

by Richard Mansfield

Visual Basic® 2005
Express Edition

FOR

DUMmIES
‰

01_597051 ffirs.qxd 10/20/05 1:17 PM Page iii

Visual Basic® 2005
Express Edition

FOR

DUMmIES
‰

01_597051 ffirs.qxd 10/20/05 1:17 PM Page i

01_597051 ffirs.qxd 10/20/05 1:17 PM Page ii

by Richard Mansfield

Visual Basic® 2005
Express Edition

FOR

DUMmIES
‰

01_597051 ffirs.qxd 10/20/05 1:17 PM Page iii

Visual Basic® 2005 Express Edition For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Visual Basic is a registered
trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005927625

ISBN-13: 978-0-7645-9705-3

ISBN-10: 0-7645-9705-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QZ/RR/QV/IN

01_597051 ffirs.qxd 10/20/05 1:17 PM Page iv

www.wiley.com

About the Author
Richard Mansfield’s recent titles include Office 2003 Application Development
All-in-One Desk Reference For Dummies, CSS Web Design For Dummies, Visual
Basic .NET Weekend Crash Course, Visual Basic .NET Database Programming
For Dummies, Visual Basic .NET All-in-One Desk Reference For Dummies, and
Visual Basic 6 Database Programming For Dummies (all from Wiley).

From 1981 through 1987, he was editor of COMPUTE! Magazine, during which
time he wrote hundreds of magazine articles and two columns. From 1987 to
1991, he was editorial director and partner in Signal Research and began writ-
ing books full-time in 1991. He has written 37 computer books since 1982. Of
those, four became bestsellers: Machine Language for Beginners (COMPUTE!
Books), The Second Book of Machine Language (COMPUTE! Books), The
Visual Guide to Visual Basic (Ventana), and The Visual Basic Power Toolkit
(Ventana, with Evangelos Petroutsos). Overall, his books have sold more than
500,000 copies worldwide and have been translated into 11 languages.

01_597051 ffirs.qxd 10/20/05 1:17 PM Page v

01_597051 ffirs.qxd 10/20/05 1:17 PM Page vi

Dedication
This book is dedicated to my mother, Florence Mansfield.

01_597051 ffirs.qxd 10/20/05 1:17 PM Page vii

01_597051 ffirs.qxd 10/20/05 1:17 PM Page viii

Author’s Acknowledgments
I’d like to thank the following people for their contributions to this book.
Acquisitions Editor Katie Feltman is always a pleasure to work with —
knowledgeable, enthusiastic, and good with authors (at least this one, anyway).
Project Editor Becky Huehls also deserves praise for her thoroughgoing edit,
and the many improvements to the book that resulted.

Technical Editor John Mueller is a highly regarded author in the computer
book field (and a friend, and coauthor of previous titles with me). I feel lucky
that he agreed to review my manuscript for errors in both the code and the
concepts. His considerable depth of knowledge contributed to the quality of
the book. If you disagree with some of my technical or theoretical observa-
tions, assume that John did too, but I wasn’t wise enough to take his advice
and change my remarks.

I also want to thank Copy Editor Andy Hollandbeck for making many improve-
ments. Andy not only knows how to write good English, he’s also more famil-
iar than most copy editors with computer programming. Plus, he seems like a
good guy in the bargain. Happily, Andy seems to have pretty balanced views
about the great serial comma debate, and the current conflict over gerunds.

To these, and all the good people at Wiley who contributed in so many addi-
tional ways to this book, my thanks for the time and care they took to ensure
its quality every step along the way from original idea to final publication.

01_597051 ffirs.qxd 10/20/05 1:17 PM Page ix

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Rebecca Huehls

Acquisitions Editor: Katie Feltman

Copy Editor: Andy Hollandbeck

Technical Editor: John Mueller

Editorial Manager: Leah Cameron

Permissions Editor: Laura Moss

Media Development Specialist: Travis Silvers

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinators: Adrienne Martinez,
Kathryn Shanks

Layout and Graphics: Carl Byers,
Andrea Dahl, Lauren Goddard,
Stephanie D. Jumper, Barry Offringa,
Mary Gillot Virgin

Proofreaders: Leeann Harney,
Carl William Pierce, TECHBOOKS
Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_597051 ffirs.qxd 10/20/05 1:17 PM Page x

Contents at a Glance
Introduction ..1

Part I: The Basics of Visual Basic Express11
Chapter 1: What It’s All About: Visual Basic Express Takes a Bow13
Chapter 2: Up and Running ..23
Chapter 3: At Your Service: Loads of Built-In Helpers ..35
Chapter 4: Tackling Essential Tools ..51

Part II: Programming the Practical Way75
Chapter 5: Common Tasks ...77
Chapter 6: It’s All about My ..97
Chapter 7: Whose Type Are You: Managing Variable Types105
Chapter 8: Superstrings: Managing Arrays ..129
Chapter 9: Pretty Printing ..143
Chapter 10: Testing and Deployment ..161

Part III: Dealing with Databases179
Chapter 11: The Basics of Databases ..181
Chapter 12: Quick Database User-Interface Techniques ..191
Chapter 13: Managing DataSets ...209

Part IV: Programming for the Web225
Chapter 14: Painless Internet Programming ..227
Chapter 15: Everything’s Eventual: Web Page Management245

Part V: The Part of Tens ...263
Chapter 16: Ten Great Visual Basic Express Tips and Tricks265
Chapter 17: Ten Important VB Resources ..277

Appendix A: About the CDs283

Bonus Appendix B: A Dictionary of VB.NETOn the Web

Index ...287

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xi

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xii

Table of Contents
Introduction ..1

Understanding Visual Basic ..2
Tapping into the Power ...2
About This Book ...3
How to Use This Book ..4
Foolish Assumptions ..5
How This Book Is Organized ...6

Part I: The Basics of Visual Basic Express ...6
Part II: Programming the Practical Way ...6
Part III: Dealing with Databases ..6
Part IV: Programming for the Web ..7
Part V: The Part of Tens ...7
Appendixes ..7

Conventions Used in This Book ...8
What You Need to Get Started ..8
Icons Used in This Book ..9
Where to Go from Here ..9

Part I: The Basics of Visual Basic Express11

Chapter 1: What It’s All About: Visual Basic Express Takes a Bow . . .13
Something Strange Happened in Orlando ...14

Visual Basic through the years ...14
Visual Basic today ..15

What Does Visual Basic Express Have to Offer? ..15
Defaults that serve a purpose ...16
The Express initiatives ...16
Finding help ...18

Taking a First Look ...19
Creating a user interface helps organize your project20
Programming for the Web ..21

Chapter 2: Up and Running .23
Finding Resources from Microsoft ...23
Building a Basic VB Program ..24

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xiii

Expanding Your Program ...28
Frightening Yourself with the “Starter” Kits ...32
Checking Out Additional Resources ..33

Chapter 3: At Your Service: Loads of Built-In Helpers 35
IntelliSense Is Available ...36
Reusing Code Snippets ..38

Automatic math: Snippets in action ...38
Improving the code in code snippets ..39
Customizing code snippets ...40

Customizing the Way You Work ..41
Automatic windows ..42
Controlling your keyboard ..42
Changing toolbars ..44
Your IDE, your way ...44

Aligning and Sizing Controls ...45
Using Help ...46
Error or “Exception” Helpers ..48

Chapter 4: Tackling Essential Tools .51
Introducing the Toolbox and Its Controls ...51
Adjusting a Control’s Properties ..53

Changing a property in the Properties window54
Some important properties (and many that aren’t)55

Enabling Users to Change Properties ..65
Working Around Application Settings ..66
A more complex but flexible Application Settings workaround67
Storing persistent data: Its various hideouts68
Changing a property with the Application Settings feature70

Understanding the Solution Explorer ..72
Adding other files ...72
Finding your solution ...73

Part II: Programming the Practical Way75

Chapter 5: Common Tasks .77
Mastering Events ..77
Using Subroutines ..78

Writing a simple sub ...79
Passing parameters ..79

Using Functions ..80
Understanding Scope ...81

When variables are local ...82
Public: The greatest scope of all ...84
Scoping procedures ..85

Visual Basic 2005 Express Edition For Dummies xiv

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xiv

Going Round and Round in Loops ...85
Using a For...Next loop ...85
Working with Do loops ...89
Exploring While...Wend: A simple loop ..90
For...Each: Looping in object collections ...91

Making Decisions via Branching ..91
Understanding If...Then ...92
Multiple choice: The Select Case command94

Chapter 6: It’s All about My .97
Comparing My to Classic VB and .NET ..97

Classic VB ..98
A .NET version ..98
The new My version ...98

Getting Familiar with My ...99
Browsing through My help ..99
The major My categories ...100

Using My While Programming ..101

Chapter 7: Whose Type Are You: Managing Variable Types 105
Two Main Kinds of Data ...106

Strings are like words ...106
You can do math with numbers ..108

Understanding Variables ...109
Assigning a value to a variable ...109
Storing string or numeric variables ...110

Naming Variables ..111
Creating a Variable ...111

Declaring variables explicitly ..112
Declaring variables implicitly ...113

Manipulating Variables ..114
Some variable efficiencies ...115
Saving time with += ...116

Understanding Data Types for Numeric Variables117
Converting Data Types ..118
Creating Expressions with Operators ..120

Comparing values ...121
Using arithmetic operators ...124
The logical operators ...125
Setting operator precedence ...127

Chapter 8: Superstrings: Managing Arrays .129
Working in a Zero-Based World ..130
Initializing Arrays ...131
Creating Arrays of Objects ..131

xvTable of Contents

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xv

Searching and Sorting Arrays ...133
Customizing the Sorting Rules ..135
Using Many Members ..136
The ArrayList Powerhouse ..137

Why use an ArrayList? ...137
Working with ranges ...139

Data Binding ..139
Enumerators ...140
Using Hashtables ..141

Chapter 9: Pretty Printing .143
Quick and Easy Printing Using My ...144
Printing Just the Way You Want with the Printer Objects146

Parsing text for the printer ..147
Using the PrintPage event ...149
Determining printable page size ...150
Looping through the text ...152
Triggering PrintPage with the Button control153

Letting Users Set Print Options ..155
Using the PrintPreview Control ..155
Printing Graphics ...156

Understanding With...End With ..157
Fine-tuning your graphics print options ..159

Chapter 10: Testing and Deployment .161
Finding and Fixing Syntax Errors ..162
Tracking Down Logic Errors ...164

The voyeur technique ..164
Using Debug.WriteLine ...167
The Immediate window responds ..167
The watch technique ...167
Setting breakpoints ..168

Fixing Errors with the Minor Debugging Tools ...169
Step Over (Shift+F8) ...169
Step Out (Ctrl+Shift+F8) ...170
Run to Cursor (right-click in Break mode)170
Set Next Statement (right-click in Break mode)170
Show Next Statement (right-click in Break mode)171
The Call Stack ..171

Adding Structured Error Handling ...171
How runtime errors occur ...172
Understanding Try ...173
The official syntax for Try...Catch...Finally175
Understanding Finally ..176
Throwing exceptions ..177
Tips for using Try...End Try ...178

Visual Basic 2005 Express Edition For Dummies xvi

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xvi

Part III: Dealing with Databases179

Chapter 11: The Basics of Databases .181
Processing Data ..181
Understanding Tables, Columns, Rows, and All the Rest182

Tables, fields, and rows ...183
Joining and querying tables ..185
Why use multiple tables? ...187
Tangled relationships: Using unique data to tie tables together188
Let the database do it for you: AutoNumber fields188

Indexes — a Key to Success ..189
Imagine nonalphabetic yellow pages ...189
Hey, let’s index every field! ..190

Chapter 12: Quick Database User-Interface Techniques 191
Organizing the Entry Fields ...191
Navigating through Fields with the Tab Key ...192
Binding to Data ...193

Loading a sample database ...193
Connecting to a database ..194
Binding controls to a dataset ..197

Using the DataGridView ...199
Saving Data to a DataSet ..203
Saving Data to a Database ...204

Everything is stored together ...204
Saving edited records ...206

Chapter 13: Managing DataSets .209
Delving into DataSets ...209
Building a DataSet Programmatically ..211

Importing namespaces ...211
Declaring the global variables ..213
Building a DataSet in code ...214
Analyzing the code ...216
Playing around ..219

Understanding Collections ..219
Opening an Existing DataSet ...220
Adding and Removing Data ...221

Adding data to a DataSet ...222
Removing data from a DataSet ..223

Moving through the DataSet ...223

xviiTable of Contents

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xvii

Part IV: Programming for the Web225

Chapter 14: Painless Internet Programming .227
Creating the Simplest Web Program ..228

Setting up the program ..228
Testing your program ...230
Positioning objects with the Style Builder233

Coming to Grips with ASP.NET ...234
The purpose of ASP ..234
HTML’s limitations ..234
Firewalls and other necessary evils ...235

Getting to Know WebControls ..235
Displaying images ...236
Containing with the Panel container ..236
The Table control ...236
The rich Calendar ...237
The AdRotator ..238
Using Style Objects with WebControls ..240

Attaching a Database to Your Web Page ...241

Chapter 15: Everything’s Eventual: Web Page Management 245
Understanding Server-Side Controls in ASP.NET246

The problem of persistence ..247
Fleshing out your ASP.NET project ...247
Viewing the code ..249

Adding Simple Validation ..250
Managing State with Server-Side Controls ..252

Identifying a user’s first visit ...253
Preserving values within a single page ..255
Preserving values across pages ..256
Storing data with the Session property ...258
Exploring the Application object (an alternative to Session)260

Why Not Use Cookies? ...260

Part V: The Part of Tens ...263

Chapter 16: Ten Great Visual Basic Express Tips and Tricks 265
Using the Conversion Wizard to Master VB Express265
Moving from Classic VB or VB6 to VB Express ..267
Managing Directories ...267
Talking to the Clipboard ..268
Randomizing ...269
Detecting Keystrokes ...271
CStr versus .ToString ...271

Visual Basic 2005 Express Edition For Dummies xviii

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xviii

Simplifying Source Code Two Ways ...272
Combining the declaration and the assignment272
Avoiding repetition ...272

Understanding How the Registry Works with VB Express273
Reading from the Registry ...274
Writing to the Registry ...275

Drawing Directly on a Control ..276

Chapter 17: Ten Important VB Resources .277
Reading the Latest Info ..277
Getting Answers to VB Express Questions ...278
Keeping Visual Basic Healthy ...278
Visiting Other Web Sites of Interest ...278
Discovering Microsoft’s Plans for the Future

of Database Technology ...279
Importing Favorite Settings ...279
Using the Application Test Center ...279
Creating Menus via the MenuStrip ...280
Protecting Your Intellectual Property ..281
Graphics Transformations: Kitten with a Whip ..282

Appendix A: About the CDs ..283
System Requirements ..283
Using the CD with Microsoft Windows ..283
What You’ll Find ..284
If You’ve Got Problems (Of the CD Kind) ..285

Appendix B: A Dictionary of VB.NETOn the Web

Index..287

xixTable of Contents

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xix

Visual Basic 2005 Express Edition For Dummies xx

02_597051 ftoc.qxd 10/20/05 1:18 PM Page xx

Introduction

Welcome to the world of VB Express programming. Microsoft has put
many of its best technologies and tools into this powerhouse package,

and this book shows you how to get the most out of them.

VB Express sits on top of a huge, very powerful technology called .NET. And
the full power of the .NET code library (the Framework) is available to every
VB Express programmer. That’s quite a bargain for $49. However, Microsoft
states that its primary goal when building VB Express was that it be easy for
beginners and amateurs to use. In my view, they only partially succeeded.

Unfortunately the .NET Framework remains a jumble of poorly organized,
sometimes contradictory, tools. You can spend more time trying to figure out
how to use a procedure (a method in the library that does some job for your
program) than you do actually writing a program.

Also, commonly needed libraries, such as system.data, must be added to
your program by you. This is awkward and can result in confusing error mes-
sages. And yet a rarely used library, such as the one that draws lines and cir-
cles, is mysteriously included as a default.

And perhaps the greatest problem is that the documentation and the Help
systems are often confusing and poorly written — difficult for even experi-
enced Visual Basic programmers to understand, much less beginners.

I’ve made every effort to ensure that this book is understandable:

� The programming examples in this book are short and to the point.
Too many VB Express Help code examples are far too large — too much
of the programming code isn’t related to the topic being illustrated.

� This book is written by an experienced writer. VB Express Help expla-
nations are too often impossible to understand because they’re full of
technospeak written by people who have far more programming experi-
ence than writing skill. Consider, for example, this paragraph from VB
Express Help: “Every structure has an implicit public constructor with-
out parameters. This constructor initializes all the structure’s data mem-
bers to their default values.” I cannot imagine who thinks that this is
information a beginner needs to know, much less believes that a begin-
ner could possibly understand. I understand it, but I’ve written 36 com-
puter books. And there are plenty of Help entries in VB Express that I

03_597051 intro.qxd 10/20/05 1:18 PM Page 1

don’t understand. To be fair, some Help entries have apparently been
rewritten for the VB Express novice — and they’re sometimes clearer
than earlier versions. But far too often, you’ll find the Help system
incomprehensible.

� This book has been carefully reviewed by several editors to ensure
that it is both clear and technically accurate. I’m fully aware of how
frustrating it is to be unable to get a code example up and running —
and the error messages you’ll find in VB Express are often impossible to
understand.

Understanding Visual Basic
During the 1990s, far more programmers chose to use Visual Basic than all
other programming languages combined. Estimates range from 3 million to
6 million active VB developers.

In spite of its popularity — or perhaps partly because of it — some program-
mers lifted their noses into the air, sniffed, and claimed that VB wasn’t a “seri-
ous” language. In other words, the languages they used were more difficult
(strange punctuation, bizarre vocabulary, confusing syntax, and so on) and
sometimes required much more time than VB to finish a project.

But in the early days, those languages did have a significant advantage: They
could be used to build programs that accomplished some jobs faster and
better than VB. In fact, some tasks were simply impossible in VB. Using the
Windows Crypto API to encrypt files, for example, required an expert C++
guru. Now, though, you can use VB Express to quite easily tap into more
security power than the Crypto API ever offered. No gurus required.

Visual Basic was the first, and I believe is still the best, rapid application
development language. Nevertheless, some programmers complained that VB
didn’t qualify as a “real” programming language until it had true inheritance,
multi-threading, and other features that some power programmers love. VB
now has those dubious tools. VB Express’s technology is equivalent to all
other professional programming languages. In fact, all the .NET languages
compile into the same executable code result. So, snobs, lower your noses.

Tapping into the Power
VB Express is both powerful and diverse. Almost anything you want to do
with Windows or Internet programming can be done with VB Express. But,
best of all, many of Visual Basic’s features are still easy to use. The tools

2 Visual Basic 2005 Express Edition For Dummies

03_597051 intro.qxd 10/20/05 1:18 PM Page 2

include hundreds of efficiencies, step-through wizards, and shortcuts. For
example, even if you have no experience at all in adding a database to an
Internet Web page, you can discover how to do just that in about two minutes
(see Chapter 14).

Of course, other tasks are not as rapidly accomplished. Otherwise, this book
would be five pages long, and people wouldn’t be paid to write programs.

Nonetheless, if you want to create a Web page, design a brand-new database,
or leverage your programming skills in general, this is the book for you. And
VB Express is the language of choice. It’s really the only computer language
left that’s specifically geared to novices. (I don’t count the C or J languages —
they’re deliberately designed to be inefficient for reasons that I explain in
Chapter 1.)

Some jobs do take longer than slapping a database connection onto a Web
page (but in VB Express, they often don’t take much longer). Precisely how
much longer depends on what you want your Web page to do, how complex
your database is, and how deeply into object-oriented programming (OOP)
you want to go. But if you can click a mouse, write ordinary Visual Basic pro-
gramming, and follow straightforward directions, you can usually do the job.
This book shows you, in clear English, how to create effective Windows appli-
cations and Web pages.

About This Book
My main job in this book is to show you the best way to master the various
techniques that, collectively, put you on the path to VB Express programming
expertise. If a task requires hands-on programming, I show you, step-by-step,
how to write that programming. In other cases, I tell you about a simpler,
better way to accomplish a job. Otherwise, you could spend days hand-
programming something that’s already been built — something you can
create by clicking a simple menu option, adding a prebuilt component, firing
up a wizard, or using a template.

Because VB Express is so huge, you can easily overlook the many shortcuts it
contains. I’ve been on the betas for VB for about 14 years now, and I was on
the VB Express technical beta from its start. I’ve also written many books on
Visual Basic. All modesty aside, I do know Visual Basic well.

I’ve been exploring VB .NET several hours a day for five years — since its debut
in July 2000. I’ve written five books on the topic. You’d think I would have
pretty much mapped out the .NET world by now, but no. As you will discover
yourself, .NET is a gigantic collection of interrelated technologies, and even at
this late date you can find yourself boldly going where no one has gone before.

3Introduction

03_597051 intro.qxd 10/20/05 1:18 PM Page 3

I hope that all my work these past years will benefit you — showing you the
many useful shortcuts and guiding you over the rough spots. I won’t pull any
punches: I confess it took me several hours of wrestling with VB Express to
figure out how to get data successfully displayed in a grid. Now I can show
you how to do it in just a few minutes.

Also, unlike some other books about Visual Basic programming (which must
remain nameless) as well as the VB Express Help system, this book is written in
plain, clear English. You will find sophisticated tasks made easy: The book is
filled with step-by-step examples that you can follow, even if you’ve never writ-
ten a line of programming or designed a single computer application before.

Visual Basic Express does require some brains and practice to master, but
you can handle it. To make this book as valuable for you as possible without
writing a six-volume life’s work on all of Visual Basic’s features and functions,
I geared this book toward familiarizing you with the most useful tools. You
can use most of them to create both Windows and Web applications. (The
approach to both platforms is quite wonderfully similar, thanks to the
WebForms and “code-behind” features you explore in Part IV.)

VB Express gives you dozens of ways to get a job done, but one way nearly
always proves to be the best, most sturdy, most effective, and, often, most
efficiently programmed. I show you those best ways throughout the book.

How to Use This Book
This book obviously can’t cover every feature in VB Express. Instead, as you
try the many step-by-step examples in this book, you’ll become familiar with
the most useful features of Visual Basic programming and many shortcuts
and timesaving tricks — some that could take years to discover on your own.
(Believe me, some of them have taken me years to stumble upon.)

Whether you want to create stunning Web sites or impressive Windows appli-
cations, this book tells you how to get the results you’re after. Here are just a
few of the goals that you can achieve with this book:

� Build professional-looking, effective programs.

� Understand how to build database programs.

� Create Web pages.

� Discover how to best use many features built into VB Express.

� Get the most out of VB Express’s new My object, DataView control,
Visual Web Developer, .NET Framework, and other great tools.

� See how to use, test, and deploy your own VB Express programs.

4 Visual Basic 2005 Express Edition For Dummies

03_597051 intro.qxd 10/20/05 1:18 PM Page 4

Many people think that programming is impossibly difficult and that Internet
programming is even more difficult. It doesn’t have to be. In fact, many
common programming jobs have already been written for you in VB Express,
so you don’t have to do the programming at all.

If you’re smart, you don’t reinvent the wheel. Sometimes, all you need to
know is where in VB Express to find a particular component, wizard, tem-
plate, or other prebuilt solution. Then, drop it into your application. And
when you do need to program by hand, this book’s code examples can often
help you get the job done more quickly than you could do it all by yourself.
Because the .NET technology is so large and, to many programmers, so
daunting (at least at first), you must learn your way around. This book can be
your key to unlocking .NET’s secrets.

This book tells you whether a particular wheel has already been invented. It
also shows you how to save time by using or modifying existing components
or Help code to fit your needs instead of building new solutions from scratch.
But if you’re doing something totally original (congratulations!), this book
also gives you step-by-step recipes for tackling many common tasks from the
ground up.

Foolish Assumptions
In writing this book, I had to make a few assumptions about you, dear reader.
I assume that you know how to use Windows and understand the elements of
computing in general (the various ways to use a mouse, how to navigate
menus, and so on).

I also assume that you don’t know much, if anything, about VB Express pro-
gramming. Perhaps most importantly, I assume that you don’t want lots of
theory or extraneous details. You just want to get the programming jobs done.

How This Book Is Organized
The overall goal of Visual Basic 2005 Express Edition For Dummies is to pro-
vide an enjoyable and understandable guide for the Visual Basic Express pro-
grammer. This book will be accessible to developers and programmers with
little or no programming experience.

The book is divided into five parts, with several chapters in each part. But
the fact that the book is organized doesn’t mean you have to be. You don’t
have to read the book in sequence from Chapter 1 to the end, just as you
don’t have to read a cookbook in sequence.

5Introduction

03_597051 intro.qxd 10/20/05 1:18 PM Page 5

In fact, if you want to know, for instance, how to save and load disk files, or
find out about the new My tool, go right to Chapter 6. You’re not expected to
know what’s in Chapters 1 through 5 before you can get results in Chapter 6.
Similarly, within each chapter, you can often scan the headings and jump
right to the section covering the task that you want to accomplish. There is
no need to read each chapter from start to finish. I’ve been careful to make
nearly all the examples self-contained — they don’t depend on previous
examples. And each of them works, too. They’ve been thoroughly tested.

All of the source code for all the examples in this book is downloadable from
this book’s Web site at: www.dummies.com/go/visualbasic2005express

The following sections give you a brief description of the book’s five main parts.

Part I: The Basics of Visual Basic Express
This part of the book introduces VB Express, explaining its purposes, elemen-
tary features, and why it exists in the first place. After all, Visual Basic .NET is
quite similar to VB Express. But as Chapter 1 points out, VB .NET has met
with resistance from the programming community.

In this part, you see how common tasks are accomplished and discover the
elements of .NET programming. You’re introduced to the main features of
Visual Basic Express’s generous suite of programming tools. You see how to
use some of Visual Basic’s primary tools, such as IntelliSense and the Toolbox,
to make most any programming job easier. You get a taste of VB Express pro-
gramming by working with the main subdivisions within the Editor — the
Properties window, Code window, Toolbox, Design window, and so on.

Part II: Programming the Practical Way
Part II covers the fundamentals of programming itself: using procedures, pro-
gramming inside events, managing scope, looping, and branching. You also
explore the new My object, a shortcut when programming some common
tasks — particularly file and directory management. You also work with vari-
ables, arrays, printing, debugging, and deployment.

Part III: Dealing with Databases
Experts estimate that around 80 percent of all programming involves data-
bases. That’s not surprising when you consider that computers are some-
times called data processors. In this part, you see how tables, rows (also
called records), and columns (fields) work together to organize data and

6 Visual Basic 2005 Express Edition For Dummies

03_597051 intro.qxd 10/20/05 1:18 PM Page 6

make it more easily sorted and retrieved. You also master the elements of the
important DataSet, a way of detaching a table (or several) from a database to
avoid the overhead of having to maintain a continual connection to the cen-
tral database itself. It’s more practical, in the same way that checking books
out of a library is more efficient than forcing the entire town to read them
only in the library building itself.

Part IV: Programming for the Web
This part covers the various ways to build a Web site, including how to use
the new Visual Web Developer tools to get your Web pages up and running
quickly. You find out how to work with ASP.NET technology to build intelli-
gence into your Web site programs, and you discover other important pro-
gramming techniques unique to Web sites, such as how to store variables,
connect a Web page to a database, deal with cookies, and communicate back
and forth between your site’s server and the computers used by visitors to
your site.

Part V: The Part of Tens
Here’s a fun section. Each of two chapters contains brief (mostly) tips, tech-
niques, and resources that, as an active VB Express programmer, you’ll surely
want to know about. Some of the topics covered include using random num-
bers, using the Upgrade Wizard to translate older BASIC (pre-.NET) programs
into .NET, keystroke detection, registry access, customized controls, online
resources, the menu builder, and other topics. You’ll likely find some useful
ideas here.

Appendixes
This book comes with two appendixes. Appendix A covers everything you
need to know about the CD that comes with this book: the content you’ll find,
the system requirements, and more.

On this book’s Web site (www.dummies.com/go/visualbasic2005express),
you’ll find Appendix B — a huge, book-length Appendix that is a dictionary of
traditional VB programming commands and their VB Express equivalents.
Those who have prior VB programming experience can look in Appendix B
for a command that they already know (such as InStr), and see how that job
is done the VB Express way. But those readers who are not familiar with tra-
ditional VB will also find this searchable appendix useful. If you want to
quickly find out, for example, how to change a property of Form1 from within
Form2, search the dictionary and you get your answer.

7Introduction

03_597051 intro.qxd 10/20/05 1:18 PM Page 7

Every line of code that you see in this book is also available for download
from the For Dummies Web site. Take advantage of this handy electronic ver-
sion of the code. You can then just copy and paste the source code instead of
typing it by hand. It saves lots of time and avoids pesky typos.

Conventions Used in This Book
This book is filled with step-by-step lists that serve as recipes to help you
cook up a finished product. Each step starts off with a boldface sentence or
two telling you what you should do. Directly after the bold step, you may see
a sentence or two, not in boldface, telling you what happens as a result of
your bold action — a menu opens, a dialog box pops up, a wizard appears,
whatever.

A primary convention used in this book is that I’ve tried to make the step-by-
step examples as general as possible, but at the same time make them spe-
cific, too. Sounds impossible, and it wasn’t easy. The idea is to give you a
concrete, specific example that you can follow and understand, while also
giving you a series of steps that you can apply directly to your own real-
world projects.

Also, note that a special symbol shows you how to navigate menus. For exam-
ple, when you see “Choose File➪New➪Project,” you should click the File
menu, click the New submenu, and finally click the Project option.

When I display programming code, you see it in a typeface that looks like this:

Dim pfont As Font
pfont = New Font(“Times New Roman”, 12)

And if I mention some programming code within a regular paragraph of text, I
use a special typeface, like this: Dim pfont As Font.

What You Need to Get Started
To use this book, you need only two things: a computer and a copy of VB
Express. (This book does not require the high-end, industrial-strength “pro-
fessional” team programming versions of Visual Basic.) So all you need is VB
express itself, and, for the chapters on Web page programming, the Visual
Web Developer. You can use the trial version of the software provided on this
book’s CD or buy the full version of the software in stores for about $49.

8 Visual Basic 2005 Express Edition For Dummies

03_597051 intro.qxd 10/20/05 1:18 PM Page 8

Icons Used in This Book
Notice the eye-catching little icons in the margins of this book. They mark
certain paragraphs to emphasize that special information appears. Here are
the icons and their meanings:

The Tip icon points you to shortcuts and insights that save you time and
trouble.

A Warning icon aims to steer you away from dangerous situations.

The Technical Stuff icon marks short journeys into hyper-specific or jargon-
filled areas of programming. You can safely skip text marked with this icon,
but the information is there if you feel the need to satisfy your inner geek.

The Remember icon prompts you to review a concept that I think you’ll want
to remember.

Where to Go from Here
Where you turn next depends on what you need. If you want the lowdown on
Visual Basic Express’s fundamental tools, as well as some important terms
and concepts, turn to Part I. If you’re looking for the answer to a specific
problem, check the index or the table of contents and then just turn directly
to the appropriate section.

I hope you find programming with VB Express as useful, and as much fun,
as I do.

9Introduction

03_597051 intro.qxd 10/20/05 1:18 PM Page 9

10 Visual Basic 2005 Express Edition For Dummies

03_597051 intro.qxd 10/20/05 1:18 PM Page 10

Part I
The Basics of
Visual Basic

Express

04_597051 pt01.qxd 10/20/05 1:20 PM Page 11

In this part . . .

Visual Basic Express is likely to remain for some time
the only computer programming language for begin-

ners, hobbyists, and small-business people. Part I intro-
duces you to this new, streamlined version of the famous
Visual Basic language. You find out why VB Express was
created — the audience Microsoft expects and its goals
for the language. You also explore the elements of VB, its
features, tools, and editing environment. You see how to
accomplish common tasks and learn the elements of .NET
programming — the new technology that Microsoft intro-
duced in 2000 and that has had a major effect on the
programming community. You also explore VB Express
programming by working with the main subdivisions
within the Editor — the Properties window, Code window,
Toolbox, Design window, and so on.

04_597051 pt01.qxd 10/20/05 1:20 PM Page 12

Chapter 1

What It’s All About: Visual Basic
Express Takes a Bow

In This Chapter
� Understanding why VB Express exists

� Discovering VB Express’s goals

� Organizing via the user interface

� Programming for the Internet

Visual Basic Express is the only popular computer programming language
available today. By popular, I mean “for the people” — novices, small-

business people, amateurs — anyone other than professional programmers.
VB Express is the language for the rest of us. It’s not yet popular in the sense
of selling well — but I hope that soon changes.

Whether it will become popular in the other sense of the word, only time will
tell. But there are far more small-business people, beginners, and enthusiasts
than there are professionals, just as amateur cooks outnumber professional
chefs. That’s why VB Express’s predecessor, Visual Basic, was for a decade
the world’s most popular computer language by a wide margin.

Small-business people need an efficient, understandable programming lan-
guage to write quick utilities to solve problems unique to their work. A surf-
board maker may often need to calculate polyester catalyst ratios, or dad
might want to write up a quick history quiz to help with Laura’s homework.
A hobbyist may enjoy creating a coin collection management program.

Whatever your personal needs, knowing how to program a computer — and
thus how to perfectly customize its behavior — is a useful and often enjoy-
able skill.

05_597051 ch01.qxd 10/20/05 1:21 PM Page 13

Something Strange Happened in Orlando
Visual Basic, VB .NET, and now Visual Basic Express — all these versions of
Microsoft’s Basic language can be confusing. Before you get started writing
programs with VB Express, you may find it helpful to understand why Visual
Basic Express was even created. After all, Visual Basic .NET already existed,
so why a new version of VB? In the following sections, I explain how VB has
changed over the years, so that you can understand just how VB Express fits
into the picture and what VB Express can do for you.

Visual Basic through the years
When Microsoft introduced Visual Basic in 1991, VB was primarily a procedure-
oriented language (organizing its programs via Events, subroutines, and
functions.

To make it easily understood, Visual Basic was designed to be as close to
English as possible. Its punctuation, diction, and syntax are familiar — easily
understood, remembered, and read — because VB is like a natural human
language. Someone creating VB would choose the word stop, for example,
when they wanted the computer to stop. Makes sense to me.

But in July 2000, something astonishing happened in Orlando. Visual Basic
.NET was unveiled in front of an audience of many of the world’s best Visual
Basic programmers. But VB .NET was so unlike what Basic has always stood
for that I heard people around me gasp.

VB .NET changed Basic from its traditional role as the fastest route from idea
to application to a jumbled, tortuous programming style with an immense,
impenetrable, disorganized library of functions called the .NET Framework. It
was oxymoronic in the extreme. It was as though you decided to rewrite the
phone book for clarity and hired the IRS to do it.

My informed guess is that Microsoft became confused and lost sight of the
nature and purpose of the Basic language — clarity and efficiency. It brought
in a team of managers and programmers who apparently had little, if any,
experience with Basic. Instead, these people’s expertise was in C-type lan-
guages and object-oriented programming (OOP).

One stated purpose of .NET was to bring all Microsoft’s computer languages
into line. Visual Basic, for example, had traditionally allowed you to start
counting lists from 1 (as in: I took my first trip to Spain last summer).This is
the way people think of lists: the first item is item 1. But the C languages start

14 Part I: The Basics of Visual Basic Express

05_597051 ch01.qxd 10/20/05 1:21 PM Page 14

counting from zero (so you’d have to say: I took my zeroth trip to Spain last
summer). But counting nothing first is pretty counterintuitive for everyone
but programmers. Makes no sense, but they do it that way. With .NET, Visual
Basic was asked to abandon its traditional, sensible count-up-from-one prac-
tice and get into line with the C zeroth approach.

The C languages embrace precisely what Basic avoids — complexity, ineffi-
ciency, redundancy, and jargon. OOP/C-style language is to Basic what acade-
mic theorizing is to practical action. The result: Visual Basic nose-dived in
popularity when .NET was forced on the VB audience. For the first time, there
was no popular (for-the-people) computer language.

Visual Basic today
Visual Basic was the world’s most popular programming language for over a
decade, but when Visual Basic .NET appeared, things changed. Because of
the .NET framework’s added complexity, Visual Basic lost its appeal for begin-
ning, amateur, and small-business programmers. Its popularity has declined.
In this newest iteration of Visual Basic — Visual Basic Express 2005 — Microsoft
has tried to win back this segment of programmers. It is, after all, the largest
segment of programmers, considerably outnumbering professional develop-
ers working in large organizations.

Visual Basic 2005 comes in two versions: Visual Basic 2005 for Developers
and Visual Basic 2005 Express Edition. Because you bought this book, I
assume you have the Express Edition.

VB for Developers focuses on technologies that assist people working in
groups on the same program (OOP has many such features). But for people
programming alone, VB Express should be everything you need. VB Express
is a subset of VB for Developers, but little of significance is left out for those
programming solo.

What Does Visual Basic
Express Have to Offer?

Nobody knows whether it’s too little, too late, but VB Express is designed to
rescue Visual Basic, and maybe it will. I hope so. The world needs a computer
language for the rest of us — for those who aren’t professional programmers.
(For professionals, complexity and obscurity often help ensure job security.)

15Chapter 1: What It’s All About: Visual Basic Express Takes a Bow

05_597051 ch01.qxd 10/20/05 1:21 PM Page 15

VB Express is simpler on the surface than its big brother Visual Basic .NET,
but the entire, massive .NET Framework (library of objects) is at your dis-
posal in VB Express. So you’ll find all the power you need under the hood.

Defaults that serve a purpose
Some C-language complexity and verbosity does give you additional control
over the task (if you’re specifying, for instance, a new font size). But this con-
trol is also available in Basic. If you want to get particular about formatting,
you have that option in Basic — you can write some additional code. There’s
a default Basic print format, however. Most printing jobs are just fine with the
default typeface, type size, margins, and black as the color for the text.

In C and similar languages, however, there usually is no simple default behav-
ior for common tasks like printing. Instead, you must write lots of tangled,
complicated code specifying all kinds of things about line size, lines per page,
typeface, and so on. In other words, C/OOP places two burdens on the pro-
grammer: You usually must manipulate a large number of properties, and you
must work in a language so alien, so counterintuitive, that it takes most
people years to achieve competence. Few ever achieve actual mastery.

Remember that professional programmers are only a fraction of the program-
ming public. Amateurs, novices, small-business people, and others like to
make computers do things (it’s often fun to program). It’s also useful to be
able to write a quick sales-tax calculator or a small diary program for little
Ashley. When you write your own programs, you can quickly modify them to
adapt to changing conditions: adding, for instance, a password feature to
Ashley’s diary program when she grows old enough to have secrets worth
concealing.

The Express initiatives
I believe Microsoft understands that there is a problem (how many copies of
VB .NET are selling?). Is VB Express the answer? I hope so. VB Express inter-
acts with beginning programmers differently than VB .NET does, but with
varying degrees of success:

� The My object achieves some abstraction (reducing your need to write
huge amounts of code to accomplish some common tasks). As you see
in Chapter 6, My improves a relatively small number of tasks.

� The startup screen (see Figure 1-1) appears to contain welcomed simpli-
fications and assistance. But I find much of the content behind the links
on this “Welcome to Visual Basic Express” portal deceptive. The “Create

16 Part I: The Basics of Visual Basic Express

05_597051 ch01.qxd 10/20/05 1:21 PM Page 16

Your First Program” step-through leads you to think that you can create
“powerful programs . . . quickly and easily.” You can’t, and the example
browser trick is hardly a program. The My Movie “starter kit” is far from
useful as a learning tool. It’s quite advanced actually, and certainly off-
putting to all but the Einsteins among novice programmers.

� The menus in VB Express are abbreviated. For example, the macro fea-
ture available on the Tools menu in ordinary VB .NET is missing from VB
Express. When you first install Word, the menus are shortened, too —
presumably not to frighten and confuse beginners with too many fea-
tures all at once. But in Word you can opt to restore the full menu. In VB
Express, the shortening of menus actually represents the removal of fea-
tures. For example, the macro feature is not available. Perhaps you’re
expected to get comfortable using VB Express, then move on up to the
Developer version if you want features like macros.

� Error messages are being improved. Some of them are now more pre-
cisely related to the actual error (rather than offering vague, misleading
statements about OOP nonsense). And now, useful suggested fixes to the
code are sometimes offered. But many error messages are simply alarm-
ing and/or useless — they merely reveal how lost and corrupt, how
inflated and inefficient OOP can be. Take a look at Figure 1-2.

Figure 1-1:
Looks

inviting, but
are the

examples
understand

able and
promises

kept?

17Chapter 1: What It’s All About: Visual Basic Express Takes a Bow

05_597051 ch01.qxd 10/20/05 1:21 PM Page 17

As you can see in Figure 1-2, this monstrously unhelpful mass of jargon
cannot be considered a useful message to the programmer. These mes-
sages just tell you at a glance that something is rotten somewhere.
Sometimes more is less.

Yet I remain somewhat hopeful. Though not yet accomplished, the initiatives
listed here are worthy goals. Perhaps VB Express will evolve into a popular
language.

Finding help
Although efforts have been made to improve the VB Help feature since the
introduction of VB .NET, unfortunately, I see little change. In my view, writers
didn’t write the Help examples (both the code and the narratives that
describe them). Programmers did. The Help examples are full of jargon and
ambiguity. But far worse, many if not most of those programmers are familiar
with C languages and only vaguely, if at all, acquainted with Visual Basic, so
you get bizarre code that’s a mixture of VB and C styles, and explanations
that defy understanding. As a result, Help is too often very little help indeed.

Figure 1-2:
This is a
VB error

message.
Can you

understand
what it’s
trying to
tell you?

18 Part I: The Basics of Visual Basic Express

05_597051 ch01.qxd 10/20/05 1:21 PM Page 18

For example, imagine a beginner trying to better understand what a subroutine
is. After all, it’s a major component in every VB program. So our apprentice —
with dewy eyes and a hopeful heart — looks it up in the VB Express Help
index and is inundated with confusing jargon, some words that even most
advanced VB programmers don’t understand: containing class, interface, struc-
ture, Implements keyword, access modifiers, attributes, protected, derived class,
ProtectedFriend, assembly, overloading , overriding, redeclares, NotOverridable,
MustOverride, shadows, generic procedure, and on and on. And you’re treated
to “explanations” like this (send me a translation if you know what they’re
talking about):

The Implements statement must include the interface specified by
interface. However, the name by which the interface defines the Sub (in
definedname) does not have to be the same as the name of this procedure
(in name).

Get it? And this nonsense is supposed to be a help document for beginners
and novices, the purported audience for VB Express. Sounds to me more like
page 439 of the government handbook on assembling a card table.

But my advice to you is to avoid the Help system and current Microsoft docu-
mentation — it’s written by C programmers for . . . who knows who it’s for?
Instead, you can use this book as your guide. It’s written by a Visual Basic
programmer. You can understand it. Also, although the VB Express Help
system doesn’t have much to offer, some of VB’s features can be quite useful.
Chapter 3 introduces some excellent built-in helpers such as IntelliSense, and
Chapter 10 explains how to use debugging tools to track down errors.

A couple of years ago I offered myself to Microsoft’s VB team, like the Aztec
virgin that in my heart I am. I’ve written them lengthy suggestions, even had
e-mail conversations with them. They’ve assured me that they’re working on
improving the Help system and making other changes. I don’t see it so far.

Taking a First Look
Usually when you start writing a Windows program in VB Express, you begin by
adding components (controls from the Toolbox, see Chapter 4) to a form. This
creates the user interface on the form — the window that the user interacts
with. There can be other windows, but many shorter programs have only a
single form. You can move the toolbox, shown in Figure 1-3, like most features of
the editor (or IDE, see Chapter 2), but most people leave it on the left side.

19Chapter 1: What It’s All About: Visual Basic Express Takes a Bow

05_597051 ch01.qxd 10/20/05 1:21 PM Page 19

Creating a user interface helps
organize your project
Adding components and thereby defining what the user sees helps you orga-
nize your programming into logical categories. A button that you label Open
File becomes the location where you write code to load a file from the
user’s hard drive. If you put a Button control on a form and then double-click
that button, a little VB Express magic happens. You’re switched to the code
window “underneath” the form — or behind the scenes. The user doesn’t see
the code, but they certainly appreciate that you wrote some programming
behind the button so it actually does its job. The Code window is illustrated
in Figure 1-4.

Figure 1-3:
The Toolbox
holds lots of

powerful,
prebuilt

components
that you just

drag and
drop onto

your VB
Express

forms.

20 Part I: The Basics of Visual Basic Express

05_597051 ch01.qxd 10/20/05 1:21 PM Page 20

Programming for the Web
Internet programming differs somewhat from ordinary Windows program-
ming, but VB Express offers some great tools for this task, too. Part IV covers
these topics. You use an editor similar to the IDE for Windows programming,
but optimized for Web use — including a specialized set of controls in the
Toolbox. The Visual Web Developer Express Edition — a free download — is
shown in Figure 1-5.

Figure 1-5:
This editor

is opti-
mized for

designing
and pro-

gramming
Web pages.

Figure 1-4:
You write
your pro-

gramming
here in

the code
window.

21Chapter 1: What It’s All About: Visual Basic Express Takes a Bow

05_597051 ch01.qxd 10/20/05 1:21 PM Page 21

22 Part I: The Basics of Visual Basic Express

05_597051 ch01.qxd 10/20/05 1:21 PM Page 22

Chapter 2

Up and Running
In This Chapter
� Getting started with VB Express: Resources for beginners

� Creating and testing your first program

� Enhancing a program with textures and graphics

� Looking at the starter kits

It’s time to get your feet wet and see what you can do with VB Express. First,
you explore some of the steps Microsoft has taken to accommodate amateur,

hobbyist, and novice programmers — the intended audience for VB Express
and the other Express languages, such as Visual Web Developer and SQL Server
2005 Express. Then you create and test your first VB Express program — a mile-
stone in some people’s lives because they realize that communicating with a
computer can be tremendous fun. (It amplifies your brain.) Then you go on to
modify your gem of a program, discovering how to tweak its qualities, add tex-
tures, and insert graphics. Finally, you’re exposed to the dubious educational
value of the starter kits — Microsoft’s idea of what’s helpful for beginning VB pro-
grammers. Are these kits of any use to you? Read on.

Finding Resources from Microsoft
As you get started using VB Express, you might like to know what resources
and features Microsoft has designed with the novice programmer in mind:

� Simplified interface: The VB Express editor (or IDE, integrated design
environment) where you write your programs is somewhat simplified —
or as Microsoft describes it, streamlined — compared to Visual Basic
.NET, Express’s big brother. The menus in VB Express are shorter, so
you’re not overwhelmed by too many choices. Some of the more exotic,
rarely used features have been hidden or removed. After all, some .NET
editor features are designed for the heavy-duty industrial programming
typically tackled by large groups of advanced programmers.

� Starter kits: Another attempt to entice the novice and amateur program-
mer audience into the Express product line is the starter kits: prewritten

06_597051 ch02.qxd 10/20/05 1:28 PM Page 23

applications that you can learn from or modify to suit your own needs.
They can be downloaded from

http://lab.msdn.microsoft.com/vs2005/downloads/starterkits

A couple of these kits are described at the end of this chapter. But be
warned: In my view, these kits are hardly for beginners. The Movie
Collection project, in particular, is obviously far too advanced for a
novice programmer.

� Webcasts: You can also find some Webcasts (online video tutorials),
such as Coding4Fun, with its Prince-inspired, hip-hop spelling. Beyond
that, you can watch 10 hours of video for VB Express beginners at

http://lab.msdn.microsoft.com/express/beginner

� The Express home page on Microsoft’s site: You can find the latest doc-
umentation, downloads, and other information on this page, which you
can find at

http://lab.msdn.microsoft.com/express

Building a Basic VB Program
Traditionally, a beginner’s first program does something extremely simple.
It’s a birth announcement — the birth of a new programmer. You might as
well get your feet wet with VB Express from this famous starting place.

Your goal: to display the message Hello World to the user who runs your pro-
gram. But because this is Visual Basic — where you can add powerful fea-
tures by merely dragging and dropping — I show you how to enhance this
classic “Hello World” application with a few quick mouse moves. In the
process, you see some basic maneuvers you can use for just about any pro-
gram you want to write.

To create your first VB Express program, follow these steps:

1. If you haven’t yet downloaded and installed VB Express, go to
Microsoft’s Web site and complete the installation process.

