterators. 
From the perspective of const correctness (a worthy perspective, to be sure), staying 
away from const_iterators simply to avoid potential implementation shortcomings (all 
of which have workarounds) seems unjustified, but in conjunction with the anointed 
status of iterators in some container member functions, it's hard to avoid the practical 
conclusion that const_iterators arc not only less useful than iterators, sometimes 
they're just not worth the trouble. 

Item 27. Use distance and advance to convert a container's 
const_iterators to iterators. 

Item 26 points out that some container member functions that take iterators as 
parameters insist on iterators: const_iterators won't do. So what do you do if you have 
a const_iterator in hand and you want to, say, insert a new value into a container at the 
position indicated by the iterator? Somehow you've got to turn your const_iterator into 
an iterator, and you have to take an active role in doing it, because, as Item 26 
explains, there is no implicit conversion from const_iterator to iterator. 

I know what you're thinking. You're thinking. "When all else fails, get a bigger 
hammer." In the world of C++, that can mean only one thing: casting. Shame on you 
for such thoughts. Where do you get these ideas? 

Let us confront this cast obsession of yours head on. Look what happens when you try 
to cast a const_iterator to an iterator: 

typedef deque<int> IntDeque;                            //convenience typedefs 
typedef lntDeque::iterator Iter; 
typedef lntDeque::const_iterator Constlter; 
Constlter ci;                                                         // ci is a const_iterator 
… 
Iter i(ci);                                                // error! no implicit conversion from 

// const_iterator to iterator 
Iter i(const_cast<lter>(ci));                   // still an error! can't cast a 
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// const_iterator to an iterator 

This example happens to use deque, but the outcome would be the same for list. Set, 
multiset, map, multimap, and the hashed containers described in Item 25. The line 
using the cast might compile in the case of vector or string, but those are special cases 
we'll consider in a moment. 

The reason the cast won't compile is that for these container types, iterator and 
const_iterator are different classes, barely more closely related to one another than 
string and complex<double>. Trying to cast one type to the other is nonsensical, and 
that's why the const_cast is rejected, static_cast, reinterpret_cast, and a C-style cast 
would lead to the same end. 

Alas, the cast that won't compile might compile if the iterators' container were a vector 
or a string. That's because it is common for implementations of these containers to use 
pointers as iterators. For such implementations, vector<T>::iterator is a typedef for T*. 
vector<T>::const_iterator is a typedef for const T*, string-iterator is a typedef for 
char*, and string::const_iterator is a typedef for const char*. With such 
implementations, the const_cast from a const_iterator to an iterator will compile and 
do the right thing, because the cast is converting a const T* into a T*. Even under such 
implementations, however, reverse_iterators and const_reverse_iterators are true 
classes, so you can't const_cast a const_reverse_iterator to a reverse_iterator. Also, as 
Item 50 explains, even implementations where vector and string iterators are pointers 
might use that representation only when compiling in release mode. All these factors 
lead to the conclusion that casting const iterators to iterators is ill-advised even for 
vector and string, because its portability is doubtful. 

If you have access to the container a const_iterator came from, there is a safe, portable 
way to get its corresponding iterator, and it involves no circumvention of the type 
system. Here's the essence of the solution, though it must be modified slightly before it 
will compile: 

 
typedef deque<int> IntDeque;                            //as before 
typedef IntDeque::iterator Iter; 
typedef IntDeque::const_iterator Constlter; 
IntDeque d; 
Constlter ci; 
…      // make ci point into d 
Iter i(d.begin());                                // initialize i to d.begin() 
advanced distance(i, ci))                  //move i up to where ci is 

// (but see below for why this must  
// be tweaked before it will compile) 

This approach is so simple and direct, it's startling. To get an iterator pointing to the 
same container element as a const_iterator, create a new iterator at the beginning of the 
container, then move it forward it until it's as far from the beginning of the container as 
the const_iterator is! This task is facilitated by the function templates advance and dis-
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tance, both of which are declared in <iterator>, distance reports how far apart two 
iterators into the same container are, and advance moves an iterator a specified 
distance. When i and ci point into the same container, the expression advance(i, 
distance(i, ci)) makes i and ci point to the same place in the container. 

Well, it would if it would compile, but it won't. To see why, look at the declaration for 
distance: 

 
template <typename InputIterator>  
typename iterator_traits<InputIterator>::difference_type  
distance(Inputlterator first, Inputlterator last); 
 

Don't get hung up on the fact that the return type of the function is 56 characters long 
and mentions dependent types like difference_type. Instead, focus your attention on 
the uses of the type parameter Input-Iterator: 

 
template <typename InputIterator> 
typename iterator_traits<InputIterator>::difference_type 
distance(Inputlterator first, Inputlterator last); 

 

When faced with a call to distance, your compilers must deduce the type represented 
by InputIterator by examining the arguments used in the call. Look again at the call to 
distance in the code I said wasn't quite right: 

 
advance(i distance(i, ci));                          // move i up to where ci is 

Two parameters are passed to distance, i and ci. i is of type Iter, which is a typedef for 
deque<int>::iterator. To compilers, that implies that InputIterator in the call to distance 
is deque<int>::iterator. ci, however, is of type ConstIter, which is a typedef for 
deque<int>::const_iterator. That implies that InputIterator is of type 
deque<int>::const_iterator. It's not possible for InputIterator to be two different types 
at the same time, so the call to distance falls, typically yielding some long-winded 
error message that may or may not indicate that the compiler couldn't figure out what 
type InputIterator is supposed to be. 

To get the call to compile, you must eliminate the ambiguity. The easiest way to do 
that is to explicitly specify the type parameter to be used by distance, thus obviating 
the need for your compilers to figure it out for themselves: 

 
advance(i, distance<ConstIter>(i, ci));       //figure the distance between 

// i and ci (as const_iterators),  
// then move i that distance 
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We now know how to use advance and distance to get an iterator corresponding to a 
const_iterator, but we have so far sidestepped a question of considerable practical 
interest: How efficient is this technique? The answer is simple. It's as efficient as the 
iterators allow it to be. For random access iterators (such as those sported by vector, 
string, and deque), it's a constant-time operation. For bidirectional iterators (i.e., those 
for all other standard containers and for some implementations of the hashed 
containers (see Item 25)), it's a linear-time operation. 

Because it may take linear time to produce an iterator equivalent to a const_iterator. 
and because it can't be done at all unless the container for the const_iterator is 
available when the const_iterator is, you may wish to rethink designs that require 
producing iterators from const_iterators. Such considerations, in fact, help motivate 
Item 26, which advises you to prefer iterators over const and reverse iterators when 
dealing with containers. 

Item 28. Understand how to use a reverse_iterator's base iterator. 

Invoking the base member function on a reverse_iterator yields the "corresponding" 
iterator, but it's not really clear what that means. As an example, take a look at this 
code, which puts the numbers 1-5 in a vector, sets a reverse_iterator to point to the 3, 
and initializes an iterator to the reverse_iterator's base: 

 
vector<int> v; 
v.reserve(5);                                         // see Item 14 
 
for(int i = 1;i <= 5;++i){                        //put 1-5 in the vector 

v.push_back(i);  
}  
 
vector<int>::reverse_iterator ri =           // make ri point to the 3 

find(v.rbegin(), v.rend(), 3); 
 

vector<int>::iterator i(ri.base());           // make i the same as ri's base 

After executing this code, things can be thought of as looking like this: 

 

This picture is nice, displaying the characteristic offset of a reverse_iterator and its 
corresponding base iterator that mimics the offset of rbegin() and rend() with respect 
to begin() and end(), but it doesn't tell you everything you need to know. In particular, 
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it doesn't explain how to use i to perform operations you'd like to perform on ri. As 
Item 26 explains, some container member functions accept only iterators as iterator 
parameters, so if you want to, say, insert a new-element at the location identified by ri, 
you can't do it directly: vector's insert function won't take reverse_iterators. You'd 
have a similar problem if you wanted to erase the element pointed to by ri. The erase 
member functions reject reverse_iterators, insisting instead on iterators. To perform 
insertions or erasures, you must convert reverse_iterators into iterators via base, then 
use the iterators to get the jobs done. 

So let's suppose you do want to insert a new element into v at the position indicated by 
ri. In particular, let's assume you want to insert the value 99. Bearing in mind that ri is 
part of a traversal from right to left in the picture above and that insertion takes place 
in front of the element indicated by the iterator used to specify the insertion position, 
we'd expect the 99 to end up in front of the 3 with respect to a reverse traversal. After 
the insertion, then, v would look like this: 

 

Of course, we can't use ri to indicate where to insert something, because it's not an 
iterator. We must use i instead. As noted above, when ri points at 3. i (which is 
ri.base()) points at 4. That's exactly where i needs to point for an insertion if the 
inserted value is to end up where it would have had we been able to use ri to specify 
the insertion location. Conclusion? 

� To emulate insertion at a position specified by a reverse_iterator ri, insert at the 
position ri.base() instead. For purposes of insertion, ri and ri.base() are 
equivalent, and ri.base() is truly the iterator corresponding to ri. 

Let us now consider erasing an element. Look again at the relationship between ri and 
i in the original vector (i.e., prior to the insertion of 99): 

 

If we want to erase the element pointed to by ri. we can't just use i. because i doesn't 
point to the same element as ri. Instead, we must erase the element preceding i. Hence. 

� To emulate erasure at a position specified by a reverse_iterator ri, erase at the 
position preceding ri.base() instead. For purposes of erasure, ri and ri.base() are 
nor equivalent, and ri.base() is nor the iterator corresponding to ri. 

It's worth looking at the code to perform such an erasure, because it holds a surprise. 
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vector<int> v; 
…                // as above, put 1 -5 in v 
vector<int>::reverse_iterator ri =              // as above, make ri point to the 3 

find(v.rbegin(), v.rend(), 3); 
v.erase(--ri.base());                           // attempt to erase at the position 

// preceding ri.base(); for a vector,  
// this will typically nor compile 

There's nothing wrong with this design. The expression --ri.base() correctly specifies 
the element we'd like to erase. Furthermore, this code will work with every standard 
container except vector and string. It might work with vector and string, too, but for 
many vector and string implementations, it won't compile. In such implementations, 
iterators (and const_iterators) are implemented as built-in pointers, so the result of 
ri.base() is a pointer. 

Both C and C++ dictate that pointers returned from functions shall not be modified, so 
for STL platforms where string and vector iterators are pointers, expressions like -
ri.base() won't compile. To portably erase something at a position specified by a 
reverse_iterator, then, you must take pains to avoid modifying base's return value. No 
problem. If you can't decrement the result of calling base, just increment the 
reverse_iterator and then call base! 

 
…      // as above 
v.erase(++ri).base());                      // erase the element pointed to by 

// ri; this should always compile 

Because this approach works with every standard container, it is the preferred 
technique for erasing an element pointed to by a reverse_iterator. 

It should now be clear that it's not accurate to say that a reverse_iterator's base member 
function returns the "corresponding" iterator. For insertion purposes, it does, but for 
erasure purposes, it does not. When converting reverse_iterators to iterators, it's 
important that you know what you plan to do with the resulting iterator, because only 
then can you determine whether the iterator you have is the one you need. 

Item 29. Consider istreambuf_iterators for character-by-character 
input. 

Let's suppose you'd like to copy a text file into a string object. This seems like a pretty 
reasonable way to do it: 

 
ifstream inputFile("interestingData.txt"); 
string fileData((istream_iterator<char>(inputFile)),        // read inputFile into  

  istream_iterator<char>());       // fileData; see below 
     //for why this isn't 
     //quite right and see  
     // Item 6 for a warning      
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     //about this syntax 

It wouldn't take long before you'd notice that this approach fails to copy whitespace in 
the file into the string. That's because istream_iterators use operator<< functions to do 
the actual reading, and. by default, operator<< functions skip whitespace. 

Assuming you'd like to retain the whitespace, all you need to do is override the default. 
Just clear the skipws flag for the input stream: 

ifstream inputFile("interestingData.txt"); 
inputFile.unset(ios::skipws);                                //disable the skipping of 

// whitespace in inputFile 
string fileData((istream_iterator<char>(inputFile)), istream_iterator<char>()}; 

Now all the characters in inputFile are copied into fileData. 

Alas, you may discover that they aren't copied as quickly as you'd like. The operator<< 
functions on which istream_iterators depend perform formatted input, and that means 
they must undertake a fair amount of work on your behalf each time you call one. 
They have to create and destroy sentry objects (special iostream objects that perform 
setup and cleanup activities for each call to operator<<), they have to check stream 
flags that might affect their behavior (e.g.. skipws), they have to perform 
comprehensive checking for read errors, and. if they encounter a problem, they have to 
check the stream's exception mask to determine whether an exception should be 
thrown. Those are all important activities if you're performing formatted input, but if 
all you want to do is grab the next character from the input stream, it's overkill. 

A more efficient approach is to use one of the STL's best kept secrets: 
istreambuf_iterators. You use istreambuf_iterators like istream_iterators but where 
istream_iterator<char> objects use operator<< to read individual characters from an 
input stream. istreambuf_iterator<char> objects go straight to the stream's buffer and 
read the next character directly. (More specifically, an istreambuf_iterator<char> 
object reading from an istream s will call s.rdbuf()->sgetc() to read s's next character.) 
Modifying our file-reading code to use istreambuf_iterators is so easy, most Visual 
Basic programmers need no more than two tries to get it right: 

 
ifstream inputFile("interestingData.txt"); 
string fileData((istreambuf_iterator<char>(inputFile)), 
istreambuf_iterator<char>()); 
 

Notice how there's no need to "unset" the skipws flag here, istreambuf_iterators never 
skip any characters. Whatever's next in the stream buffer, that's what they grab. 

Compared to istream_iterators, they grab it quickly — up to 40% faster in the simple 
benchmarks I performed, though don't be surprised if your mileage varies. Don't be 
surprised if the speed advantage increases over time, too, because istreambuf_iterators 
inhabit a seldom-visited corner of the STL where implementers haven't yet spent a lot 
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of time on optimizations. For example, in one implementation I used, 
istreambuf_iterators were only about 5% faster than istream_iterators on my primitive 
tests. Such implementations clearly have lots of room to streamline their 
istreambuf_iterator implementations. If you need to read the characters in a stream one 
by one, you don't need the power of formatted input, and you care about how long it 
takes to read the stream, typing three extra characters per iterator is a small price to 
pay for what is often a significant increase in performance. For unformatted character-
by-character input, you should always consider istreambuf_iterators. 

While you're at it, you should also consider ostreambuf_iterators for the corresponding 
unformatted character-by-character output operations. They avoid the overhead (and 
flexibility) of their ostream_iterator cousins, so they generally outperform them, too. 
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Algorithms 

I noted at the beginning of Chapter 1 that containers get the lion's share of the STL 
acclaim. In a sense, that's understandable. The containers are remarkable 
accomplishments, and they make life easier for legions of C++ programmers on a 
daily basis. Still, the STL algorithms are significant in their own right, equally capable 
of lightening a developer's burden. In fact, given that there are over 100 algorithms, it's 
easy to argue that they offer programmers a more finely honed tool set than the 
containers (a mere eight strong) could ever hope to match. Perhaps their number is part 
of the problem. Making sense of eight distinct container types is surely less work than 
remembering 70 algorithm names and trying to keep track of which does what. 

I have two primary goals in this chapter. First, I want to introduce you to some lesser-
known algorithms by showing you how they can make your life easier. Rest assured 
that I'm not going to punish you with lists of names to memorize. The algorithms I 
show you are in this chapter because they solve common problems, like performing 
case-insensitive string comparisons, efficiently finding the n most desirable objects in 
a container, summarizing the characteristics of all the objects in a range, and 
implementing the behavior of copy_if (an algorithm from the original HP STL that 
was dropped during standardization). 

My second goal is to show you how to avoid common usage problems with the 
algorithms. You can't call remove, for example, or its cousins remove_if and unique 
unless you understand exactly what these algorithms do (and do not do). This is 
especially true when the range from which you're removeing something holds pointers. 
Similarly, a number of algorithms work only with sorted ranges, so you need to under-
stand which ones they are and why they impose that constraint. Finally, one of the 
most common algorithm-related mistakes involves asking an algorithm to write its 
results to a place that doesn’t exist, so I explain how this absurdity can come about and 
how to ensure that you're not afflicted. 

By the end of the chapter, you may not hold algorithms in the same high regard you 
probably already accord containers, but I'm hopeful you'll be willing to let them share 
the limelight more often than you have in the past. 

Item 30. Make sure destination ranges are big enough. 

STL containers automatically expand themselves to hold new objects as they are added 
(via insert, push_front, push_back, etc.). This works so well, some programmers lull 
themselves into the belief that they never have to worry about making room for objects 
in containers, because the containers themselves take care of things. If only it were so! 
The problems arise when programmers think about inserting objects into containers, 
but don't tell the STL what they're thinking. Here's a common way this can manifest 
itself: 

 
int transmogrify(int x);                                     // this function produces 
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// some new value from x 
vector<int> values; 
…       //put data into values 
vector<int> results;                                        // apply transmogrify to 
transform( values.begin(), values.end(),        // each object in values, 

 results.end(),                                // appending the return 
  transmogrify);                              // values to results; this 

//code has a bug! 

In this example, transform is told that the beginning of its destination range is 
results.end(), so that's where it starts writing the results of invoking transmogrify on 
every element of values. Like every algorithm that uses a destination range, transform 
writes its results by making assignments to the elements in the destination range, 
transform will thus apply transmogrify to values[0] and assign the result to 
*results.end(). It will then apply transmogrify to values[1] and assign the result to 
*(results.end()+1). This can lead only to disaster, because there is no object at 
*results.end(), much less at *(results.end()+1)! The call to transform is wrong, because 
it's asking for assignments to be made to objects that don't exist. (Item 50 explains how 
a debugging implementation of the STL can detect this problem at runtime.) 
Programmers who make this kind of mistake almost always intend for the results of 
the algorithm they're calling to be inserted into the destination container. If that's what 
you want to happen, you have to say so. The STL is a library, not a psychic. In this 
example, the way to say "please put transform's results at the end of the container 
called results" is to call back_inserter to generate the iterator specifying the beginning 
of the destination range: 

 
vector<int> results;                                            // apply transmogrify to 
transform(values.begin(), values.end(),             //each object in values, 

 back_inserter(results),                       //inserting the return 
 transmogrify);                                    // values at the end of 

// results 

Internally, the iterator returned by back_inserter causes push_back to be called, so you 
may use back_inserter with any container offering push_back (i.e., any of the standard 
sequence containers: vector, string, deque, and list). If you'd prefer to have an 
algorithm insert things at the front of a container you can use front_inserter. Internally, 
front_inserter makes use of push_front, so front_inserter works only for the containers 
offering that member function (i.e. deque and list): 

 
…       //same as before 
list<int> results;                                            // results is now a list 
transform( values.begin(), values.end(), // insert transform's 

front_inserter( results),  //results at the front of 
transmogrify);   // results in reverse order 
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Because front_inserter causes each object added to results to be push_fronted, the 
order of the objects in results will be the reverse of the order of the corresponding 
objects in values. This is one reason why front_inserter isn't used as often as 
back_inserter. Another reason is that vector doesn't offer push_front, so front_inserter 
can't be used with vectors. 

If you want transform to put its output at the front of results, but you also want the 
output to be in the same order as the corresponding objects in values, just iterate over 
values in reverse order: 

 
list<int> results;      // same as before 
transform( values.rbegin(). values.rend(),  //insert transform's 

front_inserter(results),    // results at the front of 
transmogrify);    // results; preserve the 

// relative object ordering 

Given that front_inserter lets you force algorithms to insert their results at the front of 
a container and back_inserter lets you tell them to put their results at the back of a 
container, it's little surprise that inserter allows you to force algorithms to insert their 
results into containers at arbitrary locations: 

 
vector<int> values;                                               //as before 
… 
vector<int> results;                                              // as before, except now 
…        //results has some data  

// in it prior to the call to  
//transform 

transform( values.begin{), values.end(),                  // insert the 
inserter(results, results.begin() + results.size()/2) ,    // results of  
transmogrify);                                                           //the trans- 

     // mogrifica- 
//tions at  
//the middle  
// of results 

Regardless of whether you use back_inserter, front_inserter, or inserter, each insertion 
into the destination range is done one object at a time. Item 5 explains that this can be 
expensive for contiguous-memory containers (vector, string, and deque), but Item 5's 
suggested solution (using range member functions) can't be applied when it's an algo-
rithm doing the inserting. In this example, transform will write to its destination range 
one value at a time, and there's nothing you can do to change that. 

When the container into which you're inserting is a vector or a string, you can 
minimize the expense by following the advice of Item 14 and calling reserve in 
advance. You'll still have to absorb the cost of shifting elements up each time an 
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insertion takes place, but at least you'll avoid the need to reallocate the container's 
underlying memory: 

 
vector<int> values;                                             // as above 
vector<int> results; 
… 
results.reserve(results.size() + values.size());  // ensure that results has 

         // the capacity for at least  
         //values.size() more  
         //elements 

transform(values.begin(), values.end(),                                     //as above, 
inserter(results, results.begin() + results.size() / 2),  // but results 
 transmogrify);                                                           //won't do 

 //any reallo- 
 //cations 

When using reserve to improve the efficiency of a series of insertions, always 
remember that reserve increases only a container's capacity: the container's size 
remains unchanged. Even after calling reserve, you must use an insert iterator (e.g., 
one of the iterators returned from back_inserter, front_inserter, or inserter) with an 
algorithm when you want that algorithm to add new elements to a vector or string. 

To make this absolutely clear, here is the wrong way to improve the efficiency of the 
example at the beginning of this Item (the one where we append to results the outcome 
of transmogrifying the data in values): 

 
vector<int> values;                                            //as above 
vector<int> results; 
… 
results.reserve(results.size() + values.size());        // as above 
transform( values.begin(), values.end(),               //write the results of 

  results.end(),                                      //the transmogrifications 
   transmogrify);                                    // to uninitialized memory; 

// behavior is undefined! 
 

In this code, transform blithely attempts to make assignments to the raw, uninitialized 
memory at the end of results. In general, this will fail at runtime, because assignment 
is an operation that makes sense only between two objects, not between one object and 
a chunk of primordial bits. Even if this code happens to do what you want it to, results 
won't know about the new "objects" transform "created" in its unused capacity. As far 
as results would be aware, its size would be the same after the call to transform as it 
was before. Similarly, its end iterator would point to the same place it did prior to the 
call to transform. Conclusion? Using reserve without also using an insert iterator leads 
to undefined behavior inside algorithms as well as to corrupted containers. 
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The correct way to code this example uses both reserve and an insert iterator: 
vector<int> values;                                             //as above 
vector<int> results; 
results.reserve(results.size() + values.size());        // as above 
transform( values.begin(), values.end(),               //write the results of 

 back_inserter(results),                          // the transmogrifications 
 transmogrify);                                       // to the end of results, 

 // avoiding reallocations 
 //during the process 

So far, I've assumed that you want algorithms like transform to insert their results as 
new elements into a container. This is a common desire, but sometimes you want to 
overwrite the values of existing container elements instead of inserting new ones. 
When that's the case, you don't need an insert iterator, but you still need to follow the 
advice of this Item and make sure your destination range is big enough. 

