

Relational
Database Design

Clearly
xolained

Second Edition

This Page Intentionally Left Blank

Relational
DatabaseDes n

Clea
xplained

Second Edition

Jan L. Harrington

Morgan Kaufmann Publishers
An Imprint of Elsevier

Amsterdam London

Boston San Diego

New York

San Francisco

Oxford Paris

Singapore

Tokyo

Sydney

This book is printed on acid-free paper.

Copyright �9 2002, 1999, Elsevier.

All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system,
without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science and Technology Rights Department in
Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333, e-mail: permissions@elsevier.co.uk.
You may also complete your request on-line via the Elsevier homepage: http://www.elsevier.com by
selecting "Customer Support" and then "Obtaining Permissions".

All brand names and product names mentioned in this book are trademarks or registered trademarks
of their respective companies.

Academic Press
An Imprint of Elsevier
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http://www.academicpress.com

Academic Press
32 Jamestown Road, London NW1 7BY, UK
http://www.academicpress.com

Morgan Kaufmann
An Imprint of Elsevier
340 Pine Street, Sixth Floor, San Francisco, California 94104-3205, USA
http: / /www.mkp.com

Library of Congress Catalog Card Number: 2002101250

ISBN-10:1-55860-820-6
ISBN-13:978-1-55860-820-7

Printed in the United States of America

05 06 07 MV 9 8 7 6 5 4

Contents
Preface to the Second Edition

What You Need to Know xv
Acknowledgments xv

xiii

Part One: Theory

Chapter 1"Introduction 3
Effects of Poor Database Design 4

Unnecessary Duplicated Data and Data Consistency 6
Data Insertion Problems 7
Data Deletion Problems 8
Meaningful Identifiers 9

What You Will Find in This Book 9

vi CONTENTS

Chapter 2: Entities and Data Relationships 11
Entities and Their Attributes 12

Entity Identifiers 13
Single-Valued versus Multivalued Attributes 15
Avoiding Collections of Entities 17
Documenting Logical Data Relationships 18
Entities and Attributes for Lasers Only 19

Domains 20
Documenting Domains 21
Practical Domain Choices 21

Basic Data Relationships 23
One-to-One Relationships 24
One-to-Many Relationships 26
Many-to-Many Relationships 27
Weak Entities and Mandatory Relationships 27
Documenting Relationships 28
Basic Relationships for Lasers Only 32

Dealing with Many-to-Many Relationships 33
Composite Entities 34
Documenting Composite Entities 36
Resolving Lasers Only's Many-to-Many Relationships

Relationships and Business Rules 37
Data Modeling versus Data Flow 39
Schemas 43
For Further Reading 44

36

Chapter 3: Historical Antecedents
File Processing Systems 48

Early File Processing 48
ISAM Files 50
Limitations of File Processing 52
File Processing on the Desktop 53

The Hierarchical Data Model 54
Characteristics of the Hierarchical Data Model
IMS 57

The Simple Network Data Model 59
Characteristics of a Simple Network 59
CODASYL 62

The Complex Network Data Model 65

47

54

CONTENTS vii

Chapter 4: The Relational Data Model 73
Understanding Relations 74

Columns and Column Characteristics 75
Rows and Row Characteristics 76
Types of Tables 76
A Notation for Relations 77

Primary Keys 77
Primary Keys to Identify People 78
Avoiding Meaningful Primary Keys 80
Concatenated Primary Keys 81
All-Key Relations 82

Representing Data Relationships 82
Referential Integrity 85
Foreign Keys and Primary Keys in the Same Table 86

Views 86
The View Mechanism 86
Why Use Views? 87

The Data Dictionary 88
Sample Data Dictionary Tables 89

A Bit of History 90
For Further Reading 92

Chapter 5: Normalization 93
Translating an ER Diagram into Relations 94
Normal Forms 95
First Normal Form 96

Understanding Repeating Groups 97
Handling Repeating Groups 98
Problems with First Normal Form 100

Second Normal Form 102
Understanding Functional Dependencies 103
Using Functional Dependencies to Reach 2NF
Problems with 2NF Relations 105

Third Normal Form 106
Transitive Dependencies 106

Boyce-Codd Normal Form 108
Fourth Normal Form 110

Multivalued Dependencies 111

104

viii CONTENTS

Normalized Relations and Database Performance
Equi-Joins 113
What's Really Going On: PRODUCT and RESTRICT
The Bottom Line 119

For Further Reading 119

112

116

Chapter 6: Database Structure and Performance
Tuning 121

Indexing 122
Deciding Which Indexes to Create 124

Clustering 124
Partitioning 126

Horizontal Partitioning 126
Vertical Partitioning 127

For Further Reference 128

Chapter 7: Codd's Rules 129
Rule 1: The Information Rule 130
Rule 2: The Guaranteed Access Rule 132
Rule 3: Systematic Treatment of Null Values 133
Rule 4: Dynamic Online Catalog Based on the Relational Model
Rule 5: The Comprehensive Data Sublanguage Rule 135
Rule 6: The View Updating Rule 136
Rule 7: High-Level Insert, Update, and Delete 137
Rule 8: Physical Data Independence 138
Rule 9: Logical Data Independence 139
Rule 10: Integrity Independence 139
Rule 11: Distribution Independence 141
Rule 12: Nonsubversion Rule 142

134

Chapter 8: Integrating Objects 143
An Introduction to Object-Oriented Concepts

Writing Instructions 145
Objects 146
Classes 151
Class Relationships 157
Benefits of Object Orientation 165

144

CONTENTS ix

Integrating Objects into a Relational Database 166
ER Diagrams for Object-Relational Designs 167
For Further Reading 172

Part Two: Practice

Chapter 9: Using SQL to Implement a Relational
Design 177

Database Object Hierarchy 178
Naming and Identifying Objects 179

Schemas 181
Creating a Schema 181
Identifying the Schema You Want to Use

Domains 183
Tables 184

Column Data Types 185
Default Values 190
NOT NULL Constraints 190
Primary Keys 191
Foreign Keys 191
Additional Column Constraints 194

Views 198
Deciding Which Views to Create 198
View Updatability Issues 199
Creating Views 199

Temporary Tables 201
Creating Temporary Tables 202
Loading Temporary Tables with Data
Disposition of Temporary Table Rows

Creating Indexes 204
Modifying Database Elements 205

Adding New Columns 205
Adding Table Constraints 206
Modifying Columns 206
Deleting Elements 207
Renaming Elements 208

Deleting Database Elements 209

182

203
203

x CONTENTS

Granting and Revoking Access Rights
Types of Access Rights 210
Storing Access Rights 210
Granting Rights 211
Revoking Rights 212

Object-Relational Extensions 213

209

Chapter 10: Using CASE Tools for Database Design
CASE Capabilities 216
ER Diagram Reports 218
Data Flow Diagrams 220
The Data Dictionary 222
Code Generation 225
Sample Input and Output Designs 228
The Drawing Environment 229
For Further Reading 230

215

Chapter 11"Database Design Case Study #1"
Mighty-MiteMotors 231

Corporate Overview 232
Product Development Division 232
Manufacturing Division 238
Marketing & Sales Division 239
Current Information Systems 239
Reengineering Project 240
New Information Systems Division 241
Basic System Goals 241
Current Business Processes 242

Designing the Database 251
Examining the Data Flows 253
Creating the ER Diagram 256
Creating the Tables 261
Generating the SQL 262

The Object-Relational Design 268
Creating the Classes 273
Using the Classes in the Schema 275

CONTENTS xi

Chapter 12: Database Design Case Study #2:
East Coast Aquarium 281

Organizational Overview 282
Animal Tracking Needs 284
The Volunteer Organization 288

The Volunteers Database 290
Creating the Application Prototype 290
Creating the ER Diagram 300
Designing the Tables 300
Generating the SQL 301

The Animal Tracking Database 301
Highlights of the Application Prototype 303
Creating the ER Diagram 308
Creating the Tables 311
Generating the SQL 312

The Object-Relational Design 316
The Volunteers Database 316
The Animal Tracking Database 317

Chapter 13: Database Design Case Study #3:
Independent Intelligence Agency 321

Organizational Overview 322
Current Information Systems 324
Summary of IS Needs 327
System Specifications 328

Designing the Database 333
ER Diagram for People 334
ER Diagram for Intelligence Gathering and Sales 337
ER Diagram for System Security 340
ER Diagram for Equipment Tracking 341
Designing the Tables 343
Generating the SQL 344

The Object-Relational Design 355
Creating the Classes 362
Writing the Schema 365

Glossary 375

Index 387

This Page Intentionally Left Blank

Preface to the Second Edition
My favorite opening line for the database courses I teach is: "Prob-
ably the most misunderstood term in all of business computing is
database, followed closely by the word relational." At that point, the
students often snicker, because they are absolutely, positively sure
that they know what a database is and that they also know what it
means for a database to be relational. Unfortunately, the popular
press, with the help of some software developers, long ago distort-
ed the meaning of both those terms, which led many businesses to
think that designing a database is a task that could be left to a cler-
ical worker who had taken a few days training in using database
software. As you will see throughout this book, nothing could be
further from the truth.

Note: By the same token, I have received applications for ad-
junct faculty positions from people who say they know how to
use a specific piece of database software and therefore believe

xiii

xiv PREFACE TO THE SECOND EDITION

they are qualified to teach a database theory course. From where
I sit, that is pretty scary.

Before preparing the first edition of this book, I had wanted to write
a book like this for a long time. We teach relational database design
theory to college students, but it is a rare pleasure to get the chance
to share that t h e o r y ~ a n d the practice of that t heo ry~wi th the
business community, with people who are actually doing such de-
signs in their jobs. It's just as great a pleasure to be able to prepare
a second edition, giving me a chance to correct some nasty typos
and add material that reviewers have indicated was lacking.

This book is intended for anyone who has been given the responsi-
bility of designing or maintaining a relational database. The first
part will teach you how to look at the environment your database
serves and to tailor the design of that database to the environment.
It will also teach you ways of designing the database so that it pro-
vides accurate and consistent data, avoiding the problems that are
common to poorly designed databases. In addition, you will read
about design compromises that you might choose to make in the in-
terest of database application performance and the consequences of
making such choices.

The second edition introduces a chapter on the history of data man-
agement. This chapter will show you just how far the IT industry
has come in the past 40 years or so in terms of handling business da-
ta. It may also help you appreciate why so many people prefer rela-
tional databases to any other alternative. The placement of this new
chapter is somewhat problematic. Ideally, it should be Chapter 0,
but it requires concepts that are taught in Chapter 2. Therefore, al-
though it is slightly out of place, it appears as Chapter 3.

Part II looks at the more practical aspects of performing database
design, covering the implementation of a design using SQL and us-
ing a CASE tool to help document and support the design process.
In addition, Part II contains three large database design case stud-
ies, each of which presents one or more design challenges that you
may encounter when designing relational databases.

WHAT YOU NEED TO KNOW xv

Probably the biggest trend in relational database design since the
first edition of this book appeared is the integration of objects into
relational databases. The major relational DBMSs on the market
have embraced this hybrid object-relational approach. You will
therefore find an entire chapter on the object-oriented paradigm
and how it has been merged with a relational database. Each of the
case studies in Part II also concludes with an example of an object-
relational solution.

What You Need to Know

Because this book deals primarily with database design, you do not
need any special computing background to read it. You should,
however, have some basic computer literacy. If you know how to
get around your computer's operating system and how to run pro-
grams someone has written for you, then you know enough to un-
derstand the material in Part I and most of Part II of this book. To
get the most out of Chapter 9 (using SQL to implement a relational
design), you should be familiar with some type of database envi-
ronment that provides an interface for sending SQL commands to a
database.

Acknowledgments
Writing a book for the folks at Morgan Kaufman is always a joy. I
would therefore like to thank the following individuals who helped
make this one possible:

Diane Cerra, editor at Morgan Kaufman
Mona Buelher, editorial assistant at Morgan Kaufman
Debbie Liehs, project manager
Edward Wade, assistant publishing services manager
Mei Levenson, production coordinator
Adrienne Rubello, copy editor
Tara Masih, proofreader

xvi PREFACE TO THE SECOND EDITION

The three reviewers:
- Sheldon Barry, Memorial University of Newfound-

land
- Karen Watterson, industry consultant
- Russell Belfer, independent software developer/con-

sultant

And above all, to my very active two-year-old son, Sean, who slept
long enough for me to finish this book.

JLH

This Page Intentionally Left Blank

n e

Theory
The first part of this book considers the theoretical aspects of relational da-
tabase design. You will read about identifying data relationships in your
database environment, the details of the relational data model, and how to
translate data relationships into a well-designed relational database that
avoids most of the problems associated with bad designs.

This Page Intentionally Left Blank

Introduction
Many of today's businesses rely on their database systems for accu-
rate, up-to-date information. Without those repositories of mission-
critical data, most businesses are unable to perform their normal
daily transactions, much less create summary reports that help
management make strategic corporate decisions. To be useful, the
data in a database must be accurate, complete, and organized in
such a way that data can be retrieved when needed and in the for-
mat required.

Well-written database application programs ~ whether they exe-
cute locally, run over a local area network, or feed information to a
Web s i t e ~ a r e fundamental to timely and accurate data retrieval.
However, without a good underlying database design, even the
best program cannot avoid problems with inaccurate and inconsis-
tent data. That is what this book is all about: to help you learn to

4 INTRODUCTION

design good relational databases that avoid many of the problems
inherent in poor database design.

Good database design means that you take time to plan your data-
base before you put it into use. It means that you focus on the way
your business works and tailor that database to your own organiza-
tion's specifications. What do you get for all this work? You get a da-
tabase that accurately supports the needs of your company, that
provides everyone who uses it with accurate, complete information.

Effects of Poor Database Design
To make it a bit clearer why the design of a database matters so
much, let us take a look at a business that has a very bad design, and
the problems that the poor design brings. The business is named
Lasers Only.

Note: We will leave the precise definition of a database for later.
As you will see, the data storage used by Lasers Only is not pre-
cisely a database.

Back in the early 1980s, when most people were just discovering
video tapes, Mark Watkins and Emily Stone stumbled across a
fledgling technology known as the laser disc. There were several
competing formats, but by 1986 the industry had standardized on a
12-inch silver platter on which either 30 or 60 minutes of video and
audio could be recorded. Although the market was still small, it
was at that time that Watkins and Stone opened Lasers Only, a busi-
ness that sold and rented laser discs.

Today, Lasers Only carries laser discs, audio CDs, and DVDs. (There
is still great disagreement between videophiles as to whether the
DVDs are better than the 12-inch laser discs.) The company rents ti-
tles from its single retail store. However, the largest part of its busi-
ness comes from sales, both in the store and through mail order.

EFFECTS OF POOR DATABASE DESIGN 5

In 1990, when the store began its mail order business, Watkins cre-
ated a "database" to handle the orders and sales. Customers were
(and still are) enticed to order titles before the official release date
by offering a 15 to 20 percent discount on preorders. (All titles are
always discounted 10 percent from the suggested retail price.) The
mail order database therefore needed to include a way to handle
backorders so that preordered items could be shipped as soon as
they came into the store.

At the time we visit Lasers Only, they are still using the software
Watkins created. The primary data entry interface is a form like
that in Figure 1-1. Each time a customer orders a single title, an em-
ployee of the store fills out the entire form.

Figure 1-1: The data entry form used by Lasers Only for their mail order
business

Customer numbers are created by combining the customer's zip
code, the first three letters of his or her last name, and a three-digit
sequence number. For example, if Stone lives in zip code 12345 and
she is the second customer in that zip code with a last name begin-
ning with STO, then her customer number is 12345STO002. The se-
quence number ensures that no two customer numbers will be
alike.

When a new title comes into the store, an employee searches the da-
tabase to find all people who have preordered that title. The

6 INTRODUCTION

employee prints a packing slip from the stored data and then places
an X in the "Item shipped?" check box.

At first glance, the Lasers Only software seems pretty simple and
straightforward. Should work just fine, right? Well, it worked for a
while, but after a year or two, serious problems began to arise.

Unnecessary Duplicated Data and Data Consistency
The Lasers Only database has a considerable amount of unneces-
sary duplicated data:

A customer's name, address, and phone number are du-
plicated for every item the customer orders.
A merchandise item's title is duplicated every time the
item is ordered.

What is the problem with this duplication? When you have dupli-
cated data in this way, the data should be the same throughout the
database. In other words, every order for a given customer should
have the same name, address, and phone number, typed exactly the
same way. Every order for a single title should have the same title,
typed exactly the same way. We want the duplicated data to be con-
sistent throughout the database.

As the database grows larger, this type of consistency is very hard
to maintain. Most business-oriented database software is case sensi-
tive, in that it considers upper- and lowercase letters to be different
characters. In addition, no one is a perfect typist. A difference in
capitalization or even a single mistyped letter will cause database
software to consider two values to be distinct.

When a Lasers Only employee performs a search to find all people
who have ordered a specific title, the database software will retrieve
only those orders that match the title entered by the employee exact-
ly. For example, assume that a movie named Summer Days is sched-
uled to be released soon. In some orders, the title is stored correctly
as "Summer Days." However, in others it is stored as "summer

EFFECTS OF POOR DATABASE DESIGN 7

days" or even "Sumer Days." When an employee searches for all the
people to whom the movie should be shipped, the orders for "sum-
mer days" and "Sumer Days" will not be retrieved. Those customers
will not receive their orders, causing disgruntled customers and
probably lost business.

The current Lasers Only software has no way to ensure that dupli-
cated data are entered consistently. There are two solutions. The
first is to eliminate as much of the duplicated data as possible. (As
you will see, it is neither possible nor desirable to eliminate all of it.)
The second is to provide some mechanism for verifying that when
data must be duplicated, they are entered correctly. A well-de-
signed database will do both.

Note: Unnecessary duplicated data also take up extra disk
space, but given that disk space is relatively inexpensive today,
that is not a major reason for getting rid of the redundant data.

Data Insertion Problems

Lasers Only prepares its catalog of forthcoming titles by hand. Each
month when the announcements of new releases arrive from the
distributors, an employee does a manual "cut and paste" operation
to assemble a 16-page booklet that can be duplicated and mailed to
customers. In 1995, however, Stone realized that this was a very
cumbersome process and thought it would be much better if the
catalog could be generated from the database.

Why not get a list of forthcoming titles from the database and have
a database program generate the entire catalog? As she discovered,
it could not be done. There are two major reasons.

First, the current database does not contain all the information
needed for the catalog, in particular a synopsis of the content of the
disc. This problem could be remedied by adding that information
to the current database. However, doing so would only exacerbate
the problem with unnecessary duplicated data if the company were
to include the summary with every order. If the summary were to

8 INTRODUCTION

be included only once, how would the company know which order
contained the summary?

Second, and by far more important, there is no way to enter data
about a title unless someone has ordered it. This presents a rather
large Catch-22. Lasers Only can't insert data about a title until it has
been ordered at least once, but customers won' t know that it is
available to be ordered without receiving the computer-generated
catalog. But the catalog can't contain data about the new title until
someone can get the data into the database, and that can't happen
until the title has been ordered.

Note: This problem is more formally known as an "insertion
anomaly," and you will learn about it more formally through-
out this book.

Data Deletion Problems

Lasers Only also has problems when it comes to deleting data. As-
sume, for example, that a customer orders only one item. After the
order has been processed, the item is discontinued by the manufac-
turer. Lasers Only therefore wants to delete all references to the item
from its database because the item is no longer available.

When the orders containing the item are deleted, information about
any customer who has ordered only that item is also deleted. No
other orders remain in the database for that customer. Lasers Only
will be unable to send that customer any more catalogs and there-
fore loses the chance of getting any more business from that cus-
tomer.

Note: This problem is more formally known as a "deletion
anomaly." It, too, will be discussed in greater depth throughout
this book.

WHAT YOU WILL FIND IN THIS BOOK 9

Meaningful Identifiers
The Lasers Only database has another major problem" those cus-
tomer numbers. It is very tempting to code meaning into identifiers
and it usually works well ~ until the values on which the identifi-
ers are based change.

Consider what happens when a Lasers Only customer moves. The
person's customer number must change. At that point, there will be
orders for the same customer with two different customer numbers
in the same database.

If a customer who has moved since first ordering from the store
calls and asks for a list of all items he or she has on order, the first
thing the employee who answers the telephone does is ask the cus-
tomer for his or her customer number. The customer, of course, pro-
vides the current value, which means that anything ordered under
the old customer number will be missed during a search. The cus-
tomer may assume that titles ordered under the old customer num-
ber are not on order. As a result, the customer may place another
order, causing two copies of the same item to be shipped. Lasers
Only is then faced with another disgruntled customer who has to
make the effort to send back the duplicate and get the second
charge removed from his or her credit card.

What You Will Find in This Book

The purpose of this book is to help you avoid the types of problems
about which you have just read. A well-designed database provides
ways to eliminate much data redundancy, enforce data consistency,
allow data entry as needed without requiring you to enter "extra"
data, and allow data deletion without accidentally losing data you
want to keep.

In Chapter 2 we begin by looking at the foundation of database de-
sign: identifying logical data relationships in the environment the
database will serve, without reference to the software you will be

10 INTRODUCTION

using. Chapter 3, which is new to the second edition, covers meth-
ods of handling data that preceded the relational data model. You
do not need to read Chapter 3 to understand the rest of the book,
although it does provide some background for the case studies in
Part II.

In Chapter 4, we turn to data models, the formal way in which you
express data relationships to database software. There you will
meet the relational data model for the first time and begin to under-
stand what it means for a database to be relational. In Chapters 4
through 7, we'll explore the details of the relational data model.
Chapter 8, the second new chapter in this book's second edition,
concerns the way in which a number of relational products have in-
tegrated aspects of the object-oriented data model. You will find an
introduction to object-oriented concepts as well. If you choose, you
do not need to read this chapter to follow the remainder of this
book.

The discussion of relational concepts concludes in Chapter 9, in
which you will learn how to use SQL (the standard language for in-
teracting with relational databases) to create the relational database
elements about which you have been reading. You also see some
extensions to SQL that have been implemented (although not stan-
dardized) for integrating objects. Along the way we will redesign
and expand the Lasers Only database to give the company a work-
able design on which to build database applications.

In Chapter 10 you will be introduced to the role of software tools
that support database design activities. Chapters 11 through 13 con-
tain database design case studies that present a variety of database
design challenges that you may encounter. Each of these chapters
has been expanded to include coverage of the integration of objects
into the case study databases.

Entities and Data Relationships
In this chapter we will explore the fundamental concept behind all
databases: There are things in a business environment about which
we need to store data, and those things are related to one another in
a variety of ways. In fact, to be considered a database, the place
where data are stored must contain not only the data but also infor-
mation about the relationships between those data.

The idea behind a database is that the u s e r ~ e i t h e r a person work-
ing interactively or an application p r o g r a m ~ h a s no need to worry
about the way in which data are physically stored on disk. The user
phrases data manipulation requests in terms of data relationships.
A piece of software known as a database management system (DBMS)
then translates between the user 's request for data and the physical
data storage.

11

12 ENTITIES AND DATA RELATIONSHIPS

The formal way in which you express data relationships to a DBMS
is known as a data model. The relational data model, about which
you will learn in this book, is just such a formal structure. However,
the underlying relationships in a database environment are inde-
pendent of the data model and therefore also independent of the
DBMS you are using. Before you can design a database for any data
model, you need to be able to identify data relationships.

Note: Most DBMSs support only one data model. Therefore,
when you choose a DBMS, you are also choosing your data
model.

In this chapter we will explore data relationships and their charac-
teristics. You will also learn a DBMS-independent technique for
documenting those relationships known as the entity-relationship
diagram (ER diagram).

Entities and Their Attributes

An entity is something about which we store data. A customer is an
entity, as is a merchandise item stocked by Lasers Only. Entities are
not necessarily tangible. For example, an event such as a concert is
an entity; an appointment to see the doctor is an entity.

Entities have data that describe them (their attributes). For example,
a customer entity is usually described by a customer number, first
name, last name, street, city, state, zipcode, and phone number. A
concert entity might be described by a title, date, location, and name
of the performer.

When we represent entities in a database, we actually store only the
attributes. Each group of attributes that describes a single real-
world occurrence of an entity acts to represent an instance of an en-
tity. For example, in Figure 2-1, you can see four instances of a cus-
tomer entity stored in a database. If we have 1000 customers in our
database, then there will be 1000 collections of customer attributes.

ENTITIES AND THEIR ATTRIBUTES 13

Figure 2-1: Instances of a cus tomer entity in a database

Note: Keep in mind that we are not making any state-
ments about how the instances are physically stored.
What you see in Figure 2-1 is purely a conceptual representa-
tion.

Entity Identifiers
The only purpose for putt ing the data that describe an entity into a
database is to retrieve the data at some later date. This means that
we must have some way of distinguishing one entity from another
so that we can always be certain that we are retrieving the precise
entity we want. We do this by ensuring that each entity has some

14 ENTITIES AND DATA RELATIONSHIPS

attribute values that distinguish it from every other entity in the da-
tabase (an entity identifier).

Assume, for example, that Lasers Only has two customers named
John Smith. If an employee searches for the items John Smith has on
order, which John Smith will the DBMS retrieve? In this case, both
of them. Because there is no way to distinguish between the two
customers, the result of the query will be inaccurate.

Lasers Only solved the problem by creating unique customer num-
bers. That is indeed a common solution to identifying instances of
entities where there is no simple unique identifier suggested by the
data themselves.

Another solution would be to pair the customer's first and last
names with his or her telephone number. This combination of col-
umns (a concatenated identifier) would also uniquely identify each
customer. There are, however, two drawbacks to doing so. First, the
identifier is long and clumsy; it would be easy to make mistakes
when entering any of the parts. Second, if the customer's phone
number changes, then the identifier must also change. As you read
in Chapter 1, changes in an entity identifier can cause serious prob-
lems in a database.

Some entities, such as invoices, come with natural identifiers (the
invoice number). We assign unique, meaningless numbers to others

especially accounts, people, places, and things. Still others re-
quire concatenated identifiers.

Note: We will examine the issue of what makes a good unique
identifier more closely in Chapter 4, when we talk about "pri-
mary keys."

When we store an instance of an entity in a database, we want the
DBMS to ensure that the new instance has a unique identifier. This
is an example of a constraint on a database, a rule to which data
must adhere. The enforcement of a variety of database constraints
helps us to maintain data consistency and accuracy.

ENTITIES AND THEIR ATTRIBUTES 15

Single-Valued versus Multivalued Attributes

Because we are eventually going to create a relational database, the
attributes in our data model must be single-valued. This means that
for a given instance of an entity, each attribute can have only one
value. For example, a customer entity allows only one telephone
number for each customer. If a customer has more than one phone
number and wants them all included in the database, then the cus-
tomer entity cannot handle them.

Note: While it is true that the entity-relationship model of a da-
tabase is independent of the formal data model used to express
the structure of the data to a DBMS, we often make decisions on
how to model the data based on the requirements of the formal
data model we will be using. Removing multivalued attributes
is one such case. You will also see an example of this when we
deal with many-to-many relationships between entities.

The existence of more than one phone number turns the phone
number attribute into a multivalued attribute. Because an entity in a
relational database cannot have multivalued attributes, you must
handle those attributes by creating an entity to hold them.

In the case of the multiple phone numbers, we could create a phone
number entity. Each instance of the entity would include the cus-
tomer number of the person to whom the phone number belonged
along with the telephone number. If a customer had three phone
numbers, then there would be three instances of the phone number
entity for the customer. The entity's identifier would be the concat-
enation of the customer number and the telephone number.

Note: There is no way to avoid using the telephone number as
part of the entity identifier in the telephone number entity. As
you will come to understand as you read this book, in this par-
ticular case there is no harm in using it in this way.

What is the problem with a multivalued attribute? Multivalued at-
tributes can cause problems with the meaning of data in the

16 ENTITIES AND DATA RELATIONSHIPS

database, significantly slow down searching, and place unneces-
sary restrictions on the amount of data that can be stored.

Assume, for example, that you have an Employee entity with at-
tributes for the names and birthdates of dependents. Each attribute
is allowed to store multiple values. How will you associate the cor-
rect birthdate with the name of the dependent to which it applies?
Will it be by the position of a value store in the attribute (i.e., the first
name is related to the first birthdate, and so on)? If so, how will you
ensure that there is a birthdate for each name and a name for each
birthdate? How will you ensure that the order of the values is never
mixed up ?

When searching a multivalued attribute, a DBMS must search each
value in the attribute, most likely scanning the contents of the at-
tribute sequentially. A sequential search is the slowest type of
search available.

In addition, how many values should a multivalued column be able
to store? If you specify a maximum number, what will happen
when you need to store more than the maximum number of values?
For example, what if you allow room for 10 dependents in the Em-
ployee entity just discussed and you encounter an employee with
11 dependents? Do you create another instance of the Employee en-
tity to handle that person? Consider all the problems that doing so
would create, particularly in terms of the unnecessary duplicated
data.

Note: Although it is theoretically possible to write a DBMS that
will store an unlimited number of values in an attribute, the im-
plementation would be difficult and searching much slower
than if the maximum number of values were specified in the da-
tabase design.

As a general rule, if you run across a multivalued attribute, this is a
major hint that you need another attribute. The only way to handle
multiple values of the same attribute is to create an entity of which
you can store multiple instances, once for each value of the attribute.
In the case of the Employee entity, we would need a Dependent

ENTITIES AND THEIR ATTRIBUTES 17

entity that could be related to the Employee entity. There would be
one occurrence of the Dependent entity related to an occurrence of
the Employee entity for each of an employee's dependents. In this
way, there is no limit to the number of an employee's dependents.
In addition, each occurrence of the Dependent entity would contain
the name and birthdate of only one dependent, eliminating any con-
fusion about which name was associated with which birthdate.
Searching would also be faster because the DBMS could use fast
search techniques on the individual Dependent entity occurrences,
without resorting to the slow sequential search.

Avoiding Collections of Entities
When you first begin to work with entities, the nature of an entity
can be somewhat confusing. Consider, for example, the merchan-
dise inventory handled by Lasers Only. Is "inventory" an entity?
No. Inventory is a collection of the merchandise items handled by
the store. The entity is actually the merchandise item. Viewing all of
the instances of the merchandise item entity as a whole provides the
inventory.

To make this a bit clearer, consider the attributes you would need if
you decided to include an inventory entity: merchandise item num-
ber, item title, number in stock, retail price, and so on. But because
you are trying to describe an entire inventory with a single entity,
you need multiple values for each of those attributes. As you read
earlier, however, attributes cannot be multivalued. This tells you
that inventory cannot stand as an entity. It must be represented as a
collection of instances of a merchandise item entity.

As another example, consider a person's medical history main-
tained by a doctor. Like an inventory, a medical history is a collec-
tion of more than one entity. A medical history is made up of
appointments and the events that occur during those appoint-
ments. Therefore, the history is really a collection of instances of ap-
pointment entities and medical treatment entities. The "history" is
an output that a database application can obtain by gathering the
data stored in the underlying entity instances.

18 ENTITIES AND DATA RELATIONSHIPS

Documenting Logical Data Relationships
Entity-relationship diagrams provide a way to document the enti-
ties in a database along with the attributes that describe them. There
are actually several styles of ER diagrams. The two most commonly
used styles are Chen (named after the originator of ER modeling,
Dr. Peter P. S. Chen) and Information Engineering (IE), which grew
out of work by James Martin and Clive Finkelstein. It does not mat-
ter which you use, as long as everyone who is using the diagram
understands its symbols.

Both the Chen and Information Engineering models use rectangles
to represent entities. Each entity's name appears in the rectangle
and is expressed in the singular, as in

customer

The original Chen model has no provision for showing attributes
on the ER diagram itself. However, many people have extended the
model to include the attributes in ovals:

customer

(lasLname)/ " ~ telephone)

The entity's identifier is the attribute preceded by an asterisk
(*id_numb).

ENTITIES AND THEIR ATTRIBUTES 19

The Information Engineering model includes the attributes in the
rectangle with the entity:

c u s t o m e r

*id numb
first name
last name
telephone

Because the Information Engineering model tends to produce a less
cluttered diagram, we will be using it for most of the diagrams in
this book, although you will be introduced to elements of both
models throughout this chapter.

Entities and Attributes for Lasers Only

The major entities and their attributes for the Lasers Only database
can be found in Figure 2-2. As you will see, the design will require
additional entities as we work with the relationships between those
already identified. In particular, there is no information in Figure 2-
2 that indicates which items appear on which orders because that
information is a part of the logical relationship between orders and
items.

The entities in Figure 2-2 and the remainder of the ER diagrams in
this book were created with a special type of software known as a
CASE tool (computer-aided software engineering). CASE tools pro-
vide a wide range of data and systems modeling assistance. You
will find more detail on how CASE tools support the database de-
sign process in Chapter 9.

Note: The specific product used for these diagrams was
MacA&D, which provides capabilities typical of most profes-
sional CASE tools.

20 ENTITIES AND DATA RELATIONSHIPS

Cus tomer
.customer_numb

cus tomer_f i rs t_name
c u s t o m e r _ I as t_name

c u s t o m e r _ ~ t r e e t
cus t o m e r _ c i t y
customer_state

cus t o m e r _ z i p
c u s t o m e r _ p h o n e

c r e d i t _ c o r d _ n u m b
card~xp~ate

Order

#order_numb
customer_numb

order_dote
order_f i I led

D i s t r i b u t o r
..

�9 d is tribu tot_numb
dis tribu tor._name

d i s tr i bu tor__s tree t
d i s t r i b u to r_ .c i tg

d i s t r i bu to r_ .s t a t e
d i s t r i b u t o r _ z i p

d i s tr i bu for_phone
d i s t r i bu tor__con t a c t _ p e r s o n

con tac t_person_ex t

Actor
.actor_numb
actor_name

Producer

.producer_name
s t u d i o

I tern

�9 i tem_numb
title

dis tribu tor_numb
re tai l_,or i ce
r e I ease_da te

genre

Figure 2-2: Major entities and their attributes for the Lasers Only database

Domains

Each attribute has a domain, an expression of the permissible values
for that attribute. A domain can be very small. For example, a T-
shirt store might have a Size attribute for its merchandise items
with the values L, XL, and XXL comprising the entire domain. In
contrast, an attribute for a customer's first name is very large and
might be specified only as "text" or "human names."

A DBMS enforces a domain through a domain constraint. Whenever
a value is stored in the database, the DBMS verifies that it comes
from its attribute's specified domain. Although in many cases we
cannot specify small domains, at the very least the domain assures
us that we are getting data of the right type. For example, a DBMS
can prevent a user from storing 123x50 in an attribute whose do-
main is currency values. Most DBMSs also provide fairly tight do-
main checking on date and time attributes, which can help you
avoid illegal dates such as February 30.

DOMAINS 21

Documenting Domains
The common formats used for ER diagrams do not usually include
domains on the diagrams themselves, but store the domains in an
associated document (usually a data dictionary, something about
which you will read much more throughout this book). However,
the version of the Chen method that includes attributes can also in-
clude domains by placing an expression of the domain underneath
each attribute. Notice in Figure 2-3 that three of the domains are
fairly general (integer and character), while the domain for the tele-
phone number attribute includes a very specific format. Whether a
domain can be constrained in this way depends on the DBMS.

INT CHAR (15)
customer

~ last_name ~ / " ~ telephone "~
CHAR (14) CHAR (15) (XXX) XXX-XXXX

Figure 2-3: Indicating domains on an ER diagram

Note: There is no specific syntax for indicating domains. How-
ever, if you know which DBMS you will be using, consider us-
ing the column data types supported by that product as
domains in an ERD to simplify the later conversion to the
DBMS's requirements.

Practical Domain Choices
The domains that Lasers Only chooses for its attributes should the-
oretically be independent of the DBMS that the company will use.
In practical terms, however, it makes little sense to assign domains
that you cannot implement. Therefore, the database designer

22 ENTITIES AND DATA RELATIONSHIPS

working for Lasers Only takes a look at the DBMS to see what col-
umn data types are supported.

Most relational DBMSs that use SQL as their query language pro-
vide the following among their column data types, any of which
can be assigned as a domain to an attribute"

CHAR: A fixed-length string of text, usually up to 256
characters.
VARCHAR: A variable-length string of text, usually up
to 256 characters.
INT: An integer, the size of which varies depending on
the operation system.
DECIMAL and NUMERIC: Real numbers, with frac-
tional portions to the right of the decimal point. When
you assign a real number domain, you must specify
how many digits the number can contain (including the
decimal point) and how many digits should be to the
right of the decimal point (the value's precision). For ex-
ample, currency values usually have precision of two,
so a number in the format XXX.XX might have a domain
of DECIMAL (6,2).
DATE: A date.
TIME: A time.
DATETIME: The combination of a date and a time.
BOOLEAN: A logical value (either true or false).

Many of today's DBMSs also support a data type known as a BLOB
(binary large object), which can store anything binary, such as a
graphic.

Choosing the right domain can make a big difference in the accura-
cy of a database. For example, a U.S. zip code is made up of five or
nine digits. Should an attribute for a zip code therefore be given a
domain of INT? No, for two reasons. First, it would be nice to be
able to include the hyphen in nine-digit zip codes. Second, and
more important, zip codes in the northeast begin with a zero. If they
are stored as a number, the leading zero disappears. Therefore, we
always choose a CHAR domain for zip codes. Since we never do

BASIC DATA RELATIONSHIPS 23

arithmetic with zip codes, nothing is lost by using character rather
than numeric storage.

By the same token, it is important to choose domains of DATE and
TIME for chronological data. As an example, consider what would
happen if the dates 01/12/2000 and 08/12/1999 were stored as
characters. If you ask the DBMS to choose which date comes first,
the DBMS will compare the character strings in alphabetical order,
and respond that 01/12/2000 comes first, because 01 alphabetically
precedes 08. The only way to get character dates to order correctly
is to use the format YYYY/MM/DD, a format that is rarely used
anywhere in the world. However, if the dates were given a domain
of DATE, then the DBMS would order them properly. The DBMS
would also be able to perform date arithmetic, finding the interval
between two dates or adding constants (for example, 30 days) to
dates.

Basic Data Relationships
Once you have a good idea of the basic entities in your database en-
vironment, your next task is to identify the relationships among
those entities. There are three basic types of relationships that you
may encounter: one-to-one, one-to-many, and many-to-many.

Before turning to the types of relationships themselves, there is one
important thing to keep in mind: The relationships that are stored
in a database are between instances of entities. For example, a La-
sers Only customer is related to the items he or she orders. Each in-
stance of the customer entity is related to instances of the specific
items ordered (see Figure 2-4).

Note: As you look at Figure 2-4, once again remember that this
is a purely conceptual representation of what is in the database
and is completely unrelated to the physical storage of the data.

When we document data relationships, such as when we draw an
ER diagram, we show the types of relationships among entities. We

24 ENTITIES AND DATA RELATIONSHIPS

Figure 2-4: Relationships between instances of entities in a database

are showing the possible relationships that are allowable in the da-
tabase. Unless we specify that a relationship is mandatory, there is
no requirement that every instance of every entity be involved in
every documented relationship. For example, Lasers Only could
store data about a customer without the customer having any cur-
rent orders to which it is related.

One-to-One Relationships
Consider, for a moment, an airport in a small town and the town in
which the airport is located, both of which are described in a data-
base of small town airports. Each of these might be represented as

BASIC DATA RELATIONSHIPS 25

an instance of a different type of entity. The relationships between
the two instances can then be expressed as "The airport is located in
one and only one town and the town contains one and only one air-
port."

This is a true one-to-one relationship because at no time can a single
airport be related to more than one town and no town can be related
to more than one airport. (Although there are municipalities that
have more than one airport, the towns in this database are too small
for that to ever happen.)

If we have two instances of two entities (A and B) called A i and B i,
then a one-to-one relationship exists if at all times A i is related to no
instances of entity B or one instance of entity B, and B i is related to
no instances of entity A or one instance of entity A.

True one-to-one relationships are very rare in business. For exam-
ple, assume that Lasers Only decides to start dealing with a new
distributor of laser discs. At first, the company orders only one spe-
cialty title from the new distributor. If we peered inside the data-
base, we would see that the instance of the distributor entity was
related to just the one merchandise item instance. This would then
appear to be a one-to-one relationship. However, over time Lasers
Only may choose to order more titles from the new distributor,
which would violate the rule that the distributor must be related to
no more than one merchandise item. What we have is therefore not
a true one-to-one relationship. (This is an example of a one-to-many
relationship, which is discussed in the next section of this chapter.)

By the same token, what if Lasers Only created a special credit card
entity to hold data about the credit cards that renters used to secure
their rentals? Each customer has only one credit card on file with the
store. There would therefore seem to be a one-to-one relationship
between the instance of a customer entity and the instance of the
credit card entity. However, in this case we are really dealing with a
single entity. The credit card number, the type of credit card, and the
credit card's expiration date can all become attributes of the cus-
tomer entity. Given that only one credit card is stored for each

26 ENTITIES AND DATA RELATIONSHIPS

customer, the attributes are not multivalued; no separate entity is
needed.

If you think you are dealing with a one-to-one relationship, look
at it very carefully. Be sure that you are not really looking at a one-
to-many relationship or that what you think is two entities should
really be one.

One-to-Many Relationships
The most common type of relationship is a one-to-many relationship.
(In fact, most relational databases are constructed from the rare one-
to-one relationship and numerous one-to-many relationships.) For
example, Lasers Only typically orders many titles from each distrib-
utor and a given title comes from only one distributor. By the same
token, a customer places many orders but an order comes from only
one customer.

If we have instances of two entities (A and B), then a one-to-many
relationship exists between two instances (A i and B i) if A i is related
to zero, one, or more instances of entity B and B i is related to zero or
one instance of entity A.

Other one-to-many relationships include that between a daughter
and her biological mother. A woman may have zero, one, or more
biological daughters; a daughter has only one biological mother. As
another example, consider a computer and its CPU. A CPU may not
be installed in any computer or it may be installed in at most one
computer; a computer may have no CPU, one CPU, or more than
one CPU.

The example about which you read earlier concerning Lasers Only
and the distributor from which the company ordered only one title
is actually a one-to-many relationship where the "many" is current-
ly "one." Remember that when we are specifying data relationships,
we are indicating possible relationships and not necessarily requir-
ing that all instances of all entities participate in every documented
relationship. There is absolutely no requirement that a distributor be

BASIC DATA RELATIONSHIPS 27

related to any merchandise item, much less one or more merchan-
dise items. (It might not make much sense to have a distributor in
the database from whom the company did not order, but there is
nothing to prevent data about that distributor from being stored.)

Many-to-Many Relationships
Many-to-many relationships are also very common. There is, for ex-
ample, a many-to-many relationship between an order placed by a
Lasers Only customer and the merchandise items carried by the
store. An order can contain multiple items; each item can appear on
more than one order. The same is true of the orders placed with dis-
tributors. An order can contain multiple items and each item can
appear on more than one order.

A many-to-many relationship exists between entities A and B if for
two instances of those entities (A i and Bi), A i can be related to zero,
one, or more instances of entity B and B i can be related to zero, one,
or more instances of entity A.

Many-to-many relationships bring two major problems to a data-
base's design. These issues and the way in which we solve them are
discussed in the next major section of this chapter ("Dealing with
Many-to-Many Relationships").

Weak Entities and Mandatory Relationships
As we have been discussing types of data relationships, we have
defined those relationships by starting each with "zero," indicating
that the participation by a given instance of an entity in a relation-
ship is optional. For example, Lasers Only can store data about a
customer in its database before the customer places an order. There-
fore, an instance of the customer entity does not have to be related
to any instances of the order entity.

However, the reverse is not true in this database: An order must be
related to a customer. Without a customer, an order cannot exist. An

28 ENTITIES AND DATA RELATIONSHIPS

order is therefore an example of a weak entity, one that cannot exist
in the database unless a related instance of another entity is present
and related to it. An instance of the customer entity can be related
to zero, one, or more orders. However, an instance of the order en-
tity must be related to one and only one customer. The "zero" op-
tion is not available to a weak entity. The relationship between an
instance of the order entity and the customer is therefore a manda-
tory relationship.

Identifying weak entities and their associated mandatory relation-
ships can be very important for maintaining the consistency and in-
tegrity of the database. Consider the effect, for example, of storing
an order without knowing the customer to which it belongs. There
would be no way to ship the item to the customer, causing a com-
pany to lose business.

By the same token, we typically define the relationship between an
order and the order lines (the specific items on the order) as one-to-
many because we don' t want to allow an order line to exist in the
database without it being related to an order. (An order line is
meaningless without knowing the order to which it belongs.)

In contrast, we can allow a a merchandise item to exist in a database
without indicating the supplier from which it comes (assuming that
there is only one source per item). This lets us store data about a
new item before we have decided on a supplier. In this case, the re-
lationship between a supplier and an item is actually zero-to-many.

Documenting Relationships
The Chen and Information Engineering methods of drawing ER di-
agrams have very different ways of representing relationships, each
of which has its advantages in terms of the amount of information
it provides and its complexity.

BASIC DATA RELATIONSHIPS 29

The Chen Method

The Chen method uses diamonds for relationships and lines with
arrows to show the type of relationship between entities. For exam-
ple, in Figure 2-5 you can see the relationship between a Lasers
Only customer and an order. The single arrow pointing toward the
customer entity indicates that an order belongs to at most one cus-
tomer. The double arrow pointing toward the order entity indicates
that a customer can place one or more orders. The word within the
relationship diamond gives some indication of the meaning of the
relationship.

Order

Customer

Figure 2-5: Using the Chen method with relationship diamonds and arrows

There are two alternative styles within the Chen method. The first
(for example, Figure 2-6) replaces the arrows with numbers and let-
ters. A "1" indicates that an order comes from one customer. The
"M" (or an "N") indicates that a customer can place many orders.

The second alternative addresses the problem of trying to read the
relationship in both directions when the name of the relationship is
within the diamond. "Customer places order" makes sense, but
"order places customer" does not. To solve the problem, this alter-
native removes the relationship name from the diamond and adds
both the relationship and its inverse to the diagram, as in Figure 2-
7. This version of the diagram can be read easily in either direction:

30 ENTITIES AND DATA RELATIONSHIPS

"A customer places many orders" and "An order is placed by one
customer."

Customer

Order

Figure 2-6: A Chen method ER diagram using letters and numbers rather than
arrows to show relationships

Customer, I

placed bg

M I plQces

Order

Figure 2-7: Adding inverse relationships to a Chen method ER diagram

There is one major limitation to the Chen method of drawing ER di-
agrams: There is no obvious way to indicate weak entities and man-
datory relationships. For example, an order should not exist in the
database without a customer. Therefore, order is a weak entity and
its relationship with a customer is mandatory.

BASIC DATA RELATIONSHIPS 31

Some database designers have therefore added a new symbol to the
Chen method for a weak entity ~ a double-bordered rectangle:

order

Whenever a weak entity is introduced into an ER diagram, it indi-
cates that the relationship between that entity and at least one of its
parents is mandatory. However, if the entity does happen to have
multiple parents, then there is no way to determine simply by look-
ing at the diagram which of the relationships are mandatory.

The Information Engineering Method

The Information Engineering (IE) method exchanges simplicity in
line ends for added information. As a first example, consider Fig-
ure 2-8. This is the same one-to-many relationship we have been
using to demonstrate the Chen method ER diagrams. However, in
this case the ends of the lines indicate which relationships are man-
datory.

Customer
..

*customer_numb
cus tomer_f i rs t_name
customer_ I as t_name
customer_street
customer_c i ty
customer__~tate
cus tomer_z i p

customer_phone
credi t_card_numb
card_exp_cla te

Order
.......................................

*order_numb
customer_hum

order_date
order_f i I led

Figure 2-8: A one-to-many relationship using the IE method

32 ENTITIES AND DATA RELATIONSHIPS

The double line below the customer entity means that each order is
related to one and only one customer. Because zero is not an option,
the relationship is mandatory. In contrast, the 0 and three-legged
teepee connected to the order entity mean that a customer may
have zero, one, or more orders.

There are four symbols used at the ends of lines in an IE diagram:

I I: One and one only (mandatory relationship)
01: Zero or one
>1: One or more (mandatory relationship)
>0: Zero, one, or more

Although we often see the symbols turned 90 degrees, as they are
in Figure 2-8, they are actually readable if viewed sideways as in the
preceding list.

An IE method ER diagram often includes attributes directly on the
diagram. As you can see in Figure 2-8, entity identifiers are marked
with an asterisk.

Basic Relationships for Lasers Only
The major entities in the Lasers Only database are d iagrammed in
Figure 2-9. You read the relationships in the following way:

One customer can place zero, one, or more orders. An or-
der comes from one and only one customer.
An order has one or more items on it. An item can appear
on zero, one, or more orders.
An actor appears in zero, one, or more items. An item has
zero, one, or more actors in it. (There may occasionally be
films that feature animals rather than human actors;
therefore it is probably unwise to require that every mer-
chandise item be related to at least one actor.)
Each item has zero, one, or more producers. Each pro-
ducer is responsible for zero, one, or more items. (Al-
though in practice you would not store data about a

DEALING WITH M A N Y - T O - M A N Y RELATIONSHIPS 33

Customer
...

*customer_numb
cus tomer_f i rs t_name
customer_ I as t_name
customer_street
cus tomer_c i ty
cus tomer__~ tate
cus tomer_z i p

customer_phone
credi t_card_numb
card_e• te

I
�9 order..~umb L ~

cus tomer_numb
order_date |

order_fi I led I
I

0i s t r i bu tor
..

*di s tribu tor_numb
d i str i butor_name

d i str i bu tor__~ tree t
d i str i bu tor__c i ty
d i str i bu tor__~ tate
distributor_zip

dis tribu tor_phone
d i str i bu tor_con tac t_
con tac t-person_ex t

I
*i tern_numb |

t i t l e |
d i str i bu tor_numl
retai l_price
re lease~ate |

, genre |

C)~

Actor
..................................

i'actor_numb
actor_name

I
............... ~.o..~s~

*producer_name
', studio

Figure 2-9: The major entities and the relationships between them in the Lasers Only database

producer unless that producer was related to an item,
leaving the relationship between a producer and an item
as optional means that you can store producers without
items if necessary.)

The major thing to notice about this design is that there are three
many-to-many relationships: order to item, actor to item, and pro-
ducer to item. Before you can map this data model to a relational
database, they must be handled in some way.

Dealing with Many-to-Many Relationships
As you read earlier, there are problems with many-to-many rela-
tionships. The first is fairly straightforward: The relational data
model cannot handle many-to-many relationships directly; it is lim-
ited to one-to-one and one-to-many relationships. This means that
you must replace the many-to-many relationships that you have

34 ENTITIES AND DATA RELATIONSHIPS

identified in your database environment with a collection of one-to-
many relationships if you want to be able to use a relational DBMS.

The second is a bit more subtle. To understand it, consider the rela-
tionship between an order Lasers Only places with a distributor
and the merchandise items on the order. There is a many-to-many
relationship between the order and the item because each order can
be for many items and, over time, each item can appear on many or-
ders. Whenever Lasers Only places an order for an item, the num-
ber of copies of the item varies, depending on the perceived
demand for the item at the time the order is placed.

Now the question: Where should we store the quantity being or-
dered? It cannot be part of the order entity because the quantity de-
pends on which item we are talking about. By the same token, the
quantity cannot be part of the item entity because the quantity de-
pends on the specific order.

What you have just seen is known as relationship data, data that ap-
ply to the relationship between two entities rather than to the enti-
ties themselves. Relationships, however, cannot have attributes. We
therefore must have some entity to represent the relationship be-
tween the two, an entity to which the relationship data can belong.

Composite Entities
Entities that exist to represent the relationship between two other
entities are known as composite entities. As an example of how com-
posite entities work, consider the relationship between an order
placed by a Lasers Only customer and the items on the order. There
is a many-to-many relationship between an item and an order: An
order can contain many items and over time the same item can ap-
pear on many orders.

What we then need is an entity that tells us that a specific title ap-
pears on a specific order. If you look at Figure 2-10, you will see
three order instances and three merchandise item instances. The
first order for customer 0985 (Order #1) contains only one item

DEALING WITH MANY-TO-MANY RELATIONSHIPS 35

(item 09244). The second order for customer 0985 (Order #2) con-
tains a second copy of item 02944 as well as item 10101. Order #3,
which belongs to customer 1212, also has two items on it (item
10101 and item 00250).

Figure 2-10: Using instances of composite entities to change many-to-many relationships into
one-to-many relationships

There are five items ordered among the three orders. The middle of
the d iagram therefore contains five instances of a composite entity
we will call a "line item" (thinking of it as a line item on a packing
slip). The line item entity has been created solely to represent the re-
lationship between an order and a merchandise item.

Each order is related to one line item instance for each item on the
order. In turn, each item is related to one line item instance for each
order on which it appears. Each line item instance is related to one
and only one order; it is also related to one and only one merchan-
dise item. As a result, the relationship between an order and its line
items is one-to-many (one order has many line items) and the

36 ENTITIES AND DATA RELATIONSHIPS

relationship between an item and the orders on which it appears is
one-to-many (one merchandise item appears in many line items).
The presence of the composite entity has removed the original
many-to-many relationship and turned it into two one-to-many re-
lationships.

If necessary, the composite entity can be used to store relationship
data. In the preceding example, we might include an attribute for
the quantity ordered, a flag to indicate whether it has been shipped,
and a shipping date.

Documenting Composite Entities
In some extensions of the Chen method for drawing ER diagrams,
the symbol for a composite entity is the combination of the rectan-
gle used for an entity and the diamond used for a relationship:

The Information Engineering method, however, has no special
symbol for a composite entity.

Resolving Lasers Only's Many-to-Many Relationships
To eliminate Lasers Only's many-to-many relationships, the data-
base designer must replace each many-to-many relationship with a
composite entity and two one-to-many relationships. As you can
see in Figure 2-11, the three new entities are as follows:

Order lines: The order lines entity represents one item ap-
pearing on one order. Each order can have many "order
lines," but an order line must appear on one and only one
order. By the same token, an order line contains one and
only one item but the same item can appear on many or-
der lines, each of which corresponds to a different order.

RELATIONSHIPS AND BUSINESS RULES 37

Performance: The performance entity represents one ac-
tor appearing in one film. Each performance is for one
and only one film although a film can have many perfor-
mances (one for each actor in the film). Conversely, an ac-
tor is related to one performance for each film in which
he or she appears although each performance is in one
and only one film.
Production: The production entity represents one pro-
ducer working on one film. A producer may be involved
in many productions, although each production relates
to one and only one producer. The relationship with item
indicates that each film can be produced by many pro-
ducers but that each production relates to only one item.

Note: If you find sorting out the relationships in Figure 2-11 a
bit difficult, keep in mind that if you rotate the up-and-down
symbols 90 degrees, you will actually be able to read the rela-
tionships.

Because composite entities exist primarily to indicate a relationship
between two other entities, they must be related to both of their par-
ent entities. This is why the relationship between each composite
entity in Figure 2-11 and its parents is mandatory.

Relationships and Business Rules
In many ways, database design is as much an art as a science. Ex-
actly what is the "correct" design for a specific business depends on
the business rules; what is correct for one organization may not be
correct for another.

As an example, assume that you are creating a database for a retail
establishment that has more than one store. One of the things you
are being asked to model in the database is an employee's schedule.
Before you can do that, you need to answer the question of the rela-
tionship between an employee and a store: Is it one-to-many or
many-to-many? Does an employee always work at only one s t o r e ~

38 ENTITIES AND DATA RELATIONSHIPS

Customer
...

*customer-numb
cus tomer_f i rs t_name
cus tamer_ I as t-name
cus tomer__~ tree t
cus tomer_c i tg
cus tomer__~ to te
cus tomer_z i p

customer_phone
credi t_card-numb
card_exp~a te

I
Order

...

*order-numb
customer-numb
order_date

order_f i I led

C ~

D is tr i butor
..

*d i s tr i bu tar_numb
distributor_name

d i s tr i bu tor__~ tree t
d is tribu tor_c i tg
d i s tr i bu tor__s ta te
distributor_zip

d i s tr i bu tor_,ohone
d i str i bu tar_con tac t_

con tac t_person_ex t

I
Item

...

*i tern_numb
t i t l e II

d i s tr i bu tar-numb II

retai l_43rice ~I
re I ease~a te ~

genre

............ o ~ ! . . ! . ~

*order_numb
*i tem-numb
quan t i tg

d i scoun t.~app I i ed
se I I i ncj_.or ice

I i n e . . . e o s t
s h i p p e d

Actor
..................................

*actor_numb
actor._name

Performance

.... ~G;SGmg
' *i tern_numb

role

C~ Production

*item_numb

i
Producer

..

*producer_name
studio

Figure 2-11: The complete ER diagram for the Lasers Only database

in which case the relationship is one- to -many- -o r can an employee
split his or her time between more than one store, producing a
many-to-many relationship? This is not a matter of right or wrong
database design, but an issue of how the business operates.

The bottom line is that no matter how much you know about data-
base design, you will not have a good database unless the relation-
ships depicted in that database are an accurate reflection of the
relationships in the database environment.

DATA MODELING VERSUS DATA FLOW 39

Data Modeling versus Data Flow

One of the most common mistakes people make when they are be-
ginning to do data modeling is to confuse data models with data
flows. A data flow shows how data are handled within an organiza-
tion, including who handles the data, where the data are stored, and
what is done to the data. In contrast, a data model depicts the inter-
nal, logical relationships between the data, without regard to who
is handling the data or what is being done with them.

Data flows are often documented in data flow diagrams (DFDs).
For example, in Figure 2-12 you can see a top-level data flow dia-
gram for Lasers Only. The squares represent the people who are
handling the data. Circles represent processes, or things that are
done with the data. A place where data are stored (a data store) ap-
pears as two parallel lines, in this example containing the words
"Main database." The arrows on the lines show the way in which
data pass from one place to another.

Customer

records in
reeel p~pares

Employee

Figure 2-12: A top-level data flow diagram for Lasers Only

Data flow diagrams are often exploded to show more detail. For ex-
ample, Figure 2-13 contains an explosion of the "Take Order"

40 ENTITIES AND DATA RELATIONSHIPS

process from Figure 2-12. You can now see that the process of taking
an order involves two major steps: getting customer information
and getting item information.

�9 m

records

Customer

provides

store in
!

validate in /

T
Main

database

stores in

Emplogee

records

Figure 2-13: An explosion of the Take order process from Figure 2-12

Each of the processes in Figure 2-13 can be exploded even further to
show additional detail (see Figure 2-14 and Figure 2-15). At this
point, the diagrams are almost detailed enough so that an applica-
tion designer can plan an application program.

Where do the database and its ER diagram fit into all of this? The
entire ER diagram is buried inside the "Main database." In fact,
most CASE tools allow you to link your ER diagram to a database's
representation on a data flow diagram. Then, you can simply dou-
ble-click on the database representation to bring the ER diagram
into view.

Note: Don't forget that you can read a great deal more about us-
ing a CASE tool in Chapter 9.

DATA MODELING VERSUS DATA FLOW 41

Customer
prov i de~__

. |..."--'m--''...~

/ 3 1. 1.2 ",,u..ii,...cheek
i)ai i da te
i number L "

] ",
search in

i f e x i s t i n g ,,,
cus tomer \ Main

~k database

'"t

if new
customer

store in S 1.4~44k L, ! o.~ot~ ~, ---i t n e ~

Figure 2-14: An explosion of the "Get customer information" process from
Figure 2-13

There are a few guidelines you can use to keep data flows and data
models separate:

A data flow shows who uses or handles data. A data
model does not.
A data flow shows how data are gathered (the people or
other sources from which they come). A data model does
not.
A data flow shows operations on data (the processes
through which data are transformed). A data model does
not.
A data model shows how data entities are interrelated. A
data flow does not.
A data model shows the attributes that describe data en-
tities. A data flow does not.

42 ENTITIES AND DATA RELATIONSHIPS

/

rece ves

S

provides / 3 . I .2.2 \ NNN~
/ Ueri fy ;.
i stock/sh]
"I , i p p i n g j
\ /

~',.. lJ
""" -ill~""

stores in

Customer

Employee

checks in

V

Database

! . performs

J. ordered I~ stores

Figure 2-15: An explosion of the "Get items ordered" process from Figure 2-13

The bottom line is this: A data model contains information about
the data being stored in a database (entities, attributes, and entity
relationships). If data about an entity are not going to be stored in
the database, then that entity should not be part of the database. For
example, although the Lasers Only data flow diagram shows the
Lasers Only employee who handles most of the data, no data about
employees are going to be stored in the database. Therefore, there is
no employee entity in the ER diagram.

SCHEMAS 43

Schemas
A completed entity-relationship diagram represents the overall,
logical plan of a database. In database terms, it is therefore known
as a schema. This is the way in which the people responsible for
maintaining the database will see the design. However, users (both
interactive users and application programs) may work with only a
portion of the logical schema. And both the logical schema and the
users' views of the data are at the same time distinct from the phys-
ical storage.

The underlying physical storage, which is managed by the DBMS,
is known as the physical schema. It is for the most part determined by
the DBMS. (Only very large DBMSs give you any control over phys-
ical storage.) The beauty of this arrangement is that both database
designers and users do not need to be concerned about physical
storage, greatly simplifying access to the database and making it
much easier to make changes to both the logical and physical sche-
mas.

Because there are three ways to look at a database, some databases to-
day are said to be based on a three-schema architecture (see Figure 2-
16). Systems programmers and other people involved with manag-
ing physical storage deal with the physical schema. Most of today's
relational DBMSs provide almost no control over the file structures
used to store database data. However, DBMSs designed to run on
mainframes to handle extremely large datasets do allow some tailor-
ing of the layout of internal file storage.