The correct Web page may change from the following address; if you
don’t find VB Express here, search Google for “Visual Basic Express
Download.”

http://lab.msdn.microsoft.com/express/vbasic/default.aspx

2. Run VB Express.

You see the startup screen in the editor, as shown in Figure 2-1.

24 Part I: The Basics of Visual Basic Express

06_597051 ch02.qxd 10/20/05 1:28 PM Page 24

3. Choose File➪New Project.

The New Project dialog box opens, as shown in Figure 2-2.

4. Double-click the Windows Application icon.

The dialog box closes and a new, empty VB Express project appears in
the editor, as shown in Figure 2-3.

Figure 2-2:
When you

choose
New Project
from the File

menu, you
see this

dialog box.

Figure 2-1:
You see this

welcome
screen,

loaded with
options,

when you
first fire up

VB Express.

25Chapter 2: Up and Running

06_597051 ch02.qxd 10/20/05 1:28 PM Page 25

Notice Form1 in Figure 2-3. While you’re creating your program (it’s
called design time), you can drop prebuilt controls like buttons, text
boxes, and many other useful tools onto this form. Quite a few of these
tools are for your user, allowing whoever uses your VB Express applica-
tion to interact with it by clicking buttons, entering text, and so on.
When your program is executed (run by the user during run time), the
form turns into a window.

5. Double-click the form.

The editor switches from design view to code view, as shown in Figure 2-4.

Notice the Private Sub Form1_Load line at the top of the screen in
Figure 2-4. This is an event. It triggers or fires when something happens in
the program. This particular event is triggered when Form1 is first
loaded — in other words, when the program first runs.

Figure 2-3:
This form

is your
primary

visual
design

surface;
it’s where
you write
your pro-

gramming
code.

26 Part I: The Basics of Visual Basic Express

06_597051 ch02.qxd 10/20/05 1:28 PM Page 26

This window (Form1) is the first thing the user sees when starting your
program — and its Load event is a good place to put any programming
code that you want to run when the program starts. Form1_Load is also
a good place to test your programming code because all you have to do
to see the effects is press F5 to execute the code. So in this book, exam-
ple code is frequently put into Form1_Load for you to test and experi-
ment with.

You can safely ignore the (ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles MyBase.Load nonsense. You
could program for 10 years without ever needing to employ or modify
this stuff more than a few times. This is OOP jargon that has bubbled up
from the lower levels of VB and that was mercifully hidden in most previ-
ous versions of VB — and we can hope will be removed in some future
version. But don’t delete this nonsense — you’ll cause bugs. “Those who
know best” have decided to add it to every event in VB Express. Just try
to ignore it.

There’s a blank line between Private Sub and End Sub, but you can
make more space if you want by pressing Enter a few times (while your
blinking insertion cursor is located on that blank line). Try it now.

Figure 2-4:
This code

window
is where

you type in
your pro-

gramming.

27Chapter 2: Up and Running

06_597051 ch02.qxd 10/20/05 1:28 PM Page 27

6. Type the following programming code (shown in boldface) into the
Form1_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

MsgBox(“Hello World”)

End Sub

Ignore anything else that happens (a prompt might appear in a light
yellow box, and other distractions might pop up). You explore these
things later in the book. For now, you just want to see the splendid
effects caused by your programming.

Programs written in VB Express are tested by simply pressing F5, which
runs the program — just as it will behave and appear to the user after
you’ve finished creating it. Go ahead. Don’t be bashful, . . .

7. . . . press F5.

You see the result — your message — as shown in Figure 2-5. You’ve
done it!

8. Click OK.

Your message window closes, but the Form is still displayed because the
program is still running.

9. Click the red X in the upper-right corner of Form1.

The window (Form1) closes, and, because it’s the “startup” object for
this application, the application itself also shuts down. You’re back in
the editor, in code view, ready to add new features to your program,
which is the topic of the next section.

Expanding Your Program
After you build a basic program, you get to experiment a bit, giving yourself a
sense of the power beneath the surface of VB Express. You can add a texture,

Figure 2-5:
Your first

program in
VB Express

works
perfectly!

28 Part I: The Basics of Visual Basic Express

06_597051 ch02.qxd 10/20/05 1:28 PM Page 28

a photo — any graphic you want — to create an attractive background for
your forms. To see how easy it is to modify the appearance of your VB
Express programs, follow these steps:

1. Using the program you wrote in the previous section, click the tab
named Form1.vb [Design] at the top of the code window.

You are switched back to the design window. It’s easy to move back and
forth between the programming (code) window and the design window.

Notice the Properties window, most likely located in the lower-right
corner of the editor.

2. If you don’t see the Properties window, press F4 to display it.

You can use the Properties window to change many qualities of a form
or the controls in the Toolbox, such as buttons, sliders, and so on.

3. Scroll down the Properties Window and select the BackgroundImage
entry, as shown in Figure 2-6.

4. Click the BackgroundImage label in the Properties Window.

The property you clicked is now highlighted (selected), as shown in
Figure 2-6. A brief but useless “description” of the purpose of the prop-
erty appears at the bottom of the Properties window. This kind of
description is called a circular definition, and English teachers deduct
points from any essay containing one. It provides zero information
because it merely restates the name of the defined term. It’s like explain-
ing that a predator is an animal that practices predatory behavior.

5. Click the small ellipsis (. . .) button that appears to the right of the
now-highlighted BackgroundImage entry in the Properties window.

A dialog box opens (see Figure 2-7), showing you any graphics files
already located in your project’s folder. (There are none yet, so it’s
blank.)

Figure 2-6:
The

Properties
Window is
one of VB
Express’s

most useful
tools.

29Chapter 2: Up and Running

06_597051 ch02.qxd 10/20/05 1:28 PM Page 29

6. Click the Import button in the dialog box.

A typical Windows Open dialog box opens, as shown in Figure 2-8.

Image editors, such as Photoshop, let you create textures that look great
as backgrounds.

7. Double-click a graphics file’s name in the Open dialog box.

Figure 2-8:
Locate a
graphics

file on your
hard drive

to decorate
the back-
ground of
your form.

Figure 2-7:
This

dialog box
shows any
resources

currently
loaded

into your
project’s

folder. There
are none

yet in this
project.

30 Part I: The Basics of Visual Basic Express

06_597051 ch02.qxd 10/20/05 1:28 PM Page 30

You’re allowed to import the following graphics file types: .gif, .jpg, .jpeg,
.bmp, .wmf, and .png. However, if you want to use a different file type,
most image editor applications can quickly translate the image into the
.jpg format for use with VB.

The graphic you selected is copied to your project’s directory as a
“resource” to be used as often as you wish in your project. A sample of
the graphic is displayed in the Select Resource dialog box, as shown in
Figure 2-9.

If you give your program to someone else to use (this is called deploying
an application), you just copy the application’s folder, and your graphics
file goes right along with the rest of the resources and elements in the
project (of course you might have to ensure you have copyright permis-
sion for the graphics file — particularly if you’re planning to sell your VB
application or something). Having copies of resources all together like
this in the same parent folder really simplifies deployment.

8. Click OK.

The Select Resource dialog box closes and the background of your form
now displays the image you chose, as shown in Figure 2-10.

With a little extra work, you could expand this program further into a
custom, personalizable graphics file viewer. In fact, after you’ve built up your
VB Express skills with this book, you can come back to this project and find
expanding it both easy and fun. Too bad all programming languages aren’t as
efficient and enjoyable as Visual Basic.

Figure 2-9:
This texture

will look
good as
a back-

ground, in
my opinion.

Your opinion
might differ.

31Chapter 2: Up and Running

06_597051 ch02.qxd 10/20/05 1:28 PM Page 31

Frightening Yourself with
the “Starter” Kits

I certainly won’t use the phrase out of touch to describe the faction at Microsoft
that thinks it understands how to communicate with novices via “starter” kits.
But we’ve all had a relative or friend who tried to teach us how to skate or to
drive — and in the process revealed that he had little patience and poor teach-
ing skills. A bad teacher overwhelms you with too much detail, too many ideas
all at once, and too little time to absorb them. (I think it makes them somehow
feel superior — they feel fast because, you’re so slow.)

I don’t know about you, but I’m not permanently slow. However, learning new
things requires a bit of sensible pacing. And I certainly don’t respond well to
that snarky superiority with which poor teachers try to make their students
feel inferior.

With that in mind, take a look at one of the “starter” kits offered to you in VB
Express. I find the programming in these kits difficult to follow, and I’ve writ-
ten a dozen books on Basic during the past 25 years. How are novices to use
these complex programs as a way to learn Visual Basic? The answer: They
aren’t. Only a few people are likely to use the starter kits as a way to learn VB.

Figure 2-10:
Adding
colors,

textures,
photos,

drawings,
the Mona

Lisa, or any
graphic
element

to the
background

of a VB
Express

form is
child’s play.

32 Part I: The Basics of Visual Basic Express

06_597051 ch02.qxd 10/20/05 1:28 PM Page 32

To see the My Movie Collection Starter Kit, and give yourself a good scare,
choose File➪New Project and then double-click the My Movie Collection
Starter Kit icon.

As you scroll down the starter kit, you’re first given some tasks that are quite
easy to manage. You’re shown how to use the program (add new data, and so
on), and you’re invited to try your hand at changing a text property, adding a
graphic, and a few other simple adjustments to customize your Movie
Collection program. So far, so good.

But suddenly, you’re not just pushed into the deep end; you’re dropped into
the middle of the Pacific. You’re expected to look at datasets, binding, and
other database-related topics so complex and advanced that I wrote an entire
book about them (Visual Basic .NET Database Programming For Dummies,
published by Wiley). And you’re supposed to “dissect the functionality of the
application by examining the source code,” including such extremely
advanced topics as Web programming and UserControls.

Perhaps you’re a budding programming genius who’ll glide right through all
this. But if you’re like most people, you’ll be flailing pretty quickly.

If you want to see some of the other “starter” kits, go here:

http://lab.msdn.microsoft.com/vs2005/downloads/starterkits/

If you’re like most people, you might want to use some of these programs for
what they can do. They’re sophisticated, complex applications — well-
designed graphically and complicated programmatically. But you’re not likely
to want to use them for what they can teach.

My advice is not to be discouraged. Normal people — even most highly intel-
ligent people like you and me — find these programs far too advanced to
serve as teaching tools. So rather than learn from them, just thank yourself
that you had the brains to buy this book and keep reading. I promise not to
throw snarky looks at you or drop a massive, intricate, and difficult program
in front of you and suggest that you start with this.

Checking Out Additional Resources
Here are two additional resources you might want to check out. The first is a
video series aimed directly at the absolute novice. Find it at:

http://lab.msdn.microsoft.com/express/beginner/default.aspx

33Chapter 2: Up and Running

06_597051 ch02.qxd 10/20/05 1:28 PM Page 33

The second resource is a set of examples located at:

http://lab.msdn.microsoft.com/vs2005/downloads/101samples/def
ault.aspx

Many of these examples are beyond even intermediate programmers’ under-
standing, but some of them might help you understand aspects of VB (partic-
ularly the examples that focus on ways to exploit the excellent set of VB
controls, such as the RichTextBox, DataGridView, SplitContainer, and so on).

Microsoft has recently added a number of new starter kits. Perhaps some of
these kits will prove more accessible to beginners than the kits I’ve discussed
in this chapter. However, I’ve reviewed the seven kits currently available, and
none is understandable to anyone but the rare genius beginner. Perhaps
that’s you! See them at:

http://lab.msdn.microsoft.com/vs2005/downloads/starterkits/

34 Part I: The Basics of Visual Basic Express

06_597051 ch02.qxd 10/20/05 1:28 PM Page 34

Chapter 3

At Your Service: Loads of
Built-In Helpers

In This Chapter
� Using your IntelliSense

� Accepting instant lists of members and arguments

� Understanding code reusability

� Using code snippets to avoid reinventing the wheel

� Viewing your options

� Personalizing the editor

� Adjusting windows

� Knowing how to get help

� Getting help online

� Exploiting the Exception Helper

Visual Basic, in all its versions since 1990, was designed to be a readable,
clear language — as close to English as possible. Since 2000, Visual Basic

has strayed from that mandate, though it’s not yet as full of twisted syntax
and redundant punctuation as the C-languages, such as Java and C++.

Another reason for BASIC’s famous efficiency is the many add-ons, wizards,
prebuilt controls, and other assistance that Microsoft provides for this lan-
guage. Given that the vision for VB Express is a return to the clarity and effi-
ciency of pre-.NET versions of BASIC, you might expect Express to include
lots of useful assistants. It does. This chapter explains how to get help in vari-
ous ways while coding and how to reuse code, customize the editor, and oth-
erwise streamline your programming environment.

07_597051 ch03.qxd 10/20/05 1:31 PM Page 35

IntelliSense Is Available
Some of your best programming assistance comes from IntelliSense — a set of
helpful features. They’re built into the VB Express editor and are on by
default. Among the most helpful IntelliSense features are the ones that

� Fill in the remainder of your line of code as you type the beginning of
that line — a process called auto-statement completion

� Provide fixes when VB finds an error

� Drop lists of properties, methods, or arguments while you’re filling in a
line of code, which is called auto-list members

In our brave new world, tens of thousands of objects in the .NET Framework
are available to VB Express programmers. Most of these objects have, in turn,
many methods and properties (called the members of an object).

Because nobody can memorize all these commands, the auto-statement comple-
tion and auto-list members features of IntelliSense are essential. Gone are the
days when programmers could remember all the classes and their members,
much less the parameters (the arguments — the data in parentheses following
some commands) that each of them can take. This gazillion-possible-functions
(methods) effect is even worse now that so many functions are overloaded,
which means that a function behaves differently depending on which of several
possible argument lists is used. For example, the simple Console.Writeline
function has 18 different possible argument lists.

To see these IntelliSense features in action, try this example:

1. In the VB code window, type this line inside a procedure (in a Sub):

console.

As soon as you type the period (.), an IntelliSense list shows you the
members (properties and methods) of the console class, as shown in
Figure 3-1.

Properties in this list are symbolized by an icon of a hand holding a VCR
tape; members are symbolized by a flying eraser — as you expect. I’ve
always associated flying erasers with members — haven’t you?

2. Continue until you have typed this:

console.WriteLine(

As soon as you type the opening parenthesis, a box pops out suggesting
1 of 18 possible argument lists that apply to the WriteLine method, as
shown in Figure 3-2.

36 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 36

3. Press your up or down arrow keys to see all 18 argument lists. To
select an option from the list of possibilities, click it.

There you have them: auto-list members and auto-statement completion —
two extremely valuable assistants in this world of millions of members. (Well,
maybe I exaggerate a bit, but what’s a little exaggeration among friends?)

Figure 3-2:
See all the

ways
to pass
data —

arguments —
to this

WriteLine
method by

clicking the
arrows.

Figure 3-1:
IntelliSense

provides a
list of the

members of
an object.

37Chapter 3: At Your Service: Loads of Built-In Helpers

Turning on your IntelliSense
To be sure that the IntelliSense features are
turned on, follow these steps:

1. Choose Tools➪Options➪Text Editor➪All
Languages.

2. In the Statement Completion options on the
right side of the Options dialog box, make

sure the Auto List Members and Parameter
Information check boxes are selected.

Although I recommend keeping IntelliSense
turned on, you can deselect the check
boxes if you find that it gets in your way.

07_597051 ch03.qxd 10/20/05 1:31 PM Page 37

Reusing Code Snippets
After you’ve written a function that works well, why not just reuse it the next
time you need the same task accomplished in some future program? For
example, some programs first display a User ID/Password InputBox that the
user must fill in before being allowed to use the application. If you write a
password utility that does this job well, why not save the source code and
reuse it if you need password-protection for another program later?

VB Express simplifies reusing code examples by collecting little pieces of
source code that perform common functions into IntelliSense code snippets.
These snippets are nothing more than a semi-automated way of inserting or
pasting pre-written code into your program. In addition to the IntelliSense
snippets, you can find lots of other code snippets sprinkled all through the
VB Help system, and these snippets can be copied and pasted, too. But the
IntelliSense code snippets have been selected because, presumably, they rep-
resent 500 or so common programming tasks. You can also add your own
snippets to the built-in collection or share them with others. In the following
sections, you can see how it works.

This concept — code reuse — is a primary feature of object-oriented program-
ming (OOP), but reusing code in OOP requires entering the confusing jungle
of OOP inheritance and polymorphism. VB Express keeps reusing code easy
and straightforward: Its code snippets employ the copy-and-paste approach,
which is code reuse at its simplest.

Automatic math: Snippets in action
According to Microsoft, snippets perform a complete action, such as sending
an e-mail or, as in the example below, calculating mortgage payments.

To see how to use code snippets, assume that your program needs to calcu-
late the monthly payment amount for a mortgage. Follow these steps:

1. Double-click a Form in design mode to open the Form_Load event of
a VB project.

2. Right-click a blank line in the Form_Load event.

3. Choose Insert Snippet from the context menu.

A list of the various categories of snippets from which you can narrow
your selection appears, as shown in Figure 3-3.

38 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 38

4. Double-click the Math category.

A list of the available snippets relating to mathematical tasks appears.

5. Double-click the Calculate a Monthly Payment on a Loan entry.

The code in Listing 3-1 is inserted into your Form_Load event.

Listing 3-1: The Monthly Mortgage Payment Snippet
Dim loanAmount As Double
Dim annualPercentRate As Double
Dim futureValue As Double = 0
Dim payment As Double
Dim totalPayments As Double

loanAmount = CDbl(InputBox(“How much do you want to borrow?”))
annualPercentRate = CDbl(InputBox(“What is the annual percentage rate of your

loan? Enter 8% as .08.”))
totalPayments = CDbl(InputBox(“How many monthly payments will you make?”))
payment = Pmt(annualPercentRate / 12, totalPayments, -loanAmount, futureValue,

DueDate.EndOfPeriod)
MsgBox(“Your payment will be “ & payment.ToString(“C”) & “ per month.”,

MsgBoxStyle.OKOnly, “Payments”)

You can execute this code as-is. It works, though a bit clumsily. It displays
three InputBoxes that the user can respond to. Then, it displays a MsgBox
with the answer — the monthly payment for the mortgage that the user
described in the first three InputBoxes. I explain how you might improve the
code in the next section.

Improving the code in code snippets
To improve the user’s experience, you can adjust the code so it’s more efficient.
Also, some of the code snippets — at the time of this writing anyway — are a

Figure 3-3:
Code

snippets are
organized

into sub-
categories

for your
conve-
nience.

39Chapter 3: At Your Service: Loads of Built-In Helpers

07_597051 ch03.qxd 10/20/05 1:31 PM Page 39

bit half-baked. Notice in Listing 3-1, for instance, that futureValue is set to 0,
but the other variables aren’t. Setting variables to 0 or other variations on
null is a reflexive habit with many C programmers, though it’s actually not
done in VB (it’s simply not necessary). Apparently, a C programmer wrote
this snippet, as is often the case in VB Help and other areas. (Why don’t VB
programmers write the entire VB Express and .NET Help and language fea-
tures?) Anyway, the C programmer seems to have resisted setting every
declared variable to 0, so that’s an improvement, I guess.

VB automatically initializes local variables to their default values (local vari-
ables are those declared within a Sub, like those used in Listing 3-1). Every
time the Sub executes, all those variables are set to zero — so it’s nonsensi-
cal to set them to zero yourself. It’s as if the bowling pins were lowered by
the machine, but then you trotted down the lane and picked them up, only to
put them down in the same place.

Customizing code snippets
After you insert a snippet, you likely see lines of code highlighted in green
by default. (You can adjust the color by using Tools➪Options➪Environment➪
Fonts and Colors.) In my example snippet (refer to Listing 3-1), the three
InputBox lines are highlighted. If you hover your mouse pointer over a high-
lighted line, you get a “hint” about what you might want to do to improve the
code.

In this example, the hints for all three lines say the same thing: “Replace with
code that returns a Double for the . . .”

From what I’ve seen, the highlighted suggestions in most snippets usually
merely tell you to replace the snippets’ parameters with your own, as shown
in Figure 3-4.

Figure 3-4:
The sugges-

tions about
highlighted
text are not

generally
much use

to you.

40 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 40

Here’s another example: The following snippet draws a rectangle. When you
insert this snippet, VB Express highlights Color.Red and tells you to
“replace with the brush color.” I think you could have figured this out for
yourself.

Dim aBrush As New SolidBrush(Color.Red)

My suggestion is that you view code snippets as a specialized section of Help,
a collection of what Microsoft considers examples of common programming
jobs. Of course, you could claim that figuring monthly mortgage payments
isn’t all that common a task, but what the heck; it’s a start. And, for begin-
ners, the section in the snippets titled Visual Basic Language does, indeed,
include several often-used techniques, such as looping.

“Wow! How can I remember the proper names for all the .NET classes, func-
tions, and arguments?” You can’t. However, VB IntelliSense features can help
you figure out the proper programming syntax and diction for all those tens
of thousands of built-in functions by providing you with suggestions — lists
that pop up while you type a line of code in the code window, as illustrated
earlier in this chapter with the console.writeline command.

Customizing the Way You Work
VB Express offers you a somewhat “lightened” version of the Visual Studio
Editor — a powerful, well-seasoned, very convenient programming environ-
ment. I believe there’s nothing better this side of heaven for writing computer
programs than this IDE (integrated design environment). And, of course, it’s
highly customizable. The following sections walk you through some key cus-
tomizations you may want to make.

Automatic windows
Microsoft does extensive usability testing, spending quite a bit of time with
focus groups, poring over user-submitted wish lists, and employing other tac-
tics to ensure that its applications and utilities are easy to use and include the
features people want. To my mind, this is why its products usually succeed —
why, for example, people migrated to Microsoft Word and Internet Explorer
from the initially more popular competitors, WordPerfect and Netscape.

Another wise tactic Microsoft employs is to assume that it doesn’t know
everything (though there are certainly exceptions to this wisdom). Therefore,

41Chapter 3: At Your Service: Loads of Built-In Helpers

07_597051 ch03.qxd 10/20/05 1:31 PM Page 41

even if people in focus groups vote overwhelmingly for a particular feature,
Microsoft generally makes that feature the default but also allows you to turn
it off if you prefer. That’s what many of the items in the Tools➪Options menu
are: options defaulting to the general preference. But it’s up to you if you
want to change the default settings.

One example is that when you test a VB project by pressing F5, the Output
window does not automatically pop open to show you the progress of the
compilation. The Error List window, however, does open by default. These
are sensible defaults for novices, perhaps, but if you don’t like this behavior,
you can change the defaults by following these steps:

1. Choose Tools➪Options➪Environment (in the left pane of the Options
dialog box).

2. Click Projects and Solutions in the left pane.

3. Select the Show Output Window When Build Starts check box, and
the Output window automatically appears whenever you test a VB
project — you rebel you.

4. Likewise, if you wish, uncheck the Error List option directly below the
Output Window option. See if any other options suit your style.

If you’re unclear about what a given option does and would like addition
help, click the ? symbol in the upper-right corner of the Options dialog
box and then click the option you’re unsure about.

Controlling your keyboard
As you may know, .NET represents a grand unification scheme — an attempt to
bring all computer languages (or most surviving languages anyway) into the
same editor; to make their objects and components usable by any other lan-
guage in the group; to make them work harmoniously within the same IDE; and
to provide, as much as is practical, common protocols, techniques, and tools.

Among the benefits of this drive toward unification is that the features of var-
ious applications are becoming standardized (and none too soon, either). For
example, Word has offered users the capability of redefining the default key-
board shortcuts for years, and VB Express offers this same capability as well.

I’ve always found it useful to redefine the default behavior of the F10 key. I
like to make it save all opened files. It’s a quick way to ensure that my work is
safe from power outages, crashes, and other computer-age annoyances. I just
hit the F10 key now and then, and my work is saved.

All Microsoft applications ship with various default keyboard shortcuts. Ctrl+O,
for example, usually displays the Open File dialog box. Collectively, a set of
shortcuts is known as a mapping scheme. Clearly, life is easier if the same

42 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 42

scheme can be used in all your applications. That’s why I define the F10 key
in the VB IDE as Save All Files.

Redefining keys is easy; the process in VB Express is similar to the one for
Word and other Microsoft applications. The following steps explain how to
customize the F10 key, and you can use a similar process to customize any
other keyboard shortcut that’s helpful to you:

1. Choose Tools➪Customize.

The Customize dialog box opens.

2. Click the Keyboard button.

You see the Keyboard option, as shown in Figure 3-5:

3. Scroll the list of actions and select File.SaveAll.

Note that the menu items are listed in the format MenuTitle.Action — in
this case, the File menu and the Save All action.

4. Click in the Press Shortcut Key(s) textbox.

The textbox gets the focus (the insertion cursor blinks within the
textbox).

5. Press F10.

F10 appears in the Press Shortcut Key(s) textbox, and because F10 is
already assigned to Debug.Stepover, you see that action listed in the
Shortcut Currently Used By list box.

6. Click Assign.

7. Click OK.

Now, whenever you press F10, all open files are saved.

Figure 3-5:
The dialog

box that
you use to

redefine
the IDE

keyboard.

43Chapter 3: At Your Service: Loads of Built-In Helpers

07_597051 ch03.qxd 10/20/05 1:31 PM Page 43

Changing toolbars
VB permits you to add and remove items from toolbars, as well as add and
remove entire toolbars from the IDE. To do this, choose Tools➪Customize
and then click a tab based on what you want to do:

� The Commands tab lets you manage individual items within toolbars.

� The Toolbars tab lets you manage entire toolbars.

Your IDE, your way
Many programmers like to arrange the IDE as shown in Figure 3-6. This layout
is practical for many programmers and is close to the VB default layout — so
Microsoft’s focus groups must have indicated its popularity. This layout keeps
only the Solution Explorer and Properties windows always visible, and the
Toolbox is tabbed on the left side so that you can quickly access it.

I like to give myself even more coding room. I select the Auto Hide option
from the context menus that appear when I right-click the title bar of the
Solution Explorer, Properties window, and Output window. This hides them,
but exposes a tab, just like the Toolbox. In this way, you have the maximum
screen space for your primary work area: the design/code window.

Figure 3-6:
A popular

layout.

44 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 44

You can drag the various child windows around to different positions in the
IDE, and you can “dock” them, meaning they attach to each other or to the
frame of the IDE. (In Figure 3-6, the Solution Explorer and Properties windows
are docked to each other and also to the right side of the IDE itself.) Sometimes
you need to drag windows around and drop them in various ways to finally get
them to dock where you want them — so you should experiment. Also, use the
View menu to display other windows that you want to see.

Aligning and Sizing Controls
To illustrate yet another way that VB assists you while you’re programming,
take a look at the cool tools that help you position and size controls.

Controls, such as buttons and text boxes, that you add to forms aren’t auto-
matically pretty. They aren’t necessarily lined up vertically or horizontally,
nor are they the same size. But they should be if you want your work to look
polished. VB provides some quick ways to format your controls:

� Basic lines: While you drag controls around on a form, lines appear
when the controls are aligned, as shown in Figure 3-7.

� Snap to Grid feature: This feature is handy when controls on a form are
haphazardly arranged. A grid sits beneath the controls on a form. The
Snap to Grid feature forces controls to automatically align to this grid —
like magnets jumping onto a refrigerator door.

By default, the Snap to Grid feature is turned off in the Express IDE
because, I assume, it scares novices until they realize what it is (though
it’s also used in the Windows desktop to align icons). Anyway, you should
turn it on because it makes it easier for you to drag controls into align-
ment. To turn the feature on, choose Tools➪Options➪Windows Forms
Designer. Select SnapToGrid and change its value from False to True. In
this dialog box, you can also adjust the size of the grid and its visibility.

45Chapter 3: At Your Service: Loads of Built-In Helpers

Going back to the default layout
You can manipulate the windows within the IDE
and their behaviors in various ways by dragging
them or by choosing options on the Windows
menu. You can tab, tile, or dock various win-
dows and position them in various ways. If you
become hopelessly confused, you can reset
the layout to the default VB arrangement
by choosing Tools➪Options➪Environment➪

General. Click the Reset Windows Layout button
to restore the default.

In that same area of the Options dialog box, you
can also choose between tabbed or MDI-style
child windows. (MDI stands for multiple docu-
ment interface, and no tabs are involved; instead,
you can tile various windows within the IDE.)

07_597051 ch03.qxd 10/20/05 1:31 PM Page 45

� Make Same Size command: This command actually aligns and sizes
selected controls. To use it, drag your mouse around all the controls
(which selects them as a group) and then choose Format➪Align and
Format➪Make Same Size.

� Keyboard shortcuts: To align, click one control to select it and then
press Ctrl+Arrow keys to move it. To resize the control, press
Shift+Arrow keys.

Using Help
The Visual Studio Help system, to which VB Express has access, is the prod-
uct of decades of refinement. Most of that refinement is useful and has pro-
duced a huge library of code examples. Alas, along with the refinement has
come some regrettable corruption as well.

Way too many VB Express Help code examples, and the accompanying narra-
tive that struggles to “describe” them, were written by C programmers. Most
of these people are doubtless fine citizens, in their own way, but are too often
entirely clueless about how VB works and about the way of thinking that
underlies the Visual Basic language.

The philosophy that guides VB is clarity: Make the diction, syntax,
punctuation — everything — as easily understood, as convenient, and as
English-language-like as possible. The C-languages, like C++ and Java, have
the opposite philosophy. They fairly celebrate obscurity, needless complex-
ity, bizarre punctuation, and other inefficiencies that slow up programming,
but do help guarantee job security.

Figure 3-7:
Align your

controls by
using visual

hints, like
this line that

indicates
when the

right sides
of the

TextBox and
button are

aligned.

46 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 46

Alas, when you go for Help in VB Express, all too often you find jargon and
confusion rather than effective help. First, the example is probably too long,
with lots of unnecessary distractions that don’t illustrate the main technique
cleanly and directly. Worse, what code you do find is too often written by
hapless C people, so it’s not actually VB code but rather a kind of nasty
hybrid somewhere between C and VB. Sure, it sometimes runs when you
paste it into a program, but try to understand what it does and you can get
quickly confused. It’s hard to learn from it. And, too often, it doesn’t run; then
you’re really up a tree.

That said, some code examples are written in a VB-like fashion — and they
work — and some of the text descriptions are understandable — having been
written by non-propellerheads who understand English and Visual Basic and
who can write comprehensible sentences. So try searching Help when you
run into a problem, and maybe you’ll get lucky. Here are some other help
resources where you may find answers to your questions:

� The Start Page in VB Express, under “Connecting to the Community,”
offers additional online resources. Click the Start Page tab at the top of
the code or design pane and then find the Getting Started area on the
left side.

� In the Help page, too, you can find links to additional resources, partic-
ularly in the Search feature — it looks both locally (on your hard drive)
and online for answers to your questions. Two online resources are
searched: MSDN (Microsoft Developer Network) and the “Code Wise”
community.

� On newsgroups, the court of last resort, experts can often answer your
questions when you can’t find answers anywhere else. To get to the
newsgroups, click the Post a Question link on the Search tab, as shown
in Figure 3-8.

But don’t despair — Microsoft has been trying to make VB Help better since
forever — or at least since 2000, when .NET appeared and so many non-VB
programmers took over the job of trying, and often failing, to write VB Help
examples. Anyway, that’s when I first noticed the terrible turn toward C-speak
in VB Help. For the past five years those in charge of VB at Microsoft have
been, I assume, increasing the ratio of VB people to C people working on
VB Help. So, perhaps in the future, a miracle will occur, and the majority of
VB Help will be written by people who actually know and understand the VB
language.

47Chapter 3: At Your Service: Loads of Built-In Helpers

07_597051 ch03.qxd 10/20/05 1:31 PM Page 47

Error or “Exception” Helpers
When VB Express detects an error, it sometimes points you in the right direc-
tion about how to fix the error — or at least gives you ideas about where to
look for help.

Following the insipid practice of using C-language jargon, this new feature is
called the Exception Helper — though what they mean to say is error, not
exception. You can see an example of this use of exception in Figure 3-9.

Figure 3-8:
Last-resort

help can
come from

news-
groups.

48 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 48

If you try to access a file that doesn’t exist on the hard drive, you get the
error messages shown in Figure 3-9. A closer look at a similar message is
shown in Figure 3-10.

Compared to previous error handlers, the new Exception Helper is a real
improvement. Not only do you avoid having to access More Details, which is
usually less helpful, but you also often get an actual specific, helpful descrip-
tion of the error itself.

Figure 3-10:
This error is

correctly
identified
and very

good advice
is given

about how
to fix it.

Figure 3-9:
The new

Exception
Helper in

action,
advising you

that an
exception

(error)
wasn’t

handled
(fixed).

49Chapter 3: At Your Service: Loads of Built-In Helpers

07_597051 ch03.qxd 10/20/05 1:31 PM Page 49

50 Part I: The Basics of Visual Basic Express

07_597051 ch03.qxd 10/20/05 1:31 PM Page 50

Chapter 4

Tackling Essential Tools
In This Chapter
� Understanding the Toolbox

� Examining the TextBox

� Adjusting properties

� Mastering the primary properties

� Using the Solution Explorer

This chapter is a tour of the primary programming tools in the main VB pro-
gramming window: the Toolbox, Property window, and Solution Explorer.

Arguably the single most significant improvement in computer programming
history took place in the early 1990s with the introduction of the Visual Basic
Toolbox. Before that collection of components, programmers had to create
the user interface mostly by hand. Buttons, textboxes, tables, and other fea-
tures were time-consuming to program. With Visual Basic’s Toolbox, you just
drop completely functional components onto your forms (or as they’re
known to users, your windows).

You use the Property Window to adjust the qualities (the properties) of the
tools (controls) in the Toolbox. For example, it’s in the Properties Window
that you can change the font size or text color for a TextBox.

The Solution Explorer is your window into the entire project. This window
displays all the projects — you can have more than one — and files in your
“solution.” It’s like a small version of Windows Explorer that’s dedicated just
to the program you’re currently working on.

Introducing the Toolbox and Its Controls
By default, the Toolbox is a tab on the upper-left side of the main program-
ming window. To see it,

1. Start Visual Basic Express and choose File➪New➪Project.

08_597051 ch04.qxd 10/20/05 1:33 PM Page 51

2. Double-click the Windows Application icon.

Now you see the Toolbox tab in the upper left. (If you don’t, choose
View➪Toolbox.)

3. Glide your mouse pointer over the tab, and the Toolbox slides out.

The Toolbox is where the controls (also called components) sit, waiting for
you to double-click or drag and drop one to place it on a form. For conve-
nience, most of the controls you’ll likely use often are available in the
Common Controls section in the Toolbox:

� PictureBox: Holds a graphic.

� Label: Used to add captions to PictureBoxes and other controls. This is
read-only at run time; the user cannot edit a label.

� TextBox: Doubtless the TextBox is among the most often used Visual
Basic components — second only to the Button control, I would guess.
TextBoxes are used for both input and output: They display text or
accept the user’s typed text. However, if you’re merely adding a caption
to identify the purpose of, say, a CheckBox, use a Label instead. A
TextBox would be overkill.

The TextBox is so important that learning more about it is worth your
time. A TextBox behaves like a simple word processor, but it does have
its limitations. For instance, at any one time, it displays only a single font
and a single type style (such as italics) for the entire contents. Also, it
displays only one size of text at a time. You change the font, style, and
size by changing the TextBox’s properties — but the entire contents of
the TextBox then change. You can’t change a single word, for example,
to italics. It’s all or nothing.

Note that the RichTextBox control on the Toolbox does not suffer from
several of the ordinary TextBox’s limitations. You might want to experi-
ment with the RichTextBox if your project has special word-processing
needs or if you expect to exceed the TextBox’s 65,535-character (about
10,000 words) limit.

� GroupBox: A zone that contains other controls, most specifically a way
to group RadioButtons so they work as a unit.

� Button: A very common control that acts like a button on an electronic
device, activating something. For example, most message boxes have an
OK button on them. You click it to close the message box.

� CheckBox: CheckBoxes usually appear in a group, allowing you to select
any or all of a set of options. For example, you could display CheckBoxes
to allow the user to choose text qualities: italic, bold, or underlined. Any
combination of these options is permitted.

� RadioButton: Only one RadioButton in a group can be selected at a time,
just like the row of buttons on a car radio that choose different stations.
Click one button and the previously depressed button is deselected. In

52 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 52

other words, use RadioButtons for a set of options which are mutually
exclusive, such as a group of RadioButtons allowing the user to specify
the text color.

� ComboBox: Similar to a ListBox, but the user can type text into a
ComboBox.

� ListBox: Presents a list to the users from which they can click a selection.

Unfortunately, not all the most common controls are on the default view. You
must scroll (click the down-arrow icon at the bottom of the Toolbox) to
access the seven highly useful Dialog controls, such as the OpenFileDialog.
I cover the dialog boxes in Chapters 7 and 10.

Also, some controls are a bit strange: The ScrollBar controls aren’t of much
use because the TextBox, which is most likely to need scroll bars, includes its
own scroll bars. But for every dubious control, you find quite a few really
useful ones.

Most controls save you quite a bit of programming time. For example, the
DataGridView control is an excellent, full-featured, quick way to connect a
database to your application and to display it for user interaction. And you
can add many, many other controls to the Toolbox; just choose Tools➪
Choose Toolbox Items. Precisely what controls are available here depends on
various factors, such as what programs you’ve installed or if you’ve added
third-party controls, for example.

If you’re unclear about what a control can do, press F1 and use the Index fea-
ture in Help to look it up.

Adjusting a Control’s Properties
Many Visual Basic components have quite a few properties — the TextBox
has more than most — and you can change these properties, depending on
how you want the control to look and work. Before you get started, it’s help-
ful to understand a few points about properties:

� You usually don’t have to change very many of the default properties.
In general, each property defaults to its most commonly useful value.

For instance, all VB’s controls’ Visible properties default to True rather
than False because you almost always want your components to be visi-
ble to the user. However, some controls, such as the Timer, are used inter-
nally by your program and are never made visible to the user. Those few
controls have no Visible property at all. Also, they are not displayed on
your forms. Instead, they are placed on a “tray” just below the form, visi-
ble to you, the programmer, only while designing your program.

53Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 53

� You can change different properties at different points in the develop-
ment process. Some properties, such as the Name property, can be
changed only at design time (while you’re writing your program). Other
properties, such as the Text property, can be changed during either design
time or run time (while the program is running). Yet other properties,
such as the contents of a ListBox, can be changed only during run time —
by the programming you write that executes when the user runs the pro-
gram. Every property you see in the Properties window can be set at
design time.

� It’s important to understand that components start out with all their
properties in one state or another. The Width property, for example, is
set to some width, and the Size property contains two numbers that
specify the size of the TextBox. In any case, the conditions of the proper-
ties determine what the user first sees or how the component first
behaves when the application runs.

Changing a property in
the Properties window
The TextBox is such an important component that I use it as an example of
how to change a control’s properties. Here are the basic steps:

1. If necessary, click the Windows Forms tab in the Toolbox (which
should be selected by default). Then double-click the TextBox icon in
the Toolbox.

A TextBox appears on your form. Also notice the Properties window in
the lower-right corner of the main window.

Now you’ve added a TextBox component to your form. After that, you
run up against an unfortunate (and happily rare) inefficiency. Somebody
back in the beginning made a bad decision about the default font size
property setting for the TextBox. It’s 8.5 points — way too small for most
uses. Use 11 instead.

2. If the Properties window isn’t visible, choose View➪Properties Window
or press F4.

The restless folk at Microsoft rarely see a phrase they can’t “improve.”
So the language describing programming and other Microsoft technolo-
gies isn’t stable, or even slow to change. Each new version of Microsoft
products brings with it some confusing and unhelpful changes in the
vocabulary used to describe the products. Since 1990, a major fixture of
Visual Basic programming has been known as the Property window. Now,
in VB Express Help, you see it described as the Property Editor. Perhaps
this is an error; perhaps it’s yet another pointless name change. You’ve
been warned.

54 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 54

3. To increase the size of the TextBox’s Font property, click the TextBox
to select it.

Selecting a control during design time causes its properties to be dis-
played in the Properties window.

4. Click the Font property in the Properties window, and you see an
ellipsis (. . .) button appear, indicating that there is more to see.

5. Click the ellipsis button to open a dialog box in which you can change
several qualities of the font. Change it to 11 in the Size list and then
click OK to close the dialog box.

Now you’ve got a good, usable TextBox.

If you’re going to use more than one TextBox in a project, you can avoid
having to adjust the font size property for each new TextBox. Simply click the
TextBox that you just finished cleaning up and press Ctrl+C to copy it. Then
press Ctrl+V to paste a new TextBox with all the same properties inherited
from its parent. Same size, same color, same font, same everything except its
position (the Location property specifies that it be slightly down and to the
right of its parent, so you can see it) and its Name property, which defaults to
TextBox2. (The original was TextBox1.)

Some important properties
(and many that aren’t)
This section dives into the TextBox’s properties, covering each major prop-
erty in turn. A total of 53 properties appear in the Properties window when a
TextBox has the focus (is clicked and therefore is surrounded on the form by
a frame with white boxes at each corner). Many of these properties are also
properties of other components, as well as being properties of forms. So you’re
going to find out about the uses and features of some important, common prop-
erties by looking through the following descriptions. But don’t worry about
memorizing most of them. Most of them are — to put it politely — rarefied.

For example, the BackColor property is fairly universal — most components
have this property so that you can change their color. But a major lesson I
hope you internalize from the following in-depth sections is that the majority
of properties are rarely used. I tell you which ones are valuable and which
ones you can usually just forget.

Some of the TextBox properties, such as the Font property, include a set of
additional properties (size, bold, underline, and so on). These multi-property
collections are indicated in the Properties window by a small + next to the
primary property name. When clicked, this + reveals an ellipsis (. . .) button.
When you click the ellipsis button, a dialog box opens in which you can edit
the settings for the group of properties.

55Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 55

The following list is in the alphabetical order that you see in the Properties
window if you click the Alphabetic icon (the little “AZ”) at the top of the Prop-
erties window, which I suggest you do. After all, the default categorized view
is a pretty loose set of often misleading groupings. At least that’s my view.

DataBindings
The DataBindings property is used to attach a control to a database.
Chapter 12 covers this property in detail.

Name
This is the ID for your component. It’s how you specify it when writing code:

TextBox1.Text = “Hello”

Some programmers like to use the default names that VB gives each control
when the control is added to the form. Others like to change the Name prop-
erty in the Properties window to more accurately describe the purpose of the
control, such as ZipcodeField for a TextBox in which the user is supposed
to enter her zip code.

In the Properties window, DataBindings and Name are placed within paren-
theses. The parentheses force these two important properties to the top of
the list whether you show the Properties window in Alphabetical or
Categorized view.

AcceptsReturn, AcceptsTab
The AcceptsReturn and AcceptsTab properties describe how VB reacts to
the user pressing the Enter (Return) and Tab keys. By default, pressing Enter
moves you down to the next line in a MultiLine-style TextBox. If you set
AcceptsReturn to False, pressing Enter causes a simulated mouse-click on
the default button on the form. If you set AcceptsTab to True, a tab (move
over five spaces) is inserted into the text when the user presses Tab. If you
set it to False, pressing Tab moves you to the next control on the form,
according to the TabIndex property (described later in this section).

Accessibility
The three new Accessibility properties provide features for people with
disabilities.

AllowDrop
AllowDrop determines whether a TextBox permits drag-and-drop operations.

56 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 56

Anchor
Anchor is a valuable property. It determines whether and how a control
stretches if the user stretches the form. The default Anchor value for the
TextBox is Top, Left — which means that the TextBox doesn’t enlarge or
shrink if the user drags the form to resize it. To allow a user to resize a
TextBox, click Anchor in the Properties window, click the down-arrow icon, and
then click all four of the image map edges. Press F5 to run the program and you
can see the TextBox grow and shrink as you drag the form to resize it.

AutoCompleteCustomSource, AutoCompleteMode, AutoCompleteSource
Word and other text-input applications offer users shorthand abbreviations
that are automatically completed by the application. For example, in Word,
you can choose Tools➪Autocorrect Options and then do what I do and enter
n as the shortcut and Richard Mansfield as the AutoCompletion phrase.
That way, every time I need to type my name, I can just type n and press the
spacebar. Word substitutes my entire name for the n.

AutoCompleteMode works somewhat like that. If you’re creating a database
program and you expect that users will often have to type in a filepath,
Internet address, or some other predictable text, set the AutoCompleteSource
property to CustomSource and the AutoCompleteMode to Append or Suggest.
Then type some phrases or addresses into the AutoCompleteCustomSource
property. At the time of this writing, this feature is not yet activated.

AutoRelocate
Some controls can “bump” themselves out of the way, moving a bit to remain
visible if another control is dragged onto them or otherwise overlaps them.
This property enables a control to move in such situations. AutoRelocate is
not yet working at the time of this writing.

AutoSize
AutoSize determines whether the size of the TextBox changes to accommo-
date any changes in the font or font size.

BackColor
If you want to, you can change a TextBox’s BackColor property to pink or
blue or some other color (but it’s best to leave it white in most applications).
Similarly, you can change the text color by adjusting the ForeColor property.
Again, you should probably leave well enough alone. The default black text
on a white background is not only more legible, it’s also more dignified.

57Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 57

BorderStyle
Leave the BorderStyle (formerly Appearance) property alone. It provides
part of the 3-D framing effect. If you change it to FixedSingle, you turn back
time so that the user interface looks like it was designed before Windows 95.
If you set it to the third option, None, you go back even further in time —
regressing all the way to DOS.

CausesValidation
The CausesValidation property can remain set to True with no harm done.
When set to True, the Validate event is triggered when the focus shifts from
the TextBox to another component (when the user clicks it or tabs to it). This
property comes in handy only with database work — forget about it for now.

CharacterCasing
The CharacterCasing property can be set to force all text to be lowercase,
uppercase, or mixed.

ContextMenuStrip
You can add context menu controls to your form from the Toolbox. A particu-
lar context menu control can be assigned to a control by specifying the con-
text menu’s Name property in the ContextMenuStrip property.

Controls
Controls is a new property that represents a collection of any child controls
within the current control. Controls isn’t listed in the Properties window,
but it is in the IntelliSense list, the list of properties and methods that pops
out when you type the following into the code window:

TextBox1.

As soon as you type the ., VB displays the list of possible members you can
add after that period to access qualities (properties) and behaviors (meth-
ods, such as Hide or Clear) of the TextBox.

Cursor
The Cursor property is what used to be called the MouseIcon property, and
it determines what the mouse pointer looks like when it is on top of the
TextBox. I advise against changing this property unless you’re sure you won’t
confuse the user.

Dock
Dock determines whether the control moves to one of several positions
within its container (the form). Changing this property also changes the size
of the control.

58 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 58

Enabled
The Enabled property, if set to False, prevents users from typing anything
into the TextBox (which is said to be disabled). Any text already in the TextBox
appears light gray rather than the default black to indicate that the TextBox
is disabled.

You should disable a component when it makes no sense for the user to try
to use it. For example, suppose you have several TextBoxes on a form on
which the user is supposed to fill in data about himself, and he fills in the
TextBox for his age with 44 years. You could then disable a check box in
which he is supposed to indicate whether he is a member of AARP. You have
to be over 50 to join AARP, so it makes no sense to leave that check box
enabled. Enabled is often used in programming in response to situations like
the one described in this AARP example. The code for this is
TextBox1.Enabled = False.

Font, ForeColor
Font defines the typeface, such as Times New Roman or Arial. Font also
includes such typeface features as boldface and italic. ForeColor defines the
color of the text characters.

GenerateMember
This is some more OOP stuff. You’ll probably never use it, but I can’t promise
that. I have no idea what the Help description is trying to say. It uses phrases
like “type definition,” “root object,” “member variables,” and “extender prop-
erty.” This kind of talk has lots of meaning to OOP geeks, but is of little use to
most of us normal, ordinary programmers. Perhaps, by the time the Help
system is finalized, somebody who writes English sentences will have trans-
lated the geekspeak so you and I can understand it. Then again, probably not.

HideSelection
The HideSelection property is yet another highly esoteric option. Text can
be selected within a TextBox — by programming (as is done by a spell-
checker to signal a misspelled word) or by the user dragging the mouse over
some text. In either case, the text is highlighted. HideSelection, when set to
False, means that selected text in your TextBox remains highlighted, even if
the TextBox loses the focus (meaning that the user clicks some other form to
give it the focus).