 

For example, suppose you want transform to overwrite results' elements. As long as 
results has at least as many elements as values does, that's easy. If it doesn't, you must 
either use resize to make sure it does. 

 
vector<int> values;  
vector<int> results; 
… 
if ( results.size()   < values.size()){                      //make sure results is at 

results.resize(values..size());                        // least as big as values is 
} 
 
transform(values.begin(), values.end(),               // overwrite the first 

results.begin(),                                   // values.size() elements of 
transmogrify);                                    // results 

or you can clear results and then use an insert iterator in the usual fashion: 
 
… 
results.clear() ;                                                    //destroy all elements in 

// results 
results.reserve(values.size());                            // reserve enough space 
transform( values.begin(), values.end(),            // put transform's return 

pack_inserter(results),                       // values into results 
transmogrify); 

This Item has demonstrated a number of variations on a theme, but I hope the 
underlying melody is what sticks in your mind. Whenever you use an algorithm 
requiring specification of a destination range, ensure that the destination range is big 
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enough already or is increased in size as the algorithm runs. To increase the size as 
you go, use insert iterators, such as ostream_iterators or those returned by 
back_inserter, front_inserter, or inserter. That's all you need to remember. 

Item 31. Know your sorting options. 

How can I sort thee? Let me count the ways. 

When many programmers think of ordering objects, only a single algorithm comes to 
mind: sort. (Some programmers think of qsort. but once they've read Item 46, they 
recant and replace thoughts of qsort with those of sort.) 

Now, sort is a wonderful algorithm, but there's no point in squandering wonder where 
you don't need it. Sometimes you don't need a full son. For example, if you have a 
vector of Widgets and you'd like to select the 20 highest-quality Widgets to send to 
your most loyal customers, you need to do only enough sorting to identify the 20 best 
Widgets; the remainder can remain unsorted. What you need is a partial sort, and 
there's an algorithm called partial_sort that does exactly what the name suggests: 

 
bool qualityCompare(const Widget& lhs, const Widget& rhs)  
{  

// return whether lhs's quality is greater than rhs's quality 
} 
… 
partial_sort (widgets.begin(),                            // put the best 20 elements 

widgets.begin() + 20,                    // (in order) at the front of 
widgets.end(),                               // widgets  
qualityCompare); 

…               // use widgets...  

After the call to partial_sort, the first 20 elements of widgets are the best in the 
container and are in order, i.e., the highest-quality Widget is widgets[0], the next 
highest is widgets[1], etc. That makes it easy to send your best Widget to your best 
customer, the next best Widget to your next best customer, etc. 

If all you care about is that the 20 best Widgets go to your 20 best customers, but you 
don't care which Widget goes to which customer, partial_sort gives you more than you 
need. In that case, all you need is the 20 best Widgets in any order. The STL has an 
algorithm that does exactly what you want, though the name isn't likely to spring to 
mind. It's called nth_element. 

nth_element sorts a range so that the element at position ri (which you specify) is the 
one that would be there if the range had been fully sorted. In addition, when 
nth_element returns, none of the elements in the positions up to n follow the element at 
position n in the sort order, and none of the elements in positions following n precede 
the element at position n in the sort order. If that sounds complicated, it's only because 
I have to select my words carefully. I'll explain why in a moment, but first let's look at 
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how to use nth_element to make sure the best 20 Widgets are at the front of the 
widgets vector: 

 
nth_element (widgets.begin(),                          // put the best 20 elements 

  widgets.begin() + 20,                  // at the front of widgets, 
  widgets.end(),                             // but don't worry about 
  qualityCompare);                        //their order 

As you can see, the call to nth_element is essentially identical to the call to 
partial_sort. The only difference in their effect is that partial_sort sorts the elements in 
positions 1-20, while nth_element doesn't. Both algorithms, however, move the 20 
highest-quality Widgets to the front of the vector. 

That gives rise to an important question. What do these algorithms do when there are 
elements with the same level of quality? Suppose, for example, there are 12 elements 
with a quality rating of 1 (the best possible) and 15 elements with a quality rating of 2 
(the next best). In that case, choosing the 20 best Widgets involves choosing the 12 
with a rating of 1 and 8 of the 15 with a rating of 2. How should partial_sort and 
nth_element determine which of the 15 to put in the top 20? For that matter, how 
should sort figure out which order to put elements in when multiple elements have 
equivalent values? 

partial_sort and nth_element order elements with equivalent values any way they want 
to, and you can't control this aspect of their behavior. (See Item 19 for what it means 
for two values to be equivalent.) In our example, when faced with the need to choose 
Widgets with a quality rating of 2 to put into the last 8 spots in the vector's top 20, 
they'd choose whichever ones they wanted. That's not unreasonable. If you ask for the 
20 best Widgets and some Widgets are equally good, you're in no position to complain 
as long as the 20 you get back are at least as good as the ones you didn't. 

For a full sort, you have slightly more control. Some sorting algorithms are stable. In a 
stable sort, if two elements in a range have equivalent values, their relative positions 
are unchanged after sorting. Hence, if Widget A precedes Widget B in the (unsorted) 
widgets vector and both have the same quality rating, a stable sorting algorithm will 
guarantee that after the vector is sorted, Widget A still precedes Widget B. An 
algorithm that is not stable would not make this guarantee. 

partial_sort is not stable. Neither is nth_element, sort, too, fails to offer stability, but 
there is an algorithm, stable_sort, that does what its name suggests. If you need 
stability when you sort, you'll probably want to use stable_sort. The STL does not 
contain stable versions of partial_sort or nth_element. 

Speaking of nth_element, this curiously named algorithm is remarkably versatile. In 
addition to letting you find the top n elements of a range, it can also be used to find the 
median value in a range or to find the value at a particular percentile: 
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vector<Widget>::iterator begin(widgets.begin());  // convenience vars 
vector<Widget>::iterator end(widgets.end());  //for widgets' begin 

// and end iterators 
vector<Widget>::iterator goalPosition;  // iter indicating where 
        // the widget of interest 
        // is located 
   
 
// The following code finds the Widget with  
//the median level of quality 
goalPosition = begin + widgets.size() / 2;  // the widget of interest 

// would be in the middle 
        // of the sorted vector 
 
nth_element(begin, goalPosition, end,   // find the median quality 

qualityCompare);    //value in widgets 
 
…        // goalPosition now points 

// to the Widget with a  
// median level of quality 

 
//The following code finds the Widget with  
// a level of quality at the 75th percentile 
 
 
 
vector<Widget>::size_type goalOffset =   // figure out how far from 

0.25 * widgets.size();   //the beginning the 
      // Widget of interest is 

 
nth_element( begin, begin + goalOffset, end,  // find the quality value at 

qualityCompare);    //the75th percentile 
 
 
…        // goalPosition now points 

// to the Widget with the  
// 75th percentile level of  
// quality 
 

sort, stable_sort, and partial_sort are great if you really need to put things in order, and 
nth_element fills the bill when you need to identify the top n elements or the element 
at a particular position, but sometimes you need something similar to nth_element. but 
not quite the same. Suppose, for example, you didn't need to identify the 20 highest-
quality Widgets. Instead, you needed to identify all the Widgets with a quality rating 
of 1 or 2. You could, of course, son the vector by quality and then search for the first 
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one with a quality rating worse than 2. That would identify the beginning of a range of 
poor-quality Widgets. 

A full son can be a lot of work, however, and that much work is not necessary tor this 
job. A better strategy is to use the partition algorithm, which reorders element in a 
range so that all elements satisfying a panicular criterion are at the beginning of the 
range. 

For example, to move all the Widgets with a quality rating of 2 or better to the front of 
widgets, we define a function that identifies which Widgets make the grade. 

 
bool hasAcceptableQuality(const Widget& w) 
{ 

// return whether w has a quality rating of 2 or better; 
} 

then pass that function to partition: 
 
vector<Widget>::iterator goodEnd = // move all widgets satisfying  

partition(widgets.begin(),                    // hasAcceptableQuality to 
widgets.end(),                      // the front of widgets, and 
hasAcceptableQuality);              // return an iterator to the first 

// widget that isn't satisfactory 

After this call, the range from widgets.begin() to goodEnd holds all the Widgets with a 
quality of 1 or 2, and the range from goodEnd to widgets.end() contains all the 
Widgets with lower quality ratings. If it were important to maintain the relative 
positions of Widgets with equivalent quality levels during the partitioning, we'd 
naturally reach for stable_partition instead of partition. 

The algorithms sort, stable_sort, partial_sort, and nth_element require random access 
iterators, so they may be applied only to vectors, strings, deques, and arrays. It makes 
no sense to sort elements in standard associative containers, because such containers 
use their comparison functions to remain sorted at all times. The only container where 
we might like to use sort, stable_sort, partial_sort, or nth_element, but can't, is list, and 
list compensates somewhat by offering its sort member function. (Interestingly, 
list::sort performs a stable sort.) If you want to sort a list, then, you can, but if you 
want to use partial_sort, or nth_element on the objects in a list, you have to do it 
indirectly. One indirect approach is to copy the elements into a container with random 
access iterators, then apply the desired algorithm to that. Another is to create a 
container of list::iterators, use the algorithm on that container, then access the list 
elements via the iterators. A third is to use the information in an ordered container of 
iterators to iteratively splice the list's elements into the positions you'd like them to be 
in. As you can see, there are lots of options. 
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partition and stable_partition differ from sort. stable_sort, partial_sort, and 
nth_element in requiring only bidirectional iterators. You can therefore use partition 
and stable_partition with any of the standard sequence containers. 

Let's summarize your sorting options. 

� If you need to perform a full sort on a vector, string, deque, or array, you can 
use sort or stable_sort. 

� If you have a vector, string, deque, or array and you need to put only the top n 
elements in order, partial_sort is available. 

� If you have a vector, string, deque, or array and you need to identify the 
element at position n or you need to identify the top n elements without putting 
them in order. nth_element is at your beck and call. 

� If you need to separate the elements of a standard sequence container or an 
array into those that do and do not satisfy some criterion, you're probably 
looking for partition or stable_partition. 

� If your data is in a list, you can use partition and stable_partition directly, and 
you can use list-sort in place of sort and stable_sort. If you need the effects 
offered by partial_sort or nth_element, you'll have to approach the task 
indirectly, but there are a number of options, as I sketched above. 

In addition, you can keep things sorted at all times by storing your data in a standard 
associative container. You might also consider the standard non-STL container 
priority_queue, which also keeps its elements ordered all the time. (priority_queue is 
traditionally considered part of the STL, but, as I noted in the Introduction, my 
definition of "the STL" requires that STL containers support iterators, and 
priority_queue doesn't do iterators.) 

"But what about performance?", you wonder. Excellent question. Broadly speaking, 
algorithms that do more work take longer to do it. and algorithms that must sort stably 
take longer than algorithms that can ignore stability. We can order the algorithms 
we've discussed in this Item as follows, with algorithms that tend to use fewer 
resources (time and space) listed before those that require more: 

1.  partition 4. partial_sort 

2.  stable_partition 5. sort 

3.  nth_element 6. stable_sort 

My advice on choosing among the sorting algorithms is to make your selection based 
on what you need to accomplish, not on performance considerations. If you choose an 
algorithm that does only what you need to do (e.g., a partition instead of a full sort), 
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you're likely to end up with code that's not only the clearest expression of what you 
want to do. it's also the most efficient way to accomplish it using the STL. 

Item 32. Follow remove-like algorithms by erase if you really want to 
remove something. 

I begin this Item with a review of remove, because remove is the most confusing 
algorithm in the STL. Misunderstanding remove is easy, and it's important to dispel all 
doubt about what remove does, why it does it. and how it goes about doing it. 

Here is the declaration for remove: 
 
template<class ForwardIterator, class T> 
ForwardIterator remove(ForwardIterator first, ForwardIterator last,  

  const T& value); 

Like all algorithms, remove receives a pair of iterators identifying the range of 
elements over which it should operate. It does not receive a container, so remove 
doesn't know which container holds the elements it's looking at. Furthermore, it's not 
possible for remove to discover that container, because there is no way to go from an 
iterator to the container corresponding to that iterator. 

Think for a moment about how one eliminates elements from a container. The only 
way to do it is to call a member function on that container, almost always some form 
of erase, (list has a couple of member functions that eliminate elements and are not 
named erase, but they're still member functions.) Because the only way to eliminate an 
element from a container is to invoke a member function on that container, and 
because remove cannot know the container holding the elements on which it is 
operating, it is not possible for remove to eliminate elements from a container. That 
explains the otherwise baffling observation that removeing elements from a container 
never changes the number of elements in the container: 

vector<int> v;                                 // create a vector<int> and fill it with 
v.reserve(10);                                //the values 1-10. (See Item 14 for an 
for (int i = 1; i <= 10; ++i) {             //explanation of the reserve call.) 

v.push_back(i); 
} 
cout << v.size();                           //prints 10 
v[3] = v[5] = v[9] = 99;                  // set 3 elements to 99 
remove(v.begin(), v.end(), 99);    // remove all elements with value 99  
cout << v.size();                           // still prints 10! 

To make sense of this example, memorize the following: 
 
remove doesn't "really" remove anything, because it can't. 

Repetition is good for you: 
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remove doesn't "really" remove anything, because it can't. 

remove doesn't know the container it's supposed to remove things from, and without 
that container, there's no way for it to call the member functions that are necessary if 
one is to "really" remove something. 

That explains what remove doesn't do, and it explains why it doesn't do it. What we 
need to review now is what remove does do. 

Very briefly, remove moves elements in the range it's given until all the "unremoved" 
elements are at the front of the range (in the same relative order they were in 
originally). It returns an iterator pointing one past the last "unremoved" element. This 
return value is the "new logical end" of the range. 

In terms of our example, this is what v looks like prior to calling remove. 

 

and if we store remove's return value in a new iterator called newEnd. 
 
vector<int>::iterator newEnd(remove(v.begin(), v.end(), 99) ;  

this is what v looks like after the call: 

 

Here I've used question marks to indicate the values of elements that have been 
conceptually removed from v but continue to exist. 

It seems logical that if the "unremoved" elements are in v between v.begin() and 
newEnd, the "removed" elements must be between new-End and v.end(). This is nor 
the case! The "removed" values aren't necessarily in v any longer at all. remove 
doesn't change the order of the elements in a range so that all the "removed" ones are 
at the end, it arranges for all the "unremoved" values to be at the beginning. Though 
the Standard doesn't require it,  the elements beyond the new logical end of the range 
typically retain their old values. After calling remove, v looks like this in every 
implementation I know: 
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As you can see, two of the "99" values that used to exist in v are no longer there, while 
one "99" remains. In general, after calling remove, the values removed from the range 
may or may not continue to exist in the range. Most people find this surprising, but 
why? You asked remove to get rid of some values, so it did. You didn't ask it to put the 
removed values in a special place where you could get at them later, so it didn't. 
What's the problem? (If you don't want to lose any values, you should probably be 
calling partition instead of remove, partition is described in Item 31.) 

remove's behavior sounds spiteful, but it's simply a fallout of the way the algorithm 
operates. Internally, remove walks down the range, overwriting values that are to be 
"removed" with later values that are to be retained. The overwriting is accomplished 
by making assignments to the elements holding the values to be overwritten. 

You can think of remove as performing a kind of compaction, where the values to be 
removed play the role of holes that are filled during compaction. For our vector v. it 
plays out as follows. 

1. remove examines v[0], sees that its value isn't supposed to be removed, and 
moves on to v[l]. It does the same for v[1] and v[2]. 

2. It sees that v[3] should be removed, so it notes that v[3]'s value may be 
overwritten, and it moves on to v[4]. This is akin to noting that v[3] is a "hole" 
that needs to be filled. 

3. It sees that v[4]'s value should be retained, so it assigns v[4] to v[3], notes that 
v[4] may now be overwritten, and moves on to v[5]. Continuing the compaction 
analogy, it "fills" v[3] with v[4] and notes that v[4] is now a hole. 

4. It finds that v[5] should be removed, so it ignores it and moves on to v[6]. It 
continues to remember that v[4] is a hole waiting to be filled. 

5. It sees that v[6] is a value that should be kept, so it assigns v[6] to v[4]. 
remembers that v[5] is now the next hole to be filled, and moves on to v[7]. 

6. In a manner analogous to the above, it examines v[7], v[8] and v[9]. It assigns 
v[7] to v[5] and v[8] to v[6], ignoring v[9], because the value at v[9] is to be 
removed. 

7. It returns an iterator indicating the next element to be overwritten, in this case 
the element at v[7]. 

You can envision the values moving around in v as follows: 
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As Item 33 explains, the fact that remove overwrites some of the values it is removing 
has important repercussions when those values are pointers. For this Item, however, 
it's enough to understand that remove doesn't eliminate any elements from a container, 
because it can't. Only container member functions can eliminate container elements, 
and that's the whole point of this Item: You should follow remove by erase if you 
really want to remove something. 

The elements you want to erase are easy to identify. They're the elements of the 
original range that start at the "new logical end" of the range and continue until the real 
end of the range. To get rid of these elements, all you need to do is call the range form 
of erase (see Item 5) with these two iterators. Because remove itself conveniently 
returns the iterator for the new logical end of the range, the call is straightforward: 

 
vector<int> v;                                                         // as before 
v.erase(remove(v.begin(), v.end(), 99), v.end());  // really remove all 

// elements with value 99 
cout << v.size();                                                     //now returns 7 

Passing remove's return value as the first argument to the range form of erase is so 
common, it's idiomatic. In fact, remove and erase are so closely allied, the two are 
merged in the list member function remove. This is the only function in the STL 
named remove that eliminates elements from a container: 

 
list<int> li;                                        //create a list 

//put some values into it 
li.remove(99);                                   // eliminate all elements with value 99: 

// this really removes elements, so li s  
// size may change 

Frankly, calling this function remove is an inconsistency in the STL. The analogous 
function in the associative containers is called erase, and list's remove should be called 
erase, too. It's not, however, so we all have to get used to it. The world in which we 
frolic may not be the best of all possible worlds, but it is the one we've got. (On the 
plus side. Item 44 points out, that, for lists, calling the remove member function is 
more efficient than applying the erase-remove idiom.) 

Once you understand that remove can't "really" remove things from a container, using 
it in conjunction with erase becomes second nature. The only other thing you need to 
bear in mind is that remove isn't the only algorithm for which this is the case. There 
are two other "remove-like" algorithms: remove_if and unique. 

The similarity between remove and remove_if is so straightforward. I won't dwell on 
it, but unique also behaves like remove. It is asked to remove things (adjacent repeated 
values) from a range without having access to the container holding the range's 
elements. As a result, you must also pair calls to unique with calls to erase if you really 
want to remove elements from a container, unique is also analogous to remove in its 
interaction with list. Just as list::remove really removes things (and does so more 
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efficiently than the erase-remove idiom). list::unique really removes adjacent 
duplicates (also with greater efficiency than would erase-unique). 

Item 33. Be wary of remove-like algorithms on containers of 
pointers. 

So you conjure up a bunch of dynamically allocated Widgets, each of which may be 
certified, and you store the resulting pointers in a vector: 

 
class Widget{  
public: 
 … 

bool isCertified() const;                        // whether the Widget is certified 
… 

}; 
vector<Widget*> v;                                // create a vector and fill it with 
…            //pointers to dynamically  
v.push_back(new Widget);                     // allocated Widgets 

Alter working with v for a while, you decide to get rid of the uncertified Widgets, 
because you don't need them any longer. Bearing in mind Item 43's admonition to 
prefer algorithm calls to explicit loops and having read Item 32's discourse on the 
relationship between remove and erase, your thoughts naturally turn to the erase-
remove idiom, though in this case it's remove_if you employ: 

 
v.erase( remove_if(v.begin(), v.end(),                                  // erase ptrs to 

not1(mem_fun(&Widget::isCertified))),  // uncertified 
v.end());            //Widgets; see 

       // Item 41 for  
       // info on  
       //mem_fun. 

Suddenly you begin to worry about the call to erase, because you dimly recall Item 7's 
discussion of how destroying a pointer in a container fails to delete what the pointer 
points to. This is a legitimate worry, but in this case, it comes too late. By the time 
erase is called, there's an excellent chance you have already leaked resources. Worry 
about erase, yes, but first, worry about remove_if. 

Let's assume that prior to the remove_if call, v looks like this, where I've indicated the 
uncertified Widgets. 
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After the call to remove_if, v will typically look like this (including the iterator 
returned from remove_if): 

 

 

If this transformation makes no sense, kindly turn to Item 32, because it explains 
exactly what happens when remove — or, in this case, remove_if — is called. 

The reason for the resource leak should now be apparent. The "removed" pointers to 
Widgets B and C have been overwritten by later "unremoved" pointers in the vector. 
Nothing points to the two uncertified Widgets, they can never be deleted, and their 
memory and other resources are leaked. 

Once both remove_if and erase have returned, the situations looks as follows: 

 

This makes the resource leak especially obvious, and it should now be clear why you 
should try to avoid using remove and similar algorithms (i.e., remove_if and unique) 
on containers of dynamically allocated pointers. In many cases, you'll find that the 
partition algorithm (see Item 31) is a reasonable alternative. 

If you can't avoid using remove on such containers, one way to eliminate this problem 
is to delete the pointers and set them to null prior to applying the erase-remove idiom, 
then eliminate all the null pointers in the container: 
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void delAndNullifyUncertified(Widget*& pWidget)      // if *pWidget is an 
{                                                                                  // uncertified Widget, 

if (!pWidget->isCertified()) {                                  // delete the pointer 
delete pWidget;                                              //and set it to null pWidget 
= 0;  

} 
} 
 
for_each(v.begin(), v.end(),                                        //delete and set to 

 delAndNullifyUncertified);                       // null all ptrs to 
// uncertified widgets 

 
v.erase( remove(v.begin(), v.end(),                           // eliminate null ptrs 

static_cast<Widget*>(0)),              // from v; 0 must be 
        v.end());                                                      //cast to a ptr so C++ 

// correctly deduces  
// the type of  
// remove's 3rd param 

Of course, this assumes that the vector doesn't hold any null pointers you'd like to 
retain. If it does, you'll probably have to write your own loop that erases pointers as 
you go. Erasing elements from a container as you traverse that container has some 
subtle aspects to it, so be sure to read Item 9 before considering that approach. 

If you're willing to replace the container of pointers with a container of smart pointers 
that perform reference counting, the remove-related difficulties wash away, and you 
can use the erase-remove idiom directly: 

 
template<typename T>                              // RCSP = "Reference Counting 
class RCSP {  ...};                                      //                Smart Pointer" 
 
typedef RCSP< Widget> RCSPW;            // RCSPW = "RCSP to Widget" 
 
vector<RCSPW > v;                                  // create a vector and fill it with 
…        //smart pointers to dynamically 
v.push_back(RCSPW(new Widget));        // allocated Widgets 
… 
v.erase(remove_if(v.begin(), v.end(),       // erase the ptrs 

not1 (mem_fun(&Widget::isCertified))),  // to uncertified 
             v.end());                                                               // Widgets; no 

//resources are  
//leaked 

For this to work, it must be possible to implicitly convert your smart pointer type (e.g., 
RCSP<Widget>) to the corresponding built-in pointer type (e.g., Widget*). That's 
because the container holds smart pointers, but the member function being called (e.g.. 
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Widget::isCertified) insists on built-in pointers. If no implicit conversion exists, your 
compilers will squawk. 

If you don't happen to have a reference counting smart pointer template in your 
programming toolbox, you owe it to yourself to check out the shared_ptr template in 
the Boost library. For an introduction to Boost, take a look at Item 50. 

Regardless of how you choose to deal with containers of dynamically allocated 
pointers, be it by reference counting smart pointers, manual deletion and nullification 
of pointers prior to invoking a remove-like algorithm, or some technique of your own 
invention, the guidance of this Item remains the same: Be wary of remove-like 
algorithms on containers of pointers. Failure to heed this advice is just asking for 
resource leaks. 

Item 34. Note which algorithms expect sorted ranges. 