Note: As you will see in Chapter 3, DBMSs based on earlier
data models were more closely tied to their physical storage than
relational DBMSs. Therefore, systems programmers were able
to specify physical file structures to a much greater extent.

Database designers, database administrators, and some application
programmers are aware of and use the logical schema. End users
working interactively and application programmers who are

44 ENTITIES AND DATA RELATIONSHIPS

creating database applications for them work with user views of the
database.

Figure 2-16: The three-schema architecture

Throughout the rest of this book we will be focusing on the de-
sign of the logical schema. You will also learn how to create and
use database elements that provide users with limited portions of
the database.

For Further Reading
The entity-relationship model was developed by Dr. Peter P. S.
Chen. If you want to learn more about its early forms and how the
model has changed, see the following:

FOR FURTHER READING 45

Chen, P. "The Entity-Relationship Model: Toward a Unified View of
Data," ACM Transactions on Database Systems. Vol. I, No. 1, March,
1976.

Chen, P. The Entity-Relationship Approach to Logical Database Design.
QED Information Sciences, Data Base Monograph Series, No. 6,
1977.

Chen, P. Entity-Relationship Approach to Information Modeling. E-R In-
stitute, 1981.

The original work that described Information Engineering can be
found in the following:

Martin, James. Information Engineering, Book I: Introduction, Book II:
Planning and Analysis, Book III: Design and Construction. Prentice
Hall, 1989.

Finkelstein, Clive. An Introduction to Information Engineering.
Addison-Wesley, 1989.

For more recent, in-depth coverage of ER diagramming, you can
consult either of the following:

Barker, Richard. Case*Method: Entity Relationship Modelling. Addi-
son-Welsey, 1990.

Thalheim, Richard. Entity-Relationship Modeling: Foundations of Da-
tabase Technology. Springer Verlag, 2000.

This Page Intentionally Left Blank

L)

Historical Antecedents
In the beginning, there were data files ... and from the need to man-
age the data stored in those files arose a variety of data management
methods, most of which preceded the relational data model and,
because of their shortcomings, paved the way for the acceptance of
relational databases.

This chapter provides an overview of data management organiza-
tions used prior to the introduction of the relational data model. Al-
though you do not need to read this chapter to understand the rest
of the book, some of the case studies in Part II mention concepts dis-
cussed here.

47

48 HISTORICAL ANTECEDENTS

File Processing Systems
The first commercial c o m p u t e r ~ E N I A C ~ w a s designed to help
process the 1960 census. Its designers thought that all computers
could do was crunch numbers; the idea that computers could han-
dle text data came later. Unfortunately, the tools available to handle
data weren't particularly sophisticated. In most cases, all the com-
puting staff had available was some type of storage (at first tapes
and later disks) and a high-level language compiler.

Early File Processing
Early file processing systems are made up of a set of data f i l e s~
most commonly text f i l e s ~ a n d application programs that manip-
ulate those files directly without the intervention of a DBMS. The
files are laid out in a very precise, fixed format. Each individual
piece of data (a first name, last name, street address, and so on) is
known as a field. The data that describe a single entity are collected
into a record. A data file is therefore made up of a collection of
records.

Each field is allocated a specific number of bytes. The fixed field
lengths mean that no delimiters are required between fields or at
the end of records, although some data files do include them. A por-
tion of such a data file might appear like Figure 3-1.

The programs that store and retrieve data in the data files locate
data by their byte positions in the file. Assuming that the first record
in a file is numbered 0, a program can locate the start of any field
with the computation

record_number * record_length + start ing_posit ion_of_f ield

This type of file structure therefore is very easy to parse (i.e., sepa-
rate into individual fields). It is also simplifies the process of writing
the application programs that manipulate the files.

FILE PROCESSING SYSTEMS 49

1 John
2 Jane
3 Edward
4 L o u i s
5 John
6 T h e r e s a
7 Thomas
8 Jane
9 Edward
10 E m i l y
11 Thomas
12 L o u i s

S m i t h
Johnson
S m i t h
J o h n s o n
Jones
Jones
S m i t h
S m i t h
Jones
Johnson
J o h n s o n
S m i t h

25 W. Main S t r e e t . .
120 Elm Lane . . .
44 P ine H e i g h t s . . .
250 W. Main S t r e e t . . .
RR1 Box 250B . . .
A n d e r s o n Road . . .
12589 H ighway 25 Sou th . .
45 R o x b u r y C o u r t . . .
10101 B i n a r y Road . . .
202 S o m e r s e t B l v d
25 N. Main S t r e e t . . .
918 B a y l e a f T e r r a c e . . .

Figure 3-1: A portion of a fixed field length data file

If the file is stored on tape, then access to the records is sequential.
Such a system is well suited for batch processing if the records are
in the order in which they need to be accessed. If the records are
stored on disk, then the software can perform direct access reads
and writes. In either case, however, the program needs to know ex-
actly where each piece of data is stored and is responsible for issu-
ing the appropriate read and /o r write commands.

Note: Some tape drives are able to read backward to access data
preceding the last written or read location. However, those that
cannot read backward need to rewind completely and then per-
form a sequential scan beginning at the start of the tape to find
data preceding the previous read~write location. Understand-
ably, random access to data is unacceptably slow for interactive
data processing.

These systems are subject to many problems, including all of those
discussed in Chapter 1. In addition, programmers struggle with the
following limitations:

Changing the layout of a data file (e.g., changing the size
of a field or record) requires changing all of the programs
that access that file as well as rewriting the file to accom-
modate the new layout.
Access is very fast when processing all records sequen-
tially in the physical order of the file. However, searches

50 HISTORICAL ANTECEDENTS

for specific records, based on some matching criteria,
also have to be performed sequentially, a very slow pro-
cess. This holds true even for files stored on disk.

The major advantage to a file processing system is that it's cheap.
An organization that installs a computer typically has everything it
needs: external storage and a compiler. In addition, a file processing
system is relatively easy to create, in that it requires little advance
planning. However, as you have read, the myriad problems result-
ing from unnecessary duplicated data as well as the close coupling
of programs and physical file layouts and the serious performance
problems that arise when searching the file, soon drove data man-
agement personnel of the 1950s and 1960s to search for alternatives.

ISAM Files

Prior to the introduction of true database management systems,
programmers at IBM developed an enhanced file organization
known as Indexed Sequential Access Method (ISAM), which support-
ed quick sequential access to data for batch processing but also pro-
vided indexes to fields in the file for fast access searches.

An ISAM file is stored on a disk. It is written initially to disk with
excess space left in each cylinder occupied by the file. This allows
records to be added in sequential key order. When a cylinder fills
up, records are written to an overflow area and linked back to
where they appear in the sequence in the file's primary storage ar-
eas (see Figure 3-2).

Note: Hard drives write files to a single track on a single surface
in a disk drive. When the track is full, then the drive writes to
the same track on another surface. The same tracks on all the
surfaces in a stack of platters in a disk drive are known as a cyl-
inder. By filling a cylinder before moving to another track on the
same surface, the disk drive can avoid moving the access arm to
which read~write heads are attached, thus saving time in the
read or write process.

FILE PROCESSING SYSTEMS 51

Cylinder #2

Overflow area for cylinder #1
Cylinder #1

Cylinder #3
used

used

/ "\\

/
,/

unused \

unused

Overflow area for cylinder #2
unused I unused

Overflow area for cylinder #3

Figure 3-2: ISAM file organization

When the overflow area fills up, the file must be reblocked. During
the reblocking process, the file size is increased and records are re-
written, once again leaving expansion space on each cylinder occu-
pied by the file. No data processing can occur using the file while
reblocking is in progress.

Depending on the implementat ion, indexes to ISAM files may be
stored in the same file as the data or in separate files. When the data
files are stored separately, the functions that manipulate the files
treat the indexes and data as if they were one logical file.

Note: Although ISAM files have largely fallen into disuse, the
DBMS Informix continues to use its own version of I S A M - -
c-isam--for data storage.

52 HISTORICAL ANTECEDENTS

Limitations of File Processing
File processing, regardless of whether it uses simple data files or
ISAM files, is awkward at best. In addition to the problems men-
tioned earlier in this section, there are two more major drawbacks
to file processing.

First, file processing cannot support ad hoc queries (queries that
arise at the spur of the moment, cannot be predicted, and may never
arise again). Because data files are created by the organization they
are serving, there is no common layout to the files from one organi-
zation to another. There is therefore no reasonable way for a soft-
ware developer to write a language that can query any data file; a
language that would query file A probably won ' t work with file B
because there is no similarity between the layout of the files. There-
fore, access is limited to preplanned queries and reports that are
provided by application programs.

So much of today's data access requires ad hoc querying capabili-
ties. Consider, for example, an ATM machine, perhaps the penulti-
mate ad hoc query device. When you walk up to the machine, there
is no way for the machine's software to predict which account you
will access. Nor is there any way to predict who will use a particular
machine nor what that person will request from the machine.
Therefore, the software must be able to access data at any time, from
any location, from any account holder, and perform any requested
action.

Second, when a file processing system is made up of many files,
there is no simple way either to validate cross references between
the files or to perform queries that require data from multiple files.
This cross-referencing issue is a major data integrity concern. If you
store customer data in file A and orders in file B, you want the cus-
tomer data in file B (even if it's only a customer number) to match
the customer data in file A. Whenever data are duplicated, they
must remain consistent. Unfortunately, when data are stored in
multiple files, there is no easy way to perform this type of valida-
tion: The only way is to write a program the uses both files and ex-
plicitly verifies that the customer data in file B matches data in file

FILE PROCESSING SYSTEMS 53

A. Although this can certainly be done, file processing systems rare-
ly perform this type of validation.

By the same token, queries or reports that require data to be extract-
ed from multiple files are difficult to prepare. The application pro-
gram that generates the output has to be created to read all
necessary files, resulting in a program that iss difficult to debug and
maintain due to its complexity.

The solution is to look for some way to separate physical storage
structures from logical data access. In other words, the program or
user manipulating data shouldn't need to be concerned about phys-
ical placement of data in files, but should be able to express data
manipulation requests in terms of how data logically relate to one
another. This separation of logical and physical data organization is
the hallmark of a database system.

File Processing on the Desktop
One of the problems with data management software written for
PCs has been that both developers and users often didn't under-
stand the exact meaning of the term database. As a result, the word
was applied to any piece of software that managed data stored in a
disk file, regardless of whether the software could handle logical
data relationships.

The trend was started in the early 1980s by a product called pfs:File.
The program was a simple file manager. You defined your fields
and then used a default form for entering data. There was no way
to represent multiple entities or data relationships. Nonetheless, the
product was marketed as a database management system and the
confusion in the marketplace began.

Note: Even more egregious was the use of the word database to
describe a rectangular area on a spreadsheet. This misuse, too,
is still extant.

54 HISTORICAL ANTECEDENTS

A number of products have fallen into this trap. One such
product~FileMaker Pro~began as a file manager and has been up-
graded to database status. Others, such as the data management
segments of integrated packages such as Microsoft Works and Clar-
isWorks (aka AppleWorks) continue to exist as file managers.

You may often hear products such as those in the preceding para-
graph described as "flat-file databases," despite the term "data-
base" being a misnomer. Nonetheless, desktop file managers can be
useful tools for applications such as maintaining a mailing list, cus-
tomer contact list, and so on.

Note: Access, which is a part of Microsoft Office for Windows,
is a true database management system, although it is intended
as a desktop product rather than a client-server product.

The issue here is not to be a database snob, but to ensure that con-
sumers actually understand what they are buying and the limita-
tions that accompany a file manager. The term database is still
misused in software marketing and you need to pay special atten-
tion to the capabilities of a product when you are considering a pur-
chase.

The Hierarchical Data Model

The first true database data model to be developed was the hierar-
chical data model, which appeared as the basis of a commercial prod-
uct in 1966. Like the two network data models that followed, it was
a navigational data model, meaning that access paths were con-
strained by predeclared pointer structures in the schema.

Characteristics of the Hierarchical Data Model

A database that is designed to use the hierarchical data model is re-
stricted to one-to-many relationships. In addition, no child entity

THE HIERARCHICAL DATA MODEL 55

may have more than one parent entity. The implications of this last
restriction are significant.

As an example, consider the ER diagram in Figure 3-3, which con-
tains two hierarchies, or trees. The first relates departments to their
employees and their projects. The second relates employees to
projects. There is a one-to-many relationship between an employee
and a department, but a many-to-many relationship between
projects and employees. The relationship between department and
project is one-to-many.

Department
..................................

dept_name
mgr_f_name
mgr_[_name

Emp [oyee
.

�9 I D_numb
f_name
[_name
street
city

s t a t e
z i p

b i r t hda te
s s n

Proj ec t
.

proj _name
s t a r t ~ a t e

es t__end_~Ja te
reader_f _name
teader_t_name

Emp [ogee
.

m l D_numb
f_name
L_.name
s t r ee t
ci ty
state
zip

b i r thda te
sen

Proj ec t
.

proj _name
start_date

es t_end_da te
reader_f _name
teader_t_name

Figure 3-3: Sample hierarchies

Ideally, we would like to be able to use a composite entity to handle
the many-to-many relationship. Unfortunately, the hierarchical
data model does not permit the inclusion of composite entities.
(There is no way to give a single entity two parent entities.) The
only solution is to duplicate entity occurrences. This means that a

56 HISTORICAL ANTECEDENTS

project occurrence must be duplicated for every employee that
works on the project. In addition the project and employee entities
are duplicated in the department hierarchy as well.

By their very nature, hierarchies include a great deal of duplicated
data. This means that hierarchical databases are subject to the data
consistency problems that arise from unnecessary data duplication.

There is another major limitation to the hierarchical data model. Ac-
cess is only through the entity at the top of the hierarchy, the root.

From each root occurrence, the access path is from top down and
left to right. This means that the path through the department hier-
archy, for example, is through a department, to all of its employees,
and only then to its projects. For example, see Figure 3-4, which con-
tains two occurrences of the department/employee/project hierar-
chy. The arrows on the dashed lines connecting the entity
occurrences represent the traversal order.

The relationships between the entities in an occurrence of a hierar-
chy are maintained by pointers embedded in the data. As a result,
traversing a hierarchy in its default order is very fast. However, if
you need random access to data, then access can be extremely slow
because you must traverse every entity occurrence in the hierarchy
preceding a needed occurrence to reach that needed occurrence. Hi-
erarchies are therefore well suited to batch processing in tree tra-
versal order, but are not suitable for applications that require ad hoc
querying.

The hierarchical data model is a giant step forward from file pro-
cessing systems, including those based on ISAM files. It allows the
user to store and retrieve data based on logical data relationships. It
therefore provides some independence between the logical and
physical data storage, relieving application programmers to a large
extent of the need to be aware of the physical file layouts.

THE HIERARCHICAL DATA MODEL 57

Figure 3-4: Tree traversal order in two occurrences of a hierarchy

IMS

The most successful hierarchical DBMS has been IMS, an IBM prod-
uct. Designed to run on IBM mainframes, IMS has been handling
high-volume transaction-oriented data processing since 1966. To-
day, IBM supports IMS legacy systems, but actively discourages
new installations. In fact, many tools exist to help companies mi-
grate from IMS to new products or to integrate IMS into more up-
to-date software.

IMS does not adhere strictly to the theoretical hierarchical data
model. In particular, it does allow multiple parentage in some very
restrictive situations. As an example, consider Figure 3-5. There are
actually two hierarchies in this diagram: the department to project
hierarchy and the hierarchy consisting of just the employee.

58 HISTORICAL ANTECEDENTS

Oepartment
..................................

dept_name
mgr_f_name
mgr_t_name

Proj ec t
.

proj _name
star t_date

ms t_end_da te ~C)~
Leader_f _name
teQder_t_nQme

Emp t oyee
..................................

* I O_numb
f__name
L_name
street
ci tg
stote
zip

b i r thda te
~ s n

Figure 3-5: Two IMS hierarchies with permitted multiple parentage

Note: IMS refers to each hierarchy as a database and each entity
as a segment.

The multiple parentage of the project entity is permitted because
the second parent~the employee ent i ty~is in another hierarchy
and is at a higher level in the hierarchy. Despite the restrictions on
multiple parentage, this easing of the rules goes a long way to re-
moving unnecessary duplicated data.

IMS does not support a query language. All access is through appli-
cation programs that are usually written in COBOL. Like a true hi-
erarchical DBMS, it is therefore best suited to batch processing in
tree-traversal order. It has been heavily used in large businesses
with heavy operational transaction processing loads, such as banks
and insurance companies.

THE SIMPLE NETWORK DATA MODEL 59

The Simple Network Data Model
At the same time IBM was developing IMS, other companies were
working on DBMSs that were based on the simple network data
model. The first DBMS based on this model appeared in 1967 (IDS
from GE) and was welcomed because it directly addressed some of
the limitations of the hierarchical data model. In terms of business
usage, simple network databases had the widest deployment of any
of the pre-relational data models.

Note: The network data models--both simple and complex m
predate computer networks as we know them today. In the con-
text of a data model, the term "network" refers to an intercon-
nected mesh, such as a network of neurons in the brain or a
radio or television network.

Characteristics of a Simple Network

A simple network database supports one-to-many relationships be-
tween entities. There is no restriction on multiple parentage, how-
ever. This means that the employees/departments/projects
database we have been using as an example could be designed as in
Figure 3-6.

In this example, the project acts as a composite entity between de-
partment and employee. In addition, there is a direct relationship
between department and employee for faster access.

Given the restrictions of the hierarchical data model, the simple net-
work was a logical evolutionary step. It removed the most aggre-
gious limitation of the hierarchical data model, that of no multiple
parentage. It also further divorced the logical and physical storage,
although as you will see shortly, simple network schemas still al-
lowed logical database designers to specify some physical storage
characteristics.

60 HISTORICAL ANTECEDENTS

Department
.

dept_name
mgr_f_name
mgr_l_name

Proj ec t
.

proj _name
s t a r t ~ a t e

ms t_end~a te
leader_f_name
leader_l_name

C)~

Empt ogee
..................................

* I D_.numb
f_.name
L._name
street

ei ty
state
zip

b i r thda te
s s n

Figure 3-6: A simple network data model

Simple network databases implement data relationships either by
embedding pointers directly in the data or through the use of index-
es. Regardless of which strategy is used, access to data is restricted
to the predefined links created by the pointers unless a fast access
path has been designed to a particular type of entity. In this sense,
a simple network is navigational, just like a hierarchical database.

There are two types of fast access paths available to the designer of
a simple network. The first~hashing~involves the strategy used
to place entity occurrences in a data file. When an entity occurrence
is hashed into a data file, the DBMS uses a key (the value of one or
more attributes) to compute a physical file locator (usually known
as the database key). To retrieve the occurrence, the DBMS recom-
putes the hash value. Occurrences of related entities are then clus-
tered around their parent entity in the data file. The purpose of this
is twofold: It provides fast access to parent entities and puts child
entities on the same disk page as their parents for faster retrieval. In
the example we are using, a database designer might choose to hash
department occurrences and cluster projects around their depart-
ments.

THE SIMPLE NETWORK DATA MODEL 61

Note: An entity occurrence either can be clustered or hashed; it
can't be both because the two alternatives determine physical
placement of data in a file.

The second type of fast access path is an index, which provides fast,
direct access to entity occurrences containing secondary keys.

Note: For an in-depth explanation of indexing, see "Indexing"
on page 122.

If occurrences are not hashed and have no indexes, then the only
way to retrieve them is by traversing down relationships with par-
ent entity occurrences.

To enable traversals of the data relationships, a simple network
DBMS must keep track of where it is in the database. For every pro-
gram running against the database, the DBMS maintains a set of
currency indicators, each of which is a system variable containing a
database key of the last entity occurrence accessed of a specific type.
For example, there are currency indicators for each type of entity,
for the program as a whole, and so on. Application programs can
then use the contents of the currency indicators to perform data ac-
cesses relative to the program's previous location in the database.

Originally, simple network DBMSs did not support query languag-
es. However, as the relational data model became more popular,
many vendors added relational-style query languages to their
products. If a simple network database is designed like a relational
database, then it can be queried much like a relational database.
However, the simple network is still underneath and the database
is therefore still subject to the access limitations placed on a simple
network.

Simple network databases are not easy to maintain. In particular,
changes to the logical design of the database can be extremely dis-
ruptive. First, the database must be brought offline; no processing

62 HISTORICAL ANTECEDENTS

can proceed against it until the changes are complete. Once the da-
tabase is down, then the following process occurs:

1. Back up all data or save the data in text files.

2. Delete the current schema and data files.

3. Compile the new database schema, which typically is contained
in a text file, written in a database definition language (DDL).

4. Reallocate space for the data files.

5. Reload the data files.

In later simple network DBMSs, this process was largely automated
by utility software, but considering that most simple network
DBMSs were mainframe-based, they involved large amounts of da-
ta. Changes to the logical design could take significant amounts of
time.

There are many simple network DBMSs in use today as legacy sys-
tems. However, it would be highly unusual for an organization to
decide to create a new database based on this data model.

CODASYL

In the mid 1960s, government and industry professionals organized
into the Committee for Data Systems Languages (CODASYL).
Their goal was to develop a business programming language, the
eventual result of which was COBOL. As they were working, the
committee realized that they had another output besides a pro-
gramming language: the specifications for a simple network data-
base. CODASYL spun off the Database Task Group (DBTG), which
in 1969 released its set of specifications.

The CODASYL specifications were submitted to the American Na-
tional Standards Institute (ANSI). ANSI made a few modifications
to the standard to further separate the logical design of the database
from its physical storage layout. The result was two sets of very
similar, but not identical, specifications.

THE SIMPLE NETWORK DATA MODEL 63

Note: It is important to understand that CODASYL is a stan-
dard rather than a product. Many products were developed to
adhere to the CODASYL standards. In addition, there have
been simple network DBMSs that employ the simple network
data model but not the CODASYL standards.

A CODASYL DBMS views a simple network as a collection of two-
level hierarchies known as sets. The database in Figure 3-6 requires
two sets: one for depar tment->employee and department->project
and the second for employee->project. The entity at the "one" end
of the relationships is known as the owner of the set; entities at the
"many" end of relationships are known as members of the set. There
can be only one owner entity, but many member entities, of any set.
The same entity can be an owner of one set and a member of anoth-
er, allowing the database designer to build a ne twork of many lev-
els. In fact, there is no limit to the number of sets to which an entity
can belong.

As ment ioned in the previous section, access is either directly to an
entity occurrence using a fast access path (hashing or an index) or
in traversal order. In the case of a CODASYL database, the members
of each set occurrence have an order that is specified by the data-
base designer.

If an entity is not given a fast access path, then the only way to re-
trieve occurrences is through the owners of some set. In addition,
there is no way to retrieve or search all occurrences of an entity un-
less all of those occurrences are members of the same set, with the
same owner.

Each set provides a conceptual linked list, beginning with the own-
er occurrence, continuing through all member occurrences, and
linking back to the owner. Like the occurrences of a hierarchy in a
hierarchical database, the occurrences of a set are distinct and unre-
lated, as in Figure 3-7. This particular illustration contains two oc-
currences of the set that depar tment owns ~ members are
employee and p r o j e c t ~ a n d three occurrences of the set that em-
ployee o w n s ~ m e m b e r is project.

64 HISTORICAL ANTECEDENTS

Figure 3-7: Occurrences of CODASYL sets

Note: Early CODASYL DBMSs actually implemented sets as
linked lists. The result was complex pointer manipulation in the
data files, especially for entities that were members of multiple
sets. Later products represented sets using indexes, with data-
base keys acting as pointers to the storage location of owner and
member records.

The independence of set occurrences presents a major problem for
entities that aren't a member of any set, such as the department oc-
currences in Figure 3-7. To handle this limitation, CODASYL data-
bases support a special type of se t - -of ten called a system s e t - - t h a t
has only one owner occurrence, the database system itself. All oc-
currences of an entity that is a member of that set are connected to
the single owner occurrence. Employees and projects would proba-
bly be included in a system set also to provide the ability to access
all employees and all projects. The declaration of system sets is left
up to the database designer.

Any DBMS that was written to adhere to either set of CODASYL stan-
dards is generally known as a CODASYL DBMS. This represents the
largest proportion of simple network products that were marketed.

THE COMPLEX NETWORK DATA MODEL 65

Arguably, the most successful CODASYL DBMS was IDMS, origi-
nally developed by Cullinet. IDMS was a mainframe product that
was popular well into the 1980s. As relational DBMSs began to
dominate the market, IDMS was given a relational-like query lan-
guage and marketed as IDMS/R. Ultimately, Cullinet was sold to
Computer Associates, which markets and supports the product un-
der the name CA-IDMS.

Note: Although virtually every PC DBMS on the market today
claims to be relational, many are not. Some, such as FileMaker
Pro and Panorama, are actually simple networks. These are cli-
ent~server products, robust enough for small business use. They
allow multiple parentage with one-to-many relationships and
represent those relationships with preestablished links between
files. These are simple networks. As you become familiar with
the relational data model, you will understand why such prod-
ucts aren't relational. It doesn't mean that they aren't good
products, but simply that they don't meet the minimum re-
quirements for a relational DBMS.

The Complex Network Data Model
The complex network data model was developed at the same time
as the simple network. It allows direct many-to-many relationships
without requiring the introduction of a composite entity. The intent
of the data model's developers was to remove the restriction
against many-to-many relationships imposed by the simple net-
work data model. However, the removal of this relationship comes
with a steep price.

As you will remember from Chapter 2, there are at least two major
problems associated with the inclusion of direct many-to-many re-
lationships. Consider first the database segment in Figure 3-8. No-
tice that there is no place to store data about the quantity of each
item being ordered. The need to store relationship data is one rea-
son why we replace many-to-many relationships with a composite
entity and two one-to-many relationships.

66 HISTORICAL ANTECEDENTS

Customer
..

customer_numb
f_name
[_name
street
ci t9
stote
zip

phone

I
Order

..

order_numb
order~Qte

toto[$

I
I tem

..................................

i tem_Jnumb
title
price

Figure 3-8: A complex network lacking a place to store relationship data

Nonetheless, if we examine an occurrence diagram for Figure 3-8
(see Figure 3-9), you can see that there is no ambiguity in the rela-
tionships. However, assume that we now add another entity to the
design, as in Figure 3-10. In this case, each item can appear on many
shipments and each shipment can contain many items.

The problem with this design becomes clear when you look at the
occurrences in Figure 3-11. Notice, for example, that it is impossible
to determine the order to which Shipment #1 and Shipment #2 be-
long. After you follow the relationships from the shipment occur-
rences to Item #1, there is no way to know which order is correct.

THE COMPLEX NETWORK DATA MODEL 67

Figure 3-9: Sample occurrences for the design in Figure 3-8

There are two solutions to this problem. The first is to introduce an
additional relationship to indicate which shipment comes from
which order, as in Figure 3-12. Although this is certainly a viable so-
lution, the result is increased complexity for storing and retrieving
data.

The other solution is to abandon the use of the complex network al-
together and introduce composite entities to reduce all the many-
to-many relationships to one-to-many relationships. The result, of
course, is a simple network.

68 HISTORICAL ANTECEDENTS

Customer
..

customer_numb
f_name
[_name
street
ci ty

s t a t e
z i p

phone

Order
..................................

order_numb
order_date

t o t a t $

I tern

item_numb
title
pr ice

Sh i pment
.

sh i pmen t_da te
weigh t

c a r r i e r
numb_i terns

tracking_numb

Figure 3-10: A complex network with ambiguous logical relationships

THE COMPLEX NETWORK DATA MODEL 69

Figure 3-11: Occurrences of the complex network in Figure 3-10 containing ambiguous logical
relationships

Note: As you will see in Chapter 4, a relational DBMS can rep-
resent all the relationships acceptable in a simple ne twork~
including composite enti t ies~but does so in a nonnavigational
manner. Like a sample network, it can capture all of the mean-
ing of a many-to-many relationship and still avoid data ambi-
guity.

70 HISTORICAL ANTECEDENTS

Customer
.

customer_numb
f_name
[_name
s t ree t
ci tg
stote
zip

phone

Order
..................................

order_numb
II order_date

totot$

Item
item_numb

t i t t e
pr ice

C~

Shipment
.

shipment_date
weight

c a r r i e r
numb_items

tracking_numb

Figure 3-12: Using an additional relationship to remove logical ambiguity in a
complex network

THE COMPLEX NETWORK DATA MODEL 71

Because of the complexity of maintaining many-to-many relation-
ships and the possibility of logical ambiguity, there have been no
widely successful commercial products based on the complex net-
work data model. However, the data model remains in the litera-
ture and provides some theoretical completeness to traditional data
modeling.

Note: Although it is marketed as a relational DBMS and is typ-
ically used as one, Microsoft Access can actually function as a
complex network. It does allow direct many-to-many relation-
ships. Fortunately, most database developers who work with the
product know better than to try to use this "feature."

Note: In terms of the sequence of the development of data mod-
els, the relational data model followed the network data models.
Since the development of the relational data model, two addi-
tional data models have appeared: the object-oriented data mod-
el (covered in Chapter 8 as it relates to the relational data model)
and multidimensional databases (usually known as online anal-
ysistical processing [OLAP] or star schema databases). Multi-
dimensional databases are designed primarily for use with data
warehouses and are therefore beyond the scope of this book.

This Page Intentionally Left Blank

The Relational Data Model
Once you have a completed ER diagram, you can translate that con-
ceptual logical schema into the formal data model required by your
DBMS. Today, most new database installations are based on the re-
lational data model. We call databases that adhere to that model re-
lational databases.

Note: The older data models~in particular the hierarchical
data model and the simple network data model~are still in use
in many legacy database systems. However, it is rare to find a
business creating a new one. On the other hand, the object-ori-
ented data model is still relatively new, and although it has not
replaced the relational data model and does not appear to be do-
ing so, some new installations are either object-oriented or a
combination of relational and object-oriented. You can find de-
tails about how objects have been integrated into relational da-
tabases in Chapter 8.

73

74 THE RELATIONAL DATA MODEL

A relational database is a database whose logical structure is made
up of nothing but a collection of relations. Although you may have
read somewhere that a relational database has "relationships be-
tween files," nothing could be further from the truth. In this chap-
ter, you will learn exactly what a relation is and how relations
provide representations of data relationships.

Note: Remember from Chapter 2 that we said that a DBMS iso-
lates database users from physical storage. A logical data model
therefore has absolutely nothing to do with how the data are
stored in files on disk.

The relational data model is the result of the work of one man
Edgar (E. E) Codd. During the 1960s, Dr. Codd, although trained as
a mathematician, was working with existing data models. His expe-
rience led him to believe that they were clumsy and unnatural ways
of representing data relationships. He therefore went back to math-
ematical set theory and focused on the construct known as a rela-
tion. He extended that concept to produce the relational database
model, which he introduced in a seminal paper in 1970.

Note: You will find the citation for Codd's original paper and
his other writings on the relational data model in the For Fur-
ther Reading section at the end of this chapter.

Understanding Relations
In mathematical set theory, a relation is the definition of a table with
columns (attributes) and rows (tuples). (The word "table" is used
synonymously with "relation.") The definition specifies what will
be contained in each column of the table, but does not include data.
When you include rows of data, you have an instance of a relation,
such as the small Customers relation in Figure 4-1.

At first glance, a relation looks much like a flat file or a rectangular
portion of a spreadsheet. However, because it has its underpinnings
in mathematical set theory, a relation has some very specific

UNDERSTANDING RELATIONS 75

Customer First name Last name Phone number

0001 Jane Doe (555) 555-1111
0002 John Doe (555) 555-2222
0003 Jane Smith (555) 555-3333
0004 John Smith (555) 555-4444

Figure 4-1: A sample Customers relation

characteristics that distinguish it from other rectangular ways of
looking at data. Each of these characteristics forms the basis of a
constraint that will be enforced by the DBMS.

Columns and Column Characteristics

A column in a relation has the following properties:

A name that is unique within the table: Two or more ta-
bles within the same relational schema may have col-
umns with the same n a m e s ~ i n fact, as you will see
shortly, in some circumstances this is highly de s i r ab l e~
but a single table must have unique column names. When
the same column name appears in more than one table
and tables that contain that column are used in the same
data manipulat ion operation, you qualify the name of the
column by preceding it with the name of the table and a
period, as in:

customePs.customeP numbeP

I~ A domain: The values in a column are d rawn from one
and only one domain. As a result, relations are said to be
column homogeneous. In addition, every column in a table
is subject to a domain constraint. Depending on your
DBMS, the domain constraint may be as simple as a data
type, such as integers or dates. Alternatively, your DBMS
may allow you to create your own, very specific, do-
mains that can be attached to columns.

76 THE RELATIONAL DATA MODEL

Rows and Row Characteristics

A row in a relation has the following properties:

Only one value at the intersection of a column and row:
A relation does not allow multivalued attributes.
Uniqueness: There are no duplicate rows in a relation.

Note: For the most part, DBMSs do not enforce the unique row
constraint automatically. However, as you will see in the next
bullet, there is another way to obtain the same effect.

A primary key: A primary key is a column or combination
of columns that uniquely identifies each row. As long as
you have unique primary keys, you will ensure that you
also have unique rows. We will look at the issue of what
makes a good primary key in great depth in the next major
section of this chapter.

Types of Tables
A relational database works with two types of tables. Base tables are
relations that are actually stored in the database. These are the ta-
bles that make up your schema.

However, relational operations on tables produce additional tables
as their result. Such tables, which exist only in main memory, are
known as virtual tables. Virtual tables may not be legal re la t ions~in
particular, they may have no primary k e y ~ b u t because virtual ta-
bles are never stored in the database, this presents no problem in
terms of the overall design of the database.

The use of virtual tables benefits a DBMS in several ways. First, it
allows the DBMS to keep intermediate query tables in main memo-
ry rather than storing them on disk, enhancing query performance.
Second, it allows tables that violate the rules of the relational data
model to exist in main memory without affecting the integrity of
stored data. Finally, it helps avoid fragmentation of database files

PRIMARY KEYS 77

and disk surfaces by avoiding repeated write, read, and delete op-
erations of temporary tables.

Note: SQL, the language used to manage most relational
DBMSs, also supports "temporary base tables." Although
called base tables, temporary tables are actually virtual tables in
the sense that they exist only in main memory for a short time
and are never stored in the physical database.

A Notation for Relations

You will see instances of relations throughout this book used as ex-
amples. However, we do not usually include data in a relation
when documenting that relation. One common way to express a re-
lation is as follows:

relation_name (primary ke.y, non_primary_key_column, ...)

For example, the Customers relation that you saw in Figure 4-1
would be written as:

customers (customer numb, first_name, iast_name, phone)

The preceding expression is a true relation, an expression of the
structure of a relation. It correctly does not contain any data. (If data
are included, you have an instance of a relation.)

Primary Keys
As you just read, a unique primary key makes it possible to unique-
ly identify every row in a table. Why is this so important? The issue
is the same as with entity identifiers: You want to be able to retrieve
every single piece of data you put into a database.

As far as a relational database is concerned, you should need only
three pieces of information to retrieve any specific bit of data" the
name of the table, the name of the column, and the primary key of

78 THE RELATIONAL DATA MODEL

the row. If primary keys are unique for every row, then we can be
sure that we are retrieving exactly the row we want. If they are not
unique, then we are retrieving only some row with the primary key
value, which may not be the row containing the data for which we
are searching.

Note: Notice how the preceding significantly distinguishes a re-
lational database from one based on a navigational data model.
You can retrieve any piece of data directly with only three pieces
of information, whereas in a navigational database, a significant
traversal of entity occurrences might be required to locate the
same piece of data.

Along with being unique, a primary key must not contain the value
null. Null is a special database value meaning "unknown." It is not
the same as a zero or a blank. If you have one row with a null pri-
mary key, then you are actually all right. However, the minute you
introduce a second one, you have lost the property of uniqueness.
We therefore forbid the presence of nulls in any primary key col-
umns. This constraint, known as entity integrity, will be enforced by
a DBMS whenever data are entered or modified.

Selecting a good primary key can be a challenge. As you may re-
member from Chapter 2, some entities have natural primary keys,
such as purchase order numbers. These are arbitrary, meaningless,
unique identifiers that a company attaches to the orders it sends to
vendors and are therefore ideal primary keys.

Primary Keys to Identify People
What about a primary key to identify people? The first thing that
pops into your mind might be a social security number. Every per-
son in the United States over the age of 12 months has one, right?
And the U.S. government assigns them so they are unique, right?
Unfortunately, the answer to both questions is "no."

The Social Security Administration has been known to give every-
one in an entire town the same SSN; over time, SSNs are reused.

PRIMARY KEYS 79

However, these are minor problems compared to the issue of the so-
cial security number being null.

Consider what happens at a college that uses social security num-
bers as student numbers when international students enroll. Upon
entry into the country, the international students do not have social
security numbers. Because primary keys cannot be null, the inter-
national students cannot sign up for classes, or even be enrolled in
the college, until they have some sort of SSN.

The college's solution is to give them "fake" numbers in the format
999-999-XXXX, where XXXX is some number currently not in use.
Then, when the student receives a "real" SSN from the government,
the college supposedly replaces the fake value with the real one.
Sometimes, however, the process does not work. A graduate student
ended up with his first semester's grades being stored under the
fake SSN but the rest of his grades under his real number. (Rather
than changing the original data, someone created an entire new
transcript for the student.) When the time came to audit his tran-
script to see if he had satisfied all his graduation requirements, he
was told that he was missing an entire semester's worth of courses.

This example leads us to two important desirable qualities of pri-
mary keys:

A primary key should be some value that is highly un-
likely ever to be null.
A primary key should never change.

Although social security numbers initially look like good natural
identifiers, you will be much better off in the long run using arbi-
trary numbers for peop le~such as student numbers or account
numbers ~ than relying on social security numbers.

Note: There is also a very important privacy issue associated
with the use of SSNs in environments where no reporting of in-
come is necessary. This has nothing to do with the design of a
database but is often a significant social consideration.

80 THE RELATIONAL DATA MODEL

Avoiding Meaningful Primary Keys
It can be very tempting to code meaning into a primary key. For ex-
ample, assume that Lasers Only wants to assign codes to its distrib-
utors rather than giving them arbitrary distributor numbers.
Someone might create codes such as TLC for The Laser Club and JS
for Jones Services. At first, this may seem like a good idea: The
codes are short and by looking at them you can figure out which
distributor they reference.

But what happens if one of the companies changes its name? Per-
haps Jones Services is renamed to Jones Distribution House. Do you
change the primary key of the distributor's table? Do you change
the code so that it reads JDH? If the distributor's table were all that
we cared about, that would be the easy solution.

However, consider that the table that describes merchandise items
contains the code for the distributor so that Lasers Only can know
which distributor provides the item. (You'll read a great deal more
about this concept in the next major section of this chapter.) If you
change the distributor code, you must change the code for every
merchandise item that comes from that distributor. Without that
change, Lasers Only will not be able to match the code to a distrib-
utor and get information about the distributor. It will appear that
the item comes from a nonexistent distributor!

Note: This is precisely the problem about which you read in
Chapter 1 concerning Lasers Only's identifiers for their cus-
tomers.

Meaningful primary keys tend to change and therefore introduce
the potential for major data inconsistencies between tables. Resist
the temptation to use them at all costs. Here, then, is yet another
property of a good primary key:

I~ A primary key should avoid using meaningful data. Use
arbitrary identifiers or concatenations of arbitrary identi-
fiers wherever possible.

PRIMARY KEYS 81

It is not always possible to use completely meaningless primary
keys. You may find, for example, that you need to include dates or
times in primary keys to distinguish between events. The sugges-
tion that you should not use meaningful primary keys is therefore
not a hard-and-fast rule but a guideline to which you should try to
adhere whenever it is realistic to do so.

Concatenated Primary Keys
Some tables have no single column in which the values never du-
plicate. As an example, look at the sample order lines table in Figure
4-2. Because there is more than one item on an order, order numbers
are repeated; because the same item can appear on more than one
order, order numbers are repeated. Therefore, neither column by it-
self can serve as the table's primary key.

Order number Item number Quantity
10991 0022 1
10991 0209 2
10991 1001 1
10992 0022 1
10992 0486 1
10993 0209 1
10993 1001 2
10994 0621 1

Figure 4-2: A sample order lines table

However, the combination of an order number and an item number
is unique. We can therefore concatenate the two columns to form
the table's primary key.

It is true that you could also concatenate all three columns in the ta-
ble and still ensure a unique primary key. However, the quantity
column is not necessary to ensure uniqueness and therefore should
not be used. We now have some additional properties of a good pri-
mary key:

82 THE RELATIONAL DATA MODEL

A concatenated primary key should be made up of the
smallest number of columns necessary to ensure the
uniqueness of the primary key.
Wherever possible, the columns used in a concatenated
primary key should be meaningless identifiers.

All-Key Relations
It is possible to have a table in which every column is part of the pri-
mary key. As an example, consider a library card catalog. Each book
title carried by a library has a natural unique primary key-- i t s
ISBN (International Standard Book Number). Each ISBN is as-
signed one or more subject headings in the library's catalog; each
subject heading is also assigned to one or more books. We therefore
have a many-to-many relationship between books and subject
headings.

A relation to depict this relationship might be:

subject catalog (is.bn., subi.ect heading)

All we need to do is pair a subject heading with a book identifier.
No additional data are needed. Therefore, all columns in the table
become part of the primary key.

There is absolutely no problem with having all-key relations in a
database. In fact, they occur whenever a database design contains a
composite entity that has no relationship data. They are not neces-
sarily an error and you can use them wherever needed.

Representing Data Relationships
In the preceding section we alluded to the use of identifiers in more
than one relation. This is the way in which relational databases rep-
resent relationships between entities. To make this concept clearer,
take a look at the three tables in Figure 4-3.

REPRESENTING DATA RELATIONSHIPS 83

Items

Item number Title

1001 Gone with the Wind

1002 Star Wars: Special Edition

1003 Die Hard

1004 Bambi

Orders

Order Customer
Order date number number

11100 0 0 1 2 12/18/00

11101 0 1 8 6 12/18/00

11102 0056 12 / 18 / 00

Distributor
number

OrderLines

Order
Item number Quantity Shipped? number

11100 1001 1 Y

11100 1002 1 Y

11101 1002 2 Y

11102 1002 1 N

11102 1003 1 N

11102 1001 1 N

Price

002 69.95

002 39.95

004 29.95

006 29.95

Figure 4-3: Three relations from the Lasers Only database

Each table in the illustration is directly analogous to the entity by
the same name in the Lasers Only ER diagram. The orders table (the
orders entity) is identified by an order number, an arbitrary unique
primary key assigned by Lasers Only. The items table (the items en-
tity) is identified by an item number, another arbitrary unique pri-
mary key.

84 THE RELATIONAL DATA MODEL

The third table--order lines (the order lines entity) - - tells the com-
pany which items are part of which order. As you saw earlier in this
chapter, this table requires a concatenated primary key because
multiple items can appear on multiple orders. The selection of this
primary key, however, has more significance than simply uniquely
identifying each row: It also represents a relationship between the
order lines, the orders on which they appear, and the items being
ordered.

The item number column in the order lines relation is the same as
the primary key of the item table. This indicates a one-to-many re-
lationship between the two tables. By the same token, there is also
a one-to-many relationship between the orders and order lines ta-
bles because the order number column in the order lines table is the
same as the primary key of the orders table.

When a table contains a column that is the same as the primary key
of a table, the column is called a foreign key. The matching of foreign
keys to primary keys represents data relationships in a relational
database. As far as the user of a relational database is concerned,
there are no structures that show relationships other than the
matching columns.

Note: This is why the idea that relational databases have "rela-
tionships between files" is so absurd. The relationships in a re-
lational database are between logical constructs--tables--and
nothing else. Such structures make absolutely no assumptions
about physical file storage.

Foreign keys may be a part of a concatenated primary key or they
may not be part of their table's primary key at all. Consider, for ex-
ample, a pair of simple Lasers Only customers and orders relations:

customers (customer number, f i r s t name, las t name, phone)
orders (order number, customer number, order date)

The customer number column in the orders table is a foreign key
that matches the primary key of the customers table. It represents
the one-to-many relationship between customers and the orders
they place. However, the customer number is not part of the

REPRESENTING DATA RELATIONSHIPS 85

primary key of its table; it is a nonkey attribute that is nonetheless
a foreign key.

Technically, foreign keys need not have values unless they are part
of a concatenated primary key; they can be null. However, in this
particular database, Lasers Only would be in serious trouble if cus-
tomer numbers were null: There would be no way to know which
customer placed an order!

A relational DBMS uses the relationships indicated by matching
data between primary and foreign keys. For example, assume that
a Lasers Only employee wanted to see what titles had been ordered
on order number 11102. First, the DBMS identifies the rows in the
line items table that contain an order number of 11102. Then, it takes
the item numbers from those rows and matches them to the item
numbers in the items table. In the rows where there are matches, the
DBMS finally retrieves the associated title.

Referential Integrity
The procedure described in the preceding paragraph works very
wel l - -unless for some reason there is no order number in the or-
ders table to match a row in the order lines table. This is a very un-
desirable condition, because there would be no way to ship the
ordered item because there would be no way to find out which cus-
tomer placed the order.

The relational data model therefore enforces a constraint called ref-
erential integrity, which states that every nonnull foreign key value must
match an existing primary key value. Of all the constraints on a rela-
tional database, this is probably the most important because it en-
sures the consistency of the cross-references among tables.

Referential integrity constraints are stored in the database and en-
forced automatically by the DBMS. As with all other constraints,
each time a user enters or modifies data, the DBMS checks the con-
straints and verifies that they are met. If the constraints are violated,
the data modification will not be allowed.

86 THE RELATIONAL DATA MODEL

Foreign Keys and Primary Keys in the Same Table
Foreign keys do not necessarily need to reference a primary key in
a different table; they need only reference a primary key. As an ex-
ample, consider the following employee relation:

employee (employee ID, f i r s t name, las t name, department, manager ID)

A manager is also an employee. Therefore, the manager ID, al-
though named differently from the employee ID, is actually a for-
eign key that references the primary key of its own table. The DBMS
will therefore always ensure that whenever a user enters a manager
ID, that manager already exists in the table as an employee.

Views

The people responsible for developing a database schema and those
who write application programs for use by technologically unso-
phisticated users typically have knowledge of and access to the en-
tire schema, including direct access to the database's base tables.
However, it is usually undesirable to have end users working di-
rectly with base tables, primarily for security reasons.

The relational data model therefore includes a way to provide end
users with their own window into the database, one that hides the
details of the overall database design and prohibits direct access to
the base tables.

The View Mechanism
A view is not stored with data. Instead, it is stored under a name in
the data dictionary along with a database query that will retrieve its
data. A view can therefore contain data from more than one table,
selected rows, and selected columns.

VIEWS 87

Note: Although a view can be constructed in just about any way
that you can query a relational database, many views can be
used only for data display. As you will learn in Chapter 9, only
views that meet a strict set of rules can be used to modify data.

The real beauty of storing views in this way, however, is that when-
ever the user includes the name of the view in a data manipulation
language statement, the DBMS executes the query associated with
the view name and recreates the view's table. This means that the
data in a view will always be current.

A view table remains in main memory only for the duration of the
data manipulation statement in which it was used. As soon as the
user issues another query, the view table is removed from main
memory to be replaced by the result of the most recent query. A
view table is therefore a virtual table.

Note: Some end user DBMSs give the user the ability to save the
contents of a view as a base table. This is a particularly undesir-
able feature, as there are no provisions for automatically updat-
ing the data in the saved view table whenever the tables on
which it was based change. The view table, therefore, quickly
will become out of date and inaccurate.

Why Use Views?
There are three good reasons to include views in the design of a da-
tabase:

As mentioned earlier, views provide a significant securi-
ty mechanism by restricting users from viewing portions
of a schema to which they should not have access.
Views can simplify the design of a database for techno-
logically unsophisticated users.
Because views are stored as named queries, they can be
used to store frequently used, complex queries. The que-
ries can then be executed by using the name of the view in
a simple query.

88 THE RELATIONAL DATA MODEL

Like other structural elements in a relational database, views can be
created and destroyed at any time. However, because views do not
contain stored data, but only specification of a query that will gen-
erate a virtual table, adding or removing view definitions has no
impact on base tables or the data they contain. Removing a view
will create problems only when that view is used in an application
program and the program is not modified to work with a different
view or base table.

The Data Dictionary
The structure of a relational database is stored in the database's data
dictionary, or catalog. The data dictionary is made up of a set of rela-
tions, identical in properties to the relations used to hold data. They
can be queried using the same tools used to query data-handling re-
lations. No user can modify the data dictionary tables directly.
However, data manipulation language commands that create and
destroy database structural elements work by modifying rows in
data dictionary tables.

You will typically find the following types of information in a data
dictionary:

Definitions of the columns that make up each table
Integrity constraints placed on relations
Security information (which user has the right to per-
form which operation of which table)
Definitions of other database structural elements, such as
views (discussed further in Chapter 7) and user-defined
domains

When a user attempts to access data in any way, a relational DBMS
first goes to the data dictionary to determine whether the database
elements the user has requested are actually part of the schema. In
addition, the DBMS verifies that the user has the access rights to
whatever he or she is requesting.

THE DATA DICTIONARY 89

When a user attempts to modify data, the DBMS also goes to the
data dictionary to look for integrity constraints that may have been
placed on the relation. If the data meet the constraints, the modifi-
cation is permitted. Otherwise, the DBMS returns an error message
and does not make the change.

Because all access to a relational database is through the data dictio-
nary, relational DBMSs are said to be data dictionary driven.

Sample Data Dictionary Tables
The precise tables that make up a data dictionary depend some-
what on the DBMS. In this section you will see one example of a
typical way in which one specific DBMS (Sybase SQL Anywhere)
organizes its data dictionary.

The linchpin of the data dictionary is actually a table that docu-
ments all the data dictionary tables (syscatalog, the first few rows of
which can be found in Figure 4-4). From the names of the data dic-
tionary tables, you can probably guess that there are tables to store
data about base tables, their columns, their indexes, and their for-
eign keys.

cPeatop tname

SYS SYSTABLE
SYS SYSCOLUMN
SYS SYSINDEX
SYS SYSIXCOL
SYS SYSFOREIGNKEY
SYS SYSFKCOL
SYS SYSFILE
SYS SYSDOMAIN
SYS SYSUSERPERM
SYS SYSTABLEPERM
SYS SYSCOLPERM

dbspace tabletype ncols pvimaPy_key

SYSTEM TABLE 12 Y
SYSTEM TABLE 14 Y
SYSTEM TABLE 8 Y
SYSTEM TABLE 5 Y
SYSTEM TABLE 8 Y
SYSTEM TABLE 4 Y
SYSTEM TABLE 3 Y
SYSTEM TABLE 4 Y
SYSTEM TABLE 10 Y
SYSTEM TABLE 11 Y
SYSTEM TABLE 6 Y

Figure 4-4: A portion of a syscatalog table

The syscatalog table describes the columns in each table (including
the database dictionary tables). In Figure 4-5, for example, you can

90 THE RELATIONAL DATA MODEL

see a portion of a syscolumns table that describes the Lasers Only
merchandise items table.

c r e a t o r Cname Tname Co l type

DBA i tem numb i tems
n

DBA t i t l e i tems
DBA d i s t r i b u t o r numb i tems
DBA re lease date i tems
DBA r e t a i l _ p r i c e i tems

Nu l l s Lenth InPr imaryKey CoZno

i n t e g e r N 4 Y 1
varchar Y 60 N 2
i n t e g e r Y 4 N 3
date Y 6 N 4
numeric Y 6 N 5

Figure 4-5: Selected rows from a syscolumns table

Keep in mind that these data dictionary tables have the same struc-
ture and must adhere to the same rules as base tables. They must
have nonnull unique primary keys; they must also enforce referen-
tial integrity among themselves.

A Bit of History
When Codd published his paper describing the relational data
model in 1970, software developers were bringing hierarchical and
simple network DBMSs to market. The software was becoming rel-
atively mature and was being widely installed. Although many the-
orists recognized the benefits of the relational data model, it took
some time before relational systems actually appeared.

IBM had a working prototype of its System R by 1976. This product,
however, was never released. Instead, the first relational DBMS to
feature S Q L ~ a n IBM deve lopment~was Oracle, released by the
company of the same name in 1977. IBM didn't actually market a re-
lational DBMS until 1981, when it released SQL/DS.

Oracle debuted on minicomputers running UNIX. SQL/DS ran un-
der VM (often specifically using CMS on top of VM) on IBM main-
frames. There was also a crop of early products that were designed
specifically for PCs, the first of which was dBase II, from a company
named Ashton-Tate. Released in 1981, the product ran on IBM PCs
and Apple II+s.

A BIT OF HISTORY 91

Note: It is seriously questionnable whether dBase was ever truly
a relational DBMS. However, most consumers do consider it to
be the first relational product for PCs.

In 1982, IBM released DB/2 for MVS. This product, still mainframe-
only at that time, brought significant legitimacy to the relational
data model and, despite all the faults in initial releases, firmly en-
trenched relational databases in large corporate environments. To-
day, DB/2 runs on a variety of platforms, from desktop servers to
mainframes.

Oracle was joined by a large number of competing products in the
UNIX market, including Informix and Ingres. Oracle has been the
biggest winner in this group because it now runs on virtually every
OS/hardware platform combination imagineable. It is probably
safe to say that there are more copies of Oracle running on comput-
ers in the world than any other DBMS.

The PC market for relational DBMSs has been flooded with prod-
ucts. As always with software, the best has not necessarily become
the most successful. In 1983, Microrim release its R:BASE product,
the first truly relational product for a PC. With its support for stan-
dard SQL, a powerful integrity rules facility, and a capable pro-
gramming language, R:BASE was a robust product. It succumbed,
however, to the market penetration of dBase. The same can be said
for Paradox (a Borland product, now owned by Corel) and FoxPro
(a Fox Software product, originally named FoxBase).

dBase faded from prominece after being purchased by Borland in
1991. FoxPro, dBase's major competitor, was purchased by Mi-
crosoft in 1992. It, too, is no longer a major player on the desktop.
Instead, the primary end user desktop DBMS for Windows today is
Access, first released by Microsoft in 1993.

92 THE RELATIONAL DATA MODEL

For Further Reading
If you want to follow the history of Codd's specifications for rela-
tional database, consult the following:

Codd, E. E "A Relational Model of Data for Large Shared Data-
banks," Communications of the ACM. Vol. 13, No. 6, June 1970.

Codd, E. E "Extending the Relational Model to Capture More
Meaning," Transactions on Database Systems. Vol. 4, No. 4, December
1979.

Codd, E. E "Relational Database: A Practical Foundation for Pro-
ductivity," Communications of the ACM. Vol. 25, No. 2, February
1982.

Codd, E. E "Is Your DBMS Really Relational?" Computerworld. Oc-
tober 14, 1985: ID / 1-ID / 9.

Codd, E. E The Relational Data Model, Version 2. Addison-Wesley,
1989.

There are also many books that discuss the details of specific rela-
tional DBMSs. After you finish reading this book, you may want to
consult a book that deals with your specific product to help you
learn to develop applications using that product's tools.

Normalization
Given any pool of entities and attributes, there is a large number of
ways you can group them into relations. In this chapter, you will be
introduced to the process of normalization, through which you cre-
ate relations that avoid most of the problems that arise from bad re-
lational design.

There are at least two ways to approach normalization. The first is
to work from an ER diagram. If the diagram is drawn correctly, then
there are some simple rules you can use to translate it into relations
that will avoid most relational design problems. The drawback to
this approach is that it can be difficult to determine whether your
design is correct. The second approach is to use the theoretical con-
cepts behind good design to create your relations. This is a bit more
difficult than working from an ER diagram, but often results in a
better design.

93

94 NORMALIZATION

In practice, you may find it useful to use a combination of both ap-
proaches. First, create an ER diagram and use it to design your re-
lations. Then, check those relations against the theoretical rules for
good design.

Translating an ER Diagram into Relations
An ER diagram in which all many-to-many relationships have been
transformed into one-to-many relationships through the introduc-
tion of composite entities can be translated directly into a set of re-
lations. To do so:

Create one table for each entity.
For each entity that is only at the "one" end of one or
more relationships, and not at the "many" end of any re-
lationship, create a single-column primary key, using an
arbitrary unique number if no natural primary key is
available.
For each entity that is at the "many" end of one or more
relationships, include the primary key of each parent en-
tity (those at the "one" end of the relationships) in the ta-
ble as foreign keys.
If an entity at the "many" end of one or more relationships
has a natural primary key (for example, an order or in-
voice number), use that single column as the primary key.
Otherwise, concatenate the primary key of its parent or
parents with any other column or columns needed for
uniqueness to form the table's primary key.

Following these guidelines, we end up with the following tables for
the Lasers Only database:

customer (customer numb, customer_first_name, customer_iast_name,
customer_street, customer city, customer state, customer zip,
customer_phone, credit_card numb, card exp date)

item (item numb, titie, distributor numb, retaii price,
reiease_date, genre)

order (order numb, customer numb, order_date, order fiiied)

NORMAL FORMS 95

order_lines (order numb, item numb, quantity, discount_applied,
selling_price, line_cost, shipped)

distr ibutor (distr ibutor numb, distributor_name,
distributor_street, distr ibutor_city, distr ibutor_city,
distributor_state, distributor_zip, distributor_phone,
distributor_contact_person, contact_person_ext)

actor (actor numb, actor_name)
performance (actor numb, item numb, role)
producer (producer name, studio)
production (producer name, item numb)

Note: You will see these relations reworked a bit throughout the
remainder of the first part of this book to help illustrate various
aspects of database design. However, the preceding is the design
that results from a direct translation of the ER diagram.

Normal Forms

The theoretical rules that the design of a relation meet are known as
normal forms. Each normal form represents an increasingly stringent
set of rules. Theoretically, the higher the normal form, the better the
design of the relation.

As you can see in Figure 5-1, there are six nested normal forms, in-
dicating that if a relation is in one of the higher, inner normal forms,
it is also in all of the normal forms below it.

In most cases, if you can place your relations in third normal form
(3NF), then you will have avoided most of the problems common
to bad relational designs. Boyce-Codd (BCNF) and fourth normal
form (4NF) handle special situations that arise only occasionally.
However, they are conceptually easy to understand and can be
used in practice if the need arises.

Fifth normal form (5NF), however, is a complex set of criteria that
is extremely difficult to work with. It is, for example, very difficult
to verify that a relation is in 5NF. Most practitioners do not bother
with 5NF, knowing that if their relations are in 3NF (or 4NF if the
situation warrants), then their designs are generally problem free.

96 NORMALIZATION

Figure 5-1: Nested normal forms

Note: In addition to the six normal forms in Figure 5-1, there is
another normal form ~ domain~key normal form ~ that is of
purely theoretical importance and, to this date, has not been
used as a practical design objective.

First Normal Form

A table is in first normal form (1NF) if it meets the following crite-
ria:

The data are stored in a two-dimensional table with no re-
peating groups.

FIRST NORMAL FORM 97

The key to understanding 1NF is therefore understanding the na-
ture of a repeating group of data.

Understanding Repeating Groups
A repeating group is an attribute that has more than one value in each
row. For example, assume that you were working with an employ-
ees relation and needed to store the names and birthdates of the em-
ployees' children. Because each employee can have more than one
child, the names of children and the children's birthdates each form
a repeating group.

Note: A repeating group is directly analogous to a multivalued
attribute in an ER diagram.

There is actually a very good reason why repeating groups are dis-
allowed. To see what might happen if they were present, take a look
at Figure 5-2, an instance of the employees relation we were just dis-
cussing.

Emp. ID First Last Children's Names
1001 Jane Doe Mary, Sam
1002 John Doe Mary, Sam
1003 Jane Smith John, Pat, Lee, Mary
1004 John Smith Michael
1005 Jane Jones Edward, Martha

Children's Birthdates
1/1/92,5/15/94
1/1/92,5/15/94
10/5/94, 10/12/90, 6/6/96, 8/21/94
7/4/96
10/21/95, 10/15/89

Figure 5-2: A relation with repeating groups

Notice that there are multiple values in a single row in both the chil-
dren's names and children's birthdates columns. This presents two
major problems:

There is no way to know exactly which birthdate belongs
to which child. It is tempting to say that we can associate
the birthdates with the children by their positions in the

98 NORMALIZATION

list, but there is nothing to ensure that the relative posi-
tions will always be maintained.
Searching the table is very difficult. If, for example, we
want to know which employees have children born before
1995, the DBMS will need to perform data manipulations
to extract the individual dates from the birthdates column
before it can evaluate the dates themselves. Given that
there is no way to know how many birthdates there are in
the column for any specific row, the processing overload
for searching becomes even greater.

The solution to these problems is, of course, to get rid of the repeat-
ing groups altogether.

Handling Repeating Groups
There are two ways to get rid of repeating groups to bring a relation
into conformance with the rules for first normal form ~ a right way
and a wrong way. We will look first at the wrong way so you will
know what not to do.

In Figure 5-3 you can see a relation that handles repeating groups
by creating multiple columns for the multiple values. This particu-
lar example includes three pairs of columns for a child's name and
birthdate.