I can’t really think of a use for this HideSelection property, and, as you’ve
seen in this chapter, some other properties are just like it: highly specialized.
I suggest that you not clutter your brain trying to memorize these rare birds.
What you do need to remember is that VB contains hundreds of program-
ming features, and if you want to do something highly specialized, you proba-
bly can. The way to find out how to accomplish your specific goal is to press
F1, click the Search Tab in Help, and type some words that describe your

59Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 59

highly specialized job. Unlike the Help Index feature (which locates major
topics), the Search feature reads through the entire Help file, looking for spe-
cialized words or phrases.

ImeMode
This handles katakana and other aspects of Japanese writing. If you’re like
me, you find this a puzzling feature, and have serious doubts about its utility
in your future work.

Lines
The Lines property is a collection (an array) of the individual lines of text in
the TextBox. Each line is distinct from the previous line because the user
pressed Enter to move down. You can access the individual lines by using
code like this:

Dim x as String
x = TextBox1.Lines(2)

This example code puts the third line down from the top of the TextBox into
variable x. Note that (2) represents the third line and not the second — it’s
the old “zeroth” problem in computer language lists: The first line of text is
Line 0.

Location
The Location property, with its X (horizontal position) and Y (vertical posi-
tion) attributes, replaces the previous Left and Top properties. However, you
can still use Left and Top in your code, oddly enough, but they don’t appear
in the Properties window, consistency being the hobgoblin of little minds.

You can adjust these X and Y properties in the Properties window, or, to move
a control dynamically during run time, you can add code like this to your pro-
gramming code:

TextBox1.Left = 14

Locked
The Locked property is similar to, but less drastic than, setting the Enabled
property to False. When set to True, Locked permits the TextBox’s text to
be scrolled, and even highlighted, by the user. It also permits you, the pro-
grammer, to change the text: TextBox1.Text = “This new text.” The
text is not changed to a gray color. However, as when Enabled is set to
False, the user can’t edit the text.

Margin
Specifies the space between the control and other controls on a Form. Try
adding a couple of controls to a form and then setting one of their Margin

60 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 60

properties to 12 or so. See what happens when you try to drag the control
near another control (a dotted line appears when the margin is reached). The
Margin property defaults to 3 pixels.

MaximumSize
MaximumSize specifies in pixels how large (width, height) the control can be
resized.

MaxLength
The MaxLength property lets you specify the maximum number of characters
the user can enter into the TextBox. This is useful if you want users to enter
information such as a zip code, the length of which you know in advance. The
default length is 32,767 characters.

Modified
The Modified property tells you whether the text has been changed by the
user since the TextBox was created or since you last set the Modified prop-
erty to False. Modified doesn’t appear in the Properties window but can be
used in your programming code to detect whether you need to save the con-
tents of the TextBox to disk (because it has been edited by the user).

Modifiers
The Modifiers property simply drops down a list of the various scope decla-
ration keywords: friend, public, and so on. This specifies which categories
of other objects can communicate with the control. For details about scoping,
see Chapter 5.

MinimumSize
Same as MaximumSize, except it specifies how small the control can be.

MouseIcon
The traditional MouseIcon property has been renamed Cursor, which I dis-
cuss earlier in this chapter. I mention this only for experienced programmers
who expect to find MouseIcon still in the list of properties.

MultiLine
The MultiLine property determines whether the TextBox can display more
than one line of text. If set to False, users can type in as much text as they
wish, but the Enter key won’t work. If the text grows longer than the width of
the TextBox, it scrolls horizontally as the user types.

Padding
This specifies the distance between a control’s contents and its frame or border.
It defaults to zero pixels, but a TextBox in particular looks more professional

61Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 61

if you give it around 5 pixels padding, so the text doesn’t butt up against the
sides of the box.

PasswordChar
The PasswordChar property lets you specify which character appears
when the user types a password. In other words, if you want to use a
TextBox as a password-entry field for the user, you can type a * symbol as
the PasswordChar. If you type in any character as the PasswordChar, the
TextBox displays only that character as users type their passwords (for
example, ***********). You know the routine. (I’ve always wondered
whether this subterfuge is all that necessary — after all, do you have
people hovering over your shoulder all the time, just waiting to see your
password? I suppose it’s better to hide it though — there are lurkers.) Note
that the MultiLine property must be set to False for the password feature
to work properly. Unless you’re specifically using a TextBox for password
entry, leave this property alone, empty.

ReadOnly
The ReadOnly property at first seems baffling. When set to True, the text in
the TextBox can only be “read,” not changed. ReadOnly seems rather unnec-
essary, given that the Enabled property does the same thing. The difference?
With Enabled = True and ReadOnly = False, the text in the TextBox can
at least be copied.

RightToLeft
For an English speaker, the RightToLeft property has no value and should
be left at its default. However, some languages, such as Arabic and Hebrew,
run text from right to left. You would set RightToLeft when using such lan-
guages so that vertical scroll bars appear on the left side of a TextBox.

Scrollbars
The Scrollbars property enables you to add a horizontal or vertical scroll
bar to your TextBox so that users can scroll through a block of text that is
larger than the size of the TextBox. However, even without scroll bars, the
user can always press the arrow keys, the PgUp and PgDn keys, the spacebar,
and so on to move through text in the TextBox.

ShortcutsEnabled
Defaulting to True, this property allows you to turn off the familiar (and
sometimes not so) shortcut key combinations, such as Ctrl+C to copy
selected text. Why you would want to deprive users of their accustomed
shortcut keys is a mystery to me.

The Cheat Sheet at the front of this book lists the common shortcut key
combinations.

62 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 62

Size
The traditional, classic, pre-VB Height and Width properties are no longer
available. They have been replaced with a Size property that includes —
what shall we call them? — a pair of “subproperties” named Height and
Width. Size is expressed by default in pixels. Experiment by changing the size
property to see the effect on a control.

TabIndex
The TabIndex property defines the order in which components get focus as
the user repeatedly presses the Tab key to move among them.

TabIndex is useful because it offers a quick way for the user to move among
the input components (TextBoxes, CheckBoxes, and so forth) on a form — all
without having to remove his or her hands from the keyboard. However,
some components, such as a PictureBox, are not usually employed as user-
input devices, so you can set their TabStop properties to False to eliminate
them from the TabIndex group. Components such as Labels, which can
never be used as input devices, simply have no TabIndex property in the
first place and are therefore never included in the tabbing.

Sometimes, though, you do want to permit a PictureBox to become part of
the TabIndex list so that the user can interact with it. How can a PictureBox
ever be used as an input device, you ask? A simple example is when you put
some programming into the PictureBox’s Click event. When the picture is
clicked or, in this case, when the user tabs to it and presses Enter, something
happens. You might display several small PictureBoxes, each containing a dif-
ferent image — perhaps a car, a bus, a train, and a plane. When the user
clicks one, a phone number for arranging that kind of transportation appears.

Here’s a more sophisticated example: Put a map of Italy into a PictureBox in a
cookbook application, let users click a location on the map, and then display a
list of recipes typical to the locale that was clicked. (The x and y coordinates
for the MouseDown event tell you exactly where, on a graphic, the user clicked.)

TabStop
The TabStop property, when set to False, removes the component from the
TabIndex list.

Tag
The Tag property is a kind of sticky note that you can attach to a component.
You can type in some unique text as a way of identifying the component when
it is passed to a procedure. Tag is also sometimes used like a little cookie —
the Internet type, not the scrumptious snack type — holding some informa-
tion that is supposed to stick with the control and always be available.

63Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 63

Text
The Text property contains the text in the TextBox. It’s similar to a string
variable, and you can programmatically read it:

Dim s As String
s = TextBox1.Text

or write text to it:

Dim s As String = “Here’s some text”
TextBox1.Text = s

TextAlign
The new TextAlign (formerly Alignment) property offers three alternatives
to the traditional left-justify (default) text alignment. You can center or right-
justify the text, but such adjustments are rarely of any use (unless you spe-
cialize in wedding invitations, in which the centered alignment is always the
necessary style).

UseSystemPasswordChar
This is . . . what shall we call it? . . . specialized? If set to True, it overrules the
PasswordChar property (if any) and instead specifies that some other charac-
ter should be used instead (perhaps a hyphen rather than your PasswordChar
“*” or whatever). Why this matters at all to anyone is hard to understand.

UseWaitCursor
The WaitCursor is the small hourglass icon that replaces the normal mouse
arrow pointer when the computer is busy, such as when loading a long file.
Set this property to True in your code if some lengthy process prevents the
user from interacting with your application or TextBox. It alerts the user that
the computer has not frozen, but is quite busy temporarily. (Of course, if the
program is locked up, that hourglass still shows up.)

Visible
The Visible property determines whether the user can see the TextBox.
During design time, components are always visible. But during run time, if
you set the Visible property to False, the user can’t see the component.
When would you want to make a component invisible? Read on.

Although it’s not traditional, Microsoft and other developers recently started
employing a new way of interacting with users. For example, if the user clicks
a button labeled “Additional Features,” the button is set to Visible = False
and is replaced with two or three RadioButtons from which the user can

64 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 64

select additional preferences. Those RadioButtons were always sitting
there, but their Visible property was False until the user clicked the
button, revealing them.

A second use for Visible is when you want to use a feature of a component,
but you don’t want the user to see that component. The most frequent use of
this trick is to employ an invisible ListBox. ListBoxes can alphabetize. You
can assign a list of names to a ListBox, set its Sorted property to True, and it
organizes the names for you. However, users never need to see this ListBox if
they don’t need to interact with it. You just wanted to borrow the alphabetiz-
ing capability of the ListBox control.

WordWrap
The WordWrap property mystifies me. I can’t imagine why you would ever
want to set it to False. (Our tech editor, whom I esteem, says he sometimes
uses it to make lines of formatted text, such as programming code, easier to
read.) Do so, and if users type a line longer than the width of the TextBox,
instead of automatically moving to the line below, the text scrolls off to the
left to accommodate the super-long line they’re typing. This is the way a
TextBox behaves if its MultiLine property is set to False. Why you would
do it with MultiLine set to True (creating a TextBox that can display multi-
ple lines) is beyond me. When WordWrap is set to True, if the user presses
Enter, a new line of text begins.

Enabling Users to Change Properties
Many applications allow the user to adjust some of its qualities — the default
font, the colors, the position of toolbars, and so on. Obviously, any changes
that the user is permitted to make must be stored on the hard drive. If not,
the user has to repeat the selection every time the program runs.

Application Settings is a new feature, not found in previous versions of VB,
and it’s supposed to be a convenient way to save information between run
times. Here’s the problem that the Application Settings feature attempts to
solve: Where do you store user preferences?

Also, the application itself might want to store certain types of data separate
from the application’s own executable file. Adjusting data (such as an
Internet address for Help) in a separate file is marginally easier than recom-
piling the entire application’s executable file if that address is embedded
within the application’s source code. But for this dubious convenience, you
pay a pretty stiff price in having to deal with the complicated Application
Settings technology.

65Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 65

How do you load and save user or application settings if you want to allow
users to change, for example, the color of the text? With the Application
Settings feature, it’s ridiculously complex. You have to create a class, create
properties, import a namespace, and on and on. On top of that, VB itself cre-
ates around 60 lines of programming code to help accomplish this simple job.
To see this horror story, click the Show All Files icon at the top of the
Solution Explorer and then locate and double-click MySettings.vb (it’s
listed under MySettings.settings).

Unless Microsoft vastly simplifies it, I suggest you avoid using this mon-
strous, overwrought Application Settings technology entirely. Unless you’re
creating a major business application with all kinds of complicated require-
ments, Application Settings is horrifying overkill. It’s one of many evidences
that Object Oriented Programming promotes code bloat and makes fantastic,
and often pointless, demands on the programmer. If you’re merely trying to
save some initialization values, using Application Settings is way more effort
and difficulty than you need. It’s like using a wind tunnel to shuffle a deck of
cards. Messy, unnecessary, and, in the final analysis, rather stupid.

Working Around Application Settings
Instead of using Application Settings, just create a little file of your own that
stores any initialization information on the user’s hard drive. Save the data in
a file named, perhaps, InitInfo.txt or Initialization.ini, in the same
folder where the application resides. Then, in the Form1_Load event (the first
form that loads when the program executes), just open the file, read in the
settings, and apply them to the appropriate controls. Here’s an example that
shows you how to save and read text size and color information from such a
custom file.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

TextBox1.Text = “Sample text...”

Dim a As String

Dim sr As New System.IO.StreamReader(“c:\InitInfo.txt”)
a = sr.ReadLine
Dim s1 As Single = CSng(a)
Dim fnt As New Font(“Times New Roman”, s1)
TextBox1.Font = fnt

‘get the color
a = sr.ReadLine
Dim c As Color
c = System.Drawing.Color.FromName(a)
TextBox1.ForeColor = c

66 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 66

sr.Close()

TextBox1.Select(0, 0) ‘turn off TextBox selection bug

End Sub

And to save the current status of the size and color properties when the pro-
gram shuts down (in case the user modifies them):

Private Sub Form1_FormClosing(ByVal sender As Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

Dim sw As New System.IO.StreamWriter(“C:\InitInfo.txt”)

‘each time you WriteLine, a carriage return (Enter keypress)
‘is added automatically
sw.WriteLine(“42”)
sw.WriteLine(“yellow”)
sw.Close()

End Sub

To test this example, use Notepad to create a file and save it as C:\InitInfo.
txt. This is how the file should look in Notepad:

23
blue

The first line specifies the font size; the second, the color. Be sure to press
Enter after the color to add a carriage return character to the end of the file.

Now press F5 in VB to execute the program. It should read the 23 and blue
information and change the TextBox’s properties. Stop the program, which
should cause 42 and yellow to replace the original 23 and blue in the .txt
file. Now press F5 to run the program again and see the text change size
and color.

A more complex but flexible Application
Settings workaround
If you want to get fancy and use the more complicated TextFieldParser
object — which looks through data separated by any kind of delimiter (sepa-
rator), not just a carriage return — substitute this next Form_Load code for
the simpler StreamReader in the preceding section. Although more compli-
cated, this approach adds flexibility because TextFieldParser has features
that specialize in parsing text:

67Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 67

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

TextBox1.Text = “Sample text...”

Using aParser As New System.Text.Parsing.TextFieldParser(“c:\ InitInfo.txt”)

aParser.TextFieldType = System.Text.Parsing.FieldType.Delimited

‘ the vbCr means that the data -- size, then color -- are
‘separated by carriage return characters.
‘In other words, each item of data is on its own separate line
‘in the .txt file
aParser.Delimiters = New String() {vbCr}

Dim s As String()

Try
‘get the size
s = aParser.ReadFields()
Dim s1 As Single = CSng(s(0))
Dim fnt As New Font(“Times New Roman”, s1)
TextBox1.Font = fnt

‘get the color
s = aParser.ReadFields()
Dim c As Color
c = System.Drawing.Color.FromName(s(0))
TextBox1.ForeColor = c

Catch ex As System.Text.Parsing.MalformedLineException
MsgBox(“There was a problem with the data: “ & ex.Message)

End Try
End Using

TextBox1.Select(0, 0) ‘turn off TextBox selection bug

End Sub

Storing persistent data:
Its various hideouts
In the beginning of IBM-style computing (mid-1980s), data that needed to be
saved for future use was stored in an .INI file (for initialization, because the
program read the settings described in that file when it first started execut-
ing). Then the Registry was invented as a way to deal with the problem of
users accidentally erasing, renaming, moving, or setting fire to .INI files.
The Registry was also supposed to avoid the file inflation resulting from
dozens of .INI files.

68 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 68

69Chapter 4: Tackling Essential Tools

A little problem with OOP taxonomies
Some contemporary OOP libraries, including the
.NET framework underlying VB Express and all
the other .NET languages, are rife with non-
sense. You often find that to accomplish nearly
the same task requires that you write radically
different programming code.

One major problem with OOP libraries is that
you have to learn new, unique taxonomic
“addresses,” interrelationships, and coding
approaches for each programming task. There’s
too little consistency, so there are few rules you
can study and then apply across tasks. In other
words, in the example code in the section, “A
more complex but flexible Application Settings
workaround,” it appears that one set of Microsoft
programmers took one approach to changing the
Color property of a TextBox, and a different
group of programmers took an entirely different
approach to changing the FontSizeproperty of
a TextBox (and other objects). Although these two
tasks are identical, the code you must write to
accomplish them is profoundly different.

Compare, if you will, the difference in program-
ming code between the way you change the
font size property:

Dim fnt As New Font(“Verdana”, 22)
TextBox1.Font = fnt

and the way you change the font color property:

Dim c As Color
c = System.Drawing.Color.FromName(“blue”)
TextBox1.ForeColor = c

You’re doing exactly the same thing in both
tasks, namely, changing a property of this

TextBox’s text. But you must write programming
for these identical tasks in vastly different ways.
Each situation must be learned individually. It’s
horribly inefficient.

To change the size, you

1. Use the New command.

2. Provide an argument list.

3. Don’t have to provide a namespace.

4. Apply an object’s property.

But to change the color, you:

1. Don’t use the New command.

2. Don’t provide an argument list.

3. Must provide a namespace.

4. Apply an object’s method, not a property.

Don’t try to understand all the inner workings of
the code in this example. (I don’t pretend to
understand all of it either, and I’ve been writing
books and articles about .NET for 5 years now,
and writing about the BASIC language for 20
years.) Studying these variations in syntax won’t
advance your general understanding of other
.NET classes unless you’re entirely a novice.
Just take a monkey-see, monkey-do approach
and plug these code examples into one of your
programs if you need to change font size or
color. Don’t try to make sense of these variations
in syntax. The system is almost entirely sense-
less, so you’d be wasting your time.

However, the Registry also has its problems and inefficiencies. What’s more,
it can be damaged, renamed, destroyed, corrupted, or set ablaze. Lately the
fashion has been swinging back again to individualized initialization files
(though this time they’re kept in the same folder as the application itself, and
they usually don’t get named .ini).

08_597051 ch04.qxd 10/20/05 1:33 PM Page 69

Similar files are used to hold data between your visits to a Web site. Property
“bags” work on the server side, and cookies do the job on the user’s computer.

Just to be different, VB Express stores its initialization data in files with a
.config extension (app.config, for example). I suggest you avoid looking in
these files — they’re written in XML, which is so verbose that it uses over
1,200 bytes to store the simple size of a TextBox. Size is described like this:
145, 220 — the width and height — and this information could be stored in
two bytes, but never mind. XML is a current craze among computer profes-
sionals. Just ignore it and let VB Express worry about building the XML file
for you — it’s automatic and way, way too tedious for you to bother trying to
do by hand.

But do tell your users not to erase, move, rename, set ablaze, or otherwise
touch any files with a .config extension. In fact, the best advice is to tell
them to stay the heck away from your folder altogether.

Changing a property with the
Application Settings feature
So, the Application Settings “property” stores initialization data, if any. The
Applications Settings dialog box displays 46 TextBox properties.

To modify a property during design time (while creating your program rather
than while it executes), follow these steps:

1. Click the + next to (ApplicationSettings) in the Properties window.

A new property, PropertyBinding, is revealed in the window.

2. Click PropertyBinding.

An ellipsis button appears.

3. Click the ellipsis button.

The Application Settings dialog box appears, as shown in Figure 4-1.

Figure 4-1:
This new

feature
stores

initialization
data for

your
application.

70 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 70

4. Click the BorderStyle property in the dialog box.

A down-arrow button appears. This button serves the same purpose as
the ellipsis button — it reveals a set of options. However, this is a mini
dialog box rather than a group of properties for a component. So appar-
ently a different icon needs to be on the button. Whatever.

5. Click the down-arrow button.

You see a mini dialog box.

6. Click the New link in the mini dialog box.

The New Application Setting dialog box appears, in which you can add
an application setting, as you can see in Figure 4-2.

7. Choose Fixed3D as the default value for your border style.

8. Enter a name for this setting.

This is similar to choosing a name for a variable or a file. Pick any name
that has some meaning to you.

9. Click OK.

The New Application Setting dialog box closes.

10. Click OK.

The ApplicationSetting dialog box closes.

Figure 4-2:
Here’s
where

you define
a new

application
setting.

71Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 71

The decision to choose Application or User for the scope option visible in
Step 8 above determines how the settings are accessed. An Application scope
means that the property is set this way for all users of the application, and
therefore isn’t changeable by the users (who would thus step on each other’s
toes). A User scope is specific to each user, and thus you can give users the
option, if you wish, of changing the property.

Understanding the Solution Explorer
Most VB programmers keep three primary windows visible at all times: the
design/code window, the Properties window, and the Solution Explorer (see
them all in Figure 4-2).

The Solution Explorer is the overall “forest” view of your application’s vari-
ous “trees.” It’s the largest-scale view. You can have several files associated
with each program (or project, as they’re described by Microsoft) that you
write. For example, each form is a separate file, as are other files associated
with a project, such as a user.config file, a graphics file for a PictureBox,
and so on. The category above files is the project — generally a complete util-
ity or application. And above the project is the largest category of all: the
solution. It can include more than one project.

To see the contents of a file, just double-click it in the Solution Explorer. By
default — so as not to confuse you with unnecessary behind-the-scenes
details — the Solution Explorer hides most of its support (or dependency)
files. To see the whole scary group of files, click the Show All Files icon at the
top of the Solution Explorer pane.

Adding other files
Most files are added to the Solution Explorer automatically when you start a
new project or as you add features to it that require additional files. However,
you can manually add various kinds of files to a solution if you wish. They
show up in the Solution Explorer along with any of VB’s existing files.

For instance, perhaps you want to add a little documentation that describes
your solution. To add an ordinary text file to your solution, follow these steps:

1. Right-click the solution’s name in the Solution Explorer (the solution
name is always the one in boldface).

A context menu appears.

72 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 72

2. Choose Add➪New Item from the context menu.

The Add New Item dialog box appears.

3. Double-click the Text File icon.

Your new text file appears, ready for you to type into it (and it also
appears with the default name TextFile1.txt in the Solution Explorer).

Finding your solution
When you add a new file (of any kind) to your project, it is stored on the hard
drive in the same directory as all the other files in that project. The directory
name is the same as the name of your project (the boldface item in Solution
Explorer). A typical path is: C:\My Documents\Visual Studio\Projects\
SolutionName (such as WindowsApplication1).

Alternatively, you may find the solution in a path like this: C:\Documents
and Settings\Richard Mansfield\My Documents\Visual Studio
Projects\WindowsApplication2. However, you can put your VB.NET pro-
jects anywhere you want to. You can even move them to a different computer
entirely. Just copy the entire folder and its sub-folders.

To see exactly where a solution is located on a network or your local com-
puter, just choose File➪Save Form1.vb. Then use the Save As dialog box to
locate the solution. You could drop the listbox to view the location, or use
the dialog box’s Up One Level button.

Throughout this book, you work with the Solution Explorer in various ways
to view your projects’ files and perform other tasks.

73Chapter 4: Tackling Essential Tools

08_597051 ch04.qxd 10/20/05 1:33 PM Page 73

74 Part I: The Basics of Visual Basic Express

08_597051 ch04.qxd 10/20/05 1:33 PM Page 74

Part II
Programming the

Practical Way

09_597051 pt02.qxd 10/20/05 1:33 PM Page 75

In this part . . .

Part II is all about the basics, the fundamentals of
Basic programming itself. You discover the major

techniques: using procedures, programming inside events,
managing scope, looping, and branching. In addition, this
part includes an introduction to the new Express My
object, a more efficient way to manage various common
tasks — particularly file and directory management. You
also explore variables, arrays, printing, debugging, and
deployment.

09_597051 pt02.qxd 10/20/05 1:34 PM Page 76

Chapter 5

Common Tasks
In This Chapter
� Using Events

� Working with subroutines

� Passing parameters (receiving arguments)

� Understanding functions

� Declaring

� Scoping

� Going with the flow

� Looping

� Branching

In this chapter, you see how to handle several very useful, and very
common, programming tasks. You find out how to use procedures (subrou-

tines, Events, and functions), along with their parameters (also called argu-
ments). You also explore the concept of range of influence or scope. Finally,
you play around with the important techniques of looping (repetitions) and
branching (decision-making).

Mastering Events
Functions, subroutines, and Events are all procedures — the primary way that
programming is organized. Nearly all your programming code is enclosed
within procedures — mainly within Events, but sometimes also within sub-
routines or functions that you write outside the built-in Events.

Much programming is a response to user requests — the user clicks a button,
opens a new window (form), or otherwise interacts with your program.
Whatever response your program should make to a particular button click,
you write that programming in that button’s Click event. For example, your
form may have a button displaying the word Exit that is supposed to end

10_597051 ch05.qxd 10/20/05 1:34 PM Page 77

your program if the user clicks it. Double-click this button and put the end
command inside the procedure:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

End

End Sub

Technical Point: Some programmers refer to events as event handlers, point-
ing out that the actual event is the user, for example, clicking a button rather
than the event handler code that responds to that click. However, for practi-
cal purposes, the click and the response are essentially simultaneous, and so
feel free to call the programming code the event. I do.

Using Subroutines
Sometimes you add your own subroutines to the Event subs that VB automat-
ically inserts into the code window. You can put your own procedures at the
very end of a form (but just above the End Class line). Simpler, shorter pro-
grams can have all their code within Events. You normally add subs, or func-
tions, to larger more complex programs.

Sub announces that you are creating a subroutine, a structure that in many
ways is like adding a new command to Visual Basic. A subroutine is like a
little program within your larger program — it performs some limited task
and is available to be called upon to execute that task from anywhere in the
program.

Typically, you write subroutines to save yourself from having to repeat the
same instructions over and over in various locations in your program. Instead,
if there is some task that you’ll need to have done repeatedly from different
places in your program (such as printing a list), you create a single, general-
purpose list-printing routine within a single subroutine — and then just “call”
that procedure wherever else in this program the job needs to be done. Thus,
writing a subroutine is something like adding a new command to VB, a com-
mand that your program needs to use repeatedly but that doesn’t come sup-
plied with the language.

You can write your subs at the bottom of a form (just above the End Class
line). Located here, they are easily available for use by any code in their own
form. Often, though, you put Subs into Modules by choosing Project➪Add
Module. Find out more about this idea of availability (or scope) later in this
chapter, in “Understanding Scope.”

78 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 78

Modules are similar to Forms, but they never become visible and have no
Events because they have no Controls. Instead, the purpose of a Module is to
contain Subroutines or Functions and to declare Variables or Arrays with the
Public command. Modules make these available to the entire program, or
global in scope (as opposed to local to a particular form, or even more local
to a particular procedure).

Writing a simple sub
You can create a subroutine by simply naming it and entering a line or lines
of programming in it. To see how to create a new subroutine, type this line
into a form, just above the End Class line:

Sub testit

As soon as you press Enter, Visual Basic makes room for this subroutine and
adds both the End Sub command and () if you didn’t add them. (Every Sub
has parentheses in case you’ll want to pass some information — called an
argument or parameter — to it when you use it.)

Now you can put commands into the Sub structure just as you would into an
ordinary Event:

Sub testit()
MsgBox(“A new Sub”)

End Sub

From some other place in the program, you activate this sub merely by using
the Sub’s name, like this:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

testit()

End Sub

Press F5 to execute this program, and you see that your sub was triggered
and did its job of displaying a message.

Passing parameters
Data is often passed from the “caller” to a procedure. Perhaps your program
frequently needs to display message boxes to the user, but the messages

79Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 79

differ from time to time. You can make the testit() sub more useful, more
general purpose, by not including the actual message text in the sub itself.
Instead, whenever a caller (code outside the sub) uses the sub, have the
caller pass whatever message you need to display. Change the previous
example sub to this:

Sub testit(ByVal s As String)
MsgBox(s)

End Sub

You don’t have to write that ByVal silliness. Just type s as string and VB
automatically inserts the ByVal command that someone at Microsoft long
ago thought had to be inserted into every argument list. If you go on to
become a programming guru, you’ll want to investigate the alternative to
ByVal (which is called ByRef). For now, just ignore it.

When you’re writing a procedure, you can list item(s) of data that are to be
sent (or “passed”) to that procedure. This data is called the procedure’s argu-
ments. If more than one argument is being sent, it’s called an argument list.

Just to spice things up, when you send data (from the command that calls the
procedure), that passed data isn’t called arguments, it’s called the parameters
that you’re passing. It’s as if a baseball had one name when it left the pitcher’s
glove and an entirely different name when the bat hit it. Welcome to the mad,
mad world of computer programming, where common sense rarely applies
and very few rules deserve the term grammar.

Now try an experiment where you change the caller (the line of code that
“calls” or employs a procedure) to pass the parameter (or argument), which
means passing some data. In this case, the data is “Call Home”:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

testit(“Call Home”)

End Sub

Using Functions
Functions are essentially the same as subroutines, but functions not only
accept parameters (incoming data), they can also optionally send data back
to the caller.

Many functions are built into Visual Basic, but they’re now called methods (for
no particularly good reason). For example, the entire .NET Framework is made
up of tens of thousands of functions you can use, along with some subroutines

80 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 80

as well. But the Framework is mostly functions. For example, the simple MsgBox
command — like most other commands you use in the VB Express language —
is a function. You just use its name, MsgBox, provide it with some data (the argu-
ment, such as “Hello!”), and the function (or method) does its job:

MsgBox (“Hello”)

This particular built-in function doesn’t return any data, but consider the
InputBox function, which does return something:

Dim s As String

s = InputBox(“What’s your name?”)

Debug.WriteLine(s)

Run this, and whatever name the user enters into the InputBox is returned to
your program, as can be proven by writing it into the Intermediate window
with Debug.Writeline.

If you need to return data to the caller, use a function. You can of course,
write your own functions, the same way you can write your own subroutines.
Note too that you can pass as many parameters (items of data) to a function
as you wish, but you can only pass one item of data back from a function.

Understanding Scope
VB programs are subdivided into zones, similar to the way that the United
States is divided into states, counties, and cities. And, just as law enforcement
agents have different size jurisdictions (city cops, state troopers, but the FBI
can go anywhere), so do VB lines of programming have ranges of influence.
This range of influence, called scope, mostly applies to variables but can also
apply to procedures — subs and functions — as well as to entire classes.

Often you want to query or change the value in a variable, but whether or not
that variable is accessible to you depends on its scope. For example, you can
always access a variable from within the same procedure. To see how this
works, type this into your code module:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim N As String = “This”
MsgBox(N)

End Sub

81Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 81

Press F5 and notice that the MsgBox has no problem displaying the value of
the variable N. It displays “This”. Now type another sub just below the
Form1_Load sub in the code window:

Public Sub TryIt()

MsgBox(N)

End Sub

Notice that there is a sawtooth line under the variable N in the TryIt sub.
Hold your mouse pointer on top of the sawtooth line and VB displays an
error message telling you that Name ‘N’ is not declared.

This error message means that none of the lines of code here within the TryIt
sub (between Public Sub and End Sub) can read (get the value of) or write
(change) the variable N. N was declared (with the Dim command) in a sepa-
rate procedure, and so the scope of N (its range of accessibility) is limited to
lines of code within its same procedure. (The sawtooth line is one of several
debugging tools, which I discuss in more detail in Chapter 10.)

Although Dim is the most commonly used, there are seven additional declara-
tion commands you can use: Static, Public, Protected, Friend, Shared,
Protected Friend, and Private. These additional commands specify scope
(from which locations in your program a variable can be accessed).

If you avoid using VB’s OOP features to organize your programs (which I sug-
gest you do), you can limit yourself to using only Static, Private and Public. And
there’s no particular reason you’d want to use Private — why hide code from
yourself? (If you’re programming in a group with others, Private can be useful
to forbid the others from using code you think they have no need to access.)

To sum up: When you declare a variable inside a procedure, the variable works
only within that procedure. When the program executes the procedure (or
event), the variable comes to life, does its thing, but then dies (disappears) as
soon as the End Sub line is executed. These are called local variables.

When variables are local
Variables that live only within a single procedure are called local variables.
Local variables have two qualities that you need to remember:

� No programming outside a local variable’s own procedure can interact
with that variable, either to read its value (contents) or to change that
value. A local variable’s scope is limited to its own procedure.

� When VB finishes executing the procedure in which local variables
reside, their values evaporate. If that procedure is executed a second

82 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 82

time, whatever value the local variable once contained is no longer
there. One execution of the procedure is the variable’s “lifetime.” There
are some situations in which you do want a local variable’s value to be
preserved. Recall that in those cases, you use the Static command
rather than the Dim command, like this:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim n As Integer
Static x As Integer

End Sub

In this example, the variable n loses its value when the End Sub is exe-
cuted. However, the variable x retains its value until the program is shut
down. Another way of putting it is this: When you use the Static com-
mand with a local variable, the value of that variable is preserved for the
lifetime of your application. (Lifetime means how long something is in
existence in a program.)

What do you think would happen if you put two Buttons on your Form and
then ran the program and clicked Button1 first, and then clicked Button2, in
this next program?

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim X As Integer
X = 12
X = X + 5

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

Dim X As Integer
MsgBox(X)

End Sub

The message box displays nothing. The variable X in Button1’s Click event is
a completely different variable from the X in Button2’s Click event. They are
local in scope and simply have no relationship to each other, no more than
two strangers named Mike who happen to live in the Bronx and never meet.

But what if you want both of these procedures to be able to access and
manipulate the same variable? To do this, you define the variable outside your
procedures. Try it. First delete the Dim X as Integer lines currently in each
event.

83Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 83

Then click just above your first procedure (just above the line Private Sub
Form1_Load) in the code window to move the insertion cursor there. Now type:

Dim x As Integer

That’s where you want to put any variables that you want to give form-wide
scope — in other words, to permit all the procedures in that form (Form1 in
this case) to be able to read and modify the variable. The area where you put
form-wide variables is sometimes called the General Declarations area. It’s
outside any procedure, but is within the form, Class Form1.

Now, with that X variable Dimmed up there above (outside) all the subs and
other procedures, when you run the same program, click Button1 and then
click Button2, you see the result you want to see: 17. By declaring X to be
form-wide in scope, the two buttons can access that variable X. Delete the two
Dim statements that previously declared X within those two Button events.
Now X = X + 5 and MsgBox(X) both refer to the same variable named X.

When a variable has form-wide scope, it’s then available to all the procedures
in that form. It’s not available, however, to the procedures in any other forms
in the project.

Public: The greatest scope of all
What if you want to make a variable available to all the procedures in all your
forms in a given project? In such a case, you have to use the Public com-
mand rather than Dim. What’s more, you have to put this Public declaration
into a module, not a form. Variables declared Public in a module are visible
from anywhere in your project.

It’s considered good programming practice to try to avoid using Public vari-
ables whenever possible, at least so say the OOP theorists. They claim that
variables with that much scope can make your programming harder to debug
(though I’ve never had a problem with them — perhaps they’re talking about
25 programmers working on a huge, complex program).

Looking at the status of variables is one of the primary ways to find out
where a problem is located in a program. If you use a local variable, any prob-
lem involving that variable can be found in its procedure, which does narrow
your search for a bug. By contrast, you have more code — probably much
more code — to search and analyze if there’s a bug involving a form-wide (or
worse, project-wide) variable. However, there are times when you’ll find use
for form-wide, or even project-wide, scope.

84 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 84

Scoping procedures
Not just variables, but also procedures, have scope. By default, VB makes its
events Private (Private Sub Button1_Click). If you don’t want to permit
code outside your current form to access a procedure, declare it Private. If
you do want to permit outside code access, declare the procedure as Public.

There’s another scope declaration command, coyly called Friend. Friend
scope is similar to Public, but only code within its project (or application) can
access a variable or procedure declared with Friend. This means that
another, separate application cannot access a Friend. (Separate applications
can make use of Public variables or procedures.) Don’t worry about this
scope until you start writing enormous “solutions” (remember the Solution
Explorer?) and need to organize them into multiple programs all working
together. Right now, you’re just writing programs — which can be quite large
themselves without having to grow into “solutions.”

VB .NET adds these nine additional procedure declaration commands
related to scope: Overloads, Overrides, Overridable, NotOverridable,
MustOverride, Shadows, Shared, Protected and Protected Friend. The
majority of these commands involve inheritance, an OOP technique which I
suggest you avoid.

Going Round and Round in Loops
Often a job requires repetition until a result is achieved: Polish your boots
until they shine, or add spoonfuls of sugar one at a time until the lemonade
tastes good. This kind of repetitious behavior is handled with looping in a
computer program.

Looping means repeating a task until a condition is met.

Repetition is often needed in computer programs, and the most common
loop structure is For...Next.

Using a For...Next loop
Between the For and the Next are program lines, which are instructions that
get carried out repeatedly. The number of times that the computer executes
the loop is defined by the two numbers listed right after the For:

85Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 85

Sub Iterate()

Dim I, A As Integer

For I = 1 To 4
A = A + I

Next I

MsgBox(A)

End Sub

In this example, the loop’s counter variable is named I. (There’s a tradition
to use the variable I in For...Next loops.) The important thing to under-
stand is that the counter variable is incremented (raised by 1) each time the
program gets to the Next command.

The Next command does three things.

� Adds 1 to the variable I

� Checks whether I has reached the limit set in the For statement (4 in
this example) and makes sure the limit has not been exceeded

� Loops — that is, it sends the program back up — to the For statement to
repeat the code one more time. The lines of programming code within
the loop are executed each time the loop cycles.

The answer displayed by the message box in the previous example is 10. Try
single-stepping through the execution of this loop (press F8 repeatedly), paus-
ing your mouse cursor over the counter variable I and also over the variable A
each time you go through the loop. You’ll see that the first time through, I is 1.
(Look at For I = 1 To 4; the counter starts with 1.) The variable A is empty,
but as soon as its line of code is executed, it contains the value of I plus what-
ever was in A. The second time through the loop, A first has a 1 in it, but the
value of I is 2, so A then contains 3. The third time through the loop, 3 is added
to 3, resulting in 6. Finally, the last time through the loop, I has a value of 4,
which, when added to 6, becomes 10. The program then exits the loop and dis-
plays the MsgBox.

Using the Step command with For...Next
Step is an optional command that works with For...Next. You can attach
Step at the end of the For line to skip numbers — in other words, to “step”
past them. When the Step command is used with For...Next, Step alters
the way the loop counts.

86 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 86

By default, a loop counts by 1:

Sub Iterate()

Dim a As String

For i = 1 To 12
a = a & i & “ “

Next i

MsgBox a
End Sub

And results in 1 2 3 4 5 6 7 8 9 10 11 12.

However, when you use a Step command, you change how a For...Next
loop counts. For example, use Step 2 to count every other number:

Sub Iterate()

Dim a As String

For i = 1 To 12 Step 2
a = a & i & “ “

Next i

MsgBox a
End Sub

And results in 1 3 5 7 9 11.

If the mood strikes you, you can even “step” every 73rd number (Step 73),
count backward (For I = 10 to 1 Step –1), or count by fractions
(Step .25).

Although you can use any numeric expression with For...Next, as you get
into more complex looping, remember that the range that you’re counting
must be possible. For example, the following is not possible:

For i = –10 To –20 Step 2
MsgBox “loop”; i

Next

This loop does nothing. It can’t. You’re asking it to count downward, but your
Step command is positive. As any intelligent entity would when confronted with
a senseless request, Visual Basic does nothing with these instructions. It ignores
you. You have to make the Step negative with –2 before something will happen.

87Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 87

Nesting For...Next loops
For...Next loops can be nested, one inside the other. At first, this sort of
structure seems confusing (and it often remains confusing): The inner loop
interacts with the exterior loop in ways that are instantly clear to only the
mathematically gifted, although a couple of beers also helps.

Essentially, the inner loop does its thing the number of times specified by its
own counter variable, multiplied by the counter variable of the outer loop.
Got it? It’s like the moon. It’s revolves around the Earth, but both are simulta-
neously revolving around the sun. So the moon’s path resembles a corkscrew.
To make matters worse, the entire solar system is revolving around the
galaxy, but let’s not get into that.

When working with nested loops, simply keep substituting counter numbers
(and maybe moving code from one loop to the other) until things work the way
you want. One meaning of hacking to a programmer is similar to what carving
is to a sculptor: messing around until the desired result emerges. In this exam-
ple, I want to display two sets of numbers: 1 2 3 and 1 2 3. After a frosty,
cool one, I finally figured how to do it. The outer loop (I) should loop twice,
and the inner loop (J) should loop three times. And the value of J should be
used each time to display the numbers that I want. Here’s the code:

Sub Nested()

Dim a, cr As String
Dim I, J As Integer

cr = vbCrLf ‘ move down one line

For I = 1 To 2
For J = 1 To 3

a &= “ “ & J & cr
Next J

Next I

MsgBox(a)

End Sub

Early exits from loops
If you want to exit the loop before the counter finishes, use the Exit For
command. The Exit For command is rarely used, but here’s an example of
when you’d want to use it. Suppose you’re filling an array that should hold
only 500 items, and you don’t want to overflow it. (I discuss arrays in
Chapter 8.) You avoid this by making a provision for an early exit from the
loop if necessary. If the Exit For is carried out, execution moves to the line
of code following the Next command.

88 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 88

If n > 500 Then Exit For

You can use Exit Do (for Do loops), Exit Function, Exit Property, and
Exit Sub commands as well.

Working with Do loops
Sometimes you might prefer the Do...While loop structure to For...Next;
in fact, some programmers favor it over For...Next because it can be a bit
more flexible. Do loop structures can be handy in special looping situations.
Read on.

Choosing Do...While over For...Next loops
In its most common use, Do...While employs a comparison operator at the
start of the loop to test something (is it = or =>, and so on). If the comparison
succeeds, the statements in the loop are executed at least once. However, the
first time the comparison fails, the loop is skipped, and execution continues
on the line following the Loop command. The Loop command signals the end
of the Do...While structure, just as the Next command signals the end of
the For...Next loop structure.

Sub Iterate()

Dim a, cr As String
cr = vbCrLf ‘ move down one line

Dim y As Integer

Do While y < 11
y = y + 1
a = a & y & cr

Loop

MsgBox(a)

End Sub

Remember that you must do something in the code within the loop that
changes the comparison value. Otherwise, you create an endless loop. Also
note that if y in the preceding example already holds a value of 11 or more
when the program reaches this loop, the loop never executes. Because the
exit test will fail the very first time the loop is encountered, none of the code
within the loop will execute at all.

89Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 89

Using Do...Until loops
A version of Do...While is Do...Until. It’s just another way of expressing
the same idea, but you might find it a little clearer. Do...While loops as long
as the comparison is True, but Do...Until loops until the comparison is
False:

Do Until y = 11
‘Some behaviors
Loop

Using Loop While and Loop Until
If you want to put the loop exit test at the end of the loop structure, here are
two additional ways to construct a Do loop:

Do
‘Some behaviors
Loop While Y < 11

This works the same way as the earlier Do...While example. The difference
is that when you put the test at the end, the loop always executes at least
once, no matter what value is in the variable Y when you enter the loop.

Do
‘Some behaviors
Loop Until Y = 11

Until works the same as While, but just expresses the condition in an alter-
native way.

Which of these four structures should you use? Use Do...While or
Do...Until if you don’t want the loop to execute even once if the exit test
fails at the start. As for the difference between the While and Until styles,
it’s often a matter of which one seems to you to be more readable or which
one works better with the exit test. Many times, it’s merely a semantic dis-
tinction: the difference between Do the dishes while any are still dirty versus
Do the dishes until all are clean.

Exploring While...Wend: A simple loop
Finally, at your disposal is the While...Wend structure, although it’s rarely
used. It’s simple but relatively inflexible:

While X < 7
‘Some behaviors
Wend

90 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 90

As you can see, this looping technique is comparatively elementary.
While...Wend has no Exit command (like the Exit Do command).
While...Wend is limited to an exit test at the start of the loop, and it does
not permit you to use the alternative command Until. The Wend specifies
the end of the While code block.

For...Each: Looping in object collections
Moving through a collection of objects is an easy job for programmers,
because the collection itself “knows” how many objects it contains. With col-
lections, you can use the For...Each structure.

To see a list of available fonts, you can iterate through the
System.Drawing.FontFamily object, like this:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim F As System.Drawing.FontFamily

For Each F In System.Drawing.FontFamily.Families
Debug.WriteLine(F.Name)

Next

End Sub

The results appear in the Immediate window.

For...Each is a quick and clean way to loop because you don’t have to spec-
ify a literal number or some other exit test, as in most loops.

Making Decisions via Branching
Branching means choosing between different paths, based on a condition (in
other words, allowing the program to make a decision). Making decisions is
central to any intelligent behavior, so the If...Then structure is one of the
most important features in any computer language — indeed, in any kind of
language.

If...Then is the most common way that decisions are made. After the deci-
sion is made, you write code to respond appropriately to the decision. A pro-
gram is said to branch at this point because the path it was following splits
into more than one trail. The branch that the program chooses is decided
here at the If...Then junction. For each of the branches, you write code
appropriate to that path.

91Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 91

Many times a day, we do our own personal branching, using a similar struc-
ture: If you’re hungry, you eat. If it’s nice weather, you don’t wear a jacket. If
the car windows are fogged up, you wipe them off. This constant cycle of
testing conditions and then making decisions based on those conditions is
what makes our behavior intelligent and adaptive. This same kind of testing
is what makes computer behavior intelligent, too.

Understanding If...Then
You put If...Then structures into a program so it reacts appropriately to
various kinds of user input, as well as such additional events as incoming
data from a disk file, the passage of time, or other conditions.

Here’s a simple example of how If...Then is used:

Sub Branching()

Dim response, m As String

Response = InputBox(“How many calories did you take in today?”)

If Response > 2200 Then
m = “Keep that up and you’ll have to buy new pants. Your bad self.”
Else

m = “Good self-control on your part.”
End If

MsgBox(m)

End Sub

The line of code starting with If tests whether something is True. If so, the
code on the line or lines following the If are carried out. If the test fails (the
test condition is not true), your program skips the line(s) of code until it gets
to an Else, ElseIf, or End If command. Then the program resumes execu-
tion. Put another way, the If test determines whether some lines of code will
be executed.

Notice that if you’re making a simple decision (either/or) with only two
branches, you can use the Else command. In the preceding example, if the
user’s response is that he ate more than 2,200 calories, the first message is
displayed. Or, if the opposite happened and he ate less that 2,200 calories,
the message following the Else command is displayed.

92 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 92

What if you want to branch into more than only two paths? Easy! You can use
the ElseIf command:

If X = “Bob” Then
MsgBox “Hello Bob”

ElseIf X = “Billy” Then
MsgBox “Hello Billy”

ElseIf X = “Ashley” Then
MsgBox “Hello Ashley”

End If

In a way, using ElseIf is like using several If...Thens in a row. But for situ-
ations in which you want to test multiple conditions, the better solution is to
use the Select Case command, as you find out later in this chapter.

As with loops, it’s traditional to provide a visual cue by indenting all lines
of code that are carried out inside the If...Then structure. Also, you can
use a simple, one-line version of If...Then if your test is simple enough
(True/False) and short enough to just put all on a single line. In that case,
you do not use an End If. (The If...Then structure is assumed to be com-
pleted by the end of the line of code.) The computer knows that this is a
single-line If...Then because some additional code follows the Then com-
mand. (In a multiline If...Then structure, the Then command is the last
word on the line.) Here’s an example of the single-line structure:

Sub Branching()

Dim Reply As String, Password As String = “sue”

Reply = InputBox(“What is the password?”)

If Reply <> Password Then MsgBox(“Access Denied”) : End

MsgBox(“Password verified as correct. Please continue.”)

End Sub

Notice the colon that appears at the end of the If...Then line in the preced-
ing example code. The colon is used to combine separate programming state-
ments (logical lines of code) on the same physical line. This is a rarely used
technique, but you should be aware of it. It’s handy for single-line If...Then
code, as this example illustrates. You want to do two things should the pass-
word fail the test:

� Show a message box.

� End the program.

93Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 93

Normally, the End command has to be on a line of its own in the code. When
you use the colon, VB reads the code that follows it as a separate logical line
of code. Recall that you can use the space-underscore characters to break a
single, long, logical line of code into two physical lines. (Logical here means
what VB acts on, and physical means what you see onscreen.) Using a colon is
the opposite of the space-underscore. A colon allows you to place two logical
lines on the same physical line. (You can even cram more than two logical
lines on one physical line: X=X+1:A=B:N=”Hi.”, for example.)