Not all algorithms are applicable to all ranges. For example, remove (see Items 32 and 
33) requires forward iterators and the ability to make assignments through those 
iterators. As a result, it can't be applied to ranges demarcated by input iterators, nor to 
maps or multimaps, nor to some implementations of set and multiset (see Item 22). 
Similarly, many of the sorting algorithms (see Item 31) demand random access 
iterators, so it's not possible to invoke these algorithms on the elements of a list. 

If you violate these kinds of rules, your code won't compile, an event likely to be 
heralded by lengthy and incomprehensible error messages (see Item 49). Other 
algorithm preconditions, however, are more subtle. Among these, perhaps the most 
common is that some algorithms require ranges of sorted values. It's important that 
you adhere to this requirement whenever it applies, because violating it leads not to 
compiler diagnostics, but to undefined runtime behavior. 

A few algorithms can work with sorted or unsorted ranges, but they are most useful 
when they operate on sorted ranges. You should understand how these algorithms 
work, because that will explain why sorted ranges suit them best. 

Some of you, I know, are into brute-force memorization, so here's a list of the 
algorithms that require the data on which they operate to be sorted: 

binary_search lower_bound 

upper_bound equal_range 

set_union Set_intersection 

set_difference set_symmetric_difference 

Merge inplace_merge 

includes  

In addition, the following algorithms are typically used with sorted ranges, though they 
don't require them: 

unique unique_copy 
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We'll see shortly that the definition of "sorted" has an important constraint, but first, let 
me try to make sense of this collection of algorithms. It's easier to remember which 
algorithms work with sorted ranges if you understand why such ranges are needed. 

The search algorithms binary_search, lower_bound, upper_bound, and equal_range 
(see Item 45) require sorted ranges, because they look for values using binary search. 
Like the C library's bsearch, these algorithms promise logarithmic-time lookups, but in 
exchange, you must give them values that have already been put into order. 

Actually, it's not quite true that these algorithms promise logarithmic-time lookup. 
They guarantee such performance only when they are passed random access iterators. 
If they're given less powerful iterators 

(such as bidirectional iterators), they still perform only a logarithmic number of 
comparisons, but they run in linear time. That's because, lacking the ability to perform 
"iterator arithmetic." they need linear time to move from place to place in the range 
being searched. 

The quartet of algorithms set_union, set_intersection, set_difference, and 
set_symmetric_difference offer linear-time performance of the set-theoretical 
operations their names suggest. Why do they demand sorted ranges? Because without 
them, they couldn't do their work in linear time. If you're beginning to detect a trend 
suggesting that algorithms requiring sorted ranges do so in order to offer better 
performance than they'd be able to guarantee for ranges that might not be sorted, 
you're right. Stay tuned. The trend will continue. 

merge and inplace_merge perform what is in effect a single pass of the mergesort 
algorithm: they read two sorted ranges and produce a new sorted range containing all 
the elements from both source ranges. They run in linear time, something they couldn't 
do if they didn't know that the source ranges were already sorted. 

The final algorithm that requires sorted source ranges is includes. It's used to 
determine whether all the objects in one range are also in another range. Because 
includes may assume that both its ranees art-sorted, it promises linear-time 
performance. Without that guarantee, it would generally run slower. 

Unlike the algorithms we've just discussed, unique and unique_copy offer well-defined 
behavior even on unsorted ranges. But look at how the Standard describes unique's 
behavior (the italics are mine): 

Eliminates all but the first element from every consecutive group of equal 
elements. 

In other words, if you want unique to eliminate all duplicates from a range (i.e., to 
make all values in the range "unique"), you must first make sure that all duplicate 
values are next to one another. And guess what? That's one of the things sorting does. 
In practice, unique is usually employed to eliminate all duplicate values from a range, 
so you'll almost always want to make sure that the range you pass unique (or 
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unique_copy) is sorted. (Unix developers will recognize a striking similarity between 
STL's unique and Unix's uniq, a similarity I suspect is anything but coincidental.) 

Incidentally, unique eliminates elements from a range the same way remove does, 
which is to say that it only "sort of eliminates them. If you aren't sure what this means, 
please turn to Items 32 and 33 immediately. It is not possible to overemphasize the 
importance of understanding what remove and remove-like algorithms (including 
unique) do. Having a basic comprehension is not sufficient. If you don't know what 
they do, you will get into trouble. 

Which brings me to the fine print regarding what it means for a range to be sorted. 
Because the STL allows you to specify comparison functions to be used during 
sorting, different ranges may be sorted in different ways. Given two ranges of ints, for 
example, one might be sorted the default way (i.e., in ascending order) while the other 
is sorted using greater<int>, hence in descending order. Given two ranges of Widgets, 
one might be sorted by price and another might be sorted by age. With so many 
different ways to sort things, it's critical that you give the STL consistent sorting-
related information to work with. If you pass a sorted range to an algorithm that also 
takes a comparison function, be sure that the comparison function you pass behaves 
the same as the one you used to sort the range. 

Here's an example of what you do not want to do: 
 
vector<int> v;      //create a vector, put some 
…       //data into it, sort it into 
sort(v.begin(), v.end(), greater<int>());      // descending order 
 
…       //work with the vector  

// (without changing it) 
bool a5Exists =                                          // search for a 5 in the vector, 
binary_search(v.begin(), v.end(), 5);         // assuming it's sorted in 

//ascending order! 

By default, binary_search assumes that the range it's searching is sorted by "<" (i.e., 
the values are in ascending order), but in this example, the vector is sorted in 
descending order. You should not be surprised to learn that you get undefined results 
when you invoke binary_search (or lower_bound, etc.) on a range of values that is 
sorted in a different order from what the algorithm expects. 

To get the code to behave correctly, you must tell binary_search to use the same 
comparison function that sort did: 

 
bool a5Exists =                                                                 //search for a 5 
binary_search(v.begin(), v.end(), 5. greater<int>());        //using greater as 

   //the comparison 
   //function 
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All the algorithms that require sorted ranges (i.e., all the algorithms in this Item except 
unique and unique_copy) determine whether two values are "the same" by using 
equivalence, just like the standard associative containers (which are themselves 
sorted). In contrast, the default way in which unique and unique_copy determine 
whether two objects are "the same" is by using equality, though you can override this 
default by passing these algorithms a predicate defining an alternative definition of 
"the same." For a detailed discussion of the difference between equivalence and 
equality, consult Item 19. 

The eleven algorithms that require sorted ranges do so in order to offer greater 
efficiency than would otherwise be possible. As long as you remember to pass them 
only sorted ranges, and as long as you make sure that the comparison function used by 
the algorithms is consistent with the one used to do the sorting, you'll revel in trouble-
free search, set, and merge operations, plus you'll find that unique and unique_copy 
eliminate all duplicate values, as you almost certainly want them to. 

Item 35. Implement simple case-insensitive string comparisons via 
mismatch or lexicographical compare. 

One of the most frequently asked questions by STL newbies is "How-do I use the STL 
to perform case-insensitive string comparisons?" This is a deceptively simple question. 
Case-insensitive string comparisons are either really easy or really hard, depending on 
how general you want to be. If you're willing to ignore internationalization issues and 
restrict your concern to the kinds of strings strcmp is designed for, the task is easy. If 
you want to be able to handle strings of characters in languages where strcmp wouldn't 
apply (i.e.. strings holding text in just about any language except English) or where 
programs use a locale other than the default, the task is very hard. 

In this Item, I'll tackle the easy version of the problem, because that suffices to 
demonstrate how the STL can be brought to bear. (A harder version of the problem 
involves no more of the STL. Rather, it involves locale-dependent issues you can read 
about in Appendix A.) To make the easy problem somewhat more challenging, I'll 
tackle it twice. Programmers desiring case-insensitive string comparisons often need 
two different calling interfaces, one similar to strcmp (which returns a negative 
number, zero, or a positive number), the other akin to operators (which returns true or 
false). I'll therefore show how to implement both calling interfaces using STL 
algorithms. 

First, however, we need a way to determine whether two characters are the same, 
except for their case. When internationalization issues are taken into account, this is a 
complicated problem. The following character-comparing (unction is a simplistic 
solution, but it's akin to 

the strcmp approach to string comparison, and since in this Item I consider only strings 
where a strcmp-like approach is appropriate, internationalization issues don't count, 
and this function will do: 
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int ciCharCompare(char c1, char c2)   // case-insensitively compare chars  
{           // c1 and c2, returning -1 if c1 < c2, 

//0 if c1==c2, and 1 if c1 > c2 
int Ic1 = tolower(static_cast<unsigned char>(c1));        //see below for  
int Ic2 = tolower(static_cast<unsigned char>(c2));        // info on these 

// statements 
if (Ic1 < Ic2) return -1;  
if (lc1 > Ic2) return 1; 
return 0;  

} 

This function follows the lead of strcmp in returning a negative number, zero, or a 
positive number, depending on the relationship between c1 and c2. Unlike strcmp, 
ciCharCompare converts both parameters to lower case before performing the 
comparison. That's what makes it a case-insensitive character comparison. 

Like many functions in <cctype> (and hence <ctype.h>), tolower's parameter and 
return value is of type int. but unless that int is EOF, its value must be representable as 
an unsigned char. In both C and C++, char may or may not be signed (it's up to the 
implementation), and when char is signed, the only way to ensure that its value is 
representable as an unsigned char is to cast it to one before calling tolower. That 
explains the casts in the code above. (On implementations where char is already 
unsigned, the casts are no-ops.) It also explains the use of int instead of char to store 
tolower's return value. 

Given ciCharCompare, it's easy to write the first of our two case-insensitive string 
comparison functions, the one offering a strcmp-like interface. This function, 
ciStringCompare, returns a negative number, zero, or a positive number, depending on 
the relationship between the strings being compared. It's built around the mismatch 
algorithm, because mismatch identifies the first position in two ranges where the 
corresponding values are not the same. 

Before we can call mismatch, we have to satisfy its preconditions. In particular, we 
have to make sure that if one string is shorter than the other, the shorter string is the 
first range passed. We'll therefore farm the real work out to a function called 
ciStringCompareImpl and have ciStringCompare simply make sure the arguments are 
passed in the correct order, adjusting the return value if the arguments have to be 
swapped: 

 
int ciStringCompareImpl(const string& s1,                       //see below for 

const string& s2);                     // implementation 
 
int ciStringCompare(const string& s1, const string& s2) 
{  

if (s1.size() <= s2.size()) return ciStringCompareImpl(s1, s2 ); 
else return -ciStringCompareImpl(s2, s1);  

} 
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In ciStringCompareImpl, the heavy lifting is performed by mismatch. It returns a pair 
of iterators indicating the locations in the ranges where corresponding characters first 
fail to match: 

 
int ciStringCompareImpl(const string& si, const strings s2)  
{  

typedef pair<string::const_iterator,  // PSCI = "pair of 
string::const_iterator> PSCI;           // string::const_iterator" 

 
PSCI p= mismatch(                                       //see below for an 

  s1.begin(), s1.end(),                            //explanation of why 
  s2.begin(),                                         //we need not2;see 
  not2(ptr_fun(ciCharCompare)));        //Item 41 for why we 

// need ptr_fun 
if (p.first== s1.end()) {                                    //if true, either s1 and 

if (p.second == s2.end()) return 0;             // s2 are equal or 
else return -1;                                             //s1 is shorter than s2 

} 
 
return ciCharCompare(*p.first, *p.second);    //the relationship of the  

}                                                                            //strings is the same as 
//that of the  
//mismatched chars 

With any luck, the comments make pretty clear what is going on. Fundamentally, once 
you know the first place where the strings differ, it's easy to determine which string, if 
either, precedes the other. The only thing that may seem odd is the predicate passed to 
mismatch, which is not2(ptr_fun(ciCharCompare)). This predicate is responsible for 
returning true when the characters match, because mismatch will stop when the 
predicate return false. We can't use ciCharCompare for this purpose, because it returns 
-1, 1, or 0, and it returns 0 when the characters match, just like strcmp. If we passed 
ciCharCompare as the predicate to mismatch, C++ would convert ciCharCompare's 
return type to bool, and of course the bool equivalent of zero is false, precisely the 
opposite of what we want! Similarly, when ciCharCompare returned 1 or –1, that 
would be interpreted as true, because, as in C, all nonzero integral values are 
considered true. Again, this would be the opposite of what we want. To fix this 
semantic inversion, we throw a not2 and a ptr_fun in front of ciCharCompare, and we 
all live happily ever after. 

Our second approach to ciStringCompare yields a conventional STL predicate: such a 
function could be used as a comparison function in associative containers. The 
implementation is short and sweet, because all we have to do is modify 
ciCharCompare to give us a character-comparison function with a predicate interface, 
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then turn the job of performing a string comparison over to the algorithm with the sec-
ond-longest name in the STL. lexicographical_compare: 

bool ciCharLess(char c1, char c2)                      // return whether c1  
{                                                                       // precedes c2 in a case-return                            

// insensitive comparison;   tolower(static_cast<unsigned char>(c1)) <  
//Item 46 explains why a tolower(static_cast<unsigned char>(c2));    // 
function object might  

}                                                                          //be preferable to this 
//function 

bool ciStringCompare(const string& s1, const string& s2) 
{ 

return lexicographical_compare(s1.begin(), s1.end(), //see below for 
s2.begin(), s2.end(),     // a discussion of 
ciCharLess);                 //this algorithm 

}                                                                                          //call 

No, I won't keep you in suspense any longer. The longest algorithm name is 
set_symmetric_difference. 

If you're familiar with the behavior of lexicographical_compare, the code above is as 
clear as clear can be. If you're not, it's probably about as clear as concrete. Fortunately, 
it's not hard to replace the concrete with glass. 

lexicographical_compare is a generalized version of strcmp. Where strcmp works only 
with character arrays, however, lexicographical_compare works with ranges of values 
of any type. Also, while strcmp always compares two characters to see if their 
relationship is equal, less than, or greater than one another. Lexicographical_compare 
may be passed an arbitrary predicate that determines whether two values satisfy a user-
defined criterion. 

In the call above, lexicographical_compare is asked to find the first position where s1 
and s2 differ, based on the results of calls to ciCharLess. If, using the characters at that 
position, ciCharLess returns true, so does lexicographical_compare; if, at the first 
position where the characters differ, the character from the first string precedes the 
corresponding character from the second string, the first string precedes the second 
one. Like strcmp, lexicographical_compare considers two ranges of equal values to be 
equal, hence it returns false for such ranges: the first range does not precede the 
second. Also like strcmp, if the first range ends before a difference in corresponding 
values is found. lexicographical_compare returns true: a prefix precedes any range for 
which it is a prefix. 

Enough about mismatch and lexicographical_compare. Though I focus on portability 
in this book. I would be remiss if I failed to mention that case-insensitive string 
comparison functions are widely available as nonstandard extensions to the standard C 
library. They typically have names like stricmp or strcmpi, and they typically offer no 
more support for internationalization than the functions we've developed in this Item. 
If you're willing to sacrifice some portability, you know that your strings never contain 
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embedded nulls, and you don't care about internationalization, you may find that the 
easiest way to implement a case-insensitive string comparison doesn't use the STL at 
all. Instead, it converts both strings to const char* pointers (see Item 16) and then uses 
stricmp or strcmpi on the pointers: 

int ciStringCompare(const string& s1, const string& s2) 
{ 

return stricmp (s1.c_str(),s2.c_str());                 //the function name on 
}                                                                              // your system might 

//not be stricmp 

Some may call this a hack, but stricmp/strcmpi, being optimized to do exactly one 
thing, typically run much faster on long strings than do the general-purpose algorithms 
mismatch and lexicographical_compare. If that's an important consideration for you, 
you may not care that you're trading standard STL algorithms for nonstandard C 
functions. Sometimes the most effective way to use the STL is to realize that other 
approaches are superior. 

Item 36. Understand the proper implementation of copy_if. 

One of the more interesting aspects of the STL is that although there are 11 algorithms 
with "copy" in their names. 

copy copy_backward 
replace_copy reverse_copy 
replace_copy_if unique_copy 
remove_copy rotate_copy 
remove_copy_if partial_sort_copy_unintialized_copy 
ran  

none of them is copy_if. That means you can replace, copy_if, you can 
remove_copy_if, you can both copy_backward and reverse_copy, but if you simply 
want to copy the elements of a range that satisfy a predicate, you're on your own. 

For example, suppose you have a function to determine whether a Widget is defective: 
 
bool isDefective(const Widget& w); 

and you'd like to write all the defective Widgets in a vector to cerr. If copy_if existed, 
you could simply do this: 

 
vector<Widget> widgets; 
… 
copy_if(widgets.begin(), widgets.end(),                      //'this won't compile; 

  ostream_iterator<Widget>(cerr, "\n"),            // there is no copyif 
  isDefective);                                                   // in the STL 
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Ironically, copy_if was part of the original Hewlett Packard STL that formed the basis 
for the STL that is now part of the standard C++ library. In one of those quirks that 
occasionally makes history interesting, during the process of winnowing the HP STL 
into something of a size manageable for standardization, copy_if was one of the things 
that got left on the cutting room floor. 

In The C++ Programming Language [7J. Stroustrup remarks that it's trivial to write 
copy_if, and he's right, but that doesn't mean that it's necessarily easy to come up with 
the correct trivia. For example, here's a reasonable-looking copy_if that many people 
(including me) have been known to come up with: 

 
template< typename Inputlterator,                        // a not-quite-right 

typename Outputlterator,                     // implementation of 
typename Predicate>   // copy_if 

 
Outputlterator copy_if( InputIterator begin,  

 Inputlterator end,  
 Outputlterator destBegin, Predicate p) 

{  
return remove_copy_if(begin, end, destBegin, not1(p)); 

} 

This approach is based on the observation that although the STL doesn't let you say 
"copy everything where this predicate is true." it does let you say "copy everything 
except where this predicate is nor true." To implement copy_if, then, it seems that all 
we need to do is throw a not1 in front of the predicate we'd like to pass to copy_if, 
then pass the resulting predicate to remove_copy_if. The result is the code above. 

If the above reasoning were valid, we could write out our defective Widgets this way: 
 
copy_if( widgets.begin(), widgets.end(),                // well-intentioned code 

ostream_iterator<Widget>(cerr, "\n"),      // that will not compile 
isDefective); 
 

Your STL platforms will take a jaundiced view of this code, because it tries to apply 
not1 to isDefective. (The application takes place inside copy_if). As Item 41 tries to 
make clear, not1 can't be applied directly to a function pointer: the function pointer 
must first be passed through ptr_fun. To call this implementation of copy_if, you must 
pass not just a function object, but an adaptable function object. That's easy enough to 
do, but clients of a would-be STL algorithm shouldn't have to. Standard STL 
algorithms never require that their functors be adaptable, and neither should copy_if. 
The above implementation is decent, but it's not decent enough. 

Here's the correct trivial implementation of copy_if: 
 
template< typename Inputlterator,                       // a correct 
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typename Outputlterator,                    // implementation of 
typename Predicate>                           //copy_if 

Outputlterator copy_if( Inputlterator begin,  
   Inputlterator end,  
   Outputlterator destBegin,  
   Predicate p)  

{ 
while (begin != end) { 
    if (p(*begin))*destBegin++ = *begin;  
    ++begin; 
} 

 
return destBegin; 

} 
 

Given how useful copy_if is, plus the fact that new STL programmers tend to expect it 
to exist anyway, there's a good case to be made for putting copy_if — the correct one! 
— into your local STL-related utility library and using it whenever it's appropriate. 

Item 37. Use accumulate or for_each to summarize ranges. 

Sometimes you need to boil an entire range down to a single number, or, more 
generally, a single object. For commonly needed information, special-purpose 
algorithms exist to do the jobs, count tells you how 

many elements are in a range, for example, while count_if tells you how many 
elements satisfy a predicate. The minimum and maximum values in a range are 
available via min_element and max_element. 

At times, however, you need to summarize a range in some custom manner, and in 
those cases, you need something more flexible than count, count_if, min_element, or 
max_element. For example, you might want the sum of the lengths of the strings in a 
container. You might want the product of a range of numbers. You might want the 
average coordinates of a range of points. In each of these cases, you need to 
summarize a range, but you need to be able to define the summary you want. Not a 
problem. The STL has the algorithm for you. It's called accumulate. You might not be 
familiar with accumulate, because, unlike most algorithms, it doesn't live in 
<algorithm>. Instead, it's located with three other "numeric algorithms" in <numeric>. 
(The three others are inner_product, adjacent_difference, and partial_sum.) 

Like many algorithms, accumulate exists in two forms. The form taking a pair of 
iterators and an initial value returns the initial value plus the sum of the values in the 
range demarcated by the iterators: 

 
list<double> Id;                                                // create a list and put 
…        // some doubles into it 
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double sum = accumulate(ld.begin(), Id.end(), 0.0);  // calculate their sum, 
//starting at 0.0 

In this example, note that the initial value is specified as 0.0, not simply 0. That's 
important. The type of 0.0 is double, so accumulate internally uses a variable of type 
double to store the sum it's computing. Had the call been written like this: 

 
double sum = accumulate(ld.begin(), Id.end(), 0);     // calculate their sum, 

// starting at 0; this //is 
not correct! 

the initial value would be the int 0, so accumulate would internally use an int to store 
the value it was computing. That int would ultimately become accumulate's return 
value, and it would be used to initialize the variable sum. The code would compile and 
run, but sum's value would be incorrect. Instead of holding the true sum of a list of 
doubles, it would hold the result of adding all the doubles together, but converting the 
result to an int after each addition. 

accumulate requires only input iterators, so you can use it even with istream_iterators 
and istreambuf_iterators (see Item 29): 

 
cout << "The sum of the ints on the standard input is"   // print the sum of  

  << accumulate( istream_iterator<int>(cin),             // the ints in cin 
    istream_iterator<int>(), 
    0); 

It is this default behavior of accumulate that causes it to be labeled a numeric 
algorithm. But when accumulate is used in its alternate form. one taking an initial 
summary value and an arbitrary summarization function, it becomes much more 
general. 

As an example, consider how to use accumulate to calculate the sum of the lengths of 
the strings in a container. To compute the sum, accumulate needs to know two things. 
First, as above, it must know the starting sum. In our case, it is zero. Second, it must 
know how to update this sum each time a new string is seen. To do that, we write a 
function that takes the sum so far and the new string and returns the updated sum: 

 
string::size_type                                                    // see below for info 
stringLengthSum(string::size_type sumSoFar,       // on string::size_type 

const strings s)  
{  

return sumSoFar + s.size(); 
} 

The body of this function reveals that what is going on is trivial, but you may find 
yourself bogged down in the appearances of string::size_type. Don't let that happen. 
Every standard STL container has a typedef called size_type that is the container's type 
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for counting things. This is the type returned by the container's size function, for 
example. For all the standard containers, size_type must be size_t. but. in theory, 
nonstandard STL-compatible containers might use a different type for size_type 
(though I have a hard time imagining why they'd want to). For standard containers, 
you can think of Container::size_type as a fancy way of writing size_t. 

stringLengthSum is representative of the summarization functions accumulate works 
with. It takes a summary value for the range so far as well as the next element of the 
range, and it returns the new summary value. In general, that means the function will 
take parameters of different types. That's what it does here. The summary so far (the 
sum of the lengths of the strings already seen) is of type string::size_type, while the 
type of the elements being examined is string. As is typically the case, the return type 
here is the same as that of the function's first parameter, because it's the updated 
summary value (the one taking the latest element into account). 