Emp. ID First

1001 Jane
1002 John
1003 Jane
1004 John
1005 Jane

Child Child Child Child Child Child
Last

Name1 B date1 Name2 B date2 Name3 B date3
Doe Mary 1 / 1 / 92 Sam 5 / 15 / 94
Doe Mary 1 / 1 / 92 Sam 5 / 15 / 94
Smith John 10/5/94 Pat 10/12/90 Lee 6/6/96
Smith Michael 7/4/96
Jones Edward 10/21/95 Martha 10/15/89

Figure 5-3: A relation handling repeating groups in the wrong way

FIRST NORMAL FORM 99

The relation in Figure 5-3 does meet the criteria for first normal
form: The repeating groups are gone and there is no problem iden-
tifying which birthdate belongs to which child. However, the de-
sign has introduced several problems of its own:

The relation is limited to three children for any given em-
ployee. This means that there is no room to store Jane
Smith's fourth child. Should you put another row for
Jane Smith into the table? If so, then the primary key of
this relation can no longer be just the employee ID. The
primary key must include at least one child's name as
well.
The relation wastes space for people who have less than
three children. Given that disk space is one of the least
expensive elements of a database system, this is probably
the least of the problems with this relation.
Searching for a specific child becomes very clumsy. To an-
swer the question "Does anyone have a child named Lee?"
the DBMS must construct a query that includes a search of
all three child name columns because there is no way to
know in which column the name might be found.

The right way to handle repeating groups is to create another table
(another entity) to handle multiple instances of the repeating group.
In the example we have been using, we would create a second table
for the children, producing something like Figure 5-4.

Neither of the two new tables contains any repeating groups, and
this form of the design avoids all the problems of the preceding so-
lution:

There is no limit to the number of children that can be
stored for a given employee. To add another child, you
simply add another row to the table.
There is no wasted space. The children table uses space
only for data that are present.
Searching for a specific child is much easier because the
child's name is found in only one column.

100 NORMALIZATION

Employees

Emp. ID First Last

1001 Jane Doe
1002 John Doe
1003 Jane Smith
1004 John Smith
1005 Jane Jones

Children
Emp. ID Child Name Birthdate

1001 Mary 1/1/92
1001 Sam 5/15/94
1002 Mary 1/1/92
1002 Sam 5/15/94
1003 John 10/5/94
1003 Pat 10/12/90
1003 Lee 6/6/96
1003 Mary 8/21/94
1004 Michael 7/4/96
1005 Edward 10/21/95
1005 Martha 10/15/89

Figure 5-4: The correct way to handle the repeating group

Problems with First Normal Form

Although first normal form relations have no repeating groups,
they are full of other problems. To see what those problems are, we
will look at the table underlying the data entry form in Chapter 1.
(This table comes from Lasers Only's original data management
system rather than the new and improved design you saw earlier in
this chapter.) Expressed in the notation for relations that we have
been using, the relation is:

orders (customer number, first name, Iast name, street, city, state,
zip, phone, order date, item number, titie, price, has shipped)

FIRST NORMAL FORM 101

The first thing we need to do is determine the primary key for this
table. The customer number alone will not be sufficient because the
customer number repeats for every item ordered by the customer.
The item number will also not suffice, because it is repeated for ev-
ery order on which it appears. We cannot use the order number be-
cause it is repeated for every item on the order. The only solution is
a concatenated key, in this example the combination of the order
number and the item number.

Given that the primary key is made up of the order number and the
item number, there are two important things we cannot do with this
relation:

We cannot add data about a customer until the customer
places at least one order because without an order and an
item on that order, we do not have a complete primary
key.
We cannot add data about a merchandise item we are car-
rying without that item being ordered. There must be an
order number to complete the primary key.

The preceding are insert ion anomalies, a situation that arises when
you are prevented from inserting data into a relation because a com-
plete primary key is not available. (Remember that no part of a pri-
mary key can be null.)

Note: To be strictly correct, there is a third insertion anomaly
in the orders relation: You cannot insert an order until you
know one item on the order. In a practical sense, however, no
one would enter an order without there being an item ordered.

Insertion anomalies are common in first normal form relations that
are not also in any of the higher normal forms. In practical terms,
they occur because there are data about more than one entity in the
relation. The anomaly forces you to insert data about an unrelated
entity (for example, a merchandise item) when you want to insert
data about another entity (such as a customer).

102 NORMALIZATION

First normal form relations can also give us problems when we de-
lete data. Consider, for example, what happens if a customer can-
cels the order of a single item:

In cases where the deleted item was the only item on the
order, you lose all data about the order.
In cases where the order was the only order on which the
item appeared, you lose data about the item.
In cases where the deleted item was the only item ordered
by a customer, you lose all data about the customer.

These deletion anomalies occur because part of the primary key of a
row becomes null when the merchandise item data are deleted,
forcing you to remove the entire row. The result of a deletion anom-
aly is the loss of data that you would like to keep. In practical terms,
you are forced to remove data about an unrelated entity when you
delete data about another entity in the same table.

Note: Moral to the story: More than one entity in a table is a
very bad thing.

There is a final type of anomaly in the orders relation that is not re-
lated to the primary key: a modification, or update, anomaly. The or-
ders relation has a great deal of unnecessary duplicated data, in
particular information about customers. When a customer moves,
then the customer 's data must be changed in every row, for every
item on every order ever placed by the customer. If every row is not
changed correctly, then data that should be the same are no longer
the same. The potential for these inconsistent data is the modifica-
tion anomaly.

Second Normal Form

The solution to anomalies in a first normal form relation is to break
the relation down so that there is one relation for each entity in the
1NF relation. The orders relation, for example, will break down into

SECOND NORMAL FORM 103

four relations (customers, merchandise items, orders, and line
items). Such relations are in at least second normal form (2NF).

In theoretical terms, second normal form is defined as follows:

The relation is in first normal form and all nonkey attributes
are functionally dependent on the entire primary key.

The new term in the preceding is functionally dependent, a special re-
lationship between attributes.

Understanding Functional Dependencies
A functional dependency is a one-way relationship between two at-
tributes such that at any given time, for each unique value of at-
tribute A, only one value of attribute B is associated with it through
the relation. For example, assume that A is the customer number
from the orders relation. Each customer number is associated with
one customer first name, one last name, one street address, one city,
one state, one zip code, and one phone number. Although the val-
ues for those attributes may change, at any moment, there is only
one.

We therefore can say that first name, last name, street, city, state, zip,
and phone are functionally dependent upon the customer number.
This relationship is often written

customer number-> f i r s t name, las t name, s t reet , c i t y , state, zip,
phone

and read "customer number determines first name, last name,
street, city, state, zip, and phone." In this relationship, customer
number is known as the determinant (an attribute that determines
the value of other attributes).

Notice that the functional dependency does not necessarily hold in
the reverse direction. For example, any given first or last name may
be associated with more than one customer number. (It would be

104 NORMALIZATION

unusual to have a customer table of any size without some repeti-
tion of names.)

The functional dependencies in the orders table are:

customer number-> f i r s t name, last name, s t reet , c i t y , state, zip,
phone

i tem number -> t i t l e , price
order number -> customer number, order date
item number + order number -> has shipped

Notice first that there is one determinant for each entity in the rela-
tion and that the determinant is what we have chosen as the entity
identifier. Notice also that when an entity has a concatenated iden-
tifier, the determinant is also concatenated. In this example, wheth-
er an item has shipped depends on the combination of the item and
the order.

Using Functional Dependencies to Reach 2NF
If you have correctly identified the functional dependencies among
the attributes in a database environment, then you can use them to
create second normal form relations. Each determinant becomes the
primary key of a relation. All the attributes that are functionally de-
pendent upon it become nonkey attributes in the relation.

The four relations into which the original orders relation should be
broken are:

customers (customer number, f i r s t name, las t name, s t reet , c i t y ,
state, zip, phone)

items (item number, t i t l e , price)
orders (order number, customer number, order date)
l ine items (order number, item number, has shipped)

Each of these should in turn correspond to a single entity in your ER
diagram.

Note: When it comes to deciding what is driving database de-
sign ~ functional dependencies or entities ~ it is really a
"chicken and egg" situation. What is most important is that

SECOND NORMAL FORM 105

there is consistency between the ER diagram and the functional
dependencies you identify in your relations. It makes no differ-
ence whether you design by looking for functional dependencies
or for entities. In most cases, database design is an iterative pro-
cess in which you create an intial design, check it, modify it, and
check it again. You can look at either functional dependencies
and~or entities at any stage in the process, checking one against
the other for consistency.

The relations we have created from the original orders relation have
eliminated the anomalies present in the original:

It is now possible to insert data about a customer before
the customer places an order.
It is now possible to insert data about an order before we
know an item on the order.
It is now possible to store data about merchandise items
before they are ordered.
Line items can be deleted from an order without affecting
data describing that item, the order itself, or the mer-
chandise item.
Data describing the customer are stored only once and
therefore any change to those data need to be made only
once. A modification anomaly cannot occur.

Problems with 2NF Relations

Although second normal form eliminates problems from many re-
lations, you will occasionally run into relations that are in second
normal form yet still exhibit anomalies. Assume, for example, that
each laser disc title that Lasers Only carries comes from one distrib-
utor and that each distributor has only one warehouse, which has
only one phone number. The following relation is therefore in sec-
ond normal form:

items (item number, t i t i e , d is t r ibutor , warehouse phone number)

For each item number, there is only one value for the item's title, dis-
tributor, and warehouse phone number. However, there is one

106 NORMALIZATION

insertion a n o m a l y ~ y o u cannot insert data about a distributor until
you have an item from that distr ibutor--and a deletion a n o m a l y ~
if you delete the only item from a distributor, you lose data about the
distributor. There is also a modification anomaly: The distributor's
warehouse phone number is duplicated for every item the company
gets from that distributor. The relation is in second normal form, but
not third.

Third Normal Form

Third normal form is designed to handle situations like the one you
just read about in the preceding section. In terms of entities, the
items relation does contain two entities: the merchandise item and
the distributor. That alone should convince you that the relation
needs to broken down into two smaller relations, both of which are
now in third normal form:

i t ems (i t em numbec, d i s t r i b u t o c)
d i s t r i b u t o r s (d i s t v i b u t o c , wacehouse phone numbec)

The theoretical definition of third normal form says:

The relation is in second normal form and there are no tran-
sitive dependencies.

The functional dependencies found in the original relation are an
example of a transitive dependency.

Transitive Dependencies
A transitive dependency exists when you have the following func-
tional dependency pattern:

A -> B and B - > C thepe foPe A -> C

This is precisely the case with the original items relation. The only
reason that the warehouse phone number is functionally dependent
on the item number is because the distributor is functionally

THIRD NORMAL FORM 107

dependent on the item number and the phone number is function-
ally dependent on the distributor. The functional dependencies are
really:

i tem number -> d i s t r L b u t o r
d i s t r i b u t o r -> warehouse phone number

Note: Transitive dependencies take their name from the transi-
tive property in mathematics, which states that if a > b and b >
c, then a > c.

There are two determinants in the original items relation, each of
which should be the primary key of its own relation. However, it is
not merely the presence of the second determinant that creates the
transitive dependency. What really matters is that the second deter-
minant is not a candidate key for the relation.

Consider, for example, this relation:

• (i tem number, UPC code, d i s t r L b u t o r , p r i ce)

The item number is an arbitrary value that Lasers Only assigns to
each merchandise item. The UPC code is an industry-wide code
that is unique to each item as well. The functional dependencies in
this relation are:

i tem number -> UPC code, d i s t r i b u t o r , p r i ce
UPC code -> i tem number, d i s t r L b u t o r , prLce

Is there a transitive dependency here? No, because the second de-
terminant is a candidate key. (Lasers Only could just as easily have
used the UPC code as the primary key.) There are no insertion, de-
letion, or modification anomalies in this relation; it describes only
one entity ~ the merchandise item.

A transitive dependency therefore exists only when the determinant
that is not the primary key is not a candidate key for the relation. For
example, in the items table we have been using as an example, the
distributor is a determinant but not a candidate key for the table.
(There can be more than one item coming from a single distributor.)

This Page Intentionally Left Blank

108 NORMALIZATION

When you have a transitive dependency in a 2NF relation, you
should break the relation into two smaller relations, each of which
has one of the determinants in the transitive dependency as its pri-
mary key. The attributes determined by the determinants become
the nonkey attributes in each relation. This removes the transitive
d e p e n d e n c y ~ a n d its associated anomalies ~ and places the rela-
tions in third normal form.

Note: A second normal form relation that has no transitive de-
pendencies is, of course, automatically in third normal form.

Boyce-Codd Normal Form
For most relations, third normal form is a good design objective. Re-
lations in that state are free of most anomalies. However, occasion-
ally you run across relations that exhibit special characteristics
where anomalies still occur. Boyce-Codd normal form (BCNF) and
fourth normal form (4NF) were created to handle such special situ-
ations.

Note: If your relations are in third normal form and do not ex-
hibit the special characteristics that BCNF and 4NF were de-
signed to handle, then they are automatically in 4NF. As
mentioned earlier in this chapter, it is extremely difficult to de-
termine if a relation is in fifth normal form without the aid of a
computer to do the analyses, and therefore we rarely use 5NF in
practice.

The easiest way to understand BCNF is to start with an example.
Assume that Lasers Only decides to add a relation to its database to
handle employee work scheduling. Each employee works one or
two 4-hour shifts a day at the store. During each shift, an employee
is assigned to one station (a place in the store, such as the front desk
or the stockroom). Only one employee works a station during a giv-
en shift.

BOYCE-CODD NORMAL FORM 109

A relation to handle the schedule might be designed as the follow-
ing:

schedule (employee ID, date , s h i f t , s t a t i o n , worked s h i f t ?)

Given the rules for the scheduling (one person per station per shift),
there are two possible primary keys for this relation: employee ID +
date + shift or date + shift + station. The functional dependencies in
the relation are:

employee TD + date + s h i f t -> s t a t i o n , worked s h i f t ?
date + s h i f t + s t a t i o n -> employee ID, worked s h i f t ?

Keep in mind that this holds true only because there is only one per-
son working each station during each shift.

Note: There is very little difference between the two candidate
keys as far as the choice of a primary key is concerned. In cases
like this, you can choose either one.

This schedule relation exhibits overlapping concatenated candidate
keys. (Both candidate keys have date and shift in common.) Boyce-
Codd normal form was designed to deal with relations that exhibit
this characteristic.

To be in Boyce-Codd normal form, a relation must meet the follow-
ing rule:

The relation is in third normal form and all determinants are
candidate keys.

BCNF is considered to be a more general way of looking at 3NF be-
cause it includes those relations with the overlapping candidate
keys. The sample schedule relation we have been considering does
meet the criteria for BCNF because the two determinants are indeed
candidate keys.

110 NORMALIZATION

Fourth Normal Form

Like BCNF, fourth normal form was designed to handle relations
that exhibit a special characteristic that does not arise too often. In
this case, the special characteristic is something known as a multi-
valued dependency.

As an example, consider the following relation:

movie • (t i t l e , star, producer)

A given movie can have more than one star; it can also have more
than one producer. The same star can appear in more than one mov-
ie; the producer can also work on more than one movie (for exam-
ple, see the instance in Figure 5-5). The relation must therefore
include all columns in its key.

Title Star Producer
Great Film Lovely Lady Money Bags
Great Film Handsome Man Money Bags
Great Film Lovely Lady Helen Pursestrings
Great Film Handsome Man Helen Pursestrings
Boring Movie Lovely Lady Helen Pursestrings
Boring Movie Precocious Child Helen Pursestrings

Figure 5-5: A relation with a multivalued dependency

Because there are no nonkey attributes, this relation is in BCNE
Nonetheless, the relation exhibits anomalies:

You cannot insert the stars of a movie without knowing
at least one producer.

I~ You cannot insert the producer of a movie without know-
ing at least one star.

I~ If you delete the only producer from a movie, you lose in-
formation about its stars.
If you delete the only star from a movie, you lose infor-
mation about its producers.

FOURTH NORMAL FORM 111

Each producer 's name is duplicated for every star in the
move. By the same token, each star's name is duplicated
for each producer of the movie. This unnecessary duplica-
tion forms the basis of a modification anomaly.

There are at least two unrelated entities in this relation, one that
handles the relationship between a movie and its stars and another
that handles the relationship between a movie and its producers. In
a practical sense, that is the cause of the anomalies. (Arguably, there
are also movie, star, and producer entities involved.)

However, in theoretical terms, the anomalies are caused by the
presence of a multivalued dependency in the same relation, which
must be eliminated to go to fourth normal form. The rule for fourth
normal form is:

The relation is in Boyce-Codd normal form and there are no
multivalued dependencies.

Multivalued Dependencies
A multivalued dependency exists when for each value of attribute
A, there exists a finite set of values of attribute B that are associated
with it and a finite set of values of attribute C that are also associat-
ed with it. Attributes B and C are independent of each other.

In the example we have been using, there is just such a dependency.
First, for each movie title, there is a group of actors (the stars) who
are associated with the movie. For each title, there is also a group of
producers who are associated with it. However, the actors and the
producers are independent of one another.

Note: At this point, do not let semantics get in the way of data-
base theory. Yes, it is true that producers fund the movies in
which the actors are starring, but in terms of database relation-
ships, there is no direct connection between the two.

112 NORMALIZATION

The multivalued dependency can be written:

t i t l e ->> s ta r
t i t l e ->> producer

and read "title multidetermines star and title multidetermines pro-
ducer."

Note: To be strictly accurate, a functional dependency is a spe-
cial case of a multivalued dependency where what is being de-
termined is one value rather than a group of values.

To eliminate the multivalued dependency and bring this relation
into fourth normal form, you split the relation, placing each part of
the dependency in its own relation:

movie s tars (t i t l e , s ta r)
movie producers (t i t l e , producer)

With this design, you can independently insert and remove stars
and producers without affecting the other. Star and producer names
also appear only once for each movie with which they are involved.

Normalized Relations and Database Performance

Normalizing the relations in a database separates entities into their
own relations and makes it possible for you to enter, modify, and
delete data without disturbing entities other than the one directly
being modified. However, normalization is not without its down-
side.

When you split relations so that relationships are represented by
matching primary and foreign keys, you force the DBMS to perform
matching operations between relations whenever a query requires
data from more than one table. For example, in a normalized data-
base you store data about an order in one relation, data about a cus-
tomer in a second relation, and data about the order lines in yet a
third relation. The operation typically used to bring the data into a

NORMALIZED RELATIONS AND DATABASE PERFORMANCE 113

single table so you can prepare an output such as an invoice is
known as a join.

In theory, a join looks for rows with matching values between two
tables and creates a new row in a result table every time it finds a
match. In practice, however, performing a join involves manipulat-
ing more data than the simple combination of the two tables being
joined would suggest. Joins of large tables (those of more than a few
hundred rows) can significantly slow down the performance of a
DBMS.

To understand what can happen, you need to know something
about the relational algebra join operation. As with all relational al-
gebra operations, the result of a join is a new table.

Note: Relational algebra is a set of operations used to
manipulate and extract data from relations. Each oper-
ation performs a single manipulation of one or two ta-
bles. To complete a query, a DBMS uses a sequence of
relational algebra operations; relational algebra is
therefore procedural. SQL, on the other hand, is based
on the relational calculus, which is nonprocedural, al-
lowing you to specify what you want rather than how to
get it. A sinlge SQL retrieval command can require a
DBMS to perform any or all of the operations in the re-
lational algebra.

Equi-Joins
In its most common form, a join forms new rows when data in the
two source tables match. Because we are looking for rows with
equal values, this type of join is known as an equi-join (or a natural
equi-join). As an example, consider the two tables in Figure 5-6.

Notice that the ID number column is the primary key of the custom-
ers table and that the same column is a foreign key in the orders
table. The ID number column in orders therefore serves to relate or-
ders to the customers to which they belong.

114 NORMALIZATION

customers

ID number f i r s t name l a s t name

001 Jane Doe
002 John Doe
003 Jane Smith
004 John Smith
005 Jane Jones
006 John Jones

o rde rs

order number ID number orde r date o rde r t o t a l

001 002 10 / 10 / 99 250.65
002 002 2 / 21 / O0 125.89
003 003 11 / 15/99 1567.99
004 004 11 / 22 / 99 180.92
005 004 12 / 15 / 99 565. O0
006 006 10 /8 /99 25. O0
007 006 11 / 12 / 99 85. O0
008 006 12 / 29 / 99 109.12

Figure 5-6: Two tables with a primary key-foreign key relationship

Assume that you want to see the names of the customers who
placed each order. To do so, you must join the two tables, creating
combined rows wherever there is a matching ID number. In data-
base terminology, we are joining the two tables o v e r ID number. The
result table can be found in Figure 5-7.

r e s u l t t a b l e

ID number f i r s t name l a s t n a m e o rde r numb o rde r date o rde r t o t a l

002 John
002 John
003 Jane
004 John
004 John
006 John
006 John
006 John

Doe 001 10 /10 /99 250.65
Doe 002 2 /21 /00 125.89
Smith 003 11 /15 /99 1597.99
Smith 004 11 /22 /99 180,92
Smith 005 12 /15 /99 565.00
Jones 006 10 /8 /99 25,00
Jones 007 11 /12 /99 85.00
Jones 008 12 /29 /99 109.12

Figure 5-7: The joined table

NORMALIZED RELATIONS AND DATABASE PERFORMANCE 115

An equi-join can begin with either source table. (The result should
be the same regardless of the direction in which the join is per-
formed.) The join compares each row in one source table with the
rows in the second. For each row in the first source table that match-
es data in the second source table in the column or columns over
which the join is being performed, a new row is placed in the result
table.

Assuming that we are using the customers table as the first source
table, producing the result table in Figure 5-7 might therefore pro-
ceed conceptually as follows:

1. Search orders for rows with an ID number of 001. Because there
are no matching rows in orders, do not place a row in the result
table.

2. Search orders for rows with an ID number of 002. There are two
matching rows in orders. Create two new rows in the result ta-
ble, placing the same customer information at the end of each
row in orders.

3. Search orders for rows with an ID number of 003. There is one
matching row in orders. Place one new row in the result table.

4. Search orders for rows with an ID number of 004. There are two
matching rows in orders. Place two rows in the result table.

5. Search orders for rows with an ID number of 005. There are no
matching rows in orders. Therefore do not place a row in the re-
sult table.

6. Search orders for rows with an ID number of 006. There are
three matching rows in orders. Place three rows in the result ta-
ble.

Notice that if an ID number does not appear in both tables, then no
row is placed in the result table. This behavior categorizes this type
of join as an inner join.

116 NORMALIZATION

What's Really Going On: PRODUCT and RESTRICT
From a relational algebra point of view, a join can be implemented
using two other operations: product and restrict. As you will see,
this sequence of operations requires the manipulation of a great
deal of data and, if implemented by a DBMS, can result in very slow
query performance.

The restrict operation retrieves rows from a table by matching each
row against logical criteria (a predicate). Those rows that meet the
criteria are placed in the result table; those that do not meet the cri-
teria are omitted.

The product operation (the mathematical Cartesian product) makes
every possible pairing of rows from two source tables. In Figure 5-
8, for example, the product of the customers and orders tables pro-
duces a result table with 48 rows (the six customers times the eight
orders). The ID number column appears twice because it is a part of
both source tables.

Note: Although 48 rows may not seem like a lot, consider the
size of a product table created from tables with 100 and 1000
rows! The manipulation of a table of this size can tie up a lot of
disk I /0 and CPU time.

In some rows, the ID number is the same. These are the rows that
would have been included in a join. We can therefore apply a re-
strict predicate to the product table to end up with the same table
provided by the join you saw earlier. The predicate's logical condi-
tion can be written:

c u s t o m e c s . i d numb = o P d e P s . i d numb
w

The rows that are selected by this predicate appear in black in Fig-
ure 5-9; those eliminated by the predicate are in gray. Notice that the
black rows are exactly the same as those in the result table of the join
(Figure 5-7).

Note: Although this may seem like a highly inefficient way to
implement a join, it is actually quite flexible, in particular be-

NORMALIZED RELATIONS AND DATABASE PERFORMANCE 117

p r o d u c t _ t a b l e

ID number f i r s t name l a s t name
(Customers)

001 Jane Doe
001 Jane Doe
001 Jane Doe
001 Jane Doe
001 Jane Doe
001 Jane Doe
001 Jane Doe
001 Jane Doe
002 John Doe
002 John Doe
002 John Doe
002 John Doe
002 John Doe
002 John Doe
002 John Doe
002 John Doe
003 Jane Smith
003 Jane Smi th
003 Jane Smith
003 Jane Smi th
003 Jane Smi th
003 Jane Smi th
003 Jane Smi th
003 Jane Smi th
004 John Smi th
004 John Smi th
004 John Smi th
004 John Smi th
004 John Smi th
004 John Smi th
004 John Smi th
004 John Smi th
006 John Jones
006 John Jones
006 John Jones
006 John Jones
006 John Jones
006 John Jones
006 John Jones
006 John Jones

ID number o r d e r number o r d e r da te o r d e r t o t a l
(Orders)

002 001 10 / 10 / 99 250.65
002 002 2 / 21 / O0 125.89
003 003 11 / 15 / 99 1597.99
004 004 11 / 22 /99 180.92
004 005 12 / 15 / 99 565, O0
006 006 10 / 8 / 99 25. O0
006 007 11 / 12 / 99 85. O0
006 008 12 / 29 / 99 109,12
002 001 10 /10 /99 250.65
002 002 2 / 21 / O0 125.89
003 003 11 / 15 / 99 1597.99
004 004 11 / 22 /99 180.92
004 005 12 / 15 / 99 565. O0
006 006 10 / 8 / 99 25, O0
006 007 11 / 12/99 85. O0
006 008 12 / 29 /99 109.12
002 001 10 / 10 / 99 250.65
002 002 2 / 21 / O0 125.89
003 003 11 / 15 / 99 1597.99
004 004 11 / 22 / 99 180.92
004 005 12 / 15 / 99 565. O0
006 006 10 / 8 /99 25, O0
006 007 11 / 12 / 99 85. O0
006 008 12 / 29 / 99 109.12
002 001 10 / 10 / 99 250.65
002 002 2 / 21 /00 125.89
003 003 11 / 15 / 99 1597.99
004 004 11 / 22 / 99 180.92
004 005 12 / 15 / 99 565. O0
006 006 10 / 8 / 99 25. O0
006 006 10 / 8 / 99 25. O0
006 008 12 / 29 / 99 109.12
002 001 10 / 10 / 99 250.65
002 002 2 / 21 / O0 125.89
003 003 11 / 15 / 99 1597.99
004 004 11 / 22 / 99 180,92
004 005 12 / 15 / 99 565. O0
006 006 10 / 8 /99 25. O0
006 006 10 / 8 / 99 25. O0
006 008 12 / 29 /99 109.12

Figure 5-8: The PRODUCT of the customers and orders tables

] 18 NORMALIZATION

j o i n e d _ t a b l e

ID number f i r s t name l a s t name
(Customers)

ID number order number order date order total
(Orders)

00t Jane Ooe 002 00t t 0 / 1 0 / 9 9 250,65
001 Jane Doe 002 002 2/21/00 t 2 5 . 8 9
001 Jane Doe 003 003 I 1 / t 5 / 9 9 1597.99
001 Jane Doe 004 004 11/22/99 180,92
00t Jane Doe 004 005 12 /15 /99 565.00
001 Jane Doe 006 005 10 /8 /99 25.00
001 Jane Doe 006 007 1 t / 1 2 / 9 9 85,00
00t Jane #no 006 008 t 2 / 2 9 / 9 9 t 0 9 . 1 2
002 John Doe 002 001 1 0 / 1 0 / 9 9 250 .65
002 John Doe 002 002 2 / 2 1 / 0 0 125,89
002 John Doe 003 003 I 1 / 1 5 / 9 9 1597.99
002 John Doe 004 004 t l / 2 2 / 9 9 180,92
002 John Doe 004 005 t 2 / t 5 / 9 9 565,00
002 John Doe 006 006 10/8./99 25,00
002 John One 006 007 t l / 1 2 / 9 9 85.00
002 John Doe 006 008 12 /29 /99 t 0 9 , 1 2
003 Jane Smith 002 00t t 0 / t 0 / 9 9 250,65
003 Jane Smith 002 002 2 / 2 1 / 0 0 t 2 5 , 8 9
003 Jane Smith 003 003 1 1 / 1 5 / 9 9 1597.99
003 Jane Smith 004 004 t l / 2 2 / 9 9 t 8 0 . 9 2
003 Jane Smith 004 005 1 2 / t 5 / 9 9 565,00
003 Jane Smith 006 006 10 /8 /99 25,00
003 Jane Smith 006 007 t l / 1 2 / 9 9 85.00
003 Jane Smith 006 008 12 /29 /99 109.12
004 John Smith 002 00t 10 /10 /99 250~
004 John Smith 002 002 2 / 2 1 / 0 0 125,89
004 John Smith 003 003 t l / t 5 / 9 9 1597,99
004 John Smith 004 004 1 1 / 2 2 / 9 9 180,92
004 John Smith 004 005 1 2 / 1 5 / 9 9 565 .00
004 John Smith 005 006 10 /8 /99 25~00
004 John Smith 006 006 10 /8 /99 25 ,00
004 John Smith 006 008 12 /29 /99 109~12
006 John Jones 002 00t t 0 / 1 0 / 9 9 250.65
006 John Jones 002 002 2 / 2 1 / 0 0 I25o89
006 John Jones 003 003 t i / t 5 / 9 9 1597,99
006 John Jones 004 004 t l / 2 2 / 9 9 t 8 0 , 9 2
006 John Jones 004 005 t 2 / 1 5 / 9 9 565.00
006 John Jones 006 006 1 0 / 8 / 9 9 25 .00
006 John Jones 006 006 1 0 / 8 / 9 9 25 ,00
006 John Jones 006 008 1 2 / 2 9 / 9 9 109.12

Figure 5-9: The PRODUCT of the Customers and Orders tables after applying a RESTRICT
predicate

FOR FURTHER READING 119

cause the relationship between the columns over which the join
is being performed doesn't have to be equality. A user could just
as easily request a join where the value in table A was greater
than the value in table B, and so on.

The Bottom Line
Because of the processing overhead created when performing a
join, some database designers make a conscious decision to leave
tables unnormalized. For example, if Lasers Only always accessed
the line items at the same time it accessed order information, then a
designer might choose to combine the line item and order data into
one table, knowing full well that the unnormalized relation exhibits
anomalies. The benefit is that retrieval of order information will be
faster than if it were split into two tables.

Should you leave unnormalized relations in your database to
achieve better retrieval performance? In this author's opinion, there
is rarely any need to do so. Assuming that you are working with a
relatively standard DBMS that supports SQL as its query language,
there are SQL syntaxes that you can use when writing queries that
avoid joins. That being the case, it does not seem worth the prob-
lems that unnormalized relations present to leave them in the data-
base. Careful writing of retrieval queries can provide performance
that is nearly as good as that of retrieval from unnormalized rela-
tions.

Note: For a complete discussion of writing SQL queries to avoid
joins, see the author's book SQL Clearly Explained, also pub-
lished by Morgan-Kaufmann.

For Further Reading
There are many books available that deal with the theory of rela-
tional databases. You can find useful supplementary information in
the following:

Stanczyk, Stefan, Champion, Bob, and Leton, Richard. Theory and
Practice of Relational Databases. Taylor & Rances, 2001.

This Page Intentionally Left Blank

Database Structure and
Performance Tuning

How long are you willing to wait for a computer to respond to your
request for information? 30 seconds? 10 seconds? 5 seconds? In
truth, we humans aren't very patient at all. Even five seconds can
feel like an eternity when you're waiting for something to appear
on the screen. A database that has a slow response time to user que-
ries usually means that you will have dissatisfied users.

Slow response times can be the result of any number of problems.
You might be dealing with a client workstation that isn't properly
configured, a poorly written application program, a query involv-
ing multiple join operations, a query that requires reading large
amounts of data from disk, a congested network, or even a DBMS
that isn't robust enough to handle the volume of queries submitted
to it.

121

122 DATABASE STRUCTURE AND PERFORMANCE TUNING

One of the duties of a database administrator (DBA) is to optimize da-
tabase performance (also known as performance tuning). This includes
modifying the de s ign~where poss ib le~to avoid performance bot-
tlenecks, especially those involving queries.

For the most part, a DBMS takes care of storing and retrieving data
based on a user 's commands without human intervention. The
strategy used to process a data manipulation request is handled by
the DBMS's query optimizer, a portion of the program that deter-
mines the most efficient sequence of relational algebra operations to
perform a query.

Although most of the query optimizer 's choices are out of the
hands of a database designer or application developer, you can in-
fluence the behavior of the query optimizer and also optimize data-
base performance to some extent with database design elements. In
this chapter you will be introduced to three such techniques: index-
ing, clustering, and partitioning.

Indexing
Indexing is a way of providing a fast access path to the values in a
column or a concatenation of columns. New rows are typically add-
ed to the bottom of a table, resulting in a relatively random ordering
of the values in any given column. Without some way of ordering
the data, the only way a DBMS can search a column is by sequen-
tially scanning each row from top to bottom. The larger a table be-
comes, the slower a sequential search will be.

The conceptual operation of an index is diagrammed in Figure 6-1.
(The different weights of the lines have no significance other than
to make it easier for you to follow the crossed lines.) In this illustra-
tion, you are looking at Lasers Only's merchandise item relation
and an index that provides fast access to rows in the table based on
the item's title. The index itself contains an ordered list of keys (the
titles) along with the locations of the associated rows in the mer-
chandise item table. The rows in the merchandise item table are in

INDEXING 123

relatively random order. However, because the index is in alphabet-
ical order by title, it can be searched quickly to locate a specific title.
Then the DBMS can use the information in the index to go directly
to a correct row or rows in the merchandise item table, thus avoid-
ing a slow sequential scan of the base table's rows.

Figure 6-1: Indexing

Once you have created an index, the DBMS's query optimizer will
use the index whenever it determines that using the index will
speed up data retrieval. You never need to accessthe index again
yourself unless you want to delete it.

When you create a primary key for a table, the DBMS automatically
creates an index for that table using the primary key column or col-
umns as the index key. The first step in inserting a new row into a
table is therefore verification that the index key (the primary key of
the table) is unique to the index. In fact, uniqueness is enforced by
requiring the index entries to be unique, rather than by actually
searching the base table. This is much faster than attempting to ver-
ify uniqueness directly on the base table because the ordered index
can be searched much more rapidly than the unordered base table.

124 DATABASE STRUCTURE AND PERFORMANCE TUNING

Deciding Which Indexes to Create

You have no choice as to whether the DBMS creates indexes for
your primary keys; you get them whether you want them or not. In
addition, you can create indexes to provide fast access to any col-
umn or combination of columns you want. However, before you
jump headfirst into creating indexes on every column in every ta-
ble, there are some trade-offs to consider:

Indexes take up space in the database. Given that disk
space is inexpensive today, this is usually not a major
drawback.
When you insert, modify, or delete data in indexed col-
umns, the DBMS must update the index as well as the
base table. This may slow down data modification oper-
ations, especially if the tables have a lot of rows.
Indexes definitely speed up access to data.

The trade-off is therefore generally between update speed and re-
trieval speed. A good rule of thumb is to create indexes for foreign
keys and for other columns that are used frequently in queries that
apply logical criteria to data. If you find that update speed is severe-
ly affected, you may choose at a later time to delete some of the in-
dexes you created.

Clustering
The slowest part of a DBMS's actions is retrieving data from or writ-
ing data to a disk. If you can cut down on the number of times the
DBMS must read from or write to a disk, you can speed up overall
database performance.

The trick to doing this is understanding that a database must re-
trieve an entire disk page of data at one time. The size of a page var-
ies from one operating system to ano ther~ i t can be anywhere from
512 bytes to 4K, with 1K being typical on a P C ~ b u t data always
travel to and from disk in page-sized units. Therefore, if you can get

CLUSTERING 125

data that are often accessed together stored on the same disk page
(or on pages that are physically close together), you can speed up
data access. This process is known as clustering and is available with
many DBMSs (for example, Oracle).

Note: The term "clustering" has another meaning in the SQL-
92 standard. It refers to a group of catalogs (which in turn are
groups of schemas) manipulated by the same DBMS. The use of
the term in this section, however, is totally distinct from the
SQL-92 meaning.

In practice, a cluster is designed to keep rows related by matching
primary and foreign keys together. To define the cluster, you specify
a column or columns on which the DBMS should form the cluster
and the tables that should be included. Then, all rows that share the
same value of the column or columns on which the cluster is based
are stored as physically close together as possible. As a result, the
rows in a table may be scattered across several disk pages, but
matching primary and foreign keys are usually on the same disk
page.

Clustering can significantly speed up join performance. However,
just as with indexes, there are some trade-offs to consider when
contemplating creating clusters:

Because clustering involves physical placement of data
in a file, a table can be clustered on only one column or
combination of columns.
Clustering can slow down performance of operations
that require a scan of the entire table because clustering
may mean that the rows of any given table are scattered
throughout many disk pages.
Clustering can slow down inserting data.

t Clustering can slow down modifying data in the columns
on which clustering is based.

126 DATABASE STRUCTURE AND PERFORMANCE TUNING

Partitioning
Partitioning is the opposite of clustering: It involves the splitting of
large tables into smaller ones so that the DBMS does not need to re-
trieve as much data at any one time. Consider, for example, what
happens to Lasers Only's orders and order lines tables over time.
Assuming that the business is reasonably successful, those tables
(especially order lines) will become very large. Retrieval of data
from those tables will therefore begin to slow down.

There are two ways to partition a table: horizontally and vertically.
Horizontal partitioning involves splitting the rows of a table between
two or more tables with the identical structure. Vertical partitioning
involves splitting the columns of a table, placing them into two or
more tables linked by the table's primary key. As you might expect,
there are benefits and drawbacks to both.

Horizontal Partitioning
Horizontal partitioning involves creating two or more tables with
exactly the same structure and splitting rows between those tables.
Lasers Only might use this technique, for example, to solve prob-
lems with the orders and line items tables becoming increasingly
large. The database design might be modified as follows:

open orders (order number, customer number, order date)
open order iines (order number, item number, quantity, shipped?)
fiiied orders (order number, customer number, order date)
fiiied order iines (order number, item number, quantity, shipped?)

Whenever all items in an open order have shipped, an application
program deletes rows from the open orders and open order lines ta-
bles and inserts them into the filled orders and filled order lines ta-
bles. The open order and open order lines tables remain relatively
small, speeding up both retrieval and modification performance.
Although retrieval from filled orders and filled order lines will be
slower, Lasers Only uses those tables much less frequently.

PARTITIONING 127

The drawback to this solution occurs when Lasers Only needs to ac-
cess all of the orders and/or order lines at the same time. A query
whose result table includes data from both sets of open and filled
tables must actually be two queries connected by the UNION oper-
ator. Performance of such a query will be worse than that of a query
of either set of tables individually. Nonetheless, if an analysis of La-
sers Only's data access patterns reveals that such queries occur rare-
ly and that most retrieval involves the open set of tables, then the
horizontal partitioning is worth doing.

The only way you can determine whether horizontal partitioning
will increase performance is to examine the ways in which your da-
tabase applications access data. If there is a group of rows that are
accessed together significantly more frequently than the rest of the
rows in a table, then horizontal partitioning may make sense.

Vertical Partitioning

Vertical partitioning involves creating two or more tables with se-
lected columns and all rows of a table. For example, if Lasers Only
accesses the titles and prices of their merchandise items more fre-
quently than the other columns in the merchandise item table, the
merchandise item table might be partitioned as follows:

item t i t l e s (item number, t i t l e , pr ice)
item deta i ls (item number, d i s t r i b u t o r , release date, ...)

The benefit of this design is that the rows in the smaller item titles
table will be physically closer together; the smaller table will take
up fewer disk pages and thus support faster retrieval.

Queries that require data from both item tables must join the tables
over the item number. Like most joins, this will be a relatively slow
operation. Therefore, vertical partitioning makes sense only when
there is a highly skewed access pattern for the columns of a table.
The more often a small, specific group of columns is accessed to-
gether, the more vertical partitioning will help.

128 DATABASE STRUCTURE AND PERFORMANCE TUNING

For Further Reference

Most of the publications dealing with database performance tuning
focus on a single product, as, for example, in the following:

Harrison, Guy. Oracle SQL High-Performance Tuning. Prentice Hall
PTR, 2000.

Whalen, Ed. Microsoft SQL Server2000 Performance Tuning Technical
Reference. Microsoft Press, 2001.

To find materials related to your specific DBMS, go to any major on-
line bookstore and search on "database performance" and the name
of the product.

Codd's Rules
In October of 1985, E. E Codd published a series of two articles in
the computer industry weekly called Computerworld. The first arti-
cle laid out 12 criteria to which a "fully relational" database should
adhere. The second article compared current mainframe products
to those 12 rules, producing a flurry of controversy over whether it
was important that DBMSs be theoretically rigorous or that they
simply work effectively.

Note: If you read Chapter 3, then you will be aware of a product
based on the simple network data model called IDMS/R. When
Codd rated IDMS/R~which was then being marketed as a re-
lational D B M S ~ i t met none (0) of the 12 rules. DB/2, IBM's
flagship relational product, met 10 of the rules.

To help you understand the issues raised and why Codd's rules for
relational databases for the most part make sense, in this chapter we

129

130 CODD'S RULES

will look at those criteria along with the implications of their imple-
mentation. Should you then choose not to adhere to one or more of
the rules, you will be doing so with full understanding of the con-
sequences. (In some cases, the consequences are minimal; in others
they may significantly affect the integrity of the data in a database.)

Note: The complete citation for Codd's original articles can be
found in the bibliography at the end of Chapter 3.

Rule 1:The Information Rule

The first criterion for relational databases deals with the data struc-
tures that are used to store data and represent data relationships:

"All information in a relational database is represented ex-
plicitly at the logical level in exactly one w a y - by values in
tables."

The purpose of this rule is to require that relations (two-dimension-
al tables) be the only data structure used in a relational database.
Therefore, products that require hard-coded links between tables
are not relational.

At the time Codd's article was published, one of the most widely
used mainframe products was IDMS/R, a version of IDMS that
placed a relational-style query language on top of a simple network
database. The simple network data model requires data structures
such as pointers or indexes to represent data relationships. There-
fore, IDMS/R, although being marketed as relational, was not rela-
tional according to the very first rule of a relational database. It was
this product that was at the heart of the "who cares about rules if
my product works" controversy.

RULE 1: THE INFORMATION RULE 131

Regardless of which side you take in this particular argument, there
are two very good reasons why creating a database from nothing
but tables is a good idea:

Logical relationships are very flexible. In a simple net-
work or hierarchical database, the only relationships that
can be used for retrieval are those that have been prede-
termined by the database designer who wrote the sche-
ma. However, because a relational database represents
its relationships through matching data values, the join
operation can be used to implement relations on the fly,
even those that a database designer may not have antici-
pated.
Relational database schemas are very flexible. You can
add, modify, and remove individual relations without
disturbing the rest of the schema. In fact, as long as you
are not changing the structure of tables currently being
used, you can modify the schema of a live database.
However, to modify the schema of a simple network or
hierarchical database you must stop all processing of the
database and regenerate the entire schema. In many cas-
es, modifying the database design also means recreating
all the physical files (using a dump and load process) to
correspond to the new design.

Note: DBMSs that require you to specify "relationships be-
tween files" when you design a database fail this first rule. If
you read Chapter 3, then you know that a number of PC-only
products work in this way and that although they are marketed
as relational, they really use the simple network data model.
Keep in mind that the ER diagrams for simple networks and
3NF relational databases are identical. The differences come in
how the relationships between the entities are represented. In a
simple network, it is with hard-coded relationships; in a rela-
tional database, it is with primary key-foreign key pairs.

When Codd originally wrote his rules, databases couldn't store im-
ages. Today, many DBMSs give you the choice of storing images as
BLOBs (binary large objects) inside the database or as path names

132 CODD'S RULES

or URLs to image files that are stored outside the database. Techni-
cally, path names or URLs to external files are pointers to something
other than tables and therefore would seem to cause a DBMS to vi-
olate this rule. However, the spirit of the rule is that relationships
between entities ~ the logical relationships in the d a t a b a s e ~ a r e
represented by matching data values, without the use of pointers of
any kind to indicate entity connections.

Note: This is not the only rule that needs to be stretched a bit to
accommodate graphics in a database environment. See also rule
5 later in this chapter.

Rule 2: The Guaranteed Access Rule

Given that the entire reason we put data into a database is to get the
data out again, we must be certain that we can retrieve every single
piece of data:

"Each and every datum (atomic value)in a relational data-
base is guaranteed to be logically accessible by resorting to
a combination of table name, primary key value and column
name."

This rule states that you should need to know only three things to
locate a specific piece of data: the name of the table, the name of the
column, and the primary key of the row.

Note: With today's DBMSs, the definition of a table name can
mean many things. For example, if you are working with IBM's
DB/2, a table name is the table creator's loginName.tableName.
If you are working with Oracle, then a complete table name may
include a catalog name, schema name, and Oracle owner name,
as well as the name of the individual table.

There is no rule in this set of 12 rules that specifically states that each
row in a relation must have a unique primary key. However, a rela-
tion cannot adhere to the guaranteed access rule unless it does have

RULE 3: SYSTEMATIC TREATMENT OF NULL VALUES 133

unique primary keys. Without unique primary keys, you will re-
trieve some row with the primary key value used in a search, but
not necessarily the exact row you want. Some data may therefore be
inaccessible without the ability to uniquely identify rows.

Early relational databases did not require primary keys at all. You
could create and use tables without primary key constraints. Today,
however, SQL will allow you to create a table without a primary key
specification, but most DBMSs will not permit you to enter data into
that table.

Note: A DBMS that requires "relationships between files" can-
not adhere to this rule because you must specify the file in which
data reside to locate data.

Rule 3: Systematic Treatment of Null Values
As you know, null is a special database value that means "un-
known." Its presence in a database brings special problems during
data retrieval. Consider, for example, what happens if you have an
employees relation that contains a column for salary. Assume that
the salary is null for some portion of the rows. What, then, should
happen if someone queries the table for all people who make more
than 60,000? Should the rows with null be retrieved or should they
be left out?

When the DBMS evaluates a null against the logical criterion of sal-
ary value greater than 60,000, it cannot state whether the row con-
taining the null meets the criteria. Maybe it does; maybe it does not.
For this reason, we say that relational databases use three-valued log-
ic. The result of the evaluation of a logical expression is either true,
false, or maybe.

Codd's third rule deals with the issue of nulls"

"Null values (distinct from the empty character string or a
string of blank characters or any other number) are support-
ed in the fully relational DBMS for representing missing in-
formation in a systematic way, independent of data type."

134 CODD'S RULES

First, a relational DBMS must store the same value of null in all col-
umns and rows where the user does not explicitly enter data values.
The value used for null must be the same, regardless of the data
type of the column. Note that null is not the same as a space charac-
ter; it has its own, distinct ASCII or UNICODE value. However, in
most cases when you see a query's result table on the screen, nulls
do appear as blank.

Second, the DBMS must have some consistent, known way of han-
dling those nulls when performing queries. Typically, you will find
that rows with nulls are not retrieved by a query such as the salary
greater than 60,000 example unless the user explicitly asks for rows
with a value of null. Most relational DBMSs today adhere to a three-
valued logic truth table to determine retrieval behavior when they
encounter nulls.

The inclusion of nulls in a relation can be extremely important.
They provide a consistent way to distinguish between valid data
such as a 0 and missing data. For example, it makes a great deal of
difference to know that the balance in an account payable is 0 in-
stead of unknown. The account with 0 is something we like to see;
the account with an unknown balance could be a significant prob-
lem.

Note: The concept of unknown values is not unique to relational
databases. Regardless of the data model it uses, a DBMS must
contend with the problem of how to behave when querying
against a null.

Rule 4: Dynamic Online Catalog Based on the
Relational Model

Earlier in this book you read about relational database data dictio-
naries. Codd very clearly specifies that those dictionaries (which he
calls catalogs) should be made up of nothing but relations:

RULE 5: THE COMPREHENSIVE DATA SUBLANGUAGE RULE 135

"The data base description is represented at the logical level
in the same way as ordinary data, so that authorized users
can apply the same relational language to its interrogation
as they apply to regular data."

One advantage of using the same data structures for the data dictio-
nary as you do for data tables is that you have a consistent way to
access all elements of the database. You need to learn only one que-
ry language. This also simplifies the DBMS itself, since it can use the
same mechanism for handling data about the database (metadata) as
it can data about the organization.

When you purchase a DBMS, it comes with its own way of handling
a data dictionary. There is rarely anything you can do to change it.
Therefore, the major implication of this particular rule comes in se-
lecting relational software: You want to look for something that has
a data dictionary that is made up of nothing but tables.

Note: Because of they way in which their schemas were imple-
mented, it was rare for a prerelational DBMS to have an online
data dictionary.

Rule 5: The Comprehensive Data Sublanguage
Rule

A relational database must have some language that can maintain
database structural elements, modify data, and retrieve data. Codd
included the following rule that describes his ideas about what
such a language should do:

"A relational system may support several languages and
various modes of terminal use (for example, fill-in-the-blanks
mode). However, there must be at least one language
whose statements are expressible, per some well-defined

136 CODD'S RULES

syntax, as character strings and that is comprehensive in
supporting all of the following items:

Data definition
View definition
Data manipulation (interactive and by program)

~, Integrity constraints
Transaction boundaries (begin, commit and rollback)"

The SQL-92 language does meet all of these rules. (Earlier versions
did not include complete support for primary keys and referential
integrity.) Given that most of today's relational DBMSs use SQL as
their primary data manipulation language, there would seem to be
no issue here.

However, a DBMS that does not support SQL, but uses a graphic
language, would technically not meet this rule. Nonetheless, there
are several products today whose graphic language can perform all
the tasks Codd has listed without a command-line syntax. Such
DBMSs might not be theoretically "fully relational," but since they
can perform all the necessary relational tasks, you lose nothing by
not having the command-line language.

Note: Keep in mind the time frame in which Codd was writing.
In 1985, the Macintoshmwhose operating system legitimized
the graphic user interface ~ was barely a year old. Most people
still considered the GUI-equipped computers to be little more
than toys.

Rule 6:The View Updating Rule
As you will read in more depth in Chapter 9, some views can be
used to update data. Others ~ those that are created from more than
one base table or view, those that do not contain the primary keys
of their base tables, and so on--cannot be used for updating.
Codd's sixth rule speaks only about those that meet the criteria for
updatability:

RULE 7: HIGH-LEVEL INSERT, UPDATE, AND DELETE 137

"All views that are theoretically updatable are also updatable
by the system."

This rule simply means that if a view meets the criteria for updat-
ability, a DBMS must be able to handle that update and propagate
the updates back to the base tables.

Note: DBMSs that used prerelational data models included
constructs similar in concept to views. For example, CODA-
SYL DBMSs included "subschemas," which allowed an appli-
cation programmer to construct a subset of a schema to be used
by a specific end user or by an application program.

Rule 7: High-Level Insert, Update, and Delete
Codd wanted to ensure that a DBMS could handle multiple rows of
data at a time, especially when data were modified. Therefore, the
seventh rule insists that a DBMS's data manipulation language be
able to insert, update, and delete more than one row with a single
command:

"The capability of handling a base relation or a derived rela-
tion as a single operand applies not only to the retrieval of
data but also to the insertion, update and deletion of data."

SQL provides this capability for today's relational DBMSs. What
does it bring you? Being able to modify more than one row with a
single command simplifies data manipulation logic. Rather than
needing to scan a relation row by row to locate rows for modifica-
tion, for example, you can specify logical criteria that identify rows
to be affected and let the DBMS find the rows for you.

138 CODD'S RULES

Rule 8: Physical Data Independence
One of the benefits of using a database system rather than a file pro-
cessing system is that a DBMS isolates the user from physical stor-
age details. The physical data independence rule speaks to that
issue:

"Applications programs and terminal activities remain logi-
cally unimpaired whenever any changes are made in either
storage representation or access methods."

This means you should be able to move the database from one disk
volume to another, change the physical layout of the files, and so
on, without any impact on the way in which application programs
and end users interact with the tables in the database.

Most of today's DBMSs give you little control over the file struc-
tures used to store data on disk. (Only the very largest mainframe
systems allow systems programmers to determine physical stor-
age structures.) Therefore, in a practical sense, physical data inde-
pendence means that you should be able to move the database
from one disk volume or directory to another without affecting ap-
plication programs or interactive users. With a few exceptions ~ in
particular, end-user DBMSs based on the dBase m o d e l ~ m o s t of
today's DBMSs do provide physical data independence.

Note: Prerelational DBMSs generally fail this rule to a greater
or lesser degree. The older the data model, the closer it was tied
to its physical storage structures. The tradeoff, however, is per-
formance. Hierarchical systems are much faster than relational
systems when processing data in tree traversal order. The same
can be said for a CODASYL database: When traversing in set
order, access will be faster than row-by-row access with a rela-
tional database. The tradeoff is flexibility to perform ad hoc que-
ries, something at which relational systems excel.

RULE 9: LOGICAL DATA INDEPENDENCE 139

Rule 9: Logical Data Independence
Logical data independence is a bit more subtle than physical data
independence. In essence, it means that if you change the s c h e m a ~
perhaps adding or removing a table or adding a column to a table
~ t h e n other parts of the schema that should not be affected by the
change remain unaffected:

"Application programs and terminal activities remain logical-
ly unimpaired when information-preserving changes of any
kind that theoretically permit unimpairment are made to the
base tables."

As an example, consider what happens when you add a table to a
database. Since relations are logically independent of one another,
adding a table should have absolutely no impact on any other table.
To adhere to the logical data independence rule, a DBMS must en-
sure that there is indeed no impact on other tables.

On the other hand, if you delete a table from the database, such a
modification is not "information-preserving." Data will almost cer-
tainly be lost when the table is removed. Therefore, it is not neces-
sary that application programs and interactive users be unaffected
by the change.

Rule 10: Integrity Independence
Although the requirement for unique primary keys is a corollary to
an earlier rule, the requirement for nonnull primary keys and for
referential integrity is very explicit:

"Integrity constraints specific to a particular relational data
base must be definable in the relational data sublanguage
and storable in the catalog, not in the application programs.

140 CODD' S RULES

"A minimum of the following two integrity constraints must be
supported

"1. Entity integrity" No component of a primary key is allowed
to have a null value.

"2. Referential integrity" For each distinct nonnull foreign key
value in a relational data base, there must exist a matching
primary key value from the same domain."

Notice that this rule requires that the declaration of integrity con-
straints must be a part of whatever language is used to define data-
base structure. In addition, integrity constraints of any kind must be
stored in a data dictionary that can be accessed while the database
is being used.

When IBM released its flagship relational database ~ DB/2 ~ one
of the two things users complained about was the lack of referential
integrity support. IBM, and other DBMS vendors for that matter,
omitted referential integrity because it slows down performance.
Each time you modify a row of data, the DBMS must go to the data
dictionary, search for an integrity rule, and perform the test indicat-
ed by the rule, all before performing an update. A referential integ-
rity check of a single column can involve two or more disk accesses,
all of which takes more time than simply making the modification
directly to the base table.

However, without referential integrity, the relationships in a rela-
tional database very quickly become inconsistent. Retrieval queries
therefore do not necessarily retrieve all data because missing cross-
references cause joins to omit data. In that case, the database is un-
reliable and virtually unusable. (Yes, IBM added referential integri-
ty to DB/2 fairly quickly!)

Note: One solution to the problem of a DBMS not supporting
referential integrity was to have application programmers per-
form the referential integrity checks within application pro-
grams. This certainly works, but it puts the burden of integrity

RULE 11 : DISTRIBUTION INDEPENDENCE 141

checking in the wrong place. It should be an integral part of the
database, rather than left up to an application programmer.

Note: Most DBMSs using prerelational data models provided
some types of integrity constraints, including domain con-
straints, unique entity identifiers, and required values (non-
null). CODASYL could also enforce manditory relationships,
something akin to referential integrity.

Rule 11: Distribution Independence
A distributed database is a database where the data themselves are
stored on more than one computer. The database is therefore the
union of all its parts. In practice, the parts are not unique but con-
tain a great deal of duplicated data.

Nonetheless, according to rule 11:

"A relational DBMS has distribution independence."

In other words, a distributed database must look to the user like a
centralized database. Application programs and interactive users
should not be required to know where data are stored, including
the location of multiple copies of the same data.

DBMS vendors have been working on distributed DBMS software
since the late 1970s. However, at the time this book was written, no
relational DBMS truly met this rule. Even the most sophisticated
distributed DBMS software requires that the user indicate some lo-
cation information when retrieving data.

142 CODD'S RULES

Rule 12: Nonsubversion Rule

The final rule might be subtitled the "no cheating rule""

"If a relational system has a low-level (single-record-at-a-
time) language, that low-level language cannot be used to
subvert or bypass the integrity rules or constraints ex-
pressed in the higher level relational language (multiple-
records-at-a-time)."

Many DBMS products during the 1980s had languages that could
directly access rows in tables, separate from SQL, which operates
on multiple rows at a time. This rule states that there must be no
way to use that direct-access language to get around the integrity
constraints stored in the data dictionary. The integrity rules must be
observed without exceptions.

Integrating Objects
The relational data model has been a mainstay of business data pro-
cessing for nearly 30 years. Nothing has superseded it the way the
relational data model superseded the simple network data model.
However, a newer data m o d e l ~ t h e object-oriented data m o d e l ~
has come into use as an alternative for some types of navigational
data processing.

Classes~definitions of entities and procedures that operate on enti-
ty d a t a ~ c a n be used to model a complete data environment. This
provides a total alternative to a relational design. Relational
DBMSs, however, have embraced classes in a different way: Classes
become domains, making it possible to store an entire object (an in-
cident of a class) in a column. Such DBMSs are often known as hy-
brid object-relational DBMSs or post-relational DBMSs. Products
providing support for objects as domains include Oracle and DB/2.

143

144 INTEGRATING OBJECTS

Note: For in-depth information on the object-oriented data model,
including designing object-oriented databases, see the author's
book Object-Oriented Database Design Clearly Explained,
also from Morgan-Kaufmann.

This chapter presents an overview of some object-oriented concepts
for readers who aren't familiar with the object-oriented paradigm.
It then looks at how classes can be integrated into a relational data-
base.

An Introduction to Object-Oriented Concepts
The object-oriented paradigm was the brainchild of Dr. Kristen
Nygarrd, a Norwegian who was attempting to write a computer
program to model the behavior of ships, tides, and fjords. He found
that the interactions were extremely complex and realized that it
would be easier to write the program if he separated the three types
of program elements and let each one model its own behavior
against each of the others.

The object-oriented programming languages in use today (most no-
tably C++, SmallTalk, and Java) are a direct outgrowth of Nygarrd's
early work. The way in which objects are used in relational databas-
es today is an extension of object-oriented programming.

Note: This is in direct contrast to the relational data model,
which was designed specifically to model data relationships, al-
though much of its theoretical foundations are found in mathe-
matical set theory.

To understand the role of objects in relational databases, you there-
fore must first understand the object-oriented paradigm as it is used
in object-oriented programming. In this chapter, you will read
about the fundamental concepts of that paradigm. Do not worry if
you cannot program: You do not need to be a programmer to under-
stand this material. If you are fluent in an object-oriented program-
ming language, however, you can skip the portion of this chapter

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 145

that deals with object-oriented concepts and just read the section ti-
tled "Integrating Objects into a Relational Database" at the end of
the chapter.

The easiest way to understand what object-oriented programming
is all about is to begin with an example that has absolutely nothing
to do with programming at all.

Writing Instructions
Assume that you have a 16-year-old daughter (or sister, whichever
is more appropriate) named Jane and that your family is going to
take a long car trip. Like most 16-year-olds, Jane is less than thrilled
about a trip with the family and in particular with spending so
much time with her 12-year-old brother. In self-defense, Jane needs
something to keep her 12-year-old brother busy so he won't bother
her as she reads while her parents are driving. She therefore decides
to write up some instructions for playing solitaire card games for
him.

The first set of instructions is for the most common solitaire game,
Klondike. As you can see in Figure 8-1, the deal involves seven piles
of cards of increasing depth, with the top card turned over. The rest
of the deck remains in the draw pile. Jane decides to break the written
instructions into two main parts: information about the game and
questions her brother might ask. She therefore produces instructions
that look something like Figure 8-2. She also attaches the illustration
of the game's deal.

The next game she tackles is Canfield. Like Klondike, it is played
with one deck, but the deal and play are slightly different (see Fig-
ure 8-3). Jane uses the same pattern for the instructions as she did
for Klondike because it cuts down the amount of writing she has to
do (see Figure 8-4).

And finally, just to make sure her brother doesn't get too bored, Jane
prepares instructions for Forty Thieves (see Figure 8-5). This game
uses two decks of cards and plays in a very different way from the

146 INTEGRATING OBJECTS

Figure 8-1: The initial deal for Klondike

other two games (see Figure 8-6). Nonetheless, preparing the in-
structions for the third game is fairly easy, because she has the tem-
plate for the instructions down pat.

After completing three sets of instructions, it becomes clear to Jane that
having the template for the instructions makes the process extremely
easy. Jane can use the template to organize any number of sets of in-
structions for playing solitaire. All she has to do is photocopy the tem-
plate and fill in the values for the information about the game.

Objects
If someone were writing an object-oriented computer program to
manage the instructions for playing solitaire, each game would be
known as an object. It is a self-contained element used by the program.
It has things that it knows about itself: its name, an illustration of its
layout, the number of decks needed to pla~ how to deal, how to pla~

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 147

Information about the Game
Name: Klondike
I l l u s t r a t i o n : See next page
Decks: One
Dealing: Deal from l e f t to r i g h t .

F i r s t pass: F i r s t card face up, s i x cards down.
Second pass: F i r s t card face up on top of card #2, f i v e cards down.
Th i rd pass: F i r s t card face up on top of card #3, f ou r cards down.
. . . repeat pa t t e rn f o r t o t a l of seven passes . . .