Remember that the condition you test with If is an expression, so it can involve
variables, literals, constants, and any other valid combination of components
that can make up an expression. For instance, you can use a function in an
expression:

If InputBox(“Enter your age, but it’s optional”) <> “” Then

MsgBox(“Thank you for responding”)

End If

The InputBox function is executed, and its result is tested to see whether it
does not equal (<>) an empty string (“”). If it is empty, the user failed to type
anything into the InputBox and the MsgBox is not displayed.

Multiple choice: The Select Case command
If...Then is great for simple, common testing and branching. But if you’re test-
ing for more than two branches, If...Then becomes clumsy. Fortunately, an
alternative decision-making structure in VB specializes in multiple branching.

Use Select Case when several outcomes are possible and several tests
need to be run.

The main distinction between If...Then and Select Case looks something
like this:

If CarStatus = burning, Then get out of the car.

But the Select Case structure tests many and various situations:

Select Case CarStatus
Case Steaming

Let radiator cool down.
Case Wobbling

Check tires.
Case Skidding

94 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 94

Steer into skid.
Case Burning

Leave the car.
End Select

Select Case works from a list of possible answers. Your program can
respond to each of these answers differently. There can be one, or many,
lines of code within each case:

Dim Response As String = InputBox(“What’s your favorite color?”)

Select Case LCase(Response)
Case “blue”

MsgBox(“We have three varieties of blue”)
Case “red”

MsgBox(“We have six varieties of red”)
Case “green”

MsgBox(“We have one variety of green”)
Case Else

MsgBox(“We don’t have “ & Response & “, sorry.”)
End Select

This example illustrates that you can use any expression (variable, literal,
function, compound expression, or other kind of expression) in the Select
Case line. Here I used a literal.

In this example, I use the LCase command to reduce whatever the user typed
to all lowercase letters. (That way you can ignore capitalization.) Then VB
goes down the list of cases and executes any lines in which the original
expression on the first line matches one of the Case lines. Note that the final
case is special: The optional Case Else command means that if there were
no matches, execute the following code.

Using the Is command with Select Case
You can use the special Is command with each case to use comparison tests
on each case:

Dim X As Integer = InputBox(“Your weight, please?”)

Select Case X
Case Is < 200

‘(put one or more commands here)
MsgBox(“Good for you”)

Case Is < 300
‘(put one or more commands here)
MsgBox(“Not too bad.”)

End Select

95Chapter 5: Common Tasks

10_597051 ch05.qxd 10/20/05 1:34 PM Page 95

In the preceding example, if the number is lower than 200, the first block of
code lines executes; then execution jumps to the line of programming follow-
ing End Select. If the number is lower than 300, the second block of code
executes (any code between Case Is < 300 and End Select).

Note that as soon as one of the cases triggers a match, no further cases are
even checked for a match. The Case structure is merely exited. This order of
testing can be important. In the preceding example, if you put the 300 com-
parison first, the test would pass for any weight less than 300, which is not
your intention.

Using the To command with Case Select
If you want to check a range of values, use the To command. It can be a
numeric range (Case 4 To 12) or an alphabetic range (based on the first
letter of the string being tested):

Dim Reply As String = LCase(InputBox(“Type in your last name.”))

Select Case Reply
Case “a” To “m”

MsgBox(“Please go to the left line.”)
Case “n” To “z”

MsgBox(“Please go to the right line.”)
End Select

You can also combine several items in a Case, separating them with commas:

Case “a” To “l”, “gene”, NameOfUser

This is an or type of test: that is, take action if

� The answer begins with a letter between a and l.

Or

� It’s gene.

Or

� It matches the value in the variable NameOfUser.

96 Part II: Programming the Practical Way

10_597051 ch05.qxd 10/20/05 1:34 PM Page 96

Chapter 6

It’s All about My
In This Chapter
� Explaining the need for My

� Manipulating files

� Investigating the My object

� Using My with the printer

My is an object that simplifies .NET programming, allowing you to
accomplish some common programming tasks with less bloated (that

is, .NET-style) code and with more understandable, more readable program-
ming. Of course, many VB programmers see .NET as a train wreck for the VB
language — contrary to the spirit and ideal of clarity and efficiency that has
been the hallmark of the Basic language for decades. The My feature in VB
Express is an attempt to restore some clarity and efficiency to VB.

In this chapter, I explain how My fits into the picture as VB evolves and how
you can put My to use in your programs.

Comparing My to Classic VB and .NET
VB Express (and other Express products) is designed to be less threatening
than .NET. In other words, the menus include fewer options, and, though the
full .NET Framework is available to VB Express, the surface is at least less
“frightening” to novices and amateur programmers.

Part of this move to a simpler, easier user interface is the My object — a
somewhat streamlined way to access some of the .NET Framework. The idea
is that some Framework experts figure out the best approach to a particular
job — file access, for example — and slip it into the My object for your use.
That way, you don’t have to figure out too many details. For file input/output
(I/O), use the My version. This is somewhat similar to historical VB, which
had only one way to access files, and it was pretty straightforward and easy
to use.

11_597051 ch06.qxd 10/20/05 1:36 PM Page 97

A quick examination of the three versions — the classic simple VB way to
open a file, the nightmare .NET way, and the latest My way — will illustrate
the My object’s use. As you see in the following examples, My isn’t as simple
as it could be (you still have to use multiple qualifying categories).

Classic VB
In classic VB, you open a file like this:

Open “C:\Test.Txt” As 5

A .NET version
VB .NET gives you multiple ways to do the job of opening a file; here’s one:

Dim strFileName As String = “C:\Test.Txt”
Dim objFilename As FileStream = New FileStream(strFileName, FileMode.Open,

FileAccess.Read, FileShare.Read)

Dim objFileRead As StreamReader = New StreamReader(objFilename)

Now, to see how VB .NET reads in the data from the file, enter this code:

While (objFileRead.Peek() > -1)
textbox1.Text &= objFileRead.ReadLine()

End While

objFileRead.Close()
objFilename.Close()

And finally, to deselect the text which, by default, strangely, is selected, you type

TextBox1.Select(0, 0)

The new My version
This My version streamlines the process of reading in a block of text, com-
pared to the lengthy and confusing .NET version above:

TextBox1.Text = My.Computer.FileSystem.ReadAllText(“C:\Test.Txt”)

TextBox1.Select(0, 0)

As you can see, using the My object, while not a return to the classic simplicity
of pre-.NET VB, is nonetheless a start in that direction. Some of the verbose,

98 Part II: Programming the Practical Way

11_597051 ch06.qxd 10/20/05 1:36 PM Page 98

bloated code required by C and object-oriented programming goes back
under the hood where it belongs when you use the My object.

Getting Familiar with My
You should familiarize yourself with the shortcuts (relative to .NET anyway)
offered by My. The easiest way to do that is to look in Help. This section explains
how to get to help and offers an overview of the major My categories.

Browsing through My help
To browse through the My categories in Help, follow these steps:

1. Click Contents in the VB Express Help Toolbar, as shown in Figure 6-1.

2. Dig down to Express Library for Visual Studio➪Visual Basic
Express➪Visual Basic Reference➪Keywords and Members by
Task➪My Reference (see Figure 6-1).

Unfortunately, some My features are listed by their OOP classifications,
which aren’t usually very helpful. But go ahead and have look.

Figure 6-1:
Find out

about the
My features
here in Help.

99Chapter 6: It’s All about My

11_597051 ch06.qxd 10/20/05 1:36 PM Page 99

3. Click My.Computer Object under Objects, then scroll down to view a
group of links (underlined in blue). Here you see some general cate-
gories that My can be used with.

By maneuvering through this list of objects, you can get an overview of the
kinds of jobs that My can help you with. For example, you can use My.Computer
to access the Audio, Clipboard, Clock, FileSystem, Info, Keyboard, Mouse,
Name, Network, Ports, Registry, and Screen objects. In short, you can control
many of the functional Windows features from a central location.

The major My categories
When you try to use My, you find that it has the following six major subcate-
gories. Most of them are pretty useless, but you do want to focus on one of
them: the Computer category contains almost all the useful features of the My
collection. It’s the real workhorse of the My group. A distant second is the
Application category, having only a little to offer you. The Forms category
has some specialized uses when communicating between forms in a project
that uses more than one form. The others, well . . . why are they included in a
feature that supposedly streamlines and simplifies? Only the mystery people
at Microsoft know the answer. Why did they include the “resources” or “user”
cateogies, for example? You tell me.

Here is an overview of the major categories:

� Application: The program you’re writing. You can get information about
which directory the application resides in, and a few other details.

� Computer: The machine the program is running on, providing access to
peripherals such as the mouse, printers, screen, and keyboard; plus
important capabilities for dealing with the hard drive and its directories
and files.

� Forms: The forms in the current project. Relatively useless for most pro-
gramming jobs, but loads of access to a form’s properties and methods.

However, the current form (Form1 in the following example) cannot use
a reference to itself. Whatever! If you try to center the form on the
screen like this:

My.Forms.Form1.CenterToScreen()

you’re informed that OOP forbids it. Instead, you must refer to the cur-
rent form (the one you’re writing this code in at the time) as Me, not My,
like this:

Me.CenterToScreen()

100 Part II: Programming the Practical Way

11_597051 ch06.qxd 10/20/05 1:36 PM Page 100

This is a perfect example of the damage that the OOP mindset does to
programming. Why should you, the programmer, care about these silly
categories that the designers of the language use to keep things straight
when writing VB Express? Both of those ways of centering the form
ought to work for the programmer. The reason that the first approach
doesn’t work is entirely bogus from a programmer’s point of view — no
matter how useful the taxonomy might be for the language designers at
Microsoft as they try to keep the vast Framework straight in their minds.

� Resources: The stuff you find here has to do with writing programs in
various foreign languages and some OOP technicalities. You can ignore
this unless you specialize in OOP or plan to write programs for other
cultures (in which case your work is too advanced for My anyway).

� User: A few specialized security-related things you can ignore.

� WebServices: Advanced Internet programming. Ignore it.

Using My While Programming
While you’re programming, remember to use the IntelliSense feature to see
whether My can help you with a job. To understand how this works, assume
that you want to copy a file named text.txt from your C:\ root directory to
a directory name C:\temp.

Rather than struggle with the .NET approaches, perhaps there’s a simpler,
more elegant My version of code for this task. Follow these steps:

1. Start a new VB Windows style project and double-click the form.

You see the Form_Load event in the code window.

2. Type My.. (My followed by a period.)

You see a list of the major categories under My..

3. As usual, you can probably find what you’re after in the Computer cat-
egory, so double-click it.

The word Computer is added to My. in your source code.

4. Type a period after the word Computer.

A list of the Computer object’s members drops down.

5. Double-click FileSystem.

That word appears in your code string.

6. Type a period after the word FileSystem.

A list of members appears for the FileSystem object.

101Chapter 6: It’s All about My

11_597051 ch06.qxd 10/20/05 1:36 PM Page 101

7. Scroll through the list of members until you see CopyFile and then
double-click it.

That word appears in your growing list of My qualifiers. You’re narrowing
things down now! Keep up your spirits, you’re almost there.

8. If you now press Enter or move your cursor down off this line of code,
VB Express inserts a pair of parentheses. Also, that jagged blue line
appears.

This blue line means that VB is not happy with the line of code.
Something is wrong — the line will not work as is. You need to provide
some arguments — details about which file to copy and where.

9. Delete the right parenthesis ()).

You now are allowed to view the helpful IntelliSense feature that shows
you the possible “argument list” variations.

C/OOP programmers describe a function with more than one possible
argument list as being overloaded, and many functions in the .NET
Framework are overloaded.

Figure 6-2 illustrates the four possible variations on the file-copying fea-
ture. For example, one of them permits you to overwrite an existing file.
But all you’re doing is copying to a different folder, so the arguments
(source file name, target file name) will work just fine.

Figure 6-2:
The most
common

arguments
are usually

shown as
the first

option, but
click the

black
arrows
to see

alternatives.

102 Part II: Programming the Practical Way

11_597051 ch06.qxd 10/20/05 1:36 PM Page 102

10. Just type the two required arguments and press F5 to see your file
copied to the C:\temp directory:

My.Computer.FileSystem.CopyFile(“c:\test.txt”, “C:\temp\test.txt”)

Simple enough. (Of course, it would be an improvement to eliminate the
superfluous OOP part of this code by dropping the class references —
like this: CopyFile(“c:\test.txt”, “C:\temp\test.txt” — but in
this version of VB, it just doesn’t work that way.)

103Chapter 6: It’s All about My

How My could be improved
How could My be better (besides expanding it to
include a greater number of common program-
ming tasks)? How about eliminating that tedious
and entirely unnecessary OOP classification
scheme? In other words, VB Express can easily
look up the location of the CopyFile function
in the Framework. All you, the programmer,
really need to use is the word in the Express lan-
guage named CopyFile. After all, this function
is not going to jump into some other area of the
Framework — so why should you always have
to specify the address in the Framework in your
source code? The programmer is uninterested
in, and has no need of, the OOP classification
scheme represented by the redundant part of
this code: My.Computer.FileSystem.

Your entire programming should look like this:

CopyFile(“c:\test.txt”,
“C:\temp\test.txt”)

The My.Computer.FileSystem is unnec-
essary and was never part of classic VB. It was
kept behind the scenes where it should be kept.
Perhaps this further streamlining is an improve-
ment we can hope for in the future. After all,
that’s the way things worked in classic Basic for
two decades, and that clean simplicity is an
important aspect of why the great majority of
people chose Basic as their preferred langauge.
And why they’re not choosing VB.NET.

11_597051 ch06.qxd 10/20/05 1:36 PM Page 103

104 Part II: Programming the Practical Way

11_597051 ch06.qxd 10/20/05 1:36 PM Page 104

Chapter 7

Whose Type Are You: Managing
Variable Types

In This Chapter
� Working with words and numbers

� Seeing all the types

� Chameleon tricks: Converting one type into another

� Understanding expressions

� Smooth operators: Handling precedence

Variables are an essential aspect of computing. They’re a bit like our human
short-term memory. You use a variable to hold some bit of information,

such as the user’s area code or the number of trains currently running in New
Jersey. These facts can change while your program is executing; they can
vary — hence the name variable. For example, the variable NumberOfTrains
changes as soon as one of the trains stops in Newark. A variable’s data also
might be different the next time you run the program.

A variable’s contents persist only while the program is executing. As soon
as someone stops the program, poof! — the data in variables evaporates.
Therefore, saving the data in variables is a common job in computer pro-
gramming. It’s the equivalent of our human long-term memory. If you want to
store information for a longer time, you usually save the information to the
hard drive; that way, it doesn’t disappear when the program stops running.

If your program needs to know the user’s area code next time the program runs
(so the user doesn’t have to keep typing it in each time she uses your program),
you should make sure that you save that area code information to a database or
other file on the hard drive. (Chapter 6 covers saving and loading disk files.)

This chapter is all about variables in VB 2005 Express. Variables are essential
to computer programming, just as they are in many other aspects of life. Any
container with a label is the real-world equivalent of a variable. And you’re
surrounded by named containers — they are fundamental to data processing.
You also discover how to handle variables when they’re grouped together
into expressions, such as FirstVariable + SecondVariable.

12_597051 ch07.qxd 10/20/05 1:36 PM Page 105

Two Main Kinds of Data
Computing is often called data processing or information processing. The data
is the pieces of information, such as area codes or the ingredients in a recipe.
The processing is the actual computing that is done by manipulating the data.
For example, when you follow the instructions in a recipe, you are manipulat-
ing the raw ingredients to make a cake.

All data breaks down into two primary categories: strings and numbers. You
can see this distinction in the following recipe:

1 1/2 cup flour, 3 tablespoons cocoa, 1 teaspoon baking soda, 1 cup sugar,
1/2 teaspoon salt, 5 tablespoons salad oil, 1 tablespoon vinegar,
1 teaspoon vanilla, 1 cup cold water

Notice that some of this data is numeric (1 1/2, 3, and so on) and other data
is text (vinegar, vanilla, and so on). A text datum — such as the word
vinegar — is usually referred to in computer lingo as a string.

By the way, here’s the data processing part of this recipe:

Mix all dry ingredients and put into greased 9x9 cake pan. Then add in
the wet ingredients, beating with a spoon until mixed. Cook at 350 degrees
for 1/2 hour.

Try it; it’s good.

Strings are like words
A string is letters strung together: “Don Wilson”, “vanilla”, “b” (a string
can be a single letter), and “454-5001 ext. 23” are all strings. When you
assign some literal text to a string variable in a program, the text is enclosed
in quotation marks:

Dim MyVariable As String
MyVariable = “This is Tuesday.”

If there’s enough memory in your computer, and an application permits large
strings, you can hold the entire phone book in a single string if you wish. By
contrast, “” is an empty string (empty strings are sometimes useful).

A string can be a single character, a really huge number of characters, empty,
or anything in between. It can contain letters of the alphabet, symbols such
as * or @, and even digits such as “2”.

106 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:36 PM Page 106

Note, however, that a digit is not the same as a true number. A digit is just a
character (string) representation. You can’t do math with strings.

You can concatenate (combine) strings. Try this experiment:

1. Run VB Express and choose File➪New Project.

The New Project dialog box opens.

2. Double-click the Windows Application icon in the dialog box.

The dialog box closes, and a brand new VB Express project is displayed.
You see Form1.

3. Double-click Form1.

The Code window for Form1 opens, where you can write your program-
ming. The Form1_Load event is displayed.

4. In the Load event — between the two lines beginning with Private
Sub and End Sub — type this programming, shown in boldface:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Debug.Print(“fluor” & “ide”)
Debug.Print(“2” + “3”)

End Sub

5. Press F5.

The program is built and executed. You see the results fluoride and 23
displayed in the Immediate window.

Debug.Print is a quick way to test something. The results are displayed in
the Immediate window, as shown in Figure 7-1. If the Immediate window isn’t
visible, choose View➪Other Windows➪Immediate.

Debug.Print “fluor” & “ide” displays fluoride. Debug.Print “2” +
“3” displays 23 (not 5, which is the result when you add numeric variables
or literals, such as 2 + 3, rather than strings). Obviously you can’t multiply
or subtract or do other math on strings.

Also, VB prefers that you use the & symbol to concatenate strings and
reserves + for adding numbers. So I should have written that line
Debug.Print “2” & “3”.

107Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:36 PM Page 107

VB usually accepts + with strings, but it doesn’t like it. Besides, using + may
confuse you into thinking that you are adding numeric variables:

Dim n As String = “5”
Dim m As String = “20”
Dim o As String
o = n + m

The final line of this code could be mistaken for addition, but no math is hap-
pening here. So, to make it absolutely clear that you are concatenating two
strings, use the ampersand rather than the plus sign, like this:

o = n & m

You can do math with numbers
You’ve seen how to work with strings. Numbers are the other kind of data,
and they operate inside the computer just as they do in real life: You can do
all kinds of math with them.

As I mention in the preceding section, there’s a difference between true num-
bers and numbers stored as strings (digits). Programmers sometimes store
numbers as strings, though, if they don’t expect to do math with those num-
bers. Your zip code (“27244”) and phone number (“336-555-0123”) make
better sense stored as strings. You’re never going to multiply them, are you?

Figure 7-1:
The results

of a
Debug.Print

command
are dis-
played

in the
Immediate

window, as
shown here.

108 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 108

What’s more, some kinds of numeric information simply can’t be stored as a
numeric variable. You can’t store a phone number as a numeric variable if
you want to include those hyphens in it. Symbols such as hyphens must be
stored in a string. If you leave the quotation marks off a phone number, such
as 336-555-0123, Visual Basic thinks you want to subtract real numbers,
and it calculates the value, -342.

Understanding Variables
Variables are a way of storing information — sometimes quite briefly
(because the contents of a variable can vary, as the name implies).
Nonetheless, you are talking about storing data when you discuss variables.
Here’s how it works:

1. A program asks the user to type in how much they’re willing to pay for a
new TV.

2. The user obliges and types 299.

3. What happens then? The computer must remember that information. It
stores the information in a variable.

In the following sections, you find out how storing this information in a vari-
able works and what considerations to keep in mind when you decide how a
variable is stored.

Assigning a value to a variable
After the user types in 299 (called a value), the program assigns the value to
the variable. If the user types the answer into TextBox1, the following source
code assigns the value (whatever value the user types in) to the variable:

Dim TopTvPrice As Integer
TopTvPrice = TextBox1.Text

The content of the TextBox, the value, is copied into the variable
TopTvPrice. Remember that if you don’t first declare your variable’s type (in
this case you Dim the variable As Integer), VB Express displays a sawtooth
line under the variable’s name, indicating an error. And when you move your
mouse pointer onto the sawtooth line, an error message appears saying Name
TopTvPrice is not declared. You find out more about declaring variables
in the section “Creating a Variable,” later in this chapter.

109Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:37 PM Page 109

Storing string or numeric variables
Does the programmer want to store the 299 described in several previous
paragraphs as a string or as a numeric variable? Probably numeric, because
it may be necessary to do some math on it (comparing it to the cost of other
models, calculating sales tax, adding it to other purchases, and so on).

Although VB generally sees any value with letter characters in it as a string
and any value with only digits as numeric, something interesting happens
when you type a number like 299 into a TextBox. Anything typed into a
TextBox is automatically viewed by VB as a string. The TextBox.Text prop-
erty can hold only a string. However, notice that our program assigned that
string to a numeric (integer) variable:

Dim TopTvPrice As Integer
TopTvPrice = TextBox1.Text

How can a numeric variable hold a string? It can’t. VB converts the string 299
into an integer before storing it in the numeric variable TopTvPrice.

Some programming languages — such as C — forbid permitting languages to
change a data type automatically (only programmers can do it, and they must
explicitly change the type by writing the necessary programming). If you
prefer to be strict about data type conversions, type Option Strict On at
the very top of the code window. With that option on, VB 2005 Express dis-
plays an error message if you try to assign a string to a variable declared As
Integer, as shown in Figure 7-2.

In other words, if the variable TopTvPrice has been declared as an Integer
type and you write the line of code TopTvPrice = TextBox1.Text, VB 2005
Express flags this as an error, displays the sawtooth error indicator under
TextBox1.Text, and when you mouse over that line, you see a pop-up message,
and VB puts the following message in the Task List for you: Option Strict
On disallows implicit conversions from ‘ ‘String to ‘Integer’.

If you want to leave Option Strict On, you must force conversions in your
programming and not simply trust that VB 2005 Express does it for you. You
see how to force conversions of variable types later in this chapter. My advice

Figure 7-2:
IntelliSense

warns you
here of an

Option Strict
violation.

110 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 110

is that beginners leave this option turned off (the default for VB Express).
That way you have one less thing to worry about when you’re learning to pro-
gram. Later on, you can turn it on to avoid some relatively rare kinds of bugs
that can be caused by implicit conversion. (To turn it on permanently,
choose Tools➪Options➪Project to make Option Strict On the default, so you
don’t always have to type it in.)

Naming Variables
Each variable has a name that the programmer gives it. Usually, programmers
like to use memorable variable names — something easily recognized, such
as UsersTopTvPrice.

Underscore characters are allowed in variable names, so some programmers
make the name even more readable this way: Users_Top_Tv_Price.

You must observe several rules when making up a name for a variable (other-
wise, VB protests):

� It must start with a letter, not a digit.

� It can’t be one of VB’s own command words, such as For or Dim.

� It can’t contain any punctuation marks or spaces.

Creating a Variable
When you create a variable, you can do so explicitly or implicitly. By default
VB wants all variables to be explicitly declared and wants their variable types
to be specified in that variable declaration, like this:

Dim UsersAge as Integer

This means that when you use a variable in a program, you can’t simply type
in a name for it, and voila, the variable comes into existence. That would be
implicit declaration. VB by default now frowns on this kind of thing for two
reasons:

� One reason that forcing explicit declaration is so highly regarded by
many programmers is that when you look later at the code you wrote and
you’re trying to figure it out, you can see a list of all the variables right
there at the top of the procedure or at the top of a class (if you want the
variable to apply to the entire class — not just to a single procedure).

� A second reason, to avoid certain kinds of bugs, is covered at the end of
this chapter.

111Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:37 PM Page 111

Declaring variables explicitly
Explicit declaration requires more effort. However, many programmers swear
by it, and VB Express defaults to it. You use the Dim command to explicitly
declare the variable:

Dim UsersAge As Integer
UsersAge = InputBox (“How old are you?”)

If you’re going to use several variables in the procedure, Dim each of them:

Dim UsersAge, UsersHeight As Integer
Dim UsersName, Nickname As String

Notice that you can combine several declarations on a single line, as long as
they are the same variable type. That’s why the String variable names are
not declared in the same line as the Integer types in the preceding code
example.

Or, if you use the As command, you can combine types on the same declara-
tion line:

Dim UsersName As String, UsersHeight As Integer

VB also permits you to declare a variable and assign a value to it on the
same line:

Dim UsersAge As Integer = 21

If you are declaring multiple variables on a single line, you need to use the
Dim statement only at the start of the line and then just separate the variable
names on the rest of the line by commas. Now do you see one reason why
you can’t use punctuation in variable names? Visual Basic uses various kinds
of punctuation to mean various things in a line of code, like those commas.
Recall that the single-quote symbol (‘) means that you’re making an annota-
tion (a comment) and VB should ignore everything following the ‘ on that
line. The * means multiply, & means concatenate text, and so on.

Notice that the line of code beginning with Dim ends with an As clause that
specifies the variable’s type.

VB has nine fundamental variable types, but thousands of objects that you
can use as types. You get to know fundamental types later in this chapter. For
now, just note that each declared variable must be explicitly typed (typed
here means given a data type, not pressing keys on the keyboard).

Thanks to OOP, everything is an object (even the integer variable type) and, as
you can see in Figure 7-3, everything is a variable (even objects like ListBoxes
are manipulated as object variables). Because OOP uses mad taxonomic

112 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 112

systems, traditional usable categories have been blown to bits. If everything
is in the same category, then that category serves no real purpose, right?

Dim stands for dimension, an old computer term for “set aside some memory
for this.” Although Dim is the most commonly used, there are seven addi-
tional declaration commands: Static, Public, Protected, Friend, Shared,
Protected Friend, and Private. Recall that these additional commands
specify either scope (from how many locations in your program the variable
can be accessed) or lifetime (how long the variable holds its value — only
while the procedure within which it is declared is executing, or while the
entire program is running). See Chapter 5 if you need a refresher on scope
and lifetime.

Declaring variables implicitly
If you’re a radical and want to use implicit declaration (no declaration
needed), you can type this at the very top of your code window (above any
Imports statements):

Option Explicit Off

To make this the default, so you don’t have to type it into each program,
choose Tools➪Options➪Project and uncheck the Option Explicit check box.

Here’s an example of implicit declaration: Perhaps your program displays an
InputBox that asks the user how old he or she is. The variable in which you
want to store his or her answer (the value) can be named UsersAge (I know, I
know; it should be User’sAge, but you can’t use punctuation in variable
names):

UsersAge = InputBox (“How old are you?”)

Figure 7-3:
You might

be amazed
at how

many
“variables”

are listed
when you

use Dim
to declare

a new
variable.

113Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:37 PM Page 113

As soon as the user types 44, or whatever, and closes the InputBox, the value
44 is assigned to the variable UsersAge. The value is stored. When your pro-
gram later wants to process that data, it knows where to look. It merely uses
the variable name. Say you want to find out if the user is eligible for AARP
(the < symbol means “is less than”):

If UsersAge < 50 Then MsgBox (“You’re too young to join AARP, pup.”)

Notice that you use the variable name as you use any other number in this
programming. When the program executes, whatever number the user typed
in is compared to 50 in this line of code.

Manipulating Variables
Classic variables hold only one value at a time. But the value can change as
necessary (hence the name variable). For example, you could write the fol-
lowing code (although it makes no sense to do so):

Dim TVShow as String
TVShow = “Barney”
TVShow = “Five-O”

When this program executes, VB assigns the text Barney to the variable
TVShow but immediately dumps that value and replaces it with Five-O. When
a new value is assigned to a variable, the previous value in that variable
simply no longer exists.

You can assign literal values (“Barney” or 299, as illustrated previously), but
you can also assign one variable’s value to another. When you assign a vari-
able to another variable, the variable on the left of the equals sign (=) gets
the value held in the variable to the right of the =. At this point, both vari-
ables contain the same value. This is like making a copy of the value. In this
next example, the contents (the value) in the variable PopularShow are
copied into the variable MyTVShow:

MyTVShow = PopularShow

One practical and common use of copying one variable into another was
illustrated earlier in this chapter with this line:

TopTvPrice = TextBox1.Text

In this code, the user’s typed input is assigned to a variable, identifying that
input’s meaning in the program. You can more easily understand the meaning
of TopTvPrice than TextBox1.Text when you read the code.

114 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 114

Some variable efficiencies
Sometimes you want to concatenate or otherwise combine two variables.
Suppose that you want to personalize your program, so you first ask the user
to type in his or her name, and then you use that variable along with another
variable to create a complete sentence:

Dim Msg, Result As String
Result = InputBox(“Please type your first name.”)
Msg = “Thank you, “ & Result
MsgBox(Msg)

You have some ways to shorten code. If you’re one of those people who is
always looking to conserve variable names, you can reuse Result like this,
without even needing that second variable Msg:

Dim Result As String
Result = InputBox(“Please type your first name.”)
Result = “Thank you, “ & Result
MsgBox(Result)

Or if you’re one of those people who are really, really conservative and
always want to save space and condense code, you can do it like this:

Dim Result As String
Result = InputBox(“Please type your first name.”)
Msgbox(“Thank you, “ & Result)

As the preceding code illustrates, a variable can be part of what’s assigned to
itself. One use for this technique is illustrated in the preceding code: You
want to preserve the contents of the variable (Result), but you want to add

115Chapter 7: Whose Type Are You: Managing Variable Types

Packing several values into an array
Sometimes, a variable’s ability to hold only one
value at a time is limiting. If you need to collect
a whole group of values together in one pack-
age, you need to use a special way to group
values: You give them one “variable name,” but
you give each individual value a unique index
number. This is similar to the way that all your
neighbors share the same road name but are
distinguished from each other by house num-
bers: 12 Elm, 13 Elm, 14 Elm, and so on.

A group of values sharing the same name, but
with different index numbers, is called an array.
An array is somewhat like a mini-database,
holding related pieces of information that are
indexed for easy manipulation.

Arrays are so important — and have been so
enhanced from classic versions of VB — that all
of Chapter 8 is devoted to them.

12_597051 ch07.qxd 10/20/05 1:37 PM Page 115

something to the contents (“Thank you, “). To demonstrate this same prin-
ciple with a numeric variable, perform the following math equation using the
variable name:

A = 233
A = A + 1

Now A holds 234.

Saving time with +=
VB 2005 allows another technique when you are adding a variable’s current
contents to some new value (as in the example in the previous section). You
can avoid repeating the variable’s name by combining + with =, for example.
Here’s how this trick works. Instead of the following code:

A = A + 1

You can use plus-equals, like this:

A += 1

This condensation has several variations:

� A *= 4: The value currently in variable A is multiplied by 4 and assigned
to A.

� A -= 1: Decrement the value currently in variable A.

Here’s an example:

Dim Brother as String
Brother = “Tom”
Brother &= “ and Bob”

Now Brother contains Tom and Bob. This technique avoids repeating the
variable name like this Brother = Brother & “ and Bob” which is the tra-
ditional VB approach. It comes in handy to avoid repeating really lengthy vari-
able (or object) names, which are sometimes necessary in VB 2005 Express.

You often can choose from several ways to code, and your personal style will
emerge over time. Notice how I always seem to use Result or Response as
the variable names with the InputBox command? It’s just a little habit of
mine; you can use Reaction, Retort, Reply, or Rejoinder, just as long as it
begins with an R. Just kidding! It doesn’t have to begin with R. You can use
Answer, Users_Input, or whatever. You know the rules for thinking up vari-
able names: You can use pretty much any word or even a nonsense word like
jaaaaakaa. But it’s best to make your variable names descriptive of what the
variable holds. And, it’s helpful after a while to settle on some consistent way

116 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 116

of naming frequently used variables, like those you assign the result of an
InputBox user input. This consistency makes your programming easier to read
and modify later if necessary. There is a whole set of naming conventions you
might want to consider using, such as prepending txt whenever naming a
TextBox (as in txtPhoneNumber), on the Cheat Sheet at the front of this book.

Understanding Data Types
for Numeric Variables

Text variables (strings) are pretty simple. The string is the only fundamental
text data type. Now let’s look at numeric variables.

There are several fundamental types of numeric variables. The reason for
these different numeric data types is to enable you to speed up your applica-
tions with some of them and achieve greater precision with others. Table 7-1
lists some important data types. You can find a fuller list of data types and
the ranges of values that they can hold on the Cheat Sheet attached to the
front of this book.

Table 7-1 Important Numeric Data Types
Type How You Use It

Boolean The simplest numeric variable type, Boolean can hold only
two states: True and False (it defaults to False). Use
this when you want a toggle variable (something that
switches off and on like a light switch). To create a
Boolean variable, use the following code: Dim
MyToggle As Boolean.

Integer, and Integer is 32 bits long, and Long is 64 bits long (and
its larger sister, Long is an Integer too — no fraction, no decimal
the Long type point). If your program for some reason needs to use a

16-bit integer, use the type Short.

Floating point The “point” is the decimal point. Floating point, like inte-
ger, has small and large versions called Single and
Double, respectively. Use floating point when your pro-
gram requires the precision that fractions offer: Dim
MyFraction As Single, MyBiggerNumber As
Double.

When creating a program that involves math, you may be surprised at how
often the only thing you need is an integer. In most programming, the
Integer is the most common numeric data type. (No fractions are allowed

117Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:37 PM Page 117

with an Integer.) If your non-fractional number is larger or smaller (a nega-
tive) than an integer can hold, make it a Long data type.

Dim MyLittleNumber As Integer
Dim MyBigNumber As Long

In addition to the types listed in Table 7-1, VB has a Char type, which is an
unsigned (no negatives) 16-bit type that is used to store Unicode characters
(a system that codes text characters by giving each a unique number). The
Decimal type is a 96-bit signed integer scaled by a variable power of 10. If
you don’t understand what this means, you should at all costs avoid writing a
program that involves the Decimal type.

Converting Data Types
Sometimes you have to change a variable’s data type. When you leave Option
Strict turned on, as described earlier in this chapter, you often must coerce
variables to change type: You must explicitly program the change.

VB boasts four ways to change one data type into another:

� First, the .ToString method is designed to convert any numeric data
type into a text string.

� The second way to convert data is to use this set of VB functions:
CStr(), CBool(), CByte(), CChar(), CShort(), CInt(), CLng(),
CDate(), CDbl(), CSng(), CDec(), and CObj(), as in the following
example:

Dim s As String
Dim i As Integer = 1551
s = CStr(i)
MsgBox(s)

� The third way is to use the Convert method, like this:

Dim s As String
Dim i As Integer = 1551

s = Convert.ToString(i)
MsgBox(s)

� The fourth way uses the CType function, with this syntax:

Dim s As String
Dim i As Integer = 1551

s = CType(i, String)
MsgBox(s)

Take your pick.

118 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 118

119Chapter 7: Whose Type Are You: Managing Variable Types

Why division is bizarre
Computers calculate in different ways with dif-
ferent numeric variable types. They can do
arithmetic faster with integer types than with
floating-point types because floating point suf-
fers from the problem of decimal points and the
bothersome fractions to the right of decimal
points.

Why are fractions such trouble? The simplest
explanation is understandable if you recall that
elementary school teachers have to spend
much more time teaching division than teach-
ing multiplication or other basic arithmetic tech-
niques. Anyone who has written a list for Santa
or made a stack of cookies understands addi-
tion. Subtraction, too, is clear enough — for
example, when an older brother steals some
cookies from the stack. Multiplication is pretty
easy to get once you understand the idea of
addition. Multiplication is just addition repeated
over and over.

But division is in a class by itself. Division can
cause something to go below unity, below one,
into the problematic world of fractions.
Suddenly, two simple digits like 3 and 1 can
expand into a list of digits bigger than the uni-
verse, .3333333333333333333 . . . ; you get an infi-
nitely long result if you try to divide 1 by 3.
Infinity is a disturbing result when you’re used
to getting neat, understandable results from
adding and subtracting.

And there are those remainders, unsettling
things left over after the arithmetic is suppos-
edly finished. Plus, in the real world, if some-
thing becomes fractional, it dies. Few creatures,
other than worms and some plants, can survive
being “in half.” All in all, division is a bizarre,
dangerous, fantastic maneuver no matter how
you slice it.

Computers have exactly the same problems as
children when working with division; they have
more to consider and more to manipulate. Just
like us, the computer must calculate more
slowly when working with numeric variable
types that can have fractions (the floating-point
data types). If you want to speed up your pro-
grams, see if you can get away with merely
using the integer data type. Integers don’t
involve fractions. If you don’t need the precision
that fractions offer — and most of the time you
don’t — use integers. After all, the IRS lets you
round off pennies to the nearest dollar, so be
brave and, if possible, just ignore any fractional
details in your calculations. (This advice does
not apply to NASA scientists calculating the
Mars Lander trajectory.)

However, the distinctions between numeric
data types were more important in the past,
when memory was small and expensive, and
processing speed was relatively slow. These
days, choosing conservative data types may not
much matter unless you are writing a program
with lots of specialized, heavy-duty number
crunching.

If you’re interested, there’s an actual, physical,
hardware reason that floating point slows
things down in a computer. As Technical Editor
John Mueller explained to me (your slap-happy
author, who didn’t know this), the computer’s
processor uses an entirely different piece of
microprocessor hardware when doing math
with real (integer) versus floating-point num-
bers. The floating-point unit within the proces-
sor is actually a state machine, so it runs slower
than the rest of the processor. Integer math, by
contrast, is performed within the processor’s
actual registers, which are very fast.

12_597051 ch07.qxd 10/20/05 1:37 PM Page 119

Table 7-2 shows all the primary VB data types.

Table 7-2 The VB 2005 Express Data Types
Traditional New 2005 Type Memory Range
VB Type Size

Boolean System.Boolean 2 bytes True or False

Char System.Char 2 bytes 0–65535 (unsigned)

Byte System.Byte 1 byte 0–255 (unsigned)

Object System.Object 4 bytes Any Type

Date System.DateTime 8 bytes 01-Jan-0001 to
31-Dec-9999

Double System.Double 8 bytes +/–1.797E308

Decimal System.Decimal 16 bytes 28 digits

Short System.Int16 2 bytes –32,768 to 32,767

Integer System.Int32 4 bytes +/–2.147E9

Long System.Int64 8 bytes +/–9.223E18

Single System.Single 4 bytes +/–3.402E38

String System.String CharacterCount 2 billion Unicode
* 2 (plus 10 bytes) characters

You can also employ unsigned (non-negative) versions of the Integer, Long,
and Short types (named UInteger, ULong, and UShort). By removing the
possibility of using a negative number, the size of positive values that can be
held in these types doubles. For example, an ordinary (signed) Integer can
hold the following range of numbers: –2,147,483,648 to 2,147,483,647. But the
unsigned version of Integer, UInteger, can hold these values: 0 through
4,294,967,295. The range of values that can be held is identical for Integer
and UInteger, it’s just the actual numbers that can be held that differs.

Creating Expressions with Operators
To process data, you can combine variables and other items into an expres-
sion. As with variables, you can assemble expressions using literal numbers,
literal strings, numeric variables, string variables, numeric variables in an
array, functions that return numbers or strings, constants, or any combination

120 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 120

of these. To create an expression, you need at least two elements separated by
an operator. You can use operators to combine, modify, compare, or otherwise
manipulate the items in an expression. For example, an expression can be as
simple as 2 + 2. The expression “A” > “B” asks whether the literal letter A is
greater alphabetically than the letter B, which is untrue, so this expression
evaluates to False. The operator here is the greater-than symbol: >.

During run time (while the program executes), VB looks at and evaluates an
expression. This evaluation produces a result. It may produce the number 6,
the answer True, or some other result, such as with the expression “A” &
“sk”, which in turn produces the result Ask.

You need to know about the several kinds of operators:

� Comparison operators: These operators compare numbers in various
ways (such as greater-than or equals) or compare text in various ways
(alphabetically, or find similarity with the Like command). The greater-
than symbol (>) is an operator in this example that says n is greater
than z: n > z.

� Arithmetic operators: Examples of these operators are * and +. The plus
sign (+), for example, is an operator in the following example: 2 + 4.

� Logical operators: These are And, Not, and Or, which you can use to
build longer, more complex expressions. For example, many expressions
are a combination of programming elements that, taken together, can be
evaluated as either true or false, such as Mary is older than Sue. Such
true/false expressions are called Boolean expressions. Although it’s
more complex, this, too, is an expression: Bob is smaller than Stan, but
Stan is wealthier than Sondra. This is also a Boolean expression because
it is either true or false.

Even though Boolean expressions can get quite lengthy, if any of their asser-
tions are false, the entire expression is evaluated as false. However, some
expressions produce results other than simply true or false. The expression
3 + 4, for example, is an integer expression because it evaluates to an integer
result.

In the following sections, you find out more details about using these differ-
ent operators, as well as how to use parentheses to specify the order in
which the parts of a complex expression are evaluated.

Comparing values
Often, you need to compare two values, and then your program reacts based
on the result of the comparison. Say, for example, that the user has typed in
his or her age, and you want to respond to the age in your programming:

121Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:37 PM Page 121

Dim UsersAge As Integer
Dim Msg As String

If UsersAge < 50 Then
Msg = “You “
Else

Msg = “You do not “
End If

Msg &= “qualify for reduced term insurance.”

MsgBox(Msg)

The expression in this code is UsersAge < 50. This particular expression
uses one of the comparison (also called relational) operators: the less-than
symbol (<). The line of code means this: If the value in the UsersAge variable
is less than 50, then show the “You qualify . . .” message. Otherwise (Else),
show the “You do not qualify . . .” version.

Table 7-3 lists the eight comparison operators used in VB.

Table 7-3 The VB Comparison Operators
Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> Not equal

= Equal

Is Two object variables refer to the same object

Like Pattern matching

Here are some points to keep in mind about the operators listed in Table 7-3:

� Remembering the meaning of the < and > symbols is easy. The large
end of the symbol is greater, so A > B means A is greater than B. A < B
means A is less than B.

� You can use the comparison operators with text as well. When used
with literal text (or text variables), the operators refer to the alphabetic
relationship between the strings, with the value of Andy being less than
Anne, alphabetically.

122 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 122

� The Is operator is highly specialized. It tells you whether two object
variable names refer to the same object. You can use it with arrays that
keep track of controls or forms.

� The Like operator lets you compare a string to a pattern, using wild-
cards. This rarely used operator is similar to the wildcards you can use
when using a search utility. The wildcard symbols are * and ?. In the
Windows search utility or in Explorer, for example, you can see all files
ending with .DOC by typing *.DOC. Check out the nearby sidebar,
“Working with the Like operator,” for more details.

123Chapter 7: Whose Type Are You: Managing Variable Types

Working with the Like operator
You employ Like to compare strings, as follows:

Dim Msg, A As String
A = “Rudolpho”

If A Like “Ru*” Then Msg = “Close Enough”
MsgBox(Msg)

In the preceding example, the message is
displayed. The Like operator can be used
to forgive user typos. When testing for
Pennsylvania, you could accept Like
Pen* because no other state starts with those
characters, so any misspellings the user makes
further on in this word are ignored.

The following example uses the Like operator
to compare against a single character in a par-
ticular position. (Notice in this next example that
the two logical lines are placed on a single
physical line, separated by a colon. You can use
a separate line for MsgBox(A), but it’s so short
that I just stuck it onto the end of the other code.
If you do put two or more logical lines together,
remember that the colon is necessary to sepa-
rate them.)

Dim A As Boolean
A = “Nora” Like “?ora” : MsgBox(A)

This results in True.

Recall that many expressions simply evaluate to
True or False, and therefore the expression
returns a Boolean answer. So, you can declare

a Boolean variable to receive that answer, as in
the previous example. Here’s another example:

Dim A As Boolean
A = “Nora” Like “F?ora” : MsgBox(A)

This results in False because the first letter in
Nora isn’t F, the third letter isn’t o, and so on.

You can also use Like to compare when you
don’t care about a match between a series of
characters, like this:

If “David” Like “*d” Then

This code results in a match. “D*” or “*D*d”
or “*i*” all match “David”.

Or you can use the following to match a single
character in the text against a single character
or range of characters in the list enclosed by
brackets:

If “Empire” Like “??[n-q]*” Then

This code results in a match, because the third
character in Empire, p, falls within the range
n-q. You can also use multiple ranges such as
“[n-r t-w]”.

Or you can use the following to match if a single
character in the text is not in the list:

If “Empire” Like “??[!n-q]*” Then

This code doesn’t result in a match (the !
symbol means “not”).

12_597051 ch07.qxd 10/20/05 1:37 PM Page 123

Using arithmetic operators
Arithmetic operators work pretty much as you expect them to. They do some
math and provide a result. Table 7-4 lists the arithmetic operators used in VB.

Table 7-4 The VB Arithmetic Operators
Operator Description

^ Exponentiation — the number multiplied by itself (for
example, 5 ^ 2 is 25 and 5 ^ 3 is 125)

– Subtraction
Negation — negative numbers (such as –25)

* Multiplication

/ Division

\ Integer division — division with no remainder, no
fraction, no decimal point (for example 8 \ 6 results in
1). Use this if you don’t need the remainder.

Mod Modulo arithmetic (explained in the text following
this table)

+ Addition

& String concatenation (This & is still supported in VB
2005 Express, but is no longer necessary. It was
used in previous versions of VB with variant variable
types. VB 2005 Express has no variants, so you can
use + for numeric addition as well as concatenation.
This isn’t really an arithmetic operator at all, but
Microsoft lists it as one.)

Use the arithmetic operators like this:

If B + A > 12 Then

The modulo (Mod) operator gives you any remainder after a division, but not
the results of the division itself. You just get the remainder. This is useful
when you want to know if some number divides evenly into another number.
That way, you can do things at intervals, or as they say: periodically. One use
for periodicity (don’t I talk fancy!) is if you want to print the page number in
bold on every fifth page. Here’s how you could program that:

124 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 124

If PageNumber Mod 5 = 0 Then
FontBold = True

Else
FontBold = False

End If

Here are some more Mod examples:

� 15 Mod 5 results in 0.

� 16 Mod 5 results in 1.

� 17 Mod 5 results in 2.

� 20 Mod 5 results in 0.

The logical operators
The logical operators are sometimes called Boolean operators because tech-
nically they operate on individual bits (and a bit can be only in one of two states:
true or false, on or off). But whatever you call them — and I like logical — these
operators are most often used to create a compound expression. They chain
expressions together just as they chain phrases together in ordinary English.

The logical operators that you’ll use frequently are And, Or, and Not. They
allow you to construct expressions like this:

If BettysAge > 55 And JohnsAge > 50 Then

The And operator means that both comparisons must be true for the entire
expression to be true.

Similarly, Or allows you to create an expression in which only one compari-
son must be true (but both of them can be true as well) for the entire expres-
sion to be true:

If TomsMother = Visiting Or SandysMothersAge > 78 Then

The Not operator is good for switching a toggle back and forth, like this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Static Toggle As Boolean
Toggle = Not Toggle

If Toggle Then MsgBox(“See this message every other time you click.”)

End Sub

125Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:37 PM Page 125

The Static command preserves the contents of the variable Toggle (Dim
does not). Remember the Static command; it comes in very handy when you
need to retain a value in a local variable (a variable declared within a proce-
dure, as in the preceding code). Typically it’s used with counters or toggles.

The Boolean variable type is the simplest one. It has only two states: True
and False. It can be flipped back and forth like a light switch. The line,
Toggle = Not Toggle, means this: If Toggle’s value is False, make it now
True. If it’s True, make it False. You’ll be surprised at how often you use this
technique in your programming.

Table 7-5 lists all the logical operators, some of which have esoteric uses in
cryptography and such.

Table 7-5 The VB Logical Operators
Operator Description

Not Logical negation

And And

Or Inclusive Or

Xor Either, but not both

Here’s an example of a logical operator at work:

If 5 + 2 = 4 Or 6 + 6 = 12 Then MsgBox(“One of them is true.”)

One of these expressions is true, so the MsgBox comment is displayed. Only
one or the other needs to be true. Here’s another example:

If 5 + 2 = 4 And 6 + 6 = 12 Then MsgBox (“Both of them are true.”)

This is false, so nothing is displayed. Both expressions, the first and the
second, must be true for the MsgBox to appear.