We can use stringLengthSum with accumulate like this: 
set<string> ss;                                           // create container of strings, 
…       // and populate it 
string::size_type lengthSum =                   // set lengthSum to the result 

accumulate(ss.begin(), ss.end()          //of calling StringLengthSum on 
        0 stringLengthSum);          // each element in ss, using 0  

// as the initial summary value 

Nifty, huh? Calculating the product of a range of numbers is even easier, because we 
don't have to write our own summation function. We can use the standard multiplies 
functor class: 

 
vector<float> vf;                                         // create container of floats 
…       //and populate it 
float product =                                            // set product to the result of 
accumulate(vf.begin(), vf.end(),                 //calling multiplies<float> on 

    1.0, multiplies<float>(            // each element in vf, using 1.0  
// as the initial summary value 

The only tricky thing here is remembering to use one (as a floating point numbers, not 
as an int!) as the initial summary value instead of zero. If we used zero as the starting 
value, the result would always be zero, because zero times anything is zero, right? 

Our final example is a bit more ambitious. It involves finding the average of a range of 
points, where a point looks like this: 

 
struct Point { 

Point(double initX, double initY): x(initX), y(initY) {}  
double x, y;  

}; 

 134



The summation function will be an object of a functor class called PointAverage, but 
before we look at PointAverage, let's look at its use in the call to accumulate: 

 
list<Point> Ip; 
… 
Point avg =                                                         //average the points in Ip 

accumulate(lp.begin(), lp.end(), 
Point(0, 0), PointAverage()) ; 

Simple and straightforward, the way we like it. In this case, the initial summary value 
is a Point object located at the origin, and all we need to remember is not to take that 
point into account when computing the average of the range. 

PointAverage works by keeping track of the number of points it has seen, as well as 
the sum of their x and y components. Each time it is called, it updates these values and 
returns the average coordinates of the points so far examined, because it is called 
exactly once for each point in the range, it divides the x and y sums by the number of 
points in the range: the initial point value passed to accumulate is ignored, as it should 
be: 

 
class PointAverage: 

public binary_function<Point, Point, Point> {                    // see Item 40 
public: 

PointAverage(): xSum(0), ySum(0), numPoints(0) {} 
 

const Point operator()(const Point& avgSoFar, const Point& p) { 
++numPoints; 
xSum += p.x; 
ySum += p.y; 
return Point(xSum/numPoints, ySum/numPoints); 

} 
private: 

size_t numPoints;  
double xSum;  
double ySum; 

}; 

This works fine, and it is only because I sometimes associate with an inordinately 
demented group of people (many of them on the Standardization Committee) that I can 
envision STL implementations where it could fail. Nevertheless. PointAverage runs 
afoul of paragraph 2 of section 26.4.1 of the Standard, which, as I'm sure you recall, 
forbids side effects in the function passed to accumulate. Modification of the member 
variables numPoints, xSum, and ySum constitutes a side effect, so, technically 
speaking, the code I've just shown you yields undefined results. In practice, it's hard to 
imagine it not working, but I'm surrounded by menacing language lawyers as I write 
this, so I've no choice but to spell out the fine print on this matter. 
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That's okay, because it gives me a chance to mention for_each. another algorithm that 
can be used to summarize ranges and one that isn't constrained by the restrictions 
imposed on accumulate. Like accumulate, for_each takes a range and a function 
(typically a function object) to invoke on each element of the range, but the function 
passed to for_each receives only a single argument (the current range element), and 
for_each returns its function when it's done. (Actually, it returns a copy of its function 
— see Item 38.1 Significantly, the function passed to (and later returned from) 
for_each may have side effects. 

Ignoring the side effects issue, for each differs from accumulate in two primary ways. 
First, the name accumulate suggests an algorithm that produces a summary of a range, 
for each sounds like you simply want to do something to even; element of a range, 
and. of course, that is the algorithm's primary application. Using for_each to 
summarize a range is legitimate, but it's not as clear as accumulate. 

Second, accumulate returns the summary we want directly, while for_each returns a 
function object, and we must extract the summary information we want from this 
object. In C++ terms, that means we must add a member function to the functor class 
to let us retrieve the summary information we're after. 

Here's the last example again, this time using for_each instead of accumulate: 
 
struct Point {...);                                                                     // as before 
 
class PointAverage: 

public unary_function<Point, void> {                                 // see Item 40 
public: 

PointAverage(): xSum(0), ySum(0), numPoints(0) {} 
 
void operator()(const Point& p) 
{ 

++numPoints;  
xSum += p.x;  
ySum += p.y; 

} 
 
Point result()  const 
{ 

return Point(xSum/numPoints, ySum/numPoints); 
 } 
private: 

size_t numPoints;  
double xSum;  
double ySum; 

};  
list<Point> Ip; 
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… 
Point avg = for_each(lp.begin(), lp.end(), PointAverage()).result ;  

Personally, I prefer accumulate for summarizing, because I think it most clearly 
expresses what is going on, but for_each works, too, and the issue of side effects 
doesn't dog for_each as it does accumulate. Both algorithms can be used to summarize 
ranges. Use the one that suits you best. 

You may be wondering why for_each's function parameter is allowed to have side 
effects while accumulate's is not. This is a probing question, one that strikes at the 
heart of the STL. Alas, gentle reader, there are some mysteries meant to remain 
beyond our ken. Why the difference between accumulate and for_each? I've vet to hear 
a convincing explanation. 
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Functors, Functor Classes, Functions, etc. 

Like it or not, functions and function-like objects — functors — pervade the STL. 
Associative containers use them to keep their elements in order, algorithms such as 
find_if use them to control their behavior, components like for_each and transform are 
meaningless without them, and adapters like not1 and bind2nd actively produce them. 

Yes, everywhere you look in the STL, you see functors and functor classes. Including 
in your source code. It's not possible to make effective use of the STL without 
knowing how to write well-behaved functors. That being the case, most of this chapter 
is devoted to explaining how to make your functors behave the way the STL expects 
them to. One Item, however, is devoted to a different topic, one sure to appeal to those 
who've wondered about the need to litter their code with ptr_fun, mem_fun, and 
mem_fun_ref. Start with that Item (Item 41), if you like, but please don't stop there. 
Once you understand those functions, you'll need the information in the remaining 
Items to ensure that your functors work properly with them, as well as with the rest of 
the STL. 

Item 38. Design functor classes for pass-by-value. 

Neither C nor C++ allows you to truly pass functions as parameters to other functions. 
Instead, you must pass pointers to functions. For example, here's a declaration for the 
standard library function qsort: 

 
void qsort( void *base, size_t nmemb, size_t size, 
   int (*cmpfcn)(const void*, const void*)); 

Item 46 explains why the sort algorithm is typically a better choice than the qsort 
function, but that's not at issue here. What is at issue is the declaration for qsort's 
parameter cmpfcn. Once you've squinted past all the asterisks, it becomes clear that the 
argument passed as cmpfcn, which is a pointer to a function, is copied (i.e.. passed by 
value) from the call site to qsort. This is representative of the rule followed by the 
standard libraries for both C and C++, namely, that function pointers are passed by 
value. 

STL function objects are modeled after function pointers, so the convention in the STL 
is that function objects, too, are passed by value (i.e.. copied) when passed to and from 
functions. This is perhaps best demonstrated by the Standard's declaration of for_each. 
an algorithm which both takes and returns a function object by value: 

 
template<class Inputlterator, 

class Function> 
Function                                                //note return-by-value 
for_each( Inputlterator first, 

Inputlterator last, 
Function f);                            // note pass-by-value 
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In truth, the pass-by-value case is not quite this iron-clad, because for_each's caller 
could explicitly specify the parameter types at the point of the call. For example, the 
following would cause for_each to pass and return its functor by reference: 

 
class DoSomething:  

public unary_function<int, void> {        // Item 40 explains base class 
void operator()(int x) {...} 
… 

}; 
 
typedef deque<int>::iterator DequeIntIter;   //convenience typedef  
deque<int> di; 
… 
DoSomething d:                                             // create a function object 
… 
for_each<DequeIntIter,                                  // call for_each with type 

DoSomething&>(di.begin(),           // parameters of DequeIntIter 
di.end(),                 //and DoSomething&; 
d);                           //this forces d to be 

    // passed and returned  
    // by reference 

Users of the STL almost never do this kind of thing, however, and some 
implementations of some STL algorithms won't even compile if function objects are 
passed by reference. For the remainder of this Item, I'm going to pretend that function 
objects are always passed by value. In practice, that's virtually always true. 

Because function objects are passed and returned by value, the onus is on you to make 
sure that your function objects behave well when passed that way (i.e., copied). This 
implies two things. First, your function objects need to be small. Otherwise they will 
be too expensive to copy. Second, your function objects must be monomorphic (i.e., 
not polymorphic) — they must not use virtual functions. That's because derived class 
objects passed by value into parameters of base class type suffer from the slicing 
problem: during the copy, their derived parts are removed. (For another example of 
how the slicing problem affects your use of the STL, see Item 3.) 

Efficiency is important, of course, and so is avoiding the slicing" problem, but not all 
functors are small, and not all are monomorphic, either. One of the advantages of 
function objects over real functions is that functors can contain as much state as you 
need. Some function objects are naturally hefty, and it's important to be able to pass 
such functors to STL algorithms with the same ease as we pass their anorexic 
counterparts. 

The prohibition on polymorphic functors is equally unrealistic. C++ supports 
inheritance hierarchies and dynamic binding, and these features are as useful when 
designing functor classes as anyplace else. Functor classes without inheritance would 
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be like, well, like C++ without the "++". Surely there's a way to let function objects be 
big and/or polymorphic, yet still allow them to mesh with the pass-functors-by-value 
convention that pervades the STL. 

There is. Take the data and/or the polymorphism you'd like to put in your functor 
class, and move it into a different class. Then give your functor class a pointer to this 
new class. For example, if you'd like to create a polymorphic functor class containing 
lot of data. 

 
template<typename T> 
class BPFC:                                              // BPFC = " Big Polymorphic 

public                                                   //               Functor Class" 
unary_function<T, void> {          // Item 40 explains this 

// base class  
private: 

Widget w;                                             // this class has lots of data, 
Int x;                                                     //so it would be inefficient 
…      //to pass it by value  

public: 
virtual void operator()(const T& val) const; // this is a virtual function, 
…       //so slicing would be bad 

}; 

create a small, monomorphic class that contains a pointer to an implementation class, 
and put all the data and virtual functions in the implementation class: 

 
template<typename T>                                    //new implementation class  
class BPFCImpl{                                              //for modified BPFC 
private: 

Widget w;                                                  // all the data that used to 
int x;                        //be in BPFC are now here 
… 
virtual ~BPFCImpl();   //polymorphic classes need 

//virtual destructors 
 

virtual void operator()(const T& val) const; 
friend class BPFC<T>;                                     // let BPFC access the data 
}; 
 
template<typename T> 
class BPFC:      // small, monomorphic 

public unary_function<T, void> {                   // version of BPFC 
private: 

BPFCImpl<T> *pImpl;                                    //this is BPFC’s only data 
public: 
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void operator()(const T& val) const                 //this is now nonvirtual; 
{       //it forwards to BPFCImpl 

pImpl->operator() (val ); 
 } 
… 
} 

The implementation of BPFC::operator() exemplifies how all BPFC would-be virtual 
functions are implemented: they call their truly virtual counterparts in BPFCImpl. The 
result is a functor class (BPFC) that's small and monomorphic, yet has access to a 
large amount of state and acts polymorphically. 

I'm glossing over a fair number of details here, because the basic technique I've 
sketched is well known in C++ circles. Effective C++ treats it in Item 34. In Design 
Patterns by Gamma et al. [6], this is called the "Bridge Pattern." Sutter calls this the 
"Pimpl Idiom" in his Exceptional C++[8]. 

From an STL point of view, the primary thing to keep in mind is that functor classes 
using this technique must support copying in a reasonable fashion. If you were the 
author of BPFC above, you'd have to make sure that its copy constructor did 
something reasonable about the BPFCImpl object it points to. Perhaps the simplest 
reasonable thing would be to reference count it. using something like Boost's 
shared_ptr, which you can read about in Item 50. 

In fact, for purposes of this Item, the only thing you'd have to worry about would be 
the behavior of BPFC's copy constructor, because function objects arc always copied 
— passed by value, remember? — when passed to or returned from functions in the 
STL. That means two things. Make them small, and make them monomorphic. 

Item 39. Make predicates pure functions. 

I hate to do this to you, but we have to start with a short vocabulary lesson. 

� A predicate is a function that returns bool (or something that can be implicitly 
converted to bool). Predicates are widely used in the STL. The comparison 
functions for the standard associative containers are predicates, and predicate 
functions are commonly passed as parameters to algorithms like find_if and the 
various sorting algorithms.  (For an overview of the sorting algorithms, turn to 
Item 31.) 

� A pure function is a function whose return value depends only on its 
parameters. If f is a pure function and x and y are objects, the return value of 
f(x, y) can change only if the value of x or y changes. 

In C++, all data consulted by pure functions are either passed in as parameters 
or are constant for the life of the function. (Naturally, such constant data should 
be declared const.) If a pure function consulted data that might change between 
calls, invoking the function at different times with the same parameters might 

 141



yield different results, and that would be contrary to the definition of a pure 
function. 

That should be enough to make it clear what it means to make predicates pure 
functions. All I have to do now is convince you that the advice is well founded. To 
help me do that, I hope you'll forgive me for burdening you with one more term. 

� A predicate class is a functor class whose operator() function is a predicate, i.e., 
its operator() returns true or false. As you might expect, any place the STL 
expects a predicate, it will accept either a real predicate or an object of a 
predicate class. 

That’s it. I promise! Now we're ready to study why this Item offers guidance worth 
following. 

Item 38 explains that function objects are passed by value, so you should design 
function objects to be copied. For function objects that are predicates, there is another 
reason to design them to behave well when they are copied. Algorithms may make 
copies of functors and hold on to them a while before using them, and some algorithm 
implementations take advantage of this freedom. A critical repercussion of this 
observation is that predicate functions must be pure functions. 

To appreciate why this is the case, let's suppose you were to violate this constraint. 
Consider the following (badly designed) predicate class. Regardless of the arguments 
that are passed, it returns true exactly once: the third time it is called. The rest of the 
time it returns false. 

 
class BadPredicate:                                                // see Item 40 for info 
public unary_function<Widget, bool> {                   // on the base class 
public: 

BadPredicate(): timesCalled(0) {}                    // init timesCalled to 0 
bool operator()(const Widget&)  
{  

return ++timesCalled == 3; 
} 

private:  
size_t timesCalled; 

}; 

Suppose we use this class to eliminate the third Widget from a vector<Widget>: 
 
vector<Widget> vw;                                   // create vector and put some 

//Widgets into it 
vw.erase( remove_if( vw.begin(),              // eliminate the third Widget; 

vw.end(),              // see Item 32 for info on how 
BadPredicate()),     //erase and remove_if relate 

 vw.end()); 
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This code looks quite reasonable, but with many STL implementations, it will 
eliminate not just the third element from vw, it will also eliminate the sixth! 

To understand how this can happen, it's helpful to see how remove_if is often 
implemented. Bear in mind that remove_if does not have to be implemented this way. 

 
template <typename Fwdlterator, typename Predicate>  
Fwdlterator remove_if(Fwdlterator begin, Fwdlterator end, Predicate p)  
{  

begin = find_if(begin, end, p); 
if (begin == end) return begin;  
else { 

Fwdlterator next = begin; 
return remove_copy_if(++next, end. begin, p); 

 } 
} 

The details of this code are not important, but note that the predicate p is passed first to 
find_if, then later to remove_copy_if. In both cases, of course, p is passed by value — 
is copied — into those algorithms. (Technically, this need not be true, but practically, 
it is true. For details, see Item 38.) 

The initial call to remove_if (the one in the client code that wants to eliminate the third 
element from vw) creates an anonymous BadPredicate object, one with its internal 
timesCalled member set to zero. This object (known as p inside remove_if) is then 
copied into find_if, so find_if also receives a BadPredicate object with a timesCalled 
value of 0. find_if "calls" that object until it returns true, so it calls it three times, 
find_if then returns control to remove_if. Remove_if continues to execute and 
ultimately calls remove_copy_if, passing as a predicate another copy of p. But p's 
timesCalled member is still 0! Find_if never called p. it called only a copy of p. As a 
result, the third time remove_copy_if calls its predicate, it, too, will return true. And 
that's why remove_if will ultimately remove two Widgets from vw instead of just one. 

The easiest way to keep yourself from tumbling into this linguistic crevasse is to 
declare your operator() functions const in predicate classes. If you do that, your 
compilers won't let you change any class data members: 

 
class BadPredicate: 

public unary_function<Widget, bool> {  
public: 

bool operator()(const Widget&) const  
{ 

return ++timesCalled == 3;      // error! can't change local data 
}                                                          //in a const member function 

} 
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Because this is such a straightforward way of preventing the problem we just 
examined. I very nearly entitled this Item "Make operator() const in predicate classes." 
But that doesn't go far enough. Even const member functions may access mutable data 
members, non-const local static objects, non-const class static objects, non-const 
objects at namespace scope, and non-const global objects. A well-designed predicate 
class ensures that its operator() functions are independent of those kinds of objects, 
too. Declaring operator() const in predicate classes is necessary for correct behavior, 
but it's not sufficient. A well-behaved operator() is certainly const, but it's more than 
that. It's also a pure function. 

Earlier in this Item, I remarked that any place the STL expects a predicate function, it 
will accept either a real function or an object of a predicate class. That's true in both 
directions. Any place the STL will accept an object of a predicate class, a predicate 
function (possibly modified by ptr_fun — see Item 41) is equally welcome. We now 
understand that operator!) functions in predicate classes should be pure functions, so 
this restriction extends to predicate functions, too. This function is as bad a predicate 
as the objects generated from the Bad-Predicate class: 

 
bool anotherBadPredicate(const Widget&, const Widget&) 
{ 

static int timesCalled = 0;          //No! No! No! No! No! No! No! 
return ++timesCalled == 3;       // Predicates should be pure functions, 

}                                                       //and pure functions have no state 

Regardless of how you write your predicates, they should always be pure functions. 

Item 40. Make functor classes adaptable. 

Suppose I have a list of Widget* pointers and a function to determine whether such a 
pointer identifies a Widget that is interesting: 

 
list<Widget*> widgetPtrs; 
bool islnteresting(const Widget *pw); 

If I'd like to find the first pointer to an interesting Widget in the list, it'd be easy: 
 
list<Widget*>::iterator i = find_if(widgetPtrs.begin(), widgetPtrs.end(), 

islnteresting); 
if ( i !=  widgetPtrs.end()) { 

…     // process the first  
}                                                       // interesting 

// pointer-to-widget 

If I'd like to find the first pointer to a Widget, that is not interesting, however, the 
obvious approach fails to compile: 

 
list<Widget*>::iterator i =  
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find_if(widgetPtrs.begin(), widgetPtrs.end(), 
 not1(islnteresting));                                    //error! won't compile 

Instead, I must apply ptr_fun to islnteresting before applying not1: 
 
list<Widget*>::iterator i =  

find_if(widgetPtrs.begin(), widgetPtrs.end(), 
not1(ptr_func( islnteresting)));                       //fine 

if (i != widgetPtrs.end()) { 
…        //process the first 

}         //dull ptr-to-Widget 
 

That leads to some questions. Why do I have to apply ptr_fun to islnteresting before 
applying not1? What does ptr_fun do for me, and how does it make the above work? 

The answer is somewhat surprising. The only thing ptr_fun does is make some 
typedefs available. That's it. These typedefs are required by not1, and that's why 
applying not1 to ptr_fun works, but applying not1 to islnteresting directly doesn't 
work. Being a lowly function pointer, islnteresting lacks the typedefs that not1 
demands. 

Not1 isn't the only component in the STL making such demands. Each of the four 
standard function adapters (not1, not2, bind1st, and bind2nd) requires the existence of 
certain typedefs, as do any non-standard STL-compatible adapters written by others 
(e.g., those available from SGI and Boost — see Item 50). Function objects that 
provide the necessary typedefs are said to be adaptable, while function objects lacking 
these typedefs are not adaptable. Adaptable function objects can be used in more 
contexts than can function objects that are not adaptable, so you should make your 
function objects adaptable whenever you can. It costs you nothing, and it may buy 
clients of your functor classes a world of convenience. 

I know. I know. I'm being coy, constantly referring to "certain typedefs" without 
telling you what they are. The typedefs in question are argument_type, 
first_argument_type, second_argument_type, and result_type, but it's not quite that 
straightforward, because different kinds of functor classes are expected to provide 
different subsets of these names. In all honesty, unless you're writing your own 
adapters (a topic not covered in this book), you don't need to know anything about 
these typedefs. That's because the conventional way to provide them is to inherit them 
from a base class, or. more precisely, a base struct. For functor classes whose 
operator() takes one argument, the struct to inherit from is std::unary_function. For 
functor classes whose operator() takes two arguments, the struct to inherit from is 
std::binary_function. 

Well, sort of. unary_function and binary_function are templates, so you can't inherit 
from them directly. Instead, you must inherit from structs they generate, and that 
requires that you specify some type arguments. For unary_function, you must specify 
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the type of parameter taken by your functor class s operated), as well as its return type. 
For binary_function, you specify three types: the types of your operator's first and 
second parameters, and your operator's return type. 

Here are a couple of examples: 
 
template<typename T> 
class MeetsThreshold: public std::unary_function<Widget, bool>{ 
private:  

const T threshold; 
public:  

MeetsThreshold(const T& threshold); 
bool operator()(const Widget&) const; 
… 

}; 
 
struct WidgetNameCompare: 

std::binary_function<Widget, Widget, bool>{ 
bool operator()(const Widget& lhs, const Widget& rhs) const; 

}; 
 

In both cases, notice how the types passed to unary_function or binary_function are 
the same as the types taken and returned by the functor class's operator!), though it is a 
bit of an oddity that operator's return type is passed as the last argument to 
unary_function or binary_function. 

You may have noticed that MeetsThreshold is a class, while WidgetNameCompare is 
a struct. MeetsThreshold has internal state (its threshold data member), and a class is 
the logical way to encapsulate such information. WidgetNameCompare has no state, 
hence no need to make anything private. Authors of functor classes where everything 
is public often declare structs instead of classes, probably for no other reason than to 
avoid typing "public" in front of the base class and the operator() function. Whether to 
declare such functors as classes or structs is purely a matter of personal style. If you're 
still refining your personal style and would like to emulate the pros, note that stateless 
functor classes within the STL itself (e.g.. less<T>. plus<T>. etc.) are generally 
written as structs. Look again at WidgetNameCompare: 

 
struct WidgetNameCompare:  

std::binary_function<Widget, Widget, bool> {  
bool operator()(cost Widget& lhs, const Widget& rhs) const; 

} 

Even though operator's arguments are of type const Widget&, the type passed to 
binary_function is Widget. In general, non-pointer types passed to unary_function or 
binary_function have consts and references stripped off. (Don't ask why. The reasons 
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are neither terribly good nor terribly interesting. If you're dying to know anyway, write 
some programs where you don't strip them off, then dissect the resulting compiler 
diagnostics. If, having done that, you're still interested in the matter, visit boost.org 
(see Item 50) and check out their work on call traits and function object adapters.) 

The rules change when operator() takes pointer parameters. Here's a struct analogous 
to WidgetNameCompare, but this one works with Widget* pointers: 

 
struct PtrWidgetNameCompare:  

std::binary_function<const Widget*, const Widget*, bool> { 
bool operator()(const Widget* lhs, const Widget" rhs) const; 

} 

Here, the types passed to binary_function are the same as the types taken by 
operator(). The general rule for functor classes taking or returning pointers is to pass to 
unary_function or binary_function whatever types operator)) takes or returns. 