Playing: One or th ree cards can be turned at a t ime.
As encountered, put aces on top. Bu i ld up in s u i t s .
Bu i l d down from dea l , oppos i te s u i t c o l o r s .
Can move cards from the middle of a s tack , moving card and a l l cards

b u i l t below i t .
Move k ings on ly i n t o empty spots .
I f t u r n i n g one card, make on ly one pass through the deck.
I f t u r n i n g th ree cards, make as many passes as you l i k e through the

deck.
Winning: A l l cards b u i l t on top of t h e i r aces.

Questions to Ask
What i s the name of the game?

Read Name sec t i on .
How many decks do [need?

Read Decks sec t i on .
What does the l ayou t look l i k e ?

Read I l l u s t r a t i o n sec t i on .
How do I deal the game?

Read the Dealing sec t i on .
How do I p lay the game?

Read the P lay ing sec t i on .
How do I know when I ' v e won?

Read the Winning sec t i on .

Figure 8-2: Instructions for playing Klondike

and how to determine when the game is won. In object-oriented
terms, the values that an object stores about itself are known as at-
tributes or variables or occasionally, properties.

The solitaire game object also has some things it knows how to do:
explain how to deal, explain how to play, explain how to identify a
win, and so on. In object-oriented programming terminology, ac-
tions that objects know how to perform are called methods, services,
functions, procedures, or operations.

148 INTEGRATING OBJECTS

Figure 8-3: The initial Canfield deal

In format ion about the Game
Name: Canf ie ld
I l l u s t r a t i o n : See next page
Decks: One
Deal ing: Deal four cards face up.

Place on a d d i t i o n a l card face up above the f i r s t four as the s t a r t i n g
card f o r b u i l d i n g s u i t s .

The remaining cards stay in the draw p i l e .
Playing: Turn one card at a t ime, going through the deck as many t imes as
des i red.

Bu i ld down from deal , opposi te s u i t co lo rs .
Can move cards from the middle of a s tack, moving card and a l l cards

b u i l t below i t .
Place cards of the same value as the i n i t i a l foundat ion card above the

deal as encountered.
Bu i ld up in su i t s from the foundat ion cards.
Any card can be placed in an empty s l o t .

Winning: A l l cards b u i l t on top of the foundat ion cards.
Questions to Ask

What is the name of the game?
Read Name sec t ion .

How many decks do I need?
Read Decks sec t ion .

What does the layout look l i ke?
Read I l l u s t r a t i o n sec t ion .

How do I deal the game?
Read the Dealing sec t ion .

How do I p lay the game?
Read the Play ing sec t ion .

How do I know when I ' v e won?
Read the Winning sec t ion .

Figure 8-4 The instructions for playing Canfield

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 149

Figure 8-5: The initial deal for Forty Thieves

Informat ion about the Game
Name: For ty Thleves
lllustration: See next page
Decks: Two
Dea l ing : Make ten p l l e s of f ou r cards, a l l face up.

Jog cards so t h a t the va lues of a l l cards can be seen.
Remaining cards s tay in the deck.

Playing: Turn one card at a t ime. Make on ly one pass through the deck.
Bu l l d down i n s u l t s .
Only the top card of a s tack can be moved.
As aces ape encountered, place at top of deal and b u l l d up i n s u l t s

from the aces.
Any card can be moved l n t o any open space in the dea l .

Winning: A l l cards b u l l t on top of t h e l r aces.
Ouestions to Ask

What l s the name of the game?
Read Name s e c t l o n .

How many decks do I need?
Read Decks s e c t l o n .

What does the l ayou t look l l k e ?
Read I l l u s t r a t i o n s e c t l o n .

How do I deal the game?
Read the Dealing s e c t l o n ,

How do I p lay the game?
Read the P lay ing sec t l on .

How do I know when I ' v e won?
Read the Winning s e c t l o n .

Figure 8-6 The instructions for playing Forty Thieves

150 INTEGRATING OBJECTS

Note: It is unfortunate, but there is no single accepted terminol-
ogy for the object-oriented paradigm. Each programming lan-
guage or DBMS chooses which terms it will use. You therefore
need to recognize all of the terms that might be used to describe
the same thing.

An object is very security minded. It typically keeps the things it
knows about itself private and releases that information only
through a method whose purpose is to share data values. For exam-
ple, a user or program using the Klondike game object cannot ac-
cess the contents of the Dealing variable directly. Instead, the user
or program must execute the How Do I Deal the Game? method to
see that data.

Objects also keep private the details of the procedures for the things
they know how to do, but they make it easy for someone to ask
them to perform those actions. Users or programs cannot see what
is inside any of the methods. They see only the result of executing
the method. This characteristic of objects is known as information
hiding or data encapsulation.

An object presents a public interface to other objects that might use it.
This provides other objects with a way to ask for data values or for
actions to be performed. In the example of the solitaire games, the
questions that Jane's little brother can ask are the game's public inter-
face. The instructions below each question represent the procedure to
be used to answer the question. A major benefit of data encapsulation
is that as long as the object's public interface remains the same, you
can change the details of the object's methods without needing to in-
form any other objects that might be using those methods. For exam-
ple, the card game objects currently tell the user to "read" the
contents of an attribute. However, there is no reason that the methods
couldn't be changed to tell the user to "print" the contents of an at-
tribute. The user would still access the method in the same wa~ but
the way in which the method operates would be slightly different.

An object requests data or an action by sending a message to another
object. For example, if you were writing a computer program to
manage the instructions for solitaire games, the program (an object

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 151

in its own right) could send a message to the game object asking the
game object to display the instructions for dealing the game. Be-
cause the actual procedures of the method are hidden, your pro-
gram would ask for the instruction display and then you would see
the instructions on the screen. However, you would not need to
worry about the details of how the screen display was produced.
That is the job of the game object rather than the object that is asking
the game to do something.

An object-oriented program is made up of a collection of objects,
each of which has attributes and methods. The objects interact by
sending messages to one another. The trick, of course, is figuring
out exactly which objects a program needs and the attributes and
methods those objects should have.

Classes

The template on which the solitaire game instructions are based is
the same for each game. Without data, it might be represented as in
Figure 8-7. The nice thing about this template is that it provides a
consistent way of organizing all the characteristics of a game. When
you want to create the instructions for another game, you make a
copy of the template and "fill in the blanks": You write the data val-
ues for the attributes. The procedures that make up the answers to
the questions someone might ask about the game have already been
completed.

In object-oriented terminology, the template on which similar ob-
jects like the solitaire game instructions are based is known as a
class. When a program creates an object from a class, it provides
data for the object's variables. The object can then use the methods
that have been written for its class. All of the objects created from
the same class share the same procedures for their methods. They
also have the same types of data, but the values for the data may
differ, for example, just as the names of the solitaire games are dif-
ferent.

152 INTEGRATING OBJECTS

Information about the Game (Variables)
Name:
I l l u s t r a t i o n :
Decks:
Dealing:
Playing:
Winning:

Questions to Ask (Methods)
What i s the name of the game?

Read Name sec t ion .
How many decks do I need?

Read Decks sec t ion .
What does the layou t look l i k e ?

Read I l l u s t r a t i o n sec t ion .
How do I deal the game?

Read the Dealing sec t ion .
How do I p lay the game?

Read the P lay ing sec t ion .
How do I know when I ' v e won?

Read the Winning sec t ion .

Figure 8-7: The solitaire game instruction template

A class is also a data type. In fact, a class is an implementation of
what is known as an abstract data type, which is just another term for
a user-defined data type. The implication of a class being a data
type is that you can use a class as the data type of an attribute.

Suppose, for example, you were developing a class to handle data
about the employees in your organization. The attributes of the
class might include the employee ID, the first name, the last name,
and the address. The address itself is made up of a street, city, state,
and zip. Therefore, you would probably create an address class
with those attributes and then, rather than duplicating those at-
tributes in the employee class, simply indicate that an object of the
employee class will include an object created from the address class
to contain the employee's address.

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 153

Types of Classes

There are three major types of classes used in an object-oriented
program:

Control classes: Control classes neither manage data nor
have visible output. Instead, they control the operational
flow of a program. For example, application classes repre-
sent the program itself. In most cases, each program cre-
ates only one object from an application class. The
application class's job includes starting the execution of
the program, detecting menu selections, and executing
the correct program code to satisfy the user's requests.
Entity classes: Entity classes are used to create objects that
manage data. The solitaire game class, for example, is an
entity class. Classes for people, tangible objects, and
events (for example, business meetings) are entity class-
es. Most object-oriented programs have at least one enti-
ty class from which many objects are created. In fact, in
its simplest sense, the object-oriented data model is built
from the representation of relationships between objects
created from entity objects.
Interface classes: Interface classes handle the input and
output of information. For example, if you are working
with a graphic user interface, then each window and
menu used by the program is an object created from an
interface class.

In an object-oriented program, entity classes do not do their own in-
put and output (I/O). Keyboard input is handled by interface ob-
jects that collect data and send it to entity objects for storage and
processing. Screen and printed output is formatted by interface ob-
jects that get data for display from entity objects. When entity ob-
jects become part of a database, the DBMS takes care of file I/O; the
rest of the I /O is handled by application programs or DBMS utili-
ties.

Why is it so important to keep data manipulation separate from
I /O? Wouldn't it be simpler to let the entity object manage its

154 INTEGRATING OBJECTS

own I/O? It might be simpler, but if you decided to change a
screen layout, you would need to modify the entity class. If you
keep them separate, then data manipulation procedures are inde-
pendent of data display. You can change one without affecting the
other. In a large program, this can not only save you a lot of time
but also help you avoid programming errors. In a database envi-
ronment, the separation of I /O and data storage becomes espe-
cially critical, because you do not want to modify data storage
each time you decide to modify the look and feel of an application
program.

Many object-oriented programs also use a fourth type of class: a
container class. Container classes exist to "contain," or manage, mul-
tiple objects created from the same type of class. Because they gath-
er objects together, they are also known as aggregations. For
example, if you had a program that handled the instructions for
playing solitaire, then that program would probably have a con-
tainer class that organized all the individual card game objects. The
container class would keep the objects in some order, list them for
you, and probably search through them as well. As you will see,
many pure object-oriented DBMSs require container classes, known
as extents, to provide access to all objects created from the same
class.

Types of Methods

Several types of methods are common to most classes, including the
following:

Constructors: A constructor is a method that has the same
name as the class. It is executed whenever an object is
created from a class. A constructor therefore usually con-
tains instructions to initialize an object's variables in
some way.
Destructors: A destructor is a method that is executed
when an object is destroyed. Not all object-oriented lan-
guages support destructors, which are usually used to re-
lease system resources (for example, main memory)
allocated by the object.

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 155

Accessors: An accessor, also known as a get method, re-
turns the value of a private attribute to another object.
This is the typical way in which external objects gain ac-
cess to encapsulated data.
Mutators: A mutator, or set method, stores a new value in
an attribute. This is the typical way in which external ob-
jects can modify encapsulated data.

The remaining methods defined for a class depend on the specific
type of class and the specific behaviors it needs to perform.

Method Overloading

One of the characteristics of a class is its ability to contain overloaded
methods, methods that have the same name but require different
data to operate. Because the data are different, the public interfaces
of the methods are distinct.

As an example, assume that a human relations program has a con-
tainer class named AllEmployees that aggregates all objects created
from the Employees class. Programs that use the AllEmployees
class create one object from the class and then relate all employee
objects to the container using some form of program data structure
(for example, an array, linked list, or binary tree).

To make the container class useful, there must be some way to lo-
cate specific employee objects. You might want to search by the em-
ployee ID number, by first and last name, or by telephone number.
The AllEmployees class therefore contains three methods named
find. One of the three requires an integer (the employee number) as
input, the second requires two strings (the first and last name), and
the third requires a single string (the phone number). Although the
methods have the same name, their public interfaces are different
because the combination of the name and the required input data is
distinct.

Many classes have overloaded constructors. One might accept in-
teractive input, another might read input from a file, and a third
might get its data by copying the data in another object (a copy

156 INTEGRATING OBJECTS

constructor). For example, most object-oriented environments have
a Date class that supports initializing a date object with a string,
three integers (day, month, year), the current system date, another
Date object, and so on.

The benefit of method overloading is that the methods present a
consistent interface to the programmer. Whenever a programmer
wants to locate an employee, he or she knows to use a method
named f ind. Then, the programmer just uses whichever of the three
types of data he or she happens to have. The object-oriented pro-
gram locates the correct method by using its entire public interface
(its signature), made up of the name and the required input data.

Naming Classes, Attributes, and Methods

There are a few naming conventions used throughout the object-
oriented world. Although there is absolutely nothing that says you
have to name your classes, attributes, and methods in this way, you
will be consistent with other programmers and database designers
if you do so.

Class names start with uppercase letters, followed by
lowercase letters. If a class name is more than one word,
it either uses an underscore (_) to separate the w o r d s ~
as in Merchandise_ i tem~or uses embedded uppercase
letters, as in MerchandiseItem.
Attribute and method names start with lowercase letters
and contain uppercase letters, lowercase letters, and
numbers. If an attribute or method name is more than
one word, it either uses an underscore to separate the
words (for example, product_numb or display_label) or
uses embedded uppercase letters, as in productNumb or
displayLabel.
Accessor method names begin with the word get fol-
lowed by the name of the attribute whose value is to be
retrieved. For example, a method to retrieve a product
number would be getProductNumb.

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 157

I~ Mutator method names begin with the word set followed
by the name of the attribute whose value is to be modi-
fied, as in setProductNumb.

Class Relationships

Inheritance

The classes in an object-oriented environment aren't always inde-
pendent. The basic object-oriented paradigmhas two major ways to
relate objects, distinct from any logical data relationships that might
be included in a pure object-oriented database: inheritance and
composition.

As you are developing an object-oriented program or an object-ori-
ented database, you will run into situations where you need to use
s imi la r~but not identical~classes. If these classes are related in
general to specific relationships, then you can take advantage of one
of the major features of the object-oriented paradigm known as in-
heritance.

Inheriting Attributes. To see how inheritance works, assume that you
are writing a program to manage a pet shop. One of the entity class-
es you will use is Animal, which will describe the living creatures
sold by the shop. The data that describe objects created from the
Animal class include the English and Latin names of the animal, the
animal's age, and the animal's gender. However, the rest of the data
depends on what type of animal is being represented. For example,
for reptiles, you want to know the length of the animal, but for
mammals, you want to know the weight. And for fish, you don't
care about the weight or length, but you do want to know the color.
All the animals sold by the pet shop share some data, yet have piec-
es of data that are specific to certain subgroups.

You could diagram the relationship as in Figure 8-8. The Animal
class provides the data common to all types of animals. The
subgroups~Mammals , Reptiles, and Fish--add the data specific to
themselves. They don't need to repeat the common data because

158 INTEGRATING OBJECTS

they inherit them from Animals. In other words, Mammals, Rep-
tiles, and Fish all include the four pieces of data that are part of
Animal.

Figure 8-8: The relationship of classes for a program for a pet shop

If you look closely at Figure 8-8, you'll notice that the lines on the
arrows go from the subgroups up to Animal. This is actually con-
trary to what is happening: The data from Animal are flowing
down the lines into the subgroups. Unfortunately, the direction of
the arrows is dictated by convention, even though it may seem
counterintuitive.

In object-oriented terminology, the subgroups are known as sub-
classes or derived classes. The Animal class is a superclass or base class.

The trick to understanding inheritance is to remember that sub-
classes represent a more specific occurrence of their superclass. The
relationships between a base class and its derived classes therefore
can be expressed using the phrase "is a":

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 159

A mammal is an animal.
A reptile is an animal.
A fish is an animal.

If the "is a" phrasing does not make sense in a given situation, then
you are not looking at inheritance. As an example, assume that you
are writing a program to handle the rentals of equipment at a ski
shop. You create a class for a generic merchandise item and then
subclasses for the specific types of items being rented, as in the top
four rectangles in Figure 8-9. Inheritance works properly here be-
cause skis are a specific type of merchandise item, as well as boots
and poles.

However, you run into trouble when you begin to consider the spe-
cific items being rented and the customer doing the renting (the
renter). Although there is a logical database-style relationship be-
tween a renter and an item being rented, inheritance does not work
because the "is a" test fails. A rented item is not a renter!

The situation with merchandise items and rental inventory is more
complex. The Merchandise Item, Skis, Boots, and Poles classes rep-
resent descriptions of types of merchandise but not physical inven-
tory. For example, the ski shop may have many pairs of one type of
ski in inventory and many pairs of boots of the same type, size, and
width. Therefore, what is being rented is individual inventory
items, represented by the Item Rented class. A given inventory item
is either skis, boots, or poles. It can only be one, not all three as
shown in Figure 8-9. Therefore, an item rented is not a pair of skis,
a pair of boots, and a set of poles. (You also have the problem of hav-
ing no class that can store the size or length of an item.)

One solution to the problem is to create a separate rented item class
for each type of merchandise, as in Figure 8-10. When you are look-
ing at this diagram, be sure to pay attention to the direction of the
arrows. The physical layout of the diagram does not correspond to
the direction of the inheritance. Remember that by convention, the
arrows point from the derived class to the base class.

160 INTEGRATING OBJECTS

Figure 8-9: Inheritance and no inheritance in a program for a ski shop

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 161

Figure 8-10: Multiple inheritance in a program for a ski shop

162 INTEGRATING OBJECTS

The Ski Item class inherits information about the type of item it is
from the Skis class. It also inherits information about an item being
rented from the Item Rented class. A ski item "is a" pair of skis; a
ski item "is a" rented item as well. Now the design of the classes
passes the "is a" test for appropriate inheritance. (Note that this also
gives you a class that can contain information such as the length
and size of a specific inventory item.) The Renter class does not par-
ticipate in the inheritance hierarchy at all.

Mult iple Inheritance. When a class inherits from more than one base
class, you have multiple inheritance. The extent to which multiple in-
heritance is supported in programming languages and by DBMSs
varies considerably from one product to another. You will read
much more about this concept throughout this book.

Not every class in an inheritance hierarchy is necessarily used to
create objects. For example, in Figure 8-10 it is unlikely that any ob-
jects are ever created from the Merchandise Item or Item Rented
classes. These classes are present simply to provide the common at-
tributes and methods that their derived classes share.

Such classes are known as abstract, or virtual, classes. In contrast,
classes from which objects are created are known as concrete classes.

Note: Many computer scientists use the verb "instantiate" to
mean "creating an object from a class." For example, you could
say that abstract classes are never instantiated. However, this
author finds that term rather contrived (although not quite as
bad as saying "we now will motivate the code" to mean "we will
now explain the code") and prefers to use the more direct "cre-
ate an object from a class."

Inheriting Methods: Polymorphism. In general, methods are inherited
by subclasses from their superclass. A subclass can use its base
class's methods as its own. However, in some cases it may not be
possible to write a generic method that can be used by all subclass-
es. For example, assume that the ski rental shop's Merchandise Item
class has a method named printCatalogEntry, the intent of which is
to print a properly formatted catalog entry for each distinct type of

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 163

Composition

merchandise item. The subclasses of Merchandise Item, however,
have attributes not shared by all subclasses, and the printCatalog-
Entry method therefore must work somewhat differently for each
subclass.

To solve the problem, the ski rental shop can take advantage of poly-
morphism, the ability to write different bodies for methods of the
same name that belong to classes in the same inheritance hierarchy.
The Merchandise Item class includes a prototype for the print-
CatalogEntry method, indicating just the method's public interface.
There is no body for the method, no specifications of how the meth-
od is to perform its work (a virtual method). Each subclass then rede-
fines the method, adding the program instructions necessary to
execute the method.

The beauty of polymorphism is that a programmer can expect
methods of the same name and same type of output for all the sub-
classes of the same base class. However, each subclass can perform
the method according to its own needs. Encapsulation hides the de-
tails from all objects outside the class hierarchy.

Note: It is very easy to confuse polymorphism and overloading.
Just keep in mind that overloading applies to methods of the
same class that have the same name but different signatures,
whereas polymorphism applies to several subclasses of the same
base class that have methods with the same signature but differ-
ent implementations.

Inheritance can be described as a general-specific relationship. In
contrast, composition is a whole-part relationship. It specifies that
one class is a component of another and is often read as "has a."

To help you understand how composition can be used, let's look at
another version of the ski shop classes (see Figure 8-11). Notice that
the diagram is considerably simpler. Not only has the multiple in-
heritance been eliminated, but there are only three classes.

164 INTEGRATING OBJECTS

Figure 8-11: Composition

AN INTRODUCTION TO OBJECT-ORIENTED CONCEPTS 165

The Renter class continues to stand alone. However, the inheritance
hierarchy for the types of merchandise and items that are rented is
now made up of two classes, each of which contains an object of an-
other class. A merchandise item has an object of the Merchandise
Type class to classify it as either a ski, boot, or pole. By the same to-
ken, an item rented has an object of the Rental Item class to contain
descriptive information (size, width, and length, as appropriate).

Some pure object-oriented DBMSs take composition to the extreme.
They provide simple data types such as integers, real numbers,
characters, and Booleans. Everything else in the database ~ even
s t r ings~is built by creating classes from those simple data types
and using those classes to build more complex classes, and so on.

Benefits of Object Orientation
There are several reasons why the object-oriented paradigm has be-
come so pervasive in programming. Among the perceived benefits
are the following:

An object-oriented program consists of modular units
that are independent of one another. These units can
therefore be reused in multiple programs, saving devel-
opment time. For example, if you have a well-debugged
employee class, you can use it in any of your business
programs that require data about employees.
As long as a class's public interface remains unchanged,
the internals of the class can be modified as needed without
requiring any changes to the programs that use the class.
This can significantly speed up program modification. It
can also make program modification more reliable, as it
cuts down on many unexpected side effects of program
changes.

I~ An object-oriented program separates the user interface
from data handling, making it possible to modify one in-
dependent of the other.
Inheritance adds logical structure to a program by relat-
ing classes in a general to specific manner, making the

166 INTEGRATING OBJECTS

program easier to understand and therefore easier to
maintain.

However, the object-oriented paradigm merely provides a frame-
work for organizing the elements in a database. It does not elimi-
nate the need to perform a good database design that identifies
entities and the relationship between entities.

Integrating Objects into a Relational Database
In the pure object-oriented data model, a class is an entity, the ele-
ment that is involved in data relationships. However, when we look
at merging objects into the relational data model, a class takes on an
entirely different role. As mentioned at the beginning of this chap-
ter, it becomes a domain, acting as the data type for a column.

There are two very important implications of using a class as a domain:

It becomes possible to store multiple values in the same
column in the same row because an object usually con-
tains multiple values. However, if a class is a domain as-
signed to a column, then any given intersection of a
column and row can contain only one object created from
that class. The relation therefore still conforms to the re-
lational constraint of there being no multivalued at-
tributes.
It becomes possible to store procedures in a relation, be-
cause an object is linked to the program code for the pro-
cesses that it knows how to do.

There are, however, a few limitations to the implementation of ob-
ject-oriented structures in a relational database. First and foremost,
current implementations do not support inheritance. You will
therefore be unable to relate classes in that way. However, because
a class is essentially a user-defined data type, you can use composi-
tion to build complex classes from simpler classes.

ER DIAGRAMS FOR OBJECT-RELATIONAL DESIGNS 167

Second, although a DBMS may support objects as domains, appli-
cation development tools (both those provided by the DBMS ven-
dor and third-parties) may not recognize columns with classes as
domains. This means that application development must be done
in a high-level language such as C++ or COBOL to take advantage
of the objects until such time as the tools catch up with the DBMS.

Some database designers have attempted to make a relational data-
base act like an object-oriented database by creating a class that cor-
responds to an entity and then creating a table with one column for
the object and one or more columns for the primary key. The prob-
lem with this approach is that a relational database doesn't repre-
sent relationships like an object-oriented database, which uses
pointers much like a simple network database. No matter what you
do, you will still need columns for foreign keys. The result is a de-
sign that is clumsy and hard to maintain. This is therefore not a rec-
ommended approach for relational database design. If you need an
object-oriented database, then that's what you should be using
rather than trying to force a relational database to behave like one.

ER Diagrams for Object-Relational Designs
The Information Engineering style of ER diagramming does not
lend itself to the inclusion of objects because it has no way to repre-
sent a class. Therefore, when we add objects to a relational database,
we have to use another ERD style.

Although there are many techniques for object-oriented ERDs, one
of the most commonly used is the Unified Modeling Language
(UML). When used to depict a post-relational database design,
UML looks a great deal like the IE style, but indicates relationships
in a different way.

An example of an ER diagram using UML can be found in Figure 8-
12. This design is of a purely object-oriented database and includes
some elements that therefore won ' t appear in a hybrid design. It has
been included here to give you an overview of UML so that you can

168 INTEGRATING OBJECTS

better understand the portions of the modeling tool that we will be
using.

Footwear
.

width
closure

topMa ter i al
so leMaterial

heel He i gh t

A I I Produc ts

Product
.

productllumb
produc tDescr i p t i on O..

produc tSize
produc tCo I or
productS ty I e
numberOnHand

......... Y i~~G~~~ i~ ;Y~

p r i n tCa to I ogEn try
{Abstract}

MaterialUse
~;;~(~Fi;;i~iu~;i~
productHumb

quart t i t y

O..~ SubAssembly
.

subAssemblyNumb
productNumb
quantity

O..~

. . . .

I

I

I

.

O. .~

AllSources

Source
...

sourceMumb
sourceName
sourcePhone

"~g~'i'~'G"

0 . . ~

MaterialSupplied

..... 4 ~ G ~ G ~
I materialNumb
I materialPrice

O..~ O. .~

I ~.~.!.~.!
mater ia lNumb

m a t e r i a l D e s c r i p t i o n
uni t

amountOnHand

........... ~ ~ . ! . ~ !

printReorderReport
f i n d S o u r c e F o r

Figure 8-12: An object-oriented database design using UML notation

The basic features of UML include the following:

A regular class is represented by a rectangle, divided into
the three parts (name, attributes, procedures).
An aggregate c lass~a class that collects all objects of a
given class (i.e., an extent)~is represented by a rectangle
containing its name and the rectangles of the classes
whose objects it aggregates. For example, in Figure 8-12,

ER DIAGRAMS FOR OBJECT-RELATIONAL DESIGNS 169

the Product and Source classes are within their aggregate
classes, AllProducts and AllSources, respectively.

Note: The purpose of an aggregate class is the same as a system
set in a CODASYL database. It provides access to all objects
created from a single class.

Relationships between entities are shown with lines with
plain ends. The cardinality of a relationship is expressed
as n, n..n, or n..*. For example, if the cardinality is 1, it is
simply written as 1. If the cardinality is 0 or 1, it is written
as 0..1. If the cardinality is 0 or more, it appears as 0..*; 1
or more appears as 1..*. Notice in Figure 8-12 that there
are several direct many-to-many relationships, shown
with 0..* at either end of the association line.

Note: The object-oriented data model can handle direct many-
to-many relationships. However, as mentioned in Chapter 3, a
designer must be very careful when including them to avoid los-
ing meaning in the database.

Inheritance is shown by a line with an open arrow point-
ing toward the base class. In Figure 8-12, the Footwear
and Headgear classes have such arrows pointing toward
Product.
What we call composite entities in a relational database
are known as association classes. They are connected to the
relationship to which they apply with a dashed line. As
you can see in Figure 8-12, the MaterialSupplied and Ma-
terialUse classes are each connected to at least one many-
to-many relationship by the required dashed line.

In addition to the basic features shown in Figure 8-12, UML dia-
grams can include any of the following:

An attribute can include information about its visibility
(public, protected, or private), data type, default value,
and domain. In Figure 8-13, for example, you can see four
classes and the data types of their attributes. Keep in

170 INTEGRATING OBJECTS

mind that in an object-oriented environment, data types
can be other classes. Therefore, the Source class uses an
object of the TelephoneNumber class for its phoneNum-
ber attribute and an object of the Address class for its
sourceAddress attribute. In turn, Source, Address, and
Telephone number all contain attributes that are objects
of the String class.

...................... ..s...t.~.!.~..g.

l ength:IHT
theS tri ng : CHAR (256)

..

setString(char [1)
getS tr i ng ():S tr i ng
ge tLeng th () : I HT

Address
~ i ; ~ ~ T i ~ i ; i ~ ~
ci ty:String
s ta re: S tri ng
z i p : S t r i n g
.

d isp I ayAddress ()
g e t Z i p () : S t r i n g
getS ta te () : Str i ng
se tS tree t (char [])
setCity(char [I)
se tZ ip (char [])

I TelephoneMumber

exchange:String

~ ~ . ! . ~ . ! . ~ ...

displayPhoneNumber()
se tPhoneHumber (S t r i ng , S t r i ng , S t r i ng)

Source
...

sourceNumb:IMT
sourceHame:String
sourcePhone:TelephoneMumber
sourceAddress:Address

~;~;~'i'~;~';i'~;'i'~
setName (char [])
se tPhone (Te I ephoneMumber �9)

se tAddress (Address �9)

Figure 8-13: UML classes showing their data types

$ Procedures (officially called operations in UML) can in-
clude their complete program signature and return data
type. If you look at Figure 8-13, for example, you can see
each operation's name followed by the types of data that
it requires to perform its job (parameters). Together, the
procedure's name and its parameters make up the proce-
dure's signature. If data are returned by the operation,

ER DIAGRAMS FOR OBJECT-RELATIONAL DESIGNS 171

then the operation's signature is followed by a colon and
the data type of the return value, which may be an object
of another class or a simple data type such as an integer.

Note: Because classes take on the role of data types within a re-
lational database, the classes you will be seeing in the case stud-
ies in Chapters 11 through 13 will appear generally like those in
Figure 8-13. They will be connected to the entities that use them
with gray dashed lines with arrows on one end.

Solid arrows can be used at the end of associations to in-
dicate the directions in which a relationship can be navi-
gated.

Note: As mentioned earlier in this chapter, pure object-oriented
databases, like simple network databases, are navigational,
meaning that traversal through the database is limited to fol-
lowing predefined relationships. Because of this characteristic,
some theorists feel that the object-oriented data model is a step
backward rather than forward and that the relational data mod-
el continues to have significant advantages over any naviga-
tional data model.

There are three possible ways to use the arrows:
- Use arrows on the ends of all associations where nav-

igation is possible. If an association has a plain end,
then navigation is not possible in that direction. This
would indicate, for example, a relationship between
two objects that is not an inverse relationship, where
only one of the two objects in a relationship contains
the object identifier of a related object.

- Show no arrows at all, as was done in Figure 8-13. In
that case, the diagram provides no information about
how the database design can be navigated.

- Show no arrows on associations that can be navigated
in both directions, but use arrows on associations that
can be navigated in only one direction. The drawback
to this approach is that you cannot differentiate asso-
ciations that can be navigated in both directions from
associations that cannot be navigated at all.

172 INTEGRATING OBJECTS

An association that ends in a filled diamond indicates a
whole-part relationship. For example, if you were repre-
senting a spreadsheet in a database, the relationship be-
tween the spreadsheet and its cells could be diagrammed
as in Figure 8-14. The filled diamond can also be used to
show aggregation instead of placing one object within an-
other, as was done in Figure 8-12.

I spreadsheet

1

1 . . *

I o,,I

Figure 8-14: Using UML to diagram a whole-part relationship

When an association is between more than two objects,
UML uses a diamond to represent the relationship. If an
association class is present, it will be connected to the di-
amond, as in Figure 8-15. The four classes in the illustra-
tion represent entities from a poetry reading society's
database. A "reading" occurs when a single person reads
a single poem that was written by one or more poets. The
association entity indicates when and where the reading
took place.

For Further Reading
The equivalent of Codd's rules for the integration of objects into a
relational database can be found in the following book, which pro-
vides a complete (but opinionated) discussion of the topic:

Date, C. J. and Darwen, H. Foundation for Object/Relational Databases:
The Third Manifesto. Addison-Wesley, 1998.

FOR FURTHER READING 173

ReQding
.

reading_date
reading_place

Poem

poe t_ I as t_name
title

Poet

6;6T2 ~i~~i2~6~~
poe t_ I as t_name

b i r thda te
al ire

Reader
?i~~C66~6
I as t_name
address
phone

Figure 8-15: Using UML to diagram a relationship between more than two
classes

For a broader and more thorough treatment of object-oriented anal-
ysis and design, see:

Booch, Grady. Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 1994.

This Page Intentionally Left Blank

Practice
In this part of the book you will read about some of the practical techniques
we use when working with relational database designs. You will be intro-
duced to the SQL language statements needed to create relational schemas
and their contents. You will also see how a CASE tool can help design and
document a database. In addition, this part contains two complete relation-
al design case studies to provide further examples of the database design
process.

175

This Page Intentionally Left Blank

L)'

Using SQL to Implement a
Relational Design

As a complete data manipulation language, SQL contains state-
ments that allow you to insert, modify, delete, and retrieve data.
However, to a database designer, the portions of SQL that support
the creation of database structural elements are of utmost impor-
tance. In this chapter you will be introduced to the SQL commands
that you will use to create and maintain the tables, views, indexes,
and other structures that make up a relational database.

The actual file structure of a database is implementation dependent,
as is the procedure needed to create database files. Therefore, the
discussion in this chapter assumes that the necessary database files
are already in place.

177

178 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

You will see examples of the use of the syntax presented in this
chapter at the end of each of the three case studies that follow in this
book.

Database Object Hierarchy
The objects in a database maintained by a SQL-92-compliant DBMS
are arranged in a hierarchy, diagrammed in Figure 9-1. The smallest
units with which a database w o r k s ~ t h e columns and r o w s ~
appear in the center. These in turn are grouped into tables and
views.

The tables and views that comprise a single logical database are col-
lected into a schema. Multiple schemas are grouped into catalogs,
which can then be grouped into clusters. A catalog usually contains
information describing all the schemas handled by one DBMS. Cat-
alog creation is implementation dependent and therefore not part
of the SQL-92 standard.

Prior to SQL-92, clusters often represented database files, and the
clustering of objects into files was a way to increase database per-
formance by placing objects accessed together in the same physical
file. The SQL-92 concept of a cluster, however, is a group of catalogs
that are accessible using the same connection to a database server.

Under SQL-92, none of the groupings of database objects are related
to physical storage structures. If you are working with a centralized
mainframe DBMS, you may find multiple catalogs stored in the da-
tabase file. However, on smaller or distributed systems, you are just
as likely to find one catalog or schema per database file or to find a
catalog or schema split between multiple files.

Clusters, catalogs, and schemas are not required elements of a data-
base environment. In a small installation where there is one collec-
tion of tables serving a single purpose, for example, it may not even
be necessary to create a schema to hold them.

DATABASE OBJECT HIERARCHY 179

Figure 9-1: The SQL-92 database object hierarchy

Naming and Identifying Objects
The way in which you name and identify database objects is in
some measure dictated by the object hierarchy:

Column names must be unique within the table.
Table names must be unique within the schema.
Schema names must be unique within their catalog.
Catalog names must be unique within their cluster.

180 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

When a column name appears in more than one table in a query, a
user must specify the table from which a column should be taken
(even if it makes no difference which table is used). The general
form for qualifying duplicate names is:

tab le name.column name

If an installation has more than one schema, then a user must also
indicate the schema in which a table resides:

schema name.table name.column name

This naming convention means that two different schemas can in-
clude tables with the same name.

By the same token, if an installation has multiple catalogs, a user
will need to indicate the catalog from which an object comes"

catalog_name, schema_name, table_name, column_name

The names that you assign to database elements can include the fol-
lowing:

Letters
Numbers
Underscores (_)

Names can be up to 128 characters long. They are not case-sensitive.
(In fact, many SQL command processors convert names to all up-
per- or lowercase characters before submitt ing a SQL statement to a
DBMS for processing.)

Note: Some DBMSs also allow pound signs (#) and dollar signs
($) in element names, but neither is recognized by SQL queries
so their use should be avoided.

SCHEMAS 181

Schemas

To a database designer, a schema represents the overall, logical de-
sign of a complete database. As far as SQL is concerned, however, a
schema is nothing more than a container for tables, views, and other
structural elements. It is up to the database designer to place a
meaningful group of elements within each schema.

A schema is not required to create tables and views. In fact, if you
are installing a database for an environment in which there is likely
to be only one logical database, then you can just as easily do with-
out one. However, if more than one database will be sharing the
same DBMS and the same server, then organizing database ele-
ments into schemas can greatly simplify the maintenance of the
individual databases.

Creating a Schema

To create a schema, you use the CREATE SCHEMA statement. In its
simplest form, it has the syntax

CREATE SCHEMA schema name

as in

CREATE SCHEMA lasers_on ly

By default, a schema belongs to the user who created it (the user ID
under which the schema was created). The owner of the schema is
the only user ID that can modify the schema unless the owner
grants that ability to other users.

To assign a different owner to a schema, you add an AUTHORIZA-
TION clause:

CREATE SCHEMA schema name AUTHORIZATION ownec u s e r ID

For example, to assign the lasers_only schema to the user ID DBA,
someone could use:

182 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

CREATE SCHEMA laser 's_only AUTHORIZATION dba

When creating a schema, you can also create additional database el-
ements at the same time. To do so, you use braces to group the CRE-
ATE statements for the other elements, as in:

CREATE SCHEMA schema name AUTHORIZATION owner u s e r ZD
{

o t h e r c r e a t e s t a t e m e n t s go he re
}

This automatically assigns the elements within the braces to the
schema.

Identifying the Schema You Want to Use

One of the nicest things about a relational database is that you can
add or delete database structure elements at any time. There must
therefore be a way to specify a current schema for new database el-
ements after the schema has been created initially with the CREATE
SCHEMA statement.

One way to do this is with the SET SCHEMA statement:

SET SCHEMA schema name
m

To use SET SCHEMA, the user ID under which you are working
must have authorization to work with that schema.

Alternatively, you can qualify the name of a database element with
the name of the schema. For example, if you are creating a table,
then you would use something like

CREATE TABLE schema name. t a b l e name
m

For those DBMSs that do not support SET SCHEMA, this is the only
way to attach new database elements to a schema after the schema
has been created.

DOMAINS 183

Domains

As you know, a domain is an expression of the permitted values for
a column in a relation. When you define a table, you assign each
column a data type (for example, character or integer) that pro-
vides a broad domain. A DBMS will not store data that violate that
constraint.

The SQL-92 standard introduced the concept of user-defined do-
mains, which can be viewed as user-defined data types that can be
applied to columns in tables. (This means you have to create a do-
main before you can assign it to a column!)

Domains can be created as part of a CREATE SCHEMA statement
or, if your DBMS supports SET SCHEMA, at any time after a sche-
ma has been defined.

To create a domain, use the CREATE DOMAIN statement, which
has the following general syntax:

CREATE DOMAIN domain_name data_type
CHECK (expression_to_val idate_values)

The CHECK clause is actually a generic way of expressing a condi-
tion that data must meet. It can include a SELECT to validate data
against other data stored in the database or it can include a simple
logical expression. In that expression, the keyword VALUE repre-
sents the data being checked.

For example, if Lasers Only wanted to validate the price of a disc,
someone might create the following domain:

CREATE DOMAIN pPice numeric (6,2)
CHECK (VALUE >= 19.95)

After creating this domain, a column in a table can be given the data
type of price. The DBMS will then check to be certain that the value
in that column is always greater than or equal to 19.95. (We will
leave a discussion of the data type used in the preceding SQL

184 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

statement until we cover creating tables in the next section of this
chapter.)

The domain mechanism is very flexible. Assume, for example, that
you want to ensure that telephone numbers are always stored in the
format XXX-XXX-XXXX. A domain to validate that format might be
created as:

CREATE DOMAIN te lephone chap (12)
CHECK (SUBSTRING (VALUE FROM 4 FOR 1 = ' - ') AND

SUBSTRING (VALUE FROM 8 FOR 1 = ' - '))

You can use the CREATE DOMAIN statement to give a column a
default value. For example, the following statement sets up a do-
main that holds either Y or N and defaults to Y:

CREATE DOMAIN boolean chap (1)
DEFAULT 'Y '
CHECK (UPPER(VALUE) = 'Y ' OR UPPER(VALUE) = ' N ')

Tables

The most important structure within a relational database is the ta-
ble. As you know, tables contain just about everything, including
business data and the data dictionary.

The SQL-92 standard divides tables into three categories:

r Permanent base tables: Permanent base tables are tables
whose contents are stored in the database and remain
permanently in the database unless they are explicitly
deleted.

r Global temporary tables: Global temporary tables are ta-
bles used for working storage that are destroyed at the
end of a SQL session. The definitions of the tables are
stored in the data dictionary, but their data are not. The
tables must be loaded with data each time they are going
to be used. Global temporary tables can be used only by
the current user, but they are visible to an entire SQL ses-

TABLES 185

sion (either an application program or a user working
with an interactive query facility).
Local temporary tables: Local temporary tables are similar
to global temporary tables. However, they are visible only
to the specific program module in which they are created.

Temporary base tables are subtly different from views, which as-
semble their data by executing a SQL query. You will read more
about this difference and how temporary tables are created and
used later in this chapter.

Most of the tables in a relational database are permanent base ta-
bles. You create them with the CREATE TABLE statement:

CREATE TABLE t a b l e name
(columnl_name co lumn l_da ta_ type

c o l u m n _ c o n s t c a i n t s ,
column2_name column2_data_ type
c o l u m n _ c o n s t c a i n t s , ...
t a b l e_ cons t c a l n t s)

The constraints on a table include declarations of primary and for-
eign keys. The constraints on a column include whether values in
the column are mandatory as well as other constraints you may de-
cide to include in a CHECK clause.

Column Data Types
Each column in a table must be given a data type. Although data
types are somewhat implementation dependent, you can expect to
find most of the following:

INTEGER (abbreviated INT): A positive or negative
whole number. The number of bits occupied by the value
is implementation dependent. On today's desktop com-
puters, an integer is either 16 or 32 bits. Large computers
use only 32-bit integers.
SMALLINT: A positive or negative whole number. A
small integer is usually half the size of a standard integer.

186 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

Using small integers when you know you will need to
store only small values can save space in the database.

r NUMERIC: A fixed-point positive or negative number. A
numeric value has a whole number portion and a frac-
tional portion. When you create it, you must specify the
total length of the number (including the decimal point)
and how many of those digits will be to the right of the
decimal point (its precision). For example:

NUMERIC (6 , 2)

creates a number in the format XXX.XX. The DBMS will
store exactly two digits to the right of the decimal point.

r DECIMAL: A fixed-point positive or negative number. A
decimal number is similar to a numeric value. However,
the DBMS may store more digits to the right of the deci-
mal than you specify. Although there is no guarantee that
you will get the extra precision, its presence can provide
more accurate results in computations.

r REAL: A "single-precision" floating point value. A float-
ing point number is expressed in the format:

• * IOYY

where YY is the power to which 10 is raised. Because of
the way in which computers store floating point num-
bers, a real number may not be an exact representation of
a value, but only a close approximation. The range of val-
ues that can be stored is implementation dependent, as is
the precision. You therefore cannot specify a size for a
real number column.

r DOUBLE PRECISION (abbreviated DOUBLE): A "dou-
ble-precision" floating point number. The range and pre-
cision of double precision values are implementation
dependent, but generally both will be greater than with
single-precision real numbers.

r FLOAT: A floating point number for which you can spec-
ify the precision. The DBMS will maintain at least the
precision that you specify. (It may be more.)

TABLES 187

BIT: Storage for a fixed number of individual bits. You
must indicate the number of bits, as in

BIT (n)

where n is the number of bits. (If you do not, you will
have room for only one bit.)
BIT VARYING: Storage for a varying number of bits, up
to a specified maximum, as in

BIT VARYING (n)

where n is the maximum number of bits. In some DBMSs,
columns of this type can be used to store graphic images.
DATE: A date.
TIME: A time.
TIMESTAMP: The combination of a date and a time.
CHARACTER (abbreviated CHAR): A fixed-length
space to hold a string of characters. When declaring a
CHAR column, you need to indicate the width of the col-
umn:

CHAR (n)

where n is the amount of space that will be allocated for
the column in every row. Even if you store less than n
characters, the column will always take up n bytes and
the column will be padded with blanks to fill up empty
space. The maximum number of characters allowed is
implementation dependent.
CHARACTER VARYING (abbreviated VARCHAR): A
variable length space to hold a string of characters. You
must indicate the maximum width of the column

VARCHAR (n)

- - b u t the DBMS stores only as many characters as you in-
sert, up to the maximum n. The overall maximum num-
ber of characters allowed is implementation dependent.
INTERVAL: A date or time interval. An interval data type
is followed by a qualifier that specifies the size of the in-
terval and optionally the number of digits. For example:

188 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

INTERVAL YEAR
INTERVAL YEAR (n)
INTERVAL MONTH
INTERVAL MONTH (n)
INTERVAL YEAR TO MONTH
INTERVAL YEAR (n) TO MONTH
INTERVAL DAY
INTERVAL DAY (n)
INTERVAL DAY TO HOUR
INTERVAL DAY (n) TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY (n) TO MINUTE
INTERVAL MINUTE
INTERVAL MINUTE (n)

In the preceding examples, n specifies the number of dig-
its. When the interval covers more than one date-t ime
unit, such as YEAR TO MONTH, you can specify a size
for only the first unit. Year-month intervals can include
years, months, or both. Time intervals can include days,
hours, minutes, a n d / o r seconds.

Many DBMSs also support a BLOB (binary large object) data type. A
BLOB is usually the contents of a file containing text and / o r graph-
ics that cannot be interpreted by the DBMS (although the BLOB is
readable by the application that created it). BLOBs use a great deal
of space in the database. In addition, they cannot be used for search-
es. Identifying information about the contents of a BLOB must be
contained in other columns of the table using data types that can be
understood by the DBMS.

Notice that there is no specification for a Boolean (true-false) data
type. This means that if you need to use a column as a flag, the best
solution is to create a boolean domain like the one you saw earlier
in this chapter in the section on domains.

In Figure 9-2 you will find bare-bones CREATE TABLE statements
for the Lasers Only database. These statements include only col-
umn names and data types. SQL will create tables from statements
in this format, but because the tables have no primary keys, many
DBMSs will not let you enter data.

TABLES 189

CREATE TABLE customer
(customer_numb ln t ,
customer_first_name varchar (15),
customer_last_name varchar (15),
customer_street varchar (30),
customer_city varchar (15),
customer_state char (2),
customer_zip char (5),
customer_phone char (12),
credit_card_numb varchar (15),
card_exp_date date)

CREATE TABLE ltem
(• lnteger,
t • varchar (60),
distributor_numb ln t ,
re ta i l _p r i ce numeric (6,2),
release date date,

i

genre char (15))

CREATE TABLE order
(order_numb lnteger,
customer_numb lnteger,
order_date date,
o rder_ f i l l ed char (1))

CREATE TABLE order 11ne
(order_numb ln t ,
item_numb ln t ,
quant l ty lnteger,
discount_applied numerlc (6,2),
se l l ing_pr ice numerlc (6,2),
shipped char (1))

CREATE TABLE d i s t r i bu to r
(distributor_numb ln t ,
distributor_name varchar (15),
d i s t r i bu to r_s t ree t varchar (30),
d i s t r i b u t o r _ c i t y varchar (15),
d i s t r ibu to r_s ta te char (2),
d i s t r i bu to r_z ip chap (5),
distr ibutor_phone char (12),
distr ibutor_contact_person varchar (30),
contact_person_ext varchar (5))

Continued next page

Figure 9-2" Initial CREATE TABLE statements for the Lasers Only database

190 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

CREATE TABLE actor
(actor_numb in t ,
actor_name varchar (30)

CREATE TABLE performance
(actor_numb in t ,
item_numb in t ,
role varchar (30))

CREATE TABLE producer
(producer_name varchar (30),
studio varchar (30))

CREATE TABLE production
(producer_name varchav (30),
item_numb in t)

Figure 9-2 (Continued): Initial CREATE TABLE statements for the Lasers Only
database

Default Values

As you are defining columns, you can designate a default value for
individual columns. To indicate a default value, you add a DE-
FAULT keyword to the column definition, followed by the default
value. For example, in the Orders relation the order_date column
defaults to the current system date. The column declaration is there-
fore written:

order date date DEFAULT CURRENT DATE
n m

Notice that this particular declaration is using the SQL value
CURRENT_DATE. However, you can place any value after DE-
FAULT that is a valid instance of the column's data type.

NOT NULL Constraints

The values in primary key columns must be unique and not null. In
addition, there may be columns for which you want to require a
value. You can specify such columns by adding NOT NULL after
the column declaration. Since the online bookstore wants to ensure

TABLES 191

that an order date is always entered, the complete declaration for
that column in the Orders table is:

order date date NOT NULL DEFAULT CURRENT DATE
m

Primary Keys
To specify a table's primary key, you add a PRIMARY KEY clause
to a CREATE TABLE statement. The keywords PRIMARY KEY are
followed by the names of the primary key column or columns, sur-
rounded by parentheses.

In Figure 9-3 you will find the CREATE TABLE statements for the
Lasers Only database including primary key declarations. Notice
that in the order_line, performance, and production tables, all of
which have a concatenated primary key, both primary key columns
have been included in the PRIMARY KEY clause.

Foreign Keys
As you know, a foreign key is a column (or concatenation of col-
umns) that is exactly the same as the primary key of some table.
When a foreign key value matches a primary key value, we know
that there is a logical relationship between the database objects rep-
resented by the matching rows.

One of the major constraints on a relation is referential integrity,
which states that every nonnull foreign key value must reference an
existing primary key value. To maintain the integrity of the data-
base, it is vital that foreign key constraints be stored within the da-
tabase's data dictionary so that the DBMS can be responsible for
enforcing those constraints.

To specify a foreign key for a table, you add a FOREIGN KEY
clause:

FOREIGN KEY foreign_key_name (foreign_key_columns)
REFERENCES primary_key_table (primary_key_columns)

192 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

CREATE TABLE customer
(customer_numb int ,
customer_first_name varchar (15),
customer_last_name varchar (15),
customer_street varchar (30),
customer_city varchar (15),
customer_state char (2),
customer_zip char (5),
customer_phone char (12) NOT NULL,
credit_card_numb varchar (15),
card_exp_date date
PRIMARY KEY (customer_numb))

CREATE TABLE item
(item_numb integer,
t i t l e varchar (60),
distributor_numb int ,
retai l_pr ice numeric (6,2),
release_date date,
genre char (15)
PRIMARY KEY (item_numb))

CREATE TABLE order
(order_numb integer,
customer_numb integer,
order_date date,
order_f i l led char (1)
PRIMARY KEY (order_numb))

CREATE TABLE order line
m

(order_numb int,
item_numb int,
quantity integer,
discount_applied numeric (6,2),
sell ing_price numeric (6,2),
shipped char (1)
PRIMARY KEY (order_numb, item_numb))

Continued next page

Figure 9-3" CREATE TABLE statements for the Lasers Only database
including primary key declarations

TABLES 193

CREATE TABLE d i s t r i b u t o r
(distr ibutor_numb in t ,
distr ibutor_name varchar (15),
d i s t r i bu to r_s t ree t varchar (30),
d i s t r i b u t o r _ c i t y varchar (15),
d i s t r i bu to r_s ta te char (2),
d i s t r i bu to r_z ip chap (5),
distr ibutor_phone chap (12),
d istr ibutor_contact_person varchar (30),
contact_person_ext varchav (5)
PRIMARY KEY (d istr ibutor_numb))

CREATE TABLE actor
(actor_numb in t ,
actor_name varchav (30)
PRIMARY KEY (actor_numb))

CREATE TABLE performance
(actor_numb in t ,
item_numb in t ,
role varchar (30)
PRIMARY KEY (actor_numb, item_numb))

CREATE TABLE producer
(producer_name vavchar (30),
studio varchav (30)
PRIMARY KEY (producer_name))

CREATE TABLE production
(producer_name varchar (30),
item_numb in t)
PRIMARY KEY (producer_name, item_numb))

Figure 9-3 (Continued): CREATE TABLE statements for the Lasers Only
database including primary key declarations

ON UPDATE update_action
ON DELETE delete act ion

Each foreign key-pr imary key reference is given a name. This
makes it possible to identify the reference at a later time, in particu-
lar, so you can remove the reference if necessary.

Note: Some DBMSs, such as Oracle, do not support the naming
of foreign keys, in which case you would use the preceding syn-
tax without the name.

194 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

The names of the foreign key columns follow the name of the for-
eign key. The REFERENCES clause contains the name of the prima-
ry key table being referenced. If the primary key columns are
named in the PRIMARY KEY clause of their table, then you don't
need to list the column names. However, if the columns aren't part
of a PRIMARY KEY clause, you must list the primary key columns
in the REFERENCES clause.

The final part of the FOREIGN KEY specification indicates what
should happen when a primary key value being referenced by the
foreign key is deleted or updated. There are three options that ap-
ply to both updates and deletions and one additional option for
each:

SET NULL: Replace the foreign key value with null. This
isn't possible when the foreign key is part of the primary
key of its table.
SET DEFAULT: Replace the foreign key value with the
column's default value.
CASCADE: Delete or update all foreign key rows.
NO ACTION: On update, make no modification of for-
eign key values.
RESTRICT: Do not allow deletion of the primary key row.

The complete declarations for the Lasers Only database tables, which
includes foreign key constraints, can be found in Figure 9-4. Notice
that although there are no restrictions on how to name foreign keys,
the foreign keys in this database have been named to indicate the ta-
bles involved. This makes them easier to identify if you need to delete
or modify a foreign key at a later date.

Additional Column Constraints

There are additional constraints that you can place on columns in a
table beyond primary and foreign key constraints. These include re-
quiring unique values and predicates in CHECK clauses.

TABLES 195

CREATE TABLE customer
(customer_numb int,
customer_first_name varchar (15),
customer_last_name varchar (15),
customer_street varchar (30),
customer_city varchar (15),
customer_state char (2),
customer_zip char (5),
customer_phone char (12) NOT NULL,
credit_card_numb varchar (15),
card_exp_date date
PRIMARY KEY (customer_numb))

CREATE TABLE item
(item_numb integer,
t i t l e varchar (60),
distributor_numb int,
retail_price numeric (6,2),
release_date date,
genre char (15)
PRIMARY KEY (item_numb)
FOREIGN KEY (item2distributor)
REFERENCES distr ibutor (distributor_numb)

ON UPDATE CASCADE
ON DELETE RESTRICT)

CREATE TABLE order
(order_numb integer,
customer_numb integer,
order_date date,
order_filled char (I)
PRIMARY KEY (order_numb)
FOREIGN KEY (order2customer)
REFERENCES customer (customer_numb)

ON UPDATE CASCADE
ON DELETE RESTRICT)

CREATE TABLE actor
(actor_numb int,
actor_name varchar (30)
PRIMARY KEY (actor_numb))

CREATE TABLE producer
(producer_name varchar (30),
studio varchar (30)
PRIMARY KEY (producer_name))

Continued next page

Figure 9-4" Complete CREATE TABLE statements for the Lasers Only
database including primary and foreign key declarations

196 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

CREATE TABLE order l ine
(order_numb in t ,
item numb in t ,
quant i ty in teger,
discount_applied numeric (6,2),
se l l ing_pr ice numeric (6,2),
shipped char (1)
PRIMARY KEY (order_numb, item_numb)
FOREIGN KEY (order_l ine2order)
REFERENCES order (order_numb)

ON UPDATE CASCADE
ON DELETE RESTRICT

FOREIGN KEY (order_l ine2item)
REFERENCES item (item_numb)

ON UPDATE CASCADE
ON DELETE RESTRICT)

CREATE TABLE performance
(actor_numb in t ,
item_numb in t ,
role varchar (30)
PRIMARY KEY actor_numb, item_numb)
FOREIGN KEY (performance2actor)
REFERENCES actor (actor_numb)

ON UPDATE CASCADE
ON DELETE CASCADE

FOREIGN KEY (performance2item)
REFERENCES item (item_numb)

ON UPDATE CASCADE
ON DELETE CASCADE)

CREATE TABLE production
(producer_name varchar (30),
item_numb in t)
PRIMARY KEY (producer_name, item_numb)
FOREIGN KEY (production2producep)
REFERENCES producer (producer_name)

ON UPDATE CASCADE
ON DELETE CASCADE

FOREIGN KEY (production2item)
REFERENCES item (item_numb)

ON UPDATE CASCADE
ON DELETE CASCADE)

Continued next page

Figure 9-4 (Continued): Complete CREATE TABLE statements for the Lasers
Only database including primary and foreign key declarations

TABLES 197

CREATE TABLE d i s t r i b u t o r
(distr ibutor_numb i n t ,
distr ibutor_name varchar (15),
d i s t r i b u t o r _ s t r e e t varchar (30),
d i s t r i b u t o r _ c i t y varchar (15),
d i s t r i bu to r_s ta te char (2),
d i s t r i b u t o r _ z i p char (5),
d is t r ibutor_phone char (12),
d is t r ibutor_contact_person varchar (30),
contact_person_ext varchar (5)
PRIMARY KEY distr ibutor_numb)

Figure 9-4 (Continued): Complete CREATE TABLE statements for the Lasers
Only database including primary and foreign key declarations

Requiring Unique Values

If you want to ensure that the values in a non-primary key column
are unique, then you can use the UNIQUE keyword. UNIQUE ver-
ifies that all nonnull values are unique. For example, if you were
storing social security numbers in an employees table that used an
employee ID as the primary key, you could also enforce unique so-
cial security numbers with:

s s n char (11) UNIQUE

Check Clauses

The UNIQUE clause can also be placed at the end of the CREATE
TABLE statement, along with the primary key and foreign key spec-
ifications. In that case, it takes the form:

UNIQUE (column_names)

The CHECK clause to which you were introduced earlier in this
chapter in the "Domains" section can also be used with individual
columns to declare column-specific constraints. To add a constraint,
you place a CHECK clause after the column declaration, using the
keyword VALUE in a predicate to indicate the value being checked.

For example, to verify that a column used to hold true-false values
is limited to T and F, you could write a CHECK clause as:

CHECK (UPPER(VALUE) = 'T' OR UPPER(VALUE) = 'F ')

198 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

Views

As you first read in Chapter 3, views provide a way to give users a
specific portion of a larger schema with which they can work. Be-
fore you actually can create views, there are two things you should
consider: which views you really need and whether the views can
be used for updating data.

Deciding Which Views to Create

Views take up very little space in a database, occupying only a few
rows in a data dictionary table. That being the case, you can feel free
to create views as needed.

A typical database might include the following views:

One view for every base table that is exactly the same as
the base table, but with a different name. Then, you pre-
vent end users from seeing the base tables and do not tell
the end users the table names; you give end users access
only to the views. This makes it harder for end users to
attempt to gain access to the stored tables because they
do not know their names. However, as you will see in the
next section, it is essential for updating that there be
views that do match the base tables.
One view for each primary key-foreign key relationship
over which you join frequently. If the tables are large, the
actual syntax of the query may include methods for
avoiding the join operation but still combining the tables.
One view for each complex query that you issue fre-
quently.
Views as needed to restrict user access to specific columns
and rows. For example, you might recreate a view for a re-
ceptionist that shows employee office numbers and tele-
phone extensions, but leaves off home address, telephone
number, and salary.

VIEWS 199

View Updatability Issues
A database query can apply any operations supported by the
DBMS's query language to a view, just as it can to base tables. How-
ever, using views for updates is a much more complicated issue.
Given that views exist only in main memory, any updates made to
a view must be stored in the underlying base tables if the updates
are to have any effect on the database.

Not every view is updatable, however. Although the rules for view
updatability vary from one DBMS to another, you will find that
most DBMSs share the following restrictions"

A view must be created from no more than one base table
or view.
If the source of the view is another view, then the source
view must also adhere to the rules for updatability.
A view must be created from only one query. Two or
more queries cannot be assembled into a single view ta-
ble using operations such as union.
The view must include the primary key columns of the
base table.
The view must include all columns specified as not null
(columns requiring mandatory values).
The view must not include any groups of data. It must in-
clude the original rows of data from the base table, rather
than rows based on values common to groups of data.
The view must not remove duplicate rows.

Creating Views
To create a view whose columns have the same name as the col-
umns in the base tables from which it is derived, you give the view
a name and include the SQL query that defines its contents:

CREATE VIEW v i ew name AS
SELECT ...

200 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

For example, if Lasers Only wanted to create a view that included
action films, the SQL is written:

CREATE VIEW act ion AS
SELECT t i t l e_numb, t i t l e
FROM item
WHERE genre = ' a c t i o n '

If you want to rename the columns in the view, you include the new
column names in the CREATE VIEW statement:

CREATE VIEW act ion
(i d e n t i f i e r , name)

AS
SELECT t i t le_numb, t i t l e
FROM item
WHERE genre = ' a c t i o n '

The preceding statement will produce a view with two columns
named Identifier and Name. Note that if you want to change even
one column name, you must include all the column names in the pa-
rentheses following the view name. The DBMS will match the col-
umns following SELECT with the view column names by their
position in the list.

Views can be created from any SQL query, including those that per-
form joins, unions, and grouping. For example, to simplify looking
at sales figures, Lasers Only might create a view like the following:

CREATE VIEW sales_summary AS
SELECT customer_numb, orders.order_numb, o rders .o rder_date ,

SUM (s e l l i n g _ p r i c e)
FROM order l i n e JOIN order
GROUP BY customer_numb, o rders .o rder_date , orders.order_numb

The view table will then contain grouped data along with a com-
puted column.