VB 2005 Express offers two new operators — AndAlso and OrElse — which
differ technically from the way that the And and Or logical operators work and
differ in how expressions using them are evaluated. The purpose of this is to
attempt to prevent some esoteric, yet possible, errors. If this is important to
you, see the entry titled “AND, OR, XOR, and NOT” in Appendix B on this
book’s Web site. (See this book’s Introduction for details about the Web site.)

126 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 126

Setting operator precedence
When you use more than one operator in an expression, which operator
should be evaluated first? This can matter.

Simple expressions are usually unambiguous: 2 + 3 can only result in 5. But
sometimes a more complex expression can be solved in more than one way,
like this one:

3 * 10 + 5

Should VB evaluate 3 * 10 and then add 5 to it (resulting in 35), or should it
first evaluate 10 + 5 and multiply that result by 3 (resulting in 45)?

Expressions are not necessarily evaluated by the computer from left to right.
Left-to-right evaluation in the previous example results in 35, because 3 is
multiplied by 10 before the 5 is added to that result. But remember that com-
plex expressions can be evaluated backward sometimes.

Visual Basic enforces an order of precedence, a hierarchy by which various
relationships are resolved between numbers in an expression. For example,
multiplication is always carried out before addition. Fortunately, you don’t
have to memorize the order of precedence. Instead, to make sure that you get
the results you intend when using more than one operator, just enclose the
items that you want to be evaluated first in parentheses. Using the previous
example, if you want to multiply 3 * 10 and then add 5, write it like this:

(3 * 10) + 5

By enclosing an operator and its two surrounding values in parentheses, you
tell VB that you want the enclosed items to be considered as a single value
and to be evaluated before anything else happens.

If you intended to add 10 + 5 and then multiply by 3, move the parentheses
like this instead:

3 * (10 + 5)

In longer expressions, you can even nest parentheses to make clear which
items are to be calculated in which order, like this:

3 * ((40 / 4) + 5)

If you work with these kinds of expressions a great deal, you may want to
memorize Table 7-6. But most people just use parentheses and forget about

127Chapter 7: Whose Type Are You: Managing Variable Types

12_597051 ch07.qxd 10/20/05 1:37 PM Page 127

this problem. If you’re interested, the table lists the order in which VB evalu-
ates an expression, from first evaluated to last.

Table 7-6 The VB 2005 Express Operators in Order of Precedence
Operator Description

^ Exponents (6 ^ 2 is 36. The first number is multiplied by
itself the second number of times.)

– Negation (negative numbers such as –33)

* / Multiplication and division

\ Integer division (division with no remainder,
no fraction)

Mod Modulo arithmetic

+ – Addition and subtraction

The relational operators Evaluated left to right

The logical operators Evaluated left to right

Given that multiplication has precedence over addition, the ambiguous exam-
ple that started this discussion can be evaluated in the following way:

3 * 10 + 5

So, the result is 35.

128 Part II: Programming the Practical Way

12_597051 ch07.qxd 10/20/05 1:37 PM Page 128

Chapter 8

Superstrings: Managing Arrays
In This Chapter
� Figuring boundaries

� Understanding initialization techniques

� Using object arrays

� Searching and sorting

� Tapping into the ArrayList powerhouse

� Data binding

� Employing enumerators

� Hacking hashtables

Arrays are essential computing tools: They provide a way to efficiently
store and retrieve related data. An array is like a little database contain-

ing multiple variables — and the data in an array can be manipulated as a
group. For example, you can copy the entire array, sort it in different ways,
and so on.

But if you think you have some idea about what traditional arrays can do,
think again. VB has now taken them to a whole new level of usefulness. You’ll
find lots of interesting and powerful new ways to manipulate arrays in this
chapter.

In VB, arrays can contain objects, they can search and sort themselves, and
the ArrayList feature is particularly valuable and flexible. In addition, you’ll
also want to explore the “strong typing” available from the new HashTable
class. All of these topics are covered in this chapter.

13_597051 ch08.qxd 10/20/05 1:38 PM Page 129

Working in a Zero-Based World
Before exploring the interesting new ways you can use arrays in VB, I first
need to point out that arrays are always zero-based in the .NET framework
upon which VB Express rests. (This framework is a huge collection of proce-
dures, such as Dim, that you can use in your programming.)

Zero-based groups are strange to us humans, but some people in the pro-
gramming community who create languages (such as the .NET languages)
don’t seem to understand this strangeness and the many bugs it introduces
into real-world programs. It’s as if you, a wacky mayor, decided that in your
town, the first house on each street would have the address 0. There would
be a family living at 0 Maple Drive, poor things. Imagine the laughter and the
pain. Zero-based lists are obviously silly. They’re very common in program-
ming languages. (However, until recently, VB sensibly started counting with 1
in its arrays and other such lists. But all that’s changed.)

In practical terms, the zero-based array means that you must always be
aware that the dimension you declare for your array is not its actual capacity.
If you dimension (specify the size of) an array as 10, the array actually can
hold 11 items (item 0 through item 10 = 11 items).

Put another way, the index numbers to the items in this array are 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, and 10. The array has 11 index numbers, 11 elements, and these ele-
ments can contain 11 values. Just remember that in VB Express, an array can
always contain one more value than the number you declare as its dimension.

This has several implications, particularly when you manipulate arrays in
loop structures. You can use the UBound function of an array (or the Count
property of an ArrayList) to find out the highest element number, like this:

UBound(myarray)

Or you can use the Length property to find out how many actual elements
(its true capacity) are in the array, like this:

myarray.Length

In the following example, the UBound function returns 10, but the Length
property is 11:

Dim MyArray(10) As String

Console.WriteLine(“Ubound, the DIMension is: “ & UBound(MyArray))
Console.WriteLine(“The Length Property is: “ & MyArray.Length)

Zero-based arrays and other types of zero-based lists have always bedeviled
programmers. That’s why an Option Base 1 statement was made available

130 Part II: Programming the Practical Way

13_597051 ch08.qxd 10/20/05 1:38 PM Page 130

in earlier versions of VB, to force an array to begin its index with 1 rather
than zero. Nonetheless, the .NET Common Language Specification requires
zero-based arrays “for compatibility with other languages.”

The zero-based array is one example of how .NET requires VB to conform to
the way the C language and its offspring — C++, C#, Java, and so on — have
always done things. In my view, it may have been better to add flexible lower
boundaries (base) to the C-type languages than to remove the Option Base
feature from VB.

Initializing Arrays
In VB Express, you can assign values to variables on the same line that
declares them. This same feature is available to arrays. If you want to use this
same-line shortcut approach, you must use braces to enclose the array’s
values, like this:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim MyArray() As String = {“Clark”, “Lois”, “Jimmy”}
Dim i As Integer

For i = 1 To UBound(MyArray)
Debug.WriteLine(MyArray(i))

Next

End Sub

Notice that you can’t specify an upper boundary when initializing values in
this fashion. You must leave the () after the array’s name empty, as this
example illustrates. Also notice that when you display the results from 1 to
the highest index number, the zeroth item (Clark) is ignored. To access all
the data, you would need to write your loop like this:

For i = 0 To UBound(MyArray)

Creating Arrays of Objects
You can create an array of objects in VB Express that, among other things,
allows you to store different data types within a single array. Normal arrays
are composed of a single data type — such as a string array that can hold
only strings. But with object arrays, you can mix and match different types in
the same array. If you’re not fond of Object Oriented Programming (OOP),
just skip this section.

131Chapter 8: Superstrings: Managing Arrays

13_597051 ch08.qxd 10/20/05 1:38 PM Page 131

To create an object array, you first declare an object variable, and then you
instantiate (OOP-speak for create) each object in the array. This example cre-
ates an array holding six book objects. Don’t worry that you’re creating a
class here. If you want to explore object-oriented programming, I suggest find-
ing a good book on that topic. Barry Burd’s Java 2 For Dummies, 2nd Edition
(Wiley) offers an introduction to object-oriented programming through Java.

Anyway, OOP fans, here’s how to build an object array:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim arrBook(6) As Book ‘create the array object variable
Dim i As Integer

‘instantiate each member of the array:
For i = 0 To 6

arrBook(i) = New Book()
Next

‘ set the two properties of one of the array members
arrBook(3).Title = “Babu”
arrBook(3).Description = “This book is large.”

Dim s As String = arrBook(3).Title
MsgBox(s)

End Sub

End Class

Then you type in your Book class below the End Class line (see boldface in
the preceding code) that concludes the Form1 class:

Public Class Book

Private _Title As String
Private _Description As String

Public Property Title() As String
Get

Return _Title
End Get
Set(ByVal Value As String)

_Title = Value
End Set

End Property

Public Property Description() As String
Get

132 Part II: Programming the Practical Way

13_597051 ch08.qxd 10/20/05 1:38 PM Page 132

Return _Description
End Get
Set(ByVal Value As String)

_Description = Value
End Set

End Property

End Class

Searching and Sorting Arrays
In VB Express, arrays have the capability to both sort and search themselves.
By default, a VB Express array, when asked to sort itself, sorts alphabetically
from A to Z. Also note that, when sorted, the array’s elements’ index numbers
change.

Here’s an example showing how to use both the sort and the search methods
of the array object. The simplest syntax for these two methods is as follows:

Array.Sort(myArray)

and

anIndex = Array.BinarySearch(myArray, “Penni Goetz”)

To see these features in action, put a TextBox on a form. Then type in this code:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim myarray(4) As String
Dim cr As String = vbCrLf ‘carriage return
Dim show As String
Dim i As Integer
Dim anIndex As Integer
Dim r As String

‘fill the array with values:
myarray.SetValue(“zero”, 0)
myarray.SetValue(“one”, 1)
myarray.SetValue(“two”, 2)
myarray.SetValue(“three”, 3)
myarray.SetValue(“four”, 4)

For i = 0 To 4
show = show & myarray(i) & cr

133Chapter 8: Superstrings: Managing Arrays

13_597051 ch08.qxd 10/20/05 1:38 PM Page 133

Next

TextBox1.Text = show & cr & cr & “SORTED:” & cr

Array.Sort(myarray)

show = “”

For i = 0 To 4
show = show & myarray(i) & cr

Next

anIndex = Array.BinarySearch(myarray, “two”)

r = CStr(anIndex)
show &= cr & “The word two was found at index number “ & r & “ within the array”

TextBox1.Text &= show

show = “”

For i = 0 To 4
show = show & myarray(i) & cr

Next

TextBox1.Select(0, 0) ‘turn off selection

End Sub

Note the use of the SetValue method in this example. Its syntax enables you
to add or replace an item anywhere within an array by specifying the index
number. The following line of code sets the third item in myarray to the
string one.

myarray.SetValue(“one”, 2)

The Sort method has eight variations, including one that sorts only a subset
of the array:

Array.Sort(myarray, StartIndex, LengthOfSubset)

Although this is a rarely used tactic, here’s an example that specifies that you
want only the fifth through eighth items sorted:

Array.Sort(myarray, 4, 7)

You might use this approach if, for example, the array had various kinds of
data, some of which you didn’t want to sort. Perhaps the first three elements
of that array don’t contain string data; instead they contain Web service data,
so you don’t want to sort those three elements.

134 Part II: Programming the Practical Way

13_597051 ch08.qxd 10/20/05 1:38 PM Page 134

(However, if you are using my suggestion and avoiding the zeroth item, this
example sorts the fourth through seventh items.)

Unfortunately, a bug was introduced into VB several years ago in the earliest
.NET version. By default, when you assign some text to a TextBox, as you did
in the previous example, it is highlighted (selected, as if the user had dragged
the mouse across it to highlight it). This is likely to confuse the user and also
looks bad. To deselect the text, you have to add the following line to your
programming, as I did previously:

TextBox1.Select(0, 0) ‘turn off selection

Customizing the Sorting Rules
You can even sort one array based on the elements in another array. This
interesting capability allows you to devise your own, custom sorting rules.

For example, suppose that the entries in a single-dimension array hold first
names and last names separated simply by a space character: “Mary Jones,”
“Bob Smith,” and so on.

However, you need to sort them by their last names. Using this custom sort-
ing trick, you can solve this problem by creating a second array that holds
only the last names and alphabetizing it in sync with the first array (so you’re
actually also sorting the original array the way you want).

Sorting both, “connected” arrays has the effect of rearranging the original
array in parallel with the sorting going on in the new array. Note that the
second array is not alphabetized. It merely gets sorted in parallel with the
first array. The arguments of the Sort method look like this:

myarray.Sort(firstarray, secondarray)

and only firstarray here is alphabetized — secondarray merely goes
along for the ride in sync.

Here’s an example showing how to use this technique:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim cr As String = vbCrLf ‘carriage return

Dim myarray(5) As String
Dim lastnames(5) As String

myarray(0) = “Monica Lewis”
myarray(1) = “Georgio Apples”

135Chapter 8: Superstrings: Managing Arrays

13_597051 ch08.qxd 10/20/05 1:38 PM Page 135

myarray(2) = “Sandy Shores”
myarray(3) = “Dee Lighted”
myarray(4) = “Andy Cane”
myarray(5) = “Darva Slots”

TextBox1.Clear()

‘create an array of the last names:

Dim i As Integer
Dim x As Integer
Dim s As String

For i = 0 To UBound(myarray)
s = myarray(i)
x = s.IndexOf(“ “) ‘find blank space
lastnames(i) = myarray(i).Substring(x) ‘get last name
TextBox1.Text &= lastnames(i) & cr

Next

TextBox1.Text &= cr & “Sorted by last name:” & cr

myarray.Sort(lastnames, myarray)

For i = 0 To UBound(myarray)
TextBox1.Text &= myarray(i) & cr

Next

TextBox1.Select(0, 0) ‘turn off selection

End Sub

When using the array Sort method in this way, the array that serves as the
key (the array to alphabetize by) is the first argument, followed by the array
to be sorted. In this example, the arguments are (lastnames, myarray), so
myarray is sorted in sync with the alphabetization that takes place in the
lastnames array.

Using Many Members
Like most objects in VB Express, the Array object has many members. In
addition to the properties and methods that most objects have (such as the
ToString method), several members are unique to the array class (Reverse,
GetUpperBound, and so on).

136 Part II: Programming the Practical Way

13_597051 ch08.qxd 10/20/05 1:38 PM Page 136

The simplest syntax for the Reverse method reverses all the items in an
array, like this:

Array.Reverse(myarray)

Or you can reverse only a subset of items within the array. In this example,
the reversing starts with the item at index number 1 and only reverses two
items:

Array.Reverse(myarray, 1, 2)

To see a list of all the methods you can use with an array, type Array. into
the code window. As soon as you type the ., the list of methods appears.

The ArrayList Powerhouse
The new VB Express ArrayList is a powerful tool. You may want to familiar-
ize yourself with it if you expect to ever need to manipulate arrays in your
programming. For one thing, it can dynamically resize itself, so you don’t
have to resort to ReDim and other techniques that a traditional array requires
when resized. Use an ArrayList if you need a dynamic array.

Why use an ArrayList?
Clearly, the Array and the ArrayList in VB Express include some overlap in
their features. Both classes can search, sort, reverse, and manipulate their
data in various ways.

An ArrayList, however, has more features and is generally more capable
than an Array. One serious drawback to arrays is that they are a bit like
“serial access” storage devices such as a videotape. Removing or inserting
items is cumbersome. For example, if you want to remove the fifth item in an
array, you must write some programming to loop through the array and move
down by one all the values from the fifth element up to the final element.
Otherwise there’s an empty space where you deleted.

The ArrayList, by contrast, is more flexible because it’s more like recording
on a computer’s hard drive or any other “random access” device. The
ArrayList is designed to be more dynamic: It automatically handles any nec-
essary resizing when you insert or delete elements. (All arrays in VB Express

137Chapter 8: Superstrings: Managing Arrays

13_597051 ch08.qxd 10/20/05 1:38 PM Page 137

can be resized at any time with the ReDim statement or ReDim Preserve, but
the latter slows the program down.)

To see some of the capabilities of an ArrayList in action, start a new VB
Express Windows-style project and put a ListBox and a Button on the form.
Then type in this code, which illustrates how you can remove an element by
using the RemoveAt method, specifying an index number. Notice that for this
example to work, you want to allow both subs to access your ArrayList. To
make that happen, you cannot declare the ArrayList inside one of the subs.
Instead, it must be declared outside. To add variables or arrays that are
accessible from all the code in a form, you usually put them just above the
Form_Load event, like this boldface Public declaration of an ArrayList:

Public arrList As New ArrayList()

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

arrList.Add(“ET”)
arrList.Add(“Pearl Harbor”)
arrList.Add(“Rain”)

ListBox1.Items.AddRange(arrList.ToArray)

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

arrList.RemoveAt(1)

ListBox1.Items.Clear()
ListBox1.Items.AddRange(arrList.ToArray)

End Sub

Notice that you don’t have to use For...Next or other loop code to feed the
data from an array to a ListBox. Instead, you can simply slap it in with the
ListBox’s AddRange method. Alternatively, you can bind the data in an array
directly to a ListBox. Data binding is illustrated in the section “Data Binding,”
later in this chapter.

Here’s another example of the capabilities of the ArrayList class. To see
how you can specify an element’s contents — rather than its index number —
as another way of removing it, replace the line in boldface in the previous
example with the following line:

arrList.Remove(“Pearl Harbor”)

138 Part II: Programming the Practical Way

13_597051 ch08.qxd 10/20/05 1:38 PM Page 138

Working with ranges
Among other features, an ArrayList can manipulate a range of its elements
by adding (to the end of the ArrayList), inserting, reading, or removing the
range all at once. To see an example that reads a range, replace the code cur-
rently in the Button1_Click event from the previous example with this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim RangeOfArrList As ArrayList = arrList.GetRange(0, 2)

ListBox1.Items.Clear()
ListBox1.Items.AddRange(RangeOfArrList.ToArray)

End Sub

In this example, the two numbers in the GetRange method specify the start
index and number of elements in range, respectively. Then that range is
copied into a new ArrayList named RangeOfArrList.

A sometimes useful type of collection, similar to an array, is the SortedList.
It always automatically maintains its contents in alphabetical order. Whenever
you add a new item, that item is inserted into the list in the proper alphabetic
location.

Data Binding
VB Express permits you to bind ListBoxes, DataGrids, and other list-type con-
trols to an array, hashtable, or other collection. Data binding has been avail-
able in VB for several years now, but previously you could bind controls only
to a database or a recordset derived from a database.

Binding merely means that the source of the data (such as an array) is linked
to the control and provides data to the control — usually so the user can
view or manipulate that data. For instance, you can allow the user to select
an item in a ListBox by clicking the item.

Using the same ListBox and Button from the previous example in “Working
with ranges,” replace the Button’s Click event with the following code to see
how to bind an ArrayList to a ListBox:

139Chapter 8: Superstrings: Managing Arrays

13_597051 ch08.qxd 10/20/05 1:38 PM Page 139

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim Monkey As New ArrayList()

Monkey.Add(“A”)
Monkey.Add(“B”)
Monkey.Add(“C”)
Monkey.Add(“D”)
Monkey.Add(“E”)
Monkey.Add(“F”)

ListBox1.DataSource = Monkey

End Sub

Enumerators
Microsoft is encouraging us programmers to use enumerators when looping
through a collection class (such as an array). If you prefer this approach,
here’s an example that illustrates how to display the Monkey ArrayList’s
contents in the Immediate window when you click the button:

Dim Monkey As New ArrayList()
Dim MonkeyEnumerator As System.Collections.IEnumerator

Monkey.Add(“A”)
Monkey.Add(“B”)
Monkey.Add(“C”)
Monkey.Add(“D”)
Monkey.Add(“E”)
Monkey.Add(“F”)

MonkeyEnumerator = Monkey.GetEnumerator()

While MonkeyEnumerator.MoveNext()
Debug.WriteLine(MonkeyEnumerator.Current)

End While

This enumeration technique is an alternative to the more traditional VB
approach to using a loop to go through a collection, like this:

Dim i As Integer
For i = 0 To Monkey.Count - 1

Debug.WriteLine(Monkey(i))
Next

140 Part II: Programming the Practical Way

13_597051 ch08.qxd 10/20/05 1:38 PM Page 140

Also, remember that an ArrayList is dynamic — it reallocates memory as
needed when you add items to it. However, you can set the Capacity prop-
erty explicitly if you wish. In fact, you can freely resize an ArrayList at any
time by changing its Capacity property. If you don’t expect to add any more
new elements to an ArrayList, you can free up some memory by using the
TrimToSize method.

Using Hashtables
The collection class called a hashtable is quite similar to the ArrayList in
both design and features. However, a hashtable permits “strong data typing,”
as it’s called — you can give each element a name in addition to its index
number.

In some situations, working with a collection of data is easier when each ele-
ment is labeled with a descriptive name. For example, if you need a collection
of data that holds the foods eaten by each animal in a zoo, manipulating the
data may be easier — and may make your code more readable — if each ele-
ment is named after a different animal:

Dim Food As New Hashtable()

Food.Add(“Lion”, “Meat”)
Food.Add(“Bear”, “Meat”)
Food.Add(“Penguin”, “Fish”)

Debug.WriteLine(Food.Item(“Bear”))

In this example, the names of the animals, rather than their index numbers,
are the keys you can use to access the elements. Each key must be unique,
although the data can be duplicated as much as you wish (“meat” and “meat”
in this example). Hashtables are also used in encryption — to translate a
password into a pseudo-random numeric key.

The term strong typing is used in several, unfortunately unrelated ways in cur-
rent computer “science.”

141Chapter 8: Superstrings: Managing Arrays

13_597051 ch08.qxd 10/20/05 1:38 PM Page 141

142 Part II: Programming the Practical Way

13_597051 ch08.qxd 10/20/05 1:38 PM Page 142

Chapter 9

Pretty Printing
In This Chapter
� Printing with My

� Introducing the printing objects

� Understanding page measurements

� Working with the PrintPreview controls

� Printing graphics

� Understanding With...End With

In previous versions of Visual Basic, printing was fairly straightforward.
To print the contents of a TextBox to the printer, you needed only this line

of code:

Printer.Print Text1

Or this line to print a string:

Printer.Print “This.”

To print a whole form (its graphic appearance, such as a picture file loaded
into the form’s BackgroundImage property), you simply used this:

PrintForm

In VB Express, you have greater control over what gets printed, but there is
the usual penalty for flexibility: additional complexity. To print in VB Express,
you have to muster a fair amount of information (such as brush color, the
height of each line of text, the margins, and so on), and you have to manage
several other aspects of the printing process as well.

I want to thank my friend Evangelos Petroutsos for his valuable suggestions
and permission to use some of his code examples in this chapter. He figured
out how best to deal with a line cut-off problem in VB .NET printing, an
important concept that I’ve seen nowhere else. The examples in most books,
and in some versions of VB Help itself, intermittently cut the last text line on
a page in half. Thanks to Evangelos, the programming in this chapter (and
thus you) avoids that unhappy but all-too-common error.

14_597051 ch09.qxd 10/20/05 1:43 PM Page 143

This chapter bifurcates; no apologies. It starts with the simplified My version
of printing, which is likely to prove sufficient for 7 out of 10 readers. For
those who need greater control over the printing process, the rest of the
chapter dives into the deep structure of the PrintPage object.

Quick and Easy Printing Using My
The new, simplified (sometimes) My object can make printing easier than
wrestling with the full-powered printing classes described later in this chap-
ter. If you want quick, relatively simple results, take a look at this code that
uses My.Computer.Printers.

Here’s an example that illustrates some of the methods (write, and at the
end, print) and properties (such as HorizontalAlignment) that are used
for printing in VB Express:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

With My.Computer.Printers.DefaultPrinter
.HorizontalAlignment = HorizontalAlignment.Center
.WriteLine(“This Is a Test”)
.HorizontalAlignment = HorizontalAlignment.Left
.Write(“Your Name Here:”)
.WriteHorizontalLine(0.12)
.WriteLine()
.WriteImage(New Bitmap(“c:\small.jpg”))
.Print()

End With

End Sub

As you can see by reading this code, the printer centers itself and prints the
first line of text, This Is a Test. Then it moves to the left margin, writes
another line of text, draws a line across the paper and finally prints a graphic.

You can get a quick idea of what the DefaultPrinter object does by getting
an IntelliSense list of its members (behaviors and properties; see Chapter 3).
Just type this line into the code window in the Form1_Load event and as soon
as you type that final period after the word DefaultPrinter, you see the list:

My.Computer.Printers.DefaultPrinter.

The items in the list with a small flying purple eraser icon are the methods
(behaviors or jobs the object can do). As you doubtless know, a flying purple
eraser is a perfect symbol for both programming methods and, in Sweden
especially, for pickled fish. Items with a yellow hand pointing to a database
table (or is it a restaurant menu? Who knows?) are the properties.

144 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 144

Table 9-1 lists DefaultPrinter’s properties (at the time of this writing), with
brief explanations of what each property is used for. Table 9-2 lists
DefaultPrint’s methods.

Table 9-1 The DefaultPrinter Properties
BackColor ForeColor PageSettings

BodyArea Graphics PhysicalPageSize

CurrentPageIndex Header PrintableArea

CurrentX HorizontalAlignment PrinterSettings

CurrentY IndentLeft RemainingLines

Font IndentRight RightToLeft

FontName MarginBottom Table

FontSize MarginLeft Tag

FontStyle MarginRight units

FontUnits MarginTop

Footer PageCount

Table 9-2 The DefaultPrint Methods
Clear DrawRectangle PrintToStream

Dispose DrawSquare TableBegin

DrawArc DrawText TableEnd

DrawCircle Equals ToString

DrawEllipse FitsInPageBody Write

DrawFilledArc GetHashCode WriteDataboundTable

DrawFilledCircle GetType WriteHorizontalLine

DrawFilledEllipse MeasureText WriteImage

DrawFilledRectangle NewPage WriteLine

DrawFilledSquare Print WriteTextFile

DrawImage PrintPreview

DrawLine PrintToFile

145Chapter 9: Pretty Printing

14_597051 ch09.qxd 10/20/05 1:43 PM Page 145

To experiment with these various members, again use IntelliSense. For exam-
ple, to see the required data that should be provided if you plan to change
the FontSize property so the text is printed in 16-point characters, type this
line into the code window:

My.Computer.Printers.DefaultPrinter.FontSize(

And as soon as you type the left parenthesis, you see that the required datum
is merely a single (a numeric data type), as shown in Figure 9-1. Therefore, to
change to 16 points, you can add this code, providing the single:

My.Computer.Printers.DefaultPrinter.FontSize = 16

Or if you want to put it inside a With block as in the code example earlier:

.FontSize = 16

Printing Just the Way You Want
with the Printer Objects

In VB Express, you can take charge of how everything looks when you send
data to the printer. You have great freedom to mix fonts, graphics, and other
visual elements. In fact, you can control pretty much everything about the
printed page, down to each pixel and its color. Technically, even text is
dumped as a graphic into a drawing rectangle, as they call it.

The flip side of this freedom is that you have to keep track of what you are
printing and where it’s going. To put it briefly, when printing text you must
ensure that you don’t print off the page’s right or bottom margins, or that the
printer doesn’t render only portions of some of the lines of text. Some char-
acters may be cut off on the right side, or a word may be divided awkwardly
(awk on one line, then wardly on the next), or the bottom of the final line on a

Figure 9-1:
IntelliSense

tells you
what data
(parame-
ters) are

required.

146 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 146

page may be chopped off (a g looks like an a and so on). But do remember
that if you prefer to allow VB to manage all the messy details for you — sacri-
ficing some control in the process — just use the My.Computer.Printers.
DefaultPrinter object described earlier in this chapter.

Parsing text for the printer
For most of us, printing text is more common than printing graphics, so I
tackle text first in this section.

To understand how this all works in VB Express — and to see how to prevent
your text from being mangled at the bottom or right margins — follow these
steps:

1. Start a new Windows-style VB Express project by choosing File➪New
Project and then double-clicking the Windows Application icon.

2. Double-click the form in the Design window.

You now see the Code window.

3. Before getting started with the actual programming, type the follow-
ing Imports statements at the top of your form.

These statements must be entered at the very top — above the line
Public Class Form1. These importations make it possible for VB to
use the features available in the code libraries listed.

Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Drawing.Imaging
Imports System.IO
Imports System.Drawing.Text
Imports System.Drawing.Printing

4. Add a TextBox and a Button to your form.

5. With the Windows Forms tab selected in the Toolbox, scroll the
Toolbox until you see the printer-related controls’ icons (they’re near
the bottom of the Toolbox).

6. Add a PrintDocument control to your form by double-clicking its icon
in the Toolbox.

7. Double-click the PrintDocument1 icon in the tray beneath Form1 in
design view.

A PrintDocument1_PrintPage event is created in the code window.

147Chapter 9: Pretty Printing

14_597051 ch09.qxd 10/20/05 1:43 PM Page 147

8. Move below the End Sub line that concludes the PrintPage event and
type in this function (you fill in the programming for the PrintPage
event later in this chapter):

Function ParseWord() As String
‘get the next word from the Text, and return it.

‘use Static to retain the cursor position value
‘between calls to this function
Static CurPos As Integer
Dim Word As String

‘Return an empty string if we’ve reached the end of the Text.
If CurPos >= TextBox1.Text.Length Then Return “”

‘find first non-space character
While Not System.Char.IsLetterOrDigit(TextBox1.Text.Chars(CurPos))

Word = Word & TextBox1.Text.Chars(CurPos)
CurPos = CurPos + 1
If CurPos >= TextBox1.Text.Length Then Return Word ‘end of Text

End While

‘build a word from the characters until you hit a space (IsWhiteSpace)
While Not (System.Char.IsWhiteSpace(TextBox1.Text.Chars(CurPos)))

Word = Word & TextBox1.Text.Chars(CurPos)
CurPos = CurPos + 1
If CurPos >= TextBox1.Text.Length Then Return Word ‘end of Text

End While

Return Word

End Function

This function looks through all the text in TextBox1, character by character.
It keeps track as it moves down through the text by using the variable
CurPos (for cursor position) which keeps counting up until it is greater than
the length of the text:

If CurPos >= TextBox1.Text.Length Then

This ParseWord function’s purpose is to return each word in the TextBox. It
simply finds the next word and sends it back. The function knows when it has
read a word because it comes upon a space character. The following line
means “as long as the current character (CurPos) is not WhiteSpace . . .”:

While Not System.Char.IsWhiteSpace(TextBox1.Text.Chars(CurPos)))

And the following line adds the current character to the word that’s being
built:

Word = Word & TextBox1.Text.Chars(CurPos)

148 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 148

The While loop that encloses these two lines ends either when it reaches the
end of the Text or when it finds a space character.

Above this While loop is another, similar loop which does its job first each
time the function runs. It moves the cursor through white space or other non-
printing characters. In other words, it gathers characters that are Not
System.Char.IsLetterOrDigit. But as soon as it hits a letter or digit (a
text character) this loop is exited and the second loop begins adding charac-
ters to build the word that is returned to the caller. The caller is the
PrintDocument1_PrintPage event.

Using the PrintPage event
In the previous section you saw how to parse a TextBox’s Text property,
extracting each word, one at a time, until you reach the end of the text. Now you
see how to actually print by setting up the necessary preconditions. You define
a rectangle based on the boundaries of the printable space (the paper size
minus the margins). You see how to use the important MeasureString method
of the Graphics object and how to use DrawString to print each page.

In the PrintDocument1_PrintPage event created in the previous section, type
this code:

Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs)
Handles PrintDocument1.PrintPage

Dim printerFont As New Font(“Arial”, 10)
Dim LeftMargin As Integer = PrintDocument1.DefaultPageSettings.Margins.Left
Dim TopMargin As Integer = PrintDocument1.DefaultPageSettings.Margins.Top

Dim txtHeight As Integer = _
PrintDocument1.DefaultPageSettings.PaperSize.Height - _
PrintDocument1.DefaultPageSettings.Margins.Top - _
PrintDocument1.DefaultPageSettings.Margins.Bottom

Dim txtWidth As Integer = _
PrintDocument1.DefaultPageSettings.PaperSize.Width - _
PrintDocument1.DefaultPageSettings.Margins.Left - _
PrintDocument1.DefaultPageSettings.Margins.Right

Dim linesPerPage As Integer = _
e.MarginBounds.Height / printerFont.GetHeight(e.Graphics)

Dim R As New RectangleF(LeftMargin, TopMargin, txtWidth, txtHeight)

Static line As String
Dim Words As String
Dim columns, lines As Integer

149Chapter 9: Pretty Printing

14_597051 ch09.qxd 10/20/05 1:43 PM Page 149

Words = ParseWord() ‘get the first word

‘ build a single page of text
‘ if “” then we’ve reached the end of the TextBox.Text
‘ if lines > linesPerPage then skip this and use DrawString to print the page

While Words <> “” And lines < linesPerPage
line = line & Words
Words = ParseWord()
e.Graphics.MeasureString(line & Words, printerFont, _

New SizeF(txtWidth, txtHeight), New StringFormat, columns, lines)
End While

If Words = “” And Trim(line) <> “” Then ‘finished
‘print the last page

e.Graphics.DrawString(line, printerFont, Brushes.Black, R, _
New StringFormat)

e.HasMorePages = False
Exit Sub ‘quit because there are no more pages to print

End If

‘print page
e.Graphics.DrawString(line, printerFont, Brushes.Black, R, New StringFormat)
e.HasMorePages = True
line = Words

End Sub

This is quite a bit of code to type in, and you’re bound to make some errors if
you try. It’s best to copy and paste all this source code, and it can be down-
loaded from this book’s Web site. (See the book’s Introduction for details
about the Web site.)

This PrintPage source code begins by declaring a few housekeeping vari-
ables. The first line merely specifies the font and font size, and the next two
lines simply read the margin settings.

Now you need to figure out where on the page you can print, which I cover in
the next section.

Determining printable page size
Many printers don’t permit you to print all the way to the edges of the paper,
and it usually looks pretty bad even if you were allowed to do it. So, there is
normally a printable area which is smaller that the physical page size.

150 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 150

Sometimes, the user is permitted to adjust the margins in the PageSetupDialog
control, for example. After the user has made this choice (or if the user simply
leaves the margins set to their default size), your program must work within
these measurements (the printable page, as opposed to the physical page).

You can determine the printable space on a page in two ways. Both are illus-
trated in this chapter’s example code. The first way, which I explain in the
nearby sidebar “Finding printable space with DefaultPageSettings,” involves
doing a little math with the PrintDocument object’s DefaultPageSettings.
The second method, shown in the following code, is simpler. It uses the e
parameter, e.MarginBounds.Height, which holds the vertical measurement

151Chapter 9: Pretty Printing

Finding printable space with DefaultPageSettings
To find out the print area, follow these steps:

1. Find out how much vertical room you have
to print by accessing the PaperSize and
Margins properties of the PrintDocument
object’s DefaultPageSettings:

Dim txtHeight As Integer = _

PrintDocument1.DefaultPageSe
ttings.PaperSize.Height - _

PrintDocument1.DefaultPageSe
ttings.Margins.Top - _

PrintDocument1.DefaultPageSe
ttings.Margins.Bottom

By subtracting the top and bottom margins
from the physical height of the paper (which
is usually 11 inches, but not always), you get
the vertical measurement of the printable
page. For example, the variable txtHeight
here is 9 inches if the top and bottom mar-
gins are both 1 inch and the paper is 81⁄2 x 11
inches.

Tip: Although you can change it, printer
measurements are by default expressed in

100ths of an inch. So you can just use
Integer variables to manage the printing
process. A typical page is 8,500 units wide
and 1,100 units high.

2. Calculate the horizontal free space by sub-
tracting the left and right margins from the
paper’s width:

Dim txtWidth As Integer = _

PrintDocument1.DefaultPageSe
ttings.PaperSize.Width - _

PrintDocument1.DefaultPageSe
ttings.Margins.Left - _

PrintDocument1.DefaultPageSe
ttings.Margins.Right

After you figure out the printable space by using
DefaultPageSettings, you calculate how
many lines of text you can print on this page by
dividing the total height (within the margins) by
the height of the font being used.

14_597051 ch09.qxd 10/20/05 1:43 PM Page 151

of the printable page (the same value stored in the txtHeight variable in the
sidebar). This line of code uses the MarginBounds object:

Dim linesPerPage As Integer = _
e.MarginBounds.Height / printerFont.GetHeight(e.Graphics)

As you see, this project employs the relatively rarely used e parameter,
which is passed to all events in VB Express but is usually ignored. In this
case, the PrintPage event gets important information from this parameter
(ByVal e As System.Drawing.Printing.PrintPageEventArgs).

Next in this project, you define a graphic rectangle as your frame, based on
the left and top margins and the width and height of the available printable
space on the page:

Dim R As New RectangleF(LeftMargin, TopMargin, txtWidth, txtHeight)

Then you declare a couple of variables to hold the current line and word. You
also declare two more variables, columns and lines. The MeasureString
method wants a couple of integers at the end of its argument list. And lines
is also used to prevent the While loop from miscounting the lines.

Looping through the text
Now it’s time to look at the loop that actually does the work of building each
printable page. This While loop uses the ParseWord function to get each word
in the TextBox and add it to the variable line. Then it uses MeasureString
to see if an entire page has been created. When the program exits this loop,
the variable line holds a full printer-page of text.

While Words <> “” And lines < linesPerPage
line = line & Words
Words = ParseWord()

e.Graphics.MeasureString(line & Words, printerFont, New SizeF(txtWidth,
txtHeight), _

New StringFormat, columns, lines)

End While

Next, an If...Then structure tests to see whether the job is done. If the vari-
able words contains no text (“”) and the variable line (with leading and
trailing spaces removed) isn’t empty, that means line contains the final page

152 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 152

that needs to be printed. So you print the page with the DrawString method,
set the HasMorePages method to False, and leave the subroutine:

If Words = “” And Trim(line) <> “” Then ‘if this is true, then we’re finished
‘print the last page
e.Graphics.DrawString(line, printerFont, Brushes.Black, R, New StringFormat)
e.HasMorePages = False
Exit Sub ‘quit because there are no more pages to print

End If

However, if there are more pages to print, you print the current page and
then inform the PrintPageEventArgs parameter that there are more pages
to print. This causes the PrintPage subroutine to begin execution again.

Triggering PrintPage with
the Button control
To complete this text-printing utility, follow these steps:

1. Switch to design view by clicking the Form1.vb(Design) tab at the top
of the Code window.

2. Double-click the Button on your form to create a Button1_Click event
and be returned to the Code window.

3. Type this into the Click event to trigger the printing process.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

PrintDocument1.Print()

End

End Sub

When the PrintDocument object finishes printing, your program returns
to this Click event to End the entire project and stop it from running.

4. Go ahead and press F5 to run this utility.

5. Paste a fairly large amount of text into the TextBox so you can see that
the right and bottom margins are being correctly calculated and printed.

Example code in many books, and in VB Express Help itself, lop off part
of the final printed line on a page (not on every page, but now and then).

153Chapter 9: Pretty Printing

14_597051 ch09.qxd 10/20/05 1:43 PM Page 153

This program’s PrintDocument1_PrintPage event’s source code has some very
long lines of code, but each must be preserved as a single long line in the code
window. If, when you press F5 to test this code, you see all kinds of error mes-
sages in the Task List in the code window (such as “Expected an expression”),
you probably have some broken lines. It’s hard to fix these in the code window
without introducing errors. Instead, try going back and copying the source
code from this book’s Web site, and this time run Windows Notepad and
choose Notepad’s Edit➪Word Wrap feature to turn off word wrap. Paste the
source code into Notepad and then select all the source code in Notepad (now
without line breaks) and copy it (Ctrl+C). Finally, paste this code into the
empty VB Express code window. That should eliminate any broken lines.

As you can see, communication with peripherals like a printer is less simple
and less direct in VB Express than in previous versions of VB. You write more
code, and it’s the kind of code in which you have to employ properties and
methods in ways that are not always intuitive. Nonetheless, it’s not that com-
plex, and you can always just copy the code you see in this book, and in
Appendix B online, and managing most peripheral jobs should work fine
for you.

As you saw earlier by building the preceding project, you use the Print
Document control to hold the actual text or graphics that are printed.

The PrintDocument1.PrinterSettings object has many properties you
can read, and in many cases change, to manage the printer. They are listed in
Table 9-3.

Table 9-3 PrinterSettings Properties
CanDuplex MaximumPage

Collate MinimumPage

Copies PaperSizes

DefaultPageSettings PaperSources

Duplex PrinterName

FromPage PrinterResolutions

IsDefaultPrinter PrintRange

IsPlotter PrintToFile

IsValid SupportsColor

LandscapeAngle ToPage

MaximumCopies

154 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 154

Table 9-4 lists the PrintDocument.PageSettings properties.

Table 9-4 PageSettings Properties
Bounds PaperSize

Color PaperSource

Landscape PrinterResolution

Margins PrinterSettings

Letting Users Set Print Options
If you want to allow the user to specify such elements as margins, page orien-
tation, paper size, and paper feeder, you can display the PageSetupDialog
control (after adding it from the Toolbox to your form):

PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings()

If PageSetupDialog1.ShowDialog() = DialogResult.OK Then
PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings

End If

Also, the user can choose the printer, page range, and number of copies by
using the PrintDialog control. Neither of these controls is illustrated in the
previous example.

Using the PrintPreview Control
Using the PrintPreview control isn’t difficult, and this new control in VB is
sometimes helpful. You can display to users how their output appears when
printed (so they don’t waste paper printing pages that are not formatted to
their liking), and they can click a Print button within the PrintPreviewDialog
to initiate printing.

Use this code to display the PrintPreview, showing the user a sample of
their output:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog()

155Chapter 9: Pretty Printing

14_597051 ch09.qxd 10/20/05 1:43 PM Page 155

In the example project at the start of this chapter, you put the line
PrintDocument1.Print() in a Button_Click event so the user can initiate
the printing process. If you use PrintPreviewDialog, however, be sure not
to include that line in your program. Why? Because the PrintPreview dialog
box itself displays a Print button and a Close button to the user. If the user
clicks the Print button, the document printing is initiated from there, auto-
matically, by the PrintPreviewDialog itself.

If the user clicks the Close button without printing, it means the user decided
not to print. Perhaps you should display the PrintDialog and PageSetupDialog
controls again, to allow the user to make modifications, and then display the
PrintPreview dialog box again.

Printing Graphics
You may want to print graphics. It’s not difficult, but you probably need to
manipulate the graphic to make it look right on the paper in the printer. As is
so often the case with graphics, your primary job is to manage size and posi-
tion. In the following example, you calculate and adjust the position to fit the
graphic on the paper.

Start a new VB Express project and put a PictureBox and a Button on the
form. Set the PictureBox’s SizeMode to AutoSize. This forces the PictureBox
to adjust its size to whatever graphic you assign to it. Use the PictureBox’s
Image property (click its ... button) to find a graphic file on your hard drive
to load into the PictureBox.

At the top of the code window, add these Imports statements:

Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Drawing.Imaging
Imports System.IO
Imports System.Drawing.Text
Imports System.Drawing.Printing

Type the following code into the Document1_PrintPage event:

Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs) Handles
PrintDocument1.PrintPage

With PrintDocument1.DefaultPageSettings.PaperSize
If PictureBox1.Width < .Width Then

156 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 156

PictureBox1.Left = (.Width - PictureBox1.Width) / 2
Else

PictureBox1.Left = 0
End If

End With

With PrintDocument1.DefaultPageSettings.PaperSize
If PictureBox1.Height < .Height Then

PictureBox1.Top = (.Height - PictureBox1.Height) / 2
Else

PictureBox1.Top = 0
End If

End With

Dim r As Rectangle = New Rectangle(PictureBox1.Left, PictureBox1.Top, _
PictureBox1.Width, PictureBox1.Height)

e.Graphics.DrawImage(PictureBox1.Image, r)

End Sub

Type this brief code into the Button’s Click event.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

PrintDocument1.Print()

End

End Sub

Understanding With...End With
The code in the PrintPage event in the preceding section determines the
coordinates (the top and left position on the paper) that display the graphic
in the center of the page. First you use the With structure. Any property or
method between With and End With that begins with a . (period) is
assumed to belong to the object defined in the line that begins the With
structure. This way you can avoid repeating the “full qualification” (the entire
object name) each time you refer to one of its properties or methods.

In that previous code example, you start the first With structure like this:

With PrintDocument1.DefaultPageSettings.PaperSize

157Chapter 9: Pretty Printing

14_597051 ch09.qxd 10/20/05 1:43 PM Page 157

So all words within this structure that begin with . are part of the
PrintDocument1.DefaultPageSettings.PaperSize object. (This
With...End With technique is similar to using the Imports statement to
add a namespace at the top of a code window. Both techniques save you a
little work by relieving you of having to fully qualify in your code all the mem-
bers of a particular class.)

Notice how these two lines leave out the object qualifier, simply using
.Width when referring to the Width property of the
PrintDocument1.DefaultPageSettings.PaperSize object:

With PrintDocument1.DefaultPageSettings.PaperSize
If PictureBox1.Width < .Width Then

PictureBox1.Left = (.Width - PictureBox1.Width) / 2

If you decided not to use this With...End With structure, you would have
to write these lines with fully qualified object references, like this:

If PictureBox1.Width < PrintDocument1.DefaultPageSettings.PaperSize.Width Then
PictureBox1.Left = (PrintDocument1.DefaultPageSettings.PaperSize.Width - _

PictureBox1.Width) / 2

The first line asks: is the PictureBox narrower than the paper? If so, you
center the graphic horizontally on the paper by finding out how much nar-
rower it is (subtracting the PictureBox width from the paper width) and then
dividing that by 2 (to provide equal left and right margins, thereby centering
the graphic.

If the PictureBox is not narrower than the paper, you assign 0 to its position,
pushing it as far to the left as possible. Similarly, the second With...End
With structure calculates the Top position in order to attempt to center the
graphic vertically on the paper.

Then you define a rectangle to hold the graphic and draw the image in the
rectangle. The DrawImage method also prints your graphic (because it is in
the PrintPage Event):

Dim r As Rectangle = New Rectangle(PictureBox1.Left, PictureBox1.Top, _
PictureBox1.Width, PictureBox1.Height)

e.Graphics.DrawImage(PictureBox1.Image, r)

158 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 158

Fine-tuning your graphics print options
To improve the bare-bones printing technique I discuss earlier in this section,
you can add code that

� Zooms or reduces the graphic.

� Allows the user to specify the position on the paper where the graphic
should be placed.

� Moves the PictureBox’s Top and Left position to specify the printer
coordinates. (But be warned: Manipulating the coordinates of both the
PictureBox and the paper is harder than it at first seems. You have to
ensure that the graphic isn’t positioned or expanded off the paper’s
physical size, and you have to avoid distorting the image by changing its
aspect ratio — the ratio of height to width — if you stretch or shrink it.)

Now that I think about it, instead of trying to get too fancy too fast, you might
be better advised to first explore the various properties and methods of the
My.Computer.Printers.DefaultPrinter object.

Unless graphics and printing are your main job in life, you might never need
the additional flexibility — such as reducing a graphic — that you get by
diving into the deep end of printer classes.

159Chapter 9: Pretty Printing

14_597051 ch09.qxd 10/20/05 1:43 PM Page 159

160 Part II: Programming the Practical Way

14_597051 ch09.qxd 10/20/05 1:43 PM Page 160

Chapter 10

Testing and Deployment
In This Chapter
� Grasping the three types of bugs

� Tracking down errors

� Breaking in and stepping through

� Using the minor debugging techniques

� Trapping errors during run time

No programming project of any significance simply comes to life error-
free. You always have to test your applications and then track down the

inevitable problems that are revealed. Then you must fix them.

Bugs usually aren’t a result of negligence. Any sizable application is like a
large office full of people: With such an enormous number of interacting
behaviors, some trouble is unavoidable.

What do you do when you press F5 to test a program you’ve just written, and
VB throws up an error message? You can sit around and mope, or you can
take steps. I suggest taking steps. Fortunately, VB offers an unquestionably
excellent, powerful suite of debugging tools: the Error List, the Immediate
window, watches, breakpoints, single-stepping, and other debugging features.

This chapter explores the more common types of errors you’re likely to
encounter and the VB Express tools and techniques you can use to fix them.

VB Express has a feature called Just My Code that’s turned on by default. It
means that the debugging features ignore code you didn’t write (that is, code
that is automatically written and inserted for you by VB but hidden from you
normally). Stepping (described later in this chapter) does walk through such
code but won’t stop on these lines. The Just My Code feature is a very good
idea. Don’t scare or distract yourself with code you didn’t write; so don’t go
into the Tools➪Options➪Debugging➪General menu system and uncheck the
Enable Just My Code option. Leave it as is.