Let's not forget the fundamental reason for all this unary_function and binary_function 
base class gobbledegook. These classes supply typedefs that are required by function 
object adapters, so inheritance from those classes yields adaptable function objects. 
That lets us do things like this: 

 
list<Widget> widgets; 
… 
list<Widget>::reverse_iterator i1 =                         //find the last widget 

find_if( widgets.rbegin(), widgets.rend(),          // that fails to meet the 
 not1(MeetsThreshold<int>(10)));          //threshold of 10 

   // (whatever that means) 
Widget w(constructor arguments); 
list<Widget>::iterator i2 =                                        // find the first widget 

find_if( widgets.begin(), widgets.end(),             //that precedes w in the 
bind2nd( WidgetNameCompare(), w );   //sort order defined by 

    //WidgetNameCompare 

Had we failed to have our functor classes inherit from unary_function or 
binary_function, neither of these examples would compile, because not1 and bind2nd 
both work only with adaptable function objects. 

STL function objects are modeled on C++ functions, and a C++ function has only one 
set of parameter types and one return type. As a result, the STL implicitly assumes that 
each functor class has only one operator() function, and it's the parameter and return 
types for this function that should be passed to unary_function or binary_function (in 
accord with the rules for reference and pointer types we just discussed). This means 
that, tempting though it might be, you shouldn't try to combine the functionality of 
WidgetNameCompare and PtrWidgetNameCompare by creating a single struct with 
two operator() functions. If you did, the functor would be adaptable with respect to at 
most one of its calling forms (whichever one you used when passing parameters to 
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binary_function), and a functor that's adaptable only half the time might just as well 
not be adaptable at all. 

Sometimes it makes sense to give a functor class multiple invocation forms (thereby 
abandoning adaptability), and Items 7, 20, 23, and 25 give examples of situations 
where that is the case. Such functor classes are the exception, however, not the rule. 
Adaptability is important, and you should strive to facilitate it each time you write a 
functor class. 

Item 41. Understand the reasons for ptr_fun, mem_fun, and 
mem_fun_ref. 

What is it with this ptr_fun/mem_fun/mem_fun_ref stuff? Sometimes you have to use 
these functions, sometimes you don't, and what do they do, anyway? They just seem to 
sit there, pointlessly hanging around function names like ill-fitting garments. They're 
unpleasant to type, annoying to read, and resistant to comprehension. Are these things 
additional examples of STL artifacts (such as the ones described in Items 10 and 18). 
or just some syntactic joke foisted on us by members of a Standardization Committee 
with too much free time and a twisted sense of humor? 

Calm yourself. The names are less than inspired, but ptr_fun, mem_fun, and 
mem_fun_ref do important jobs, and as far as syntactic-jokes go, one of the primary 
tasks of these functions is to paper over one of C++'s inherent syntactic 
inconsistencies. 

If I have a function f and an object x, I wish to invoke f on x. and I'm outside x's 
member functions. C++ gives me three different syntaxes for making the call: 

f(x); //Syntax #1: when f is a non-member function 
x.f(); //Syntax #2: when f is a member  

//function and x is an object or  
//a reference to an object 

p->f(); //syntax #3: when f is a member  
//function and p is a pointer to x 

Now, suppose I have a function that can test Widgets. 
 
void test(Widget& w);                            // test w and mark it as "failed" if 

      // it doesn't pass the test  

and I have a container of Widgets: 
 
vector<Widget> vw;                              // vw  holds widgets 

To test every Widget in vw, I can use for_each in the obvious manner:  
 
for_each(vw.begin(), vw.end(), test);      // Call #1 (compiles) 
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But imagine that test is a member function of Widget instead of a non-member 
function, i.e., that Widget supports self-testing: 

 
class Widget {  
public: 

void test();                                          // perform a self-test; mark *this 
//as "failed" if it doesn't pass 

}; 

in a perfect world. I'd also be able to use for_each to invoke Widget::test on each 
object in vw: 

for_each( vw.begin(), vw.end(), 
&Widget::test);                       // Call #2 (won't compile) 

In fact, if the world were really perfect. I'd be able to use for_each to invoke 
Widget::test on a container of Widget* pointers, too: 

 
list<Widget*> Ipw;                                // lpw holds pointers to widgets 
for_each( lpw.begin(), Ipw.end(), 

&Widget::test);                       //Call #3 (also won't compile) 

But think of what would have to happen in this perfect world. Inside the for_each 
function in Call #1, we'd be calling a non-member function with an object, so we'd 
have to use Syntax #1. Inside the for_each function in Call #2, we'd have to use Syntax 
#2, because we'd have an object and a member function. And inside the for_each 
function in Call #3, we'd need to use Syntax #3, because we'd be dealing with a mem-
ber function and a pointer to an object. We'd therefore need three different versions of 
for_each, and how perfect would that world be? 

In the world we do have, we possess only one version of for_each. It's not hard to 
envision an implementation: 

template<typename Inputlterator, typename Function> 
Function for_each(Inputlterator begin, Inputlterator end, Function f) 
{ 

while (begin != end) f(*begin++); 
} 

Here I've highlighted the fact that for_each uses Syntax #1 when making the call. This 
is a universal convention in the STL: functions and function objects are always 
invoked using the syntactic form for non-member functions. This explains why Call #1 
compiles while Calls *2 and #3 don't. It's because STL algorithms (including for_each) 
hardwire in Syntax #1, and only Call #1 is compatible with that syntax. 

Perhaps it's now clear why mem_fun and mem_fun_ref exist. They arrange for 
member functions (which must ordinarily be called using Syntax #2 or #3) to be called 
using Syntax # 1. 
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The way mem_fun and mem_fun_ref do this is simple, though it's a little clearer if you 
take a look at a declaration for one of these functions. They're really function 
templates, and several variants of the mem_fun and mem_fun_ref templates exist, 
corresponding to different numbers of parameters and the constness (or lack thereof) 
of the member functions they adapt. Seeing one declaration is enough to understand 
how things are put together: 

 
template<typename R, typename C>      // declaration for mem_fun for 
mem_fun_t<R,C>                                    // non-const member functions 
mem_fun(R (C::*pmf)());                         // taking no parameters. C is the 

        //class, R is the return type of the  
         // pointed-to member function 

mem_fun takes a pointer to a member function, pmf, and returns an object of type 
mem_fun_t. This is a functor class that holds the member function pointer and offers 
an operator)) that invokes the pointed-to member function on the object passed to 
operator)). For example, in this code, 

 
list<Widget*> Ipw;                                      //same as above 
… 
for_each(lpw.begin(), Ipw.end(), 

mem_fun(&Widget::test));            // this will now compile 
 

for_each receives an object of type mem_fun_t holding a pointer to Widget::test. For 
each Widget* pointer in lpw, for_each "calls" the mem_fun_t object using Syntax #1, 
and that object immediately invokes Widget::test on the Widget* pointer using Syntax 
#3. 

Overall, mem_fun adapts Syntax #3, which is what Widget::test requires when used 
with a Widget* pointer, to Syntax # 1, which is what for_each uses. It's thus no 
wonder that classes like mem_fun_t are known as function object adapters. It should 
not surprise you to learn that, completely analogously with the above, the 
mem_fun_ref functions adapt Syntax #2 to Syntax #1 and generate adapter objects, of 
type mem_fun_ref_t. 

The objects produced by mem_fun and mem_fun_ref do more than allow STL 
components to assume that all functions are called using a single syntax. They also 
provide important typedefs, just like the objects produced by ptr_fun. The story behind 
these typedefs is told in Item 40, so I won't repeat it here. However, this puts us in a 
position to understand why this call compiles. 

 
for_each(vw.begin(), vw.end(), test);                           //as above, Call #1; 

         //this compiles  

while these do not: 
 

 150



for_each(vw.begin(), vw.end(), &Widget::test);            // as above, Call #2; 
//doesn't compile  

for_each(lpw.begin(), Ipw.end(), &Widget::test);  // as above, Call #3; 
//doesn't compile 

The first call (Call #1) passes a real function, so there's no need to adapt its calling 
syntax for use by for_each: the algorithm will inherently call it using the proper 
syntax. Furthermore, for_each makes no use of the typedefs that ptr_fun adds, so it's 
not necessary to use ptr_fun when passing test to for_each. On the other hand, adding 
the typedefs can't hurt anything, so this will do the same thing as the call above: 

 
for_each(vw.begin(), vw.end(), ptr_fun(test));       // compiles and behaves 

   //like Call #1 above 

If you get confused about when to use ptr_fun and when not to, consider using it every 
time you pass a function to an STL component. The STL won't care, and there is no 
runtime penalty. About the worst that can be said is that some people reading your 
code might raise an eyebrow when they see an unnecessary use of ptr_fun. How much 
that bothers you depends. I suppose, on your sensitivity to raised eyebrows. 

An alternative strategy with respect to ptr_fun is to use it only when you're forced to. 
If you omit it when the typedefs are necessary, your compilers will balk at your code. 
Then you'll have go back and add it. 

The situation with mem_fun and mem_fun_ref is fundamentally different. You must 
employ them whenever you pass a member function to an STL component, because, in 
addition to adding typedefs (which may or may not be necessary), they adapt the 
calling syntaxes from the ones normally used with member functions to the one used 
even-where in the STL. If you don't use them when passing member function pointers, 
your code will never compile. 

Which leaves just the names of the member function adapters, and here, finally, we 
have a genuine historical STL artifact. When the need for these kinds of adapters first 
became apparent, the people working on the STL focused on containers of pointers. 
(Given the drawbacks of such containers described in Items 7. 20. and 33. this might 
seem surprising, but remember that containers of pointers support polymorphism, 
while containers of objects do not.) They needed an adapter for member functions, so 
they chose mem_fun. Only later did they realize that they needed a different adapter 
for containers of objects, so they hacked up the name mem_fun_ref for that. No. it's 
not very elegant, but these things happen. Tell me you've never given any of your 
components a name that you later realized was, er, difficult to generalize... . 

Item 42. Make sure less<T> means operator< 

As all Widget-savvy people are aware. Widgets have both a weight and a maximum 
speed: 
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class Widget {  
public: 
 … 

size_t weight() const;  
size_t maxSpeed() const; 
… 

} 

Also well known is that the natural way to sort Widgets is by weight. operator< for 
Widgets reflects this: 

 
bool operator<(const Widget& lhs, const Widget& rhs) 
{  

return Ihs.weight() < rhs.weight(); 
) 

But suppose we'd like to create a multiset<Widget> where the Widgets are sorted by 
maximum speed. We know that the default comparison function for multiset<Widget> 
is less<Widget>, and we know that less<Widget>, by default, does its work by calling 
operator< for Widgets. That being the case, it seems clear that one way to get a 
multiset<Widget> sorted by maximum speed is to sever the tie between less<Widget> 
and operator< by specializing less<Widget> to look only at a Widget's maximum 
speed: 

 
template<>                                                      //This is a specialization 
struct std::less<Widget>:                                       // of std::less for Widget; 

public                                                               //it's also a very bad idea 
std::binary_function< Widget, 

 Widget                          //See Item 40 for info 
 bool> {                          //on this base class 

 
bool operator()(const Widget& lhs, const Widget& rhs) const  
{  

return lhs.maxSpeed() < rhs.maxSpeed(); 
 } 
}; 

This both looks ill-advised and is ill-advised, but it may not be ill-advised for the 
reason you think. Does it surprise you that it compiles at all? Many programmers point 
out that the above isn't just a specialization of a template, it's a specialization of a 
template in the std namespace. "Isn't std supposed to be sacred, reserved for library 
implementers and beyond the reach of mere programmers?" they ask. "Shouldn't 
compilers reject this attempt to tamper with the workings of the C++ immortals?" they 
wonder. 
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As a general rule, trying to modify components in std is indeed forbidden (and doing 
so typically transports one to the realm of undefined behavior), but under some 
circumstances, tinkering is allowed. Specifically, programmers are allowed to 
specialize templates in std for user-defined types. Almost always, there are alternatives 
that are superior to specializing std templates, but on rare occasions, it's a reasonable 
thing to do. For instance, authors of smart pointer classes often want their classes to 
act like built-in pointers for sorting purposes, so it's not uncommon to see 
specializations of std::less for smart pointer types. The following, for example, is part 
of the Boost library's shared_ptr. a smart pointer you can read about in Items 7 and 50: 

 
namespace std { 
 
template<typename T>                                    // this is a spec, of std::less 
struct less< boost::shared_ptr<T> >:                 // for boost::shared_ptr<T> 

public                                                          // (boost is a namespace 
binary function<boost::shared_ptr<T>, 

     boost::shared_ptr<T>,     // this is the customary  
     bool> {                             //base class (see Item 40. 

bool operator()( const boost::shared_ptr<T>& a, 
 const boost::shared_ptr<T>& b) const  

{ 
return less<T*>()(a.get(),b.get());     // shared_ptr::get returns 

}                                                                  //the built-in pointer that s 
   // in the shared_ptr object 

}; 
} 

This isn't unreasonable, and it certainly serves up no surprises, because this 
specialization of less merely ensures that sorting smart pointers behaves the same as 
sorting their built-in brethren. Alas, our tentative specialization of less for Widget does 
serve up surprises. 

C++ programmers can be forgiven certain assumptions. They assume that copy 
constructors copy, for example. (As Item 8 attests, failure to adhere to this convention 
can lead to astonishing behavior.) They assume that taking the address of an object 
yields a pointer to that object. (Turn to Item 18 to read about what can happen when 
this isn't true.) They assume that adapters like bind1st and not2 may be applied to 
function objects. (Item 40 explains how things break when this isn't the case.) They 
assume that operator+ adds (except for strings, but there's a long history of using "+" 
to mean string concatenation), that operator- subtracts, that operator== compares. And 
they assume that using less is tantamount to using operators operator< is more than 
just the default way to implement less, it's what programmers expect less to do. 
Having less do something other than call operator< is a gratuitous violation of 
programmers' expectations. It runs contrary to what has been called "the principle of 
least astonishment." It's callous. It's mean. It's bad. You shouldn't do it. Especially 
when there's no reason to. There's not a place in the STL using less where you can't 
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specify a different comparison type instead. Returning to our original example of a 
multiset<Widget> ordered by maximum speed, all we need to do to get what we want 
is create a functor class called almost anything except less that performs the 
comparison we're interested in. Why, here's one now: 

 
struct MaxSpeedCompare:  

public binary_function<Widget, Widget, bool> { 
 
bool operator()(const Widget& lhs, const Widget& rhs) const  
{ 

return lhs.maxSpeed() < rhs.maxSpeed(); 
 } 
}; 

To create our multiset, we use MaxSpeedCompare as the comparison type, thus 
avoiding use of the default comparison type (which is. of course. less<Widget>): 

 
multiset<Widget, MaxSpeedCompare> widgets; 

This code says exactly what it means. It creates a multiset of Widgets sorted as defined 
by the functor class MaxSpeedCompare. 

Contrast that until this: 
 
multiset<Widget> widgets; 

This says that widgets is a multiset of Widgets sorted in the default manner. 
Technically, that means it uses less<Widget>, but virtually everybody is going to 
assume that really means it's sorted by operator<. 

Don't mislead all those programmers by playing games with the definition of less. If 
you use less (explicitly or implicitly), make sure it means operators If you want to sort 
objects using some other criterion, create a special functor class that's not called less. 
It's really as simple as that. 
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Programming with the STL 

It's traditional to summarize the STL as consisting of containers, iterators, algorithms, 
and function objects, but programming with the STL is much more than that. 
Programming with the STL is knowing when to use loops, when to use algorithms, and 
when to use container member functions. It's knowing when equal_range is a better 
way to search than lower_bound, knowing when lower_bound is preferable to find, 
and knowing when find beats equal_range. It's knowing how to improve algorithm 
performance by substituting functors for functions that do the same thing. It's knowing 
how to avoid unportable or incomprehensible code. It's even knowing how to read 
compiler error messages that run to thousands of characters. And it's knowing about 
Internet resources for STL documentation, STL extensions, even complete STL 
implementations. 

Yes, programming with the STL involves knowing many things. This chapter gives 
you much of the knowledge you need. 

Item 43. Prefer algorithm calls to hand-written loops. 

Even' algorithm takes at least one pair of iterators that specify a range of objects over 
which to do something. min_element finds the smallest value in the range, for 
example, while accumulate summarizes some information about the range as a whole 
(see Item 37) and partition separates all the elements of a range into those that do and 
do not satisfy some criterion (see Item 31). For algorithms to do their work, they must 
examine every object in the range(s) they are passed, and they do this in the way you'd 
expect: they loop from the beginning of the range(s) to the end. Some algorithms, such 
as find and find_if, may return before they complete the traversal, but even these 
algorithms internally contain a loop. After all, even find and find_if must look at every 
element of a range before they can conclude that what they are looking for is not 
present. 

Internally, then, algorithms are loops. Furthermore, the breadth of STL algorithms 
means that many tasks you might naturally code as loops could also be written using 
algorithms. For example, if you have a Widget class that supports redrawing. 

 
class Widget {  
public: 
 … 

void redraw() const; 
… 

}; 
 

and you'd like to redraw all the Widgets in a list, you could do it with a loop, like this, 
 
list<Widget> Iw; 
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… 
for (list<Widget>::iterator i = Iw.begin(); i != Iw.end(); ++i) {  

i->redraw(); 
} 

but you could also do it with the for_each algorithm: 
 
for_each( Iw.begin(), Iw.end()                               // see Item 41 for info 

mem_fun_ref(&Widget::redraw));         //on mem_fun_ref 

For many C++ programmers, writing the loop is more natural than calling the 
algorithm, and reading the loop is more comfortable than making sense of 
mem_fun_ref and the taking of Widget::redraw's address. Yet this Item argues that the 
algorithm call is preferable. In fact, this Item argues that calling an algorithm is usually 
preferable to any hand-written loop. Why? 

There are three reasons: 

� Efficiency: Algorithms are often more efficient than the loops programmers 
produce. 

� Correctness: Writing loops is more subject to errors than is calling algorithms. 

� Maintainability: Algorithm calls often yield code that is clearer and more 
straightforward than the corresponding explicit loops. 

The remainder of this Item lays out the case for algorithms. 

From an efficiency perspective, algorithms can beat explicit loops in three ways, two 
major, one minor. The minor way involves the elimination of redundant computations. 
Look again at the loop we just saw: 

 
for (list<Widget>::iterator i = lw.begin(); i != lw.end(); ++ i){ 
 i->redraw(); 
} 

I've highlighted the loop termination test to emphasize that each time around the loop, 
i will be checked against lw.end(). That means that each time around the loop, the 
function list-end will be invoked. But we don't need to call end more than once, 
because we're not modifying the list. A single call to end would suffice, and. if we 
look again at the algorithm invocation, we'll see that that's exactly how many times 
end is evaluated: 

 
for_each( Iw.begin(), Iw.end(),                                // this call evaluates 

mem_fun_ref(&Widget::redraw));           // Iw.end() exactly once 

To be fair, STL implementers understand that begin and end (and similar functions, 
such as size) are used frequently, so they're likely to design them for maximal 
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efficiency. They'll almost certainly inline them and strive to code them so that most 
compilers will be able to avoid repeated computations by hoisting their results out of 
loops like the one above. Experience shows that implementers don't always succeed, 
however, and when they don't, the avoidance of repeated computations is enough to 
give the algorithm a performance edge over the hand-written loop. 

But that's the minor efficiency argument. The first major argument is that library 
implementers can take advantage of their knowledge of container implementations to 
optimize traversals in a way that no library user ever could. For example, the objects in 
a deque are typically stored (internally) in one or more fixed-size arrays. Pointer-based 
traversals of these arrays are faster than iterator-based traversals. but only library 
implementers can use pointer-based traversals, because only they know the size of the 
internal arrays and how to move from one array to the next. Some STLs contain 
algorithm implementations that take their deque's internal data structures into account, 
and such implementations have been known to clock in at more than 20% faster than 
the "normal" implementations of the algorithms. 

The point is not that STL implementations are optimized for deques (or any other 
specific container type), but that implementers know more about their implementations 
than you do, and they can take advantage of this knowledge in algorithm 
implementations. If you shun algorithm calls in favor of your own loops, you forgo the 
opportunity to benefit from any implementation-specific optimizations they may have 
provided. 

The second major efficiency argument is that all but the most trivial STL algorithms 
use computer science algorithms that are more sophisticated — sometimes much more 
sophisticated — than anything the average C++ programmer will be able to come up 
with. It's next to impossible to beat sort or its kin (see Item 31): the search algorithms 
for sorted ranges (see Items 34 and 45) are equally good: and even such mundane tasks 
as eliminating some objects from contiguous-memory containers are more efficiently 
accomplished using the erase-remove idiom than the loops most programmers come 
up with (see Item 9). 

If the efficiency argument for algorithms doesn't persuade you, perhaps you're more 
amenable to a plea based on correctness. One of the trickier things about writing your 
own loops is making sure you use only iterators that (a) are valid and (b) point where 
you want them to. For example, suppose you have an array (presumably due to a 
legacy C API — see Item 16), and you'd like to take each array element, add 41 to it, 
then insert it into the front of a deque. Writing your own loop, you might come up with 
this (which is a variant on an example from Item 16): 

 
// C API: this function takes a pointer to an array of at most arraySize  
//doubles and writes data to it. It returns the number of doubles written.  
 
size_t fillArray(double *pArray, size_t arraySize); 
double data[maxNumDoubles];                             // create local array of 

// max possible size 
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deque<double> d;                         // create deque, put 
…        // data into it  
size_t numDoubles = 

fillArray(data, maxNumDoubles);                    // get array data from API 
 

for (size_t i = 0; i < numDoubles; ++i) {                 // for each i in data, 
d.insert(d.begin(), data[i] + 41);                       // insert data[i]+41 at the 

}                                                                             // front of d; this code 
// has a bug! 

This works, as long as you're happy with a result where the newly inserted elements 
are in the reverse order of the corresponding elements in data. Because each insertion, 
location is d.begin(), the last element inserted will go at the front of the deque! 

If that's not what you wanted (and admit it. it's not), you might think to fix it like this: 
 
deque<double>::iterator insertLocation = d.begin(); // remember d's 

// begin iterator  
for (size_t i = 0; i < numDoubles; ++I){               // insert data[i]+41 

d.insert(insertLocation ++, data[u] + 41);          //at insertLocation, then 
}                                                                               //increment 

// insertLocation; this  
// code is also buggy! 

This looks like a double win, because it not only increments the iterator specifying the 
insertion position, it also eliminates the need to call begin each time around the loop: 
that eliminates the minor efficiency hit we discussed earlier. Alas, this approach runs 
into a different problem: it yields undefined results. Each time deque-insert is called, it 
invalidates all iterators into the deque, and that includes insertLocation. After the first 
call to insert, insertLocation is invalidated, and subsequent loop iterations are allowed 
to head straight to looneyland. 

Once you puzzle this out (possibly with the aid of STLport's debug mode, which is 
described in Item 50). you might come up with the following: 

 
deque<double>::iterator insertLocation =  

d.begin();                                                             //as before 
for (size_t i = 0; i < numDoubles; ++i) {                    // update insertLocation 

insertLocation =                                                  // each time insert is 
d.insert(insertLocation, data[i] + 41);       // called to keep the 

++insertLocation;                                                // iterator valid, then 
}                                                                                 // increment it 

This code finally does what you want, but think about how much work it took to get 
here! Compare that to the following call to transform: 
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transform(data, data + numDoubles,                    // copy all elements 
inserter(d, d.begin()),                            // from data to the front 
 bind2nd(plus<int>(), 41));                    //of d, adding 41 to each 

The "bind2nd(plus<int>0,41)" might take you a couple of minutes to get right 
(especially if you don't use STL's binders very often), but the only iterator-related 
worries you have are specifying the beginning and end of the source range (which was 
never a problem) and being sure to use inserter as the beginning of the destination 
range (see Item 30). In practice, figuring out the correct initial iterators for source and 
destination ranges is usually easy, or at least a lot easier than making sure the body of 
a loop doesn't inadvertently invalidate an iterator you need to keep using. 