TEMPORARY TABLES 201

Temporary Tables
A temporary table is a base table that is not stored in the database
but instead exists only while the database session in which it was
created is active. At first glance, this may sound like a view, but
views and temporary tables are rather different:

A view exists only for a single query. Each time you use
the name of a view, its table is recreated from existing da-
ta.
A temporary table exists for the entire database session
in which it was created.
A view is automatically populated with the data re-
trieved by the query that defines it.
You must add data to a temporary table with SQL IN-
SERT commands.
Only views that meet the criteria for view updatability
can be used for data modification.
Because temporary tables are base tables, all of them can
be updated.
Because the contents of a view are generated each time
the view's name is used, a view's data are always cur-
rent.
The data in a temporary table reflect the state of the data-
base at the time the table was loaded with data. If the data
from which the temporary table was loaded are modified
after the temporary table has received its data, then the
contents of the temporary table may be out of sync with
other parts of the database.

If the contents of a temporary table become outdated when source
data change, why use a temporary table at all? Wouldn' t it be better
simply to use a view whose contents are continually regenerated?
The answer lies in performance. It takes processing time to create a
view table. If you are going to use data only once during a database
session, then a view will actually perform better than a temporary
table because you don' t need to create a structure for it. However, if
you are going to be using the data repeatedly during a session, then

202 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

a temporary table provides better performance because it needs to
be created only once. The decision therefore results in a trade-off:
Using a view repeatedly takes more time but provides continually
updated data; using a temporary table repeatedly saves time, but
you run the risk that the table's contents may be out of date.

Creating Temporary Tables
Creating a temporary table is very similar to creating a permanent
base table. You do, however, need to decide on the scope of the table.
A temporary table can be global, in which case it is accessible to the
entire application program that created it. Alternatively, it can be lo-
cal, in which case it is accessible only to the program module in
which it was created.

To create a global temporary table, you add the keywords GLOBAL
TEMPORARY to the CREATE TABLE statement:

CREATE GLOBAL TEMPORARY TABLE
(remainder of CREATE statement)

By the same token, you create a local temporary table with:

CREATE LOCAL TEMPORARY TABLE
(remainder of CREATE statement)

For example, if Lasers Only was going to use the sales summary in-
formation repeatedly, it might create the following temporary table
instead of using a view:

CREATE GLOBAL TEMPORARY TABLE sales_summary
(customer_numb INTEGER,
order_numb INTEGER,
order_date DATE,
order_ to ta l NUMERIC (6,2) ,
PRIMARY KEY (cust~176

TEMPORARY TABLES 203

Loading Temporary Tables with Data
To place data in a temporary table, you use one or more SQL IN-
SERT statements. For example, to load the Sales_summary table
created in the preceding section, you could write:

INSERT INTO sales_summary
SELECT customer_numb, orders.order_numb, orders.order_date,

SUM (sel l ing_pr ice)
FROM order l ine JOIN order
GROUP BY customer_numb, orders.order_date, orders.order_numb

You can now query and manipulate the Sales_summary table just as
you would a permanent base table.

Disposition of Temporary Table Rows
When you write embedded SQL (SQL statements coded as part of a
program written in a high-level language such as C++ or Java), you
have control over the amount of work that the DBMS considers to
be a unit (a transaction). To unders tand what happened to the rows
in a temporary table, you do need to know that a transaction can
end in one of two ways: It can be committed (its changes made per-
manent) or it can be rolled back (its changes undone).

By default, the rows in a temporary table are purged whenever a
transaction is committed. You can, however, instruct the DBMS to
retain the rows by including ON COMMIT PRESERVE ROWS to
the end of the table creation statement:

CREATE GLOBAL TEMPORARY TABLE sales_summary
(customer_numb INTEGER,
order_numb INTEGER,
order_date DATE,
order_total NUMERIC (6,2),
PRIMARY KEY (customer_numb,order_numb),
ON COMMIT PRESERVE ROWS)

Because a rollback returns the database to the state it was in before
the transaction began, a temporary table will also be restored to its
previous state (with or without rows).

204 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

Creating Indexes
As you read in Chapter 5, an index is a data structure that provides
a fast access path to rows in a table based on the values in one or
more columns (the index key). Because an index stores key values
in order, the DBMS can use a fast search technique to find the values
rather than being forced to search each row in an unordered table
sequentially.

You create indexes with the CREATE INDEX statement:

CREATE INDEX index name
ON tab2e_name (index_key_co2umns)

For example, to create an index on the title column in the Item table,
the online bookstore would use:

CREATE INDEX t i t l e
ON item (t i t l e)

By default, the index will allow duplicate entries and sorts the en-
tries in ascending order. To require unique index entries, add the
keyword UNIQUE after CREATE:

CREATE UNIQUE INDEX t i t l e
ON item (t i t l e)

To sort in descending order, insert DESC after the column whose
sort order you want to change. For example, Lasers Only might
want to create an index on order date in the Order relation in de-
scending order so that the most recent orders are first:

CREATE INDEX order date
ON order (order_date DESC)

If you want to create an index on a concatenated key, you include
all the columns that should be part of the index key in the column
list. For example, the following creates an index organized by actor
and item number:

CREATE INDEX actor item
ON performance (actor_numb, item_numb)

MODIFYING DATABASE ELEMENTS 205

Although you do not need to access an index directly unless you
want to delete it from the database, it helps to give indexes names
that tell you something about their keys. This makes it easier to re-
member them should you need to get rid of the indexes.

Modifying Database Elements
With the exception of tables, database elements are largely un-
changeable. When you want to modify them, you must delete them
from the database and create them from scratch. In contrast, just
about every characteristic of a table can be modified without delet-
ing the table using the ALTER TABLE statement.

Adding New Columns
To add a new column to a table, use the ALTER TABLE statement
with the following syntax:

ALTER TABLE table name
ADD column_name column_data_type column_constraints

For example, if Lasers Only wanted to add a telephone number col-
umn to the Producer table they would use:

ALTER TABLE producer
ADD phone CHAR (12)

To add more than one column at the same time, simply separate the
clauses with commas:

ALTER TABLE producer
ADD phone CHAR (12),
ADD producer_street VARCHAR (30),
ADD producer_c i ty VARCHAR (30),
ADD producer_state CHAR (2),
ADD producer_zip CHAR (5)

206 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

Adding Table Constraints
You can add table constraints such as foreign keys at any time. To
do so, include the new constraint in the ADD clause of an ALTER
TABLE statement:

ALTER TABLE t a b l e name
ADD t a b l e c o n s t r a i n t

m

Assume, for example, that Lasers Only created a new table named
States and included in it all the two-character U.S. state abbrevia-
tions. The company would then need to add references to that table
from the Customer, Distributor, and Producer tables"

ALTER TABLE customer
ADD FOREIGN KEY customers2states (customer_state)

REFERENCES s ta tes (state_name)

ALTER TABLE d i s t r i b u t o r
ADD FOREIGN KEY d i s t r i b u t o r 2 s t a t e s (d i s t r i b u t o r _ s t a t e)

REFERENCES s ta tes (state_name)

ALTER TABLE pub l i she r
ADD FOREIGN KEY pub l i she rs2s ta tes (p u b l i s h e r _ s t a t e)

REFERENCES s ta tes (state_name)

When you add a foreign key constraint to a table, the DBMS verifies
that all existing data in the table meet that constraint. If they do not,
the ALTER TABLE will fail.

Modifying Columns
You can modify columns by changing any characteristic of the col-
umn, including its data type, size, and constraints:

I~ To replace a complete column definition, use the MODI-
FY command with the current column name and the new
column characteristics. For example, to change the cus-
tomer number in the Customer table from an integer to a
character column, the online bookstore could use:

ALTER TABLE customers
MODIFY customer_numb CHAR (4)

MODIFYING DATABASE ELEMENTS 207

To add or change a default value only (without changing
the data type or size of the column), include the DE-
FAULT keyword:

ALTER TABLE customers
MODIFY customer numb DEFAULT 0

To switch between allowing nulls and not allowing nulls
without changing any other column characteristics, add
NULL or NOT NULL as appropriate:

ALTER TABLE customers
MODIFY customer_zip NOT NULL

or

ALTER TABLE customers
MODIFY customer_phone NULL

To modify a column constraint without changing any
other column characteristics, include a CHECK clause:

ALTER TABLE item
MODIFY retai l_price

CHECK (VALUE >= 19.95)

When you change the data type of a column, the DBMS will attempt
to convert any existing values to the new data type. If the current
values cannot be converted, then the table modification will not be
performed. In general, most columns can be converted to character.
However, conversions from a character data type to numbers or
datetimes require that existing data represent legal values in the
new data type.

Deleting Elements
You can also delete structural elements from a table as needed"

To delete a column:

ALTER TABLE order l ine
DELETE line cost

208 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

To delete a CHECK table constraint (a CHECK that has
been applied to an entire table rather than to a specific
column)"

ALTER TABLE customer
DELETE CHECK

To remove the UNIQUE constraint from one or more col-
umns:

ALTER TABLE item
DELETE UNIOUE (t i t l e)

To remove a table's PRIMARY KEY:

ALTER TABLE customer
DELETE PRIMARY KEY

Although you can delete a table's pr imary key, keep in
mind that if you do not add a new one, you will not be
able to modify any data in that table.
To delete a foreign key:

ALTER TABLE item
DELETE FOREIGN KEY item2distributor

Renaming Elements
You can rename both tables and columns:

i~ To rename a table, place the new table name after the RE-
NAME keyword:

ALTER TABLE order l ine
RENAME line item

To rename a column, include both the old and new col-
umn names separated by the keyword TO:

ALTER TABLE i tem
RENAME t i t l e TO i tem t i t l e

m

DELETING DATABASE ELEMENTS 209

Deleting Database Elements
To delete a structural element from a database, you drop the ele-
ment. For example, to delete a table, you would type:

DROP TABLE t a b l e name
w

Dropping a table is irreversible. In most cases, the DBMS will not
bother to ask you "are you sure?" but will immediately delete the
structure of the table and all of its data.

You can remove the following elements from a database with the
DROP statement:

Tables
Views

DROP VIEW v i e w name

Indexes

DROP INDEX i n d e x name

Domains

DROP DOMAIN domain name
m

A DROP of a table or view will fail if the element being dropped is
currently in use by another user.

Granting and Revoking Access Rights
When you create an element of database structure, the user name
under which you are working becomes that element 's owner. The
owner has the right to do anything to that element; all other users
have no rights at all. This means that if tables and views are going
to be accessible to other users, you must grant them access rights.

210 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

Types of Access Rights
There are six types of access rights that you can grant:

SELECT: Allows a user to retrieve data from a table or
view.
INSERT: Allows a user to insert new rows into a table or
updatable view. Permission may be granted to specific
columns rather than the entire database element.
UPDATE: Allows a user to modify rows in a table or up-
datable view. Permission may be granted to specific col-
umns rather than the entire database element.
DELETE: Allows a user to delete rows from a table or up-
datable view.
REFERENCES: Allows a user to reference a table as a for-
eign key in a table he or she creates. Permission may be
granted to specific columns rather than the entire table.
ALL PRIVILEGES: Gives a user all of the preceding
rights to a table or view.

By default, granting access rights to another user does not give that
user the right to pass on those rights to others. If, however, you add
a WITH GRANT OPTION clause, you give the user the ability to
grant the rights that he or she has to another user.

Storing Access Rights
Access rights to tables and views are stored in the data dictionary.
Although the details of the data dictionary tables vary from one
DBMS to another, you will usually find access rights split between
two system tables named something like Systableperm and Sy-
scolperm. The first table is used when access rights are granted to
entire tables or views; the second is used when rights are granted to
specific columns within a table or view.

A Systableperm table has a structure similar to the following:

systabIeperm (tabie_id, grantee, grantor, seiectauth, insertauth,
deieteauth, updateauth, updatecois, referenceauth)

GRANTING AND REVOKING ACCESS RIGHTS 211

The columns represent:

table id: An identifier for the table or view.
grantee: The user ID to which rights have been granted.
grantor: The user ID granting the rights.
selectauth: The grantee's SELECT rights.
insertauth: The grantee's INSERT rights.
deleteauth: The grantee's DELETE rights.
updateauth: The grantee's UPDATE rights.
updatecols: Indicates whether rights have been granted
to specific columns within the table or view. When this
value is Y (yes), the DBMS must also look in Syscolperm
to determine whether a user has the rights to perform a
specific action against the database.
referenceauth: The grantee's REFERENCE rights.

The columns that hold the access rights take one of three values: Y
(yes), N (no), or G (Yes with grant option).

Whenever a user makes a request to the DBMS to manipulate data,
the DBMS first consults the data dictionary to determine whether
the user has the rights to perform the requested action. If the DBMS
cannot find a row with a matching user ID and table identifier, then
the user has no rights at all to the table or view. If a row with a
matching user ID and table identifier exist, then the DBMS checks
for the specific rights that the user has to the table or view a n d - -
based on the presence of Y, N, or G in the appropriate co lumn- -
either permits or disallows the requested database access.

Granting Rights
To grant rights to another user, a user that either created the data-
base element (and therefore has all rights to it) or has GRANT rights
issues a GRANT statement:

GRANT t y p e _ o f _ r i g h t s
ON t a b l e or v iew name TO user ID

212 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

For example, if the DBA of Lasers Only wants to allow the account-
ing manager (who has a user ID of acctg_mgr) to access the sales
summary view, the DBA would type:

GRANT SELECT
ON sales_summary TO acctg_mgr

To allow the accounting manager to pass those rights on to other us-
ers, the DBA would need to add one line to the SQL:

GRANT SELECT
ON sales_summary TO acctg_mgc
WITH GRANT OPTION

If Lasers Only wants to give some student interns limited rights to
some of the base tables, the GRANT might be written:

GRANT SELECT, UPDATE (ce ta i l _pc i ce , d is t r ibutor_numb)
ON item TO in tern1, in te rn2 , in tern3

The preceding example grants SELECT rights to the entire table but
gives UPDATE rights only on two specific columns. Notice also that
you can grant multiple rights in the same command as well as give
the same group of rights to more than one user. However, a single
GRANT applies to only one table or view.

In most cases, rights are granted to specific user IDs. You can, how-
ever, make database elements accessible to anyone by granting
rights to the special user ID PUBLIC. For example, the following
statement gives every authorized user the rights to see the
sales_summary view:

GRANT SELECT
ON sales_summary TO PUBLIC

Revoking Rights
To remove previously granted rights, use the REVOKE statement,
whose syntax is almost the opposite of GRANT:

REVOKE a c c e s s _ e i g h t s
FROM t a b l e oc v iew name FROM usec ID

OBJECT-RELATIONAL EXTENSIONS 213

For example, if Lasers Only's summer interns have finished their
work, the DBA might want to remove their access from the data-
base:

REVOKE SELECT, UPDATE (ve ta i l_pc ice , d ist r ibutor_numb)
ON item FROM intern1, in tern2, in tern3

If the user from which you are revoking rights has the GRANT op-
tion for those rights, then you also need to make a decision about
what to do if the user has passed on those rights. In the following
case, the REVOKE will be disallowed if the acctg_mgr user has
passed on his or her rights:

REVOKE SELECT
ON sales_summary FROM acctg_mgr
RESTRICT

In contrast, the syntax

REVOKE SELECT
ON sales_summary FROM acctg_mgv
CASCADE

will remove the rights from the acctg_mgr ID along with any user
IDs to which acctg_mgr granted rights.

Object-Relational Extensions
SQL is a standard language that varies only minimally from one im-
plementation to another. However, there is no standard for declar-
ing objects as domains. The best that can be done is to show you
how one major p r o d u c t ~ O r a c l e ~ h a s extended SQL to support a
post-relational data model.

Oracle classes are defined as data types, using a CREATE TYPE state-
ment with the following general syntax:

CREATE TYPE type_name AS OBJECT (
attr ibute_name datatype[, attr ibute_name da ta t ype] . . .
MEMBER func t i on_spec i f i ca t i on ,]
[MEMBER {procedure_spec i f icat ion I f unc t i on_spec i f i ca t i on }])

214 USING SQL TO IMPLEMENT A RELATIONAL DESIGN

In the preceding syntax, a MEMBER is an operation, what Oracle calls
a "method." If it returns a value through the traditional program-
ming return mechanism, it is declared as a function; it if does not re-
turn a value, it is declared as a procedure, although output and
input-output parameters are supported.

For example, we could create a rental item class for the ski shop
with:

CREATE TYPE Rental_Item AS OBJECT (
s ize CHAR (6) ,
width CHAR (4) ,
length CHAR (6) ,
MEMBER PROCEDURE i n i t i a l i z e) ;

Once the data type for a class has been declared, you can then pro-
vide the implementation, written in a combination of extended SQL
and PL/SQL (Oracle's Pascal-like language):

[CREATE TYPE BODY type_name {IS I AS}
{ {MAP I ORDER} MEMBER funct ion_body;
I MEMBER {pcoceduPe_body I f unc t i on_body } ; }
[MEMBER {procedure_body I f u n c t i o n _ b o d y } ;] . . . END;]

Both the declaration of the class and its implementation are there-
fore stored in the database's data dictionary.

As an example, consider the following implementation of the ini-
tialization function for the rental item class declared earlier:

CREATE TYPE BODY Rental Item AS
m

MEMBER PROCEDURE i n i t i a l i z e IS
BEGN

size "= NULL;
width "= NULL;
length "= NULL;

END i n i t i a l i z e ;
END;

Oracle supplies accessor and mutator methods as well as provides
SQL extensions for searching the object. Therefore, a database im-
plementer doesn't need to write them.

Using CASE Tools for
Database Design

A CASE (computer-aided software engineering) tool is a software
package that provides support for the design and implementation
of information systems. By integrating many of the techniques used
to document a system design ~ including the data dictionary, data
flows, and entity relationships~CASE software can increase the
consistency and accuracy of a database design.

Note: It is also true that CASE tools can save you a lot of time
when it comes to drawing ER diagrams. At a guess, the com-
plete Lasers Only ER diagram would have taken about 10 hours
to draw using a graphics package but only about 2 hours using
a CASE tool.

There are many CASE tools on the market. The diagrams and
screens you will see throughout this chapter come from MacA&D.

215

216 USING CASE TOOLS FOR DATABASE DESIGN

Although the exact "look" of the diagrams is specific to this one
particular package, the software capabilities you will see are typical
of most CASE tools.

A word of warning is in order about CASE tools before we proceed
any further: A CASE tool is exactly t h a t ~ a tool. It can document a
database design and it can provide invaluable help in maintaining
the consistency of a design. Although some current CASE tools can
verify the integrity of a data model, they cannot design the database
for you. There is no software in the world that can examine a data-
base environment and identify the entities, attributes, and relation-
ships that should be represented in a database. The model created
with CASE software is therefore only as good as the analysis of the
database environment performed by the people using the tool.

CASE Capabilities
Most CASE tools organize the documents pertaining to a single sys-
tem into a "project." As you can see in Figure 10-1, by default a typ-
ical project supports the following types of documents:

Data dictionary: In most CASE tools, the data dictionary
forms the backbone of the project, providing a single re-
pository for all processes, entities, attributes, and do-
mains used anywhere throughout the project.
Requirements: Requirements are usually text specifica-
tions of what individual parts of the system must do.
Data flow diagrams: As you read in Chapter 2, data flow
diagrams document the way in which data travel
throughout an organization, indicating who handles the
data. Although it isn't necessary to create data flow dia-
grams if your only goal with the project is to document a
database design, data flow diagrams can often be useful
in documenting the relationships between multiple orga-
nization units and the data they handle. Data flow dia-
grams can, for example, help you determine whether an

CASE CAPABILITIES 217

Figure 10-1: CASE software project documents

organization needs a single database or a combination of
databases.
Structure charts: Structure charts are used to model the
structure of application programs that will be developed
using structured programming techniques. The charts
show the relationship between program modules.
Data models: Data models are the ER diagrams that you
have been reading about.
Screen prototypes: Drawings of sample screen layouts
are typically most useful for documenting the user inter-
face of application programs. However, they can also act
as a cross-check to ensure that a database design is com-
plete by allowing you to verify that everything needed to
generate the sample screen designs is present in the data-
base.
State models: State models, documented in state transi-
tion diagrams, indicate the ways in which data change.
Task diagrams: Task diagrams are used to help plan ap-
plication programs in which multiple operations (tasks)

218 USING CASE TOOLS FOR DATABASE DESIGN

must occur at the same time. They are therefore not par-
ticularly relevant to the database design process.
Class diagrams: Class diagrams are used when perform-
ing object-oriented rather than structured analysis.
Object diagrams: Object diagrams are used during object-
oriented analysis to indicate how objects communicate
with one another by passing messages.

Although object-oriented analysis can be used as the launching
point for a relational database, it is better suited to the object-orient-
ed data model and therefore will not be discussed in this book.

Many of the diagrams and reports that a CASE tool can provide are
designed to follow a single theoretical model. For example, the ER
diagrams that you have seen earlier in this book might be based on
the Chen model or the Information Engineering model. Any given
CASE tool will support some selection of diagramming models.
You must therefore examine what a particular product supports be-
fore you purchase it to ensure that it provides exactly what you
need.

ER Diagram Reports
In addition to providing tools for simplifying the creation of ER di-
agrams, many CASE tools can generate reports that document the
contents of an ERD. For example, in Figure 10-2 you can see a por-
tion of a report that provides a description of each entity and its at-
tributes, including the attribute's data type. For many designers,
this type of report actually constitutes a paper-based data dictio-
nary.

A CASE tool can also translate the relationships in an ER diagram
into a report such as that in Figure 10-3. The text in the report de-
scribes the cardinality of each relationship in the ERD (whether the
relationship is one-to-one, one-to-many, or many-to-many) and can
therefore be very useful for pinpointing errors that may have crept
into the graphic version of the diagram.

ER DIAGRAM REPORTS 219

ENTITY SPECIFICATION
DIAGRAMS IN DOCUMENT �9 Lasers Only

En tL ty " a c t o r

A t t r L b u t e s "

�9 , * a c t o r numb
DataType" INT

�9 , a c t o r name
DataType" CHAR (40)

En tL ty " customer

A t t r L b u t e s "

� 9 numb" •
m

DataType �9 [NT

. . . c u s t o m e r _ f L r s t _ n a m e " char (15)
DataType" CHAR (15)

�9 . . cus tomer_ las t_name" char (15)
DataType" CHAR (15)

�9 . . c u s t o m e r _ s t r e e t " char (25)
DataType" CHAR (30)

�9 . . c u s t o m e r _ c L t y " char (15)
DataType" CHAR (30)

�9 . . c u s t o m e r _ s t a t e " char (2)
DataType" CHAR (2)

�9 . . cus tomer_zLp" char (10)
DataType" CHAR (10)

�9 . .cus tomer_phone" char (12)
DataType" CHAR (12)

�9 . . c redL t_card_numb" char (20)
DataType" CHAR (30)

� 9 � 9 �9 date
DataType �9 DATE

Figure 10-2: Part of an entity specifications report

220 USING CASE TOOLS FOR DATABASE DESIGN

RELATION SPECIFICATION
DIAGRAMS IN DOCUMENT" Lasers Only

customer i s assoc ia ted w i t h zero or more i ns tances of o rde r .
o rder i s assoc ia ted w i t h one and on ly one i ns tance of customer.

d i s t r i b u t o r s i s assoc ia ted w i t h zero or mope i ns tances of i tems.
i tems i s assoc ia ted w i t h one and on ly one i ns tance of d i s t r i b u t o r s .

o rde r i s assoc ia ted w i t h zero or" mope ins tances of o rder l i n e s .
o r d e r _ l i n e s i s assoc ia ted w i t h one and on ly one i ns tance of o rde r .

i tems i s assoc ia ted w i t h zero or mope ins tances of o rder l i n e s .
o rder l i n e s i s assoc ia ted w i t h one and on ly one i ns tance of i tems.

a c t o r i s assoc ia ted w i t h zero or mope ins tances of per formance.
performance i s assoc ia ted w i t h one and on ly one i ns tance of a c t o r .

i tems i s assoc ia ted w i t h zero or mope ins tances of per formance.
performance i s assoc ia ted w i t h one and on ly one i ns tance of i tems.

producer i s assoc ia ted w i t h zero or" mope ins tances of p r o d u c t i o n .
p r o d u c t i o n i s assoc ia ted w i t h one and on ly one i ns tance of
p roducer .

i tems i s assoc ia ted w i t h zero or mope i ns tances of p r o d u c t i o n .
p r o d u c t i o n i s assoc ia ted w i t h one and on ly one i ns tance of i tems.

Figure 10-3: A relation specification report

Data Flow Diagrams
There are two widely used styles for data flow diagrams (DFDs):
Yourdon/DeMarco (which has been used throughout this book)
and Gane & Sarson.

The Yourdon/Demarco style, which you can see in Figure 10-4, uses
circles for processes. (This particular example is for a small taxi
company that rents its cabs to drivers.) Data stores are represented
by parallel lines. Data flows are curved or straight lines with labels
that indicate the data that are moving along that pathway. External
sources of data are represented by rectangles.

DATA FLOW DIAGRAMS 221

prob I em
I ~ " ~ ~ ep~

Dr i ver

sh i f t dr i yen odome ter ,,.
i f I og~ / reodin\g mi les driven

Dr i vet
Sh i f t Doto

t / " , i sh i f t reques .." 7 '
\ ~.i~o. / o ~:?~o

,'" maintenance ~ k /
ft request / // performed

Figure 10-4: Yourdon/DeMarco style DFD

In concept, the Gane & Sarson style is very similar; it varies prima-
rily in style. As you can see in Figure 10-5, the processes are round-
cornered rectangles as opposed to circles. Data stores are open-end-
ed rectangles rather than parallel lines. External sources of data re-
main as rectangles and data flows use only straight lines. However,
the concepts of numbering the processes and exploding each pro-
cess with a child diagram that shows further detail is the same, re-
gardless of which diagramming style you use.

As mentioned earlier, DFDs are very useful in the database design
process for helping a designer to determine whether an organiza-
tion needs a single, integrated database or a collection of indepen-
dent databases. For example, it is clear from the taxi company's
DFDs that an integrated database is required. Of the four processes
shown in the diagram, three use data from both the cab data store
and the driver and shift data store. (Only the maintenance process
uses just one data store.) You will see further examples of using
DFDs in this way throughout the case studies in the rest of this
book.

222 USING CASE TOOLS FOR DATABASE DESIGN

ent Cab to

L~ ; i report --J AeeePtca b
I~eturned

I read ing / I
sh i f t dr i yen } ' m i I es dr i yen ~176 "i~ 1

I Driver &
....................... Sh i f t Data

sh i f t request

driver / I c a b D a t . - - . . - - S Per f4~

sh i f t t cab status i I

i ' I
S h i f t / i mointenanee

I _ i performed r e p o r t

Figure 10-5: Gane & Sarson style DFD

The Data Dictionary
From a database designer's point of view, the ER diagram and its
associated data dictionary are the two most important parts of
CASE software. Since you were introduced to several types of ER
diagrams in Chapter 2, we will not repeat them here but instead fo-
cus on the interaction of the diagrams and the data dictionary.

A data dictionary provides a central repository for documenting
entities, attributes, and domains. In addition, by linking entries in
the ER diagram to the data dictionary, you can provide enough in-
formation for the CASE tool to generate the SQL CREATE state-
ments needed to define the structure of the database.

The layout of a data dictionary varies with the specific CASE tool,
as does the way in which entries are configured. With Mac A&D, for
example, all attributes, entities, and domains appear in a single al-
phabetical list (see Figure 10-6). Domain names begin with a $, but

THE DATA DICTIONARY 223

there is no simple way when first viewing the dictionary to distin-
guish between entities and attributes.

Figure 10-6: A data dictionary window

However, if you double-click on an item, then its declaration ap-
pears in the dictionary window, as in Figure 10-7. Double-clicking
on an entity displays the domain that has been assigned (see Figure
10-8).

As you look at the data dictionary, keep in mind that a data dictio-
nary is not intended to show the actual design of a database. Many
of the attributes listed in the data dictionary are used by more than
one table. Maintaining a hierarchy of attributes and tables would
therefore require duplicating data dictionary entries for each table
in which an attribute appeared. Instead, a data dictionary typically
provides an alphabetical list of elements in which you can look up
the definition of an element, regardless of where it is used within

224 USING CASE TOOLS FOR DATABASE DESIGN

Figure 10-7: The definit ion of an entity showing in a data dictionary w i n d o w

the database. Its purpose is also to ensure that a given database el-
ement is defined consistently. For example, wherever the customer
number is used in the Lasers Only database, it will be an integer.

Nonetheless, if you need a visual representation of the structure of
an entity, most CASE tools will build some sort of tree diagram for
you. For example, the diagram in Figure 10-9 shows the structure of
the customer entity.

The linking of data dictionary entries to an ER diagram has one ma-
jor benefit. Assuming that each attribute has a single entry in the
data dictionary, then CASE software can examine an ER diagram
and automatically identify foreign keys. This is yet another way in
which the consistency of attribute definitions enforced by a CASE
tool's data dictionary can support the database design process.

CODE GENERATION 225

Figure 10-8: The definition of an attribute showing in a data dictionary
w i n d o w

Most CASE tools will provide a way for you to store the character-
istics of an attribute in the data dictionary. For example, in Figure
10-10, you will find a window used to indicate an attribute's do-
main and any additional constraints that should be placed on the
attribute (in this case, NOT NULL) and to enter a short description
of the attribute. Once those details have been saved, they appear as
part of the attribute's definition in the data dictionary (Figure 10-
11).

Code Generation

The end product of most database design efforts is a set of SQL
CREATE TABLE commands. If you are using CASE software and

226 USING CASE TOOLS FOR DATABASE DESIGN

Figure 10-9: A tree diagram showing entity structure

Figure 10-10: Storing attribute details

the software contains a complete data dictionary, then the software
can generate the SQL for you. You will typically find that a given
CASE tool can tailor the SQL syntax to a range of specific DBMSs.

CODE GENERATION 227

Figure 10-11: A complete attribute definition stored in the data dictionary

In most cases, the code will be saved in a text file, which you can
then use as input to a DBMS.

Note: If you are using UML as your ER diagramming model,
then a CASE tool may also generate XML for you. XML sche-
mas provide a template for interpreting the contents of files con-
taining data and are therefore especially useful when you need
to transfer data between DBMSs with different SQL implemen-
tations or between DBMSs that do not use SQL at all.

The effectiveness of the SQL that a CASE tool can produce, as you
might expect, depends on the completeness of the data dictionary
entries. To get truly usable SQL, the data dictionary must contain:

Domains for every attribute
Primary key definitions (created as attributes are added
to entities in an ER diagram)
Foreign key definitions (created by a CASE tool after the
ER diagram is complete)

228 USING CASE TOOLS FOR DATABASE DESIGN

Any additional constraints that are to be placed on indi-
vidual attributes (created when adding attributes to enti-
ties in the ER diagram)

Sample Input and Output Designs
As mentioned in the first section of this chapter, sample screen de-
signs are typically of most use to application programmers. How-
ever, they can also support the database designer by providing a
way to double-check that the database can provide all the data
needed by application programs. Most CASE tools therefore pro-
vide a way to draw and label sample screen and report layouts.

Most of today's CASE tools allow multiple users to interact with the
same project. This means that interface designers can work with the
same data dictionary that the database designers are building, en-
suring that all the necessary data elements have been handled.

For example, one of the most important things that the person
scheduling cab reservations for the taxi company needs to know is
which cabs are not reserved for a given date and shift. A simple
screen such as that in Figure 10-12 will do the trick. The diagram
shows what data the user needs to enter (the shift date and the shift
name). It also shows the output (cab numbers). The names of the
fields on the sample screen design can be linked automatically to
the data dictionary.

A CASE tool can be used to model an entire application program.
The "browse" tool at the very bottom of the tool bar in Figure 10-12
switches into browse mode, in which buttons and menus become
active. Users can make choices from pull-down menus that can be
linked to other forms. Buttons can also trigger the opening of other
forms. Users can click into data entry fields and tab between fields.
Users can therefore not only see the layout of input and output
screens and documents but also navigate through an application.

THE DRAWING ENVIRONMENT 229

Figure 10-12: Sample screen design

The Drawing Environment
To this point, you've been reading about the way in which the func-
tions provided by CASE software can support the database design
effort. In this last section we will briefly examine the tools you can
expect to find as part of CASE software, tools with which you can
create the types of documents you need.

Because most of the documents you create with CASE software are
diagrams, the working environment of a CASE tool is primarily a
specialized graphics environment. For example, in Figure 10-13 you
can see the drawing tools provided by Mac A&D for creating ER di-
agrams. (Keep in mind that each CASE tool will differ somewhat in
the precise layout of its drawing tool bar, but the basic capabilities
will be the same.)

The important thing to note is that the major shapes needed for the
diagrams are provided as individual tools. You therefore simply

230 USING CASE TOOLS FOR DATABASE DESIGN

Figure 10-13: Example CASE tool drawing environment for ER diagrams

click on the tool you want to use in the tool bar and draw the shape
in the diagram, just as you would if you were working with a gen-
eral-purpose graphics program.

For Further Reading
To learn more about the Yourdon/DeMarco method of structured
analysis using data flow diagrams, see either of the following:

DeMarco, Tom and Plauger, P. J. Structured Analysis and System Spec-
ification. Prentice Hall, 1985.

Yourdon, Edward. Modern Structured Analysis. Prentice Hall PTR,
2000.

Database Design Case Study #1:
Mighty-Mite Motors

It is not unusual for a database designer to be employed to reengi-
neer the information systems of an established corporation. As you
will see from the company described in this chapter, information
systems in older companies have often grown haphazardly, with al-
most no planning and integration. The result is a hodgepodge of
data repositories that cannot provide the information needed for
the corporation to function because they are isolated from one an-
other. In such a situation, it is the job of the database designer to ex-
amine the environment as a whole and to focus on the integration
of data access across the corporation as well as the design of one or
more databases that will meet individual department needs.

On the bright side, an organization such as Mighty-Mite Motors,
which has a history of data processing of some kind, knows quite

231

232 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

well what it needs in an information system, even if the employees
are unable to articulate those needs immediately. There will almost
certainly be a collection of paper forms and reports that the organi-
zation uses regularly. Such documents specify the input and output
needs of the organization and can greatly simplify a database de-
signer's task.

Corporate Overview
Mighty-Mite Motors, Inc. (MMM) is a closely held corporation, es-
tablished in 1980, that designs, develops, manufactures, and mar-
kets miniature ridable motor vehicles for children. Products include
several models of cars, trucks, all-terrain vehicles, and trains (see
Figure 11-1). Vehicles are powered by car batteries and achieve top
speeds of about 5 mph.

At this time, MMM is organized into three divisions: Product De-
velopment, Manufacturing, and Marketing & Sales. Each division is
headed by a vice president who reports directly to the CEO. (An or-
ganization chart appears in Figure 11-2.) All three divisions are
housed in a single location that the corporation owns outright.

Product Development Division
The Product Development division is responsible for designing and
testing new products. The division employs design engineers who
use computer-aided design (CAD) software to prepare initial de-
signs for new vehicles. Once a design is completed, between I and
10 prototypes are built. The prototypes are first tested in house us-
ing robotic drivers-passengers. After refinement, the prototypes are
tested by children in a variety of settings. Feedback from the testers
is used to refine product designs and to make decisions about
which designs should actually be manufactured for mass market-
ing.

CORPORATE OVERVIEW 233

Mighty-Mite Motors

Product Catalog

Winter Holiday Season 2003

Figure 11-1" Mighty-Mite Motors product catalog

234 DATABASE DESIGN CASE STUDY #1: MIGHTY-MITE MOTORS

Model #001

All Terrain Vehicle: Accelerator in the
handlegrip lets young riders reach
speeds of up to 5 miles per hour. Vehi-
cle stops immediately when child
removes his or her hand from the han-
dlegrip. Can carry one passenger up to
65 lbs. Suggested retail price: $124.95

Model #002

4 Wheel Drive Cruiser: Two-pedal
drive system lets vehicle move for-

ward at 2 1/2 mph on hard surfaces,
plus reverse. Electronic speed reduc-
tion for beginners. Includes one 6v
battery and one recharger. Ages 3-7
(can carry two passengers up to 65
lbs. each). Suggested retail price:
$249.99

Figure 11-1 (Continued): Mighty-Mite Motors product catalog

CORPORATE OVERVIEW 235

Model #003

Classic roadster: Sounds include
engine start-up, rev, shifting gears,
and idle. Two forward speeds~
2 1/2 mph and 5 mph; reverses at
2 1/2 mph. High-speed lockout.
On/off power pedal. Power-Lock
electric brake. Includes two 6v bat-
teries and recharger. Ages 3-7 (can
carry two passengers up to 65 lbs.
each). Suggested retail price:
$189.99.

Model #004

Sl~orts car #1: Two forward speeds,
2 "/2 and 5 mph. Reverses at 2 1/2
mph. High-speed lockout. Power-
Lock electric brake. Includes two 6v
batteries and one recharger. Ages 3-
6 (can carry two passengers up to 90
lbs. combined). Suggested retail
price: $249.99.

Model #005

Sports car #2: Phone lets child pre-
tend to talk while he or she drives.
Two forward speeds~2 1/2 and 5
mph; reverses at 2 1/2 mph. High-
speed lockout. Power-Lock electric
brake. Includes two 6v batteries and
one recharger. Ages 3-6 (can carry
two passengers up to 90 lbs. com-
bined). Suggested retail price:
$249.99.

Figure 11-1 (Continued): Mighty-Mite Motors product catalog

236 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

Model #006

Turbo Injected Porsche 911: Working
stick shift~3 and 6 mph forward; 3
mph reverse. High-speed lockout.
Adjustable seat. Doors, trunk, and
hood open. Simulated car phone.
Includes one 18v battery and
recharger. Ages 3-8 (can carry two
passengers up to 120 lbs combined).
Suggested retail price: $299.99.

Model #007

Indy Car: Dual motors for cruising
on a variety of surfaces, even up
hills. Two forward speeds (2 1/2 and
5 mph), plus reverse (2 1/2 mph).
Adjustable seat. Includes two 6v bat-
teries and recharger. Ages 3-7 (can
carry one passenger up to 80 lbs.).
Suggested retail price: $269.99.

Model #008

2-Ton Pickup Truck: In metallic teal
colon Simulated chrome engine covers
and headlight with over-size wheels.
2 1/2 mph forward speed. Includes one
6v battery and recharger. Ages 3-7 (can
carry one passenger up to 65 lbs.). Sug-
gested retail price: $189.99.

Figure 11-1 (Continued): Mighty-Mite Motors product catalog

CORPORATE OVERVIEW 237

Model #009

Santa Fe Train: Soundly engineered
by a little guy or gal. A hand-operated
on/off button controls the 6v battery-
operated motor. Reaches speeds to 3
mph. Even includes a battery-powered
"whoo whoo" whistle to greet pass-
ersby. Rides on 76" x 168" oval track
(sold separately) or carpet or sidewalk,
indoors or outdoors. Plastic body and
floorboard; steel axles and coupling
pins. Bright red, blue, and yellow body
features a large lift-up seat and trailing
car for storage. Includes battery and
charger. Ages 3-6. Suggested retail price:
$159.90.

Model #010

Oval Track: Measures 76" by 168". Sug-
gested retail price: $39.90.

Model #011

Additional 6-Pc Straight Track: Six
straight sections 19" each (total 105").
Suggested retail price: $19.90.

Figure 11-1 (Continued): Mighty-Mite Motors product catalog

238 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

Model #012

Rechargeable Batteries (6 volt): For
use with 6 or 12 volt vehicles. For 12
volt vehicles, use two. To charge, use
charger included with vehicle. Sug-
gested retail price: $27.99.

Figure 11-1 (Continued): Mighty-Mite Motors product catalog

C E O

, I I !
!

, - i
i

' CIO ' i i
i i

i

i

L

V.P. Development V.P. Manufacturing

r i i
i i

! i i
i I I

, - - " i ! , - ! , ' - i

i i i
, , D a t a b a s e , ,
, Lead Programmer ', ' A d m i n i s t r a t o r , , Lead Analyst I
i i i i i i
L L L

I
V.P. M a r k e t i n g &

Sales

Figure 11-2: Mighty-Mite Motors organization chart

Manufacturing Division
The Manufacturing division is responsible for producing products
for mass market sales. Manufacturing procures its own raw materi-
als and manages its own operations, including personnel (hiring,
firing, scheduling) and assembly line management. Manufacturing
maintains the inventory of products ready for sale. It also handles
shipping of products to resellers, based on sales information re-
ceived from Marketing & Sales.

CORPORATE OVERVIEW 239

Marketing & Sales Division
MMM sells directly to toy stores and catalog houses; the corpora-
tion has never used distributors. Marketing & Sales employs a staff
of 25 salespeople who make personal contacts with resellers. Sales-
people are responsible for distributing catalogs in their territories,
visiting and/or calling potential resellers, and taking reseller or-
ders. Order accounting is handled by Marketing & Sales. As noted
earlier, Marketing & Sales transmits shipping information to Man-
ufacturing, which takes care of actual product delivery.

Current Information Systems
MMM's information systems are a hodgepodge of computers and
applications that have grown up with little corporate planning. The
Product Development division relies primarily on stand-alone
CAD workstations. In contrast to the sophistication of the CAD
workstations, testing records are kept and analyzed manually.
Product Development employs product designers (some of whom
function as project leaders) and clerical support staff, but no infor-
mation systems personnel. Attempts to have clerical staff develop
simple database applications to store data about children who test
new products and the results of those tests have proved futile. It has
become evident that Product Development needs information sys-
tems professionals, and although the division is willing to hire IS
staff, corporate management has decided to centralize the IS staff,
rather than add to a decentralized model.

Manufacturing uses a stand-alone minicomputer to track purchases
and inventory levels of raw materials, personnel scheduling, man-
ufacturing line scheduling, and finished product inventory. Each of
these applications was written in COBOL in the early 1980s, shortly
after the corporation was established. The data used by a Manufac-
turing application are contained in files that do not share informa-
tion with any of the other applications. Manufacturing employs a
data processing staff of five, most of whom are COBOL mainte-
nance programmers. Although these programmers are talented, the
basic applications no longer meet the needs of the Manufacturing

240 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

division and management has determined that it isn't cost effective
to rewrite them from scratch.

Note: Minicomputers, which were smaller versions of main-
frames, have almost entirely disappeared from the computing
scene. The closest thing to a minicomputer you can buy today is
probably an IBM AS~400. In general, today's high-end personal
computers and LAN servers are more powerful than most mini-
computers.

Marketing & Sales, which wasn't computerized until 1987, has a lo-
cal area network consisting of one server and 15 workstations. The
server provides shared applications such as word processing and
spreadsheets. It also maintains a marketing and sales database,
which has been developed using dBase III Plus. The database suf-
fers from several problems, including a limit of 10 users at one time
and concurrency control problems that lead to severe data inconsis-
tencies. The marketing and sales database was developed by one
member of the division's three-person IS staff. However, that indi-
vidual left the company in 1992 and no current staff member totally
understands the software. Regardless of the amount of time spent
trying to maintain the database, inaccurate data continue to be in-
troduced.

The Marketing & Sales LAN has no data communications capabili-
ties. Salespeople therefore must transmit hard copies of their orders
to the central office, where the orders are manually keyed into the
existing database. (Some of the salespeople do have laptop comput-
ers, but because the LAN has no modems, the salespeople cannot
connect to it.)

Reengineering Project
Because MMM seems to have lost its strategic advantage in the
marketplace, the CEO has decided to undertake a major systems re-
engineering project. The overall thrust of the project is to provide an
integrated information system that will support better evaluation
of product testing, better analysis of sales patterns, and better con-

CORPORATE OVERVIEW 241

trol of the manufacturing process. New information systems will be
based on a client-server model and include one or more databases
running on a network of servers, workstations, and PCs.

New Information Systems Division
The first step in the reengineering project is to establish an Informa-
tion Systems division. This new division will also be housed in the
corporate headquarters, along with the three existing divisions. To
accommodate the new division, MMM will be constructing a 10,000
square foot addition to its building.

MMM is in the process of searching for a Chief Information Officer
(CIO). This individual, who will report directly to the CEO, will
manage the new division and be responsible for overseeing the re-
engineering of computer-based information systems that will han-
dle all of the corporation's operations.

All current IS personnel (those who work for the Manufacturing
and Marketing & Sales divisions) will be transferred to the new IS
division. The division will hire (either internally or externally) three
management-level professionals: a Lead Programmer (responsible
for overseeing application development), a Database Administra-
tor (responsible for database design and management), and a Lead
Analyst (responsible for overseeing systems analysis and design ef-
forts). Retraining in the client-server model and client-server de-
velopment tools will be provided for all current employees who are
willing to make the transition. Those who are unwilling to move to
the new development environment will be laid off.

Basic System Goals
The CEO has defined the following goals for the reengineering
project:

Develop a corporation-wide data administration plan
that documents all databases to be developed for the cor-

242 DATABASE DESIGN CASE STUDY #1: MIGHTY-MITE MOTORS

poration. This documentation will include ER diagrams,
schemas, and data dictionaries.
Provide an application road map that documents all ap-
plication programs that will be needed to provide access
to corporate databases.
Create a timeline for the installation of corporate data-
bases and the development of application programs.

i~ Specify hardware changes and/or acquisitions that will
be necessary to support access to the databases from
within the headquarters building and by salespeople
who are traveling. Although not every employee will
have access to every database, the equipment should
nonetheless make universal access possible, providing
maximum flexibility for future growth.
Develop and implement a security plan that supports ac-
cess restrictions to the corporate databases.
Install the databases and develop application programs.
Acquire and install necessary hardware upgrades.

Current Business Processes

To aid the systems analysts in their assessment of MMM's informa-
tion systems needs, the CEO of MMM asked all existing division
heads to document the way in which information is currently pro-
cessed. This documentation, which also includes some information
about what an improved system should do, provides a starting
point for the redesign of both business and IS processes.

The Sales and Ordering Processes

MMM receives orders at its plant in two ways: either by telephone
directly from customers or from members of the sales staff who
have visited customers in person. Orders from the remote sales staff
usually arrive by fax or overnight courier.

Each order is taken on a standard order form (Figure 11-3). If the or-
der arrives by fax, it will already be on the correct form. Telephone
orders are written directly onto the form. Several times a day a clerk

CORPORATE OVERVIEW 243

enters the orders into the dBase III database application. Unfortu-
nately, if the sales office is particularly busy, order entry may be de-
layed. This backup has a major impact on production line
scheduling and thus on the company's ability to fill orders. The new
information system must streamline the order-entry process, in-
cluding the electronic transmission of orders from the field and the
direct entry of in-house orders into electronic form.

The in-house sales staff has no access to the computer files that
show the current finished-goods inventory. They are therefore un-
able to tell customers when their orders will ship. They can, howev-
er, tell customers how many orders are ahead of theirs to be filled
and, based on general manufacturing timetables, come up with an
approximation of how long it will take to ship a given order. One of
the goals of the information systems reengineering project is to pro-
vide better company-wide knowledge of how long it will take to fill
customer orders.

The Manufacturing, Inventory, and Shipping Processes

The MMM Manufacturing division occupies a large portion of the
MMM facility. The division controls the actual manufacturing lines
(three assembly lines), a storage area for finished goods, a storage
area for raw materials, and several offices for supervisory and cler-
ical staff.

The manufacturing process is triggered when a batch of order
forms is received each morning by the manufacturing office. (The
batch consists of all orders that were entered into the sales database
the previous working day.) A secretary takes the individual order
forms and compiles a report summarizing the number ordered by
model (Figure 11-4). This report is then given to the Manufacturing
Supervisor, whose responsibility it is to schedule which model will
be produced on each manufacturing line each day.

The scheduling process is somewhat complex, because the Manu-
facturing Supervisor must take into account previously placed or-
ders, which have determined the current manufacturing schedule,
and current inventory levels as well as the new orders when

244 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

Mighty-Mite Motors

Customer Order Form

Customer #: Order date:

I l l I I I I l l l l l l
Name:

III I l l I I I I III i l l
Street:

I I I I Il l IIII III Il l
City: State: Zip:

II III III I I I I l l III I
Voice phone #: Fax:

II I I I I I I I I I I I l l l l IIII f
Contact person Last name: First name:

I f l l l l IIJ III III I I I I III II

Item # Quantity Unit Price

I l l IIl l l l I.lir
IJl l I l l I I I l . l l l
I l l I l l III1.1[1
IIII flJ I I I l . l l l
III IIII I I I I .J l l
I I 1 1 1 1 1 1 rJ lJ . l l l

Line ~ t a l

I I J l J l . l l l
I I l l I.III
I J J l l l . l l l
I I I I I I l . l l l
II III1.111
II I l l l . J l l

Ordertotal:lllll III1.111

Figure 11-3: Mighty-Mite Motors order form

CORPORATE OVERVIEW 245

Mighty-Mite Motors
Order Summary

mm/dd/yyyy

Model # Quantity Ordered

001 75
002 150
004 80
005 35
008 115
009 25
010 25
011 15

Figure 11-4: Mighty-Mite Motors order summary report format

adjusting the schedule. The availability of raw materials and the
time it takes to modify a manufacturing line to produce a different
model also enter into the scheduling decision. This is one function
that MMM's management understands will be almost impossible to
automate; there is too much human expertise involved to translate
it into an automatic process. However, it is vital that the Manufac-
turing Supervisor have access to accurate, up-to-date information
about orders, inventory, and the current line schedule so that judge-
ments can be made based on as much hard data as possible.

As finished vehicles come off the assembly line, they are packed for
shipping, labeled, and sent to finished goods storage. Each ship-
ping carton contains one vehicle, which is marked with its model
number, serial number, and date of manufacturing. The Shipping
Manager, who oversees finished goods storage and shipping, en-
sures that newly manufactured items are entered into the existing
inventory files.

The Shipping Manager receives customer order forms after the or-
der report has been completed. (Photocopies of the order forms are

246 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

kept in the Marketing & Sales office as backup.) The orders are
placed in a box in reverse chronological order so that the oldest or-
ders can be filled first. The Shipping Manager checks orders against
inventory levels by looking at the inventory level output screen
(Figure 11-5). If the manager sees that there is enough inventory to
fill an order, then the order is given to a shipping clerk for process-
ing. If there isn't enough inventory, then the order is put back in the
box, where it will be checked again the following day. Under this
system, no partial orders are filled because they would be extremely
difficult to track. (The reengineered information system should al-
low handling of partial shipments.)

Current Finished Goods Inventory Levels
mm/dd/yy

INV# NUMBER ON HAND
001 215
002 35
003 180
004 312
005 82
006 5
007 212
008 189
009 37
010 111
011 195
012 22

Figure 11-5: Mighty-Mite Motors inventory screen layout

Shipping clerks are given orders to fill. They create shipping labels
for all vehicles that are part of a shipment. The cartons are labeled
and set aside for pickup by UPS. The shipping clerks create UPS
manifests (which also serve as packing slips), ensure that the items
being shipped are removed from the inventory file, and return the
filled orders to the Shipping Manager. The orders are then marked
as filled and returned to Marketing & Sales. The reengineered infor-
mation system should automate the generation of pick-lists, pack-
ing slips, and updating of finished-goods inventory.

CORPORATE OVERVIEW 247

MMM's raw materials inventory is maintained on a just-in-time ba-
sis. The Manufacturing Supervisor checks the line schedule (Figure
11-6) and the current raw materials inventory (Figure 11-7) daily to
determine what raw materials need to be ordered. This process re-
lies heavily on the Manufacturing Supervisor's knowledge of
which materials are needed for which model vehicle. MMM's CEO
is very concerned about this process because the Manufacturing Su-
pervisor, while accurate in scheduling the manufacturing line, is
nowhere near as accurate in judging raw materials needs. The result
is that occasionally manufacturing must stop because raw materials
have run out. The CEO would therefore like to see ordering of raw
materials triggered automatically. The new information system
should keep track of the raw materials needed to produce each
model and, based on the line schedule and a reorder point estab-
lished for each item, generate orders for items when needed.

Raw materials are taken from inventory each morning as each man-
ufacturing line is being set up for the day's production run. The in-
ventory files are modified immediately after all raw materials have
been removed for a given manufacturing line. There is no way to
automate the reduction of inventory; however, the new information
system should make it easy for nontechnical users to update inven-
tory levels.

The Product Testing and Support Function

MMM's top management makes decisions about which model ve-
hicles to produce based on data from three sources: product testing,
customer registrations, and problem reports.

Customer registrations are received on cards packaged with sold
vehicles (Figure 11-8). Currently, the registration cards are filed by
customer name. However, MMM would also like access to these
data by model and serial number to make it easier to notify custom-
ers if a recall occurs. Management would also like summaries of the
data by model purchased, age of primary user, gender of primary
user, and who purchased the vehicle for the child.

248 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

Line Schedule
mm/dd/yy

mm/dd /yy
Line #1" Model 005
Line #2: Model 007
Line #3: Model 010

mm/dd/yy
Line #1" Model 003
Line #2: Model 005
Line #3: Model 008

mm/dd /yy
Line #1" Model 006
Line #2: Model 008
Line #3: Model 002

Total production scheduled:

100 units
150 units
100 units

200 units
150 units
300 units

150 units
100 units
300 units

Model 002 300 units
Model 003 200 units
Model 005 250 units
Model 006 150 units
Model 007 150 units
Model 008 400 units
Model 010 100 units

Figure 11-6: Mighty-Mite Motors line schedule report format

Problem reports (Figure 11-9) are taken by customer support repre-
sentatives who work within the product testing division. These re-
ports include the serial number and model experiencing problems
along with the date and type of problem. Currently, the problem de-
scriptions are nonstandard, written in whatever language the cus-
tomer support representative happens to use. It is therefore difficult

CORPORATE OVERVIEW 249

Current Raw Materials Inventory Levels
mm/dd/yy

ITEM# ITEM QUANTITY ON HAND
001 Plastic #3 95 Ibs
002 Red dye 109 25 gals
003 Wheel 12" 120 each
004 Plastic #4 300 Ibs
005 Yellow dye 110 5 gals
006 Yellow dye 65 30 gals
007 Strut 15" 99 each
008 Axle 18" 250 each
009 Blue dye 25 18 gals
010 Plastic #8 350 Ibs
011 Cotter pin small 515 each
012 Cotter pin medium 109 each

Figure 11-7: Mighty-Mite Motors raw materials inventory screen layout

to summarize problem reports to get an accurate picture of which
models are experiencing design problems that should be corrected.
MMM would therefore like to introduce a standardized method for
describing problems, probably through a set of problem codes. The
result should be regular reports on the problems reported for each
model that can be used to help make decisions about which models
to continue, which to discontinue, which to redesign, and which to
recall.

MMM does not repair its own products. When a problem report is
received, the customer is either directed to return the product to the
store where it was purchased for an exchange (during the first 30
days after purchase) or directed to an authorized repair center in
the customer's area. In the latter case, the problem report is faxed to
the repair center so that it is waiting when the customer arrives.
MMM does not plan to change this procedure because it currently
provides quick, excellent service to customers and alleviates the
need for MMM to stock replacement parts. (Replacement parts are
stocked by the authorized repair centers.)

250 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

Please register your Mighty-Mite Motors vehicle

By registering you receive the following benefits:

�9 Validation of the warranty on your vehicle,
making it easier to obtain warranty service
if ever necessary.

�9 Notification of product updates relating to your vehicle.
Information mailings about enhancements to your vehicle
and other products that may be of interest.

First name

I l l i J i J l J l l J l l i l
Last name

I J i l i l l l l l l J l l l l
Street

I I I l l l i i i l J l l l l l l l l i i l i i l J
City State Zip

l i l J l l l l i l l J l J J J [- R i l l l l J

Phone #:

I l l l l l J l I l i l l

Model # Serial #

I [11 i l J l l l l l l
Age of primary user of vehicle:

Gender: [-"] Male [-7 Female

Da,e of purchase: m ~

Place of purchase:

I l l l i i l i l l l l] l l l l l l l l l i i l l

Where did you first learn about Mighty-Mite Motors?

[--] Advertisement in a magazine or newspaper
[--] Friend's recommendation
[--] In-store display
[--'] Catalog

[--] Other I I I I I I I I I I I I I I I I I

What features of the vehicle prompted your purchase?

[--] Size
['7 Color u~

~. [-] Speed
F'-] Safety features
[-"] Cost

~- F] Other I I I ! I I I I I I I I I I I I I

What is the relationship of the purchaser to the primary user?

F'-] Parent
[-7 Grandparent
[--] Aunt/Uncle
[--] Friend

[--] Other I I I I I I I I I I I I I I I I I

Figure 11-8: Mighty-Mite Motors purchase registration form

Product test results are recorded on paper forms (Figure 11-10). Af-
ter a testing period is completed, the forms are collated manually to
produce a summary of how well a new product performed. MMM
would like the test results stored within an information system so
that the testing report can be produced automatically, saving time
and effort. Such a report will be used to help decide which new
models should be placed in production.

DESIGNING THE DATABASE 251

Problem Report

Date Time

First name

l l l l i l l l l l l l l l l l
Last name

I I I I I I l l l l l l l l l l
Street

l
City State Zip

I I I I l l l l l l i l l l l l 7 [- 7 1 1 1 1 1 1

Phone #:

~T-7111 I I l l l l l

Model # Serial #

l l l l l l i l l

Problem Description:

Figure 11-9: Mighty-Mite Motors problem report

Designing the Database
The most effective approach to the design of a database (or collec-
tion of databases) for an environment as diverse as that presented
by Mighty-Mite Motors usually involves breaking the design into
components indicated by the organization of the company. As the
design evolves, the designer can examine the entities and their rela-
tionships to determine where parts of the organization will need to

252 DATABASE DESIGN CASE STUDY #1: MIGHTY-MITE MOTORS

Product Test Report

Date Time

Location

I

Modeltested:l I I I

Test type: I I I I

Test description

I

Test result and comments:

Figure 11-10: Mighty-Mite Motors product test report

share data. Working on one portion of the design at a time also sim-
plifies dealing with what might at first seem to be an overwhelm-
ingly large database environment.

The Mighty-Mite Motors database environment seems to fall natu-
rally into the following areas:

Manufacturing (including finished goods inventory and
raw materials ordering)
Sales to toy stores and shipping of products ordered
Reported purchases
Testing
Problem handling

DESIGNING THE DATABASE 253

Examining the Data Flows
In this particular situation, a data flow diagram can be of enormous
use in identifying where data are shared by various parts of an or-
ganization. The top-level DFD (the context diagram) in Figure 11-11
actually tells us very little. It indicates that three sources outside the
company provide data: customers (the stores to which the company
sells), purchasers (the individuals who purchase products from the
stores), and raw materials suppliers. Somehow, all that data is used
by a general process named "Manufacture & Sell Products" to keep
the company in business.

I

/ I sup0, ioo
order i nfo ~ ~ row materials I

er info

purchase i n f o I Pureh.~ I'/ / J
prob I em

descr i p t i on

Figure 11-11: Context DFD for Mighty-Mite Motors

However, the level 1 DFD (Figure 11-12) is much more telling. As
the data handling processes are broken down, five data stores
emerge:

Raw materials: This data store holds both the raw mate-
rials inventory and the orders for raw materials.
Product data: The product data store contains data about
the products being manufactured and the finished goods
inventory.
Customer orders: This data store contains customer in-
formation as well as order data.

254 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

supp I i es used f .~ \
Manu fa~c ture

order info

i nven tory

order info

I
M6ter i a Is
Supp I i er

Customer

order info

/
" order info

i n f o o r d e r i n f o

Product " l " " " " Customer
D a t a ,,ik- O r d e r s

o d r, o

| Item items s " ~

purchase i nfo

purchaser
i nfo

Purchaser
Data

Problem
Data

purchaser I in lem data

problem
report

purchase info j

~--~-~ Purchaser I

Figure 11-12: Level I DFD for Mighty-Mite Motors

Purchaser data: The purchaser data store contains infor-
mation about the individuals who purchase products
and the products they have purchased.

DESIGNING THE DATABASE 255

Problem data: This final data store contains problem re-
ports.

As you examine the processes that interact with these five data
stores, you will find a number of processes that manipulate data in
more than one data store as well as data stores that are used by more
than one process:

The raw materials data store is used by the raw materials
ordering and the manufacturing processes.
Product data are used by manufacturing, sales, shipping,
and purchaser registration.
Customer order data are used by sales and shipping.
The purchaser data store is used by purchaser registra-
tion and problem handling.
The problem data store, used only by problem handling, is
the only data store not shared by multiple processes.

The raw materials ordering process is the only process that uses
only a single data store. Nonetheless, the level I DFD makes it very
clear that there is no instance in which a single process uses a single
data store without interaction with other data stores and processes.
Given that each process in the DFD probably represents all or part
of an application program, this suggests that the database designer
should probably consider a single database, rather than a set of da-
tabases.

The DFD makes it very clear that the need for the integration of the
various data stores is very strong. In addition, Mighty-Mite Motors
is a relatively small business and therefore a single database that
manages all needed aspects of the company will not grow unrea-
sonably large. Ultimately, the database designer may decide to dis-
tribute the database onto multiple servers, placing portions of it
that are used most frequently in the divisions where that use occurs.
The database design, however, will be the same regardless of
whether the final implementation is centralized or distributed. The
essential decision is to create a single database rather than several
smaller, isolated databases that must somehow share data.

256 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

Creating the ER Diagram
The database designer working for Mighty-Mite Motors has two
very good sources of information about exactly what needs to be
stored in the database: the employees of the company and the paper
documents the company has been using.

The designer needs to capture all the information on the paper doc-
uments. Some documents are used only for input (for example, the
product registration form or the order form). Others represent out-
puts that an application program must be able to generate (for ex-
ample, the line schedule report). Although the current documents
do not necessarily represent all the outputs application programs
running against the database will eventually prepare, they do pro-
vide a good starting place for the database design. Whenever the
designer has questions, he or she can then turn to Mighty-Mite's
employees for clarification.