15_597051 ch10.qxd 10/20/05 1:44 PM Page 161

Finding and Fixing Syntax Errors
Debugging starts by finding out where the bug is located — which line or
lines of source code are causing the problem. VB’s syntax-checking feature
watches as you type each line of code. As soon as you finish a line, it checks
the line to see whether you mistyped anything or made some other kind of
error, such as leaving out something necessary. (VB knows you’re finished
with a line when you press Enter, use an arrow key to move off the line, or
click the mouse pointer on another line.)

To see the syntax checker in action, type the following function in the VB
code window in the Form_Load event (just double-click the Form in design
view to get to this event):

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

zum = nara

End Sub

As soon as you enter the zum = nara line of code, VB does not like it. To
demonstrate its displeasure, it underlines both zum and nara.

Beware the blue sawtooth line. If the syntax checker has a problem with a
line of code, it underlines the error or errors with that blue line. In the pre-
ceding code example, you typed two variable names, neither of which you
declared. VB requires that all variables be declared (unless you add Option
Explicit Off to the top of your source code; see Chapter 7 for details). So
you get jagged lines under each of the undeclared variable names.

Some people like to make Option Explicit the default for their entire project,
so they don’t have to specify it in each individual form. To do that, right-click
your project’s name (it’s the one in boldface) in Solution Explorer and then
choose Properties from the context menu. Click the Compile tab in the
Properties Window and turn Option Explicit on using the drop-down menu
next to that option.

To find help fixing syntax errors, you can do the following:

� Move your mouse pointer on top of one of the sawtoothed words in
your code, and VB provides an explanation of the error. Don’t click, just
slide the arrow onto the bad part, as shown in Figure 10-1.

� Press F5 and you see the errors listed and described in the Error List,
as shown in Figure 10-2.

162 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 162

� Double-click one of the errors in the Error List window to go to the
line in the Code window where the error occurred. The specific com-
mand that caused the problem is highlighted. To make the jagged blue
lines go away in this example, choose Debug➪Stop Debugging. Then
declare the two variable names by adding these lines just above the
existing line of code zum = nara:

Dim zum As String
Dim nara As String

You still see a sawtooth line under nara, but now it’s relaxed to black, so it’s a
warning — sort of like a scolding — and a rather stupid warning at that:

Variable nara is used before it has been assigned a value.
A null reference exception could result at runtime.

Don’t worry about this nonsense. It’s OOP and C-language stuff, and program-
mers in those languages like to use preposterously fancy-sounding terms.
Exception is their word for error. I guess it sounds less embarrassing or
something.

Figure 10-2:
The Error

List window
displays
errors in

your code.

Figure 10-1:
A brief error

message
appears

when you
pause your
pointer on

top of an
error in the

code.

163Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 163

Press F5 now and you see the warning listed in the Error List. Indeed, the
warning is unnecessary — no “exception” happens when you run the project,
but in a wild excess of caution, somebody working on VB Express seems to
think that warnings about possible errors should be sometimes brought to
your attention. What’s next? Try to ignore this hand-holding behavior.

Tracking Down Logic Errors
Logic errors are usually the most difficult of all to find and correct. VB can’t
underline logic errors as it can with syntax errors. Some logic errors can be
so sinister, so well concealed, that you think you will be driven mad trying to
find the source of the problem in your code. VB sensibly devotes the majority
of its debugging features and resources to helping you find logic errors.

A logic error occurs even though you have followed all the rules of syntax,
made no typos, and otherwise satisfied VB that your commands can be suc-
cessfully carried out. You and VB think everything is shipshape. When you
run the program, however, things go wrong. Perhaps the entire screen turns
purple, or every time the user enters $10, your program changes it into
$1,000. That’s just not right. You know it, even if VB doesn’t.

As with almost all programming errors, the key to correcting logic errors is
finding out where in your program the problem is located. Which line of code
(or several lines interacting) causes the problem?

Some computer languages have an elaborate debugging apparatus that can
even include the use of two computer monitors: One can show the applica-
tion just as the user sees it, while the other shows the lines of code that
match what the user sees. Using two monitors is a good approach because
when you are debugging logic errors, you often want to see the code that’s
currently causing the effects in the application. Unfortunately, most of us
don’t have the resources to dual-monitor debug.

It’s not that you don’t usually notice the symptoms of a logic error: Every
time the user enters a number, the results are way, way off, for example. You
know that somewhere, your program is mangling these numbers, but until
you X-ray the program, you often can’t find out where the problem is located.
The following sections introduce the tools at your disposal that can help.

The voyeur technique
Many logic errors are best tracked down by watching the contents of a vari-
able (or variables). You want to find out just where the variable’s value
changes and goes bad.

164 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 164

Four of VB’s best debugging tools help you keep an eye on the status of vari-
ables. The following examples demonstrate how to watch variables.

You start by adding a breakpoint and going into break mode. Here are the
steps:

1. Replace the lines of code you previously put into the Form_Load
Event with this:

Dim a As Double, b As Double

a = 112
b = a / 2
b = b + 6

2. Click the gray margin to the left of the code window to add a red dot
(a breakpoint) next to the line a = 112.

3. Press F5.

You are now in break mode; the red dot changes to include a yellow
arrow, and the line is highlighted in yellow. These visual effects show
you that your breakpoint halted execution at this line. You can now
examine your code, though this isn’t necessarily the line that’s the
source of the error. You merely suspect this area of your program, so
you added a breakpoint to halt (break) execution here to allow you to
take a look around.

While you are in break mode, many debugging features are at your command.
Continuing from the preceding steps list, the following steps walk through
how you can use these debugging features:

1. Make four of the debugging windows visible by choosing Debug➪
Windows and selecting the Locals window. Also select the following two
windows: Debug➪Windows➪Watch, Debug➪Windows➪Immediate.

2. Click the Locals tab to look at the Locals window, shown in Figure 10-3.

The Locals window displays the variables that have been declared in the
currently executing (local) procedure, as well as the parameters passed
to this procedure (e and sender, which you can almost always just
ignore, though parameters passed to functions or subs that you write are
very important). You also see the parents of Me (the current object) —
the application and form.

3. Watch the variables in the Locals window change as you press F8 to
execute each line in the example code, one by one, step-by-step, as
shown in Figure 10-3.

165Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 165

4. Also, use the debug windows to query or modify variables or
expressions.

• To find out the value in a variable — b, for example — just type the
following in the Immediate window and then press Enter (you must
leave a space between the ? and the variable name):

? b

The answer — whatever value b currently holds — is displayed
(printed) in the Immediate window. (The ? command is shorthand
for the Print command.) Maybe you’re trying to see where a vari-
able holds a number that’s way too large. That’s why it sometimes
helps to check a variable’s value (its contents).

• To change the value in a variable during break mode, double-click
the number in the value column in the Locals or Watch window
and then type your new value. Changing a variable’s value can
sometimes affect the program in a way that perhaps points you
to the location of a logic error.

I explain the Watch window shortly.

Figure 10-3:
The Locals

window
displays the
contents of

all local
variables

in the
currently

executing
procedure.

166 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 166

Using Debug.WriteLine
Some programmers like to insert Debug.WriteLine commands at different
locations in their code to display the value of a variable. The Debug.Write
Line command displays its results in the Immediate window and then moves
down a line. Debug.Write does the same thing but without moving down a
line in the Immediate window.

You can insert Debug.WriteLine (MyVariableName) code here and there
in your source code. Run the program and watch the results appear in the
Immediate window:

Dim a As Double

a = 112
Debug.WriteLine(“Variable a now equals: “ & a)

This displays Variable a now equals: 112 in the Immediate window.

Using several Debug.WriteLine commands is a good idea if you want to
quickly see a series of variable values and also write some explanatory
messages about these values. You could do the same thing with a series
of MsgBox commands, but for a group of several variables, it’s annoying to
have to keep clicking each individual MsgBox to close it before you can see
the next MsgBox. With Debug.WriteLine, no clicking is involved; when the
program runs, all the messages appear in the Immediate window.

The Immediate window responds
You can type into the Immediate window any executable commands that can
be expressed on a single line, and then you can watch their effect. Note that
you do this while the VB program is halted during a run; you can test condi-
tions from within the program while it’s in break (pause) mode. I’ve never
found this feature too helpful. I suspect I use it about four times a decade.

You can get into break mode in several ways: by inserting a Stop command
into your code, by setting a breakpoint in the code, by single-stepping
(repeatedly pressing F8 to move through the source code line by line), by
choosing Break All in the Debug menu (or the Toolbar), or by pressing
Ctrl+Break.

The watch technique
The Locals window is fine for local variables, but what about form-wide or
project-wide variables that have a larger scope in your source code (global

167Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 167

variables, as they’re sometimes called)? They don’t show up in the Locals
window. To deal with this, you want to use conditional breakpoints. However,
they are not available in VB Express. As the Help entry says: “This feature is
found in Visual C++ Express Edition and Visual Studio Professional, Enterprise,
and Enterprise Architect Editions only.” So we VB users have to do without
this most useful debugging tool. You’ll have to do the best you can with
Watches and ordinary breakpoints.

An alternative way to use the Watch window is to keep an eye on the watches
you’ve defined as you single-step through your code. The Watch window dis-
plays the value of all active watches. To add a watch, right-click any line of
code and choose Add Watch from the context menu.

Another tool in the Debug menu is the Quick Watch option. If you highlight
(select) an expression or variable in the code window and then choose
Debug➪Quick Watch (or press Shift+F9), VB shows you the current contents
or status of the highlighted expression or variable. VB also gives you the
option of adding the item to the watched items in the Watch window. Quick
Watches cannot be specified during design time, only in break mode during
execution.

Setting breakpoints
Sometimes you have a strong suspicion about which form or module in your
application contains an error. Or you may even think you know the specific
procedure (event, function, or sub) where the error can be found. In these
cases, breakpoints, which enable you to slow the process down and check
what’s going on, can be one of the most useful debugging aids.

To stop a running program in its tracks, you can press Ctrl+Break (the Break
key is to the right of the function keys on most keyboards). But what if the
program is moving too fast to stop just where you want to look and check
on things? What if it’s rapidly alphabetizing a large list, for example, and you
can’t see what’s happening?

In this case, you want to add breakpoints before the program runs. Then,
later, when it’s running, the program stops at a breakpoint just as if you had
pressed Ctrl+Break. The code window pops up, showing you where the break
occurred, so you can see or change the code, single-step, or look at the
Locals or Watch windows to see the values in variables.

To add breakpoints before a program runs, follow these steps:

1. Either click the gray area to the left of the line where you want the
breakpoint or click the line to select it and then press F9.

The red dot appears to the left of the line.

You can set as many breakpoints as you want.

168 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 168

2. With the breakpoints in place, press F5 to execute the program at
normal speed.

VB stops when execution enters the form or procedure that is marked
with a breakpoint.

3. After halting the program in a suspect region, press F8 to single-step
through the next lines while you watch the values of suspect variables
in the Local window.

4. Click the red dot a second time to turn off a breakpoint.

Another use for breakpoints is when you suspect that the program is never
even executing some lines of code. Sometimes a logic error is caused because
you think a subroutine, function, or event is getting executed when, in fact,
the program for some reason never reaches that procedure. Whatever condi-
tion is supposed to activate that area of the program never occurs.

To find out whether a particular event is executing, set a breakpoint on the
first line of code in that procedure. Then, when you run your program, if the
breakpoint never halts execution, you have proven that the procedure is
never called.

Fixing Errors with the Minor
Debugging Tools

The following three tools are used infrequently in ordinary programming, but
perhaps you’d like to try them.

Step Over (Shift+F8)
Step Over is the same as single-stepping (pressing F8), except that if you are
about to single-step into a procedure, Step Over executes the procedure all
at once, rather than step by step. No procedure calls are carried out, but all
other commands are executed. So, if you are single-stepping (pressing F8
repeatedly) and you come upon a procedure that you know is not the loca-
tion of the bug, press Shift+F8 to step over the entire procedure. This option
gets you past areas in your program that you know are free of bugs and can
take a lot of single-stepping to get through.

169Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 169

Step Out (Ctrl+Shift+F8)
This feature appears on the Debug menu only during break mode. It quickly
executes the remaining lines of the procedure you’re currently in but stops
on the next line in the program (following the current procedure). Use this to
quickly get to the end of the current procedure that you don’t want to single-
step through if you don’t want to press F5 to restart execution either. When
you use Step Out, you remain in step mode, just not through this particular
procedure.

Run to Cursor (right-click in Break mode)
To use the Run to Cursor option, click somewhere else in your code (thereby
moving the insertion cursor). VB remembers the original and new locations
of the insertion cursor. Right-click in your code window and choose Run to
Cursor from the context menu. The code between the original and new loca-
tions is executed.

This is a useful trick when you come upon a large For...Next loop. You
want to get past the loop quickly rather than waste time completing the loop
by pressing F8 over and over. Just click a program line past the loop and then
choose Run to Cursor. VB executes the loop at normal execution speed and
then halts at the code following the loop. You can resume stepping from
there.

Set Next Statement (right-click
in Break mode)
You must be in break mode to use Set Next Statement. With this feature, you
can move anywhere in the current procedure and restart execution from
there (it’s the inverse of the Run To Cursor feature). While the program is in
Break mode, go to the new location from which you want to start execution
and then click the new line of code where you want to resume execution.
Now, pressing F8 single-steps from that new location forward in the program.

This is a way to skip over a line or lines of code. Suppose that you know that
things are fine for several lines, but you suspect other lines farther down.
Move down using Set Next Statement and start single-stepping again.

170 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 170

Show Next Statement (right-click
in Break mode)
If you’ve been moving around in your program, looking in various events, you
may have forgotten where in the program the next single-step takes place.
Pressing F8 shows you quickly enough, but you may want to get back there
without executing the next line. Show Next Statement moves you in the code
window to the next line in the program that is to be executed, but halts and
doesn’t execute it. You can look at the code before proceeding.

The Call Stack
The Call Stack feature is in the Debug➪Windows menu. The Call Stack pro-
vides a list of still-active procedures if the running VB program went into
Break mode while it was in a procedure that had been called (invoked) by
another procedure. Procedures can be nested (one can call on the services
of another, which in turn calls yet another). The Call Stack option shows
you the name of the procedure that called the current procedure. And if that
calling procedure was itself called by yet another procedure, the Call Stack
shows you the complete history of what is calling what.

Adding Structured Error Handling
Some errors occur only during run time. Your programming is valid, but
something unexpected happens while the user is running the program. You’ve
tested it, but users’ environments and behaviors might differ from yours. You
can’t predict everything. So, you use error-handling techniques to deal with
errors that confront your users — after all, something has to be built into
your code to deal with problems when you’re not there.

Runtime errors are often related to a peripheral, such as a hard drive. For
example, suppose that the user has no file named myfile.doc on drive C:\,
and your program executes this code trying to open that file:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Try

Dim sr As New System.IO.StreamReader(“c:\myfile.doc”)

171Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 171

Catch er As System.IO.FileNotFoundException
MsgBox(er.ToString)

End Try

End Sub

The hair-raising error message shown in Figure 10-4 is displayed, which you
definitely don’t want your users to see. You need to prevent, or at least grace-
fully handle, runtime errors. It’s no good having a smoothly running program
that suddenly halts if the user, say, forgets to put a disk in drive A: or fails to
close the drive door. In the following sections, I explain what you need to
know about runtime errors and how to add exception handling so that your
users don’t see such nasty error messages.

If you read the all the drivel displayed on the error message shown in Figure
10-4, you’ll understand why so many of us experienced programmers have
nothing but contempt for the code bloat and sheer foolishness of so much of
object-oriented programming. The first line of the error message is sufficient.

How runtime errors occur
Runtime errors include unexpected situations that can come up when the pro-
gram is running. While you’re writing a program, you can’t know a number of
things about the user’s system — for example, how much disk space is avail-
able on the hard drive. Is it already so full that when your program tries to save
a file, enough room won’t be available? Are you creating an array so large that
it exceeds the computer’s available memory? Is the printer turned off, but the
user tries to print anyway? And what wacky mistake might some users type
when you ask them to provide a telephone number?

Figure 10-4:
This

message is
likely to

terrify, or
at least

depress, a
user. It sure

depresses
me.

172 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 172

Whenever your program is attempting to interact with an entity outside the
program — such as the user’s input, disk drives, Clipboard, and RAM — you
need to take precautions by using the Try...End Try structure, which I
explain later in this chapter. This structure enables your program to deal
effectively with the unexpected while it runs.

Unfortunately, your program can’t correct many runtime errors. For instance,
it can let the user know only that his or her disk is nearly full. The user will
have to remedy this kind of problem; you can’t correct it with your code.

Runtime errors can also occur because of such unexpected problems as
numeric overflow (a variable grows too large for its variable type) or array
boundary violations (an attempt is made to access an item from an array
index outside the range of the array). Other runtime errors result from
attempts to use remote objects’ methods or properties incorrectly (such as
when accessing a database, an API, or a Web service). Remote objects return
error messages, error codes (numbers that you must then look up in an error
code list), or a combination of the two. Some runtime errors are the result of
numina from parallel worlds.

Error messages can also sometimes be returned from within an object or
directly by a function. When you use a function that is supposed to provide
you with the length of some text, but it returns –1, that’s an error flag. In all
these cases, you must read the documentation that describes both how error
messages are returned to your project and what those messages mean. Often,
however, VB intercepts incoming error messages from remote classes and
signals them to your project as a VB-style runtime error.

Understanding Try
If you suspect that a particular location in your source code may trigger a run-
time error, use the Try command to trap the error. Attempting to set things
right by first handling the error if possible within your project is always better
than shifting an unnecessary burden to the user.

If you don’t use Try and solve the problem in your VB source code, Visual
Basic displays an error message to the user. You should usually provide your
own runtime error messages (you’ll see how in a moment). VB error mes-
sages, like the one shown in Figure 10-4, are generally intended for you, the
programmer, not for ordinary users.

Instead of displaying a system message, you substitute your own, custom,
user-friendly error message, like this:

173Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 173

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Try

Dim sr As New System.IO.StreamReader(“c:\myfile.doc”)

Catch er As system.IO.FileNotFoundException

MsgBox(“No file named myfile.doc was found on Drive C:”)

End Try

End Sub

Notice that you put the Try...End Try structure around possible error-
triggering code. In fact, in some situations, you surround all the code in a
procedure with the Try...End Try envelope. Here’s how the Try...End Try
structure works:

Try

‘watch the line(s) of code here for any problems
Catch a type of error
‘ insert line(s) of code here to handle that particular error

Catch another type of error
‘ insert line(s) of code here to handle that second error

Finally

‘insert optional line(s) of code here that you want executed
‘within the Try structure

End Try

The purpose of that Finally zone in the Try...End Try block is mysterious
at first glance. Why do you need it? Couldn’t you just put the code after the
End Try? I’ll explain the Finally command soon.

It’s pretty easy to understand the relationship between Try and Catch. The
relationship is similar to the following:

‘ Start of Try structure
If there was an error Then ‘Catch
React in some way to this error
End If ‘End of Catch code block
If there was a different error Then ‘Catch
React in some way to this error
End If ‘End of Catch code block
‘ End of Try structure

174 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 174

The term exception is used in C-like languages (and now by the VB officials)
to mean error. Code between the Try and End Try commands is watched for
errors. You can use the generic exception or merely trap a specific excep-
tion such as the following:

Catch er As DivideByZeroException

You can include in your Try...End Try structure as many Catch phrases as
you want, and you can respond individually to each of them. You can respond
by notifying the user (as in the preceding example) or by quietly correcting
the error in the source code following the Catch. You can also provide a brief
error message:

er.Message

Or, as you did in the preceding example, you can provide a “fully qualified”
(meaning “all the adjectives”) error message:

er.ToString

The official syntax for Try...Catch...Finally
Here’s the full, official Try...Catch...Finally structure’s syntax:

Try
tryStatements

[Catch1 [exception [As type]] [When expression]
catchStatements1

[Exit Try]
Catch2 [exception [As type]] [When expression]

catchStatements2

[Exit Try]
...
Catchn [exception [As type]] [When expression]

catchStatementsn]
[Exit Try]
[Finally

finallyStatements]
End Try

Following the Try block, you list one or more Catch statements. A Catch
statement requires a variable name and an As clause defining the type of
exception (er As Exception). One Exception type is generic and therefore
traps all exceptions, not just a specific one such as FileNotFound.

175Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 175

For example, here’s how to trap all exceptions:

Try

Dim sr As New System.IO.StreamReader(“c:\xxxxx”)

Catch er As Exception

‘Respond to any kind of error.

End Try

An optional Exit Try statement causes program flow to leap out of the Try
structure and continue execution with whatever follows the End Try state-
ment. If code is in the Finally block, however, it is executed.

Understanding Finally
The Finally statement contains any code that you want to be executed after
error processing has been completed. Any code in Finally is always exe-
cuted, whether or not any Catch blocks were executed. You would use the
Finally block primarily because the source code that follows the End Try
line may never execute, depending on how things go in the Try structure.

How does this work in the real world? Suppose that a major disaster occurs,
and your Catch block includes an Exit Sub or Exit Function command
to leap out of your procedure in response to the disaster. In either case, any
code in that procedure that follows End Try is not executed. By contrast,
code in the Finally block executes no matter what. The most common use
for the Finally section is to free up resources that were acquired in the Try
block, to close opened files, and the like.

Note that if you use the Exit Try command to get out of a Try block prema-
turely (before executing other Catch blocks or other nested Try blocks), the
code in the Finally block will nonetheless execute.

For example, if you were to acquire a Mutex lock (don’t ask!) in your Try
block, you would want to release that lock when you were finished with it,
regardless of whether the Try block exited with a successful completion or
an exception (error). You typically use the following type of code in the
Finally block:

objMainKey.Close()
objFileRead.Close()
objFilename.Close()

176 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 176

Throwing exceptions
You can use a Throw command to generate your own error flags and attach
error messages. This is how you inform outside code (some other program
using your program) that is using one of your methods or procedures that an
error occurred.

Both of these syntaxes work:

Dim e As Exception
e = New Exception(“F problem”)
Throw e

Or, more simply:

Throw New Exception(“Problem in the Addition function”)

I repeat: When you Throw an exception, you’re telling an outsider (source
code that tried to execute your procedure, also called a client) that a problem
occurred. When you write a Web service or create a custom control, you are
building an object that can be used by a client.

Here’s an example. Suppose that you write a function that wants to always
get the name Bob sent to it. If the client tries to send some other name, you
throw back an exception. The Form_Load event in this example is the out-
sider that calls the IsItBob procedure:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Try
IsItBob(“Chris”) ‘call the procedure

Catch er As Exception ‘find out if there was an error thrown back at us
MsgBox(er.ToString) ‘if there was an error thrown, display it

End Try

End Sub

Sub IsItBob(ByVal s As String)

Dim er As Exception

If s <> “Bob” Then ‘they sent the wrong name!
er = New Exception(“This Function needs the name Bob”)

‘create an exception variable
Throw er ‘throw it back to the caller

End If

End Sub

177Chapter 10: Testing and Deployment

15_597051 ch10.qxd 10/20/05 1:45 PM Page 177

Tips for using Try...End Try
Here are a few additional points to remember about VB’s Try...End Try
approach to error handling:

� If you want, you can nest Try...End Try blocks in other Try...End
Try blocks.

� The Try...End Try technique was written from scratch with .NET in
mind. As a happy result, the Catch command can catch all errors that
can happen in the .NET framework (in any method or property of all the
zillions of objects in that framework).

� Some programmers might be tempted to enclose their entire project in a
huge Try...End Try block, thereby ensuring that any and every possi-
ble runtime error will be caught. This slows execution somewhat, but it
sure would catch everything. It’s rather clumsy, though, and you will
likely want to trap errors in specific areas where you think they might
actually occur, rather than enveloping the entire code.

178 Part II: Programming the Practical Way

15_597051 ch10.qxd 10/20/05 1:45 PM Page 178

Part III
Dealing with

Databases

16_597051 pt03.qxd 10/20/05 1:45 PM Page 179

In this part . . .

Part III focuses on databases — the heart of the major-
ity of computer programs. Computing is, after all,

data processing, so the data has to be collected some-
where and preferably organized into some kind of sensible
structure. In this part, you see how tables, rows, and
columns form a structure wherein data can be efficiently
stored, making it easier to search and sort. You also find
out how to manage the important Dataset technology, a
way of detaching a table (or several) from a database to
avoid the overhead of having to maintain a continual con-
nection to the central database itself. When you finish this
part, you’re ready to begin managing the data part of data
processing.

16_597051 pt03.qxd 10/20/05 1:45 PM Page 180

Chapter 11

The Basics of Databases
In This Chapter
� Seeing how databases work

� Understanding tables, records, and fields

� Using joins to create relations

� Employing unique data in indexes and keys

Experts estimate that 80 percent of all computer programming involves
databases. In this chapter, you survey the elements of today’s most

popular type of database, the relational database. When you’re done, you’ll
understand not only the theory behind contemporary database management,
you’ll understand the practical implications of that theory.

Contemporary computing is divided into three primary areas of study.
Traditional Windows programming is the primary area, so I spend most of the
chapters in this book discussing it. However, two sub-categories are quite
important as well — they expand on the classic programming techniques and
provide you with additional features and capabilities. One special category
is database management, the subject of this and the following two chapters.
(Programming for Internet Web sites is the final category, and it differs in
some significant ways from traditional programming. It’s the topic of
Chapters 14 and 15.)

Processing Data
Computers are sometimes called data processors, meaning that they take raw
information such as

� A shirt costs $12

� Local sales tax is 7%

17_597051 ch11.qxd 10/20/05 1:46 PM Page 181

From this data, a computer can create some new information by processing
the data (carrying out some steps that manipulate the information). For
example, a computer program might multiply price by sales tax and then add
that result to the original cost. This way, the program calculates the final
cost. Processing, or computation, takes the form of steps, actions carried out
on data:

1. Multiply the cost of the shirt times the local sales tax percent.

2. Add the shirt cost to the result of Step 1.

So the total cost is (.07 × 12) = .84. Then, Step 2 gives the final answer:
12 + .84 results in $12.84.

Think of data as a list of raw materials, just as sugar, flour, eggs, salt, and
butter are the raw materials that can be processed into a cake by following
a series of steps that manipulate these raw materials.

A typical database organizes a collection of raw data so that you can process
that data more efficiently. For example, you could put information about your
business into a database by dividing your business into major categories and
then creating a table (a collection of related data) for each category: customer
information, inventory, employee information, and so on. With your raw data
organized in this way, you can then process it easily in all sorts of ways.

Fortunately, Visual Basic Express has many tools to help you create, revise,
manage, and otherwise deal with databases efficiently. This section of the
book shows you how easy it is to use some of those tools.

But first, you need to come to grips with the major concepts by which data-
bases are organized: tables, fields, and records. If you’re not familiar with
databases, I explain all these concepts in the next section. When you under-
stand how databases are organized, you’re ready to start using them to
process data, which I explain later in this chapter.

Understanding Tables, Columns,
Rows, and All the Rest

Of the various types of databases, I focus on the type of database that is cur-
rently by far the most popular: the relational database. A relational database
has three primary qualities:

� Data is stored in tables (which are subdivided into fields or, as they
are sometimes called, columns). For example, your personal address
book could be a table with fields such as LastName, FirstName, Street,
City, State, ZipCode, and PhoneNumber. The fields are the categories
into which the data is subdivided.

182 Part III: Dealing with Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 182

� You can join tables (in a relationship) so that you can later extract
data from more than one table at a time. Both joined tables must
include a field that uniquely identifies each record in the table for this
joining to work. For example, a unique ID field (made up of a series of
non-repeating numbers) can enable the database to determine how to
match up the data in the two tables because this field contains no dupli-
cated data. The term relational database derives from the relationships
you can create by joining tables. If this seems hard to understand, don’t
worry. It will come to you if you decide you need to relate two tables.
Many small database projects use only one table — so you never have to
bother with joining.

� You can query tables, getting back DataSets (subsets of a table or
tables). A DataSet is a query (or request) for a list of, for example, all the
customers in Texas who are more than 30 days past due paying their
bills . . . the slackers.

In the following sections, I elaborate on what you need to know about each
of these features of a database, so you can begin to work with databases
effectively.

Tables, fields, and rows
Relational databases have three main building blocks: tables, fields, and
records. You define the structure of a database when you create it. You deter-
mine how many tables it has and the fields in each table.

Tables
Suppose that a small talent agency creates a database to computerize the
information about each actor they represent. This small, simple database has
only one table, which in your database you name Addresses. (Tables are rel-
atively large-scale collections of data, but a database can be even larger
because it can contain multiple tables, representing, say, all the information
about the employees, products, sales, and other data for a corporation.)
Figure 11-1 illustrates the structure of a table a talent agency might create to
keep track of its actors.

Fields
The top line on each page in the talent agency’s table is a group of titles
describing characteristics such as Name, Age, and so on. You can see where
the term fields comes from. Reading down a field tells you the same category of
information about all the different entries in the table, as shown in Figure 11-2.

183Chapter 11: The Basics of Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 183

Each field has its own name, such as DescriptionOfFace, that labels the
field, identifying the nature of its contents. Some databases allow you to
use more than one word for field names, such as Description of Face.
However, other database styles require you to enclose multiple-word names
in brackets or single quotes: [Description of Face] or ‘Description
of Face’. And yet other databases simply forbid multiple words (by not
allowing the use of spaces).

Column

 FIRST NAME LAST NAME AGE DESCRIPTION OF FACE

 Lois Lane 44 Ovoid, vacant expression

 Don Cantelopi 88 Square jaw, shock of white hair
 eyebrows, frowns

 Delores Goets 22 Quite striking, happy lips

 Sandy Fastpass 29 Looks like Jon Bon Jovi

 Joe Normals 35 Bulging eyes, fishy look

 Saundra Doubleclick 12 Too soon to tell. Chubby.

 Noah Roah 24 Borderline personality look

 Gary Cheesefoot 72 Suspiciously smooth, tight skin
 for his age. Permanent smile.

Figure 11-2:
A field is a

vertical
category

of data,
described

by a
category

name.

Table

 FIRST NAME LAST NAME AGE DESCRIPTION OF FACE

 Lois Lane 44 Ovoid, vacant expression

 Don Cantelopi 88 Square jaw, shock of white hair
 eyebrows, frowns

 Delores Goets 22 Quite striking, happy lips

 Sandy Fastpass 29 Looks like Jon Bon Jovi

 Joe Normals 35 Bulging eyes, fishy look

 Saundra Doubleclick 12 Too soon to tell. Chubby.

 Noah Roah 24 Borderline personality look

 Gary Cheesefoot 72 Suspiciously smooth, tight skin
 for his age. Permanent smile.

Figure 11-1:
A table is a

relatively
large-scale
set of data;
it includes

multiple
records and

fields.

184 Part III: Dealing with Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 184

If you’re having trouble with a two-word field name when programming, try
enclosing the name in brackets or single quotes. Although Microsoft
Access–style databases permit spaces in field names, most relational data-
bases do not permit spaces. If the database does not permit you to use
spaces, you must resort to using an underscore character to separate words
(such as Description_of_Face) or slamming the words together (such as
DescriptionOfFace.) My advice is to just go for the common denominator
and use single-word field names — that way any database will accept the
names with no problem.

Records
A record (also called a row) contains the actual information that fills the
fields, such as Quite striking, happy lips. Rows do not have label
names.

Each record reads horizontally in the table and the data in a record usually
fills several fields. In the talent agency example (see Figure 11-3), each record
has four fields: FirstName, LastName, Age, and DescriptionOfFace.

Joining and querying tables
If you’re not interested in the concept of joining tables, skip this section.
Here’s an example that illustrates relational tables, related via joining. Say
that you create an Address Book table with all the first and last names and
addresses of your friends and relatives. Now you want to put their birthdays,
which you have on your calendar, into a second table in your database. You
name the table Gifts and define five fields for it: LastName, Birthday,
FavoriteColor, ShoeSize, and Comments.

 FIRST NAME LAST NAME AGE DESCRIPTION OF FACE

 Lois Lane 44 Ovoid, vacant expression

 Don Cantelopi 88 Square jaw, shock of white hair
 eyebrows, frowns

 Delores Goets 22 Quite striking, happy lips

 Sandy Fastpass 29 Looks like Jon Bon Jovi

 Joe Normals 35 Bulging eyes, fishy look

 Saundra Doubleclick 12 Too soon to tell. Chubby.

 Noah Roah 24 Borderline personality look

 Gary Cheesefoot 72 Suspiciously smooth, tight skin
 for his age. Permanent smile.

Row

Figure 11-3:
A record is

a horizontal
set of data
describing

a single
person or

thing.

185Chapter 11: The Basics of Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 185

Notice that both your Addresses table and your Gifts table have a LastName
field in common. These two LastName fields contain the same data in both
tables. This common field enables you to join the tables. You can then query
(ask for information from) both of these tables at once. Here’s how it works:

1. You can use a query such as, “What is Normals’s address and birthday?”

His address information is held only in the Addresses table, and his
birthday is listed in the Gifts table.

2. Because both tables contain Normals in a LastName field, they can pro-
vide their respective additional information about Mr. Normals: his
address from the Addresses table and his birthday from the Gifts table.

(Although I use LastName here as an example, this usually isn’t the best
way to join the tables; for details see “Tangled relationships: Using
unique data to tie tables together,” later in this chapter.)

3. The result of this query (the information you get back) is made available
in what’s called a DataSet. It contains only the data that you need for a
particular purpose — in this example, mailing a birthday gift.

If you are particularly sharp right now, you may say, “What happens if two
people share the same last name, Normals?” Very good point. Now sit down!
That is a problem, because at least one field must contain unique data for
each record. This problem is solved with keys and indexes, which I cover
later in this chapter, in the section whimsically titled “Indexes — a Key to
Success.”

186 Part III: Dealing with Databases

Records and fields: A scoreboard analogy
One way to think of the relationship between
records and fields is to think of a baseball
scoreboard. Picture a scoreboard with three
labels across the top: Runs, Hits, Errors. These
are the field names, and they describe the
meaning of the columns of data below them.

The records contain the data about the two indi-
vidual teams. Remember that a record contains

a set of information about an individual entity.
A scoreboard has two records: Guest and
Violent Toads (or whatever fauna or warrior the
local team is named after).

The data for the Guest record might be 4, 6,
3, and for the Toads, 74, 63, 1. With 74 runs,
you know this is either high school baseball or a
ballgame on Mars.

17_597051 ch11.qxd 10/20/05 1:46 PM Page 186

Why use multiple tables?
Why even introduce the complexity of more than one table — Addresses and
Gifts? Why not just put all the data into one big table? Unfortunately, bulging,
single-table databases are less flexible and less efficient than multiple,
smaller tables, both when used by average people and when manipulated by
a programmer.

You separate data into tables and then you separate it further into fields for
the same reason that most people use labeled folders in their filing cabinets.
Storing, retrieving, and managing the contents of an organized filing cabinet
with many, thin, alphabetized folders is much easier than using a few huge
folders bursting with papers.

If the database is small, however, its organization doesn’t matter much. You
don’t have to worry about dividing your little address book database into
several tables because it doesn’t have that many entries. You’re not that pop-
ular, are you?

But if you’re designing a multiuser database with 250,000 records, every little
efficiency matters when searching and sorting such a large amount of data.
By creating several tables, you can improve the organization of the database,
write programming code for it more easily, and generally retrieve records
faster when querying. Why? Primarily because putting everything into one
big database can result in dreadful redundancies.

To understand how and why this redundancy occurs, and why it’s good to
use several tables rather than one great big one, consider a database that
lists 100 book publishers and 8,000 books. The database is divided into four
tables: Authors, Publishers, TitleAuthor, and Titles. If all this information
were stored in a single table, data would be duplicated all over the place.

Why? You would have to repeat the publishers’ names, addresses, and phone
numbers many times for each of the 8,000 books. It would be better to store
each Publisher and their data (name, address, and phone number) only once.

When you look up a title in the Titles table, the publisher’s name is part of
each title’s record (so you do have to provide the publisher’s name 8,000
times). But if you want the publisher’s address, phone number, and other
details, no problem — because the Publisher’s table and the Titles table both
contain a PublishersName field. That way, you can get the other details about
a publisher by matching the PublishersName field in the two tables. You
store each publisher’s address and phone number only once because you
have separate tables. What’s more, if you need to change the publisher’s
phone number later because they move to new offices, a single change in the
Publishers table is the only change you have to make in the entire database.

187Chapter 11: The Basics of Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 187

Tangled relationships: Using unique
data to tie tables together
When you specify a relationship between tables while designing a database,
you’re saying, “I may need additional information about this fellow, and if I
do, it can be found in this other table using a field that is identical in both
tables — the primary key.”

Suppose that you have several tables in a database, and every table has a
field named ID. In each of these tables, John Jones has an ID number of
242522. The database may have several people named John Jones, so name
fields are not going to provide you with a unique key to a unique record
about a particular Mr. Jones. To be specific about which Mr. Jones, I look up
the ID number in the second table.

A key is a field in a table that guarantees each entry in the field is unique to
the record it resides in. Sometimes called the primary key, a key field pre-
vents confusion. You can’t use the FirstName field as a key because you may
have six or more Joes in your organization. You can’t use the LastName field
because you could have more than one person named Smith. Phone numbers
seem good, but no. You can’t use the home phone number field because your
office may suffer from raging nepotism and all four of the boss’s offspring
work for Daddy. What’s a puzzled database designer to do? Well, don’t sit
there wringing your hands and moaning. Figure out a field that must always
be unique. A SocialSecurityNumber field, for example, makes a good key field.
Or, as I explain in the next section of this chapter, you can generate a series
of unique ID numbers within a table automatically. You can let the computer
assign serial numbers, like the sequential, never-repeated numbers on a roll
of movie tickets.

Let the database do it for
you: AutoNumber fields
You can let the database generate a unique ID number for each record. These
serial numbers start with 1 when you add the first record and go up by 1 for
each new record entered into the database. (Some database programmers
insist that every table should have a field with a unique serial number so that
you can ensure that every record is unique.)

Such database-generated serial numbers are put into an AutoNumber field.
The AutoNumber field acts as a unique key, and its main function is to permit
tables to be linked. How? When designing the database, you specify that the
AutoNumber field be included in more than one table as a way of joining
those tables.

188 Part III: Dealing with Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 188

Indexes — a Key to Success
Information in a relational database is not automatically stored alphabetically
(or by numeric order, if the field is numeric). In a Name field, Anderware can
follow Zimbare. Or maybe not. Whatever. At first, this seems surprising
because you certainly don’t expect a “filing system” to permit folders to be
stored in any order.

However, records in a relational database aren’t sorted. When someone adds
a record to a database, it’s just put at the end of a table. No attempt is made
to place it in some particular position, such as alphabetical order. When a
record is deleted, who cares? A relational database has a real “la-ti-dah” atti-
tude about alphabetization. When designing a database, however, you should
specify one or more of its fields as indexes. That’s the key to the organization
of a relational database.

Imagine nonalphabetic yellow pages
Many fields are not indexed (sorted). If you want to search for a particular
record in a field that’s not indexed, the database software must search down
through every record until it finds the right one. How would you like it if the
Yellow Pages were not alphabetized? You’d be turning pages all night looking
for a plumber, hoping to stumble on the right page.

An index in a relational database is the one exception to the blithe, uncaring
order I’ve just described. An indexed field solves the problem of finding a par-
ticular record in the jumble of data. The database software can quickly locate
a specific record if a field is indexed.

So, when you’re designing a database, you need to decide which field or
fields should be indexed. (Unindexed data can be searched; it just takes
longer.) Indexing doesn’t, of course, speed things up in some kinds of queries.
If the query is, “Give me a list of all people over 50,” and the Age field isn’t
indexed, each record still must be searched.

Here’s the general rule: You should index any fields that are likely to be
searched. In the example address book database (remember it had two
tables, one for Gifts), you are far more likely to search some fields than
others. You’d probably search the Name and Birthday fields, but you would
not likely search the [Favorite Color], [Shoe Size], or Comments fields. The
purpose of the Gift table is to help you buy gifts for people, so it’s unlikely
that you’d ever query it like this: “Give me a list of everyone whose favorite
color is green.” But it’s quite likely that you would query like this: “List every-
one who has a birthday in August.”

189Chapter 11: The Basics of Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 189

So, for the Gift table, you may specify that the Name and Birthday fields
should be indexed and that the others should be left unindexed. But what
happens if you later buy some size 8 blue shoes on sale and want to search
the database to see whether any of your friends or relatives wears that size
and likes blue? No problemo. Remember, you can always still conduct
searches on unindexed fields; finding the information you need just takes
longer. You are simply optimizing the average execution speed of your data-
base when you decide which fields to index.

The database software automatically creates and maintains the indexes you
specify. You need to do nothing more than specify which fields should be
indexed.

Hey, let’s index every field!
Some of you are probably thinking, “Why not index all the fields? That would
be super-efficient.” Wrong. Chill. When publishers create an index for a book,
they don’t index all the words in the book, do they? They include only the
words likely to be searched for, not words such as the or twelve.

An index of all the words would suffer from several drawbacks. First of all, it
would be bigger than the book. Second, most of the index would be of little
use to anyone; it would be inefficient precisely because it was so big. A quick
scan of the book itself would be faster than slogging through a massively
bloated, highly repetitive index.

You don’t index every field in a table for a similar reason: Too much of a good
thing is a bad thing. Efficiencies start to degrade, storage space gets tight,
multiuser traffic jams can occur, and other bugaboos arise.

190 Part III: Dealing with Databases

17_597051 ch11.qxd 10/20/05 1:46 PM Page 190

Chapter 12

Quick Database User-Interface
Techniques

In This Chapter
� Understanding data entry

� Building a user-friendly UI

� Connecting to a database

� Binding a control to a dataset

� Using the DataGridView

� Saving to a dataset

� Saving to a database

� Changing a dataset

In this chapter, you get further into database management and see how to
manipulate both datasets (tables that have been detached from their data-

bases) and databases. You also explore the important DataGridView control.

The first consideration when presenting a database to the world is this:
What’s the easiest way for the user to view and manipulate data? Read on to
find the answer.

Organizing the Entry Fields
Sometimes data needs to be edited or deleted, or new records must to be
entered. In fact, your user interface should have provisions for massive
initial data entry — somebody might have to sit down and type an entire
cookbook’s worth of recipes, for example.

To make data entry easier, your best approach is to try entering a few
records yourself. That way you see what your user is up against, and can
perhaps make the job of data entry more pleasant and more efficient. The

18_597051 ch12.qxd 10/20/05 1:47 PM Page 191

easiest way for a good typist to enter the various fields in a record is if you
ensure that those fields are in the proper order. For example, in Chapter 11,
I explain how to create a table with two fields: Title and Instructions. The
proper order for these fields is identical to the order in which they appear
in the data source — cookbooks in this case.

So, you want the Title field on top, and the Instructions field below. And you
want the typist to be able to easily visualize the size of these fields — so allow
the typist to enter the Title data into a single-line TextBox but provide a larger
TextBox for the greater amount of typing necessary to provide instructions.

By using this design, your data entry screen resembles the structure of the
data being entered. Also, you should add labels describing each field, so it
ends up looking something like Figure 12-1.

Navigating through Fields
with the Tab Key

Perhaps even more important than getting the size and position of the fields
correct is providing typists with a good way to navigate the fields without
having to use the mouse. Nothing slows down a typist more than having to
take his hands off the keyboard and reach for the mouse. (Well, perhaps a
big kiss from a stranger or the cat spilling a glass of milk on the keyboard.)

Figure 12-1:
Design data
entry forms

to reflect
the size and

position of
the original
data fields.

192 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 192

You want to allow the typist to go to the next field by pressing the Tab key.
Visual Basic uses a tab order for the various components on a form. You
should change the TabIndex property to reflect each TextBox’s position in
the desired tab order. To set the tab order in the example shown in Figure
12-1, do the following:

1. Click the Title TextBox to select it.

2. In the Properties window (press F4 if it’s not visible), enter 0 for the
TextBox’s TabIndex property.

3. Click the second, larger textbox and set its TabIndex to 1.

4. If there are other controls on the form, like the “Title” and
“Instructions” Labels in this example, set their TabStop property to
False (so tabbing will skip them).

5. Finally, if you add a button or other control to save the current record
and display a new blank record ready for a new entry, set that
button’s TabIndex to 3.

Using this system, the typist can quickly move from one field to the next
and from a filled-in record to a new, blank entry form.

Binding to Data
One of the greatest things about Visual Basic’s design system (or IDE, inte-
grated design environment) is how easy it is to do things that used to take
days to accomplish via pure programming alone.

In this next example, you see how to connect a VB program to a database (or
data store as they’re now calling a source of data) and, after the connection is
established, how to connect individual fields (columns) in the database’s
tables to VB controls, such as TextBoxes.

Loading a sample database
To follow the upcoming example, you must first have a database to work
with. For years, Microsoft has provided some sample databases for people
to play around with. One of them is called the Northwind database, and it
comes with Microsoft Office, specifically Access, the database program in
Office. If you have Office, see if you can find Northwind.mdb in this location
on your hard drive:

C:\Program Files\Microsoft Office\Office11\Samples\Northwind.mdb

193Chapter 12: Quick Database User-Interface Techniques

18_597051 ch12.qxd 10/20/05 1:47 PM Page 193

Note that Office11 here might be Office10 or some earlier version —
choose whichever one you see on your computer.

If you can’t find it, download Northwind.exe from:

www.microsoft.com/downloads/details.aspx?FamilyID=C6661372-8DBE-422B-
8676-C632D66C529C&displaylang=EN

After you download it to your hard drive, double-click Northwind.exe in
Windows Explorer to extract the .mdb (database) file. Save it in the folder of
your choice, but remember its location.

Don’t download Northwind from this SQL Server 2005 Express location:

www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-
46A0-8DA2-EEBC53A68034&displaylang=en

This is the download link listed with SQL Server 2005 Express, but extracting
and installing this .msi file is impossibly complicated. And even after jump-
ing through hoops, I couldn’t get it to work on the command line (don’t ask!).
So just download the .exe version recommended earlier in this section.

Connecting to a database
To see how to make a connection between a database and a VB program,
follow these steps:

1. Choose File➪New Project.

2. Double-click the Windows Application icon in the dialog box.

A new project template appears, ready for you to add a user interface.

3. Drag and drop a TextBox from the Toolbox onto Form1. Drag the
TextBox to make it a bit wider and to position it near the top of the
form.

4. Click the TextBox to select it and then, in the Properties window,
change its FontSize to 11.

5. Click the TextBox to select it and then press Ctrl+C.

A copy of the TextBox, including its new font size, is saved to the
clipboard.

6. Press Ctrl+V three times.

Three new TextBox clones appear on your form.

194 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 194

This copy-paste technique is a quick way to set the properties of multi-
ple controls. You can also drag your mouse around a group of controls
already on the form. This selects them as a set; when you change one of
the properties they have in common (such as font size) in the Properties
window, all of them are changed at once.

7. Add a BindingNavigator control from the Toolbox.

If you can’t see it, scroll down in the Toolbox until you see the section
titled Data, followed by the data-related controls.

8. Choose Data➪Add New Data Source.

The DataSource Configuration Wizard opens.

9. Click Next.

You can now choose the source of the data, as shown in Figure 12-2.

10. Click Database to select it as your data source, as shown in Figure 12-2.

11. Click Next.

12. Click the New Connection button.

The Add Connection dialog box opens.

13. Click the Change button and double-click Microsoft Access Database
File.

14. Click the Browse button and locate and select Northwind.mdb or
Nwind.mdb on your hard drive; then click OK.

The Add Existing Item dialog box closes.

Figure 12-2:
You can

choose from
three data

sources.

195Chapter 12: Quick Database User-Interface Techniques

18_597051 ch12.qxd 10/20/05 1:47 PM Page 195

15. Click Next in the Data Source Configuration Wizard.

A dialog box tells you that the data file you’ve chosen isn’t yet in the cur-
rent project.

16. Click Yes to add the data file to your project.

17. Click Next.

The Wizard opens, analyzes the database, and shows you the schema
(structure) of the data, as shown in Figure 12-3.

18. Locate and open the Employees table (click the + next to Tables, and
then click the + next to Employees). Click the check boxes next to
the fields LastName, FirstName, Title, and BirthDate, as shown in
Figure 12-3.