This example is representative of a broad class of loops that are difficult to write 
correctly, because you have to be on constant alert for iterators that are incorrectly 
manipulated or are invalidated before you're done using them. To see a different 
example of how inadvertent iterator invalidation can lead to trouble, turn to Item 9. 
which describes the subtleties involved in writing loops that call erase. 

Given that using invalidated iterators leads to undefined behavior, and given that 
undefined behavior has a nasty habit of failing to show itself during development and 
testing, why run the risk if you don't have to? Turn the iterators over to the algorithms, 
and let them worry, about the vagaries of iterator manipulation. 

I've explained why algorithms can be more efficient than hand-written loops, and I've 
described why such loops must navigate a thicket of iterator-related difficulties that 
algorithms avoid. With luck, you are now an algorithm believer. Yet luck is fickle, and 
I'd prefer a more secure conviction before 1 rest my case. Let us therefore move on to 
the issue of code clarity. In the long run, the best software is the clearest software, the 
software that is easiest to understand, the software that can most readily be enhanced, 
maintained, and molded to fit new circumstances. The familiarity of loops 
notwithstanding, algorithms have an advantage in this long-term competition. 

The key to their edge is the power of a known vocabulary. There are 70 algorithm 
names in the STL — a total of over 100 different function templates, once overloading 
is taken into account. Each of those algorithms carries out some well-defined task, and 
it is reasonable to expect professional C++ programmers to know (or be able to look 
up! what each does. Thus, when a programmer sees a transform call, that programmer 
recognizes that some function is being applied to every object in a range, and the 
results of those calls are being written somewhere. When the programmer sees a call to 
replace_if, he or she knows that all the objects in a range that satisfy some predicate 
are being modified. When the programmer comes across an invocation of partition, she 
or he understands that the objects in a range are being moved around so that all the 
objects satisfying a predicate are grouped together (see Item 31). The names of STL 
algorithms convey a lot of semantic information, and that makes them clearer than any 
random loop can hope to be. 

When you see a for, while, or do, all you know is that some kind of loop is coming up. 
To acquire even the faintest idea of what that loop does, you have to examine it. Not 
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so with algorithms. Once you see a call to an algorithm, the name alone sketches the 
outline of what it does. To understand exactly what will happen, of course, you must 
inspect the arguments being passed to the algorithm, but that's often less work than 
trying to divine the intent of a general looping construct.. Simply put, algorithm names 
suggest what they do. "for." "while." and "do" don't. In fact, this is true of any 
component of the standard C or C++ library. Without doubt, you could write your own 
implementations of strlen, memset, or bsearch, if you wanted to, but you don't. Why 

not? Because (1) somebody has already written them, so there's no point in your doing 
it again; (2) the names are standard, so everybody knows what they do; and (3) you 
suspect that your library implementer knows some efficiency tricks you don't know, 
and you're unwilling to give up the possible optimizations a skilled library 
implementer might provide. Just as you don't write your own versions of strlen et al. it 
makes no sense to write loops that duplicate functionality already present in STL 
algorithms. 

I wish that were the end of the story, because I think it's a strong finish. Alas, this is a 
tale that refuses to go gentle into that good night. 

Algorithm names are more meaningful than bare loops, it's true, but specifying what to 
do during an iteration can be clearer using a loop than using an algorithm. For 
example, suppose you'd like to identify the first element in a vector whose value is 
greater than some x and less than some y. Here's how you could do it using a loop: 

 
vector<int> v;  
int x, y; 
vector<int>::iterator i = v.begin();           // iterate from v.begin() until an 
for(; i != v.end(); ++i) {                            // appropriate value is found or 

if (*i > x && *i < y) break;                  // v.end() is reached 
} 
…             //i now points to the value or is  

   // the same as v.end() 
 

It is possible to pass this same logic to find_if, but it requires that you use a 
nonstandard function object adapter like SGI's compose2 (see Item 50): 

 
vector<int> iterator i = 

find_if( v.begin(), v.end(),                             //find the first value val 
  compose2( logical_and<bool>(),        // where the "and" of 

 bind2nd(greater<int>(), x), // val > x and     
 bind2nd(less<int>(), y)));  // val < y II is true 

Even if this didn't use nonstandard components, many programmers would object that 
it's nowhere near as clear as the loop, and I have to admit to being sympathetic to that 
view (see Item 47). 
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The find_if call can be made less imposing by moving the test logic into a separate 
functor class. 

 
template<typename T> 
class BetweenValues: 
 public unary_function<T, bool> {  //see Item 40 
public: 
 BetweenValues(const T& lowValue, 
          Const T& highValue) //have the ctor save 
 :lowVal(lowValue), highVal(highValue) //values to be between  
 {} 
 
 bool operator()(const T& val) const  //return whether 
 {       //val is between the 
  return val > lowVal && val < highVal; //saved values 
 } 
 
private: 
 T lowVal; 
 T highVal; 
}; 
… 
vector<int> iterator i = find_if(v.begin(), v.end(), 
      BetweenValues<int>(x, y)); 
 

but this has its own drawbacks. First, creating the BetweenValues template is a lot 
more work than writing the loop body. Just count the lines. Loop body: one; 
BetweenValues template: fourteen. Not a very good ratio. Second, the details of what 
find_if is looking for are now physically separate from the call. To really understand 
the call to find_if, one must look up the definition of BetweenValues, but 
BetweenValues must be defined outside the function containing the call to find_if. If 
you try to declare BetweenValues inside the function containing the call to find_if, like 
this, 

 
{        //begin of the function 
 … 
 template<typename T> 
 class BetweenValues : public unary_function<T, bool> {…}; 

vector<int>::iterator i = find_if(v.begin(), v.end(),  
  BetweenValues<int>(x, y)); 

 … 
}        //end of function 
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you'll discover that it won't compile, because templates can't be declared inside 
functions. If you try to avoid that restriction by making BetweenValues a class instead 
of a template, 

 
{        //begin of the function 
 … 
 class BetweenValues : public unary_function<T, bool> {…}; 

vector<int>::iterator i = find_if(v.begin(), v.end(),  
  BetweenValues<int>(x, y)); 

 … 
}        //end of function 

you'll find that you're still out of luck, because classes defined inside functions are 
known as local classes, and local class types can't be bound to template type 
arguments (such as the type of the functor taken by find_if). Sad as it may seem, 
functor classes and functor class templates are not allowed to be defined inside 
functions, no matter how convenient it would be to be able to do it. In the ongoing 
tussle between algorithm calls and hand-written loops, the bottom line on code clarity 
is that it all depends on what you need to do inside the loop. If you need to do 
something an algorithm already does, or if you need to do something very similar to 
what an algorithm does, the algorithm call is clearer. If you need a loop that does 
something fairly simple, but would require a confusing tangle of binders and adapters 
or would require a separate functor class if you were to use an algorithm, you're 
probably better off just writing the loop. Finally, if you need to do something fairly 
long and complex inside the loop, the scales tilt back toward algorithms, because long, 
complex computations should generally be moved into separate functions, anyway. 
Once you've moved the loop body into a separate function, you can almost certainly 
find a way to pass that function to an algorithm (often for_each) such that the resulting 
code is direct and straightforward. 

If you agree with this Item that algorithm calls are generally preferable to hand-written 
loops, and if you also agree with Item 5 that range member functions are preferable to 
loops that iteratively invoke single-element member functions, an interesting 
conclusion emerges: well-crafted C+- programs using the STL contain far fewer loops 
than equivalent programs not using the STL. This is a good thing. Any time we can 
replace low-level words like for, while, and do with higher-level terms like insert, find, 
and for_each, we raise the level of abstraction in our software and thereby make it 
easier to write, document, enhance, and maintain. 

Item 44. Prefer member functions to algorithms with the same 
names. 

Some containers have member functions with the same names as STL algorithms. The 
associative containers offer count, find, lower_bound. upper_bound, and equal_range, 
while list offers remove, remove_if, unique, sort, merge, and reverse. Most of the time, 
you'll want to use the member functions instead of the algorithms. There are two 
reasons for this. First, the member functions are faster. Second, they integrate better 
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with the containers (especially the associative containers) than do the algorithms. 
That's because algorithms and member functions that share the same name typically do 
not do exactly the same thing. 

We'll begin with an examination of the associative containers. Suppose you have a 
set<int> holding a million values and you'd like to find the first occurrence of the 
value 727, if there is one. Here are the two most obvious ways to perform the search: 

 
set<int> s;                                                                    // create set, put 
…                 //1,000,000 values 

         // into it 
set<int>::iterator i = s.find(727);                                   // use find member 
if (i != s.end())...                                                            //function 
set<int>::iterator i = find(s.begin(), s.end(), 727);         // use find algorithm 
if(i!=s.end())... 

The find member function runs in logarithmic time, so, regardless of whether 727 is in 
the set, set::find will perform no more than about 40 comparisons looking for it, and 
usually it will require only about 20. In contrast, the find algorithm runs in linear time, 
so it will have to perform 1.000.000 comparisons if 727 isn't in the set. Even if 727 is 
in the set, the find algorithm will perform, on average, 500,000 comparisons to locate 
it. The efficiency score is thus 

Member find: About 40 (worst case) to about 20 (average case)  

Algorithm find: 1 ,000,000 (worst case) to 500,000 (average case) 

As in golf, the low score wins, and as you can see, this matchup is not much of a 
contest. 

I have to be a little cagey about the number of comparisons required by member find, 
because it's partially dependent on the implementation used by the associative 
containers. Most implementations use red-black trees, a form of balanced tree that may 
be out of balance by up to a factor of two. In such implementations, the maximum 
number of comparisons needed to search a set of a million values is 38, but for the vast 
majority of searches, no more than 22 comparisons is required. An implementation 
based on perfectly balanced trees would never require more than 21 comparisons, but 
in practice, the overall performance of such perfectly balanced trees is inferior to that 
of red-black trees. That's why most STL implementations use red-black trees. 

Efficiency isn't the only difference between member and algorithm find. As Item 19 
explains, STL algorithms determine whether two objects have the same value by 
checking for equality, while associative containers use equivalence as their "sameness" 
test. Hence, the find algorithm searches for 727 using equality, while the find member 
function searches using equivalence. The difference between equality and equivalence 
can be the difference between a successful search and an unsuccessful search. For 
example, Item 19 shows how using the find algorithm to look for something in an 
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associative container could fail even when the corresponding search using the find 
member function would succeed! You should therefore prefer the member form of 
find, count. lower_bound, etc., over their algorithm eponyms when you work with 
associative containers, because they offer behavior that is consistent with the other 
member functions of those containers. Due to the difference between equality and 
equivalence, algorithms don't offer such consistent behavior. 

This difference is especially pronounced when working with maps and multimaps, 
because these containers hold pair objects, yet their member functions look only at the 
key part of each pair. Hence, the count member function counts only pairs with 
matching keys (a "match." naturally, is determined by testing for equivalence); the 
value part of each pair is ignored. The member functions find, lower_bound, 
upper_bound, and equal_range behave similarly. If you use the count algorithm, 
however, it will look for matches based on (a) equality and (b) both components of the 
pair: find. lower_bound, etc., do the same thing. To gel the algorithms to look at only 
the key part of a pair, you have to jump through the hoops described in Item 23 (which 
would also allow you to replace equality testing with equivalence testing). On the 
other hand, if you are really concerned with efficiency, you may decide that Item 23's 
gymnastics, in conjunction with the logarithmic-time lookup algorithms of Item 34, 
are a small price to pay for an increase in performance. Then again, if you're really 
concerned with efficiency, you'll want to consider the non-standard hashed containers 
described in Item 25, though there you'll again confront the difference between 
equality and equivalence. 

For the standard associative containers, then, choosing member functions over 
algorithms with the same names offers several benefits. 

First, you get logarithmic-time instead of linear-time performance. Second, you 
determine whether two values are "the same" using equivalence, which is the natural 
definition for associative containers. Third, when working with maps and multimaps, 
you automatically deal only with key values instead of with (key. value) pairs. This 
triumvirate makes the case for preferring member functions pretty iron-clad. 

Let us therefore move on to list member functions that have the same names as STL 
algorithms. Here the story is almost completely about efficiency. Each of the 
algorithms that list specializes (remove, remove_if. unique, sort, merge, and reverse) 
copies objects, but list-specific versions copy nothing: they simply manipulate the 
pointers connecting list nodes. The algorithmic complexity of the algorithms and the 
member functions is the same, but, under the assumption that manipulating pointers is 
less expensive than copying objects, list's versions of these functions should offer 
better performance. 

It's important to bear in mind that the list member functions often behave differently 
from their algorithm counterparts. As Item 32 explains, calls to the algorithms remove, 
remove_if, and unique must be followed by calls to erase if you really want to 
eliminate objects from a container, but list's remove, remove_if, and unique member 
functions honestly get rid of elements: no subsequent call to erase is necessary. 
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A significant difference between the sort algorithm and list's sort function is that the 
former can't be applied to lists. Being only bidirectional iterators, list's iterators can't 
be passed to sort. A gulf also exists between the behavior of the merge algorithm and 
list's merge. The algorithm isn't permitted to modify its source ranges, but list-merge 
always modifies the lists it works on. 

So there you have it. When faced with a choice between an STL algorithm or a 
container member function with the same name, you should prefer the member 
function. It's almost certain to be more efficient, and it's likely to be better integrated 
with the container's usual behavior, too. 

Item 45. Distinguish among count, find, binary search, lower_bound, 
upper_bound, and equal_range. 

So you want to look for something, and you have a container or you have iterators 
demarcating a range where you think it's located. How do you conduct the search? 
Your quiver is fairly bursting with arrows: count, count_if, find, find_if, 
binary_search, lower_bound, upper_bound, and equal_range. Decisions, decisions! 
How do you choose? 

Easy. You reach for something that's fast and simple. The faster and simpler, the 
better. 

For the time being, we'll assume that you have a pair of iterators specifying a range to 
be searched. Later, we'll consider the case where you have a container instead of a 
range. 

In selecting a search strategy, much depends on whether your iterators define a sorted 
range. If they do, you can get speedy (usually logarithmic-time — see Item 34) 
lookups via binary_search, lower_bound, upper_bound, and equal_range. If the 
iterators don't demarcate a sorted range, you're limited to the linear-time algorithms 
count, count_if, find, and find_if. In what follows, I'll ignore the _if variants of count 
and find, just as I'll ignore the variants of binary_search, lower_ and upper_bound, and 
equal_range taking a predicate. Whether you rely on the default search predicate or 
you specify your own, the considerations for choosing a search algorithm are the same. 

If you have an unsorted range, your choices are count or find. They answer slightly 
different questions, so it's worth taking a closer look at them, count answers the 
question, "Is the value there, and if so, how many copies are there?" while find 
answers the question. "Is it there, and if so, where is it?" 

Suppose all you want to know is whether some special Widget value w is in a list. 
Using count, the code looks like this: 

 
list<Widget> Iw;                                    // list of Widgets 
Widget w;                                              //special Widget value 
… 
if (count(lw.begin(), Iw.end(), w)) { 
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 …          // w is in Iw  
}else { 

…          // it's not 
} 

This demonstrates a common idiom: using count as an existence test, count returns 
either zero or a positive number, so we rely on the conversion of nonzero values to 
true and zero to false. It would arguably be clearer to be more explicit about what we 
are doing. 

 
if (count(lw.begin(), Iw.end(), w) != 0)... 

and some programmers do write it that way, but it's quite common to rely on the 
implicit conversion, as in the original example. 

Compared to that original code, using find is slightly more complicated, because you 
have to test find's return value against the list's end iterator: 

 
if (find(lw.begin(), Iw.end(), w) != lw.end()  ){ 
 … 
} else { 
 … 
} 

For existence testing, the idiomatic use of count is slightly simpler 10 code. At the 
same time, it's also less efficient when the search is successful, because find stops once 
it's found a match, while count must continue to the end of the range looking for 
additional matches. For most programmers, find's edge in efficiency is enough to 
justify the slight increase in usage complexity. 

Often, knowing whether a value is in a range isn't enough. Instead, you'll want to know 
the first object in the range with the value. For example, you might want to print the 
object, you might want to insert something in front of it, or you might want to erase it 
(but see Item 9 for guidance on erasing while iterating). When you need to know not 
just whether a value exists but also which object (or objects) has that value, you need 
find: 

 
list<Widget>::iterator i =find(lw.begin(), Iw.end(), w);  
if (i!= lw.end())    { 

…    // found it, i points to the first one  
} else { 
…     //didn't find it 
} 

For sorted ranges, you have other choices, and you'll definitely want to use them, 
count and find run in linear time, but the search algorithms for sorted ranges 
(binary_search, lower_bound, upper_bound, and equal_range) run in logarithmic time. 
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The shift from unsorted ranges to sorted ranges leads to another shift: from using 
equality to determine whether two values are the same to using equivalence. Item 19 
comprises a discourse on equality versus equivalence, so I won't repeat it here. Instead. 
I'll simply note that the count and find algorithms both search using equality, while 
binary_search, lower_bound, upper_bound, and equal_range employ equivalence. 

To test for the existence of a value in a sorted range, use binary_search. Unlike 
bsearch in the standard C library (and hence also in the standard C++ library), 
binary_search returns only a bool: whether the value was found. binary_search 
answers the question. "Is it there?" and its answer is either yes or no. If you need more 
information than that, you need a different algorithm. 

Here's an example of binary_search applied to a sorted vector. (You can read about the 
virtues of sorted vectors in Item 23.) 

 
vector<Widget> vw;                                               // create vector, put 
…        //data into it, sort the 
sort(vw.begin(). vw.end());                                     //data 
Widget w;                                                               //value to search for 
… 
if (binary_search(vw.begin(), vw.end(), w)){ 

…        //w is in vw 
}else{ 

// it's not 
} 

If you have a sorted range and your question is, "Is it there, and if so, where is it?" you 
want equal_range, but you may think you want lower_bound. We'll discuss 
equal_range shortly, but first, let's examine lower_bound as a way of locating values in 
a range. 

When you ask lower_bound to look for a value, it returns an iterator pointing to either 
the first copy of that value (if it's found) or to the proper insertion location for that 
value (if it's not). lower_bound thus answers the question. "Is it there? If so, where is 
the first copy, and if it's not, where would it go?" As with find, the result of 
lower_bound must be tested to see if it's pointing to the value you're looking for. 
Unlike find, you can't just test lower_bound's return value against the end iterator. 
Instead, you must test the object lower_bound identifies to see if that's the value you 
want. 

Many programmers use lower_bound like this: 
 
vector<Widget>::iterator i = low_bound(vw.begin(), vw.end(), w); 
if (i != vw.end() && *i == w){   //make sure i points to an object; 

 // make sure the object has the  
 // correct value; this has a bug! 

…      // found the value, i points to the  
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 // first object with that value  
} else{ 

…      // not found 
} 

This works most of the time, but it's not really correct. Look again at the test to 
determine whether the desired value was found: 

 
if (i != vw.end() && *i == w)… 

This is an equality test, but lower_bound searched using equivalence. Most of the time, 
tests for equivalence and equality yield the same results, but Item 19 demonstrates that 
it's not that hard to come up with situations where equality and equivalence are 
different. In such situations the code above is wrong. 

To do things properly, you must check to see if the iterator returned from lower_bound 
points to an object with a value that is equivalent to the one you searched for. You 
could do that manually (Item 19 shows, you how, and Item 24 provides an example of 
when it can be worthwhile), but it can get tricky, because you have to be sure to use 
the same comparison function that lower_bound used. In general, that could be an 
arbitrary function (or function object). If you passed a comparison function to 
lower_bound, you'd have to be sure to use the same comparison function in your hand-
coded equivalence test. That would mean that if you changed the comparison function 
you passed to lower_bound, you'd have to make the corresponding change in your 
check for equivalence. Keeping the comparison functions in sync isn't rocket science, 
but it is another thing to remember, and I suspect you already have plenty you're 
expected to keep in mind. 

There is an easier way: use equal_range, equal_range returns a pair of iterators, the 
first equal to the iterator lower_bound would return, the second equal to the one 
upper_bound would return (i.e., the one-past-the-end iterator for the range of values 
equivalent to the one searched for), equal_range, then, returns a pair of iterators that 
demarcate the range of values equivalent to the one you searched for. A well-named 
algorithm, no? (equivalent_range would be better, of course, but equal_range is still 
pretty good.) 

There are two important observations about equal_range's return value. First, if the two 
iterators are the same, that means the range of objects is empty: the value wasn't found. 
That observation is the key to using equal_range to answer the question, "Is it there?" 
You use it like this: 

 
vector<Widget> vw;  
... 
sort(vw.begin(), vw.end()); 
 
typedef vector<Widget>::iterator VWIter;    // convenience typedefs  
typedef pair<VWIter, VWIter> VWIterPair; 
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VWIterPair p = equal_ range(vw.begin(), vw.end(), w);  
if (p.first != p.second) {    //if equal_range didn’t return 

…      //an empty range... 
//found it, p.first points to the  
// first one and p.second 
// points to one past the last  

} else { 
…      // not found, both p.first and  

// p.second point to the 
}       // insertion location for 

// the value searched for 

This code uses only equivalence, so it is always correct. 

The second thing to note about equal_range's return value is that the distance between 
its iterators is equal to the number of objects in the range, i.e., the objects with a value 
equivalent to the one that was searched for. As a result, equal_range not only does the 
job of find for sorted ranges, it also replaces count. For example, to locate the Widgets 
in vw with a value equivalent to w and then print out how many such Widgets exist, 
you could do this: 

 
VWIterPair p = equal_range(vw.begin(), vw.end(), w); 
cout << "There are " << distance(p.first, p.second)  

 << " elements in vw equivalent to w."; 

So far, our discussion has assumed we want to search for a value in a range, but 
sometimes we're more interested in finding a location in a range. For example, suppose 
we have a Timestamp class and a vector of Timestamps that's sorted so that older 
timestamps come first: 

 
class Timestamp {...}; 
bool operator<(const Timestamp& lhs,           // returns whether lhs 

    const Timestamp& rhs);          // precedes rhs in time 
vector<Timestamp> vt;                                   // create vector, fill it with 
…            //data, sort it so that older 
sort(vt.begin(), vt.end());                                // times precede newer ones 

Now suppose we have a special timestamp, ageLimit, and we want to remove from vt 
all the timestamps that are older than ageLimit. In this case, we don't want to search vt 
for a Timestamp equivalent to ageLimit, because there might not be any elements with 
that exact value. Instead, we need to find a location in vt: the first element that is no 
older than ageLimit. This is as easy as easy can be, because lower_bound will give us 
precisely what we need: 

 
Timestamp ageLimit: 
vt.erase(vt.begin(), lower_bound(vt.begin(),            //eliminate from vt all 
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   vt.end(),               // objects that precede 
   ageLimit));           //ageLimit's value 

If our requirements change slightly so that we want to eliminate all the timestamps that 
are at least as old as ageLimit, we need to find the location of the first timestamp that 
is younger than ageLimit. That s a job tailor-made for upper_bound: 

 
vt.erase(vt.begin(), upper_bound(vt.begin(),           // eliminate from vt all 

    vt.end(),              //objects that precede 
    ageLimit});          //or are equivalent 

     //to ageLimit's value 

upper_bound is also useful if you want to insert things into a sorted range so that 
objects with equivalent values are stored in the order in which they were inserted. For 
example, we might have a sorted list of Person objects, where the objects are sorted by 
name: 

class Person {  
public: 

… 
const string& name() const; 
… 

}; 
 
struct PersonNameLess: 

public binary_function<Person, Person, bool> {         // see Item 40 bool 
operator()(const Persons lhs, const Person& rhs) const 
{ 

return lhs.name() < rhs.name(); 
} 

}; 
 
list<Person> Ip; 
lp.sort(PersonNameLess());                                          //sort  Ip using 

// PersonNameLess 

To keep the list sorted the way we desire (by name, with equivalent names stored in 
the order in which they are inserted), we can use upper_bound to specify the insertion 
location: 

Person newPerson; 
lp.insert( upper_bound(lp.begin(),                      // insert newPerson after 

 lp.end(),                           //the last object in Ip 
 newPerson,                     //that precedes or is 
 PersonNameLess()),       // equivalent to 

newPerson);                                         // newPerson 
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This works fine and is quite convenient, but it's important not to be misled by this use 
of upper_bound into thinking that we're magically looking up an insertion location in a 
list in logarithmic time. We're no-Item 34 explains that because we're working with a 
list, the lookup takes linear time, but it performs only a logarithmic number of 
comparisons. 