Working from the documents, information gathered from employ-
ees, and the data flow diagram, the database developer puts togeth-
er the ER diagram. Because there are so many entities, all of which
interconnect, the diagram is very wide. It has therefore been split
into three pieces so you can see it. As you look at each piece, keep
in mind that entities that appear in more than one piece represent
the connections between the three illustrations.

The first part (found in Figure 11-13) contains the entities for raw
materials and manufacturing. This portion of the data model is
dealing with three many-to-many relationships:

material_order to raw_material (resolved by the compos-
ite entity material_order_line)
raw_material to model (resolved by the composite entity
material_needed)
manufacturing_line to model (resolved by the composite
entity line_schedule)

The second portion of the ERD (Figure 11-14) contains entities for
product testing and sales. (Remember that in this instance, the cus-

DESIGNING THE DATABASE 257

..,~.~,D.u..r..~.S.t..9.~.!..D.g.._=.!..)..D.~

* I i ne_numb
I i ne__s to tus

i

[........... ~ ~ . ! . ~ . !

J * m a t e r i a l _ i d _ n u m b / ma te r ia l ._needed ~d~
I moterio~_~ome ,, ~ ~ ~ i ~
Junit_.of_measurement " -]*@material_id__nu
J quantity_in, stock l quantity_neede d

reorder_point

. m a t e r i a l _ o r d e r _ l i n e
............................ ~ g G ~

*~material_id_numb
mater i a I ~uan t i ty

ma t e r i a I _cos t_.each
ma t e r i a I _ I i ne._cos t

I
material..order

..

*po_numb
@supplier_numb

mater i a I _order_da te
ma ter i a I _order_to ta I

I
................. ~ E ! . . ! . ~

*supplier_numb
supplier_name

supp I i er__s tree t
supp I i er._c i ty
supp I i er._s tate
supplier_zip

supplier-contact
supplier_phone

line. schedule
.............. ~ i i ~ 2 ~

*production_date
@model_numb

quantity_to_,oroduee

model
.

*model_numb
model..deseription

s u g g e s t e d _ r e t a i l _ p r i c e
s h i p p i n g _ J ~ e i g h t

time_to_manufacture

Figure 11-13: Mighty-Mite Motors ERD (part I)

tomers are toy stores rather than individual purchasers.) There are
two many-to-many relationships"

testtype to model (resolved by the test entity)
order to model (resolved by the order_line composite
entity)

258 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

model ..
*mode I _numb

mode I _.clescr i p t i on
sugges ted_re ta i I _.or i ce

sh i pp i ncl_we i g h t
t i me_to_manu fac ture

C~

tes t

* t e s t _ d a t e
i t e s t _ I o a a t i on

@test._code
test_resu I ts

I sh i t pmen
I l * '@'o ' r 'd 'e ' r '~ 'u 'm 'b"

~ *@model_numb
- ~ *sh i pp i ng_date

I quan t i ty_.sh i pped

~o II

test_type

tes t_descr i p t i on

* @ s e r i a l _ n u m b
@model_numb

da te_manu fac tured
@status_code
da te_sh i pped
@order_numb

order_line I
. I I * @ o r d e r _ n u m b

* @ m o d e l _ n u m b
quantity_ordered

unit_,orice
line_total
all_~hipped

cus tomer ...
*customer_numb
customer_.name

cus tomer_s tree t
cus tomer._c i ty
customer_state
cus tomer_z i p

con tac t_,oerson
contact~hone
contact_fax

I

................. .o.~d~ [
*order_numb I 1

@customer_numb I
order_date
order_to ta I |
order_f i I Ied |

Figure 11-14: Mighty-Mite Motors ERD (part II)

In this instance, the test entity is not a composite entity. It is an ac-
tivity that someone performs and as such has an existence outside
the database. It is not an entity created just to resolve a many-to-
many relationship.

At this point the diagrams become a bit unusual, because of the
need to keep track of individual products rather than simply
groups of products of the same model. The model entity, which you
first saw in Figure 11-13, represents a type of vehicle manufactured
by Might-Mite Motors. However, the product entity, which first ap-
pears in Figure 11-14, represents a single vehicle that is uniquely
identified by a serial number. This means that the relationships be-
tween an order, the line items on an order, and the models and

DESIGNING THE DATABASE 259

products are more complex than for most other sales database de-
signs.

The order and line_item entities are fairly typical. They indicate
how many of a given model are required to fill a given order. The
shipment entity then indicates how many of a specific model are
shipped on a specific date. However, the database must also track
the order in which individual products are shipped. As a result,
there is a direct relationship between the product entity and the or-
der entity, in addition to the relationships between order_line and
model. In this way Mighty-Mite Motors will know exactly where
each product has gone. At the same time, the company will be able
to track the status of orders (in particular, how many units of each
model have yet to ship).

The final portion of the ERD (Figure 11-15) deals with the purchas-
ers and problem reports. There are two many-to-many relation-
ships:

problem_type to product (resolved with the entity
problem_report)
purchase to feature (resolved with the composite entity
purchase_feature)

As with the test entity that you saw earlier, the problem_report en-
tity acts like a composite entity to resolve a many-to-many relation-
ship but is really a simple entity. It is an entity that has an existence
outside the database and was not created simply to take care of the
M:N relationship.

Note: Calling an entity "problem_report" can be a bit mislead-
ing. In this case, the word "'report" does not refer to a piece of
paper but to the action of reporting a problem. A
"problem_report" is therefore an activity rather than a docu-
ment. In fact, the printed documentation of a problem report
will probably include data from several entities, including the
product, problem_report, purchase, and owner entities.

260 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

I
................ ..p.~.?~s..t. G ~ ~

*@ser i a I _numb ~-"
@model_numb I

date_manu fac tured Ill
@status_code I,,
date_shipped I"
@order_numb I

feature

............. " ~ ' ? G G ' r ~ I G ~ "

fea ture_mdescr i p t i on II

I produc t_s to tus prob I em_type
.......... ~ ~ G ~ o ~ ~p~oGiG~ i~p~~o~~

' ~ I s to tus~escr i p t i on prob I em_type_descr i p t i on

I

purchase

*@serial_numb
@owner_numb

age
gender

purchase~ate
purchase_,olace

learn_code
relationship

purchase_feature

.......... ~ i ~ i ~ g
*@ feature_code

I I

I problem_a-eport I

............ u L , ,
*problem_date
problem_time I

@problem_type_code I
problem_description I

.................... ..~

*owner_numb
owner_f i rs t_name
owner_ I as t_name
owner__~ tree t
owner_c i ty
owner__s ta te
owner, zip

owner_.ohone

Oi I I earn_abou t
............... ~ i G ~ ~ S G d ~

I earn_.clescr i p t i on

II

Figure 11-15: Might-Mite Motors ERD (part III)

If you look closely at the diagram, you'll notice that there is a one-
to-one relationship between the product and purchase entities.The
handling of the data supplied by a purchaser on the product regis-
tration card presents an interesting dilemma for a database design-
er. Each product will be registered by only one purchaser. (Even if
the product is later sold or given to someone else, the new owner
will not have a registration card to send in.) There will be only one
set of registration data for each product, at first thought suggesting
that all the registration data should be part of the product entity.

However, there is a lot of registration data--including one repeat-
ing group (the features for which the purchaser chose the product,
represented by the feature and purchase_feature entities) ~ and the
product is involved in a number of relationships that have nothing
to do with product registration. If the DBMS has to retrieve the reg-

DESIGNING THE DATABASE 261

istration data along with the rest of the product data, database per-
formance will suffer. It therefore makes sense in this case to keep the
purchase data separate and to retrieve it only when absolutely
needed.

Note: One common mistake made by novice database designers
is to create an entity called a "registration card." It is important
to remember that the card itself is merely an input document.
What is crucial is the data the card contains and the entity those
data describe, rather than the medium on which the data are
supplied.

Creating the Tables
The tables for the Mighty-Mite Motors database can come directly
from the ER diagram. They are as follows:

model (model numb, model_descr•177 suggested_reta•177
shipping_weight, time_to_manufacture)

test (model numb, test date, test_locat• test_code, test_results)
test_types (test code, test_description)
customers (customer numb, customer_name, customer_street,

customer_street, customer_city, customer_state, customer_zip,
contact_person, contact_phone, contact_fax)

orders (order numb, customer_numb, order_date, order_total,
order_fLlled)

order_line (order numb, model numb, quantity_ordered, unit_price,
l ine_total, all_shipped)

shipments (order numb, model numb, shlpplnfl date, quantity_shipped)
product (serlal numb, model_numb, date_manufactured, status_code,

order_numb, date_shipped)
product_status (status code, status_description)
raw_material (material ld numb, material_name, unit_of_measurement,

quantity_in_stock, reorder_point)
suppller (supplier numb, supplier_name, supplier_street,

supplier_city, supplier_state, supplier_zip, supplier_contact,
supplier_phone)

material_order (po_numb, supplier_numb, material_order_date,
material_order_total)

material_order_line (po numb, materlal ld numb, material_quantity,
material_cost_each, material_line_cost)

material_needed (model numb, materlal ld numb, quantity_needed)
manufacturing_line (11ne numb, line_status)
line_schedule (llne numb, production date, model_numb,

quantity_to_produce)

262 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

owner (owner numb, owner_first_name, owner_last_name, owner_street,
owner_city, owner_state, owner_zip, owner_phone)

purchase (serial numb, owner_numb, age, gender, purchase_date,
purchase_place, learn_code, relationship)

purchase_feature (serial numb, feature code)
learn_about (learn code, learn_description)
feature (feature code, feature_description)
problem_report (serial numb, problem date, problem_time,

problem_type_code, problem_description)
problem_type (problem type code, problem_type_description)

Generating the SQL
Assuming that the designers of the Mighty-Mite Motors database
are working with a CASE tool, then generating SQL statements to
create the database can be automated. For example, in Figure 11-16
you will find the SQL generated by Mac A&D from the ER diagram
you saw earlier in this chapter.

CREATE TABLE model

) ;

model_numb INTEGER,
model_description CHAR (40),
suggested_retail_price DECIMAL (6,2),
shipping_weight DECIMAL (6,2),
time_to_manufacture TIME,
PRIMARY KEY (model_numb)

CREATE TABLE test_type
(

test_code INTEGER,
test_description CHAR (40),
PRIMARY KEY (test_code)

);

Figure 11-16" SQL statements needed to create the Mighty-Mite Motors
database

DESIGNING THE DATABASE 263

CREATE TABLE t e s t

model_numb INTEGER,
test_date DATE,
test_location CHAR (40),
test_code INTEGER,
test_results CHAR (40),
PRIMARY KEY (model_numb, test_date),
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (test_code) REFERENCES test_type

);

CREATE TABLE customer

);

customer_numb INTEGER,
customer_name CHAR (40),
customer_street CHAR (40),
customer_city CHAR (30),
customer_state CHAR (2),
customer_zip CHAR (5),
contact_person CHAR (40)CHAR (30),
contact_phone CHAR (12),
contact_fax CHAR (12),
PRIMARY KEY (customer_numb)

CREATE TABLE order

order_numb INTEGER,
customer_numb INTEGER,
order_date DATE,
order_total DECIMAL (8,2),
order_fi l led CHAR (I),
PRIMARY KEY (order_numb),
FOREIGN KEY (customer_numb) REFERENCES customer

);

Figure 11-16 (Continued): SQL statements needed to create the Mighty-Mite
Motors database

264 DATABASE DESIGN CASE STUDY #1: MIGHTY-MITE MOTORS

CREATE TABLE order l ine
m

(
order_numb INTEGER,
model_numb INTEGER,
quantity_ordered INTEGER,
uni t_pr ice DECIMAL (6,2),
l i ne_ to ta l DECIMAL (8,2),
all_shipped CHAR (1),
PRIMARY KEY (order_numb, model_numb),
FOREIGN KEY (order_numb) REFERENCES order,
FOREIGN KEY (model_numb) REFERENCES model

CREATE TABLE shipment
(

order_numb INTEGER,
model_numb INTEGER,
shipping_date DATE,
quantity_shipped INTEGER,
PRIMARY KEY (order_numb, model_numb, shipping_date),
FOREIGN KEY (order_numb) REFERENCES order_l ine,
FOREIGN KEY (model_numb) REFERENCES order_l ine

) ;

CREATE TABLE product
(

ser ialnumb INTEGER,
model_numb INTEGER,
date_manufactured DATE,
status_code INTEGER,
date_shipped DATE,
order_numb INTEGER,
PRIMARY KEY (serial_numb),
FOREIGN KEY (serial_numb) REFERENCES purchase,
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (status_code) REFERENCES product_status,
FOREIGN KEY (order_numb) REFERENCES order

CREATE TABLE product_status
(

status_code INTEGER,
status_descript ion CHAR (40),
PRIMARY KEY (status_code)

);

Figure 11-16 (Continued): SQL statements needed to create the Mighty-Mite
Motors database

DESIGNING THE DATABASE 265

CREATE TABLE raw material
(

material_id_numb INTEGER,
material_name CHAR (30),
unit_of_measurement CHAR (12),
quantity_in_stock INTEGER,
reorder_point INTEGER,
PRIMARY KEY (material_id_numb)

CREATE TABLE material needed
(

model_numb INTEGER,
material_id_numb INTEGER,
quantity_needed INTEGER,
PRIMARY KEY (model_numb, material_id_numb),
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (material_id_numb) REFERENCES raw_material

CREATE TABLE supplier
(

supplier_numb INTEGER,
supplier_name CHAR (40),
supplier_street CHAR (30),
supplier_city CHAR (15),
supplier_state CHAR (2),
supplier_zip CHAR (5),
supplier_contact CHAR (40),
supplier_phone CHAR (12),
PRIMARY KEY (supplier_numb)

) ;

CREATE TABLE material order
(

po_numb INTEGER,
supplier_numb INTEGER,
material_order_date DATE,
mater ial_order_total DECIMAL (6,2),
PRIMARY KEY (po_numb),
FOREIGN KEY (supplier_numb) REFERENCES supplier

);

Figure 11-16 (Continued): SQL statements needed to create the Mighty-Mite
Motors database

266 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

CREATE TABLE material order l ine
m

(
po_numb INTEGER,
material_id_numb INTEGER,
material_quanti ty INTEGER,
material_cost_each DECIMAL (6,2),
material_l ine_cost DECIMAL (8,2),
PRIMARY KEY (po_numb, material_id_numb),
FOREIGN KEY (po_numb) REFERENCES material_order,
FOREIGN KEY (material_id_numb) REFERENCES raw_material

) ;

CREATE TABLE manufacturing_line
(

line_numb INTEGER,
l ine_status CHAR (12),
PRIMARY KEY (line_numb)

);

CREATE TABLE l ine schedule
D

(
line_numb INTEGER,
production_date DECIMAL (6,2)DATE,
model_numb INTEGER,
quantity_to_produce INTEGER,
PRIMARY KEY (line_numb, production_date),
FOREIGN KEY (line_numb) REFERENCES manufacturing_line,
FOREIGN KEY (model_numb) REFERENCES model

CREATE TABLE owner

owner_numb INTEGER,
owner_first_name CHAR (15),
owner_last_name CHAR (15),
owner_street CHAR (30),
owner_city CHAR (15),
owner_state CHAR (2),
owner_zip CHAR (5),
owner_phone CHAR (12),
PRIMARY KEY (owner_numb)

Figure 11-16 (Continued): SQL statements needed to create the Mighty-Mite
Motors database

DESIGNING THE DATABASE 267

CREATE TABLE purchase
(

serLai_numb INTEGER,
owner_numb INTEGER,
age INTEGER,
gender CHAR (1),
purchase_date DATE,
purchase_piace CHAR (40),
iearn_code INTEGER,
reiatLonshLp CHAR (15),
PRIMARY KEY (serLai_numb),
FOREIGN KEY (serLal_numb) REFERENCES product,
FOREIGN KEY (owner_numb) REFERENCES owner

);

CREATE TABLE feature
(

feature_code INTEGER,
feature_descrLptLon CHAR (40),
PRIMARY KEY (feature_code)

);

CREATE TABLE purchase_feature
(

serLal_numb INTEGER,
feature_code INTEGER,
PRIMARY KEY (serLal_numb, feature_code),
FOREIGN KEY (serLal_numb) REFERENCES purchase,
FOREIGN KEY (feature_code) REFERENCES feature

) ;

CREATE TABLE learn about
(

learn_code INTEGER,
iearn_descrLptLon CHAR (40),
serLal_numb INTEGER,
PRIMARY KEY (iearn_code),
FOREIGN KEY (serLai_numb) REFERENCES purchase

);

CREATE TABLE probiem_type
(

problem_type_code INTEGER,
problem_type_descrLptLon CHAR (30),
PRIMARY KEY (problem_type_code)

);

Figure 11-16 (Continued): SQL statements needed to create the Mighty-Mite
Motors database

268 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

CREATE TABLE problem_report
(

serial_numb INTEGER,
problem_date DATE,
problem_time TIME,
problem_type_code INTEGER,
problem_description CHAR (40),
PRIMARY KEY (serial_numb, problem_date),
FOREIGN KEY (serial_numb) REFERENCES product,
FOREIGN KEY (problem_type_code) REFERENCES problem_type

Figure 11-16 (Continued): SQL statements needed to create the Mighty-Mite
Motors database

The Object-Relational Design
One of the most challenging aspects of having object-oriented capa-
bilities added to a relational DBMS is deciding whether a particular
schema can benefit from a design that incorporates objects. Mighty-
Mite Motors is one of those schemas that does not benefit greatly
from a hybrid approach.

Why not? The major entities, such as products and models, partici-
pate in multiple relationships. Therefore, changing them into ob-
jects and then placing entire objects into related tables would result
in unnecessary duplicated data and the introduction of significant
data integrity problems.

The best use of the object technology in this particular database envi-
ronment is to handle complex values, such as addresses and tele-
phone numbers. Such objects can be reused throughout the database,
simplifying the formatting, searching, and general handling of these
elements.

Note: The ER diagrams that you will see in the remainder of this
chapter share the same data dictionary as the ERD for the pure
relational design. Therefore, the names of some entities were
changed slightly so that multiple entities with similar, but not
identical, structure could exist in the data dictionary.

THE OBJECT-RELATIONAL DESIGN 269

The first portion of the ER diagram for the hybrid MMM design can
be found in Figure 11-17. There are three classes in this illustration:
LineCost, Address, and Phone. The LineCost class contains the
number of items of something that have been ordered and the cost
of each item. One of the class's operations then computes and stores
the line cost.

I I
* m a t e r i a l _ i d _ n u m b I

m a t e r i a l _ n a m e I
u n i t _ o f _ m e a s u r e m e n t I 1

q u a n t i t y _ i n _ s t o c k J
reorder~oint I

manufactur i ng_l i ne ..

O. *

* l i n e _ n u m b
l i n e _ s t a t u s 1 0 . . *

m a t e r i a l _ n e e d e d ..
~@model-numb

8@mate r ia l_ id_numb 0 . . *
q u a n t i t y - n e e d e d

O.. * *@po-numb I
�9 @ma te r i a I _i d_numb I
mater i a I_I i ne._cost I

I 0..*

........... ! . . ! . ~ s

~@line._numb
*p roduc t ion_date

@model_numb
quant i t y_ to_produce

0 . . *

........................... ~.P..~.~..t
�9 I _numb

mode I _desc r i p t i on

1 ~

mate r i a l _~ rde r .. L ineCost ...
*po_numb quan t i t y_o rde red

@supplier_numb cost_each
mater i a I _order_cla te
ma te r i a l _o rde r_ to ta l [. ! .9.~....-~...~.~.[...................

. setQuant i ty (I NTEGER)
I 0..* se tCos t (FLOAT)

compu teL i neCos t ()
getQuant i t y ()" I NTEGER

ge tCos t ()" FLOAT
ge tL i neCos t () : DOUBLE

1

........... ~P~.!..!.~

* s u p p l i e r _ n u m b
s u p p l i e r _ n a m e

s u p p l i e r _ a d d r e s s ... --.~
s u p p l i e r _ c o n t a c t

s u p p l i e r _ p h o n e

s u g g e s t e d _ r e t a i I . .p r i ce
sh i pp i ncj-ee i gh t

t i me_to_Jnanu fac t u r e

0..~

o r d e r _ l i n e 2
...... ; ~ ~ ~ ~ ; 3 ~ ~ ~

~@model_numb
... order_line_cost

aII__shipped

Address ...
street
ci ty

s t a t e
z i p

getC i ty() : CHAR 30
ge tS ta te () : CHAR 2
getZip():CHAR 5

ge tLabe I <) : CHAR 67
setStreet(CHAR 30)
se tC i ty (CHAR 30)
se tS ta te (CHAR 2)
se tZ i p (CHAR 5)

I area_code I
I exchange I
I phone-number I

I ~ . ! . ~ I
I getPhone():CHAR 20 I
I ge tArea_.code () : CHAR 3 I
I ge tExchange() : CHAR 3 I
I setPhone(CHAR 20) I

Figure 11-17: Part I of the hybrid ERD

The Address class takes a value that may consume multiple col-
umns in a relation and collapses them down to a single column. The

270 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

major value in doing this is conceptual clarity. You also gain sim-
plicity in the relational design.

In a typical relational database, a telephone number is stored as a
single text string. However, breaking it up into its constituent parts
makes it possible to search the database by any of those parts and
therefore enables access that was not previously available. (You
could do so by searching in a text string, but such a search would be
quite slow.) Marketing personnel, for example, could search for all
customers within a specific exchange or map purchases by ex-
change to see purchasing patterns.

The second portion of the MMM hybrid ER diagram appears in Fig-
ure 11-18. Notice that the Customer2 entity has two lines going
from the entity to the Phone class. This occurs because the
customer_phone and customer_fax attributes have the same do-
main: the Phone class. The remainder of this portion of the design
is exactly the same as the pure relational design.

Figure 11-19 contains the final portion of the ER diagram. The
Owner2 relation is the most significantly changed relation when
compared with the pure relational design. The owner's name is
now an object of the Name class. The owner's address and tele-
phone number are now objects of the Address and Phone classes,
respectively.

The resulting relations are as follows:

model (model numb, model_description, suggested_retail_price,
shipping_weight, time_to_manufacture)

test (model numb, test date, test_location, test_code, test_results)
test_types (test code, test_description)
customers (customer numb~ customer_name, customer_address,

contact_person, contact_phone, contact_fax)
orders (order numb, customer_numb, order_date, order_total,

order_filled)
order_line (order numb, model numb, order_line_cost, all_shipped)
shipments (order numb, model numb, shippinq date, quantity_shipped)
product (serial numb, model_numb, date_manufactured, status_code,

order_numb, date_shipped)
product_status (status code, status_description)
raw_material (material id numb, material_name, unit_of_measurement,

quantity_in_stock, reorder_point)

THE OBJECT-RELATIONAL DESIGN 271

tes t
' ~@mg~ i ' ~um6

- * tes t_do te
0 �9 * t es t_ loca t ion

@test_~zode
testJ'esu I ts

mode I ..
�9 mode I _numb

mode I _descr i p t i on 1
sugges t ed_ re ta i I _p r i ce

sh i pp i ng_we i gh t
time_to_manufacture

I

0..* i

............ .t..~.~.S-3..y..e.~
*test._code

tes t_c:lescr i ption

0 . . *

................ ..p.S.o..~S.~

*@ser i a I _numb
@mode I _numb

da t e_manu foe tured
@status_code
da te__~h i pped
@order_numb

I order

l......~.~.~.~.~.~.~.Ci..i.i;
O..*_ I @cus tamer_numb I

order_l i ne2 ~ I order_date
...... ~~o~dG~u~6 ~ I order_total

*@mode I _numb O. , * I ~ de r - f i I,,,I ed,,,
order_line_cost [~

al I ~h i pped ' '*

, .

I ouo, I
I "*customer_numb 'I

... I cust~ I
..... I customer_phone I
I c~stomer-fo• ~..

0 . . *

V
Address ...
street
ci ty
state

getSt ree t () : CHAR 30
getC i ty () : CHAR 30
getState():CHAR 2
getZ ip():CHAR 5

ge tLabe I () : CHAR 67
se tS tree t (CHAR 30)

setC i tg(CHAR 30)
se tS to te (CHAR 2)

se tZ i p (CHAR 5)

V V
I ~9~

area_code
exchange

phone_number

................... ~ !~ . ! . ~
getPhone<) : CHAR 20

ge tArea_Jeode () : CHAR 3
getExchange() : CHAR 3

se tPhone (CHAR 20)

Figure 11-18: Part II of the hybrid ERD

supplier (supplier_numb, supplier_name, supplier_address,
supplier_contact, supplier_phone)

material_order (po_numb, supplier_numb, material_order_date,
material_order_total)

material_order_line (po numb, material id numb, material_line_cost}
material needed (model numb, material id_numb, quantity_needed)
manufacturing_line (line_numb, line_status)
line_schedule (line numb, production_date, model_numb,

quantity_to_produce)
owner (owner numb, owner_name, owner_address, owner_phone)
purchase (serial numb, owner_numb, age, gender, purchase_date,

purchase_place, learn_code, relationship)
purchase_feature (serial numb, feature code)
learn_about (learn code, learn_description)
feature (feature code, feature_description)
problem_report (serial numb, problem date, problem_time,

problem_type_code, problem_description)

272 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

I produc t__~ tatus
r - - - - I ;;~:G:G~~ode

1 I s ta tus_descr i p t i on

O.. * O.. * *prob I em_clate
l

................ I
�9 @serial_numb I I problem_clescription
@model_numb

do te_manu fac tured
@status_code
da te._~h i pped
@order_numb

. I 0 o ohooo 1
I l..;~;.i.g.i.~... I

I @owner_numb [
0 . . I I age i 0 . . *

I gender I -- -
I P urchase-date I

[-----Ipurchase~lacel
1 II I de I~..*

I 0 . . * relationship I I I

. I
�9 learn_code I

I *@seria I _numb l earn_descr ipti on I
I *@feature._code I

fea ture ...

* f e a t u r e _ . c o d e

fea ture_descr i p t i on

........ ~ S ~ . ! . ~ 9 ~
�9 @serial_numb 0..,

problem_time
@problem_tgpe_.code

Address

street
c i ty
state
zip

~';L~'i~'i'~";i'i~i:i~'"~iS"
ge tC i ty () : CHAR 30
getState() : CHAR 2

ge tZ i p () : CHAR 5
g e t L a b e I () : CHAR 67
se tS t r e e t (CHAR 30)

s e t C i ty(CHRR 30)
se tS ta te<CHRR 2)

se tZ i p (CHAR 5)

.................. ~ . ~ : ~
*problem_type_code

problem_type_clescription

I owner2
i i .-.;,;-o~.~.~.,::S::,.C;.~. G
- I owner_name ..

....... l owner_address
I owner~hone

v
Name I

. " (i ' ; : ~ ' ~ G ~ . I

I as t_name I

.................................. ~.!.~.!.~-.!.~.!..t I
g e t F i r s t N a m e (): CHAR 20 I
ge tLas tName<) :CHAR 20 I

g e t l n i t () :CHRR 1 I
getLastFirst() :CHAR 41 I
ge tF i r s t L a s t () : CHAR 41 I

setName(CHRR 40, CHAR 40, CHAR 1) I

v IP...h...o.~ .

area_code
exchange

phone_number
.~ .~ . . t . .~ .g . . ' . .L~

ge tPhone <) : CHAR 20
ge t R r e a _ c o d e () : CHAR 3
ge tExchange <) : CHAR 3

se tPhone (CHAR 20)

Figure 11-19: Part III of the hybrid ERD

problem_type (problem typecode, problem_type_description)

When you compare the hybrid design with the traditional relational
design, you will notice that the hybrid design is smaller. Because
multiple values~such as the parts of an address~can now be
stored in a single column, the design is somewhat simpler. In addi-
tion, because the classes are common enough to appear in several
places in the design, code for commonly performed operations can
be written once and reused as needed, saving application develop-
ment time. Therefore, although the design does not take advantage
of any of the more sophisticated characteristics of object-orienta-
tion, there is still some justification for using objects.

THE OBJECT-RELATIONAL DESIGN 273

The major drawback to adding objects to this relational design is the
need for programmers to complete the objects. You do not need to
be a programmer to use SQL to create and manipulate a pure rela-
tional schema. However, to complete the hybrid schema and to
make the data stored in objects available to users, a programmer
must write the code for the LineCost, Name, Address, and Phone
class operations.

Creating the Classes
You will find the Oracle SQL syntax for creating MMM's utility
classes in Figure 11-20. The most important thing to notice is that
these classes do not have the accessor and mutator methods that
you might expect to see. This is because Oracle's SQL has been ex-
tended to include syntax for manipulating the objects, including in-
serting, modifying, deleting, and retrieving values. Therefore, other
than the initialize method that sets attributes to NULL, you need to
include only operations that manipulate the contents of the class in
some other way.

CREATE TYPE Address AS OBJECT (
s t r e e t CHAR (25),
c i t y CHAR (20),
s ta te CHAR (2) ,
z ip CHAR (10) ,
MEMBER PROCEDURE i n i t i a l i z e);

CREATE TYPE BODY Address AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

s t r e e t := NULL;
c i t y := NULL;
s ta te := NULL;
z ip "= NULL;

END i n i t i a l i z e ;
END;

Figure 11-20 �9 Oracle syntax for creating utility classes

274 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

CREATE TYPE Phone AS OBJECT (
area_code CHAR (6),
exchange CHAR (6) ,
phone_number CHAR (6),
extension CHAR (5) ,
MEMBER PROCEDURE i n i t i a l i z e);

CREATE TYPE BODY Phone AS OBJECT
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

area_code "= NULL;
exchange "= NULL;
phone_number "= NULL;
extension "= NULL;

END initialize;
END;

CREATE TYPE LineCost AS OBJECT (
quan t i t y_ordered INTEGER,
cost_each REAL (5 ,2) ,
l i ne_cos t REAL (8 ,2) ,
MEMBER PROCEDURE i n i t i a l i z e);

CREATE TYPE BODY LineCost AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

quant i t y_ordered "= NULL;
cost_each "= NULL;
l i ne_cos t "= NULL;

END i n i t i a l i z e ;
END;

CREATE TYPE Name AS OBJECT (
f i rs t_name CHAR (20),
last_name CHAR (20),
m i d d l e _ i n i t CHAR (1) ,
MEMBER PROCEDURE i n i t i a l i z e);

CREATE TYPE BODY Name AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

f i rs t_name "= NULL;
last_name "= NULL;
m i d d l e _ i n i t = "NULL;

END initialize;
END;

Figure 11-20 (Continued): Oracle syntax for creating utility classes

THE OBJECT-RELATIONAL DESIGN 275

Using the Classes in the Schema

Once the classes have been declared and implemented, they can be
used as data types in table declarations, using standard SQL syntax
(see the CREATE TABLE statements in Figure 11-21). As you look
through this schema, you will notice that it is only marginally dif-
ferent from a pure relational schema: Some of the user-defined data
types may be classes, but they are used in the same way as any other
user-defined data type (UDT).

CREATE TABLE model

model_numb INTEGER,
model_description CHAR (40),
suggested_retail_price DECIMAL (6,2),
shipping_weight DECIMAL (6,2),
time_to_manufacture TIME,
PRIMARY KEY (model_numb)

) ;

CREATE TABLE test_type
(

test_code INTEGER,
test_descr ipt ion CHAR (40),
PRIMARY KEY (test_code)

);

CREATE TABLE test

model_numb INTEGER,
test_date DATE,
test_locat ion CHAR (40),
test_code INTEGER,
test_resul ts CHAR (40),
PRIMARY KEY (model_numb, test_date),
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (test_code) REFERENCES test_type

);

Figure 11-21" Oracle schema for the hybrid version of the MMM database

276 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

CREATE TABLE customer

customer_numb INTEGER,
customer_name CHAR (40),
customer address Address
contact_person Name,
contact_phone Phone,
contact_fax Phone,
PRIMARY KEY (customer_numb)

CREATE TABLE order

order_numb INTEGER,
customer_numb INTEGER,
order_date DATE,
order_total DECIMAL (8,2),
o rder_ f i l l ed CHAR (1),
PRIMARY KEY (order_numb),
FOREIGN KEY (customer_numb) REFERENCES customer

CREATE TABLE order 11ne
(

order_numb INTEGER,
model_numb INTEGER,
order_line_cost LlneCost,
all_shipped CHAR (1),
PRIMARY KEY (order_numb, model_numb),
FOREIGN KEY (order_numb) REFERENCES order,
FOREIGN KEY (model_numb) REFERENCES model

) ;

CREATE TABLE shipment
(

order_numb INTEGER,
model_numb INTEGER,
shipping_date DATE,
quantity_shipped INTEGER,
PRIMARY KEY (order_numb, model_numb, shipping_date),
FOREIGN KEY (order_numb) REFERENCES order_l ine,
FOREIGN KEY (model_numb) REFERENCES order_l ine

);

Figure 11-21 (Continued): Oracle schema for the hybrid version of the MMM

THE OBJECT-RELATIONAL DESIGN 277

CREATE TABLE product
(

se r i a l numb INTEGER,
model_numb INTEGER,
date_manufactured DATE,
status_code INTEGER,
date_shipped DATE,
order_numb INTEGER,
PRIMARY KEY (serial_numb),
FOREIGN KEY (serial_numb) REFERENCES purchase,
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (status_code) REFERENCES product_status,
FOREIGN KEY (order_numb) REFERENCES order

CREATE TABLE product_status
(

status_code INTEGER,
s ta tus_descr ip t ion CHAR (40),
PRIMARY KEY (status_code)

);

CREATE TABLE Paw mater ia l
(

material_id_numb INTEGER,
material_name CHAR (30),
unit_of_measurement CHAR (12),
quant i ty_ in_stock INTEGER,
reorder_point INTEGER,
PRIMARY KEY (material_id_numb)

) ;

CREATE TABLE mater ia l needed
(

model_numb INTEGER,
material_id_numb INTEGER,
quantity_needed INTEGER,
PRIMARY KEY (model_numb, material_id_numb),
FOREIGN KEY (model_numb) REFERENCES model,
FOREIGN KEY (mater ia l id numb) REFERENCES Paw mater ia l

- - - - m

Figure 11-21 (Continued): Oracle schema for the hybrid version of the MMM

278 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

CREATE TABLE supplier
(

supplier_numb INTEGER,
supplier_name CHAR (40),
supplier_address Address,
supplier_contact Phone,
supplier_phone Phone,
PRIMARY KEY (supplier_numb)

CREATE TABLE material order
(

po_numb INTEGER,
supplier_numb INTEGER,
material_order_date DATE,
material_order_total DECIMAL (6,2),
PRIMARY KEY (po_numb),
FOREIGN KEY (supplier_numb) REFERENCES suppller

CREATE TABLE material order line
(

po_numb INTEGER,
materlal_ld_numb INTEGER,
material_line_cost LlneCost,
PRIMARY KEY (po_numb, materlal_id_numb),
FOREIGN KEY (po_numb) REFERENCES material_order,
FOREIGN KEY (materlal_ld_numb) REFERENCES raw_material

);

CREATE TABLE manufacturing_line
(

line_numb INTEGER,
l ine_status CHAR (12),
PRIMARY KEY (line_numb)

);

CREATE TABLE l ine schedule
(

line_numb INTEGER,
production_date DECIMAL (6,2)DATE,
model_numb INTEGER,
quantity_to_produce INTEGER,
PRIMARY KEY (line_numb, production_date),
FOREIGN KEY (line_numb) REFERENCES manufacturing_line,
FOREIGN KEY (model_numb) REFERENCES model

);

Figure 11-21 (Continued): Oracle schema for the hybrid version of the MMM

THE OBJECT-RELATIONAL DESIGN 279

CREATE TABLE owner

);

owner numb INTEGER,
owner_name Name,
owner addres Address,
owner_phone Phone,
PRIMARY KEY (owner_numb)

CREATE TABLE purchase
(

ser• INTEGER,
owner_numb INTEGER,
age INTEGER,
gender CHAR (1),
purchase_date DATE,
purchase_place CHAR (40),
learn_code INTEGER,
relatLonshLp CHAR (15),
PRIMARY KEY (serLal_numb),
FOREIGN KEY (serLal_numb) REFERENCES product,
FOREIGN KEY (owner_numb) REFERENCES owner

);

CREATE TABLE feature
(

feature_code INTEGER,
feature_descrLptLon CHAR (40),
PRIMARY KEY (feature_code)

);

CREATE TABLE purchase_feature
(

serLal_numb INTEGER,
feature_code INTEGER,
PRIMARY KEY (serLal_numb, feature_code),
FOREIGN KEY (serLal_numb) REFERENCES purchase,
FOREIGN KEY (feature_code) REFERENCES feature

);

CREATE TABLE learn about
(

learn_code INTEGER,
learn_descrLptLon CHAR (40),
serLal_numb INTEGER,
PRIMARY KEY (learn_code),
FOREIGN KEY (serLal_numb) REFERENCES purchase

);

Figure 11-21 (Continued): Oracle schema for the hybrid version of the MMM

280 DATABASE DESIGN CASE STUDY #1" MIGHTY-MITE MOTORS

CREATE TABLE problem_type
(

problem_type_code INTEGER,
problem_type_description CHAR (30),
PRIMARY KEY (problem_type_code)

);

CREATE TABLE problem_report
(

serial_numb INTEGER,
problem_date DATE,
problem_time TIME,
problem_type_code INTEGER,
problem_description CHAR (40),
PRIMARY KEY (serial_numb, problem_date),
FOREIGN KEY (serial_numb) REFERENCES product,
FOREIGN KEY (problem_type_code) REFERENCES problem_type

Figure 11-21 (Continued): Oracle schema for the hybrid version of the MMM

Database Design Case Study #2:
East Coast Aquarium

Many-to-many relationships are often the bane of the relational da-
tabase designer. Sometimes it is not completely clear that you are
dealing with that type of relationship. However, failure to recognize
the many-to-many can result in serious data integrity problems.

The organization described in this chapter actually needs two data-
bases, the larger of which is replete with many-to-many relation-
ships. In some cases it will be necessary to create additional entities
for composite entities to reference merely to ensure data integrity.

Perhaps the biggest challenge facing a database designer working
for East Coast Aquarium is the lack of complete specifications. As
you will read, the people who will be using the application pro-
grams created to manipulate the aquarium's two new databases

281

282 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

have only a general idea of what they need the programs to do. Un-
like Mighty-Mite Motors, which had the luxury of working from a
large collection of existing forms and documents, East Coast Aquar-
ium has nothing of that sort.

The situation therefore lends itself to a technique known as prototyp-
ing, in which the designers prepare the user interface of an applica-
tion program and let the end users evaluate it. Based on user
feedback, the designers modify the prototype until the output de-
sign matches what the users want. This iterative process helps the
end users focus their requirements. The designers also gather the
necessary information to create a database design that can provide
the outputs the users need. A CASE tool that can model screen
forms will therefore be an invaluable tool in preparing the proto-
type.

Organizational Overview
The East Coast Aquarium is a nonprofit organization dedicated to
the study and preservation of marine life. Located on the Atlantic
coast in the heart of a major northeastern U.S. city, it provides a
wide variety of educational services to the surrounding area. The
aquarium is supported by donations, memberships, charges for pri-
vate functions, gift shop revenues, class fees, and the small admis-
sion fees it charges to the public. To help keep costs down, many of
the public service jobs (leading tours, staffing the admissions
counter, running the gift shop) are handled by volunteers.

The aquarium grounds consist of three buildings: the main facility,
a dolphin house, and a marina where the aquarium's research barge
is docked.

The centerpiece of the main building is a three-story center tank
that is surrounded by a spiral walkway. The sides of the tank are
primarily glass, so that visitors can walk around the tank, observing
the residents at various depths.

ORGANIZATIONAL OVERVIEW 283

Note: If you happen to recognize the layout of this aquarium,
please keep in mind that only the physical structure of the envi-
ronment is modeled after something that really exists. The way
in which the organization functions is purely a product of the
author's imagination and no commentary, positive or negative,
is intended with regard to the real-world aquarium.

The height of the tank makes it possible to simulate the way in
which habitats change as the ocean depth changes. Species that
dwell on the ocean floor, coral reef fish, and sand bar dwellers there-
fore are all housed in the same tank, interacting in much the same
way as they would in the ocean.

The remaining space on the first floor of the main building (Figure
12-1) includes the gift shop and a quarantine area for newly arrived
animals. The latter area is not accessible to visitors.

The second floor (Figure 12-2) contains a classroom and the volun-
teers office. Small tanks containing single-habitat exhibits are in-
stalled in the outside walls. These provide places to house species
that have special habitat requirements or that don't coexist well
with other species.

The third floor (Figure 12-3) provides wall space for additional
small exhibits. It also houses the aquarium's administrative offices.

East Coast Aquarium has two very different areas in which it needs
data management. The first is in the handling of its an ima l s~
where they are housed in the aquarium, where they came from,
what they are to be fed, problems that occur in the tanks, and so on.
The second area concerns the volunteers, including who they are,
what they have been trained to do, and when they are scheduled to
work. For this particular organization, the two data enviroments
are completely separate; they share no data. A database designer
who volunteers to work with the aquarium staff will therefore pre-
pare two database designs, one to be used by the volunteer staff in
the volunteers office and another to be used by the administrative
and animal-care staff through the aquarium grounds.

284 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

Figure 12-1: The first floor of East Coast Aquarium's main building

Animal Tracking Needs
Currently, East Coast Aquarium uses a general-purpose PC ac-
counting package to handle its data processing needs. The software
takes care of payroll as well as purchasing and the accompanying
accounts payable. Because the aquarium is a nonprofit organization,
it does not have accounts receivables as does a for-profit business.

ORGANIZATIONAL OVERVIEW 285

Figure 12-2: The second floor of East Coast Aquarium's main building

Instead, income from the gift shop, admissions, and donations is
handled on a cash basis. Grant income is managed by special-pur-
pose software designed to monitor grant awards and how they are
spent.

Although the accounting and grant management packages
adquately handle the aquarium's finances, there is no data process-
ing that tracks the actual animals housed in the aquarium. The three
people in charge of the animals have expressed a need for the fol-
lowing:

An "inventory" of which species are living in which loca-
tions in the aquarium. Some species can be found in more

286 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

Figure 12-3: The third floor of East Coast Aquarium's main building

than one tank, and several tanks in addition to the central
tank contain more than one species. For larger animals,
such as sharks and dolphins, the head animal keeper
would like a precise count. However, for small fish that
are often eaten by larger fish and that breed in large num-
bers, only an estimate is possible. The animal handling
staff would like to be able to search for information about
animals using either the animal's English name or its Lat-
in name.
Data about the foods each species eats, including how
much should be fed at what interval. The head animal
keeper would like to be able to print out a feeding in-
struction list every morning to give to staff. In addition,

ORGANIZATIONAL OVERVIEW 287

the animal-feeding staff would like to store information
about their food inventory. Although the purchasing of
food is handled by the administrative office, the head an-
imal keeper would like an application program to decre-
ment the food inventory automatically by the amount
fed each day and to generate a tickle report whenever the
stock level of a type of food drops below the reorder
point. This will make it much easier to ensure that the
aquarium does not run short of animal feed.
Data about the sizes, locations, and habitats of the tanks
on the aquarium grounds. Some tanks, such as the main
tank, contain more than one habitat, and the same habitat
can be found in more than one tank.
Data about tank maintenance. Although the main tank is
fed directly from the ocean, the smaller tanks around the
walls of the main building are closed environments,
much like a saltwater aquarium someone might have at
home. This means that the pH and salinity of the tanks
must be monitored closely. The head animal keeper
therefore would like to print out a maintenance schedule
each day as well as be able to keep track of what mainte-
nance is actually performed.
Data about the habitats in which a given species can live.
When a new species arrives at the aquarium, the staff can
use this information to determine which locations could
possibly house that species.
Data about where species can be obtained. If the aquari-
um wants to increase the population of a particular spe-
cies and the increase cannot be generated through in-
house breeding, then the staff would like to know which
external supplier can be contacted. Some of the suppliers
sell animals; others, such as zoos or other aquariums, will
trade or donate animals.
Problems that arise in the tanks. When animals become
ill, the veterinarian wants to be able to view a history of
both the animal and the tank in which it is currently liv-
ing.
Data about orders placed for animals and, in particular,
the shipments in which animals arrive. Since any financial

288 DATABASE DESIGN CASE STUDY #2: E AST COAST AQUARIUM

arrangements involved in securing animals are handled
by the administrative office, these data indicate only how
many individuals of each species are included on a given
order or shipment.

The shipment and problem data are particularly important to the
aquarium. When animals first arrive, they are not placed immedi-
ately into the general population. Instead, they are held in special
tanks in the quarantine area at the rear of the aquarium's first floor.
The length of the quarantine is determined by the species.

After the quarantine period has passed and the animals are de-
clared disease free, they can be placed on exhibit in the main por-
tion of the aquarium. Nonetheless, animals do become ill after they
have been released from quarantine. It is therefore essential that
records are kept of the sources of animals so that patterns of illness
can be tracked back to specific suppliers, if such patterns appear. By
the same token, patterns of illnesses in various species housed in
the same tank can be an indication of serious problems with the en-
vironment in the tank.

The Volunteer Organization
The volunteer organization (the Friends of the Aquarium) is totally
separate from the financial and animal-handling areas of the aquar-
ium. Volunteers perform tasks that do not involve direct contact
with animals, such as leading tours, manning the admissions desk,
and running the gift shop. The aquarium has provided office space
and a telephone line for the volunteer coordinator and her staff. Be-
yond that, the Friends of the Aquarium organization has been on its
own to secure office furniture and equipment.

The recent donation of a PC now makes it possible for the volun-
teers to automate some of their scheduling. Currently, the schedul-
ing processing works in the following way:

The person on duty in the volunteers office receives re-
quests for volunteer services from the aquarium's admin-
istrative office. Some of the jobs are regularly scheduled

ORGANIZATIONAL OVERVIEW 289

(for example, staffing the gift shop and the admissions
desk). Others are ad hoc, such as the request by a school-
teacher to bring a class of children for a tour.

i~ The volunteer doing the scheduling checks the list of vol-
unteers to see who is trained to do the job requested.
Each volunteer's information is recorded on an index
card, along with the volunteer's skills. A skill is a general
expression of something the volunteer knows how to do,
such as lead a tour for elementary school children. The
volunteer's information also includes an indication of
when that person is available to work.
The volunteer doing the scheduling separates the cards
for those people who have the required skill and have in-
dicated that they are available at the required time. Most
volunteers work on a regularly scheduled basis either at
the admissions desk or in the gift shop. However, for ad
hoc jobs, the person doing the scheduling must start
making telephone calls until someone who is willing and
able to do the job is found.
The volunteer is scheduled for the job by writing in the
master schedule notebook. As far as the volunteer coordi-
nator is concerned, a job is an application of a skill. There-
fore, a skill is knowing how to lead a tour for elementary
school students, while a job that applies that skill is lead-
ing a tour of Mrs. Brown's third graders at 10 AM on
Thursday.

One of the things that is very difficult to do with the current sched-
uling process is to keep track of the work record of each individual
volunteer. The aquarium holds a volunteer recognition luncheon
once a year, ~nd the volunteer organization would like to find an
easy way to identify volunteers who have put in an extra effort so
that they can be recognized at that event. In contrast, the volunteer
organization would also like to be able to identify volunteers who
rarely participate ~ t h e people who stay on the volunteer rolls only
to get free admission to the a q u a r i u m ~ a s well as people who make
commitments to work but do not show up. (The latter are actually
far more of a problem than the former.)

290 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

The Volunteers Database

In terms of scope, the volunteers database is considerably smaller
than the animal tracking database. It therefore makes sense to tackle
the smaller project first. The database designers will create the ap-
plication prototype and review it with the users. When the users are
satisfied and the designers feel they have enough detailed informa-
tion to actually design a database, they will move on to the more
traditional steps of creating an ER diagram, tables, and SQL state-
ments.

Note: As you will see, there is a lot involved in creating a pro-
totype. It requires very detailed intensive work and produces a
significant number of diagrams. We will therefore look at the
volunteers prototype in full, but in the interest of length we will
look at only selected aspects of the animal tracking prototype.

Creating the Application Prototype
Given that the specifications of the database are rather general, the
first step is to create a prototype of an application program inter-
face. It begins with the opening screen and its main menu bar (Fig-
ure 12-4). As you can see, when in browse mode, the CASE tool
allows users and designers to pull down the menus in the menu bar.

The complete menu tree (with the exception of the Help menu,
whose contents are determined by the user interface guidelines of
the operating system on which the application is running) can be
found in Figure 12-5. Looking at the menu options, users can see
that their basic requirements have been fulfilled. The details, how-
ever, must be specified by providing users with specific output de-
signs.

Each menu option in the prototype's main menu has therefore been
linked to a screen form. For example, to modify or delete a volun-
teer, a user must first find the volunteer 's data. Therefore the Modify
or Delete a Volunteer menu option leads to a dialog box that allows

THE VOLUNTEERS DATABASE 291

F i l e Edit IlIBmuc~m=J~-'~Skills Schedule Help

I Enter O Hew U o l u n t e e r I
M o d i f y or D e l e t e o U o l u n t e e r
P r i n t U o l u n t e e r Work SummQr~ Report

Logo and I n s t r u c t ions to Go Here

Figure 12-4: Main menu prototype for the volunteers application

Main Menu

File
Close

Page Setup...
Print...

Quit

Edit Volunteers Skills
Enter a New Volunteer

Modify or Delete a Volunteer

Print Volunteer Work Summary

Cut

Copy

Paste

Clear

Create New Skills

Assign Skills to Volunteers

Schedule
Find Available Volunteers

Schedule Volunteer to Work
Record Volunteer Attendance

Print Daily Schedule

Figure 12-5: Menu tree of the volunteers database prototype application

the user either to enter a volunteer number or to select a volunteer
by name and phone number from a list (Figure 12-6). With the pro-
totype, clicking the Find button opens the modify-delete form (Fig-
ure 12-7). Users can click in the data entry fields and tab between
them, but the buttons at the right of the w indow are not functional.

While in browse mode, the CASE tool presents a form as it would
appear to the user. However, in design mode, a database designer
can see the names of the fields on the form (for example, Figure 12-
8). These field names will ultimately guide the design of the data-
base.

In the case of the volunteer data, it is apparent to the designers that
there are at least two entities (and perhaps three) involved with the
data that describe a volunteer. The first entity is represented by the

292 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

Figure 12-6: Prototype of a dialog box for finding a volunteer for modification

Volunteer number" I I

First name' I I

Last name" I I

Address' I
F I I I I

Telephone" I I

Availability

Day iS tar t i ng T i me i End i na T i me .= -
.. ~ .. ~ ...

.. 4 .. 4 ...

... 4 .. ~ ...

.. ~ .. ~ ...

.. ~ .. ~ ...
==

.. 4 .. ~ ...

.. ~ .. ~ ...

.. ~ .. ~ ...

.. ~i .. ~ ...

I Insert 1
I0o,o o 1
I ~176 I

I First 1

I "~)

Figure 12-7: Prototype of a form for modifying and deleting a volunteer

single-valued fields occupying the top half of the form (volunteer
number, first name, last name, street, city, state, zip, and phone).
However, the availability data~day of the week, starting time, and
ending time--are multivalued and therefore must be given an en-
tity of their own. This also implies that there will be a one-to-many

THE VOLUNTEERS DATABASE 293

Uolunteer number:

First name"

Last name"

Ivolunl

I first_name

I last_name

Address' I street
I ci t4 I I ~ ~ I zip I

Telephone' I phone I

Availability

Oay i S tar t i no T i me End i no T i me
E

. . , . . , .

. ~ . . ~ . .

. ~ . . , .

. + . ~ . .

. + . ~ . .

. ~ . . , .

. . . , . . . , .

. . , . . , .

. , . ~ . .

I Insert 1

(Oe,ete)
. . . I oo~

I F i r s t 1

I Prior I

Figure 12-8: Prototype data modification form showing field names

relationship between a volunteer and a period of time during which
he or she is available.

Note: Should you choose, the field names on a screen prototype
can become part of the data dictionary. However, if the field
names do not ultimately correspond to column names, their in-
clusion may add unnecessary complexity to the data dictionary.

The remainder of the prototype application and its forms are de-
signed and analyzed in a similar way:

The volunteer work summary report has been designed
to let the user enter a range of dates that the report will
cover (see Figure 12-9). The report itself (Figure 12-10) is
a control-break report that displays the work performed
by each volunteer along with the total hours worked and
the number of times the volunteer was a "no show." The
latter number was included because the volunteer coor-
dinator had indicated that it was extremely important to

294 DATABASE DESIGN CASE STUDY #2: E AST COAST AQUARIUM

know which volunteers consistently signed up to work
and then didn't report when scheduled.

Figure 12-9: A dialog box layout for entering dates for the work summary
report

Volunteer Work Summary Report

l~oluntll first..name II last_~ame I

IDa t e !Hours Worked
.. ~ ...

.. 4 ...

.. ~ ...

.. ~ ...

.. .4 ...

.. ~ ...

.. ~. ...

.. ~ ...

.. ~ ...

Total Hours: I t o t a l - - h I
Number" of "no shows"" l no~how[

Figure 12-10: Prototype layout for the work summary report

The need to report the "no shows" tells the designers that the sched-
ule table needs to include a boolean column that indicates whether
a person showed up for a scheduled shift. The report layout also in-
cludes some computed fields (total hours worked and number of no
shows) that contain data that do not need to be stored but can be
generated when the report is displayed.

Entering a new skill into the master list of skills requires
only a simple form (Figure 12-11). The end user sees only

THE VOLUNTEERS DATABASE 295

the description of a skill. However, the database design-
ers know that the best way to handle unstructured blocks
of text is to assign each description a skill number, which
can then be used as a foreign key throughout the data-
base. Users, however, do not necessarily need to know
that a skill number is being used; they will always see
just the text descriptions.

Ente r a s k i l l d e s c r i p t i o n " [skill_description I

I'~176 IS~176 1 IC~176176176

Figure 12-11: Entering a new skill

To assign skills to a volunteer, the end user must first find
the volunteer. The application can therefore use a copy of
the dialog box in Figure 12-6. In this case, however, the
Find button leads to the form in Figure 12-12.

Uo I un teer"

Current ski I I s" Isk i I I -deser i pt i on ~S]

Sk i I I descr i pt i on" [sk i I I ~escr i pt i on

I I~I ,

I dd I IS~176 IC~176176176

Figure 12-12: Assigning skills to a volunteer

A database designer will quickly recognize that there is a many-to-
many relationship between a skill and a volunteer. There are actu-
ally three entities behind Figure 12-12: the skill, the volunteer, and
the composite entity that represents the relationship between the

296 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

two. The skill entry form displays data from the volunteer entity at
the top, data from the composite entity in the current skills list, and
all skills not assigned from the skills table in the skill description
list. Of course, the actual foreign key used in the composite entity is
a skill number, but the user sees only the result of a join back to the
skills table that retrieves the skill description.

Note: Database integrity constraints will certainly prevent
anyone from assigning the same skill twice to the same volun-
teer. However, it is easier if the user can see currently assigned
skills. Then, the application can restrict what appears in the
skill description list to all skills not assigned to that volunteer.
In this case, it is a matter of user interface design rather than da-
tabase design.

To find the volunteers available to perform a specific job,
the volunteers application needs a form something like
Figure 12-13. The end user enters the date and time of the
job and chooses the skill required by the job. Clicking the
Search button fills in the table at the bottom of the form
with the names and phone numbers of volunteers who
are theoretically available.

Of all the outputs produced by this application, finding available
volunteers is probably the most difficult to implement. The applica-
tion program must not only work with overlapping intervals of
time but also consider both when a volunteer indicates he or she
will be available and when a volunteer is already scheduled to
work. In most cases, however, a database designer does not have to
write the application program code. The designer needs only to en-
sure that the data necessary to produce the output are present in the
database.

Note: A smart database designer, however, would discuss any
output that involves evaluating overlapping time intervals with
application programmers to ensure that the output is feasible.
There is no point in specifying infeasible output.

Once the person doing the volunteer scheduling has lo-
cated a volunteer to fill a specific job, then the volunteer's

THE VOLUNTEERS DATABASE 297

Oa re" [date] T i me" [, t i me

I I
Available Volunteers

Cancel]

First Name iLast Name iPhone

... ~ .. ~ ..

... ~ .. ~ ..

... ~ .. ~ ..

... ~ .. ~ ..

... t .. ~ ..

... 4 .. & ..

... ~ .. & ..

... 4 .. ~ ..

... ~ .. t ..

Figure 12-13: Finding available volunteers

commitment to work needs to become a part of the data-
base. The process begins by presenting the user with a
Find Volunteer dialog box like that in Figure 12-6. In this
case, the Find button is linked to the Schedule Volunteer
window (Figure 12-14). A database designer will recog-
nize that this is not all the data that needs to be stored
about a job, however. In particular, someone will need to
record whether the volunteer actually appeared to do the
scheduled job on the day of the job; this cannot be done
when the job is scheduled initially.

$ To record attendance, an end user first locates the volun-
teer using a Find Volunteer dialog box (Figure 12-6),
which then leads to a display of the jobs the volunteer
has been scheduled to work in reverse chronological or-
der (see Figure 12-15). For those jobs that have not been
worked, the End Time and Worked? columns will be
empty. The user can then scroll the list to find the job to
be modified and enter values for the two empty columns.
The fields on this form, plus those on the job scheduling

298 DATABASE DESIGN CASE STUDY #2: E AST COAST AQUARIUM

Date" I work~ate I

S tar t i ng t i me' I star t_t i me I

Est i mated durat i on : I est_durat i on I

Job '
j ob~escr i p t i on

Report to" I supervisor I

Isov. 1 Icooo. 1

Figure 12-14: S c h e d u l i n g a v o l u n t e e r to perform a job

form, represent the attributes that will describe the job
entity.

Date iStartina Time iEnd Time iUorked?

. ~ . .~ . .~ .

. ~ . ~ . ,~ .

. % . ~ . ~.

Z:IIIZZZZZZiZZZ:IZZZZiZZZZIIZZZ:!ZZI:I:ZZZZZ
ZZZZZZZ::::iZZZZZZZI:::iZZZZZZZ::::iZZZZZZZ:::
... t .. t .. t ..
. ~ . ~ . ~ .

. ~ . ~ . i ~ .. ~. .. ~ ..

. ~ . ~ . ~ .

I so . 1 I cooo. 1

Figure 12-15: Record ing jobs w o r k e d

THE VOLUNTEERS DATABASE 299

$ To print a daily schedule, an end user first uses a dialog
box to indicate the date for which a schedule should be
displayed (Figure 12-16). The application program then
assembles the report (Figure 12-17). To simplify working
with the program, the application developers should
probably allow users to double-click on any line in the
listing to open the form in Figure 12-15 for the scheduled
volunteer. However, this capability has no impact on the
database design.

Display V o l u n t e e r Schedule For:

F-~ Today I--I Other date" I d isplaq~ate]

Display 1 I Cancel 1

Figure 12-16: Choosing a date for schedule display

Volunteer Work Schedule For: selected_date

Starl T i me IF i rst Name iLasl Home Phone Job
. .+ . .~ . .~ . ~.

:
. ? . ? . ? . ? .

. ~ . ~ .

:
. ~ . ~ . ~ . ~ .

: :

. .~ . + . ~ . .~ .

. ~ . ~ .

: :

. 4 . 4 . ~ . ~ . : : : :
. ~ . ~ . ~ . ~ .

. ? . ? . ? . ? .

. + . + . ~. .~ .

:
. .~ . .~ . .~ . .~ .

. ~ . ~ . ~ . ~ .

. ~ . .~ .

. ? . ? . ~ . ? .

. ~ . ~ . ~ . ~ .

. ~ . .~ . ~. .~ .

: :
. .~ . .~ . .~ . .~ .

. 4 . ~, . ~ . ~ .

. i . i . ~ . ~ .

Figure 12-17: Volunteer work schedule

300 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

Creating the ER Diagram
From the approved prototype of the application design, the data-
base designers can gather enough information to create a basic ER
diagram for the volunteers organization. The designers examine
each screen form carefully to ensure that the database design pro-
vides the attributes and relationships necessary to generate the out-
put.

Although the application prototype consumes many screen forms,
the underlying database design is surprisingly simple. The com-
plete ER diagram can be found in Figure 12-18. The Skills Known
entity serves as a composite entity between Volunteer and Skill.
Given that there is no direct relationship between a skill and a job,
then scheduling data (the Job entity) is related to the volunteer en-
tity in a simple one-to-many relationship. The same is true of the
availability data.

I Vo I un teer
G o i u ~ { ~ ~ ~ ~ G ~ g

f i rs t_name

I as t_name
s t ree t

c i ty
state
zip

p h o n e

I
....... ~ . ! . . ! . ~ . ! . . ! . . ! . ~
*@volunteer_numb

*day
*starting_time

e n d i n g _ t i m e

Ski I I s Known

' *@ski I l_numb
i

J o b
*@vo I un teer_.numb

*j ob_da te
*s tar t i ng_t i me

e s t i me t e d _ d u r a t i on
s u p e r v i s o r

j ob_descr i p t i on
e n d i n g _ t i me
worked_f Iog

Figure 12-18: ER diagram for the volunteers database

S k i l l
......... u iii2~~~6
ski I I _descr i p t i on

Designing the Tables
The ER diagram in Figure 12-18 produces the following tables:

Volunteer (volunteer numb, first_name, last_name, street, city,
state, zip, phone)

Availabil ity (volunteer numb, day, startingtime, ending_time)

THE ANIMAL TRACKING DATABASE 301

Job (volunteer numb, lob date, startlnfl_tlme, estimated_duration,
supervisor, job_description, ending_time, worked_flag)

Ski l l (sk111 numb, skil l_description)
Skills_known (volunteer numb, sk111 numb)

The Job table presents a question that must be answered before a
correct primary key can be chosen. In particular, can a volunteer
perform more than one job on a single day? If so, then the starting
time must be concatenated with the volunteer number and the job
date to form a unique primary key. However, if volunteers are lim-
ited to only one job in a given day, then the starting time does not
need to be part of the key.