The Wizard will create a dataset (a set of records that is extracted from,
and separate from, the database itself). You discover lots more about
datasets in Chapter 13.

By default, the Wizard has named the dataset it’s about to create either
NwindDataSet or NorthwindDataSet. Leave this default name as-is for
this example. You can always rename it later. When creating a project in
the real world, you might want to change the name here in the Wizard,
using a name more descriptive of what the dataset does in the program.

19. Click Finish.

A new dataset has been added to your program. You can see it listed in
the Solution Explorer as NwindDataSet.xsd or Northwind. Now the
real fun begins.

Figure 12-3:
Choose

which
tables and

fields
(columns)

you want to
attach to

your project.

196 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 196

Binding controls to a dataset
In VB Express, you can “bind” (attach) any control to any field in a dataset.
(What’s more, you can even bind most of the control’s properties if you
wish.)

Automatic responses
When a control is bound, if your user or program moves to a different record,
the bound control automatically responds, displaying the new record’s data or
otherwise reacting in some other way. All this happens automatically, behind
the scenes, so you don’t have to do any programming to make it work.

To bind controls to your dataset, follow these steps:

1. Click the Data Sources tab at the bottom of the Solution Explorer.

2. Click the + next to the Employees table to open the fields you speci-
fied for this dataset (in Step 18 in the previous section).

You see the NorthwindDataSet, as shown in Figure 12-4.

3. Drag the LastName field from the Employees table and drop it onto
the top TextBox on Form1.

A check button appears next to LastName in the DataSources list, and
TextBox1 is bound to this field. Also, three new icons appear on the tray
beneath the Form, next to the existing BindingNavigator icon, as shown
in Figure 12-5.

Figure 12-4:
You can

drag a
dataset’s

table (like
Employees
here) onto

a Form,
thereby

making it
bindable to

all the
form’s

controls.

197Chapter 12: Quick Database User-Interface Techniques

18_597051 ch12.qxd 10/20/05 1:47 PM Page 197

4. Repeat Step 3 to drop the FirstName, Title, and BirthDate fields into
the respective remaining TextBoxes.

You’re now ready to give it a try.

5. Press F5 to execute your new data-entry program.

You should see the results shown in Figure 12-6.

Try it out. Use the data navigator bar to move to the next, first, previous, or
last record in the dataset. Also try adding a new record, editing an existing
one, or deleting a record. However, any modifications you make are not saved

Figure 12-6:
You didn’t

do any
actual

program-
ming, and
here you

have a fully
functional
database
manage-

ment
system.

Figure 12-5:
When you

drop a table
or one of its
fields onto a

Form or
control, VB

automat-
ically adds

Dataset,
Binding-

Source, and
Table-

Adapter
controls to
your Form.

198 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 198

permanently to the dataset — so you won’t see your changes the next time
you run the application. To actually save modifications, delete records, or
add new records, you do need to do a little programming . . . but just a little.
See the next chapter, Chapter 13, for details.

Viewing the automatic code
Before seeing how to use the powerful DataGridView control, first take a
quick peek at a little bit of programming that VB automatically wrote for you.
It was added to the code window when the Wizard created your dataset.
Choose Debug➪Stop Debugging to halt the program (which you started by
pressing F5 in Step 5 in the previous section) and return to normal VB design
mode. Double-click the Form to open the code window to see the following
code in the Form_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

‘TODO: This line of code loads data into the ‘NorthwindDataSet.Employees’
‘table. You can move or remove it, as needed.
Me.EmployeesTableAdapter.Fill(Me.NorthwindDataSet.Employees)

End Sub

This line of code fills the TableAdapter with the Employees table’s data,
making it available to the various controls to which it is bound.

Using the DataGridView
If you want to present a large amount of data at once, in tabular format, the
DataGridView is an excellent choice. You can create this component by
simply dropping a table onto a Form.

To see how this works, follow these steps:

1. Start a new VB project by choosing File➪New Project and then double-
clicking the Windows Application icon.

A new project is ready for you to work with.

2. Choose Data➪Add New Data Source.

The DataSource Configuration Wizard opens.

3. Click the database icon and then click Next.

4. Click the New Connection button.

The Add Connection dialog box opens.

199Chapter 12: Quick Database User-Interface Techniques

18_597051 ch12.qxd 10/20/05 1:47 PM Page 199

5. Click the Change button and double-click Microsoft Access Database
File.

6. Click the Browse button, locate and select Northwind.mdb or Nwind.
mdb on your hard drive, and then click OK.

The Add Existing Item dialog box closes.

7. Click Next in the Data Source Configuration Wizard.

A dialog box tells you that the data file you’ve chosen isn’t yet in the cur-
rent project. Click Yes to add it.

8. Click Next.

The Wizard opens, analyzes the database, and shows you the schema
(structure) of the data.

9. Click the + next to the Tables entry.

All the tables in the database are displayed.

10. Locate the Customers table and click the check box next to Customers.

All the fields in the Customer table are simultaneously selected and will
be made available to your project as a dataset.

11. Click Finish.

The new Northwind dataset has been added to your program and is
listed in the Solution Explorer as NorthwindDataSet.xsd.

12. Click the Data Sources tab at the bottom of the Solution Explorer.

You see the dataset listed with the Customers table beneath it.

13. Drag the Customers table and drop it onto the form.

Several exciting things happen: Four controls are added to the tray
beneath the form — the DataSet, a BindingSource, a TableAdapter, and a
BindingNavigator. You also see that the BindingNavigator control (the
toolbar with navigation buttons) appears on the form, along with the
DataGridView control, with a title bar showing some of the table’s fields
listed across the top, as shown in Figure 12-7.

14. Take a quick look at how the DataGridView looks when filled with the
records from the Customers table.

Notice the small black right-arrow at the top right of the DataGridView —
it’s up next to the Region field’s title in Figure 12-7. Microsoft calls this new
feature a smart tag. It indicates that something is behind the scenes — a
context menu or some other feature you can use to manipulate the object.
Just click the smart tag to reveal the hidden features.

15. Click the smart tag on the DataGridView.

A special Tasks menu opens, as shown in Figure 12-8.

200 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 200

16. Click Preview Data.

A Data Preview dialog box opens.

17. Click the Preview button in the dialog box.

You now see the grid fill with actual records, as shown in Figure 12-9.

Figure 12-8:
Use this

Tasks menu
to adjust

some of the
qualities of

the Data-
GridView.

Figure 12-7:
Simply

dropping
a table onto

a form
creates a
functional

data display
and

navigation
system.

201Chapter 12: Quick Database User-Interface Techniques

18_597051 ch12.qxd 10/20/05 1:47 PM Page 201

18. Click Close.

The dialog box closes.

19. Press F5 to execute your program.

The DataGridView appears, ready for use, as shown in Figure 12-10.

Figure 12-10 illustrates what happens if the user modifies a record. A small
pencil icon appears on the left side (see where the mouse pointer is located
in Figure 12-10).

If the user wants to save any changes (technically this is called committing
the edit), he can simply click the disk drive icon (the Save Data button) on
the BindingNavigator control at the top.

Figure 12-10:
Notice that

the user has
dragged

some of the
cells to

make the
cells taller
and wider,

so all the
data is

viewable.

Figure 12-9:
You can

check your
data

connection
and see the

actual
records

while still in
design view

by using
this Data
Preview.

202 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 202

However, to allow this to happen — to actually let the user update the
dataset — you probably want to add a little program that goes “under”
(or, as some people prefer to say, behind) that Save Data button on the
BindingNavigator.

Saving Data to a DataSet
When you use a DataGridView or otherwise bind a data source to a data con-
trol, some programming code that allows the user to save changes to the
data (editing, deleting, adding records, and so on) is automatically created.

To see how to modify the code that updates the dataset, follow these steps:

1. Go through the process described in the previous section to create a
DataGridView filled with the Customers table data.

2. Click the Save Data (disk icon) button on the BindingNavigator control
to select it.

Look in the Properties Window and you see that the
BindingNavigatorSaveItem’s properties are now listed.

3. Double-click the Enabled property in the Properties window until it
reads True.

4. Double-click the Save Data (disk icon) button on the BindingNavigator
control.

The code window opens and you see the Sub BindingNavigatorSaveItem_
Click event, in which you enter code that reacts when the user clicks
that disk icon.

5. Type the following line of boldface code just above the ELSE in the
existing code that VB already entered for you:

Private Sub bindingNavigatorSaveItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
bindingNavigatorSaveItem.Click

If Me.Validate Then
Me.CustomersBindingSource.EndEdit()
Me.CustomersTableAdapter.Update(Me.NorthwindDataSet.Customers)
MsgBox(“Your changes were saved.”)

Else
System.Windows.Forms.MessageBox.Show(Me, _

“Validation errors occurred.”, “Save”, _
System.Windows.Forms.MessageBoxButtons.OK, _
System.Windows.Forms.MessageBoxIcon.Warning)

End If

End Sub

203Chapter 12: Quick Database User-Interface Techniques

18_597051 ch12.qxd 10/20/05 1:47 PM Page 203

6. Press F5.

Your program runs and the data form appears.

7. Change some of the data. Rename some people or give one of them
the Contact Title Aggressive Nerd.

8. Click the Save Data icon (the diskette symbol) on the BindingNavigator.

The dataset is updated with your changes, and a message box appears,
confirming the update.

9. Exit the program.

It stops running.

10. Press F5 again to start it running.

Look for your changes to appear in the DataGridView, proving to your-
self that in fact the update did occur. Your changes are now saved to the
dataset, but they’re not saved to the actual database.

Saving Data to a Database
Remember, a dataset is a detached group of data. Datasets may or may not be
merged back into the database from which they came. It’s up to you, the pro-
grammer, whether and how such merging takes place.

Do you want to first check the data to ensure it’s valid and not some crazy
error, like someone’s age being stored as 2,344? Some validation code is auto-
matically entered by VB, as shown in Step 5 in the previous section, but you
wouldn’t want to leave that code in a finished program. The error message
displayed would make even brave people faint. You want to replace it with a
message that’s much more meaningful and less frightening. Do you want to
request clarification from the data entry person? Do you need to compare
this dataset to another dataset that someone else is trying to merge back into
the database? Remember, the database itself is a semi-sacred repository —
you don’t lightly permit changes to it by every Tom, Dick, and Harry.

Everything is stored together
To make life easier for the programmer, Microsoft has lately been copying
almost everything that a project needs — graphics, binary files, your pro-
gramming in the source files, datasets, whatever — into the same folder. Data,
for example, may reside in the main folder or in a sub-folder under that main
folder. But, when you copy the main folder, you automatically copy all the
“dependencies” (other files) needed to make the application work. In the
case of mdb files, this includes the database.

204 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 204

Therefore, if you look for the project you’ve been working on in this chapter,
you’ll notice that it has a copy of the Nwind.mdb database in the /BIN folder
(along with the compiled, executable version of the program — the .exe file).
This .mdb database file is updated when you use the following techniques to
save changes to the dataset. The original Nwind.mdb file — wherever you put
it on your hard drive — is not updated. So you now have two databases.

205Chapter 12: Quick Database User-Interface Techniques

Decoding the code
The bizarre importation OOP code in the “Saving edited records” example breaks down like this:

Dim DataChanges As NwindDataSet.CustomersDataTable

This line of code creates a CustomersDataTable object you can use to reference a table in the
dataset.

DataChanges = CType(NwindDataSet.Customers.GetChanges(DataRowState.Modified),
NwindDataSet.CustomersDataTable)

This line assigns the customers table (the new, edited version) to the object you created in the pre-
vious line. Simultaneously the GetChanges and Modified methods ensure that any modifica-
tions the user made to the dataset are assigned to the DataChanges object.

Try
If Not DataChanges Is Nothing Then

CustomersTableAdapter.Update(DataChanges)
MsgBox(“Change to database.”)

End If

This clumsy, double-negative, not nothing means that if the DataChanges object has something
in it (if it was transformed by the GetChanges method above), then use the Update method (of
the TableAdapter component) to revise the contents of the dataset.

Catch ex As Exception
MsgBox(“Error attempting to save your changes to the database: “ & ex.ToString)

Finally
If Not DataChanges Is Nothing Then

DataChanges.Dispose()
End If

End Try

At the end, you can “dispose” (delete) the object when you’re finished using it. The idea is that
objects can hang around, taking up memory and slowing things down, unless you dispose of them.
My understanding is that using this Dispose tactic is entirely unnecessary in VB Express, so you
can safely ignore that part of the code if you wish. C programmers are likely to feel compelled to
use it, so I include it.

18_597051 ch12.qxd 10/20/05 1:47 PM Page 205

In a real-world database management project, you would likely have your
program rename the original, unmodified database file Nwind.BAK or some-
thing similar — to keep it as a backup file, and to avoid confusing it with the
current database.

Saving edited records
To see how to commit (save) any edited records back to the database, follow
these steps. Notice that this does not save any new records added to the
recordset by the user, nor does it delete any records. You see how to do
those jobs shortly.

1. Double-click the Save Data (disk icon) button on the BindingNavigator
control in the project you built in the previous sections in this chapter.

The code window opens, and you see the Sub BindingNavigatorSaveItem_
Click event, where you added the MsgBox code in the previous section.

2. Delete all the code in the event.

3. Replace the code with the boldface lines in the following:

Private Sub BindingNavigatorSaveItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
BindingNavigatorSaveItem.Click

Dim DataChanges As NwindDataSet.CustomersDataTable

DataChanges = _
CType(NwindDataSet.Customers.GetChanges(DataRowState.Modified), _
NwindDataSet.CustomersDataTable)

Try
If Not DataChanges Is Nothing Then

CustomersTableAdapter.Update(DataChanges)
MsgBox(“Change to database.”)

End If
Catch ex As Exception

MsgBox(“Error attempting to save your changes to the database: “ & _
ex.ToString)

Finally
If Not DataChanges Is Nothing Then

DataChanges.Dispose()
End If

End Try

End Sub

206 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 206

Ignore the squiggly underline that VB displays under DataRowState.

The line that begins with DataChanges = must be typed on a single,
long line. Don’t press the Enter key after typing the =.

4. At the very top of the editing window, on the first line, type this neces-
sary “importation” of the database-related function library:

Imports System.Data

Without this Imports statement, some of the commands in your code
won’t work.

You don’t need to get into the dreary details about why this job uses so
much code, or indeed to try to memorize what it all means. Just use it
as-is and hope that reason will prevail and simplicity will return to Basic.
If you’re nonetheless interested in what’s going on in all that bloated
code, I explain it in the nearby sidebar, “Decoding the code.”

5. Press F5.

The program executes.

6. Make some changes to a record — such as changing the name Anton
to Blutz.

7. Click the Save Data icon on the BindingNavigator control.

This data is saved to the copy of the Northwind.mdb database residing
in the /BIN folder of your project.

You can see that the change was made by double-clicking the
Northwind.mdb database. It opens in Microsoft Access, and the name
Blutz is now in it. Or write a new VB Express project that uses the copy
of the Northwind.mdb database and look for the Blutz change.

207Chapter 12: Quick Database User-Interface Techniques

18_597051 ch12.qxd 10/20/05 1:47 PM Page 207

208 Part III: Dealing with Databases

18_597051 ch12.qxd 10/20/05 1:47 PM Page 208

Chapter 13

Managing DataSets
In This Chapter
� Understanding the DataSet

� Creating a DataSet via programming

� Using global object variables

� Defining a schema

� Managing collections

� Opening DataSets

� Adding and removing records

� Maneuvering through a DataSet

The key to understanding the database technology in VB Express is under-
standing the DataSet. In this chapter, you focus on how to create, save,

and load a DataSet. To better understand the DataSet concept — and to give
yourself maximum flexibility — you go through these various tasks program-
matically. That means you write the code rather than leave those tasks up to
a wizard or a component such as the DataView or some other helper.

Managing DataSets in your programming isn’t difficult, and you’ll likely appre-
ciate having power over the process. The DataSet is a central feature of VB
Express, just as databases are central to computing in general.

Delving into DataSets
The kind of DataSet that you work with in this chapter is a copy of some data
(at least one table, but containing as many tables as you want) that is held in
memory or stored as two XML files on a hard drive. To simplify the contents

19_597051 ch13.qxd 10/20/05 1:48 PM Page 209

of each XML file, the structure (the names of the tables, columns, and other
features) of the DataSet is stored in one file, while the actual data (the specific
records — or rows — of information) is stored in a separate file. This is a typ-
ical XML tactic.

To work with a DataSet, you don’t need a continuously active connection to a
database. A DataSet object is fairly self-sufficient — it can execute a variety of
commands (methods) and properties to manage its data.

Typically, you connect to a large database, like the Nwind.mdb sample data-
base (see Chapter 12), and then extract a DataSet from that database. This
way, you need not maintain a constant connection between your computer
and the database (which might be on the Internet somewhere else in the
world). Instead, you can work all you want with the DataSet in your local
machine and then return the DataSet for merging with the big database on its
server computer.

This kind of disconnectedness (also known as distributed applications or dis-
tributed programming) is perhaps the primary distinction between traditional
programming and programming designed to work on the Internet. On the
Internet, this disconnectedness means that each visitor receives his or her
own DataSet (requiring only a brief connection to the database to extract the
DataSet), which has important advantages:

� More people can view your data — such as your catalog of current
products — by having a DataSet sent to their machines. If everyone
maintained a connection to your database, fewer people could access it.
(Access, for example, begins to fume and groan after 10 or 20 simultane-
ous connections.)

� More people can update your data. For example, visitors can update a
customer database with, say, a new phone number or e-mail address.
Then they can click a Submit button on your Web page and their revised
DataSet is sent back to your server and merged with the database
(requiring only a brief reconnection for the update).

� Your server has a lighter load to manage. If 2,000 people simultane-
ously remain connected to your company’s database, your little server
computer will probably start smoldering! To take the load off, each
person can have his or her own disconnected portion of information
from the catalog.

Consider this: At the annual family reunion picnic, all 457 cousins don’t con-
verge on the big stew pot and push and shove to stick in their forks. No.
Everyone gets their own bowl and goes off to eat on their own tree stump or
perhaps on a rock down by the river. That way, nobody starts one a-them
feuds. Good manners make for good reunions; that’s my belief.

210 Part III: Dealing with Databases

19_597051 ch13.qxd 10/20/05 1:48 PM Page 210

Building a DataSet Programmatically
DataSets are stored in XML files, so they are especially useful for transmitting
data over networks, such as the Internet. You can extract DataSets from exist-
ing databases, or you can just create a brand new DataSet that isn’t derived
from a larger database.

In this chapter, you see how to create an independent DataSet that isn’t
extracted from some larger database. And you work within a Windows-style
application, not an Internet Web site–style application. The programming tech-
niques illustrated in this chapter can, nonetheless, serve you well if you want
to use a DataSet with Internet programming or with an existing database. For
details about attaching a database to a Web site, see Part IV of this book.

Actually, given the fairly powerful set of built-in commands, you can use a
DataSet for some smaller database jobs, rather than resorting to a full data-
base management system.

Try creating a little DataSet that mimics a cookbook. It will have one table
(named recipes). This table will be the equivalent of an entire cookbook.
The table will have two fields (or columns) named title and description.

Each record — or row (think of a record as a single recipe in your cookbook) —
will therefore be divided into two sections: the title section holding the
recipe’s title and the description section holding the recipe itself. Let’s get
cooking.

Importing namespaces
First off, as usual, you want to import some namespaces (to make referring to
database objects and their members easier).

This importation requirement, though mind-numbing, is currently required in
VB Express.

To begin creating your programmatic DataSet by importing namespaces,
follow these steps:

1. Start a new VB Express project (File➪New Project).

2. Name the project Ds, for DataSet.

3. Double-click the Windows Application icon in the New Project
dialog box.

4. Double-click the form in the Design window to get to the Code window.

211Chapter 13: Managing DataSets

19_597051 ch13.qxd 10/20/05 1:48 PM Page 211

5. Go to the very top of the Code window and enter the following Imports
statements at the very top of the code window (and I mean up above
all code, including Public Class Form1):

Imports System.Data
Imports System.XML
Imports System.Xml.XmlDataDocument

212 Part III: Dealing with Databases

An alternative to importing namespaces?
Perhaps a better system will appear down the
road in the next version, and by better I mean
simply avoiding this useless exercise. There’s
no good reason why you should have to import
what should be automatically available always
in the language. Namely: the code libraries
should simply be there ready to use, rather than
requiring you to remember to add system.
text when you plan to work with text, and
so on.

Using Imports doesn’t lighten the load for the
programmer — it makes life more difficult
because some errors result from not importing
the correct library. And the error messages
don’t make this clear to you, so you can waste
time puzzling over it. What’s more, Imports
doesn’t make programs smaller or faster. Only
the code necessary for program execution is
compiled; entire libraries that you “import” are
not loaded in as part of the finished application.

No, the only load that’s lightened is for the
people at Microsoft who have a clerical prob-
lem to solve (now that they’re juggling tens
of thousands of functions in their huge collec-
tion of libraries). So the buck gets passed to us.
They should collect all the common libraries —
database, security, text management, and so
on — into a default, built-in library that you need
not import. If absolutely necessary — and I
think it isn’t — they can leave out some rarely
used libraries, such as deployment or historical
database functions.

Right now, some of the most frequently used
libraries, such as IO (input output) and text,

are not by default in the References section of
the Solution Explorer (click the Show All Files
button on the explorer’s title bar to see the
default libraries, or namespaces as they now
insist on calling them). This means you have to
explicitly use Imports to use their features.
But, in a bizarre twist of events, the rarely used
(by us programmers) System.Drawing
library is a default library! Nobody can explain
these strange choices, but one can imagine a
better future, and the victory of common sense
over OOP. Evidently not too much thought went
into the selection of default libraries, given that
frequently needed functions are left out, and
rarely used functions (like drawing circles) are
included.

To make matters even more painful, sometimes
it’s not enough to just use an Imports state-
ment. You get error messages in some cases
even after you Imports some libraries; you
have to go a step further and also employ
Project➪Add Reference and then include a
.dll (dynamic link library) or other library.
There is no discernible pattern to which
libraries are added to your project in which
ways, so don’t try to figure it out. Just remem-
ber that sometimes you have to use Imports
and other times you must also add a reference.
Messy, and it’s not really our job as program-
mers to sort all this stuff out anyway. It’s as if the
postman dumped the entire town’s letters in
your driveway and said, “Find yours.”

19_597051 ch13.qxd 10/20/05 1:48 PM Page 212

See the squiggly lines under these Imports statements? That’s VB
Express telling you that these commonly used libraries can’t even be
imported, much less be expected as default libraries.

6. Choose Project➪Add Reference.

7. With the .NET tab selected, Ctrl+click the System.Data.dll and
System.XML.dll entries to select both of them and then click OK to
close the dialog box and add these libraries to your project.

Now you can use their functions in your programming.

The following imports may or may not be required, depending on your
version of VB. If these namespaces are not recognized (VB draws a wavy
line under your Imports code because it cannot “find” the namespace),
just delete that Imports line of code.

Imports System.Data.OleDb
Imports System.Data.SqlTypes
Imports System.Data.SqlDbType
Imports System.Data.SqlClient

You might want to always attach all these Imports when working with
data in VB Express. For now, just go ahead and add them as listed.

Declaring the global variables
Okay, after you import the namespaces, you can do some of your own pro-
gramming now.

You want to declare some global variables. In VB Express, you can place
global variables in a module (Project➪Add Module) and thus make the vari-
ables available to the entire project (all the forms and other containers in the
project). Working from the example in the preceding section, you just need to
make the variables global to an individual form.

To do so, just below Public Class Form1, type the lines that appear here in
boldface:

Public Class Form1

Dim ds As New DataSet(), dr As DataRow, dt As DataTable

‘holds a deleted record
Dim titlehold As String, descriptionhold As String

‘holds the current filenames
Dim schemafilepath As String, datafilepath As String

‘holds the total records and current record number

213Chapter 13: Managing DataSets

19_597051 ch13.qxd 10/20/05 1:48 PM Page 213

Dim TotalRows As Integer, CurrentRow As Integer

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

You’ve just created your global variables. These variables will be used by
more than one procedure (subroutine) in your project, so you want them to
be global — to retain their contents even when the program isn’t executing
within the procedure where they were declared (with the Dim command).
Solution? Declare them outside any particular procedure (as I’ve done here)
in what’s called the General Declarations section of the class (the form).

Building a DataSet in code
After you declare the global variables, it’s time to create the DataSet.

Although you can create a DataSet by using database controls or from the
Data menu in VB Express — as you can see in Chapter 12 — sometimes you
want to let the user create his or her own DataSet files from scratch. In that
case, you have to create the DataSet programmatically. (How, for example,
would you know while programming what the user wanted to call the tables
and columns?)

The structure of the DataSet has to be built while the program executes,
based on the user’s input. To do that, you need to create the DataSet not with
controls during program design, but within your source code during program
execution.

Type this within the Form_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

‘Create a new table named Recipes with title and description
‘(the description of the actual recipe) columns.

dt = New DataTable(“Recipes”)
dt.Columns.Add(“title”, GetType(String))
dt.Columns.Add(“description”, GetType(String))
ds.Tables.Add(dt)

‘ stick some data into the first record’s two columns
dr = dt.NewRow()
dr!title = “First Test Recipe”
dr!description = “Instructions on making popular pies...”
dt.Rows.Add(dr)

‘save the structure (schema) of this DataSet
ds.WriteXmlSchema(“c:\Recipesdataset.xml”)

214 Part III: Dealing with Databases

19_597051 ch13.qxd 10/20/05 1:48 PM Page 214

‘save the actual data that’s currently in this DataSet
ds.WriteXml(“c:\RecipesData.xml”)

Debug.WriteLine(“DataSet Loaded. “)
Debug.WriteLine(“Number of Tables: “ & ds.Tables.Count)

Dim s As String

s = ds.Tables(0).Columns.Count.ToString

Debug.WriteLine(“Table 1 has “ & s & “ columns”)

s = ds.Tables(0).Rows.Count.ToString()

Debug.WriteLine(“Table 1 currently has “ & s & “ rows” & “(“ & s & _
“ records of data)”)

dt = ds.Tables(0)
For Each dr In dt.Rows

Debug.WriteLine(“ColumnName: “ & dt.Columns(0).ColumnName & “ Data: “ & _
dr(0).ToString)

‘Debug.WriteLine(“ “)

Debug.WriteLine(“ColumnName: “ & dt.Columns(1).ColumnName & “ Data: “ & _
dr(1).ToString)

Next

End Sub

Press F5. To see the results of your experiment, open the VB Express
Immediate window by choosing View➪Other Windows➪Immediate. You
should see the following results at the bottom of the Immediate window —
you may have to scroll down to see it:

DataSet Loaded.
Number of Tables: 1
Table 1 has 2 columns
Table 1 currently has 1 rows(1 records of data)
ColumnName: title Data: First Test Recipe
ColumnName: description Data: Instructions on making popular pies...

When you’re working on a program in VB, you often want to get some feed-
back — to see the contents of a variable or the status of some other object. If
you need to see only one or two things, a MsgBox works okay:

MsgBox (“Number of Tables: “ & ds.Tables.Count)

But if you need to see several items, the MsgBox approach can be a pain;
each MsgBox halts execution, and you have to keep clicking OK to close each
box. Instead, use the Debug.Write or Debug.WriteLine technique illus-
trated in the example. That way, you get your report all neat and listed in the

215Chapter 13: Managing DataSets

19_597051 ch13.qxd 10/20/05 1:48 PM Page 215

Immediate window without having to click OK to shut a bunch of message
boxes. (Debug.WriteLine causes VB to move down a line in the Immediate
window.) Another advantage is that you can study the results in the Immediate
window — all sitting there together for your perusal. And the results remain
until you erase them — future writing to the Immediate window is simply
appended.

For in-depth coverage of debugging techniques, see Chapter 10.

Analyzing the code
In the recipe example I’ve been building on throughout this section, you’ve
seen how to create a new DataSet and define a table and columns within it.
Also included is the code necessary to read information from — and store
information in — a DataSet’s records. For each task accomplished in this
code, comments within the code describe what the code does. However, con-
sider some of the highlights.

As you read through these explanations and find unfamiliar terminology, flip
to Chapter 11, where I offer details on database basics.

Creating global object variables
The code example began with a statement that declared a few global variables:

Dim ds As New DataSet(), dr As DataRow, dt As DataTable

With this line, you created global object variables for a DataSet object (ds), a
DataRow object (dr), and a DataTable object (dt). The DataRow object will
contain a collection of all the individual rows (often called records) of data,
however many there may be. The number of rows can grow or shrink depend-
ing on whether new data units (rows) are added or deleted from the DataSet.

Creating the table object
The code proper began by creating a table named Recipes (so far, this is just
a table object; it hasn’t been made part of the DataSet yet):

dt = New DataTable(“Recipes”)

Note that you can create as many tables as you want, but you’re going to use
only one in this DataSet.

Then you created two columns (also known as fields). These are named
title and description, but you could have named them anything you

216 Part III: Dealing with Databases

19_597051 ch13.qxd 10/20/05 1:48 PM Page 216

wanted to. At the same time you created them, you added them to the Columns
collection of the Recipes table object:

dt.Columns.Add(“title”, GetType(String))
dt.Columns.Add(“description”, GetType(String))

You can add as many columns as you want to your table, but you use only
two categories in your recipe DataSet: the title of each recipe and the descrip-
tion (the recipe itself). So, given that you have two categories of information
in this table, you should use just two columns.

Then, pleased with yourself, you added the Recipes table to the Tables col-
lection of the DataSet named ds:

ds.Tables.Add(dt)

Defining a schema
You specified the tables and columns in your DataSet. In other words, you’ve
defined the structure of the DataSet. It’s as if you had a book full of blank
pages, wrote RECIPES on the cover, and on each page drew a line from top to
bottom, dividing each page into two zones. Then you labeled the two zones
Title and Description. A DataSet’s structure is called its schema.

Adding some records (the actual data)
With the DataSet’s schema in place, you stored an actual row in the DataSet.
A DataSet contains both categories (tables, and within tables, columns) as
well as rows (records of data). You created a new row:

dr = dt.NewRow()

Then you added some data to each of the two columns:

dr!title = “First Test Recipe”
dr!description = “Instructions on making pies...”

And finally, you added the new row to the Rows collection of the table (which
already resides in the DataSet, so this row becomes part of the DataSet):

dt.Rows.Add(dr)

Saving the data
Then you used the WriteXMLSchema command to save the structure into
one file:

ds.WriteXmlSchema(“c:\Recipesdataset.xml”)

217Chapter 13: Managing DataSets

19_597051 ch13.qxd 10/20/05 1:48 PM Page 217

and used the WriteXML command to save the data (the rows) in a separate file:

ds.WriteXml(“c:\RecipesData.xml”)

Note that a DataSet need not be saved to the hard drive as files. Indeed, it’s
more common to simply keep the DataSet in the computer’s memory while the
user reads it or modifies it. Then, when the user is through, any changes can
be merged back into the original database and the DataSet itself is simply left
to die, to evaporate from RAM memory. This approach has a security benefit —
none of your data remains on disk unless buffered.

However, to give you a good idea how you can manipulate independent
DataSets, in this example, you store them to disk. I chose the location and
filenames simply for convenience. You can change c:\RecipesData.xml, for
example, to whatever path and filename you wish. There is no special place
that you must store a DataSet, nor is there a special filename that you must
give it.

Extracting the data to display it somewhere
To extract all the data in a table, you first have to find out how many columns
and rows that tables has. The following code does the trick:

Dim s As String

s = ds.Tables(0).Columns.Count.ToString
s = ds.Tables(0).Rows.Count.ToString()

Finally, you used a technique that extracts all the data in your table:

For Each dr In dt.Rows

Debug.Write(“ColumnName: “ & dt.Columns(0).ColumnName & “ Data: “ &
dr(0).ToString)

Debug.WriteLine(“ “)

Debug.Write(“ColumnName: “ & dt.Columns(1).ColumnName & “ Data: “ &
dr(1).ToString)

Debug.WriteLine(“ “)
Next

This is the kind of code you could use to fill a ListBox with all the titles — dr
(0) — in the DataSet. Then the user can click one of those titles to choose
that particular row, and you could display both the title and the description
in a pair of TextBoxes, for example.

218 Part III: Dealing with Databases

19_597051 ch13.qxd 10/20/05 1:48 PM Page 218

By the way, to add more rows, just repeat the code that created the first
record, changing only the actual data that you’re putting into the new rows:

dr = dt.NewRow()

dr!title = “2nd Test Recipe”
dr!description = “All about fish”

dt.Rows.Add(dr)

Playing around
Perhaps you feel like playing around with this example a little (try adding a
second table, if you wish) and working with the Debug.WriteLine command
to find out how to generate mass quantities of debugging information. You
can always see the results in the Immediate window.

After you understand the basics of the DataSet, you’re ready to explore some
additional ways to manage DataSets in your programs. In the following sec-
tions, you can find more details.

Understanding Collections
Note that many objects contain collections. Collections are similar to arrays.
A DataSet contains a Tables collection, and, in turn, each table has a Columns
collection, which tells you how that table is subdivided (its structure, the
names of its fields), and a Rows collection, which contains the actual items of
data in the collection.

You can usually query or edit individual elements in a collection in two ways.
You can refer to each element by its index number (starting with zero) or by
its name. For example:

dt = ds.Tables!Recipes ‘by name
dt = ds.Tables(“Recipes”) ‘same, but an alternative punctuation
dt = ds.Tables(0) ‘same, but here we use the table’s index number

‘rather than its name.

Whichever of these options you use, when this code executes, the global dt
variable points to the particular DataSet.

For an introduction to indexed tables, see Chapter 11.

219Chapter 13: Managing DataSets

19_597051 ch13.qxd 10/20/05 1:48 PM Page 219

Opening an Existing DataSet
What if you want to allow the user to save and open a DataSet using his hard
drive for storage? In the first example in this chapter, you created a DataSet
and saved it to two files on the hard drive, using this code:

‘save the structure (schema) of this DataSet
ds.WriteXmlSchema(“c:\Recipesdataset.xml”)

‘save the actual data that’s currently in this DataSet
ds.WriteXml(“c:\RecipesData.xml”)

Let’s flesh out the previous example to illustrate additional DataSet manipula-
tion techniques:

1. Use the Toolbox to add two TextBoxes to your form, one above the
other, and also add a Button. Enter Open DataSet as the button’s
Text property.

2. Change the Name property of the lower TextBox to txtDescription
and the Name property of the upper TextBox to txtTitle.

3. Double-click the button to get to the Code window and then edit the
following lines in boldface, just below the Public Class:

Public Class Form1

Dim ds As New DataSet(), dr As DataRow, dt As DataTable
‘holds a deleted record

Dim titlehold As String, descriptionhold As String

Dim schemafilepath As String = “C:\recipesdataset.xml”
Dim datafilepath As String = “C:\recipesdata.xml”

4. Locate the Button1_Click event in the code window and type in this
code that opens existing DataSet files:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Try

‘get the structure file
ds.ReadXmlSchema(schemafilepath)

220 Part III: Dealing with Databases

19_597051 ch13.qxd 10/20/05 1:48 PM Page 220

‘get the data file
ds.ReadXml(datafilepath)

Catch er As Exception ‘if there was a problem opening this file

Throw (er)

Finally
dt = ds.Tables!Recipes ‘ set dt to point to this table

End Try

TotalRows = dt.Rows.Count
CurrentRow = 0

txtTitle.Text = dt.Rows(CurrentRow).Item(0)
txtDescription.Text = dt.Rows(CurrentRow).Item(1)

End Sub

5. Press F5 to test the project and then click the Button to activate the
code in its event.

The recipe should appear in the TextBoxes. You pointed the DataTable vari-
able (dt) to your newly opened DataSet with this line of code:

dt = ds.Tables!Recipes ‘ set dt to point to this table

Then you put the total number of records into the global variable TotalRows,
set the CurrentRow pointer to 0 (the first record),

TotalRows = dt.Rows.Count
CurrentRow = 0

and displayed the current record in your two TextBoxes:

txtTitle.Text = dt.Rows(CurrentRow).Item(0)
txtDescription.Text = dt.Rows(CurrentRow).Item(1)

Adding and Removing Data
You’ve finished code that opens a DataSet, so now you can experiment with
adding and removing records from a DataSet.

221Chapter 13: Managing DataSets

19_597051 ch13.qxd 10/20/05 1:48 PM Page 221

Adding data to a DataSet
To make it possible for the user to add records to your DataSet, follow these
steps:

1. Use the Toolbox to put a new Button on the form.

2. Change the Button’s Name property to btnAdd and its Text property to
Add Record.

3. Double-click this new Button to get to its Click event and change it to
look like the following:

Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnAdd.Click

‘if they have no active DataSet, refuse to allow a new record:
If ds.Tables.Count = 0 Then

MsgBox(“Please Open a DataSet, or create one using the New “ & _
“option in the File menu before attempting to add a “ & _
“new record.”)

Exit Sub
End If

‘if they have an incomplete record, refuse:
If txtTitle Is “” Or txtDescription Is “” Then MsgBox(“One of your “ & _

“TextBoxes has no data. You must enter something for the “ & _
“title and something for the description.”) : Exit Sub

‘ stick the new data into the first row’s two columns
dr = dt.NewRow()
dr!title = txtTitle.Text
dr!description = txtDescription.Text
dt.Rows.Add(dr)

Me.Text = “Record Added...”

End Sub

4. Press F5 and then click the Open DataSet button. Change both the Title
and Description TextBoxes and then click the Add Record button.

The first line in this code tests whether the user has a currently active
DataSet. If not, you post a message and exit this subroutine without executing
any additional code. Users who haven’t yet created or opened a DataSet
shouldn’t be trying to add a record to this non-existent data. Also, you don’t
want an incomplete record.

222 Part III: Dealing with Databases

19_597051 ch13.qxd 10/20/05 1:48 PM Page 222

However, if the user does have a new record (text in the TextBoxes) that he
wants to save to the DataSet (committing it, as the saying goes), you let him.

You use the NewRow method to notify your DataSet that a new row of data is
coming. Then you fill the new row’s two columns (title and description)
with the data in the TextBoxes. Then the Add method commits the data to the
DataSet. Finally, you increment your total records counter and your current
row pointer.

Because users don’t like to click a button and see nothing happen — it worries
them — you might want to place a reassuring message in the form’s title bar,
telling them that the record has been added.

Removing data from a DataSet
Users must be able to delete records from your DataSet. Here’s code that can
be used to remove the “current” record:

dt.Rows.Remove(dt.Rows(CurrentRow))

If you look in VB Express’s Help, you might think that there are two methods for
deleting a row in a DataSet: Delete and Remove. However, the Delete method
doesn’t actually get rid of a row; it simply marks the row for later deletion when
(or if) the programmer uses the AcceptChanges method. (Technically, the data-
base management system itself, not your program, does the actual deleting.)
Marking a row in this fashion is useful for such jobs as permitting an Undo
option, thus restoring the row. In this example, however, you use the Remove
method, which gets rid of the row completely right then and there.

Moving through the DataSet
Users often want to scroll up or down through a set of data. It’s up to you, the
programmer, to organize and navigate the data “rows” inside the DataSet (or
you can bind your data to a DataNavigator control, as described in Chapter 12).

To allow the user to maneuver, you created TotalRows and CurrentRow global
variables. These variables keep track of where the user is located in the set of
rows. (Technically, TotalRows isn’t necessary; the DataSet knows that informa-
tion and you can ask for it at any time with ds.Tables(0).Rows.Count.)

223Chapter 13: Managing DataSets

19_597051 ch13.qxd 10/20/05 1:48 PM Page 223

Code that moves down the rows in a DataSet looks like this:

CurrentRow = CurrentRow - 1

txtTitle.Text = dt.Rows(CurrentRow).Item(0)
txtDescription.Text = dt.Rows(CurrentRow).Item(1)

Or, to go up:

CurrentRow = CurrentRow + 1

txtTitle.Text = dt.Rows(CurrentRow).Item(0)
txtDescription.Text = dt.Rows(CurrentRow).Item(1)

Look for a variety of additional DataSet members (properties and methods
you can employ) in VB Express Help. Use the Index to search for “DataSet
class.”

224 Part III: Dealing with Databases

19_597051 ch13.qxd 10/20/05 1:48 PM Page 224

Part IV
Programming
for the Web

20_597051 pt04.qxd 10/20/05 1:49 PM Page 225

In this part . . .
You cannot ignore the Web for long if you’re involved

in selling something, even if it’s just selling your tal-
ents. Internet programming — building and maintaining a
Web site — has become a major aspect of programming.
Part IV shows you how to use the new Visual Web
Developer, along with VB Express, to move Web pages up
onto the Internet for all the world to see. You explore the
powerful ASP.NET technology that allows you to write
“code behind” the visuals of a Web page, building intelli-
gence into your Web site programs, making them com-
pelling and responsive to visitors. You also experiment
with other important Internet programming techniques,
such as how to store variables, connect a Web page to a
database, deal with cookies, and communicate back and
forth between your site’s server and the computers used
by visitors to your site.

20_597051 pt04.qxd 10/20/05 1:49 PM Page 226

Chapter 14

Painless Internet Programming
In This Chapter
� Understanding the difference between Windows and Web programming

� Writing your first Web program

� Who’s the client; who’s the server?

� Discovering ASP.NET

� Introducing WebControls

� Displaying images

� Containing with a Panel

� Using the table, calendar, and AdRotator controls

� Using style objects

� Attaching a database to your Web page

Creating an Internet site presents the programmer with some challenges
not faced when writing a Windows program. First, there’s the communi-

cation back and forth between two parts of the program: the client part that
the user loads and sees in the browser, and the server part that sits on your
Web site machine. What happens when the user clicks a button on your Web
page asking to see more of your catalog? A message is sent back to your
server, and it must respond. This separation of client and server creates com-
munication and security problems that you just don’t have with ordinary
Windows programming, where the communication is pretty much limited to
messages between your keyboard, mouse, and hard drive.

Second, a Windows program generally involves just one user interacting with
it. But if you’re lucky and your Web site becomes popular, why, bless me, you
could have dozens or even thousands of simultaneous users interacting with
your quivering little server! The ability to adapt effectively from managing a
few users to ramping up and handling many users is known as scalability —
being able to shift the scale or size of your program’s behaviors.

So, because Internet programming differs in a few profound ways from
Windows programming, VB Express offers a separate, specialized tool for
Internet programming: Visual Web Developer 2005 Express (VWD).

21_597051 ch14.qxd 10/20/05 1:50 PM Page 227

If you haven’t yet downloaded it, go to Microsoft’s Web site and install VWD
on your computer:

http://lab.msdn.microsoft.com/express/vwd

Creating the Simplest Web Program
Just as the DVD Collection example program included with VB Express is way
more complicated than it should be, so, too, is the Personal Web Site Starter
Kit included with VWD. I can’t imagine who at Microsoft thought those
sophisticated, lengthy programs were good places for beginners to get their
feet wet programming.

Setting up the program
Instead of the “sample,” let’s try the ASP.NET template. For this example, you
want to put a TextBox on your Web page in which the user types the total
dollar amount of his purchase. You also include a button that, when clicked,
adds 7 percent sales tax to the user’s order and displays the total cost back
to the user. This would be pretty simple in a Windows program — but remem-
ber, the Internet is all about sending messages between computers, so what’s
simple in Windows becomes more complicated in Web site programming. To
better understand the security issues, see the nearby sidebar, “Why viruses
distort Internet programming.” Now, on with the example:

1. With VWD running, choose File➪New➪Web Site.

2. Double-click the ASP.NET Web Site icon in the New Web Site dialog box.

You now see a Default.aspx file. (I explain ASPX in greater detail shortly.)
For now, you just want to create and test a simple Web page to see how the
process of designing interactive Internet pages actually works.

3. Click the Design tab at the bottom of the Code window.

You see a blank Web page with a Toolbox tab to the left and, on the right,
the familiar Solution Explorer and Properties window. In fact, everything
looks strangely like the normal VB Express Windows programming editor —
but just a little different, as you can see in Figure 14-1. For example, notice
the <div> button in the Properties window. This is an HTML element tag.
You can always tell tags because they’re enclosed in greater-than and
less-than symbols (< . . . >). But don’t bother your pretty head about
HTML — a real mess of a language, believe me. Happily, you can stay up
above HTML and just drag and drop objects from the Toolbox, and the
Web Developer automatically writes all that nasty HTML code for you. It’s
like when Mae West turned to her maid and said, “Beulah, peel me a grape.”
You’ve got somebody else to do the tedious, messy HTML drudgery.

228 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 228

4. Double-click the TextBox in the Toolbox to place a TextBox on your
Web page.

5. Double-click a Button in the Toolbox as well.

6. Now, to get to the code area where you can write some programming,
double-click the Button on the Web page.

A new file named Default.aspx.vb is created when you start a new
Web project. This is called a code-behind file, and it’s useful because it
separates the programming (which remains on your server) from the
HTML page on which you design the buttons, background, and other
visual elements that get sent to your user’s browser.

Although you can also mix code into the HTML page by using a <SCRIPT>
zone in the HTML (and programmers often do this), I think it’s far cleaner
and simpler to keep your programming code in an entirely different file
from the HTML code. For one thing, the person talented at designing a
Web page visually is often not the same person who is talented at pro-
gramming. If people have their own separate files, they avoid stepping on
each other’s toes and, worse, messing up each other’s code.

7. In the button’s Click event, type the programming code that adds
sales tax:

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim result As Single

Figure 14-1:
The

Web pro-
gramming

editor is
very similar

to the
standard

Windows
program-
ming VB
Express

editor.

229Chapter 14: Painless Internet Programming

21_597051 ch14.qxd 10/20/05 1:50 PM Page 229

result = CSng(TextBox1.Text) * 1.07
TextBox1.Text = result.ToString

End Sub

This is pretty much the same process — and the same VB Express lan-
guage commands— that you use when writing Windows programs.

Ignore any of those annoying warning messages about “implicit conver-
sion” and so on. You know what you’re doing, so you don’t care that a
numeric variable type is being substituted, or that VB Express is all
atwitter that you might be losing some precision in your math. That’s
what the “implicit conversion” warning is all about.

You do need the decimal point so that cents show up, not just dollars.
That’s why you use the Single (floating point) data type rather than the
usual Integer type (which has no decimal point).

Anyway, because you’re going from a TextBox’s text (which is a string
variable) to a Single (CSng converts text to Single), .NET wants you to
specifically make variable-type conversions. You can us the .ToString
method to go the other way and change the Single result back into text
for the TextBox. Nearly everything in .NET has a ToString method. Few
outside Microsoft know why all this fuss is necessary, but those in
charge of .NET seem to think it is.

The next step is to test this program to see how it works.

Testing your program
Now for the testing part. This is pretty cool, and those at Microsoft who
designed it are to be praised — it works smoothly and effectively. Here’s how
it’s done:

1. Press F5 as usual to run your new program.

After some behind-the-scenes grinding and fussing, your Web page —
complete with TextBox and button — appears in your default browser.

2. If you see the warning message displayed in Figure 14-2, click OK to
add a Web.config file and debugging (as the Visual Web Developer
should automatically do for you).

If you don’t see the message, fine. It’s not necessary and, for beginners,
it’s just one more source of confusion. Perhaps by the time VWD is fin-
ished, the message won’t appear, and the sensible default (debugging)
will simply take effect without asking your permission. Then when your
program is finally tested and finished and ready to be sent off into the
world for everyone to enjoy — you disable the debugging feature to
achieve maximum program execution speed.

230 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 230

231Chapter 14: Painless Internet Programming

Why viruses distort Internet programming
A user visiting your Web site might live in Des
Moines (of all places) and might be up late at
night wearing nothing more than a fetching
nightgown. With lace trim, perhaps. But I stray.
My point is this: Web site programming is not
limited to a single computer or a single hard
drive. Your program (code “behind” on the
server) is interacting with the user’s Web
browser, using the Web form you designed in
design view.

In our example program, a click on the Button in
the user’s browser in Des Moines causes the
contents of the user’s TextBox to be sent back
over the Internet to your server, where the tax
is calculated. Then the result of that calculation
is sent back to the user.

Why not just calculate the tax on the user’s end,
with some programming built into the Web page
that was sent from your site to the user’s
browser? The answer, my friend, is blowing in
the wind: It’s those brainless virus spreaders
who make all this complexity necessary. (Lots
of them don’t write the virus code; they’re too
dumb — they just get it off the Internet and
spread the virus around to cause trouble).