Up to this point, we have considered only the case where you have a pair of iterators 
defining a range to be searched. Often you have a container, not a range. In that case, 
you must distinguish between the sequence and associative containers. For the 
standard sequence containers (vector, string, deque, and list), you follow the advice 
we've outlined in this Item, using the containers' begin and end iterators to demarcate 
the range. 

The situation is different for the standard associative containers (set, multiset, map. 
and multimap), because they offer member functions for searching that are generally 
better choices than the STL algorithms. Item 44 goes into the details of why they are 
better choices, but briefly, it's because they're faster and they behave more naturally. 
Fortunately, the member functions usually have the same names as the corresponding 
algorithms, so where the foregoing discussion recommends you choose algorithms 
named count, find, equal_range, lower_bound, or upper_bound, you simply select the 
same-named member functions when searching associative containers. binary_search 
calls for a different strategy, because there is no member function analogue to this 
algorithm. To test for the existence of a value in a set or map, use count in its idiomatic 
role as a test for membership: 

 
set<Widget> s;                                   // create set, put data into it 
… 
Widget w;                                           // w still holds the value to search for 
… 
if (s.count(w ) { 
 …        //a value equivalent to w exists }else{ 
}else{ 

…        //no such value exists 
} 

To test for the existence of a value in a multiset or multimap, find is generally superior 
to count, because find can stop once it's found a single object with the desired value, 
while count, in the worst case, must examine every object in the container. 

However, count's role for counting things in associative containers is secure. In 
particular, it's a better choice than calling equal_range and applying distance to the 
resulting iterators. For one thing, it's clearer: count means "count." For another, it's 
easier: there's no need to create a pair and pass its components to distance. For a third, 
it's probably a little faster. 

Given everything we've considered in this Item, where do we stand? The following 
table says it all. 
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In the column summarizing how to work with sorted ranges, the frequency with which 
equal_range occurs may be surprising. That frequency arises from the importance of 
testing for equivalence when searching. With lower_bound and upper_bound, it's too 
easy to fall back on equality tests, but with equal_range, testing only for equivalence is 
the natural thing to do. In the second row for sorted ranges, equal_range beats out find 
for an additional reason: equal, range runs in logarithmic time, while find takes linear 
time. 

For multisets and multimaps, the table lists both find and lower_bound as candidates 
when you're looking for the first object with a particular value, find is the usual choice 
for this job, and you may have noticed that it's the one listed in the table for sets and 
maps. For the multi containers, however, find is not guaranteed to identify the first 
element in the container with a given value if more than one is present: its charter is 
only to identify one of those elements. If you really need to find the first, object with a 
given value, you'll want to employ lower_bound, and you'll have to manually perform 
the second half of the equivalence test, described in Item 19 to confirm that you've 
found the value you were looking for. (You could avoid the manual equivalence test 
by using equal_range, but calling equal_range is more expensive than call-ins 
lower_bound.) 

Selecting among count, find, binary_search, lower_bound, upper_bound, and 
equal_range is easy. Choose the algorithm or member function that offers you the 
behavior and performance you need and that requires the least amount of work when 
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you call it. Follow that advice (or consult the table), and you should never get 
confused. 

Item 46. Consider function objects instead of functions as algorithm 
parameters. 

One of the complaints about programming in high-level languages is that as the level 
of abstraction gets higher, the efficiency of the generated code gets lower. In fact, 
Alexander Stepanov (the inventor of the STL) once produced a small benchmark suite 
that tried to measure the "abstraction penalty" of C++ vis-a-vis C. Among other things, 
the results of that benchmark revealed that it's nearly universal for the code generated 
for manipulating a class containing a double to be less efficient than the corresponding 
code for manipulating a double directly. It may thus come as a surprise to learn that 
passing STL function objects — objects masquerading as functions — to algorithms 
typically yields code that is more efficient than passing real functions. 

For example, suppose you need to son a vector of doubles in descending order. The 
straightforward STL way to do it is via the sort algorithm and a function object of type 
greater<double>: 

 
vector<double> v; 
… 
sort(v.begin(), v.end(), greater<double>()); 

If you're wary of the abstraction penalty, you might decide to eschew the function 
object in favor of a real function, a function that's not only real, it's inline: 

 
inline 
bool doubleGreater(double d1, double d2) 
{ 

return dl > d2; 
} 
… 
sort(v.begin(), v.end(), doubleGreater); 

Interestingly, if you were to compare the performance of the two calls to sort (one 
using greater<double>, one using doubleGreater), you'd almost certainly find that the 
one using greater<double> was faster. For instance, I timed the two calls to sort on a 
vector of a million doubles using four different STL platforms, each set to optimize for 
speed, and the version using greater<double> was faster every time. At worst, it was 
50% faster, at best it was 160% faster. So much for the abstraction penalty. 

The explanation for this behavior is simple: inlining. If a function object's operator() 
function has been declared inline (either explicitly via inline or implicitly by defining 
it in its class definition), the body of that function is available to compilers, and most 
compilers will happily inline that function during template instantiation of the called 
algorithm. In the example above, greater<double>::operator() is an inline function, so 
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compilers inline-expand it during instantiation of sort. As a result, sort contains zero 
function calls, and compilers are able to perform optimizations on this call-free code 
that are otherwise not usually attempted. (For a discussion of the interaction between 
inlining and compiler optimization, see Item 33 of Effective C++ and chapters 8-10 of 
Bulka and Mayhew's Efficient C++ [10].) 

The situation is different for the call to sort using doubleGreater. To see how it's 
different, we must recall that there's no such thing as passing a function as a parameter 
to another function. When we try to pass a function as a parameter, compilers silently 
convert the function into a pointer to that function, and it's the pointer we actually 
pass. Hence, the call 

 
sort(v.begin(), v.end(), doubleGreater); 

doesn't pass doubleGreater to sort, it passes a pointer to doubleGreater. When the sort 
template is instantiated, this is the declaration for the function that is generated: 

void sort( vector<double>::iterator first,                // beginning of range 
vector<double>::iterator last,                 // end of range 
bool (*comp)(double, double));              //comparison function 

Because comp is a pointer to a function, each time it's used inside sort, compilers make 
an indirect function call — a call through a pointer. Most compilers won't try to inline 
calls to functions that are invoked through function pointers, even if, as in this 
example, such functions have been declared inline and the optimization appears to be 
straightforward. Why not? Probably because compiler vendors have never felt that it 
was worthwhile to implement the optimization. You have to have a little sympathy for 
compiler vendors. They have lots of demands on their time, and they can't do 
everything. Not that this should stop you from asking them for it. 

The fact that function pointer parameters inhibit inlining explains an observation that 
long-time C programmers often find hard to believe: C++'s sort virtually always 
embarrasses C's qsort when it comes to speed. Sure. C++ has function and class 
templates to instantiate and funny-looking operator() functions to invoke while C 
makes a simple function call, but all that C++ "overhead" is absorbed during compila-
tion. At runtime, sort makes inline calls to its comparison function (assuming the 
comparison function has been declared inline and its body is available during 
compilation) while qsort calls its comparison function through a pointer. The end 
result is that sort runs faster. In my tests on a vector of a million doubles, it ran up to 
670% faster, but don't take my word for it, try it yourself. It's easy to verify that when 
comparing function objects and real functions as algorithm parameters, there's an 
abstraction bonus. 

There's another reason to prefer function objects to functions as algorithm parameters, 
and it has nothing to do with efficiency. It has to do with getting your programs to 
compile. For whatever reason, it's not uncommon for STL platforms to reject perfectly 
valid code, either through shortcomings in the compiler or the library or both. For 
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example, one widely used STL platform rejects the following (valid) code to print to 
cout the length of each string in a set: 

 
set<string> s; 
… 
transform( s.begin(), s.end(), 
ostream_iterator<string::size_type>(cout, "\n"),  

  mem_fun_ref(&string::size)); 

The cause of the problem is that this particular STL platform has a bug in its handling 
of const member functions (such as string::size). A workaround is to use a function 
object instead: 

 
struct StringSize:  

public unary_function<string, string::size_type>{          // see Item 40 
string::size_type operator   const strings s) const 
{ 

return s.size(); 
} 

}; 
 
transform(s.begin(), s.end(), 

ostream_iterator<string::size_type>(cout, "\n"),  
StringSize()); 

There are other workarounds for this problem, but this one does more than just 
compile on every STL platform I know. It also facilitates inlining the call to 
string::size, something that would almost certainly not take place in the code above 
where mem_fun_ref(&string::size) is passed to transform. In other words, creation of 
the functor class StringSize does more than sidestep compiler conformance problems, 
it's also likely to lead to an increase in performance. 

Another reason to prefer function objects to functions is that they can help you avoid 
subtle language pitfalls. Occasionally, source code that looks reasonable is rejected by 
compilers for legitimate, but obscure, reasons. There are situations, for example, when 
the name of an instantiation of a function template is not equivalent to the name of a 
function. Here's one such situation: 

 
template<typename FPType>                                     // return the average 
FPTypeaverage(FPType val1, FPType val2)              //of 2 floating point 
{                                                                                   // numbers 

return (val1 + val2)/2; 
} 
 
template<typename Inputlter1,  

typename Inputlter2> 
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void writeAverages(InputIter1 begin1,                        //write the pairwise 
  Inputlter1 end1,                            //averages of 2 
  Inputlter2 begin2,                         //sequences to a 
  ostream& s)                                 // stream 

{ 
transform( 

begin1, end1, begin2,  
ostream_iterator<typename iterator_traits 
<lnputlter1>::value_type> (s, "\n"), 
average<typename iteraror_traits 
<inputiter1 >::value_type >   // error? 

 ); 
} 

Many compilers accept this code, but the C++ Standard appears to forbid it. The 
reasoning is that there could, in theory, be another function template named average 
that takes a single type parameter. If there were, the expression average<typename 
iterator_traits<lnputIter1>::value_type> would be ambiguous, because it would not be 
clear which template to instantiate. In this particular example, no ambiguity is present, 
but some compilers reject the code anyway, and they are allowed to do that. No matter. 
The solution to the problem is to fall back on a function object: 

 
template<typename FPType> 
struct Average: 

public binary_function<FPType, FPType, FPType>{      // see Item 40 
FPType operator()(FPType val1. FPType val2) const 
{ 

return average(val 1 , val2); 
 } 

 
template<typename InputIter1, typename Inputlter2>  
void writeAverages(lnputlter1 begin1, Inputlter1 end1,  

  Inputlter2 begin2, ostream& s) 
{ 

transform( 
begin1, end1, begin2,  
ostream_iterator<typename iterator_traits<lnputIter1> 
::value_type>(s, “\n”), 
Average<typename iterator_traits<InputIter1 > 
::value_type>() 

  ); 
 } 

Every compiler should accept this revised code. Furthermore, calls to 
Average::operator() inside transform are eligible for inlining, something that would 
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not be true for an instantiation of average above, because average is a template for 
functions, not function objects. 

Function objects as parameters to algorithms thus offer more than greater efficiency. 
They're also more robust when it comes to getting your code to compile. Real 
functions are useful, of course, but when it comes to effective STL programming, 
function objects are frequently more useful. 

Item 47. Avoid producing write-only code. 

Suppose you have a vector<int>, and you'd like to get rid of all the elements in the 
vector whose value is less than x, except that elements preceding the last occurrence of 
a value at least as big as y should be retained. Does the following instantly spring to 
mind? 

 
vector<int> v;  
int x, y; 
… 
v.erase(  

remove_if(find_if(v.rbegin(), v.rend(), 
     bind2nd(greater_equal<int>(), y)).base(),  
    v.end(), 
    bind2nd(less<int>(), x)),  

v.end()); 

One statement, and the job is done. Clear and straightforward. No problem. Right? 

Well, let's step back for a moment. Does this strike you as reasonable, maintainable 
code? "No!" shriek most C++ programmers, fear and loathing in their voices. "Yes!" 
squeal a few, delight evident in theirs. And therein lies the problem. One programmer's 
vision of expressive purity is another programmer's demonic missive from Hell. 

As I see it. there are two causes for concern in the code above. First. it's a rat's nest of 
function calls. To see what I mean, here is the same statement, but with all the function 
names replaced by fn. each n corresponding to one of the functions: 

v.f1 (f2(f3(v.f4(), v.f5(), f6(f7(), y)),.f8(), v.f9(), f6(f10(), x)), v.f9());  

This looks unnaturally complicated, because I've removed the indentation present in 
the original example, but I think it's safe to say that any statement involving twelve 
function calls to ten different functions would be considered excessive by most C++ 
software developers. Programmers weaned on functional languages such as Scheme 
might feel differently, however, and my experience has been that the majority of 
programmers who view the original code without raising an eyebrow-have a strong 
functional programming background. Most C++ programmers lack this background, so 
unless your colleagues are versed in the ways of deeply nested function calls, code like 
the erase call above is almost sure to confound the next person who is forced to make 
sense of what you have written. 
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The second drawback of the rode is the significant STL background needed to 
understand it. It uses the less common if forms of find and remove, it uses reverse 
iterators (see Item 26), it converts reverse_iterators to iterators (see Item 28), it uses 
bind2nd. it creates anonymous function objects, and it employs the erase-remove 
idiom (see Item 32). Experienced STL programmers can swallow that combination 
without difficulty, but far more C++ developers will have their eyes glaze over before 
they've taken so much as a bite. If your colleagues are well-steeped in the ways of the 
STL, using erase, remove_if, find_if, base, and bind2nd in a single statement may be 
fine, but if you want your code to be comprehensible by C++ programmers with a 
more mainstream background. I encourage you to break it down into more easily 
digestible chunks. 

Here's one way you could do It. (The comments aren't just for this book. I'd put them 
in the code, too.) 

 
typedef vector<int>::iterator VecIntIter; 
 
//initialize rangeBegin to the first element in v that's greater than  
//or equal to the last occurrence of y. If no such element exists,  
// initialize rangeBegin to v.begin()  
 
VecIntIter rangeBegin = find_if(v.rbegin(), v.rend(), 

bind2nd(greater_equal<int>(), y)).base(); 
 

// from rangeBegin to v.end(), erase everything with a value less than x  
v.erase(remove_if(rangeBegin, v.end(), bind2nd(less<int>(), x)), v.end()); 

This is still likely to confuse some people, because it relies on an understanding of the 
erase-remove idiom, but between the comments in the code and a good STL reference 
(e.g., Josuttis' The C++ Standard Library [3] or SGI's STL web site [21]), every C++ 
programmer should be able to figure out what's going on without too much difficulty. 

When transforming the code, it's important to note that I didn't abandon algorithms and 
try to write my own loops. Item 43 explains why that's generally an inferior option, 
and its arguments apply here. When writing source code, the goal is to come up with 
code that is meaningful to both compilers and humans and that offers acceptable 
performance. Algorithms are almost always the best way to achieve that goal. 
However. Item 43 also explains how the increased use of algorithms naturally leads to 
an increased tendency to nest function calls and to throw in binders and other functor 
adapters. Look again at the problem specification that opened this Item: 

Suppose you have a vector<int>, and you'd like to get rid of all the elements 
in the vector whose value is less than x, except that elements preceding the 
last occurrence of a value at least as big as y should be retained. 

The outline of a solution does spring to mind: 
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Finding the last occurrence of a value in a vector calls for some application of find or 
find_if with reverse iterators. 

Getting rid of elements calls for either erase or the erase-remove idiom. 

Put those two ideas together, and you get this pseudocode, where "something" 
indicates a placeholder for code that hasn't yet been fleshed out: 

 
v.erase(remove_if(find_if(v.rbegin(), v.rend(), something).base(),  

 v.end(),  
something)), 
v.end()); 
 

Once you've got that, figuring out the somethings isn't terribly difficult, and the next 
thing you know, you have the code in the original example. That's why this kind of 
statement is often known as "write-only" code. As you write the code, it seems 
straightforward, because it's a natural outgrowth of some basic ideas (e.g., the erase-
remove idiom plus the notion of using find with reverse iterators). Readers, however, 
have great difficulty in decomposing the final product back into the ideas on which it 
is based. That's the calling card of write-only code: it's easy to write, but it's hard to 
read and understand. 

Whether code is write-only depends on who's reading it. As I noted, some C++ 
programmers think nothing of the code in this Item. If that's typical in the environment 
in which you work and you expect it to be typical in the future, feel free to unleash 
your most advanced STL programming inclinations. However, if your colleagues are 
less comfortable with a functional programming style and are less experienced with 
the STL, scale back your ambitions and write something more along the lines of the 
two-statement alternative I showed earlier. 

It's a software engineering truism that code is read more often than it is written. 
Equally well established is that software spends far more time in maintenance than it 
does in development. Software that cannot be read and understood cannot be 
maintained, and software that cannot be maintained is hardly worth having. The more 
you work with the STL, the more comfortable you'll become with it, and the more 
you'll feel the pull to nest function calls and create function objects on the fly. There's 
nothing wrong with that, but always bear in mind that the code you write today will be 
read by somebody — possibly you — someday in the future. Prepare for that day. 

Use the STL, yes. Use it well. Use it effectively. But avoid producing write-only code. 
In the lone run, such code is anything but effective. 

Item 48. Always #include the proper headers. 

Among the minor frustrations of STL programming is that it is easy to create software 
that compiles on one platform, yet requires additional #include directives on others. 
This annoyance stems from the fact that the Standard for C++ (unlike the Standard for 
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C) fails to dictate which standard headers must or may be #included by other standard 
headers. Given such flexibility, different implementers have chosen to do different 
things. 

To give you some idea of what this means in practice, I sat down one day with five 
STL platforms (let's call them A. B. C, D, and E), and I spent a little time throwing toy 
programs at them to see which standard headers I could omit and still get a successful 
compilation. This indirectly told me which headers #include other headers. This is 
what I found: 

� With A and C. <vector> #includes <string>. 

� With C, <algorithm> #includes <string>. 

� With C and D. <iostream> #includes <iterator>. 

� With D. <iostream> #includes <string> and <vector>. 

� With D and E. <string> #includes <algorithm>. 

� With all five implementations. <set> #includes <functional>. 

Except for the case of <set> #includeing <functional>, I didn't find a way to get a 
program with a missing header past implementation B. According to Murphy's Law, 
then, you will always develop under a platform like A. C. D. or E and you will always 
be porting to a platform like B, especially when the pressure for the port is greatest and 
the time to accomplish it is least. Naturally. 

But don't blame your compilers or library implementations for your porting woes. It's 
your fault if you're missing required headers. Any time you refer to elements of 
namespace std. you are responsible for having #included the appropriate headers. If 
you omit them, your code might compile anyway, but you'll still be missing necessary 
headers, and other STL platforms may justly reject your code. 

To help you remember what's required when, here's a quick summary of what's in each 
standard STL-related header: 

� Almost all the containers are declared in headers of the same name, i.e., vector 
is declared in <vector>. list is declared in <list>, etc. The exceptions are <set> 
and <map>. <set> declares both set and multiset, and <map> declares both map 
and multimap. 

� All but four algorithms are declared in <algorithm>. The exceptions are 
accumulate (see Item 37), inner_product, adjacent_difference, and partial_sum. 
Those algorithms are declared in <numeric>. 

� Special kinds of iterators, including istream_iterators and istreambuf_iterators 
(see Item 29), are declared in <iterator>. 
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� Standard functors (e.g., less<T>) and functor adapters (e.g., not1, bind2nd) are 
declared in <functional>. 

Any time you use any of the components in a header, be sure to provide the 
corresponding #include directive, even if your development platform lets you get away 
without it. Your diligence will pay off in reduced stress when you find yourself porting 
to a different platform. 

Item 49. Learn to decipher STL-related compiler diagnostics. 

It's perfectly legal to define a vector with a particular size. 
 
vector<int> v(10);                  //create a vector of size 10 

and strings act a lot like vectors, so you might expect to be able to do this: 
string s(10);                           //attempt to create a string of size 10 

This won't compile. There is no string constructor taking an in: argument. One of my 
STL platforms tells me that like this: 

example.cpp(20): error C2664:'__thiscall std::basic_string<char, struct 
std::char_traits<char>,class std::allocator<char> >::std::basic_string<char, 
struct std::char_traits<char>,class std::allocator<char> >(const class 
std::allocator<char> &)': cannot convert parameter 1 from 'const int1 to 'const 
class std::allocator<char> &' Reason: cannot convert from 'const int' to 'const 
class std::allocator<char> 
No constructor could take the source type, or constructor overload resolution 
was ambiguous 

Isn't that wonderful? The first part of the message looks as if a cat walked across the 
keyboard, the second part mysteriously refers to an allocator never mentioned in the 
source code, and the third part says the constructor call is bad. The third part is 
accurate, of course, bin let's first focus our attention on the result of the purported 
feline stroll, because it's representative of diagnostics you'll frequently set when using 
strings. 

string isn't a class, it's a typedef. In particular, it's a typedef for this: 
 
basic_string<char, char_traits<char>, allocator<char> > 

That's because the C++ notion of a string has been generalized to mean sequences of 
arbitrary character types with arbitrary character characteristics ("traits") and stored in 
memory allocated by arbitrary allocators. All string-like objects in C++ are really 
instantiations of the template basic_string, and that's why most compilers refer to the 
type basic_string when they issue diagnostics about programs making erroneous use of 
strings. (A few compilers are kind enough to use the name string in diagnostics, but 
most aren't.) Often, such diagnostics will explicitly note that basic_string (and the 
attendant helper templates char_traits and allocator) are in the std namespace, so it's 
not uncommon to see errors involving strings yield diagnostics that mention this type: 
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std::basic_string<char, std::char_traits<char>, std::allocator<char> > 

This is quite close to what's used in the compiler diagnostic above, but different 
compilers use variations on the theme. Another STL platform I uses refers to strings 
this way. 

 
basic_string<char, string_char_traits<char>, 

__default_alloc_template<false,0> > 

The names string_char_traits and __default_alloc_template are nonstandard, but that's 
life. Some STL implementations deviate from the standard. If you don't like the 
deviations in your current STL implementation, consider replacing it with a different 
one. Item 50 gives examples of places you can go for alternative implementations. 