Generating the SQL
The five tables that make up the volunteers database can be created
with the SQL in Figure 12-19. Notice that some of the attributes in
the Volunteer table have been specified as NOT NULL. This con-
straint ensures that at least a name and phone number are available
for each volunteer.

Note: The domain of INTERVAL was introduced with the
SQL-92 standard and may not be available with all of today's
DBMSs. When INTERVALS are not available, you can store
the duration of an event as an integer (number of minutes) that
can later be added to a starting time.

The Animal Tracking Database
The animal tracking database is considerably larger than the volun-
teers database. The application that will manipulate that database
therefore is concomitantly larger, as demonstrated by the menu tree
in Figure 12-20. (The File and Edit menus have been left off so that
the diagram will fit across the width of the page. However, they are
intended to be the first and second menus from the left, respectively.
A Help menu can also be added along the right edge.)

302 DATABASE DESIGN CASE STUDY #2: E AST COAST AQUARIUM

CREATE TABLE volunteer

volunteer_numb INT,
first_name CHAR (15) NOT NULL,
last_name CHAR (15) NOT NULL,
st reet CHAR (30),
c i t y CHAR (15),
state CHAR (2),
zip CHAR (5),
phone CHAR (12) NOT NULL,
PRIMARY KEY (volunteer_numb));

CREATE TABLE a v a i l a b i l i t y
(

volunteer_numb INT,
day CHAR (10),
s tar t ing_t ime TIME,
ending_time TIME,
PRIMARY KEY (volunteer_numb, day, s tar t ing_t ime) ,
FOREIGN KEY (volunteer_numb) REFERENCES volunteer);

CREATE TABLE s k i l l
(

skill_numb INT,
sk i l l _desc r ip t i on CHAR (30),
PRIMARY KEY (sk i l l _numb)) ;

CREATE TABLE s k i l l s known
(

volunteer_numb INT,
skill_numb INT,
PRIMARY KEY (volunteer_numb, ski l l_numb),
FOREIGN KEY (volunteer_numb) REFERENCES volunteer,
FOREIGN KEY (skil l_numb) REFERENCES s k i l l);

CREATE TABLE Job

volunteer_numb INT,
job_date DATE,
star t ing_t ime TIME,
estimated_duration INTERVAL,
supervisor CHAR (30),
job_descript ion CHAR (255),
ending_time TIME,
worked_flag CHAR (1),
PRIMARY KEY (volunteer_numb, job_date, s tar t ing_t ime) ,
FOREIGN KEY (volunteer_numb) REFERENCES volunteer);

Figure 12-19: SQL statements needed to create the tables for the volunteers
database

THE ANIMAL TRACKING DATABASE 303

Main Menu

Locat ions
Add/Modify/Delete Tank Info

Add/Modify/Delete Habitat Info

Assign Habitats to Tanks

Find a Habitat

Add/Modify/Delete Maintenance Info

Add/Modify/Delete Required Maintenance

Add/Modify/Delete Maintenance Performed

Print a Maintenance Schedule

Species
Add/Modify/Delete Species

Transfer Species

Find Current Species Location

Find Sources for Species

Find Where Species Can Live

Feeding Sources
Add/Modify/Delete Types of Food [- - Add/Modify/Delete Source

t Update Food Inventory - - Add/Modify/Delete Arriving Shipment

Print Food Reorder Report

Add/Modify/Delete Feeding Instructions

Print Daily Feeding Schedule

Add/Modify/Delete Problem Type

Add/Modify/Delete Problem Type

Add/Modify/Delete Problem Occurrence

Add/Modify/Delete Problem Solutions

Print Problem Summary Report

Figure 12-20: Menu tree for the animal tracking database

The functionality requested by the animal handlers falls generally
into four categories: the locations (the tanks) and their habitats, the
species, the food, and the sources for animals. The organization of
the application interface was therefore guided by those groupings.

Highlights of the Application Prototype
The screen and report layouts designed for the animal tracking ap-
plication provide a good starting place for the database designers to
identify the entities and attributes needed in the database. As with
the volunteers application, there is not necessarily a one-to-one cor-
respondence between an entity and an output.

Note: One of the common mistakes novices make when design-
ing the interfaces of database application programs is to use one
data entry form per table. Users do not look at their environ-
ment in the same way as a database designer, however, and of-
ten the organization imposed by tables does not make sense to
the users. Another benefit of prototype is therefore that it forces
database and application designers to adapt to what the users
really need, rather than the other way around.

304 DATABASE DESIGN CASE STUDY #2: E AST COAST AQUARIUM

Food Management

One of the important functions mentioned by the aquarium's ani-
mal handlers was management of the animal feeding schedule and
the food inventory. First, they wanted a daily feeding schedule,
such as that in Figure 12-21. Knowing that each species can eat
many types of food and that a type of food can be eaten by many
species, a database designer realizes that there are at least four enti-
ties behind the sample output:

$ An entity that indicates which species lives in which tank
(a composite entity between the tank and species enti-
ties)

$ An entity describing a type of food
$ An entity describing a species
$ An entity that indicates which species eats which food and

how often that food should be fed (a composite entity be-
tween the food and species entities)

Food inventory management~although it sounds like a separate
function to the animal handlers ~ actually requires nothing more
than the food entity. The food entity needs to store data about how

Feeding schedule f o r " ~ Z ~

Tank number" I t a n k - ~ l I place_in_bui Idinq I

~pec i es i Food i Ouon t i tu i How 0 f ten Todau
i - i

. ~ . ~ . 4 .
i : " . ~ . ~. ~ .

. ~ . + . + .

. ~ . 4 . 4 .

. ~ . ~ . ~ .

. ~ . ~ . + .

i
. ~ . ~ . + .

. ~ . ~ . ~ .

. ~ . r . & .

. �9 ~ . 4 . ~ .

. + . ~ . ~ .

i
. ~ . + . ~ .

. ~. .~ . .+ .

. 4 . ~ . ~ .

Figure 12-21: Daily feeding schedule

THE ANIMAL TRACKING DATABASE 305

much food is currently in stock and a reorder point. The application
program can take care of decrementing how much has been fed
when the animal handlers run the Update Food Inventory function.

Handling Arriving Animals

When a shipment arrives at the aquarium, animal handlers first
check the contents of the shipment against the shipment's paper-
work. They then take the animals and place them in the aquarium's
quarantine area. The data entry form that the animal handlers will
use to store data about arrivals therefore includes a place for enter-
ing an identifier for the tank in which the new animals have been
placed (Figure 12-22). Given that the aquarium staff needs to be able
to locate animals at any time, this suggests that the quarantine tanks
should be handled no differently from the exhibit tanks and that
there is only one entity for a tank.

source_numb source_name

Arr iva I date"

Motes"

arr i va I ~ate]

art i va I _no tes

Sh i pment contents"

I soec i es iOuant i tu iTank
i -

......................... ~&

......................... .& ~

......................... ~ ~

......................... ~ ~

......................... ~ ~

......................... 4 4

......................... 4 ~

......................... ~ ~

......................... ~ 4

I Save 1 I Cancel I

Figure 12-22: Recording the arrival of a shipment of animals

After the quarantine period has expired and the animals are certi-
fied as healthy, they can be transferred to another location in the
building. This means an application program must delete the spe-
cies from their current tank (regardless of whether it is a quarantine

306 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

tank or an exhibit tank) and insert data for the new tank. The screen
form (Figure 12-23) therefore lets the user identify the species and
its current location using popup menus. The user also uses a popup
menu to indicate the new location. To a database designer, this
translates into the deletion of one row from a t a b l e ~ a table repre-
senting a composite entity between tank and species entities ~ and
an insertion of a new row. All the database design needs to do, how-
ever, is provide the table; the application program will take care of
managing the data modification.

Transfer Animal From One Tank to Another

Spee i es" I SDee i e~ I I

Curren t Tank" I Loea t i on I I

Hew Tank" I Loeat i on21

Quant i ty be i ng moved" I quanti t4-moved I

(1 I)

Figure 12-23: Moving a species between tanks

Problem Analysis

The health of the animals in the aquarium is a primary concern of
the animal handlers. They are therefore anxious to be able to ana-
lyze the problems that occur in the tanks for patterns. Perhaps a sin-
gle species is experiencing more problems than any other; perhaps
an animal handler is not paying as much attention to the condition
of the tanks for which he or she is responsible.

The animal handlers want the information in Figure 12-24 included
in the problem summary report. What cannot be seen from the sam-
ple screen created by the CASE tool is that the data will appear in a
control-break layout. For example, each tank number will appear
only once; each species will appear once for each tank in which it
was the victim of a problem. By the same token, each type of prob-
lem will appear once for each tank and species it affected. Only the

THE ANIMAL TRACKING DATABASE 307

problem solutions will contain data for every row in the sample
output table.

Problem Summary Report

s tar ting_ dat e ending_ date

Tank Head Keeme ida te iSoee i e~ iProb I em Oeser i mt i on iProb I em R@~o I u t i on
" " ~ i i

. , . ~. ~ . .~ . .~ .

ZZI!ZZZZZilZZZIIIZZZZIIIII!ZZZZZZZZZIIIIII~IZZZZZZIIZZZZIIIIIIZZZ

iiii iiiiiiiiii i!iiiiiiiiiiiii iii iiiii iii ii ii iiii ii i iiiiiiiiiiiil iii iiiiii il ili iiii i iii iiiili iii iiiii i iiiiiiiiiiii iiiiiiiii iiiiii iiiiiiiiii iiiiiiiii ii i iiiiiiiiiiiiiiii iiiiiiiiiii iiiiiiiii iii iiii iii iiiiiiiii ii ili ii ii ili
2111121111 ZIZZ Z ZZiZZZI2jZZZZZ IiZZZZZ Z ZZZZ iliZ ZZZZZ 212112121121211211212112211212122121212212212121222121121

. . . .

Figure 12-24: Problem summary report

To a database designer, the form in Figure 12-24 suggests the need
for five entities"

The species
The tank
The type of problem
A problem occurrence (a type of problem occurring in
one tank and involving one species)
A problem solution (a solution that has been tried for one
problem occurrence). There may be many solutions to a
single problem occurrence.

One of the best ways to handle problems is to avoid them. For this
reason, the animal handlers also want to include maintenance data
in their database. To make data entry simpler for the end users, the
form for entering required maintenance (Figure 12-25) allows a user
to select a tank and then enter as many maintenance activities as
needed.

308 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

T a n k " I L o e a t i o n 1 I

A e t i v i t u i F r e a u e n e u
- ~ -

. ~ .

. ~ .

. &.

. ~ .

. ~ .

. ~ .

. ~ .

. ~ .

. ~ .

I sooo I I coooo, 1

Figure 12-25: Entering required maintenance

A database designer views such a form as requiring three entities:
the tank, the maintenance activity, and the maintenance required
for the tank (a composite entity between the tank and maintenance
activity entities).

Creating the ER Diagram
After refining the entire application prototype, the database design-
ers for the East Coast Aquarium generate a large interconnected ER
diagram. (Part I can be found in Figure 12-26; part II appears in Fig-
ure 12-27.) As you can see when examining both diagrams, the cen-
terpiece is the Species entity, which participates in six different
relationships.

There are at least 10 many-to-many relationships represented by
this design:

$ Species to Location
$ Location to Habitat
$ Species to Habitat
$ Location to Maintenance Activity for required maintenance
$ Location to Maintenance Activity for maintenance per-

formed

THE ANIMAL TRACKING DATABASE 309

ma i n tenance_requ i red
..

*oc t i v i ty-numb
*tank-numb
how._often

Ma i n tenant@ Ac t i v i ty
..

*ac t i v i ty_numb
act i v i ty_descr i p t i on

I ma ntenance_performed i
........... ;~'i~'i'i:;'i"i~G~iiiiE;

*tank-numb
*act i v i ty_dQ te

Problem
...

*problem_type-numb
problem_description

Loca t i on
...

*tank_numb
p I ace_ i n_bu i I d i ng

f I u i d_capac i ty

Hab i t a ts Con ta i ned
.

*@ t a n k _ n u m b
*@hob i t o t _ n u m b

Hab i t a t
.

* h a b i t a t - n u m b
hab i tat_descr i pt i on

Problem Occurrence
.

*problem-numb
probl emma te
@tank-numb

@species-numb
@problem_type-numb

Popu I a t i on
..... ; ~ i ~ ; ~ i i i i ~

*Crank_numb
number_o f_an i mo I s

+~
P r o b l e m S o l u t i o n

.

* @ p r o b l e m _ n u m b
*solution_date

solution__applied

i

]s.~s!.~
i

I * s p e c i e s _ n u m b
~1 e n g I i s h _ n a m e
" I I G t i n _ n a m e

I quaran t i ne_ I eng th

I
~ c ~ . . . ~ . ! . ~ ! . ~

* @ s p e c i es_numb
*@hab i tat_numb

Figure 12-26: Animal handling ERD (part I)

Location to Problem
Species to Problem
Species to Food
Species to Source for ability of source to supply the species
Shipment to Species

The relationships involving Location, Problem, and Species are par-
ticularly interesting. On the surface, there appears to be a many-to-
many relationship between a tank and a type of problem. By the
same token, there appears to be another many-to-many relationship
between a species and a type of problem. The problem is that if the
database maintains the two separate relationships, each with its
own individual composite entity, then it will be impossible to deter-
mine which species was affected by which problem in which tank.
To resolve the issue, the design uses a three-way composite ent i ty~
Problem Occurrence~that relates three parent entities (Location,
Problem, and Species) rather than just the traditional two. Semanti-
cally, a problem occurrence is one type of problem affecting one

310 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

 0~ !II "" *spe~ies._numb
english_name
latin_name

quarantine_length ,,

..~.!.~.~.!.~.!.~..,
*source_numb
*arr ival_clare
*species_numb

quan t i ty_rece i red

.............. I
*spec i es_numb

* food_type_numb
feed i ng_ i n terra I /
feedi ng._omount I

Food ..
* food_type_numb
food_.clescr i p t i on

source._numb
units

amount_on_hand
reorder_point

. ~ . 9 . 9 ~ . 9 . ~ . ~ . ~

*source_numb
*species..numb

Source ...
*source_numb
source_.name

source..street
source._c i tg
source._~ tate
source__zip

source_phone
source__contact_person

I
wO

Shipment ...
*source_numb
*arrival~ate
arrival_notes

Figure 12-27: Animal handling ERD (part II)

species in one location and therefore identifying it in the database
requires all three parent entities.

In contrast, why is there no three-way composite entity between
Species, Location, and Habitat? As with the preceding example,
there is a many-to-many relationship between Species and Location
and a many-to-many relationship between Habitat and Location.
The answer once again lies in the meaning of the relationships.

THE ANIMAL TRACKING DATABASE 311

Were we to create a single composite entity relating all three enti-
ties, we would be asserting that a given species lives in a given hab-
itat in a given location. However, the animal handlers at the
aquarium know that this type of data is not valid, particularly be-
cause if an animal lives in a tank with many habitats, the animal
may move between multiple habitats. Instead, the relationship be-
tween Species and Habitat indicates all habitats in which a species
can live successfully; the relationship between Location and Habi-
tat indicates the habitats provided by a tank.

The remainder of the many-to-many relationships are the typical
two-parent relationships that you have been seeing throughout this
book. The only aspect of these relationships that is the least bit un-
usual is the two relationships between Maintenance Activity and
Location. Each relationship has a different meaning (scheduled
maintenance versus maintenance actually performed). Therefore,
the design must include two composite entities, one to represent the
meaning of each individual relationship.

Note: There is no theoretical restriction to the number of relation-
ships that can exist between the same parent entities. As long as
each relationship has a different meaning, then there is usually
justification for including all of them in a database design.

Creating the Tables
The ER diagrams translate to the following tables:

species (species_numb, english_name, latin_name, quarantine_length)
location (tank numb, place_in_building, fluid_capacity)
population (species numb, tank numb, number_of_animals)
habitat (habitat numb, habitat_description)
can_live_in (species numb, habitat numb)
habitats contained (tank numb, habitat numb)
problem (problem type numb, problem_description)
problem_occurrence (problem numb, problem_date, tank_numb,

species_numb, problem_type_numb)
problem_solution (problem numb, solution date, solution_applied)
source (source numb, source_name, source_street, source_city,

source_state, source_zip, source_phone, source_contact_person)
can_supply (source numb, species numb)
shipment (source numb, shipment date, arrival_notes)

312 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

shipment_animals (source numb, arrival date, species numb,
quantity_received)

food (food typenumb, food_description, source_numb, units,
amount_on_hand, reorder_point)

feeding (species numb, food_type numb, feeding_interval,
feeding_amount)

maintenance_activity (activitynumb, activity_description)
maintenance_required (act iv i ty numb, tank numb, how_often)
maintenance_performed (act ivi ty numb, tank numb, activity_date)

Choosing a primary key for the problem occurrence table presents
a bit of a dilemma. Given that a problem occurrence represents a re-
lationship between a problem type, tank, and species, the theoreti-
cally appropriate primary key is a concatenation of the problem
type number, tank number, species number, and the date of the
problem. However, this is an extremely awkward primary key to
use as a foreign key in the Problem Solution table. Although it is un-
usual to give composite entities arbitrary unique identifiers, in this
case it makes good practical sense.

There are several tables in this design that are "all key" (made up of
nothing but the primary key). According to the CASE tool used to
draw the ER diagram, this represents an error in the design. How-
ever, there is nothing in relational database theory that states that
all-key relations are not allowed. In fact, they are rather common
when they are needed to represent a many-to-many relationship
that has no accompanying relationship data.

Generating the SQL
The SQL CREATE statements that generate the animal tracking da-
tabase for East Coast Aquarium can be found in Figure 12-28. Be-
cause of the large number of composite entities, there are also a
large number of foreign keys. Other than that, the SQL presents no
unusual features.

THE ANIMAL TRACKING DATABASE 313

CREATE TABLE species
(

species_numb INT,
english_name CHAR (100),
latin_name CHAR (100),
quaPantine_length INT,
PRIMARY KEY (species_numb));

CREATE TABLE locat ion
(

tank_numb INT,
p lace_in_bui ld ing CHAR (30),
f l u id_capac i t y DECIMAL (9,2) ,
PRIMARY KEY (tank_numb)) ;

CREATE TABLE can l i ve in
w

(
species_numb INT,
habitat_numb INT,
PRIMARY KEY (species_numb, habitat_numb),
FOREIGN KEY (species_numb) REFERENCES species,
FOREIGN KEY (habitat_numb) REFERENCES habi ta t);

CREATE TABLE populat ion
(

species_numb INT,
tank_numb INT,
number_of_animals INT,
PRIMARY KEY (species_numb, tank_numb),
FOREIGN KEY (species_numb) REFERENCES species,
FOREIGN KEY (tank_numb) REFERENCES locat ion);

CREATE TABLE habi ta t
(

habitat_numb INT,
hab i ta t_descr ip t ion CHAR (100),
PRIMARY KEY (hab i ta t_numb)) ;

CREATE TABLE problem
(

problem_type_numb INT,
problem_descript ion CHAR (100),
PRIMARY KEY (problem_type_numb)) ;

Figure 12-28" SQL statements to create the animal handing database

314 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

CREATE TABLE problem_occurrence
(

problem_numb INT,
problem_date DATE,
tank_numb INT,
species_numb INT,
problem_type_numb INT,
PRIMARY KEY (problem_numb),
FOREIGN KEY (tank_numb) REFERENCES location,
FOREIGN KEY (species_numb) REFERENCES speciesj
FOREIGN KEY (problem_type_numb) REFERENCES problem);

CREATE TABLE problem_solution
(

problem_numb INT,
solution_date DATE,
solution_applied CHAR (100),
PRIMARY KEY (problem_numb, solution_date),
FOREIGN KEY (problem_numb) REFERENCES problem_occurrence);

CREATE TABLE source

source_numb INT,
source_name CHAR (30),
source_street CHAR (30),
source_city CHAR (30),
source_state CHAR (2),
source_zip CHAR (5),
source_phone CHAR (12),
source_contact_person CHAR (30),
PRIMARY KEY (source_numb));

CREATE TABLE shipment
(

source_numb INT,
arr ival_date DATE,
arrival_notes CHAR (255),
PRIMARY KEY (source_numb, arr ival_date),
FOREIGN KEY (source_numb) REFERENCES source);

CREATE TABLE can_supply
(

source_numb INT,
species_numb INT,
PRIMARY KEY (source_numb, species_numb),
FOREIGN KEY (source_numb) REFERENCES source,
FOREIGN KEY (species_numb) REFERENCES species);

Figure 12-28 (Continued): SQL statements to create the animal handing
database

THE ANIMAL TRACKING DATABASE 315

CREATE TABLE shipment_animals
(

source_numb INT,
arr ival_date DATE,
species_numb INT,
quantity_received INT,
PRIMARY KEY (source_numb, arr ival_date, species_numb),
FOREIGN KEY (source_numb) REFERENCES shipment,
FOREIGN KEY (arr ival_date) REFERENCES shipment,
FOREIGN KEY (species_numb) REFERENCES species);

CREATE TABLE food

food_type_numb INT,
food_description CHAR (30),
source_numb INT,
units CHAR (15),
amount_on_hand INT,
reorder_point INT,
PRIMARY KEY (food_type_numb));

CREATE TABLE feedlng
(

species_numb INT,
food_type_numb INT,
feeding_interval CHAR (15),
feeding_amount CHAR (15),
PRIMARY KEY (species_numb, food_type_numb),
FOREIGN KEY (species_numb) REFERENCES species,
FOREIGN KEY (food_type_numb) REFERENCES food);

CREATE TABLE habitats contained
(

tank_numb INT,
habitat_numb INT,
PRIMARY KEY (tank_numb, habitat_numb),
FOREIGN KEY (tank_numb) REFERENCES locat ion,
FOREIGN KEY (habitat_numb) REFERENCES habitat);

CREATE TABLE maintenance_activity
(

activity_numb INT,
ac t iv i ty_descr ip t ion CHAR (30),
PRIMARY KEY (act iv i ty_numb)) ;

Figure 12-28 (Continued): SQL statements to create the animal handing
database

316 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

CREATE TABLE maintenance_cequiced
(

activity_numb INT,
tank_numb INT,
how_often INTERVAL,
PRIMARY KEY (activity_numb, tank_numb),
FOREIGN KEY (activity_numb) REFERENCES maintenance_activity,
FOREIGN KEY (tank_numb) REFERENCES locat ion

);

CREATE TABLE maintenance_performed
(

activity_numb INT,
tank_numb INT,
act iv i ty_date DATE,
PRIMARY KEY (activity_numb, tank_numb, ac t iv i t y_date) ,
FOREIGN KEY (activity_numb) REFERENCES maintenance_activity,
FOREIGN KEY (tank_numb) REFERENCES locat ion

);

Figure 12-28 (Continued): SQL statements to create the animal handing
database

The Object-Relational Design
As with the relational databases, the object-relational designs for
the East Coast Aquarium consist of two separate databases, one for
the volunteers and the other for the animals.

The Volunteers Database

Like the database for the Mighty-Mite Motors company, the design
for the volunteers database presents only a few simple opportuni-
ties to take advantage of the integration of objects into a relational
design. The ER diagram in Figure 12-29 contains objects for a name,
address, and phone number. When you consider the entities closely,
there are no other attributes that it makes sense to group together
into objects.

THE OBJECT-RELATIONAL DESIGN 317

Figure 12-29: The hybrid design for the volunteers database

The resulting tables are as follows:

Volunteec (volunteer numb, name, addPess, phone)
Ava i lab i l i ty (volunteer numb, ,day, starting_time, ending_time)
Job (volunteer numb, iob date, start inq time, estimated_duration,

supervisor, job_description, ending_time, wopked_flag)
Sk i l l (sk i l l numb, ski l l_descript ion)
Skills_known (volunteer numb, sk i l l numb)

The only benefit of moving to an object-relational model for this
small database is the ability to reuse the Name, Address, and Phone
classes, assuming that they have been declared for use elsewhere.

Note: For delcarations and implementations of the Name, Ad-
dress, and Phone classes, see the discussion beginning on
page 273 in Chapter 11.

The Animal Tracking Database
Of all of the sample databases you have seen so far, the animals por-
tion of the East Coast Aquarium database environment benefits the
least from a hybrid design. The first portion of the ER diagram (Fig-
ure 12-30) is identical to the relational design. It does gain some clar-
ity in the move from the Information Engineering model to UML in

318 DATABASE DESIGN CASE STUDY #2: EAST COAST AQUARIUM

that it can use the n-ary association symbol to show the three-way re-
lationship between location, species, and problem. This technique
makes it very clear that the problem report is related to all three par-
ent entities.

................... ..p+~..o..b...!.~..m. It 1
*prob I em_type_numb I

prob I em_descr i p t i on I

I
~..+..!..~..t...+..+.~.+.+..+..~..+..+.~.!..S..+...+..,

*@ac t i v i ty_numb
+@ tank_numb

how_o f ten O.. *

maintenance_activity ..
*activity_numb

a c t i v i t y _ d e s c r i p t i o n

I ma i n tenance_per formed J
.......... ~ + ~ { i ~ i ~ 2 G ~ , o

*@tank_numb J
* a c t i v i ty_date I

' '1
F

k ! . 9 s ~ . ! . 9 ~
I +tank_numb
i

I P l a e e - i n - b u i l d i n g 1
J f I u i d._capar i ty

0 . . *

I habi ta ts_conta ned i

I ~+G~~~~~~
�9 + I *@habitat_numb

0 . . *

*prob I em_numb I
prob I era_dote J 1 [..p...r...o...b..!..e..m....._~...?..!...u...t..!...o...n...
@tank_numb I I O..+ I *eproblem_a~umb

@spec i es_numb J I
@problem_type_numb I J * so lu t i on_da te

I so lu t ion_appl led

0 .

~ 1 7 6 , I
.......... ~ + P ~ , t ~ + ~

+especies_numb
*etank_numb 0 . . *

number_.of__animals

.............. ~ + . ! . ~ 5

+spec ies_numb
e n g l i s h , name

lat in_name
quaran t ine_ leng th

I

I ~2~.....t.2.t,~

I +hob i ta t_numb
l hab i ta t_clescr i pt i on

0..+ can_live_in 0 * ..
*@species_numb

*@habitat_numb

Figure 12-30: A hybrid design for the animals database (part I)

The second portion of the ER diagram (Figure 12-31) incorporates
the utility classes that you have seen already. Beyond those three
classes, there is nothing that lends itself to grouping into a class
rather than using individual columns.

The hybrid schema therefore differs from the relational schema in
only one relation:

s o u r c e (s o u r c e numb, s o u r c e _ n a m e , s o u r c e _ a d d r e s s , s o u r c e _ p h o n e ,
s o u r c e _ c o n t a c t _ p e r s o n)

THE OBJECT-RELATIONAL DESIGN 319

Figure 12-31: A hybrid design for the animals database (part II)

The domain for the source_address attribute is the Address class,
for the source_phone attribute the Phone class, and for the
source_contact_person attribute the Name class.

This Page Intentionally Left Blank

Database Design Case Study #3:
Independent Intelligence Agency

In the preceding two case studies, we have encountered several da-
tabase design challenges, including the need to determine whether
one or more databases are required, incomplete specifications, and
a large number of many-to-many relationships. The final case study
we are going to consider presents two different challenges: First, the
specifications have been written by people who are more concerned
with security than they are with helping database designers; sec-
ond, the environment contains an enormous number of repeating
groups. In addition, this is the largest database you have seen so far.
Although at the outset it may appear that there are two or three sep-
arate databases, the parts of the database share just enough data
that the only way to meet all the organization's requirements is to
maintain a single schema.

321

322 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

Note: The cases in the two preceding chapters to some extent
have been based on real organizations. However, this case is a
pure flight of fancy. (The author had been watching too many
spy movies when she wrote it!)

Organizational Overview
A group of database designers have been hired to provide updated
information systems for the Independent Intelligence Agency (IIA).
Given the nature of the agency's work, the designers realize that
they will, in some cases, be working with limited information about
the way in which the organization functions. In particular, the de-
sign team must accept specifications in whatever format they are
provided; team members are not permitted to identify or question
agency personnel other than the Vice President for Information Ser-
vices, who has been their sole contact with the organization. In ad-
dition, they will be given few details about the application
programs that will be interacting with the database they design.

The Independent Intelligence Agency, headquartered in Geneva, is
a nonaligned, worldwide organization that specializes in the gath-
ering and dissemination of covert intelligence. Established during
the aftermath of World War II (1947), the IIA is quick to emphasize
that while it employs undercover field agents and uses other meth-
ods common to intelligence agencies, it has not, is not, and will not
be involved in manipulating or in any way influencing the affairs of
any country; its sole purpose is to gather information and to sell it
to whoever is willing to pay. The IIA will accept commissions to
gather specific intelligence as long as doing so does not violate the
restriction on becoming active in the affairs of governments. All of
IIA's financial resources come from fees paid by clients for informa-
tion and from investments made with those fees. All transactions
are strictly confidential; unauthorized disclosure of information by
any employee is cause for immediate dismissal.

The IIA's headquarters building in Geneva contains offices for the
Executive Director, Internal Affairs (responsible for monitoring the

ORGANIZATIONAL OVERVIEW 323

conduct of field agents, readers, and administrative personnel), Hu-
man Resources, and Finance. Because space in the headquarters
building is limited, Information Systems has been moved to a reno-
vated warehouse behind the headquarters.

IIA's organization divides the planet into six bureaus, one for each
continent except Antarctica. (Any intelligence that comes out of the
research stations in Antarctica is handled through an Australian sta-
tion.) Within the bureaus there are separate stations that conduct
field operations. Each bureau has a Director, and each station has a
Chief who reports to his or her bureau Director. (Note that the cen-
tral offices for the European Bureau and the Geneva station are on
the other side of the city. This arrangement was created to give the
Director of the European Bureau and the Chief of the Geneva sta-
tion the freedom to operate without the constant surveillance of
top-level management.)

Stations have three types of people with whom they interact:

Field agents are actively involved in the collection of intel-
ligence. They are typically full-time employees of the IIA.
Readers work inside station buildings reviewing print,
audio, video, and electronic materials. Much of a read-
er's work involves intercepting and decoding interna-
tional cable and satellite transmissions. Readers are
typically full-time employees of the IIA.
Informants are people who are contacted by field agents
for information. Informants are usually paid based on
the perceived value of the information they provide.
They are not IIA employees. Some informants have be-
come so valuable to the IIA, however, that they have
been hired as field agents.

Occasionally field agents and readers will exchange roles. For ex-
ample, a field agent who has spent too long in the field may become
a reader and work at that job until retirement. By the same token, a
promising reader may undergo field agent training and move into
that role.

324 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

Stations also have administrative personnel. Although many ad-
ministrative personnel have little contact with intelligence data or
client lists, the security requirements for those employees are as rig-
orous as for field agents and readers.

Each station has its own budget and manages its own accounting.
The Finance Department works at the top organizational level to
determine the budget, but once funds are allocated, each station
handles the ordering of its own supplies, pays its own expenses (in-
cluding payments to informants), and cuts its own paychecks. Sales
of information may be handled by any level in the organizational
hierarchy. Payment is received by the agency making the sale, but
all funds are deposited in a single, centralized account in Geneva.
The Finance Department's auditors and Internal Affairs staff keep
close watch to ensure that all funds collected end up in the bank.

Current Information Systems
IIA maintains a distributed file processing system using ISAM file
organization that has been in place since 1974. Each station has its
own minicomputer or server that is used to handle the station's ac-
counting functions. These data are available to the Finance Depart-
ment at the Geneva headquarters building, the station's bureau,
and the station's area. Personnel files are kept on the Geneva head-
quarters' mainframe. The data are available to all stations.

The personnel files, however, contain data about IIA employees
only. Each field agent keeps his or her own list of informants. In
some cases, those lists have been placed on station computers, but
the use is not consistent and in many cases, agents have been reluc-
tant to share their sources.

Data gathered by field agents are stored in the file processing sys-
tem. The files containing these raw facts are then indexed to allow
retrieval by major topics ~ countries, individuals, and events. An
online query language is available, but attempts to retrieve by a
characteristic on which there is no index are unacceptably slow.

ORGANIZATIONAL OVERVIEW 325

The IIA does not sell raw facts, but instead sells verified pieces of
intelligence. To obtain a saleable piece of intelligence, the IIA must
receive confirmation of the same raw fact from several sources.
When a field agent or reader reports raw data, he or she also reports
a confidence level (from 0 to 100) in the accuracy of that data. Print-
outs of sorted raw data along with their confidence levels are then
examined by readers to find data that support each other with in-
creasing confidence levels. When the confidence levels reach a spe-
cific po in t~ I IA will not reveal exactly what that level i s ~ a
saleable piece of intelligence is entered into the data file containing
saleable merchandise. The reader certifying the piece of intelligence
affixes an approximate price, but the exact selling price will be ne-
gotiated when the intelligence is actually sold. Of all the tasks that
the IIA undertakes, this is the most labor-intensive and delays in
certifying saleable intelligence can cost the IIA a significant amount
in sales.

The IIA has informed the database designers working on a new in-
formation system that application programmers will be preparing
an expert system to automate the verification of raw data into sale-
able pieces of intelligence. Although the database designers will not
be given any details on how the expert system will work, they will
be told exactly what data the expert system will need to function.

The file processing system has become difficult to maintain. The
volume of data added to the files is so high that the station IS staff
must reblock the files as often as once every two weeks. The re-
blocking is time consuming and results in unacceptable downtime
during working hours.

Security Concerns

Many of IIA's clients are extremely sensitive to the exclusiveness of
the data they are buying: They wish to be the only purchasers. Ex-
clusive sales command much higher fees than those for pieces of in-
telligence that can be sold to more than one buyer.

Some data are also extremely sensitive. The IIA believes that the re-
lease of those data to the public would violate the IIA's policy

326 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

against manipulating or influencing existing governments. There-
fore, the security of the intelligence data is of primary concern to the
IIA.

The ISAM file system they are currently using has no built-in secu-
rity. Instead, each record of data added to the files contains a field
with a security classification. Each user name that the computer rec-
ognizes has a security classification as well. Access to data is grant-
ed if the user has a classification equal to or above the classification
of the data. The classification scheme is an all-or-nothing affair.
Anyone who can supply a user name and password that the com-
puter will recognize receives the classification level of the user
name and can read all data at that level or below and can modify all
data at that classification level. Since users can modify only data at
their classification level, highly privileged users who need to mod-
ify data at lower classification levels will have more than one ac-
count on the system, once for each classification level below them.

The need for a single user to maintain more than one account has
led to numerous security breaches. Users who could not remember
all of the user names, passwords, and their associated classification
levels have written the information down and either taped it to
their monitors in full view of an entire office or placed it in the top
center drawer of a desk that is never locked. IIA would therefore
like a security system where access can be more tightly tailored to
an individual 's needs so that only a single account is needed for
each user.

The IIA's VP for Information Services has told the design team that
the IIA is willing to install retina scanners for user identification in
all locations. Portable scanners are also available to be issued with
laptop computers.

Equipment Development

To augment its intelligence collection activities, the IIA develops
and manufactures about half of its own intelligence gathering
equipment. Some of this equipment is then sold to intelligence
agencies around the world. In keeping with its position of strict

ORGANIZATIONAL OVERVIEW 327

neutrality, the IIA sells equipment to any government that has the
money to purchase it.

Currently, control over equipment inventory, usage, testing, and
sales is very lax. The VP for Information Services, however, has in-
formed the database design team that a new system must include
equipment tracking. Although the equipment development is man-
aged separately from the intelligence gathering, most field equip-
ment tests are performed by field agents and most equipment sales
are to clients who also purchase intelligence.

Subject Classifications

The current indexing of the existing data files by commonly used
keywords has given the IIA's IS staff an idea that could potentially
increase sales of pieces of intelligence. The staff would like to assign
subject classifications to verified saleable merchandise, much in the
same way a library assigns subject headings to books.

Classifications would then be matched with customers in three
ways:

Subject areas about which a customer wants to be noti-
fied whenever something is available
Subject areas from which the customer has previously
made a purchase
Subject areas about which a customer has made a request
but then subsequently declined to purchase

Searches on these matchings of customers and subject classifica-
tions could potentially tailor sales calls to client purchasing habits,
providing a better use of administrative personnel time.

Summary of IS Needs
The IIA is therefore faced with four major IS problems:

The file processing system is slow and hard to maintain.
The file processing system does not provide enough flex-
ibility for current application program technologies. In

328 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

particular, it cannot support the expert system that will
be created to verify saleable pieces of intelligence.
The system is far less secure than IIA requires.
The distributed file system has led to inconsistencies in
the types of data that are stored on the organization's
various computers.

To remedy these problems, the IIA has hired a number of IS teams
that will be working independently on various parts of the organi-
zation's new system. (The isolation of the teams is for security pur-
poses.) The database will still be distributed, but because it will be
a true database rather than a file processing system, it will be possi-
ble to use a common schema throughout the entire organization.

Accounting functions, which are of interest only to each local sta-
tion and its supervising bureau, will continue to use the file process-
ing system, at least temporarily. Any upgrades to that system will
take place as a separate project.

System Specifications
Prior to hiring the database design team, the bureau directors, con-
tinent directors, and local station chiefs came together to prepare a
document that described the data they needed in a database. Input
for the meeting came from discussions at the stations with field
agents, readers, and administrative personnel.

The following outline of data dealing with intelligence gathering
and sales that should be stored in the IIA's database was presented
to the database design team:

Personnel
- Classification (field agent, reader, or administrative)
- Real name
- Birthdate
- Local country identification number (for example,

U.S. social security number)

ORGANIZATIONAL OVERVIEW 329

- Driver's license country (and state, if applicable) and
number

- Photo
- Fingerprints
- Retina print
- Height in centimeters
- Weight in kilograms
- Eye color
- Vision
- Current address and phone number
- Aliases (all aliases used, currently or in the past)

w Name
w Photo
w Birthdate
w Local country identification number (for example,

U.S. social security number)
w Driver's license country (and state, if applicable)

and number
w Height
w Weight
w Eye color
w Address and phone number (if any)
w Date last used

- All previous addresses including dates of residence
- Family members (parents; all spouses; biological,

adopted, step, and foster children; biological, adopt-
ed, step, and foster siblings)
w Real name
w Birthdate
w Current address and phone number
w Highest level of education
w Current job
w Photo

- Education (all schools attended and degrees earned)
- Work history
- Criminal record
- Religion
- Organizations other than IIA to which person belongs

330 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

Informants
- Real name
- Birthdate
- Local country identification number (for example,

U.S. social security number)
- Driver's license country (and state, if applicable) and

number
- Photo
- Fingerprints
- Height
- Weight
- Eye Color
- Vision
- Current address and phone number
- Aliases (all aliases used, currently or in the past)

w Name
w Photo
w Birthdate
w Local country identification number (for example,

U.S. social security number)
w Driver's license country (and state, if applicable)

and number
w Height
w Weight
w Eye color
w Address and phone number (if any)
w Date last used

- All previous addresses including dates of residence
- Family members (parents; all spouses; biological,

adopted, step, and foster children; biological, adopt-
ed, step, and foster siblings)
w Real name
w Birthdate
w Current address and phone number
w Highest level of education
w Current job
w Photo

- Education (all schools attended and degrees earned)
- Work history

ORGANIZATIONAL OVERVIEW 331

Criminal record
Religion
Organizations to which person belongs
Field agent who recruited the informant
Contacts made with agents
w Date of contact
w Outcome of contact
w Payment received at contact
w Data presented at contact
w Agent making the contact

Intelligence data (raw facts)
- Date collected
- Source (for example, informant, printed document,

agent observation)
- Location collected (country, city or town)
- How gathered
- The data itself
- Confidence level
- Cost of the data

Verified piece of intelligence
- The piece of intelligence itself
- Subject classifications
- Customers who purchased the piece of intelligence
- Price paid by each customer
- Date each purchase was made
- Whether sold exclusively

Customers
- Name
- Contact person
- Address
- Phone number
- Fax number
- Subject classifications of previous purchases
- Subject classification of previous inquiries that did not

lead to purchases

332 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

- Subject classifications for which the customer has re-
quested notification

- Purchases made
- Whether customer requires exclusive sales

Internal Affairs, the department responsible, among other things,
for monitoring security, wants additional data kept about access to
the database:

System logon data (kept about each attempt to log on to
the system)
- User ID
- Date
- Time on
- Workstation ID (if access was not from an IIA work-

station, but over a phone line, then the phone number
from which the call was placed)

- Time off (will be null if logon attempt is unsuccessful)

Information request data
- User ID
- Date
- Time
- Workstation ID or phone number of remote call
- Data item requested

w Table name
w Row identifier(s)

- Result (access granted or denied)
- Action performed (retrieve, insert, modify, delete)

The final portion of the database will handle the equipment inven-
tory, testing, use, and sales:

Current equipment inventory
- Classification (for example, tape recorder, micro-

phone, camera)
- Description
- Location (station at which equipment is stored when

not in use)

DESIGNING THE DATABASE 333

- Current condition
- Restrictions on use

Equipment use records
- Classification
- Date used
- Agent using equipment
- Where used
- How used
- Result of use

Equipment sales
- Customer
- Date of purchase
- Items purchased
- Amount paid for each item
- Total amount of purchase

Equipment under development
- Classification
- Description
- Intended use
- Station where development is taking place
- Employees involved in development
- Estimated date of completion
- Testing data

w Date of test
w Type of test
w Test results
w Location of test
w Agent performing test

Designing the Database
One of the drawbacks to the way in which the specifications for the
IIA's database have been presented is that they initially appear to be
quite well prepared. Each top-level heading seems to correspond to

334 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

an entity. However, a closer examination of the specifications indi-
cates that each grouping of required data includes multiple entities
and often a number of repeating groups.

Probably the easiest way to approach a database design where the
specifications are presented in this way is to begin to create an ER
diagram. When the database is as large as this one appears to be, it
is also easier to break the design into several components (people,
intelligence gathering and sales, system security, and equipment
tracking).

ER Diagram for People
When looking at the data that are to be stored about people, a data-
base designer is immediately faced with a major decision before
drawing a single entity: Should there be separate entities for IIA
employees and informants, or should they be a single entity?

When faced with a choice of this type, you need to look carefully at
the data that describe the entities. Will the database store the same
data about employees as it will about informants? If so, then you
are probably dealing with a single entity.

Note: An exception to the rule of "same attributes, same entity"
occurs when the two entities have different meanings. For ex-
ample, in an accounting database you may have line item enti-
ties for purchase orders that you place to your suppliers and
orders that your customers place with you. Although the two
entities have exactly the same attributes, their meaning and use
are very different and they should be kept as separate entities.

With the exception of the agent that recruited an informant, the data
describing employees and informants is identical. Add to this the
fact that informants sometimes become agents and it becomes clear
that it makes sense to represent all people as a single entity.

What about that extra attribute that belongs to the informants (the
agent that recruited the informant)? There are two ways to handle

DESIGNING THE DATABASE 335

it. One is to include it as an attribute of the single person entity. Its
value will simply be null for employees. The cost of this solution is
the disk space wasted by the large number of nulls. The alternative
is to create a separate entity that has a one-to-one relationship with
the person entity and contains the person identifier and the agent
recruiting the informant. Obtaining the recruiting agent would then
require a join between the person entity and the entity holding the
extra data. Given that disk space is relatively inexpensive and pro-
cessor time is very dear, the better choice is to add the attribute to
the person entity and allow it to be null where necessary.

Assuming that the design uses one entity for people (named "per-
son"), the portion of the ER diagram that contains data describing
people can be found in Figure 13-1. There are eight entities that rep-
resent repeating groups of data:

Fingerprint: Each instance of the Fingerprint entity rep-
resents one finger on one hand. Of all the repeating
groups, fingerprints are the only ones for which we can
make a reasonable estimate of how many there will be.
An alternative to including this entity therefore is to use
10 attributes in the Person entity (one for each finger).
However, there is no way to guarantee that the IIA has
exactly 10 prints for each person. There may be fewer ...
or there may be more! (Some people are born with six fin-
gers.) In addition, searching fingerprints would be very
clumsy if there were separate attributes for each finger
because an application program would need to contain
logic to search each individual attribute. However, the
current design, which places the repeating group in its
own entity, has all fingers in a single attribute. The data-
base stores one instance for each print, regardless of how
many there are, and a search routine needs to worry
about only one attribute.
Former Address: Each instance of the Former Address
entity represents one place a person has lived. Under the
assumption that a person has only one primary residence
at any given time, the addresses are distinguished by the
date the person moved into the location.

336 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

..................... .F ~.~.~.~

*c I ass i f i ca t i on
c I ass i f i ca t i o n _ d e s c r i p t i on

Alias ..
*person_ I D
* I as t_name

* f i r s t_name
p h o t o

b i r t h d a t e
I o e a I _ i d

dr i ver_l i cense__country
dr i ver_l i tense_state
dr i ver_ I i cerise_number

he i gh t
w e i g h t

eye._co I o r
street_address

c i t g
s t a t e

country
z i p_pos t_code

phone
da r e _ I as t ._used

Educa t i on
..... ~ ; ~ ; ~ o ; ~ i 5 /

*schoo I _ l O |
*da te__en t a r e d |

d a t e _ l e f t |
d e g r e e _ e a r n e d |
maj or_subj e c t |
m i nor__~ubj ec t I

S c h o o l
' ; ~ S i ~ i 5
school_name

c i t y
s t a t e

country

Person ...
*person_ I D

c I ass i f i ca t i on
b i r t h d a t e

I o c a I _ I D
d r i v e r _ I i cense ._coun t r y

d r i v e r _ I i cense_.s t a t e
dr i ver_ I i cense_.number

photo
re t i na_43r i n t

he i gh t
weigh t

eye_color
v i s i o n

r e l i g i o n
s t r e e t _ _ a d d r e s s

c i t y
s t a t e

country
z i p _ p o s t _ c o d e

phone
firs t_name
I as t_.name

recru i t i ng . .agen t

i
J o b ...

*company_ I O
*date_started

date_left
j ob_t i tle

Company ..
*company_ 10
company_name

street_address
ci tg

s t a t e
z i p _ p o s t _ c o d e

phone

C~

Former Address

...... u
' * da t e _ m o v e d _ i n
'da t e _ m o v e d _ o u t
s t r e e t _ _ a d d r e s s

c i t y
s t a t e

country
z i p_pos t_code

CD~

R e l a t i v e ..
* p e r s o n _ l D
*first_name
*last_name
*b i r t h d a te

h o w _ r e I a t e d
street_address

c i t y
s t a t e

country
zip~ost_code

phone
photo

current_employer
e d u c a t i o n

current_job

I

......... . ~ . ~ s ~ R I
* p e r s o n _ l B L ~

m

* o r g a n i za t i o n _ I 0
* d a t e _ j o i n e d |

d a t e _ q u i t |

F i n g e r p r i n t s
* p e r s o n _ l D

* f i n g e r
p r i n t

.......... C..o...n...v...i..?...t..i.o..n..
* p e r s o n _ I D

* c o n y i c t i on_da te
*crime
c o u n t s

s e n t e n c e

. 0 . r . . g . . ~ . 9 . . L ~ . ~ . S ! . . o . . ~

* o r g a n i za t i o n _ I D
o r g a n i za t i on_.name
n o n _ p r o f i t _ s t a t u s

s t r e e t _ a d d r e s s
c i t y

s t a t e
z i p _ p o s t ._code

c o u n t r y
phone

Figure 13-1: Entities required to represent data about people in the IIA database

Relative: There is one instance of the Relative entity for
each person that is related to an IIA employee. Choosing
a unique identifier for this entity can be a bit tricky.
However, it seems reasonable to assume that no one has
two relatives with exactly the same name born on the
same day.

DESIGNING THE DATABASE 337

Conviction: Each instance of the Conviction entity repre-
sents a conviction for a specific crime on a specific date.
Membership" Each instance of the Membership entity
represents joining a given organization on a given date.
By distinguishing memberships by date, the database
can track multiple members in the same organization
over time.
Job: Each instance of the Job entity represents one job the
person has held. The entity identifier is based on the as-
sumption that a person starts only one job with a given
company on one day. This entity takes care of a person's
job history both at the IIA and prior to joining the IIA. A
person's current job will have a date_left value of null.
Education: There is one instance of the Education entity
for each time a person enrolls in a school. By including
the date entered in the entity identifier, the entity can
track people who attend a school, take a break, and then
return to same school.
Alias: Each instance of the alias entity represents one en-
tity used by a person. The entity identifier is based on the
assumption that no person has more than one alias with
the same name.

ER Diagram for Intelligence Gathering and Sales
The ER diagram that supports intelligence gathering and sales can
be found in Figure 13-2. There are three aspects of this diagram that
are of particular interest.

First, consider what appear to be the two identical relationships be-
tween the Person and Contact entities. If we were to label those re-
lationships, one would represent the agent involved in a contact;
the other would represent the informant. As you can see in the Con-
tact entity, there are actually two foreign keys~ in fo rmant_ ID and
agen t_ ID~bo th of which reference the person_ID in the Person en-
tity. However, the integrity constraint for the foreign key checking
is a bit more complicated than simply verifying that a person_ID ex-
ists in the Person entity.

338
D

A
T

A
B

A
SE

 D
E

SIG
N

 C
A

SE
 ST

U
D

Y
 #3" IN

D
E

PE
N

D
E

N
T

 IN
T

E
L

L
IG

E
N

C
E

 A
G

E
N

C
Y

3
io

o

o~-
z:i

i 7
o

~

o
:1

~
1

.
~

ao

~

si

o
~

~
o

~

~
~

-0~
~.~

._

~ i
~io

"
O

~

!o

�9

i7o~
�9

-7oo

i0
~

3

a-
~

~
0

7
o

'- o o

o ~
o

.-
4~

7~
o

go~7
gl

0
.~ o~~-

3

F
igure 13-2:

E
ntities required to depict intelligence gathering and sales

DESIGNING THE DATABASE 339

An informant_ID must not only match a person_ID, but the classi-
fication of that person must be "informant." By the same token, an
agent_ID must have a classification of "agent" as well as matching
a person_ID. This is the only way to represent a relationship be-
tween two entities of the same type in a relational database. Al-
though other data models may allow circular relationships such as
that in Figure 13-3, the relational data model cannot support it be-
cause it is a many-to-many relationship. The Contact entity there-
fore is a composite entity that resolves the relationship between
multiple person entities.

Por
.................. ; 6 ~ ~ G ~ S i 6

c I ass i f i ca t i on
b i r thda t e

I o c a I _ I D
d r i v e r _ I i c e n s e _ _ c o u n t r y

d r i v e r _ l i c e n s e _ _ ~ t a t e
dr i ver_l i cense_number

photo
re t i na_pr i n t

he i gh t
we i gh t

eye__co I or
vision

r e l i g i o n
street_address

city
state

country
z i p_pos t__code

phone
f i rs t_name
I as t_name

recru i t i n g . _ o g e n t

Figure 13-3: A circular relationship

The drawback to this approach is a practical one: Most CASE tools
are not capable of recognizing primary key-foreign key relation-
ships when the attributes involved do not have the same name. Nor
can it automatically recognize the need to verify the classification of
a person along with the person's ID. A database designer will there-
fore need to add a CHECK clause for each column that performs
this unusual referential integrity verification.

The second unusual facet of this ER diagram is a type of relation-
ship that you have not seen before: a mutually exclusive relationship.

340 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

A piece of raw data can come from an informant (the result of a con-
tact) or it can come from another type of source (print, video, elec-
tronic, and so on), but it cannot come from both. Therefore, if an
instance of the Raw Data entity is related to an instance of the
Source entity, it cannot be related to an instance of the Contact enti-
ty, and vice versa. We represent this in an ER diagram with a solid
black circle between the entities that mutually exclude one another.
In this particular case, the relationship can be read: "A piece of raw
data comes from one and only one contact or a piece of raw data
comes from one and only one source, but not both."

To handle the constraint on the source_ID entity, a database design-
er must place a CHECK constraint on the entire table created from
the entity. (You will see this and other CHECK constraints in the last
section of this chapter as part of the discussion of the SQL needed
to create this database.) Although source_ID appears to a CASE tool
as a foreign key referencing the entity identifier of the Source table,
a normal foreign key constraint will not include the possibility that
the value is an information ID rather than a source ID.

The third interesting aspect of this ERD is the three relationships be-
tween the Subject entity and the Customer entity. As discussed ear-
lier, each of these many-to-many relationships has a different
meaning, so although the attributes belonging to each of the three
composite entities are identical, they represent completely different
things. This is another example of an exception to the rule that if
two entities have the same attributes, they are probably the same
entity.

ER Diagram for System Security
The ER diagram for the portion of the database that handles system
security can be found in Figure 13-4. This diagram contains one mu-
tually exclusive relationship: the relationship between a data access
and raw data or intelligence. A person can access either a piece of
raw data or a piece of verified intelligence, but not both in the same
access. The remaining relationships between entities are all simple
one-to-many relationships.

DESIGNING THE DATABASE 341

Person
.

�9 person_ I D
c I a s s i f i c a t i on

b i r t h d a t e
Ioca I _ I O

dr i vet_ I i cense_coun try

d r i v e r _ I i cense__s t o t e
d r i v e r _ l i c e n s e _ n u m b e r

p h o t o
re t i n a ~ r i n t

he i gh t
we i gh t

eye_color
v i s i o n

t e l i g i o n
street._address

city
state

coun t ry
z i p._pos t__code

phone
f i r s t_name
I as t_name

r ec ru i t i ng_egen t

~ User Recount

';~o~fiCi~
person_ I D

date__created

!

.~ .o . .g . . .o . .~ [
accoun t _ l D [

i

I o g o n _ d a t e I
l o g a n _ t i m e I II

I ago f f _ t i me I
*1 o g o n _ l D]

da t o - . a c c e s s ..
* I o g o n _ I O
t a b l e . _ u s e d

fac t_or~a ta_ I D
*access_t i me

aet i on._per formed

Raw Data
..

*data_ I D
source_l D

country
ci ty

how_gathered
da ta_va I ue

conf i dence_l eve I
c o s t _ o f _ d a t a

I n I i genee I t e l
, , , ~ ~ G C i t ~

~] fac t_va I ue

I so I d_exc I u s i v e I y

Figure 13-4: Entities needed to depict system access data

ER Diagram for Equipment Tracking
Equipment tracking (use, development, and sales) requires a fairly
straightforward group of entities and relationships (see Figure 13-
5). Notice that each piece of equipment is first classified by general
type (for example, tape recorder or microphone). It is then given a
unique ID so its use can be tracked.

Sale data do not require the individual identifiers of items being
sold but only how many of each given type were included. It is
therefore up to an application program to delete items sold from in-
ventory. This means that each time an item is sold, an instance of the
Equipment Item entity must be deleted. It will therefore be up to the
individual who is preparing a shipment of items sold to enter the
item identifiers of those items.

The Equipment Item and Under Development Item entities have
the same primary key. Should they be combined into one entity? In
this case, probably not. Notice that other than the primary key, the
entities have no attributes in common. This alone suggests that we
are dealing with two different entities. Adding to that the fact that

342
D

A
TA

B
A

SE D
ESIG

N
 C

A
SE STU

D
Y

 #3: IN
D

EPEN
D

EN
T IN

TELLIG
EN

C
E A

G
EN

C
Y

i
.-

i .-
~..~

�9
o

~11

r
o.

o~

._

O
lQ

er-
._

ol
2

i
*

~i~
~.-

|
}

O
~

o o~o~ i.~

o ~ ~=o_.~ o

o

._o~
~

~
~

o
._

--.-

g
.5

-~

;~

~
o =

~
:

�9 --._
~.

"13

I

ir
"13

--
c7

1
-

Figure 13-5:
E

ntities for tracking equipm
ent developm

ent, use, and sales

DESIGNING THE DATABASE 343

the IIA does not want to retain testing data once a piece of equip-
ment has been certified as ready for everyday use, it is clear that the
two entities are indeed distinct.

Designing the Tables
The ER diagrams you have seen translate into the following 37 ta-
bles:

person (person ID, c lassi f icat ion, first_name, last_name, birthdate,
local_ID, driver_license_country, driver_license_state,
driver_license_number, photo, retina_print, height, weight,
eye_color, vision, rel igion, street_address, c i ty, state,
country, zip_post_code, phone, recruiting_agent)

person_types (classi f icat ion, classif ication_description)
alias (person ID, last name, f i r s t name, photo, birthdate, local_ID,

driver_license_country, driver_license_state,
driver_license_number, height, weight, eye_color,
streeet_address, c i ty, state, country, zip_post_code, phone,
date_last_used)

former_address (person ID, date moved in, date_moved_out,
street_address, c i ty, state, country, zip_post_code)

education (person ID, school ID, date entered, date_left,
degree_earned, major_subject, minor_subject)

relat ive (person ID, f i r s t name, last name, birthdate, how_related,
street_address, c i ty, state, country, zip_post_code, phone,
photo, current_employer, education, current_job)

school (school ID, school_name, c i ty, state, country)
job (person ID, company_ID, date started, date_left, job_t i t le)
company (company ID, company_name, street_address, c i ty, state,

zip_post_code, phone)
conviction (person ID, conviction date, crime, counts, sentence)
organization (orqanizationID, organization_name,

non_prof i tstatus, street_address, c i ty, state, zip_post_code,
country, phone)

membership (person ID, organization ID, date joined, date_quit)
f ingerprints (person_ID, f inger, pr int)
contact (informant ID, agent ID, contact date, contact time,

fee_paLd, outcome)
raw_data (data ID, source_ID, source_type, country, cLty,

how_gathered, data_value, confidence_level, fact_ID)
source (source ID, source_description)
intel l igence (fact_ID, fact_value, sold_exclusLvely)
subject (subiect_ID, subject_heading)
subjects_assLgned (s,ubiectID, fact ID)
customer (customer ID, customer_name, cust~176176

street_address, cLty, state, zip_post_code, country, phone, fax,
exclusive_sales)

344 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

purchase (fact ID, customer ID, date_sold, amount_paid)
subjects_purchased (customer ID, subiect ID)
subjects_not_purchased (customer ID, subject ID)
subjects_to_notify (customer ID, subiect ID)
user_account (account ID, person_ID, date_created)
logon (lo#on ID, account_ID, logon_date, logon_time, logoff_time)
data_access (loqon_ID, access time, table_used, fact_or_data_ID,

action_performed)
equipment_item (item ID, storage_location, current_condition,

type_ID)
usage_restriction (type ID, restr ic t ion description)
equipment_use (item ID, use date, use time, person_ID, use_location,

how_used, use_results)
equipment_type (type ID, type_classif ication, type_description,

quantity_owned)
equipment_sale (customer ID, sale date, sale_total)
sale_item (customer ID, sale date, type ID, quantity_purchased,

price_each, line_cost)
under_development_item (item ID, intended_use,

development_location, estimated_completion_date, type_ID)
item_developer (item ID, person ID)
equipment_test (item ID, test ID, test date, person_ID,

test_location, test_results)
test (test ID, test_description)

Because of the circular and mutually exclusive relationships, this
set of tables does not document itself as well as other designs, even
with its meaningful column and table names. To be understand-
able, this design definitely needs to be accompanied by a data dic-
tionary that contains explanations for the unusual relationships.

Generating the SQL

BLOBs

The SQL CREATE statements used to install the IIA database ap-
pear in Figure 13-6. They contain two elements with which you may
not be familiar: BLOBs and CHECK constraints.