Regardless of how a compiler diagnostic refers to the string type, the technique for 
reducing the diagnostic to something meaningful is the same: globally replace the 
basic_string gobbledegook with the text "string". If you're using a command-line 
compiler, it's usually easy to do this is with a program like sed or a scripting language 
like perl, python, or ruby. (You'll find an example of such a script in Zolman's article. 
"An STL Error Message Decryptor for Visual C++" [26].) In the case of the diagnostic 
above, we globally replace 

 
std::basic_string<char, struct std::char_traits<char>, 
class std::allocator<char> > 

 with string and we end up with this: 
example.cpp(20): error C2664:'__thiscall string::string(const class 
std::allocator<char> &)': cannot convert parameter 1 from 'const int1 to const 
class std::allocator<char> &' 

This makes clear (or at least clearer) that the problem is in the type of the parameter 
passed to the string constructor, and even though the mysterious reference to 
allocator<char> remains, it should be easy to look up the constructor forms for string 
to see that none exists taking only a size. 

By the way, the reason for the mysterious reference to an allocator is that each 
standard container has a constructor taking only an allocator. In the case of string, it's 
one of three constructors that can be called with one argument, but for some reason, 
this compiler figures that the one taking an allocator is the one you're trying to call. 
The compiler figures wrong, and the diagnostic is misleading. Oh well. 

As for the constructor taking only an allocator, please don't use it. That constructor 
makes it easy to end up with containers of the same type but with inequivalent 
allocators. In general, that s bad. Very bad. To find out why, turn to Item 11 . 

Now let's tackle a more challenging diagnostic. Suppose you're implementing an email 
program that allows users to refer to people by nicknames instead of by email 
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addresses. For example, such a program would make it possible to use The Big 
Cheese" as a synonym for the email address of the President of the United States 
(which happens to be president@whitehouse.gov). Such a program might use a map 
from nicknames to email addresses, and it might offer a member function 
showEmailAddress that displays the email address associated with a given nickname: 

 
class NiftyEmailProgram {  
private: 

typedef map<string, string> NicknameMap; 
NicknameMap nicknames;                  // map from nicknames to 

//email addresses public: 
void showEmailAddress(const string& nickname) const 

public: 
 … 
 void showEmailAddress(const string& nickname) const; 
}; 

Inside showEmailAddress, you'll need to find the map entry associated with a 
particular nickname, so you might write this: 

 
void  
NiftyEmailProgram::showEmailAddress(const string& nickname) const 
{ 
 … 

NicknameMap::iterator i = nicknames. find(nickname);  
if (i != nicknames. end()) ... 
… 

} 
 

Compilers don't like this, and with good reason, but the reason isn't obvious. To help 
you figure it out. here's what one STL platform helpfully emits: 

example.cppd 7>: error C2440: 'initializing': cannot convert from ‘class 
std::_Tree<class std::basic_string<char, struct std::char_traits<char>,class 
std::allocator<char> >,struct std::pair<class std::basic_string<char, struct 
std::char_traits<char>,class std::allocator<char> > const .class 
std::basic_string<char, struct std::char_traits<char>,class std::allocator<char> > 
>,struct std::map<class std::basic_string<char, struct 
std::char_traits<char>,class std::allocator<char> >.class std::basic_string<char, 
struct std::char_traits<char>,class std::allocator<char> >,struct 
std::less<classstd::basic_string<char,structstd::char_traits<char>, class 
std::allocator<char> > >,class std::allocator<class std::basic_string<char, struct, 
std::char_traits<char>,class std::allocator<char> > > >::_Kfn, struct 
std::less<class std::basic_string<char, struct std::char_traits<char>,class 
std::allocator<char> > >,class std::allocator<class std::basic_string<char, struct, 
std::char_traits<char>,class std::allocator<char> > > >::const_iterator' to 'class 
std::_Tree<class std::basic_string<char, struct std::char_traits<char>,class 
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std::allocator<char> >,struct std::pair<class std::basic_string<char, struct 
std::char_traits<char>,class std::allocator<char> > const .class 
std::basic_string<char, struct std::char_traits<char>,class std::allocator<char> > 
>,struct std::map<class std::basic_string<char, struct 
std::char_traits<char>,class std::allocator<char> >,class std::basic_string<char, 
struct std::char_traits<char>,class std::allocator<char> >,struct 
std::less<classstd::basic_string<char,structstd::char_traits<char> .class 
std::allocator<char> > >,class std::allocator<class std::basic_string<char,struct 
std::char_traits<char>,class std::allocator<char> > > >::_Kfn, struct 
std::less<class std::basic_string<char, struct std::char_traits<char>,class 
std::allocator<char> > >,class std::allocator<class std::basic_string<char, struct 
std::char_traits<char>,class std::allocator<char> > > >::iterator' 
No constructor could take the source type, or constructor overload resolution 
was ambiguous 

At 2095 characters long, this message looks fairly gruesome, but I've seen worse. One 
of my favorite STL platforms produces a diagnostic of 4812 characters for this 
example. As you might guess, features other than its error messages are what have 
engendered my fondness for it. 

Let's reduce this mess to something manageable. We begin with the replacement of the 
basic_string gibberish with string. That yields this: 

example.cpp) 7): error C2440: 'initializing': cannot convert from 'class 
std::_Tree<class string, struct std::pair<class string const ,class string >,struct 
std::map<class string, class string, struct std::less<class string >,class 
std::allocator<class string > >::_Kfn, struct std::less<class string >,class 
std::allocator<class string > >::const_iterator' to 'class std::_Tree<class string, 
struct std::pair<class string const .class string >,struct std::map<class string, 
class string, struct std::less<class string >,class std::allocator<class string > 
>::_Kfn,struct std::less<class string >,class std::allocator<class string > 
>::iterator' No constructor could take the source type, or constructor overload 
resolution was ambiguous 

Much better. Now a svelte 745 characters long, we can start to actually look at the 
message. One of the things that is likely to catch our eye is the mention of the template 
std::_Tree. The Standard says nothing about a template called _Tree, but the leading 
underscore in tin-name followed by a capital letter jogs our memory that such names 
are reserved for implementers. This is an internal template used to implement some 
part of the STL. 

In fact, almost all STL implementations use some kind of underlying template to 
implement the standard associative containers (set, multiset, map, and multimap). In 
the same way that source code using string typically leads to diagnostics mentioning 
basic_string, source code using a standard associative container often leads to 
diagnostics mentioning some underlying tree template. In this case, it's called _Tree, 
but other implementations I know use __tree or __rb_tree, the latter reflecting the use 
of red-black trees, the most common type of balanced tree used in STL 
implementations. 
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Setting _Tree aside for a moment, the message above mentions a type we should 
recognize: std::map<class string, class string, struct std::less<class string>, class 
std::allocator<class string > >. This is precisely the type of map we are using, except 
that the comparison and allocator types (which we chose not to specify when we 
defined the map) are shown. The error message will be easier to understand if we 
replace that type with our typedef for it, NicknameMap. That leads to this: 

 
example.cpp(17): error C2440: 'initializing': cannot convert from 'class 
std::_Tree<class string, struct std::pair<class string const, class string >,struct 
NicknameMap::_Kfn, struct std::less<class string >,class std::allocator<class 
string > >::const_iterator' to 'class std::_Tree<class string, struct std::pair<class 
string const ,class string >,struct NicknameMap::_Kfn, struct std::less<class 
string >,class std::allocator<class string > >::iterator' 
 
No constructor could take the source type, or constructor overload resolution 
was ambiguous 

This message is shorter, but not much clearer. We need to do something with _Tree. 
Because _Tree is an implementation-specific template, the only way to know the 
meaning of its template parameters is to read the source code, and there's no reason to 
go rummaging through implementation-specific source code if we don't have to. Let's 
try simply replacing all the stuff passed to _Tree with SOMETHING to see what we 
get. This is the result: 

example.cpp(1 7): error C2440: 'initializing': cannot convert from 'class 
std::_Tree<SOMETHING>::const_iterator to 'class 
std::_Tree<SOMETHING>::iterator' 
 
No constructor could take the source type, or constructor overload resolution 
was ambiguous 

This is something we can work with. The compiler is complaining that we're trying to 
convert some kind of const iterator into an iterator, a clear violation of const 
correctness. Let's look again at the offending code, where I've highlighted the line 
raising the compiler's ire: 

 
class NiftyEmailProgram {  
private:  

typedef map<string, string> NicknameMap; 
NicknameMap nicknames;  

public: 
 … 

void showEmailAddress(const string& nickname) const; 
 };  
 
void NiftyEmailProgram::showEmailAddress 

((const string& nickname) const 
{ 
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     ... 
NicknameMap::iterator i = nicknames.find(nickname);  
if (i != nicknames.end())... 
… 

} 
 

The only interpretation that makes any sense is that we're trying to initialize i (which is 
an iterator) with a const_iterator returned from map-find. That seems odd. because 
we're calling find on nicknames, and nicknames is a non-const object, find should thus 
return a non-const iterator. 

Look again. Yes, nicknames is declared as a non-const map, but showEmailAddress is 
a const member function, and inside a const member function, all non-static data 
members of the class become const! Inside showEmailAddress, nicknames is a const 
map. Suddenly the error message makes sense. We're trying to generate an iterator into 
a map we've promised not to modify. To fix the problem, we must either make i a 
const_iterator or we must make showEmailAddress a non-const member function. 
Both solutions are probably less challenging than ferreting out the meaning of the error 
message. 

In this Item, I've shown textual substitutions to reduce the complexity of error 
messages, but once you've practiced a little, you'll be able to perform the substitutions 
in your head most of the time. I'm no musician (I have trouble turning on the radio), 
but I'm told that good musicians can sight-read several bars at a glance: they don t 
need to look at individual notes. Experienced STL programmers develop a similar 
skill. They can internally translate things like std::basic_string<char, struct 
std::char_traits<char>,class std::allocator<char> > into string without thinking about it. 
You, too, will develop this skill, but until you do, remember that you can almost 
always reduce compiler diagnostics to something comprehensible by replacing lengthy 
template-based type names with shorter mnemonics. In many cases, all you have to do 
is replace typedef expansions with typedef names you're already using. That's what we 
did when we replaced std::map<class string, class string, struct std::less<class string 
>,class std::allocator<class string > > with NicknameMap. 

Here are a few other hints that should help you make sense of STL-related compiler 
messages: 

� For vector and string, iterators are usually pointers, so compiler diagnostics will 
likely refer to pointer types if you've made a mistake with an iterator. For 
example, if your source code refers to vector<double>::iterators, compiler 
messages will almost certainly mention double* pointers. (An exception is 
when you're using the STL implementation from STLport and you're running in 
debug mode. In that case, vector and string iterators are not pointers. For more 
on STLport and its debug mode, turn to Item 50.) 
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� Messages mentioning back_insert_iterator, front_insert_iterator, or 
insert_iterator almost always mean you've made a mistake calling 
back_inserter, front_inserter, or inserter, respectively, (back_inserter returns an 
object of type back_insert_iterator, front_inserter returns an object of type 
front_insert_iterator, and inserter returns an object of type insert_iterator. For 
information on the use of these inserters, consult Item 30.) If you didn't call 
these functions, some function you called (directly or indirectly) did. 

� Similarly, if you get a message mentioning binder1st or binder2nd, you've 
probably made a mistake using bind1st or bind2nd. (bind1st returns an object of 
type binder1st, and bind2nd returns an object of type binder2nd.) 

� Output   iterators   (e.g., ostream_iterators, ostreambuf_iterators  (see Item 29), 
and the iterators returned from back_inserter, front_inserter, and inserter) do 
their outputting or inserting work inside assignment operators, so if you've 
made a mistake with one of these iterator  types,  you're  likely  to  get   a   
message  complaining  about something inside an assignment operator you've 
never heard of. To see what I mean, try compiling this code: 

 
vector<string*> v;                              // try to print a container 
copy(v.begin(), v.end(),                     // of string' pointers as 

ostream_iterator<string>(cout, "\n"));    // string objects  

� If you get an error message originating from inside the implementation of an 
STL algorithm (i.e., the source code giving rise 10 the error is in <algorithm>), 
there's probably something wrong with the types you're trying to use with that 
algorithm. For example, you ay be passing iterators of the wrong category. To 
see how such usage errors are reported, edify (and amuse!) yourself by feeding 
this to your compilers: 

 
list<int>::iterator i1, i2;                //pass bidirectional iterators to 
sort(i1, i2);                                  //an algorithm requiring random 

 // access iterators 

� If you're using a common STL component like vector, string, or the for_each 
algorithm, and a compiler says it has no idea what you're talking about, you've 
probably failed to #include a required header file. As Item 48 explains, this 
problem can befall code that has been compiling smoothly for quite some time 
if you port it to a new platform. 

Item 50. Familiarize yourself with STL-related web sites. 

The Internet is rife with STL information. Ask your favorite search engine to look for 
"STL", and it's sure to return hundreds of links, some of which may actually be 
relevant. For most STL programmers, however, no searching is necessary. The 
following sites are likely to rise to the top of almost everybody's most-frequently-used 
list: 
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•  The SGI STL site, http://www.sgi.com/tech/stl/. 

•  The STLport site, http://www.stlport.org/. 

•  The Boost site, http://www.boost.org/. 

What follows are brief descriptions of why these sites are worth book-marking. 

The SGI STL Web Site 

SGI's STL web site tops the list, and for good reason. It offers comprehensive 
documentation on every component of the STL. For many programmers, this site is 
their on-line reference manual, regardless of which STL platform they are using. (The 
reference documentation was put together by Matt Austern, who later extended and 
polished it for his Generic Programming and the STL [4].) The material here covers 
more than just the STL components themselves. Effective STL's discussion of thread 
safety in STL containers (see Item 12), for example, is based on the treatment of the 
topic at the SGI STL web site. 

The SGI site offers something else for STL programmers: a freely downloadable 
implementation of the STL. This implementation has been ported to only a handful of 
compilers, but the SGI distribution is also the basis for the widely ported STLport 
distribution, about which I write more in a moment. Furthermore, the SGI 
implementation of the STL offers a number of nonstandard components that can make 
STL programming even more powerful, flexible, and fun. Foremost among these are 
the following: 

� The hashed associative containers hash_set, hash_multiset, hash_map, and 
hash_multimap. For more information about these containers, turn to Item 25. 

� A singly linked list container, slist. This is implemented as you'd imagine, and 
iterators point to the list nodes you'd expect them to point to. Unfortunately, this 
makes it expensive to implement the insert and erase member functions, 
because both require adjustment of the next pointer of the node preceding the 
node pointed to by the iterator. In a doubly linked list (such as the standard list 
container), this isn't a problem, but in a singly linked list, going "back" one 
node is a linear-time operation. For SGI's, slist, insert and erase take linear 
instead of constant time, a considerable drawback. SGI addresses the problem 
through the nonstandard (but constant-time) member functions insert_after and 
erase_after. Notes  SGI. 

If you find that insert_after and erase_after aren't adequate for your 
needs and that you often need to use insert and erase in the middle of 
the list, you should probably use list instead of slist. 

Dinkumware also offers a singly linked list, container called slist, but it uses a 
different iterator implementation that preserves the constant-time performance 
of insert and erase. For more information on Dinkumware, consult Appendix B. 
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� A string-like container for very large strings. The container is called rope, 
because a rope is a heavy-duty string, don't you see? SGI describes ropes this 
way: 

Ropes are a scalable string implementation: they are designed for 
efficient operations that involve the string as a whole. Operations such 
as assignment, concatenation, and substring take time that is nearly 
independent of the length of the string. Unlike C strings, ropes are a 
reasonable representation for very long strings, such as edit buffers or 
mail messages. 

Under the hood, ropes are implemented as trees of reference-counted substring, 
and each substring is stored as a char array. One interesting aspect of the rope 
interface is that the begin and end member functions always return 
const_iterators. This is to discourage clients from performing operations that 
change individual characters. Such operations are expensive, ropes are 
optimized for actions that involve entire strings (e.g.. assignment, concatena-
tion, and taking substrings, as mentioned above): single-character operations 
perform poorly. 

� A variety of nonstandard function objects and adapters. The original HP 
STL implementation included more functor classes than made it into standard 
C++. Two of the more widely missed by old-time STL hackers are select1st and 
select2nd, because they are so useful for working with maps and multimaps. 
Given a pair, select1st returns its first component and select2nd returns its sec-
ond. These nonstandard functor class templates can be used as follows: 

 
map<int, string> m; 
… 
// write all the map keys to cout 
transform(m.begin(), m.end(), 

ostream_iterator<int>(cout, "\n"),  
select1st<map<int, string>::value type>()); 

 
//create a vector and copy all the values in the map into it 
vector<string> v; 
transform(m.begin(), m.end(), back_inserter(v), 

select2nd<map<int, string>::value_type>()); 
 

As you can see, select1st and select2nd make it easy to use algorithm calls in 
places where you might otherwise have to write your own loops (see Item 43), 
but, if you use these functors, the fact that they are nonstandard leaves you open 
to the charge that you are writing unportable and unmaintainable code (see Item 
47). Diehard STL aficionados don't care. They consider it an injustice that 
select1st and select2nd didn't make it into the Standard in the first place. 
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Other nonstandard function objects that are part of the SGI implementation 
include identity, project1st, project2nd, compose1 and compose2. To find out 
what these do, you'll have to visit the web site, though you'll find an example 
use of compose2 on page 187 of this book. By now, I hope it's clear that visiting 
the SGI web site will certainly be rewarding. 

SGI’s library implementation goes beyond the STL. Their goal is the development of a 
complete implementation of the standard C + + library, except for the parts inherited 
from C. (SGI assumes you already have a standard C library at your disposal.) As a 
result, another noteworthy download available from SGI is an implementation of the 
C++ iostreams library. As you might expect, this implementation integrates well with 
SGI's implementation of the STL, but it also features performance that's superior to 
that of many iostream implementations that ship with C++ compilers. 

The STLport Web Site 

STLport's primary selling point is that it offers a modified version of SGI's STL 
implementation (including iostreams, etc.) that's been ported to more than 20 
compilers. Like SGI's library, STLport's is available for free download. If you're 
writing code that has to work on multiple platforms, you may be able to save yourself 
a wheelbarrow of grief by standardizing on the STLport implementation and using it 
with all your compilers. 

Most of STLport's modifications to SGI's code base focus on improved portability, but 
STLport's STL is also the only implementation I know that offers a "debug mode" to 
help detect improper use of the STL — uses that compile but lead to undefined 
runtime behavior. For example, Item 30 uses this example in its discussion of the 
common mistake of writing beyond the end of a container: 

 
int transmogrify(int x);                                        // this function produces 

         // some new value from x 
 vector<int> values; 
…        //put data into values 
vector<int> results; 
transform( values.begin(), values.end(),               // this will attempt to 

   results.end(),                                      // write beyond the 
   transmogrify);                                    // end of results! 

This will compile, but when run. it yields undefined results. If you're lucky, something 
horrible will happen inside the call to transform, and debugging the problem will be 
relatively straightforward. If you're not lucky, the call to transform will trash data 
somewhere in your address space, but you won't discover that until later. At that point, 
determining the cause of the memory corruption will be — shall we say? — 
challenging. 
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STLport's debug mode all but eliminates the challenge. When the above call to 
transform is executed, the following message is generated (assuming STLport is 
installed in the directory C:\STLport): 

 
C:\STLport\stlport\stl\debug   itorator.h:265 STL assertion failure : 
_Dereferenceable(*this) 

The program then stops, because STLport debug mode calls abort if it encounters a 
usage error. If you'd prefer to have an exception thrown instead, you can configure 
STLport to do things your way. 

Admittedly, the above error message isn't as clear as it might be. and it's unfortunate 
that the reported file and line correspond to the location of the internal STL assertion 
instead of the line calling transform, but this is still a lot better than running past the 
call to transform, then trying to figure out why your data structures are corrupt. With 
STLport's debug mode, all you need to do fire up your debugger and walk the call 
stack back into the code you wrote, then determine what you did wrong. Finding the 
offending source line is generally not a problem. 

STLport's debug mode detects a variety of common errors, including passing invalid 
ranges to algorithms, attempting to read from an empty container, using an iterator 
from one container as the argument to a second container's member function, etc. It 
accomplishes this magic by having iterators and their containers track one another. 
Given two iterators, it's thus possible to check to see if they come from the same 
container, and when a container is modified, it's possible to invalidate the appropriate 
set of iterators. 

Because STLport uses special iterator implementations in debug mode, iterators for 
vector and string are class objects instead of raw pointers. Hence, using STLport and 
compiling in debug mode is a good way to make sure that nobody is getting sloppy 
about the difference between pointers and iterators for these container types. That 
alone may be reason enough to give STLport's debug mode a try. 

The Boost Web Site 

In 1997, when the closing bell rang on the process that led to the International 
Standard for C++, some people were disappointed that library features they'd 
advocated hadn't made the cut. Some of these people were members of the Committee 
itself, so they set out to lay the foundation for additions to the standard library during 
the second round of standardization. The result is Boost, a web site whose mission is 
to "provide free, peer-reviewed. C++ libraries. The emphasis is on portable libraries 
which work well with the C++ Standard Library.' Behind the mission is a motive: 

To the extent a library becomes "existing practice", the likelihood increases that 
someone will propose it for future standardization. Submitting a library to Boost.org is 
one way to establish existing practice... 
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In other words, Boost offers itself as a vetting mechanism to help separate the sheep 
from the goats when it comes to potential additions to the standard C++ library. This is 
a worthy service, and we should all be grateful. 

Another reason to be grateful is the collection of libraries you'll find at Boost. I won't 
attempt to describe them all here, not least because new ones will doubtless have been 
added by the time you read these words. For STL users, however, two kinds of 
libraries are particularly relevant. The first is the smart pointer library featuring 
shared_ptr, the template for reference-counted smart pointers that, unlike the standard 
library's auto_ptr, may safely be stored in STL containers (see Item 8). Boost's smart 
pointer library also offers shared_array, a reference-counted smart pointer for 
dynamically allocated arrays, but Item 13 argues that dynamically allocated arrays are 
inferior to vectors and strings, and I hope you find its argument persuasive. 

Boost's second attraction for STL fans is its bevy of STL-related function objects and 
associated facilities. These libraries comprise a fundamental redesign and 
reimplementation of the ideas behind STL function objects and adapters, and the 
results eliminate a host of restrictions that artificially limit the utility of the standard 
functors. As an example of such a restriction, you'll find that if you try to use bind2nd 
with mem_fun or mem_fun_ref (see Item 41) to bind an object to a member function's 
parameter and that member function takes its parameter by reference, your code is 
unlikely to compile. You'll find the same if you try to use not1 or not2 with ptr_fun 
and a function declaring a by-reference parameter. The cause in both cases is that 
during template instantiation, most STL platforms generate a reference to a reference, 
and references to references are not legal in C++. (The Standardization Committee is 
mulling over a change in the Standard to address this matter.) Here s an example of 
what has become known as "the reference-to-reference problem:" 

 
class Widget {  
public: 

… 
int readStream(istream& stream);                        // readStream takes 
…              //its parameter by };                              

}               // reference 
 
vector<Widget*> vw; 
… 
for_each(                                                                      //most STL platforms 

vw.begin(), vw.end(),                                              // try to generate a 
bind2nd(mem_fun(&Widget::readStream), cin)     // reference to a  

     // reference in this 
    //call; such code  
    // won't compile 

Boost's function objects avoid this and other issues, plus they expand the 
expressiveness of function objects considerably. If you're intrigued by the potential of 
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STL function objects and you want to explore it further, hurry over to Boost right 
away. If you abhor function objects and think they exist only to pacify a vocal 
minority of Lisp apologists turned C++ programmers, hurry over to Boost anyway. 
Boost's function object libraries are important, but they make up only a small part of 
what you'll find at the site. 
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