Unlike the databases discussed previously in this book, the IIA da-
tabase contains images. DBMSs use two general strategies for stor-
ing images. The first is to link image files to the database by storing
a path name to a separate image file. The second is to actually store

DESIGNING THE DATABASE 345

CREATE TABLE person
(

person_ID INT,
c l a s s i f i c a t i o n INT,
b i r thdate DATE,
local ID CHAR (15),
dr iver_l icense_country CHAR (15),
d r iver l icense state CHAR (15),
d r iver l icense number CHAR (15),
photo BLOB,
re t ina_pr in t BLOB,
height DECIMAL (5,1),
weight DECIMAL (5,1),
eye_color CHAR (10),
v is ion CHAR (10),
re l i g ion CHAR (15),
s t reet address CHAR (30),
c i t y CHAR (30),
state CHAR (30),
country CHAR (30),
zip_post_code CHAR (10),
phone CHAR (15),
f irst_name CHAR (15),
last_name CHAR (15),
recrui t ing_agent INT,
PRIMARY KEY (person_ID),
FOREIGN KEY (c l ass i f i ca t i on) REFERENCES person_types

) ;

CREATE TABLE person_types
(

c l a s s i f i c a t i o n INT,
c lass i f i ca t ion_desc r ip t i on CHAR (15),
PRIMARY KEY (c l ass i f i ca t i on)

);

CREATE TABLE former address
(

person_ID INT,
date_moved_in DATE,
date_moved_out DATE,
street_address CHAR (30),
c i t y CHAR (30),
state CHAR (30),
country CHAR (30),
zip_post_code CHAR (10),
PRIMARY KEY (person_ID, date_moved_in),
FOREIGN KEY (person_ID) REFERENCES person

);

Figure 13-6" SQL statements to create the IIA database

346 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE al ias

);

person_ID INT,
last_name CHAR (15),
first_name CHAR (15),
photo BLOB,
bir thdate DATE,
local_ id CHAR (15),
dr iver_I icense_country CHAR (15),
dr iver_l icense_state CHAR (15),
driver_license_number CHAR (15),
height DECIMAL (5,1),
weight DECIMAL (5,1),
eye_color CHAR (10),
street_address CHAR (30),
c i t y CHAR (30),
state CHAR (30),
country CHAR (30),
zip_post_code CHAR (10),
phone CHAR (15),
date_last_used DATE,
PRIMARY KEY (person_ID, last_name, f irst_name),
FOREIGN KEY (person_ID) REFERENCES person

CREATE TABLE re la t i ve

);

person_ID INT,
first_name CHAR (15),
last_name CHAR (15),
bir thdate DATE,
how_related CHAR (30),
street_address CHAR (30),
c i t y CHAR (30),
state CHAR (30),
country CHAR (30),
zip_post_code CHAR (10),
phone CHAR (15),
photo BLOB,
current_empioyer CHAR (30),
education CHAR (30),
current_job CHAR (30),
PRIMARY KEY (person_ID, first_name, last_name, b i r thdate) ,
FOREIGN KEY (person_ID) REFERENCES person

Figure 13-6 (Continued): SQL statements to create the IIA database

DESIGNING THE DATABASE 347

CREATE TABLE education

person_ID INT,
school_ID INT,
date entered DATE,
date_left DATE,
degree_earned CHAR (I0),
major_subject CHAR (15),
minor_subject CHAR (15),
PRIMARY KEY (person_ID, school_ID, date entered));

CREATE TABLE school

school_ID INT,
school_name CHAR (50),
c i t y CHAR (30),
state CHAR (30),
country CHAR (30),
PRIMARY KEY (schoo l_ ID)) ;

CREATE TABLE job
(

company_ID INT,
date_started DATE,
date_ le f t DATE,
job_t • CHAR (50),
person_ID INT,
PRIMARY KEY (company_ID, date_started),
FOREIGN KEY (company_ID) REFERENCES company,
FOREIGN KEY (person_ID) REFERENCES person);

CREATE TABLE company
(

company_ID INT,
company_name CHAR (50),
street_address CHAR (30),
c i t y CHAR (30),
state CHAR (30),
zip_post_code CHAR (10),
phone CHAR (15),
PRIMARY KEY (company_ID));

CREATE TABLE f i nge rp r i n t s
(

person_ID INT,
f lnger CHAR (15),
p r ln t BLOB,
PRIMARY KEY (person_ID, f l nger) ,
FOREIGN KEY (person_ID) REFERENCES person);

Figure 13-6 (Continued): SQL statements to create the IIA database

348 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE conv ic t ion
(

person_ID INT,
convict ion_date DATE,
crime CHAR (50),
counts INT,
sentence CHAR (50),
PRIMARY KEY (person_ID, convict ion_date, crime));

CREATE TABLE organizat ion
(

organizat ion_ID INT,
organization_name CHAR (50),
non_prof i t_s ta tus CHAR (1),
street_address CHAR (30),
c i t y CHAR (30),
state CHAR (30),
zip_post_code CHAR (10),
country CHAR (30),
phone CHAR (15),
PRIMARY KEY (o r g a n i z a t i o n _ I D)) ;

CREATE TABLE membership
(

person_ID INT,
organizat ion_ID INT,
date_joined DATE,
date_quit DATE,
PRIMARY KEY (person_ID, organizat ion_ID, date_jo ined) ,
FOREIGN KEY (person_ID) REFERENCES person,
FOREIGN KEY (organizat ion_ID) REFERENCES organizat ion);

CREATE TABLE contact

informant ID INT
CHECK (EXISTS (SELECT * FROM person

WHERE VALUE = person_ID and c l a s s i f i c a t i o n = 4)) ,
agent ID INT

CHECK (EXISTS (SELECT * FROM person
WHERE VALUE = person_ID and c l a s s i f i c a t i o n = I)) ,

contact_date DATE,
contact time TIME,
fee_paid DECIMAL (8,2) ,
outcome CHAR (50),
PRIMARY KEY (informant_ID, agent_ID, contact_date,

contact_ t ime)) ;

Figure 13-6 (Continued): SQL statements to create the IIA database

DESIGNING THE DATABASE 349

CREATE TABLE raw data
(

data_ID INT,
source_ID INT,
source_type CHAR (!5) ,
country CHAR (30),
c i t y CHAR (30),
how_gathered CHAR (50),
data_value CHAR (255),
conf idence_level INT,
cost_of_data DECIMAL (8 ,2) ,
fact_ID INT,
PRIMARY KEY (data_ID),
FOREIGN KEY (fact_ID) REFERENCES i n t e l l i g e n c e
CHECK (source_type = ' in fo rmant ' AND

EXISTS (SELECT * FROM person
WHERE source_ID = person_ID AND c l a s s i f i c a t i o n = 4)
OR
source_type = 'document' AND
EXISTS (SELECT * FROM source
WHERE source_ID = source.source_ID))) ;

CREATE TABLE source
(

source_ID INT,
source_descr ip t ion CHAR (255),
PRIMARY KEY (s o u r c e _ I D)) ;

CREATE TABLE i n t e l l i g e n c e
(

fac t_ ID INT,
fact_value CHAR (255),
so ld_exc lus ive ly CHAR (1),
PRIMARY KEY (f a c t _ I D)) ;

CREATE TABLE subject
(

subject_ID INT,
subject_heading CHAR (50),
PRIMARY KEY (s u b j e c t _ I D)) ;

CREATE TABLE subjects_assigned
(

subject_ID INT,
fact_ID INT,
PRIMARY KEY (subject_ID, fac t_ ID) ,
FOREIGN KEY (subject_ID) REFERENCES subject ,
FOREIGN KEY (fact_ ID) REFERENCES i n t e l l i g e n c e);

Figure 13-6 (Continued): SQL statements to create the IIA database

350 DATABASE DESIGN CASE STUDY #3" INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE customer

customer_ID INT,
customer_name CHAR (50),
customer_contact_person CHAR (50),
street_address CHAR (30),
c i ty CHAR (30),
state CHAR (30),
zip_post_code CHAR (10),
country CHAR (30),
phone CHAR (15),
fax CHAR (15),
exclusive_sales CHAR (1),
PRIMARY KEY (customer_ID));

CREATE TABLE purchase
(

fact_ID INT,
customer_ID INT,
date_sold DATE,
amount_paid DECIMAL (8,2),
PRIMARY KEY (fact_ID, customer_ID),
FOREIGN KEY (fact_ID) REFERENCES inte l l igence,
FOREIGN KEY (customer_ID) REFERENCES customer);

CREATE TABLE subjects_purchased
(

customer_ID INT,
subject_ID INT,
PRIMARY KEY (customer_ID, subject_ID),
FOREIGN KEY (customer_ID) REFERENCES customer,
FOREIGN KEY (subject_ID) REFERENCES subject);

CREATE TABLE subjects_not_purchased
(

customer_ID INT,
subject_ID INT,
PRIMARY KEY (customer_ID, subject_ID),
FOREIGN KEY (customer_ID) REFERENCES customer,
FOREIGN KEY (subject_ID) REFERENCES subject);

CREATE TABLE subjects_to_notify
(

customer_ID INT,
subject_ID INT,
PRIMARY KEY (customer_ID, subject_ID),
FOREIGN KEY (customer_ID) REFERENCES customer,
FOREIGN KEY (subject_ID) REFERENCES subject);

Figure 13-6 (Continued): SQL statements to create the IIA database

DESIGNING THE DATABASE 351

CREATE TABLE user account
(

account_ID INTCHAR (10),
person_ID INT,
date created DATE,
PRIMARY KEY (account_ID),
FOREIGN KEY (person_ID) REFERENCES person

CREATE TABLE logon
(

account_ID INTCHAR (10),
logon_date DATE,
logon_time TIME,
logof f_t ime TIME,
logon_ID INT,
PRIMARY KEY (logon_ID),
FOREIGN KEY (account_ID) REFERENCES user_account

CREATE TABLE data access
(

logon_ID INT,
table_used CHAR (30),
fact_or_data_ID INT,
access_time TIME,
action_performed CHAR (30),
PRIMARY KEY (logon_ID, access_time),
FOREIGN KEY (logon_ID) REFERENCES logon
CHECK (table_used = 'raw_data' AND

EXISTS (SELECT * FROM raw_date
WHERE fact_op_data_ID = data_ID)
OR
(table_used = ' i n t e l l i g e n c e ' AND
EXISTS (SELECT * FROM in te l l i gence
WHERE fact_or_data_ID = fact_ID))

CREATE TABLE equipment_item
(

item_ID INT,
storage_locat ion CHAR (30),
current_condi t ion CHAR (10),
type_ID INT,
PRIMARY KEY (•
FOREIGN KEY (type_ID) REFERENCES equipment_type

);

Figure 13-6 (Continued): SQL statements to create the IIA database

352 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE usage_restr ict ion
(

type_ID INT,
res t r i c t ion_descr ip t ion CHAR (50),
PRIMARY KEY (type_ID, res t r i c t ion_descr ip t ion) ,
FOREIGN KEY (type_ID) REFERENCES equipment_type);

CREATE TABLE equipment_use
(

item_ID INT,
use_date DATE,
use_time TIME,
person_ID INT,
use_location CHAR (50),
how_used CHAR (255),
use resul ts CHAR (255),
PRIMARY KEY (item_ID, use_date, use_time),
FOREIGN KEY (item_ID) REFERENCES equipment_item,
FOREIGN KEY (person_ID) REFERENCES person);

CREATE TABLE equipment_type
(

type_ID INT,
type_c lass i f i ca t ion CHAR (15),
type_descript ion CHAR (50),
quantity_owned INT,
PRIMARY KEY (type_ID));

CREATE TABLE equipment_sale
(

customer ID INT,
sale_date DATE,
sale_tota l DECIMAL (8,2),
PRIMARY KEY (customer_ID, sale_date),
FOREIGN KEY (customer_ID) REFERENCES customer);

CREATE TABLE sale item
m

(
customer_ID INT,
sale_date DATE,
type_ID INT,
quantity_purchased INT,
price_each DECIMAL (8,2),
l ine_cost DECIMAL (8,2),
PRIMARY KEY (customer_ID, sale_date, type_ID),
FOREIGN KEY (customer_ID) REFERENCES equipment_sale,
FOREIGN KEY (sale_date) REFERENCES equipment_sale,
FOREIGN KEY (type_ID) REFERENCES equipment_type);

Figure 13-6 (Continued): SQL statements to create the IIA database

DESIGNING THE DATABASE 353

CREATE TABLE undec_development_item
(

item_ID INT,
intended_use CHAR (50),
development_location CHAR (50),
estimated_completion_date DATE,
type_ID INT,
PRIMARY KEY (item_ID),
FOREIGN KEY (type_ID) REFERENCES equipment_type

CREATE TABLE item_developer
(

item_ID INT,
person_ID INT,
PRIMARY KEY (item_ID, person_ID),
FOREIGN KEY (person_ID) REFERENCES person

);

CREATE TABLE equipment_test
(

item_ID INT,
test_ID INT,
test_date DATE,
person_ID INT,
test_locat ion CHAR (50),
test_resul ts CHAR (255),
PRIMARY KEY (item_ID, test_ID, test_date),
FOREIGN KEY (item_ID) REFERENCES under_development_item,
FOREIGN KEY (test_Ig) REFERENCES test ,
FOREIGN KEY (pepson_ID) REFERENCES person

) ;

CREATE TABLE test
(

test_ID INT,
test_descr ipt ion CHAR (255),
PRIMARY KEY (test_ID)

);

Figure 13-6 (Continued): SQL statements to create the IIA database

the images as part of the database itself, usually in a column with a
data type of BLOB (binary large object).

The first strategy keeps the database smaller, but you run the risk of
not being able to access an image if the image file is moved or delet-
ed. By keeping the image within the database, you can be assured

354 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

that the image is always available. That is why the columns in the
IIA database that will hold images have a data type of BLOB.

Note: You may not have a choice in the way in which you store
images in a database because often a DBMS will not support
both image storage strategies.

CHECK Constraints

The IIA database has three instances of unusual relationships: one
circular relationship and two mutually exclusive relationships. To
enforce the integrity of those relationships, a database designer
must add CHECK constraints to the SQL CREATE statements; stan-
dard foreign key constraints will not suffice.

To handle the circular relationship, a database designer adds the
CHECK constraints to the columns"

i n f o r m a n t ID INT
CHECK (EXISTS (SELECT * FROM person

WHERE VALUE = person_ID and c l a s s i f i c a t i o n = 4)) ,
agen t_ ID INT

CHECK (EXISTS (SELECT * FROM person
WHERE VALUE = pePson_ID and c l a s s i f i c a t i o n = 1)) ,

The constraint is met if the expression within parentheses is true.
Therefore, if some row exists in the Person table that has a value
matching the informant ID and a classification of informant (the
code value 4), then the constraint is met. By the same token, if a row
exists in the Person table that has a value matching the agent_ID
and a classification of agent (the code value 1), then the constraint
is met.

To handle the mutually exclusive relationships, each CHECK con-
straint contains two retrievals linked by an OR. Because the con-
straints require values from two columns in each table, the
constraints are most easily implemented as table constraints:

CHECK (s o u r c e _ t y p e = ' i n f o r m a n t ' AND
EXISTS (SELECT * FROM person
WHERE soupce_ID = person_ID AND c l a s s i f i c a t i o n = 4)
OR
sou rce_ t ype = 'document ' AND
EXISTS (SELECT * FROM source
WHERE source_ ID = s o u r c e . s o u r c e _ I D))

THE OBJECT-RELATIONAL DESIGN 355

CHECK (tab le_used = 'Paw_data' AND
EXISTS (SELECT * FROM Paw_date
WHERE fac t_oc_da ta_ ID = data_ID)
OR
(tab le_used = ' i n t e l l i g e n c e ' AND
EXISTS (SELECT * FROM i n t e l l i g e n c e
WHERE fac t_oc_da ta_ ID = f a c t _ I D)

In both cases, the constraint first determines which type of source
or table has been used. It then verifies that a matching row exists in
the correct table.

In most cases, it is impossible to enforce mutually exclusive rela-
tionships and verify their integrity without including a column in
the table that indicates which of the mutually exclusive options has
been chosen. This happens because the numeric identifiers as-
signed to entities are independent and meaningless and do not nec-
essarily represent unique sets of values. Assume, for example, that
a row is entered into the Data Access table with a fact or data ID
of 1019. As it so happens, this is a piece of raw data. However, there
is a fact ID of 1019 but no data ID with that value. If the CHECK
constraint were written

CHECK (EXISTS (SELECT * FROM Paw_date
WHERE fac t_oP_data_ ID = data_ID)
OR
EXISTS (SELECT * FROM i n t e l l i g e n c e
WHERE fac t_oP_data_ ID = f a c t _ I D)

then the constraint would be valid, even though there was no
matching raw data ID.

The Object-Relational Design
The complexity of the IIA database allows it to take better advan-
tage of classes as domains than the databases you have seen in the
preceding two chapters. In Figure 13-7, the first of four parts, you
will find the Person entity and the entities that are necessary to han-
dle the many repeating groups in this database environment.

356 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

Figure 13-7 also contains the utility classes that are used as domains
throughout the database.

Figure 13-7: The object-relational design (part I)

The utility classes, especially the Description class, significantly
simplify the data that describe agents, informants, and their aliases.
In addition, the Description class encapsulates a great deal of relat-
ed data so that it can be handled as a whole. An application pro-
grammer or user working with SQL can therefore retrieve an entire
description with a single attribute name, rather than needing to re-
trieve the individual pieces of the description.

THE OBJECT-RELATIONAL DESIGN 357

The Description class exemplifies the two major benefits of adding
objects as domains to a relational schema: You simplify the overall
logical design of the database and you simplify the task of retriev-
ing logically grouped attributes that will always be accessed togeth-
er. On the other hand, there would appear to be no drawbacks to
adding the objects.

The second portion of the ER diagram appears in Figure 13-8. No-
tice that the Contact entity is actually a composite entity that han-
dles the many-to-many relationship between two Person entities,
one of which is an agent and one of which is an informant. The two
relationships between Contact and Person have therefore been la-
beled to clarify the meaning of each relationship.

As mentioned earlier in this chapter, the Raw_Data entity partici-
pates in a mutually exclusive relationship with either a Contact or
a Source. In other words, a piece of raw data can come from a con-
tact with an informant or another source (for example, print or vid-
eo material) but not both. UML represents such a relationship by
connecting the two relationships with a dashed line that is labeled
with the word OR.

The third portion of the design (Figure 13-9) deals with online ac-
cess to data by IIA employees. A person can access either raw data
or a verified piece of intelligence but only one item at a time. There-
fore, this second mutually exclusive relationship is represented be-
tween the Data_Access entity and either the Raw_Data or
Intelligence entity. The remainder of the diagram is a standard rela-
tional design.

The final portion of the ER diagram (Figure 13-10) concerns the de-
velopment and use of IIA's equipment. Because the attributes need-
ed to describe equipment in use and equipment under development
are so very different, it isn't practical to handle them in a single rela-
tion. Unlike the situation with people, where the informants have
just one extra attribute, the two categories of equipment have only
one attribute in common: the equipment ID. In a practical sense, this
is rather awkward. When a piece of equipment is certified ready for
use, a row must be removed from the Under_Development_Item

358
D

A
TA

BA
SE D

ESIG
N

 C
A

SE STU
D

Y
 #3: IN

D
EPEN

D
EN

T INTELLIG
ENCE AG

EN
C

Y

~
o

-I

~
o

 q

O
~

oi~

~
c

~
.-

~--'ID

.w
~

IO

o
~

o
a

~

~
a

o

~
.

i
~

6
~

6

._
,~

g

o)

,
.

o~

~o ~.~
.

-~o~
~-~

~
-

_
..,

i
g

-

|
Z

*.
o

~
o

o
-~

,
o

~,
~i?~ ~

~

r
r
~

~

o ~

-x-
0 O

J io
| |

,o
o

~-

6

li 0aio
o~

I
o
~
o

o

J
~
o

~ ~ -~ ~ -~ i ~ ~~
o

~
~

-w

-~

~ ~
-

o

)
~

~

Figure 13-8:
T

he object-relational design (part II)

THE OBJECT-RELATIONAL DESIGN 359

Person
.......... ~ ;~ ;~2 i 6
classification

local_id
true_description
drivers_license
home_address
person~ame
home_phone

recruiting_~gent

I 0.. ~

Jser_Rccount
~S~G~C i~

person_lD
~ate_created

1

* l~ ~ I
account_lD I 1
Iogon_date I
Iogon_time I

Iogoff,-t ime I

Data~ecess ..
~logon_ID

~access_time
table_.used

faet_or~ata_ID
action_performed

0..~

0..~

I
I OR

I

0..~

0..I

Raw nata ..
*data_ I D
source_l D
country

c i ty
how~athered
do ta_va I ue

con f i dance_ I eve I
cost_o f_x~ata
source_type

....... t ~ .~ . ! . . ! . . ! . y~s~
* fact_lD
fact_value

0..I sold_~xclusively

Figure 13-9: The object-relational design (part III)

table and a new row created for the Equipment_Item table. In addi-
tion, the integrity constraint that verifies the uniqueness of the
item_ID attribute must apply to both tables rather than to each table
individually. However, without the benefit of inheritance, it is im-
possible to generalize the two types of equipment into a single enti-
ty.

Given the issues that have just been discussed and the ER diagrams
you have seen, an object-relational design for the IIA database
could be written as follows:

person (person_ID, classification, local_ID, true_description,
driver_license, home_address, person_name, home_phone,
recruiting_agent)

person_type (classification, classification_description)
alias (person ID, alias name, alias_description,

alias_drivers_license, alias_address, date_last_used)
former_address (person ID, date moved in, date_moved_out, address)
education (per, son_ID, school ID, date entered, date_left,

degree_earned, major_subject, minor_subject)
relative (person_ID, relative name, birthdate, how_related,

relative_address, relative_phone, photo, current_employer,
education, current_job)

school (school ID, school_name, school_address)
job (pets,on ID, company_ID, date started, date_left, job_tit le)
company (company ID, company_name, coompany_address, company_phone)
conviction (person ID, conviction date, crime, counts, sentence)

360 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

.,,..

6 "-

, , , i

@ i

6

~: , o ,

,,_ ; o

oi; L~

~ . -

_ ~i~_ ~
~ :~,~

~ ~x ,-, ;~ ~)
o! o

o

 o_o:0
~ ' o

* ~ . ~ 0 ~.
i , ~ - , , ,~ ~ . ~

" ' i

o

,

~i ~.-~
. ~-io~
6 J~q g g-~

| | '-I ~.

~ io *. a i - ~ |

_~,,, ~ o
,,o ~ , ~ q

z~o_~
._~i

Figure 13-10: The object-relational design (part IV)

organization (orqanlzatl.on ID, organization_name,
organization_address, organization_phone)

membership (person ID, orQanlzatlon ID, date iolned, date_quit)
f ingerprints (person ID, f inqer, print)
contact (informant ID, aflent ID, contact date, contact tlme,

fee_paid, outcome)

THE OBJECT-RELATIONAL DESIGN 361

Paw_data (data ID, source_ID, source_type, country, c i ty,
how_gathered, data_value, confidence_level, data_content,
fact_ID)

source (source ID, source_description)
intel l igence (fact_ID, fact_value, sold_exclusively, fact_content)
subject (subiect ID, subject_heading)
subjects_assigned (S..UbiectID, fact IO)
customer (customer ID, customer_name, customer_contact_person,

customer_address, customer_phone, customer_fax, exclusive_sales)
purchase (fact_ID, customer ID, date_sold, amount_paid)
subjects_purchased (customer ID, subiect ID)
subjects_not_purchased (customer ID, subiect ID)
subjects_to_notify (customer ID, subiect_ID)
user_account (account ID, person_ID, date_created)
logon (loqon!D , account_ID, iogon_date, logon_time, logoff_time)
data_access (loqon ID, access time, table_used, fact_or_data_ID,

action_performed)
equipment_item (item ID, storage_location, current_condition,

type_ID)
usage_restriction (type ID, restr ict ion_descript ion)
equipment_use (item ID, use date, use time, person_ID, use_location,

how_used, use_results)
equipment_type (type ID, type_classif ication, type_description,

quantity_owned)
equipment_sale (customer ID, sale date, sale_total)
sale_item (customer ID, sale date, type_ID, quantity_purchased,

price_each, line_cost)
under_development_item (item_ID, intended_use,

development_location, estimated_completion_date, type_ID)
item_developer (item_ID, pe.rson ID)
equipment_test (item_ID, test Ig, test date, person_ID,

test_location, test_results)
test (test_ID, test_description)

Utility classes"
Name (first_name, last_name, middle_init)
Description (photo, ret ina_print, height, weight, eye_color,

hair_color, marks, birthdate, rel igion)
DriversLicense (country, state, number, expiration_date)
PersonalAddress (street, c i ty, state, country, zip_postal)
Phone (country_code, area_code, exchange, number, extension)
OrganizationalAddress (street1, street2, suite, c i ty , state,

country, zip_postal)

Like any relational schema, the object-relational schema for the IIA
has difficulty representing a relationship between two entities
whose primary keys are defined over the same domain. In particu-
lar, representing a contact--where two occurrences of the Person

362 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

entity are related to one another~requires a concatenated key of
which two parts are the person_ID attribute. The problem, of
course, is that no two attributes in the same relation can have the
same name. They must therefore be renamed, as they are in the
Contact relation. Nonetheless, both agent_ID and informant_ID are
defined over the person_ID domain.

The primary key constraint involving these two attributes is more
complex than a standard primary key constraint. For example, the
constraint for agent_ID is

agent_ID e x i s t s in Person and c l a s s i f i c a t i o n = "agent"

SQL does not allow expressions of this type as primary key con-
straints. Therefore, should the IIA choose to use an object-relational
approach, it needs to look for a DBMS that not only supports the hy-
brid model, but also supports the SQL-92 CONSTRAINT syntax so
that the additional primary key condition can be stored in the data
dictionary.

The utility classes included in this design are classes, not relations.
Although the preceding may seem like an obvious statement, its
implications are significant. First, the classes may appear on paper
here just like relations, but no attributes have been underlined to in-
dicate primary keys: They do not require primary keys. In fact, keys
are optional for classes. Second, the classes appear unconnected to
any of the relations in the database. This is because they are really
definitions of domains rather than entities. They are indeed unrelat-
ed to anything else in the database.

Creating the Classes
You will find the declarations and implementation of the utility
classes for the IIA database in Figure 13-11. Like those for the object-
relational databases in Chapters 11 and 12, the only procedure nec-
essary for each class is i n i t i a l i z e .

THE OBJECT-RELATIONAL DESIGN 363

CREATE TYPE Name AS OBJECT (
f i r s t _ n a m e CHAR (15) ,
last_name CHAR (15) ,
m i d d l e _ i n i t CHAR (1) ;
MEMBER PROCEDURE i n i t i a l i z e) ;

CREATE TYPE BODY Name AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

f i r s t _ n a m e "= NULL;
last_name "= NULL;
m i d d l e _ i n i t "= NULL;

END i n i t i a l i z e ;
END;

CREATE TYPE D r i v e r s L i c e n s e AS OBJECT (
coun t r y CHAR (20) ,
s t a t e CHAR (2) ,
number CHAR (20) ,
e x p i r a t i o n _ d a t e DATE,
MEMBER PROCEDURE i n i t i a l i z e);

CREATE TYPE BODY D r i v e r s L i c e n s e AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

coun t r y "= NULL;
s t a t e "= NULL;
number "= NULL;
e x p i r a t i o n _ d a t e "= ' 1 / 1 / 1 0 0 0 '

END i n i t i a l i z e ;
END;

CREATE TYPE PersonalAddress AS OBJECT (
s t r e e t CHAR (25) ,
c i t y CHAR (20) ,
s t a t e CHAR (2) ,
coun t r y CHAR (15) ,
z i p _ p o s t a l CHAR (10) ,
MEMBER PROCEDURE i n i t i a l i z e);

Figure 13-11" Oracle declarations and implementations for the IIA utility classes

364 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

REATE TYPE BODY PersonalAddress AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

s t r e e t "= NULL;
c i t y "= NULL;
s ta te "= NULL;
country "= NULL;
z i p_pos ta l := NULL;

END i n i t i a l i z e ;
END;

CREATE TYPE Organizat ionalAddress AS OBJECT
s t reet1 CHAR (25),
s t ree t2 CHAR (25),
su i t e CHAR (10),
c i t y CHAR (20),
s ta te CHAR (2) ,
country CHAR (15),
z i p_pos ta l CHAR (10),
MEMBER PROCEDURE i n i t i a l i z e);

CREATE TYPE BODY PersonalAddress AS
MEMBER PROCEDURE initialize IS
BEGIN

streetl := NULL;
street2 := NULL;
suite := NULL:
c i t y := NULL;
s ta te := NULL;
country := NULL;
z ip_pos ta l := NULL;

END i n i t i a l i z e ;
END;

CREATE TYPE Phone AS OBJECT (
country_code CHAR (6),
area_code CHAR (6) ,
exchange CHAR (6),
number CHAR (6),
extension CHAR (5) ,
MEMBER PROCEDURE i n i t i a l i z e);

Figure 13-11 (Continued): Oracle declarations and implementations for the IIA utility classes

THE OBJECT-RELATIONAL DESIGN 365

CREATE TYPE BODY Phone AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

country_code "= NULL;
area_code "= NULL;
exchange "= NULL;
number "= NULL;
ex tens ion "= NULL;

END i n i t i a l i z e ;
END;

CREATE TYPE D e s c r i p t i o n AS OBJECT (
photo BLOB,
r e t i n a _ p r i n t BLOB,
he igh t REAL (5 ,2) ,
weight INTEGER,
eye_color CHAR (10) ,
h a i r _ c o l o r CHAR (10),
marks VARCHAR (100),
b i r t h d a t e DATE,
r e l i g i o n CHAR (15) ,
MEMBER PROCEDURE i n i t i a l i z e);

CREATE TYPE BODY Desc r i p t i on AS
MEMBER PROCEDURE i n i t i a l i z e IS
BEGIN

photo = NULL;
r e t i n a _ p r i n t = NULL;
he igh t "= 0.0;
weight "= O;
eye_color "= NULL;
h a i r _ c o l o r "= NULL;
marks "= NULL;
b i r t h d a t e "= ' 1 / 1 / 1 0 0 0 ' ;
r e l i g i o n "= NULL;

END i n i t i a l i z e ;
END;

Figure 13-11 (Continued): Oracle declarations and implementations for the IIA utility classes

Writing the Schema
Once the classes have been declared and implemented, they can be
used as data types in table declarations, using standard SQL syntax
(see the CREATE TABLE statements in Figure 13-12). Notice how
much the use of the classes simplifies the declaration of the tables.

366 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE person
(

person_ID INT,
c lass i f i ca t ion INT,
bir thdate DATE,
local_ID CHAR (15),
dr iver_l icense DriversLicense,
true_descript ion Description,
home_address PersonalAddress,
phone Phone,
person_name Name,
recruit ing_agent INT,
PRIMARY KEY (person_ID),
FOREIGN KEY (c lass i f i ca t ion) REFERENCES person_types

);

CREATE TABLE person_types
(

c lass i f i ca t ion INT,
c lass i f icat ion_descr ip t ion CHAR (15),
PRIMARY KEY (c lass i f i ca t ion)

);

CREATE TABLE former address
(

person_ID INT,
date_moved_in DATE,
date_moved_out DATE,
previous_address PersonalAddress,
PRIMARY KEY (person_ID, date_moved_in),
FOREIGN KEY (person_ID) REFERENCES person

);

CREATE TABLE al ias

person_ID INT,
alias_name Name,
al ias_descript ion Description
local_id CHAR (15),
al ias_drivers_l icense DriversLicense,
alias_address PersonalAddress,
alias_phone Phone,
date_last_used DATE,
PRIMARY KEY (person_ID, last_name, first_name),
FOREIGN KEY (person_ID) REFERENCES person

Figure 13-12 �9 Oracle schema for the object-relational version of the IIA database

THE OBJECT-RELATIONAL DESIGN 367

CREATE TABLE re la t ive

person_ID INT,
relative_name Name,
birthdate DATE,
how_related CHAR (30),
relative_address PersonalAddress,
relative_phone Phone,
photo BLOB,
current_employer CHAR (30),
education CHAR (30),
current_job CHAR (30),
PRIMARY KEY (person_ID, first_name, last_name, b i r thdate) ,
FOREIGN KEY (person_ID) REFERENCES person

) ;

CREATE TABLE education
(

person_ID INT,
school_ID INT,
date_entered DATE,
date_lef t DATE,
degree_earned CHAR (10),
major_subject CHAR (15),
minor_subject CHAR (15),
PRIMARY KEY (person_ID, school_ID, date_entered));

CREATE TABLE school
(

school_ID INT,
school_name CHAR (50),
school_address OrganizationAddress,
PRIMARY KEY (school_ID)) ;

CREATE TABLE job
(

company_ID INT,
da tes tar ted DATE,
date_left DATE,
j ob_ t i t l e CHAR (50),
person_ID INT,
PRIMARY KEY (company_ID, date_started),
FOREIGN KEY (company_ID) REFERENCES company,
FOREIGN KEY (person_ID) REFERENCES person);

Figure 13-12 (Continued): Oracle schema for the object-relational version of the IIA database

368 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE company
(

company_ID INT,
company_name CHAR (50),
company_address OrganizationalAddress,
company_phone Phone,
PRIMARY KEY (company_ID));

CREATE TABLE f ingerpr in ts
(

pevson_ID INT,
f inger CHAR (15),
pr in t BLOB,
PRIMARY KEY (person_ID, f inger) ,
FOREIGN KEY (person_ID) REFERENCES person);

CREATE TABLE conviction

person_ID INT,
conviction_date DATE,
crime CHAR (50),
counts INT,
sentence CHAR (50),
PRIMARY KEY (person_ID, conviction_date, crime));

CREATE TABLE organization
(

organization_ID INT,
organization_name CHAR (50),
non_profit_status CHAR (1),
organization_address OrganizationalAddress,
organization_phone Phone,
PRIMARY KEY (organizat ion_ID)) ;

CREATE TABLE membership
(

person_ID INT,
organization_ID INT,
date_joined DATE,
date_quit DATE,
PRIMARY KEY (person_ID, organization_ID, date_joined),
FOREIGN KEY (person_ID) REFERENCES person,
FOREIGN KEY (organization_ID) REFERENCES organization);

Figure 13-12 (Continued)" Oracle schema for the object-relational version of the IIA database

THE OBJECT-RELATIONAL DESIGN 369

CREATE TABLE contact

in formant ID INT
m

CHECK (EXISTS (SELECT * FROM person
WHERE VALUE = person_ID and c l a s s i f i c a t i o n = 4)) ,

agent_ID INT
CHECK (EXISTS (SELECT * FROM person

WHERE VALUE = person_ID and c l a s s i f i c a t i o n = I)) ,
contact_date DATE,
contact t ime TIME,
fee_paid DECIMAL (8 ,2) ,
outcome CHAR (50),
PRIMARY KEY (in formant ID, agent ID, contact_date,

con tac t_ t ime)) ;

CREATE TABLE raw data
m

(
data_ID INT,
source_ID INT,
source_type CHAR (!5) ,
country CHAR (30),
c i t y CHAR (30),
how_gathered CHAR (50),
data_value CHAR (255),
con f idence_ leve l INT,
cost_of_data DECIMAL (8 ,2) ,
fac t_ ID INT,
PRIMARY KEY (data_ID) ,
FOREIGN KEY (fac t_ ID) REFERENCES i n t e l l i g e n c e
CHECK (source_type = ' i n f o rman t ' AND

EXISTS (SELECT * FROM person
WHERE source_ID = person_ID AND c l a s s i f i c a t i o n = 4)
OR
source_type = 'document' AND
EXISTS (SELECT * FROM source
WHERE source_ID = source .source_ ID))) ;

CREATE TABLE source
(

source_ID INT,
source_descr ip t ion CHAR (255),
PRIMARY KEY (source_ID)) ;

Figure 13-12 (Continued): Oracle schema for the object-relational version of the IIA database

370 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE in te i i igence
(

fact_ID INT,
fact_vaiue CHAR (255),
soid_exciusiveiy CHAR (1),
PRIMARY KEY (f a c t _ I D)) ;

CREATE TABLE subject
(

subject_ID INT,
subject_heading CHAR (50),
PRIMARY KEY (s u b j e c t _ I g)) ;

CREATE TABLE subjects_assigned
(

subject_ID INT,
fact_ID INT,
PRIMARY KEY (subject_ID, fact_ID),
FOREIGN KEY (subject_ID) REFERENCES subject,
FOREIGN KEY (fact_ID) REFERENCES in te i i i gence);

CREATE TABLE customer

customer_ID INT,
customer_name CHAR (50),
customer_contact_person Name,
customer_address OrganizationaiAddress,
phone Phone,
fax Phone,
excIusive_saies CHAR (1),
PRIMARY KEY (customer_ID)) ;

CREATE TABLE purchase
(

fact_ID INT,
customer_ID INT,
date_sold DATE,
amount_paid DECIMAL (8,2),
PRIMARY KEY (fact_ID, customer_ID),
FOREIGN KEY (fact_ID) REFERENCES in te l l i gence ,
FOREIGN KEY (customer_ID) REFERENCES customer);

Figure 13-12 (Continued)" Oracle schema for the object-relational version of the IIA database

THE OBJECT-RELATIONAL DESIGN 371

CREATE TABLE subjects_purchased
(

customer_ID INT,
subject_ID INT,
PRIMARY KEY (customer_ID, sub]ect_ID),
FOREIGN KEY (customer_ID) REFERENCES customer,
FOREIGN KEY (subject_ID) REFERENCES subject);

CREATE TABLE subjects_not_purchased
(

customer_ID INT,
subject_ID INT,
PRIMARY KEY (customer_ID, subject_ID),
FOREIGN KEY (customer_ID) REFERENCES customer,
FOREIGN KEY (subject_ID) REFERENCES subject);

CREATE TABLE subjects_to_not i fy
(

customer_ID INT,
subject_ID INT,
PRIMARY KEY (customer_ID, subject_ID),
FOREIGN KEY (customer_ID) REFERENCES customer,
FOREIGN KEY (sub]ect_ID) REFERENCES subject);

CREATE TABLE user account
m

(
account_ID INTCHAR (10),
person_ID INT,
date_created DATE,
PRIMARY KEY (account_ID),
FOREIGN KEY (person_ID) REFERENCES person);

CREATE TABLE logon
(

account_ID INTCHAR (10),
logon_date DATE,
logon_time TIME,
logoff_time TIME,
1ogon_ID INT,
PRIMARY KEY (logon_ID),
FOREIGN KEY (account_ID) REFERENCES user_account

);

Figure 13-12 (Continued): Oracle schema for the object-relational version of the IIA database

372 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE data access
(

logon_ID INT,
table_used CHAR (30),
fact_or_data_ID INT,
access_time TIME,
action_performed CHAR (30),
PRIMARY KEY (logon_ID, access_time),
FOREIGN KEY (logon_ID) REFERENCES logon
CHECK (table_used = 'raw_data' AND

EXISTS (SELECT * FROM Paw_date
WHERE fact_or_data_ID = data_ID)
OR
(table_used = ' i n t e l l i g e n c e ' AND
EXISTS (SELECT * FROM in te l l i gence
WHERE fact_or_data_ID = fac t_ ID))) ;

CREATE TABLE equipment_item
(

item_ID INT,
storage_locat ion CHAR (30),
current_condi t ion CHAR (10),
type_ID INT,
PRIMARY KEY (item_ID),
FOREIGN KEY (type_ID) REFERENCES equipment_type);

CREATE TABLE usage_restr ic t ion
(

type_ID INT,
res t r i c t i on_desc r i p t i on CHAR (50),
PRIMARY KEY (type_ID, r es t r i c t i on_desc r i p t i on) ,
FOREIGN KEY (type_ID) REFERENCES equipment_type);

CREATE TABLE equipment_use
(

item_ID INT,
use_date DATE,
use_time TIME,
person_ID INT,
use_location CHAR (50),
how_used CHAR (255),
use_results CHAR (255),
PRIMARY KEY (item_ID, use_date, use_time),
FOREIGN KEY (item_ID) REFERENCES equipment_item,
FOREIGN KEY (person_ID) REFERENCES person);

Figure 13-12 (Continued): Oracle schema for the object-relational version of the IIA database

THE OBJECT-RELATIONAL DESIGN 373

CREATE TABLE equipment_type
(

type_ID INT,
type_c lass i f i ca t ion CHAR (15),
type_descript ion CHAR (50),
quantity_owned INT,
PRIMARY KEY (t ype_ ID)) ;

CREATE TABLE equipment_sale
(

customer_ID INT,
sale_date DATE,
sa le_tota l DECIMAL (8,2),
PRIMARY KEY (customer_ID, sale_date),
FOREIGN KEY (customer_ID) REFERENCES customer);

CREATE TABLE sale item
(

customer_ID INT,
sale_date DATE,
type_ID INT,
quantity_purchased INT,
price_each DECIMAL (8,2),
l ine_cost DECIMAL (8,2),
PRIMARY KEY (customer_ID, sale_date, type_ID),
FOREIGN KEY (customer_ID) REFERENCES equipment_sale,
FOREIGN KEY (sale_date) REFERENCES equipment_sale,
FOREIGN KEY (type_ID) REFERENCES equipment_type);

CREATE TABLE under_development_item
(

item_ID INT,
intended_use CHAR (50),
development_location CHAR (50),
estimated_completion_date DATE,
type_ID INT,
PRIMARY KEY (item_ID),
FOREIGN KEY (type_ID) REFERENCES equipment_type);

CREATE TABLE item_developer
(

item_ID INT,
person_ID INT,
PRIMARY KEY (item_ID, person_ID),
FOREIGN KEY (person_ID) REFERENCES person.);

Figure 13-12 (Continued): Oracle schema for the object-relational version of the IIA database

374 DATABASE DESIGN CASE STUDY #3: INDEPENDENT INTELLIGENCE AGENCY

CREATE TABLE equLpment_test
(

Ltem_ID INT,
test_ID INT,
test_date DATE,
person_ID INT,
test_locatLon CHAR (50),
tes t_resu l ts CHAR (255),
PRIMARY KEY (Ltem_ID, test_ID, test_date),
FOREIGN KEY (Ltem_ID) REFERENCES under_development_Ltem,
FOREIGN KEY (test_ID) REFERENCES test ,
FOREIGN KEY (person_ID) REFERENCES person);

CREATE TABLE test
(

test_ID INT,
test_descrLptLon CHAR (255),
PRIMARY KEY (test_ID)

) ;

Figure 13-12 (Continued): Oracle schema for the object-relational version of the IIA database

Glossary
Abstract data type-An object-oriented term for a user-defined data
type, usually a class.

Accessor: In an object-oriented environment, a procedure that re-
turns the value of a private variable.

Aggregation: A container class.

Application class: A class representing an application program.

Attribute- A property of an entity; data that describe an entity; a
column in a relation.

Base table: A table whose data are physically stored in a database.

375

376 GLOSSARY

BLOB (binary large object): A column data type specifying that the
column will store the contents of a file (text and/or graphics) in its
binary representation, without being searchable or readable in any
way by the DBMS.

Cardinality (of a relationship): The type of relationship (one-to-
one, one-to-many, or many-to-many).

Case sensitive: Distinguishing between upper- and lowercase let-
ters.

CASE (computer-aided software engineering) tool: A piece of soft-
ware used to support the design and development of information
systems and application software.

Catalog: Another term for a data dictionary.

Class: A definition of an entity, including the data that describe an
occurrence of the entity and procedures that operate on entity data.

Clustering: Grouping data together on the same disk page to im-
prove retrieval performance.

CODASYL" See Committee on Data Systems Languages.

CODASYL database: A database that adheres to the CODASYL da-
tabase standard.

Column homogeneous: A property of a relation stating that all the
values in a given column are taken from the same domain.

Commit: End a transaction by making its changes permanent.

Committee on Data Systems Languages (CODASYL)" A commit-
tee of government and industry technologists that developed the
COBOL programming language and a standard for a simple net-
work database.

GLOSSARY 377

Complex network data model: A navigational data model that sup-
ports direct many-to-many relationships.

Composite entity: An entity that represents the relationship be-
tween two other entities.

Concatenated identifier: An entity identifier made up of the values
of more than one attribute.

Constraint: A rule to which some element in a database must ad-
here.

Constructor: In an object-oriented environment, a procedure that is
run automatically whenever an object is created from a class.

Container class: A class that contains and manages multiple objects
of another class.

Context diagram: The top-level diagram in a data flow diagram
that shows the environmental context in which the information sys-
tem exists.

Control class: A class that controls the operational flow of a pro-
gram.

Copy constructor: In an object-oriented environment, a constructor
that initializes an object with data values copied from another ob-
ject of the same class.

Currency indicator: In a CODASYL database, a set of internal
pointers maintained for each application running at any given time
indicating the position of the application in the simple network.

Cylinder: The same track on all surfaces in a stack of platters in a
hard disk.

Data dictionary: A repository for data describing the structural el-
ements of a database.

378 GLOSSARY

Data dictionary driven: A property of relational databases in which
all access to stored data is preceded by access to the data dictionary
to determine if the requested data elements exist and if the user has
the access rights to perform the requested action.

Data encapsulation: An object-oriented concept in which the de-
tails of how an object performs an action is hidden from objects or
programs that invoke that action.

Data flow: The path taken by data as they are processed throughout
an organization.

Data flow diagram: A diagram that shows the data flows in an or-
ganization, including sources of data, where data are stored, and
processes that transform data.

Data model: A formal way of describing the relationship between
entities in a database to a database management system.

Data store: In a data flow diagram, a place where data are stored.

Database: A place where data are stored along with definitions of
the relationships between those data.

Database definition language: A special-purpose computer lan-
guage used to define the logical structure of a database (in particu-
lar, those based on the hierarchical, simple network, and complex
network data models).

Database key: In a CODASYL database, an internal pointer to the
physical storage location of a record occurrence in a file.

Database management system: Software that provides access to
the data in a database; translates a user's requests for data that are
framed in terms of logical relationships into physical storage access
commands.

Deletion anomaly: A problem that occurs in poorly designed rela-
tions such that a user accidentally loses data that should be kept

GLOSSARY 379

when deleting part of a primary key forces removal of an entire row
from a relation.

Destructor: In an object-oriented environment, a procedure that is
executed automatically whenever an object is destroyed.

Determinant: An attribute upon which another attribute is func-
tionally dependent.

Domain: An expression of the permissible values for an attribute.

Domain constraint: A rule that requires that all values of an at-
tribute come from a specified domain.

Embedded SQL: SQL statements coded as part of a program writ-
ten in a high-level language such as C++ or Java.

Entity: Anything about which data are stored in a database.

Entity class: A class that represents an entity.

Entity identifier: An attribute or combination of attributes whose
values will uniquely identify every instance of an entity.

Entity integrity: A constraint on a relation that states that no part of
a primary key may be null.

Entity-relationship diagram: A diagram that shows the relation-
ships between entities in a database environment.

Equi-join" A join based on matching identical values.

Extent: A data structure used by an object-oriented database to con-
tain all objects created from a single class.

Field: In a file processing system, the smallest unit of meaningful
data, such as a first name or street address.

380 GLOSSARY

Foreign key: A column or combination of columns that is the same
as the primary key of a table in the same database.

Functional dependency: A relationship between two attributes
such that at any given time, for each unique value of attribute A in
the database, there is only one value of attribute B.

Hashing: A technique for providing fast access to data based on a
key value by determining the physical storage location of that data.

Hierarchical data model: A navigational data model that supports
only one-to-many relationships and includes the restriction that no
entity can have more than one parent entity.

Horizontal partitioning: Splitting the rows of a table into multiple
tables to improve retrieval performance.

Hybrid database: An object-relational database.

Index: An ordered list of key values that provides a fast access path
to the data in a relation.

Indexed Sequential Access Method (ISAM): An IBM file structure
that provided both sequential file access and fast access paths (via
indexes) to data.

Information hiding: An object-oriented concept in which the de-
tails of how an object performs an action is hidden from objects or
programs that invoke that action.

Inheritance" In an object-oriented environment, a general-specific
("is a") relationship between two classes.

Inner join: An equi-join.

Insertion anomaly: A problem that occurs in poorly designed rela-
tions such that a user is prevented from entering data because val-
ues for all the columns of a primary key are not available.

GLOSSARY 381

Instance (of a relation): A relation that contains rows of data val-
ues.

Instance (of an entity): A real-world occurrence of an entity repre-
sented by values for the entity's attributes.

Interface class: A class that represents something in a program's
user interface, such as a window or menu.

ISAM: See Indexed Sequential Access Method.

Join: An operation from the relational algebra that combines two re-
lations by matching rows based on values in columns in the two ta-
bles. The matching relationship is usually primary key to foreign
key.

Many-to-many relationship: A relationship between two entities in
which an instance of entity A can be related to zero, one, or more in-
stances of entity B and an instance of entity B can be related to zero,
one, or more instances of entity A.

Message" In an object-oriented environment, the way in which ob-
jects communicate with each other.

Metadata: Data about data; the data stored in a data dictionary.

Modification anomaly: A problem with a poorly designed relation
that occurs when unnecessary duplicated data are not updated con-
sistently and data that should have identical values do not.

Multivalued: Having the potential to contain more than one value
at any given time.

Multivalued dependency: A dependency between three attributes
in which attribute A determines a small but finite set of values for
attribute B and attribute A also determines a small but finite set Of
values for attribute C, but attributes B and C are independent.

382 GLOSSARY

Mutator: In an object-oriented environment, a procedure that mod-
ifies the value of a private variable.

Mutually exclusive relationship: A relationship in which an in-
stance of entity A can be related to either an instance of entity B or
an instance of entity C, but not both.

Natural equi-join: An equi-join.

Navigational: A property of a data model such that the access paths
to data are predefined and represented by pointers within the data
space.

Normal form: Design criteria that a relation must meet.

Normalization: The process of placing attributes into tables that
avoid the problems associated with poor database design.

Null: A special value meaning "unknown."

Object: An instance of a class.

Object-Relational database: A database that supports classes as
column data types.

One-to-many relationship: A relationship between two entities in
which an instance of entity A can be related to zero, one, or more in-
stances of entity B and entity B can be related to at most one instance
of entity A.

One-to-one relationship: A relationship between two entities in
which an instance of entity A can be related to at most one instance
of entity B and entity B can be related to at most one instance of en-
tity A.

Overloading: In an object-oriented environment, providing multi-
ple implementations of the same procedure, each with the same
name but different input parameters.

GLOSSARY 383

Page: The size of the block of data that a computer (and therefore a
database) transfers between disk and main memory at one time.

Partitioning: Breaking relations into parts to improve retrieval per-
formance.

Physical schema: The physical storage structures used to store the
data in a database.

Polymorphism: In an object-oriented inheritance hierarchy, giving
the same function in related classes different implementations.

Post-relational database: An object-relational database.

Precision: The number of digits to the right of the decimal point in
a number.

Predicate: A logical expression against which data are evaluated.

Primary key: One or more columns whose values uniquely identify
every row in a relation.

Process: In a data flow diagram, something that is done to or with
data.

Prototyping: A process for system and database design in which
users respond to increasingly specific designs of the interface of an
application program; useful in cases where system specifications
are not thoroughly known in advance.

Query optimizer: That portion of a database management system
that selects the most efficient strategy for processing a query.

Reblocking: For an ISAM file, rewriting the file to leave physical
space on each track occupied by the file to allow the additional of
records in key sequence order.

Record: In a file processing system, a collection of fields describing
a single entity.

384 GLOSSARY

Referential integrity: A constraint on a relation that states that ev-
ery nonnull foreign key value must reference an existing primary
key value.

Relation: The definition of the structure of a two-dimensional table
made up of columns and rows.

Relational database: A database in which the only data structures
are relations.

Relationship data: Data that describe the relationship between two
entities rather than each of the individual entities.

Repeating group: An attribute that has more than one value in each
row of a relation.

Roll back: End a transaction by undoing all its actions so the data-
base is restored to the state it was in when the transaction began.

Schema: The overall logical plan of a database.

Set: In a CODASYL database, a two-level hierarchy representing
one or more one-to-many relationships.

Simple network data model: A navigational data model that sup-
ports only one-to-many relationships but allows an entity to have
an unlimited number of parent entities.

Signature: In programming languages such C, C++, and Java as
well as object-oriented DBMSs, the name and parameter list of a
procedure / function.

Single-valued: Having only a single value at any given time.

System set: In a CODASYL database, a special set with only one
owner occurrence that is used to collect all occurrences of a single
entity.

Table: A relation in a relational database.

GLOSSARY 385

Temporary table: A base table that exists only in main memory and
for the length of a given database session.

Three-schema architecture: Three ways of looking at a database
through the physical schema, the logical schema, and user views of
data.

Three-valued logic: A set of logical truth tables that include the val-
ues true, false, and unknown.

Transaction: A unit of work submitted to a database.

Transitive dependency: A group of functional dependencies such
that attribute A determines attribute B, which in turn determines at-
tribute C. Therefore, it is also true that attribute A determines at-
tribute C.

Tuple: A row in a relation.

Unified modeling language (UML): A style of ER diagramming
that includes support for objects and therefore can be used to model
object-relational database designs.

Update anomaly: Another term for a modification anomaly.

Vertical partitioning" Splitting the columns of a table into multiple
tables to improve retrieval performance.

View: A named query store in a data dictionary that is used to cre-
ate a virtual table whenever a user includes the name of the view in
a data access request.

Virtual table: A table in a relational database that exists only in
main memory.

Weak entity- An entity that cannot exist in a database unless an in-
stance of another entity is present and related to it.

This Page Intentionally Left Blank

A
Abstract data types 152
Access rights

granting 211-212
revoking 212-213
storing 210-211
types of 210

Accessors 155
Attributes

as entity identifiers 13-14
definition of 12, 375
in ER diagrams 18-19
multivalue 15
relations and 74
single-valued 15

387

Index

B
Base tables 76, 184, 375
BLOBs 344-354
Boyce-Codd normal form 108-109

C
CASE

capabilities of 216-218
data dictionary 222-225
data flow diagrams 220-221,253-255
definition of 19, 376
drawing tools 229
ER diagram reports from 218
ER diagrams 28-32, 300, 308-311,

334-343

388 INDEX

generating SQL 225-228
prototyping with 228, 290-299, 303-

308
Case sensitive 376
Catalogs 178, 179-180, 376
Catalogs see also Data dictionary
Chen, Peter 18, 29-31, 44-45
Chen, Peter see also ER diagrams
Circular relationships 339, 354-355
Class

as abstract data type 152
as domain 166
composition 163-165
definition of 143, 151
encapsulation 150
information hiding 150
inheritance 157-163
method overloading 155
types of 153
types of methods 154

Clustering 124-125, 376
Clusters 178
CODASYL 62-65
Codd, E. F. 74, 92, 129-142
Column homogeneous 376
Columns 75, 132-133, 178, 179-180

adding to a table 205
constraints for 197
data types for 185-188
default values 190
modifying 206-207
renaming 208
unique values for 197

Commit 136, 376
Complex network data model 65-71
Composite entities 33-37, 377
Composition 163-165
Computer-aided software engineering

see CASE
Concatenated identifier 377
Concatenated keys 81
Constraint 377

Constraints see Primary keys, Foreign
keys, Entitiy integrity,
Referential integrity

Constructors 154, 155
Container class 154
Context diagram 377
Control classes 153
Copy constructors 155

D
Data dictionary

access rights in 210-211
CASE tool implementation of 222-

225
contents of 88-90
definition of 377
domains in 21
metadata 381
required support for 134-135

Data dictionary driven 378
Data flow 378
Data flow diagram 378
Data flow diagrams 39--42, 220-221,253-

255
Data independence

distributed 141
logical 139
physical 138

Data models 39, 378
Data relationships

business rules and 37-38
circular 339, 354-355
ER diagrams for 29-32
mandatory 27
many-to-many 27, 33-37
mutually exclusive 339, 354-355, 382
one-to-many 26-27
one-to-one 24-26
representing in database 82-85

Data store 378
Data types 185-188
Database 378

INDEX 389

Database management system 378
Database object hierarchy 178-180
DB/2 91,129, 140, 143
dBase 90-91
Deletion anomalies 8, 102, 105, 110, 378
Design problems

deletion anomalies 8
duplicated data 6-7
first normal form 100-102
insertion anomalies 7-8
meaningful identifiers 9
multivalued dependencies 110
second normal form 105-106

Destructors 154
Determinants 103-105, 379
Distributed databases 141
Domain constraint 379
Domain/key normal form 96
Domains

choosing 21-23
classes for 166
creating 183
definition of 20, 379
deleting 209
documenting 21
relationship to columns 75

Duplicated data 6-7

E
Encapsulation 150
Entities

collections of 17
composite 33-37
definition of 12, 379
identifiers for 13-14
in ER diagrams 18-19
translating to tables 94
weak 27

Entity classes 153
Entity identifier 379
Entity integrity 78, 139-141

Entity-relationship model see ER
diagrams

Equi-joins 113-119, 379
ER diagrams

attributes 18-19
CASE reports 218
Chen methodology 29-31
definition of 379
drawing with CASE tools 28-32
entities in 18-19
examples of 32-33, 256-261, 300,

308-311,334-343
Information Engineering methodol-

ogy 31-32
object-relational data model 167-172
translating to relations 94-95

F
Fifth normal form 95
File processing 48-50, 52-54
File processing see also ISAM files
First normal form 96-102
Foreign keys 84-86, 113-119, 191-194,

339
adding to a table 206
definition of 380
deleting 208
from ER diagrams 94

Fourth normal form 110-112
FoxPro 91
Functional dependencies 103-105, 380
Functions 147

G
Global temporary tables 184, 202
Guaranteed access rule 132-133

H
Hierarchical data model 54-58
Horizontal partitioning 126-127, 380

390 INDEX

Hybrid object-relational data model see

Object-relational data model

I
Identifiers 9
IDMS 65, 129, 130
Images 344-354
IMS 57-58
Indexes

creating 204-205
definition of 380
deleting 209
operation of 122-124

Information Engineering see ER
diagrams

Information hiding 150
Information rule 130-131
Inheritance 157-163
Inner join 380
Input design 228
Insertion anomalies 7-8, 101,105, 110,

380
Instance (of a relation) 74, 381
Instance (of an entity) 12, 23, 381
Interface classes 153
ISAM files 50-51
ISAM files see also File processing

J
Joins 113-119, 381

K
Keys

concatenated 81
foreign 84-86, 191-194, 208, 339
primary 77-82, 191,208

1.
Local temporary tables 184, 202
Logical data independence 139
Logical schema 43

M
Mandatory relationships 27
Many-to-many relationships 27, 33-37,

381
Messages 150
Metadata 381
Method overloading 155
Methods 147
Modification anomalies 102, 105, 110, 381
Multivalued attributes 15, 381
Multivalued dependencies 111-112, 381
Mutators 155
Mutually exclusive relationships 339,

354-355, 382

N
Naming database objects 179-180
Natural equi-join 382
Network data models see Simple

network data model, Complex
network data model

Nonsubversion rule 142
Normal forms

Boyce--Codd normal form 108-109
definition of 95, 382
Domain/key normal form 96
fifth normal form 95
first normal form 96-102
fourth normal form 110-112
performance issues with 112-119
second normal form 102-106
third normal form 106-108

Normalization 382
Normalization see also Normal forms
Null 78, 133-134, 190, 382

O
Object-oriented data model 166
Object-oriented paradigm 157-163

attributes 147
benefits of 165

INDEX 391

composition 163-165
encapsulation 150
functions 147
history of 144
information hiding 150
messages 150
method overloading 155
methods 147
operations 147
procedures 147
properties 147
services 147
types of methods 154

Object-relational data model
characteristics of 166
ER diagrams for 167-172
SQL for 213-214

Object-relational data model see also

Object-oriented paradigm
Objects

attributes 147
definition of 143, 146
functions 147
methods 147
operations 147
procedures 147
properties 147
services 147

One-to-many relationships 26-27, 82-85,
382

One-to-one relationships 24-26, 382
Operations 147
Oracle 90-91,143
Output design 228
Overloading 155

P
Page 383
Partitioning 126-127, 383
Performance

clustering 124-125
indexing 122-124

normalization and 112-119
partitioning 126-127

Permanent base tables 184
Physical data independence 138
Physical schema 43, 383
post-relational data model see Object-

relational data model
Precision 383
Predicates 116, 383
Primary keys 77-82, 113-119, 132-133,

191
definition of 76, 383
deleting 208
from ER diagrams 94

Procedures 147
Process 383
Products 116-119
Prototyping

as design technique 290-299, 303-
308

definition of 383
using CASE tool 228

(1
Query languages 135-136, 137
Query languages see also SQL
Query optimizer 383

FI
R:BASE 91
Referential integrity 85, 139-141,384
Relational database

definition of 74, 384
rules for 129-142

Relations
all-key 82
base 76
characteristics of 74-77
columns 75
data dictionary for 88-90
definition of 384

392 INDEX

foreign keys 84-86
generating from ER diagrams 94-95
naming 179-180
notation for 77
primary keys 76, 77-82
rows 76
virtual 76

Relations see also Tables
Relationship data 384
Repeating groups 97-99, 384
Restricts 116-119
Roll back 384
Rollback 136
Rows 76, 178

$
Schemas 43-44, 178, 384

creating 181
naming 179-180
selecting for use 182

Second normal form 102-106
Services 147
Signatures 156
Simple network data model 59-65
Single-valued attributes 15, 384
SQL

adding columns 205
adding constraints 206
column constraints 197
column data types 185-188
column default values 190
creating tables 185-197, 262, 301,312,

344-355
deleting domains 209
deleting elements from tables 207-

208
deleting indexes 209
deleting tables 209
deleting views 209
domains 183-184
foreign keys 191-194
from CASE tool 225-228

granting access rights 211-212
indexes 204-205
modifying columns 206-207
nulls 190
object-relational extensions 213-214
primary keys 191
renaming table elements 208
revoking access rights 212-213
schemas 181-182
table types 184
unique column values 197
views 199-200

SQL / DS 90

T
Tables

base 76
creating 185-197, 262, 301, 312, 344-

355
data dictionary 88-90
default values 190
definition of 384
deleting 209
deleting elements from 207-208
examples of 261, 300-301, 311-312,

343
foreign keys 191-194
naming 179-180
nulls in 190
primary keys 191
renaming 208
SQL types 184
virtual 76

Tables see also Relations
Tables see also Temporary tables
Temporary tables 184, 385

creating 202
handling rows in 203
loading with data 203
versus views 201-202

Third normal form 106-108
Three-schema architecture 43, 385

INDEX 393

Three-valued logic 133-134, 385
Transactions 136, 385
Transitive dependencies 106-108, 385
Tuples 74, 385

tJ
UML 167-172
Update anomalies 102, 105, 110, 385
User interface 228

V
Vertical partitioning 127, 385
View updating rule 136

Views 136, 385
benefits of 87
creating 199-200
deciding which to create 198
definition 86
deleting 209
operation of 86
updatability 199
versus temporary tables 201-202

Virtual tables 76, 385

W
Weak entities 27, 385

This Page Intentionally Left Blank