Executable code is, in theory, not supposed to
be embedded within your Web form and is not
supposed to be downloaded — because there’s
no effective way for the user’s browser to dis-
tinguish between your harmless little tax calcu-
lation code and a virus. So, like many of modern
life’s annoyances, security is the reason you
can’t send executable code to a user’s browser.
However, that’s just theory because Web sites
do in practice frequently rely on scripting for
such jobs as client-side validation (checking to
make sure they entered all the necessary infor-
mation in a form, for instance).

In the example Web site you’ve created in this
chapter, no scripting is sent. Because the active

tax calculation takes place on your server, the
user is not endangered. What gets sent back
to the user is merely the text result of the
calculation: the total cost expressed by visual
symbols — some digits. No programming code
gets sent, just HTML for TextBox, button, the
digits inside the TextBox, and any other visual
elements, such as color, that you’ve specified
as part of your page design. Programming code
doesn’t get sent. Many users’ browsers — and
other security measures — are set to reject
scripting or other kinds of executable code. This
is an ideal approach because new visitors
to your site don’t have to agree to “trust” this
site before their browsers’ security features
will permit your Web pages to be loaded and
displayed.

However, to be technically accurate, small
client-side scripts are often necessary, if only to
store a cookie or perform some other minor job.
Either the users trust your Web site or they
don’t. If they do, they can add you to their
trusted-site lists and allow your scripts to run.
Many users turn scripting off for everyone
except these trusted sites. Indeed, the code that
Visual Web Developer generates automatically
and sends to the client sometimes contains
client-side scripts. True, you the programmer,
don’t add those scripts, but an ASPX page
sometimes generates them automatically. So in
practice, most Web pages you create using
VWD will probably contain at least some script-
ing. My advice is to stick to writing code-behind
programming, and at least in the first page of
your Web site avoid scripting if at all possible.
And if you find your customers or your site’s vis-
itors refusing to interact with your site, find out
which controls or other elements of your VWD
page are creating security issues in users’
browser and consider eliminating those con-
trols or programming.

21_597051 ch14.qxd 10/20/05 1:50 PM Page 231

3. Interact with your Web program just like the user would.

That’s how you test your Web pages. Your local computer mimics the
communication between a user’s browser and your Web site’s server
machine.

Type 123 into the TextBox as the purchase price, click the button. The
result is calculated on the virtual “server” and “sent” back to the
browser — in imitation of a real-life Internet communication between
that lovely user in Des Moines and your server computer. The resulting
total cost including tax is shown in Figure 14-3.

Congrats! You’ve just written your first Web page programming in the
new VWD Express editor.

Figure 14-3:
The tax

calculation
has been

successfully
sent back to

the user’s
browser.

Figure 14-2:
This

message
may or may
not appear

the first time
you try to

test a
Web page.

232 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 232

Positioning objects with the Style Builder
Web pages by default simply stack objects one on top of another against the
left side of the form. Notice in the preceding example that you cannot just
drag the button or TextBox wherever you want to position them on the form
(Web page). One way to freely position objects is to use the “absolute” posi-
tioning feature of CSS (cascading style sheets). Fortunately, you don’t have to
get into CSS yourself because the Visual Web Developer has a built-in Style
Builder utility that creates CSS code for you. To try it out, follow these steps:

1. Right-click the button on the Web form (from the previous example).

A context menu pops out.

2. Choose Style from the context menu.

The Style Builder dialog box opens.

3. Click the Position option in the left pane of the dialog box.

The position features are displayed.

4. Click the down-arrow icon to drop the list of position mode options
and select Absolutely Position.

Now your button can be dragged wherever you wish on the Web form.

5. Click OK.

The dialog box closes.

6. Drag the button and drop it anywhere on the form.

It stays wherever you position it.

If you look at the HTML source code — by clicking the Source tab on the
bottom of the design window — you see that the following CSS code has been
added to this button:

Style=”left: 352px; position: absolute; top: 200px

The 352 and 200 coordinates will differ in your example. They specify pre-
cisely where (left, top) on the form your button has been dragged, and 352,
200 are the coordinates specifying where I dragged my button.

Even more useful would be the ability to specify globally that the entire Web
form — all controls on it — should be permitted absolute positioning. In
other words, in previous versions of the Web form editor, each form had a
PageLayout property you could set to what was called GridLayout. This
had the effect of applying the absolute positioning style to all controls —
current or added later — to that form. It was a handy feature, and perhaps it
will be reinstated in the Visual Web Developer. But not yet . . . and maybe
never. Microsoft has shown an increasing tendency over the past few years to
remove useful features from VB, add useless complexity, and otherwise
behave in ways that puzzle me to no end.

233Chapter 14: Painless Internet Programming

21_597051 ch14.qxd 10/20/05 1:50 PM Page 233

Coming to Grips with ASP.NET
ASP.NET is the technology built into the .NET framework that you use to
create Web pages. How about an overview of the ASP.NET features that you
may find useful as you expand your programming skills beyond the Windows
(local hard drive) platform and move into the brave new world of Internet
programming? Well . . . how about it?

ASP.NET involves two interacting elements: Visible Web-page forms or <div>
sections (similar to Windows forms) display user-interface controls in a
browser; the second technology, called code behind, which lives in a separate
file, contains the Visual Basic to handle any necessary programming.

Programming Web sites to interact with users was extremely complex before
ASP.NET came along. Back then, it was a nasty, brutish business at best, using
clumsy tools and messy, buggy technologies. Thank your lucky stars for
ASP.NET.

ASP.NET is a rather complex topic, and I can cover it only briefly in this book.
If you’re interested in finding out more about it, take a look at my book Visual
Basic .NET All-in-One Desk Reference For Dummies (Wiley).

The purpose of ASP
The main idea of Active Server Pages (ASP) is that, instead of seeing a simple
Web page, people surfing the Internet who arrive at a page on your Web site
want to see dynamic, interactive content. A dynamic site is attractive, up-to-
date, varying, and thus potentially more interesting to the visitor.

HTML’s limitations
Web pages are programmed in Hypertext Markup Language (HTML), which
all Web browsers understand and respond to. Pure HTML merely describes
how text and graphics should look — size, location, color, and so on. You can
do no actual computing with HTML. It can’t even add 2 + 2.

HTML merely specifies, say, that a headline is large, that some body text on
the Web page is blue and is not as large as the headline, that one graphic is
lower on the page than another graphic, and so on. HTML also includes a few,
simple objects such as tables and list boxes. However, even the tables and
list boxes are static, essentially lifeless display objects.

To expand the capabilities of HTML, the idea of an active server was developed.
All programming, all computation, takes place on the server. When the server’s
programming finishes its job, the results of that computation are composed

234 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 234

into a page of HTML (just as the sales tax result in the previous example was
put into the HTML TextBox). The HTML page is then sent to the visitor’s com-
puter for viewing in a browser. This capability brings Web pages alive and gives
them the ability to execute programs without sending executable code to the
client — the user’s browser — where it would be rejected as a potential virus.

With ASP technology, therefore, you can do lots of useful things on your
server that you could never do with HTML alone. You can access a database,
insert prewritten components, and revise your Web pages (include news
about your company, today’s date, and so on) so that visitors don’t get bored
seeing the same content each time they visit. The visitor sees the most
recent product announcements, late-breaking information, and anything else
you want to provide. Perhaps more important, your Web pages are interac-
tive and can respond to requests for information or other actions by the user.

Firewalls and other necessary evils
Recall that ASP sends standard, harmless HTML to the user’s browser.
Firewalls — designed to keep hackers, whackers, crackers, viruses, worms,
and other invaders out of your computer — permit HTML to pass unchal-
lenged. Innocent, merely descriptive visual HTML can do no damage to your
computer, any more than a picture of a gun can fire bullets.

You can insert some scripting code into an HTML page and, therefore, let the
visitor’s computer do some limited computing. This is called client-side
scripting. It works fine if you’re sure that all your visitors have the necessary
language components installed on their machines, that their security settings
permit scripting (many people block scripts), and that they’re all using the
same browser (and that the browser supports scripting). So, if you’re running
a site that is intended merely for use in-house on an intranet, and everybody
in your company uses Internet Explorer, and you’re sure they all have the
right components on their hard drives, go ahead and try some client-side
computing. Intranets often permit scripting. However, for Internet pages,
there are many reasons to prefer ASP’s solution: server-side computing that
sends harmless HTML results to clients. But see the sidebar earlier in this
chapter titled “Why viruses distort Internet programming” for additional
details about why scripting is, alas, sometimes a necessary evil.

Getting to Know WebControls
When you use Web forms in the Visual Web Developer, you also have a full set
of controls in the Toolbox that you can put onto those forms. This is a very
quick way to build a cool-looking Web site. I assume that you’re familiar with
the classic Windows controls — such as the TextBox. Here, I explain special
behaviors of various useful controls for Web page programming.

235Chapter 14: Painless Internet Programming

21_597051 ch14.qxd 10/20/05 1:50 PM Page 235

Displaying images
Use the Image control to show graphics (.GIF, .JPG, .JPEG, .BMP, .WMF, and
.PNG files; .PNG is Adobe’s effort to replace .GIF). You can assign the graphics
file during either design time or run time by providing a URL to the ImageURL
property or by binding the Image control’s ImageURL property to a database
containing graphics. Put a copy of the graphics you use into the folder where
your project is located. You’ll find your projects at C:\WebSites\.

The Image control is unusual among WebControls in that it has no events.
You can’t respond if the user clicks the image, for example. If you want to dis-
play a map of Europe and let the user click one of the countries in the map to,
say, ask for a list of olive oil brands from that country, you can use the
ImageMap control. It not only has a Click event, but it also includes a
HotSpots property, which you use to specify how to respond to clicks on
various locations within the image.

Containing with the Panel container
The Panel WebControl is a container for other controls. The Panel’s borders
create a zone — a subdivision of the Web page — within which you can
define a look (change the Panel’s BackColor, for example), add controls
dynamically, or manipulate a group of controls simultaneously (such as a set
of RadioButtons that work together; for example, when the user clicks one
button, the previously clicked button is unselected automatically).

For example, you can set the Panel’s Visible property to False, and all con-
trols contained within the Panel also become invisible. You can also type text
into a Panel.

The Panel must be selected for you to add other controls to it by double-
clicking them in the Toolbox. Add a Panel control from the Toolbox and
then click the Panel to select it in the design window. Now, in the Toolbox,
double-click other controls that you want to place within the Panel.

You can also add controls to a Panel by dragging the controls on the form in
Design view onto the Panel.

The Table control
You can build a typical HTML table with the WebForm Table control by fol-
lowing these instructions:

236 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 236

1. Add a Table control to the design window and then click the Rows col-
lection in the Properties window.

The TableRow Collection Editor appears. Use the TableRow Collection
Editor to add new rows, as shown in Figure 14-4.

2. Click the Cells collection ellipsis button inside the TableRow Collection
Editor dialog box to bring up the TableCell Collection Editor.

3. In the TableCell Collection editor, you can

• Add columns by clicking the Add button.

• Type in data.

• Otherwise manipulate the columns (fields).

The rich Calendar
Taking HTML to its limits, the clever Calendar control provides a valuable
addition to your bag of Web-programming tricks.

The Calendar control is based on a nice set of date/time functions built into
VB. It has many members, such as GetDayOfYear, GetDaysInMonth,
GetDaysInYear, GetEra, and so on.

Figure 14-4:
Use these

dialog boxes
to manually

add rows
and

columns to
your table

control.

237Chapter 14: Painless Internet Programming

21_597051 ch14.qxd 10/20/05 1:50 PM Page 237

The Calendar control permits users to view and navigate between dates, as
well as to send (postback) their choice of day or days back to your server for
processing. This would be an improvement over some hotel reservation Web
pages, which require that you search through four ListBoxes (arrival day and
month, departure day and month). With the calendar control, visitors could
simply select the days they will be staying.

The calendar is rendered as an HTML table, of course, but plenty of script is
in there as well. You can’t see much of the actual HTML source code by click-
ing the Source tab in the Design window. Instead, press F5 and then use the
browser’s View➪Source option. You might be startled at the massive redun-
dancy so typical of HTML. A <TD> element is included for each day in the
entire calendar, including JavaScript postback events that trigger when the
user clicks any of the days.

If you’re programming for a company’s personal intranet, you could also use
the Calendar control to display scheduled meetings, appointments, tasks, or
other information related to scheduling.

Users can move between months by clicking the arrows at the top corners of
the Calendar, or you can provide them with additional navigation methods
(such as a TextBox in which they type a date, Buttons, ListBoxes, and so on).
Then you can change the month displayed programmatically, like this:

Sub Calendar1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs)

Calendar1.VisibleDate = CDate(“12/16/2005”)

End Sub

Press F5, click any date within the calendar, and December 2005 is displayed,
thanks to this programming. This example illustrates merely how to use code
to manipulate the calendar and change the displayed month programmati-
cally. You most likely don’t want to display December 2005 regardless of
which date the user clicks.

The AdRotator
The AdRotator WebControl displays an advertisement on your WebForm. It
requires an XML file whose URL you specify in the AdRotator’s
AdvertisementFile property.

AdRotator has some restrictions: The XML file must be stored with “the appli-
cation’s domain,” as they say. In plain English, just save it to the hard drive in
your application’s folder (the same folder with the .aspx, .vsdisco, and

238 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 238

other support files for your project). Also, save the advertisement graphic
file in that same folder.

Follow these steps to use the AdRotator:

1. Right-click your project’s name (it’s the one in boldface) in the
Solution Explorer.

A context menu opens.

2. Choose Add New Item from the context menu.

The Add New Item dialog box opens.

3. Double-click the XML File icon in the Add New Item dialog box.

The dialog box closes, and the new XML file is now part of your project.
It’s ready for you to type in the necessary XML code.

4. Type in (or better yet, copy and paste from this book’s Web site) the
following XML code:

<Advertisements>
<Ad>

<ImageUrl>button.gif</ImageUrl>
<NavigateUrl>http://dell.</NavigateUrl>
<AlternateText>Cannot display</AlternateText>
<Keyword>Take 1</Keyword>
<Impressions>100</Impressions>

</Ad>
</Advertisements>

Substitute the name of your graphics file for button.gif. Also, instead
of dell., use the name of your computer. (XP users can find the name of
their computers by choosing Start➪Control Panel➪Performance and
Maintenance➪See Basic Information about Your Computer➪Computer
Name.) Note that the NavigateUrl property points to the URL of the
page to be displayed if the user clicks your AdRotator.

This little project requires care: make a single mistake in your XML file
and it may not work. Also ensure that the graphics file has the same
name in the folder as in the XML code, and that your computer name is
correct, and that the graphics file is stored in your project’s folder.

5. Put an AdRotator control on your WebForm and select it.

6. In the Properties window, change the AdvertisementFile property
to MyAd.XML.

7. Press F5 and you see your ad displayed . . . unless the browser is set
to block such ads.

239Chapter 14: Painless Internet Programming

21_597051 ch14.qxd 10/20/05 1:50 PM Page 239

Your XML file must be well formed. So, if you’re in the habit of writing badly
formed XML, get with the program! The XML file must conform to this format:

<Advertisements>
<Ad>

<ImageUrl>Filename of the graphic to display</ImageUrl>
<NavigateUrl>URL of the path to the page the used sees if the user clicks

your ad</NavigateUrl>
<AlternateText>Text to display if image can’t be displayed </AlternateText>
<Keyword>Keyword to filter ads</Keyword>
<Impressions>relative weight of ad<Impressions>

</Ad>
</Advertisements>

However, of all these properties, only the ImageURL is absolutely required.
The AlternativeText property is displayed as a ToolTip in Internet
Explorer if the graphic is not successfully displayed. You can also use the
Impressions property to define how often the ad is displayed. You can fill
the XML file with as many <Ad> sections as you want. Give them relative
weight by setting the <Impressions> property. If one of the <Ad> sections
has 1000 as its weight, and the only other <Ad> section has a weight of 100,
the second <Ad> is displayed one tenth as often as the first ad.

Using style objects with WebControls
As you saw in the preceding section, you can either define the properties of
an AdRotator in an event named AdCreated when the control first comes
into existence, or you can reference a separate XML file to define those prop-
erties. This is how ASP.NET segregates the work of designers who manipulate
the appearance of a Web page (HTML) from the work of a programmer who
manipulates the behavior of that page (using VB). They can both work on dif-
ferent files. Similarly, cascading style sheets (.css files) and other tech-
niques permit two files to define one object.

Adding abstraction
You can employ a level of abstraction with WebControls. Some ASP.NET
WebControls let you use style objects to specify properties. The DataList
WebControl, for example, has a BorderStyle property, and SelectedDayStyle
is part of the Calendar control. The Button control has a ControlStyle prop-
erty that works in much the same way.

You can, of course, use the Property window to specify styles, or do it pro-
grammatically in an event (or by modifying the HTML). A third way is to use a
style object.

To see how this works, put a Button control on your WebForm and then
double-click that Button to get to the code-behind code window (the

240 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 240

VB Code window). You see the empty Button1_Click event. Type this into
the event:

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim stl As New Style()

stl.BackColor = System.Drawing.Color.Blue
stl.BorderColor = System.Drawing.Color.Red

Button1.ControlStyle.CopyFrom(stl)

End Sub

When you employ the CopyFrom method, as illustrated in the preceding
code, all the style object’s settings are applied to the Button (or whatever
WebControl is being used). This includes nulls (empty values). Try a different
tactic using the MergeWith method. Replace the CopyFrom method in the
previous code with this:

Button1.ControlStyle.MergeWith(stl)

MergeWith sets only the properties already defined in the style object and
does not change any properties undefined in the style object.

Inheritance and precedence in style objects
In some sophisticated WebControls, style objects can inherit properties from
other style objects. The Calendar WebControl, for example, bases its
SelectedDayStyle property on its DayStyle object. If you don’t specify
properties for SelectedDayStyle, it inherits its properties from the
DayStyle object. Put another way, if you do specify one of these properties,
your choice wins (has precedence).

WebControls offer two properties that let you manipulate CSS styles:
CSSStyle and CSSClass. If you set the CSSStyle property, you can set a
string of style attributes to be applied to the control. The CSSStyle property
specifies style attributes that are not exposed through other properties; it
allows you to assign a style-sheet class to the control.

Attaching a Database to Your Web Page
Displaying data from a database is pretty easy in Visual Web Developer. To
see how to do it, follow these steps:

1. Choose File➪New Web Site.

You see the New Web Site dialog box.

241Chapter 14: Painless Internet Programming

21_597051 ch14.qxd 10/20/05 1:50 PM Page 241

2. Double-click the ASP.NET Web Site icon.

A new, blank site template opens.

3. Locate your copy of the sample database Nwind.mdb (or Northwind.
mdb) on your hard drive (see Chapter 12 for information on download-
ing or locating it).

4. Copy Nwind.mdb to the folder where your new ASP.NET project is
located (in boldface in Solution Explorer).

It will be something like C:\WebSites\WebSite5\.

5. Click the Design tab at the bottom of the design/code window in VWD.

The design window opens.

6. Double-click the GridView icon in the Toolbox. You may have to click
the Data header (in boldface) in the Toolbox to reveal the data-related
controls such as the GridView.

A GridView is placed on your Web page, and a Common GridView Tasks
dialog box (from a “smart tag”) appears, as shown in Figure 14-5.

7. Click the down arrow next to Choose Data Source.

A list drops.

8. Click New Data Source.

The Data Source Configuration dialog box opens.

9. Click Access Database.

10. Click OK.

A new dialog box opens in which you can specify the location of the
database.

Figure 14-5:
Here’s

where you
can define a

source of
data for

your Web
page.

242 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 242

11. Click the Browse button to locate your Nwind.mdb or Northwind.mdb
sample database in the project’s folder or type the path, which is some-
thing similar to c:\WebSites\WebSite5\Nwind.mdb, into the dialog box.

12. Double-click Nwind.mdb.

13. Click Next.

You see the dialog box where you can specify the table and fields
(columns) that you want to display on your Web page, as shown in
Figure 14-6.

14. Click the down arrow next to the Name (table) list.

The list of tables in the sample database is displayed.

15. Click Employees.

The list of fields (columns) in the Employees table is shown.

16. Select LastName, FirstName, and BirthDate.

17. Click Next.

You can now test your SQL query results.

18. Click the Test Query button.

You see the data fill the columns, as shown in Figure 14-7.

Figure 14-6:
Specify a

table and a
subset of
data (an

SQL query)
from that

table
using this

dialog box.

243Chapter 14: Painless Internet Programming

21_597051 ch14.qxd 10/20/05 1:50 PM Page 243

19. Click Finish.

The connection to the database is established, and the dialog box closes.

20. Press F5 to test your Web page.

You see the data displayed in the browser, as shown in Figure 14-8.

Figure 14-8:
Success!

You’ve
connected a
database to

a Web page.

Figure 14-7:
Test your

SQL query
here to see

whether the
data con-

nection
works and

whether
you’re

getting
back the

information
you want

displayed on
the Web

page.

244 Part IV: Programming for the Web

21_597051 ch14.qxd 10/20/05 1:50 PM Page 244

Chapter 15

Everything’s Eventual:
Web Page Management

In This Chapter
� Understanding server-side programming

� Looking at ASP.NET source code

� Using controls’ IDs

� Handling simple validation

� Managing state

� Preserving values within a page

� Preserving values across pages

� Using the Session property

� Alternative ways to preserve values

� Avoiding cookies

Among the interesting, novel facets of Web programming — facets you’ll
want to understand — are

� How to manage splitting your application’s code between server and
client (all the actual programming is done on your server; then you
just send the results to the user’s browser).

� How to preserve the state of your variables. By preserving the state of
variables, I mean ensuring that data survives Internet interactions. This
is called persistence and it’s the topic of the following section.

� Why you might want to avoid using cookies.

This chapter explores these and other issues unique to Web page program-
ming. Be prepared, that’s my motto.

22_597051 ch15.qxd 10/20/05 1:52 PM Page 245

Before you can explore the concepts in this chapter, you need a special pro-
gram designed to help you create Web sites. So, if you haven’t already down-
loaded the Visual Web Developer 2005 Express (VWD) program, go to
Microsoft’s Web site and install VWD on your computer:

http://lab.msdn.microsoft.com/express/vwd

Understanding Server-Side
Controls in ASP.NET

One of the great features of the VWD is how easy it can be to create a Web
page that interacts effectively with the user. Not only do you get to use many
controls — like the TextBox — that are familiar to you from traditional
Windows programming, you also get to work with design and code windows
that are familiar as well.

Enough theory, it’s time to plunge in and get a feel for ASP.NET Web page
development. In the following example, you built a pretty sophisticated inter-
active Web page — mostly using tools you’ve already mastered if you’ve
already done much of the classic Windows programming I discuss earlier in
this book:

1. Start Visual Web Developer Express.

2. Choose File➪New➪Web Site.

3. In the dialog box that opens, double-click ASP.NET Web Site.

4. Click the Design tab at the bottom of the code/design window and add
a TextBox from the Toolbox to the form.

5. Click the Source tab at the bottom of the design window.

With the Source tab open, notice that when you added the TextBox, VB
enclosed it within an HTML form:

<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1”
runat=”server”></asp:TextBox>

</div>
</form>

246 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 246

Note that runat=”server” attribute. ASP.NET sees this command and auto-
matically forces the value of server-side controls to be POSTed (sent) back to
the server if the user makes a change or enters some information into the
TextBox. Each control within the HTML form includes the runat=”server”
command.

Having server-side controls is a great feature. It preserves the state of the
controls (their values and properties) and lets the server know the values
that the user entered. ASP.NET handles this communication between the
client (browser) and your server automatically.

The problem of persistence
When users fill in a textbox or perhaps a more complicated form on your Web
site, they don’t like it at all if they come back to that form later and have to
fill it in a second time! They expect stability and efficiency. They expect data
to be durable, not to evaporate in their browser window just because they
click a button or press F5 to redraw the browser screen. This durability is a
quality known to programmers as persistence. Data or variables that survive
various changes are said to persist.

How does ASP.NET manage to preserve state (the current status of some-
thing, such as its size) and any values it holds (such as text in a TextBox)?
ASP.NET makes some changes to your source code when you use server-side
controls.

Fleshing out your ASP.NET project
To see a bit more behind the scenes in an ASP.NET Web page, follow these
steps to create an interactive Web page.

1. In Visual Web Developer, use the Toolbox to add a Label, two TextBoxes
(just add one if you’re using the project you started earlier in this
chapter that already has a TextBox on it), and a Button to your form.

2. Double-click the Button.

You see the Code window. This is the code-behind file, so called because
it works behind the scenes to provide computing power to an associated
HTML page. This is not the same as the simple HTML code you see if you
click the Source button on the bottom of the design window. The code-
behind file contains whatever Visual Basic language programming your
project needs. You add some VB programming in the next step.

247Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 247

You are simply going to provide some source code in the button’s Click
event that adds together the numbers that the user enters into the two
TextBoxes. Just for fun, you also display the current time. Repeatedly
clicking the button updates the time, illustrating the ASP.NET cycle: The
user’s browser sends a Click message to the server, the page is dynami-
cally refreshed (a whole HTML page is rebuilt) at your server, and then
the page is sent back to the browser where it’s repainted for the user to
see the results.

3. Type this into the Button_Click event:

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim firstnum, secondnum, totalnum As Integer

firstnum = CInt(TextBox1.Text)
secondnum = CInt(TextBox2.Text)

totalnum = firstnum + secondnum

Label1.Text = “The sum is: “ & totalnum & “
” & _
“The current time is: “ & Format(Now, “h:mm”)

End Sub

4. Press F5.

It takes a little while for the communication to be set up between the
“server” and your browser, but pretty soon Internet Explorer appears
with the page loaded into it. (You may see a message box warning you
that debugging isn’t enabled. Click OK to enable it and the message box
closes.)

The VWD makes use of a special built-in Web “server” that behaves like
a real server — communicating between your VWD project and Internet
Explorer. Thanks to the jerks who like to bother the rest of us with their
viruses, special security measures have to be taken all the time. In this
situation, the built-in Web server uses a non-standard “port address.”
Instead of port 80, it uses a random port associated with each particular
VWD project. Also, Microsoft has made this special “server” inaccessible
from the Internet, so it helps prevent one of the virus kiddies from gain-
ing access to your computer.

5. Type 12 in the first TextBox and 23 in the second TextBox; then click
the Button.

You see the response from the server, as shown in Figure 15-1.

248 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 248

Viewing the code
After you Press F5 to run the program in Internet Explorer, take a look at the
changes to your original source code by choosing View➪Source in IE. Here’s
what you’ll see:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head><title>

Untitled Page
</title></head>
<body>

<form name=”form1” method=”post” action=”Default.aspx” id=”form1”>
<div>

<input type=”hidden” name=”__VIEWSTATE” value=
“/wEPDwULLTEwNjExNzk5MjgPZBYCAgMPZBYCAgEPDxYCHgRUZXh0BSxUaGUgc3VtIG
lzOiAzNTxici8+VGhlIGN1cnJlbnQgdGltZSBpczogNDo0MWRkZBxTN/DOPXF4lA8+K
Xg2H3o+Ocym” />

</div>

<div>
The sum is:

35
The current time is: 4:41

<input name=”TextBox1” type=”text” value=”12” id=”TextBox1” />
<input name=”TextBox2” type=”text” value=”23” id=”TextBox2” />
<input type=”submit” name=”Button1” value=”Button” id=”Button1” />

</div>
</form>

</body>
</html>

Figure 15-1:
Communica-
tion between

the server
and client

browser.

249Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 249

You see some surprises; ASP.NET has been a busy little bunny. This source
code is the HTML, which ASP.NET composed in response to you (or the user)
clicking the Button. The values were sent back to the server, the addition was
accomplished on the server, and then an HTML page containing the results of
the addition and the current time was composed and sent back to the user’s
browser. ASP.NET looked at your source code, made some additions and
adjustments, and then created the HTML you see here.

The Value elements in the TextBoxes in browser HTML source code contain
the numbers that you typed in before clicking the Button. These values have
persisted during the round trip from browser to server and back to browser.

None of your VB source code (the code-behind programming in the Click event
of the Button) appears in the browser’s source HTML code. The VB code-behind
sits “behind” the HTML and does any computing that’s required on the server. The
only reference to the VB code in the browser’s HTML page is action=”Default.
aspx”. The VB code runs on the server and is never sent to the user’s browser;
only pure HTML is sent to the user. Well, you can also send DHTML and script-
ing mixed in with the HTML if you wish, but it might well be refused by a firewall
or by the browser’s security system. But the point is that your VB program-
ming is certainly never sent to the user’s browser.

If you do try to send DHTML or executable objects, most firewalls scream
bloody murder and do everything they can to block the transmitted page. As
I explain in Chapter 14, security concerns (concerns that executables may be
viruses) are the primary reason that code execution must take place server-
side rather than in the visitor’s computer.

ASP.NET retained your form’s and controls’ Name properties (such as Label1)
and used those names for the HTML ID attributes as well. Every server con-
trol is given a unique ID (and if you don’t supply one yourself, ASP.NET sup-
plies it). Unique IDs allow you to write programming for every server control
(identifying a control by its ID).

This entire page in the browser is, in an abstract sense, an object, containing
input and output features, behaviors (adding numbers), properties (values),
and events (click). However, unlike an ordinary (encapsulated) control, the
“pure” HTML looks like ordinary, passive, descriptive HTML to a firewall, so it
is permitted to pass over the firewall into a visitor’s browser. In this way,
computation becomes possible on a Web page — as long as the computing is
done on the server and only the displayable results are sent to the browser.

Adding Simple Validation
With ASP.NET, the entire VB Express language is available to you for program-
ming that executes on your server. (You could also use other languages, such as
C#, but why would you?) You can also do all kinds of computing with VB. For

250 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 250

example, you can implement validation safeguards on the server. Validation is
the process of checking data to see if it’s appropriate or not, such as ensuring
that users enter at least five digits for their zip code. Fewer digits would be
invalid data.

Here’s an example showing how to add some validation code to the example
you constructed in the previous section. This validator reacts if the user
enters a larger number than you want in TextBox1 (the new source code you
should type in is in boldface):

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

If CInt(TextBox1.Text) > 999 Then
Label1.Text = “You must provide a number lower than 1000.”
Exit Sub

End If

Dim firstnum, secondnum, totalnum As Integer

firstnum = CInt(TextBox1.Text)
secondnum = CInt(TextBox2.Text)

totalnum = firstnum + secondnum

Label1.Text = “The sum is: “ & totalnum & “
” & _
“The current time is: “ & Format(Now, “h:mm”)

End Sub

Just as in Windows applications, you can refer in your code-behind module to
the various properties of controls on your form. In this example, you check to
see what users have typed into their browsers in the first TextBox by looking
at its Text property. Then, if necessary, you put a message into the Text
property of the label to warn the user. Also, you refuse to add the numbers
together (instead, you leave the procedure via Exit Sub). The user can try
again, and with each Button click, the code checks to see if valid data was
entered according to your rules.

Notice, too, that
 (the HTML tag for a line break) is embedded in the
string for Label1.Text:

Label1.Text = “The sum is: “ & totalnum & “
” & _
“The current time is: “ & Format(Now, “h:mm”)

 is HTML, not VB, but when you’re writing for a Web page, special char-
acters like that are necessary. In a Windows-style VB program, you can use
the carriage-return linefeed constant vbCrLf to force the text display to
move down one line in the label, as in the following code:

Label1.Text = “The sum is: “ & totalnum & vbCrLf & _
“The current time is: “ & Format(Now, “h:mm”)

251Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 251

However, when your text is being displayed in the HTML of a WebForm, you
must use the HTML tag for line break:
. This is just one of those oddi-
ties of programming for the Web.

Managing State with
Server-Side Controls

Now that you’re creating Web sites, you need to understand new, tricky ways
of managing state, or preserving variables’ values. Why all this concern over
what would have simply been global Public variables in earlier versions of
Visual Basic?

The answer is that Web programming is necessarily different from traditional
Windows programming in several important ways. Put simply: When you
write traditional VB Windows applications, you’re working within a limited,
stable, one-on-one environment. There’s just the application’s user communi-
cating with his or her hard drive. That’s a predictable relationship, simplifying
everything from security to communications.

But if you expose your server hard drive to the Internet when you create a
Web page, the relationship becomes unpredictable in a number of ways:

� You’re permitting perhaps thousands of people to access your Web
page at the same time, and that number can change at any time. If
your site is really popular, it may be hosting more than 10,000 simultane-
ous visitors, especially if your name gets in the papers after another inci-
dent like that time in Tijuana back when you were in college.

Managing state enables your source code to better handle interactions
with one person but then suddenly expand to manage 10,000 people. Your
Web application’s source code, database system, server hardware, and
other elements of your Web site need to be flexible. (The term scalability
describes your code’s capability to handle large numbers of visitors.)

� Your programming becomes more open to security risks. Out of 10,000
people, a small minority (at least 7) are either crazy or evil. Suddenly,
what was a private, relatively safe Windows application environment
becomes a public nightmare, with seven nut cases jumping around. With
a Web site, you’ve now got some of the problems facing celebrities:
creepers, stalkers, peepers, trash talkers, and other inconvenient folk.

� The potential for memory problems increases dramatically. If you
managed state for a Web site in the same way you do for Windows pro-
grams, how could your server store 10,000 separate pages simultane-
ously to preserve the variables for each visitor to your site? The answer
is that your server — even a monster server farm — would struggle to
store this much constantly changing data.

252 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 252

Given the back-and-forth, client-server-client, divided nature of ASP.NET
applications, you may well be wondering just what you, the programmer, can
do to manage and preserve variables and to know what is going on at any
given time? Working in partnership with ASP.NET, you must use various
strategies to preserve state (the properties of controls, the values in vari-
ables, and so on). For example, can you find out if this is the first time a visi-
tor is seeing your Web page? Or have they been interacting with it for several
minutes and have made several round trips between their browser and your
server? Perhaps they’ve clicked a button several times. How can you know? It
would be useful to know.

In the following sections, you find out a variety of techniques for managing
state as visitors come and go from your Web site.

Identifying a user’s first visit
You must be able to tell whether a form is about to make its first trip to the
visitor’s browser or whether it has been posted back (meaning that previous
requests have occurred from this particular client — this visitor — at this
particular time). You can use an If...Then construct in your ASP.NET
source code to determine whether this is the first trip.

Why must you know? Let’s say that you need to fill a ListBox with the names
of all the books you sell. It would be inefficient to fill this ListBox over and
over each time the visitor sends another request back to your server to view
the page (by clicking a Submit button or whatever). Just fill it the first time,
and subsequently the server doesn’t waste its time repeating the job.

Here’s how to detect whether this is the first time a visitor has viewed your
Web page:

Private Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

‘Put user code to initialize the page here

If Not Page.IsPostBack Then
‘make a connection to the database and fill a ListBox with book title info.

Response.Write(“First Time”)

Else

Response.Write(“Not the first time...”)
‘make a connection to the database and fill a ListBox with book title info.

End If

End Sub

253Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 253

You don’t need to access your book database every time the user sends a
post back. That’s unnecessary and wastes time. Worse, it also destroys infor-
mation you may need from the user. For example, suppose that the user
clicked one of the items in your ListBox. You need to know (for processing on
the server in your VB code) which item the visitor selected. If you refill the
ListBox during the postback, you destroy the user’s selection. You can no
longer query the SelectedItem.Text property of the ListBox if you refill it.

The WebForm’s Page_Load event is triggered every time the page is loaded into
your server, so you can use the event to react to the first request and then use
the event to react differently to subsequent requests. Query the IsPostBack
property of the Page object to decide how your code should react.

Every time a Web page is first requested or posted back, the server
processes its events. First, the Page_Load event is triggered, causing the
page and any controls’ ViewStates to be automatically restored. Any other
triggered events on the page are processed next (although they are not trig-
gered in any particular order that the server can detect). You can respond to
these events in your code.

After all the controls’ events have triggered, the Page_Unload event triggers.
In that event, you can write code to terminate database connections, discard
objects, and otherwise gracefully close down the page. You can also employ
similar Session_OnStart and Session_OnEnd events.

You locate the Page Load or other events in the code-behind window in the
Visual Web Developer just as you do in ordinary Windows VB Express: Drop
the list boxes at the top of the code window, as shown in Figure 15-2.

Figure 15-2:
Find events

in the two
drop-down
lists at the
top of the

code-
behind

window.

254 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 254

Preserving values within a single page
You also sometimes need to preserve the contents of variables in Web pro-
gramming. In the wonderful world of the Web, objects blink in and out of exis-
tence faster than bubbles at a car wash. You, the programmer, must know
how to make some information durable and persistent in this flickering, tran-
sitory world of Internet communication.

How do you force information to persist between round trips from the user’s
browser and your server?

Recall that given the high traffic possible on the Internet (many people poten-
tially communicating all at once with your server), it is impossible to pre-
serve controls, variables, and other information in the same way that this
data is held in RAM memory when one person is using one machine, as is the
case with traditional Windows applications.

Remember that in ASP.NET, the server composes a new HTML page each time
it replies to the user’s browser, and then it sends that page off to the browser
and throws away its copy of what it just sent off. But perhaps you need data
to persist. For example, what if you want to permit the user to click a button,
and you want to increment a counter each time the button is clicked?

Although ASP.NET doesn’t keep Web pages in memory on the server after it
sends them off, you can tell it to preserve most states on a page between
round trips from user to server. It preserves controls and their properties, for
example, in the ViewState object (and you can also use the ViewState
object to store your data). use the ViewState object — a “bag” that you can
dump information into — and trust that the information will survive the
round trip from the user to the server and back to the user.

The ViewState object is a bit like VB’s traditional Static command, forcing
data persistence within a procedure. The ViewState object:

� Is useful for storing an individual visitor’s information. (To preserve data
needed by all visitors to your site, use the Application object, described
later in this section.)

� Can store more complex data than simple data types can.

� Can also hold hash tables, arraylists, and dataset objects.

Here’s how STETViewState works: Double-click the button in the example
program you’ve been using in this chapter. You now see its Click event.
Replace the current programming in the Click event with this:

255Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 255

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim counter As Integer
counter = CInt(ViewState(“counter”))
counter += 1
ViewState(“counter”) = counter ‘save the value of counter
Response.Write(counter.ToString())

End Sub

Press F5 to run this Web application and then notice that each time you click
the button, the variable counter increments and displays the new count in
the browser. Remember that each click triggers a round trip to the server,
and that the Web page HTML is discarded by the server each time it sends
that page back to the browser. Nonetheless, given that you dumped the
counter’s value into the ViewState “bag,” the value of counter is saved
between those round trips.

Preserving values across pages
You can choose from a couple of good ways to pass data between pages in a
Web site. The first one, which I explain in this section, is relatively straightfor-
ward but not secure, so don’t pass sensitive data using this technique. (You
find out how to pass data securely in the section later in this chapter titled,
“Storing data with the Session property.”)

Follow these steps to slyly add some data to the HTML that describes a
hyperlink and then pass the data using that hyperlink. First, you add a
second Web page, and a hyperlink control to your project:

1. Click the Design tab at the bottom of the WebForm1.aspx design
window.

You see the design mode for this form.

2. Click the boldface Standard entry at the top of the Toolbox.

You see all the primary Web controls.

3. Double-click the HyperLink control icon.

A hyperlink is added to your Default.aspx page.

4. Choose Website➪Add New Item.

You see the Add New Item dialog box.

5. Double-click the WebForm icon in the Add New Item dialog box.

A second Web page (named Default2.aspx) is added to this project.

6. Go back to Default.aspx (click its tab) and, if it’s not selected, click
the hyperlink control on WebForm1 to select it.

256 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 256

7. In the properties window, click the NavigateUrl property of the
HyperLink control to select it.

8. Click the ... (ellipsis) button in the NavigateUrl property.

The Select URL dialog box appears, as shown in Figure 15-3.

9. Double-click your new Web page, Default2.aspx, in the Select URL
dialog box.

Default2 now becomes the target of the Hyperlink control, and the
dialog box closes.

10. Change the HyperLink1 control’s Text property to Go to page 2 in
My Site.

Now you’re ready to take the steps that actually pass data from WebPage1 to
WebPage2. Follow these steps:

1. Click the Source tab on the bottom of the Default.aspx design window.

You see the HTML view.

2. Locate the Hyperlink control’s HTML code and modify its URL prop-
erty by adding ?MyString=3 to the code, like this (shown in boldface):

<asp:HyperLink ID=”HyperLink1” Runat=”server” NavigateUrl=
“~/Default2.aspx?MyString=3”>HyperLink</asp:HyperLink>

3. Click the Default2.aspx tab at the top of the code/design window and
then click the Design tab at the bottom of the code/design window.

The design window displays the Default2 Web page.

4. Double-click the Button control icon in the Toolbox.

A Button is added to Default2.

Figure 15-3:
Use this

dialog box
to direct a

hyperlink on
one Web

page
(WebForm)

to target
another

Web page in
your project.

257Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 257

5. Double-click the Button on Default2.

You are taken to the Code window and the Button’s Click event.

6. Type the following code. It retrieves the value of MyString and makes
it available to WebForm2’s VB code:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim MyString As String

MyString = CStr(Request.QueryString(“MyString”))

Response.Write(“The data was passed and it is: “ & MyString)

End Sub

7. Click the Default.aspx tab to switch to page one. Then press F5 to test
your project.

You see Default1, the startup page, in Internet Explorer.

8. Click the hyperlink.

The browser switches to the Default2 page.

9. Click the Button control on Default2.

You see that the value of the variable MyString, which was 3, has been
passed to Default2 from the Default page.

Using a URL to store data is highly unsecure. Not only is it easy for others to
view the URL, but they can also make changes to it and send it back to your
server with modified, possibly poisoned data. A better way to store data — if
security is an issue — is to use the Session property, as I explain in the fol-
lowing section.

Storing data with the Session property
When you need a secure and elegant way to save information between round
trips to the server, employ the Session property of the Page object. Session
variables use up memory on the server (as opposed to client-side cookies,
which are maintained on the visitors’ individual hard drives), but, well,
memory is cheap these days.

Because the ViewState object described earlier in this chapter works only
within a single Web page, you can’t use that to move data between Web
pages. But the session state (or “session property”) has wide enough scope
to embrace all the Web pages in a Web site. So you can use session state to
pass data between a Web site’s pages.

258 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 258

To see how this works, follow these steps:

1. Start a new ASP.NET project in the Visual Web Developer and then
click the Default.aspx tab in the design window.

WebForm1 is displayed in the design window.

2. Double-click the Button control in the Toolbox twice.

You add two Button controls to WebForm1.

3. Double-click Button1.

You are taken to the Code window and the Button’s Click event.

4. Type the following code that adds two items of data to the Session
property:

Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Session(“Message”) = “This information”
Session(“SecondMessage”) = “comes from the session property “

End Sub

Note that the name within the parentheses is equivalent to a variable
name, and the data following the = sign is equivalent to a variable’s value.

5. Click the Default.aspx tab in the design window.

The page named Default is displayed in the design window.

6. Double-click Button2.

You are taken to the Code window, where you see Button2’s Click event.

7. Type this into Button2’s Click event:

Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim firstinfo As String = Session(“Message”).ToString
Dim secondinfo As String = Session(“SecondMessage”).ToString

Response.Write(firstinfo & “ “ & secondinfo)

End Sub

8. Press F5 to run the project and then click Button1.

The data and its associated “variable names” are stored in the session
property.

9. Click Button2.

The browser displays the information that’s been retrieved from the
Session property.

259Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 259

Session state by default expires (its data evaporates) after not being used for
20 minutes. You can, however, extend the session state’s lifetime by adjusting
its Timeout property. You specify its lifetime in minutes, so to force it to wait
for an hour of inactivity before disappearing, use this code:

Session.Timeout = 60

Exploring the Application object
(an alternative to Session)
The Session property is one of several clever ways that you can store values
in ASP.NET. The Application object is best used to store values that your
entire application needs, such as your company’s current sale items or a
database connection string. In addition, use this technique only for values
that don’t frequently change after your Web project has been instantiated
(brought to life, started running); otherwise, you can slow things down. The
Application object works similarly to the Session property, except you
must lock and unlock Application objects, as shown here:

‘add a variable and provide a value to it:
Application.Lock()
Application.Add(“namehold”, “Rita Jones”)
Application.UnLock()

Why Not Use Cookies?
You’ve heard of cookies, right? They’re little files that Web sites store on your
hard drive — then later, when you revisit that site, information can be retrieved
from the cookie about your preferences, your logon ID, what pages you’ve
visited, and whatever damaging personal quirks were revealed by your Web
surfing habits.

So, as a site programmer, why wouldn’t you use cookies to save data? That
would shift the burden of maintaining state from your server to each user’s
hard drive. Sounds good in theory, doesn’t it? Just save a cookie on their end
with whatever info you want to save. This is a good way to store data perma-
nently about each user — not just during the session.

260 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 260

Say that you want to store information between sessions — so that visitors
can return to your Web site next week or next year and not have to retype
their phone number and address, for example. You could maintain that data
in a database, but client-side cookies are one obviously efficient way to do it.
Here’s an example that stores and then retrieves a cookie on the visitor’s
hard drive:

Private Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

Dim PhoneCookie As New HttpCookie(“VisitorsPhoneNumber”, “434 777-8900”)
PhoneCookie.Expires = Now.AddMonths(4) ‘destroy it 4 months from now
Response.Cookies.Add(PhoneCookie)

‘ get the cookie back from the client:

Dim s As String
Dim CookieName As String = “PhoneCookie”

For Each CookieName In Request.Cookies.AllKeys
‘keys are similar to variable names

Dim cookie As HttpCookie = Request.Cookies(CookieName)
s = cookie.Value & “</br>”
Response.Write(s)

Next

End Sub

Lately, though, using client-side cookies is being discouraged for two reasons:

� First, some users turn off the cookie feature in their computer for secu-
rity or privacy (unspeakable!) reasons.

� Second, some devices, particularly mobile devices, don’t allow cookies
at all.

However, in a stable, predictable environment such as a corporation’s intranet,
cookies remain a useful way to persist data. And, in spite of cookies’ restric-
tions, many Web sites continue to store data in cookies — so it’s up to you.

261Chapter 15: Everything’s Eventual: Web Page Management

22_597051 ch15.qxd 10/20/05 1:52 PM Page 261

262 Part IV: Programming for the Web

22_597051 ch15.qxd 10/20/05 1:52 PM Page 262

Part V
The Part of Tens

23_597051 pt05.qxd 10/20/05 1:52 PM Page 263

In this part . . .

This part is called “The Part of Tens” because each of
its two chapters is divided into ten sections that offer

relatively brief tips, techniques, and resources that a
Visual Basic Express programmer is likely to find useful.
Among the topics covered are these: random numbers,
the Upgrade Wizard, keystroke detection, registry access,
customized controls, online resources, the menu builder,
and other topics. You’ll find many useful ideas here.

23_597051 pt05.qxd 10/20/05 1:52 PM Page 264

Chapter 16

Ten Great Visual Basic Express
Tips and Tricks

In This Chapter
� Using the Conversion Wizard

� Employing this book’s Appendix

� Creating (and destroying) directories

� Communicating with the Clipboard

� Randomizing

� Detecting keystrokes

� Converting stuff to strings

� Condensing code

� Accessing the registry

� Drawing on a control (getting a cool custom look)

Here’s a collection of tips, tricks, and techniques that are too useful to
ignore, but that don’t seem to fit into other sections of this book.

Using the Conversion Wizard
to Master VB Express

If you’re stumped and can’t figure out how to do something in VB Express
that you know perfectly well how to accomplish in earlier versions of Visual
Basic, such as VB version 6, try using the Conversion Wizard, a migration util-
ity built into VB Express:

1. Start VB 6 (you can run it simultaneously with VB Express).

24_597051 ch16.qxd 10/20/05 1:53 PM Page 265

2. Write the problem programming in VB 6 and then save the VB 6 pro-
ject to your hard drive.

Alternatively, you can simply locate an existing .vbp (Visual Basic
Project) project on your hard drive.

3. Open the file you just saved in one of two ways:

• Using Windows Explorer, locate the .vbp file and double-click it.

If the file extension .vbp isn’t already associated with VB Express,
you are asked which program to open the file with. Choose Visual
Basic Express from the dialog box.

• Start VB Express, choose File➪Open➪Convert, and select VB
Project Files (*.VBP, *.VBPRO) in the Files of Type list box in the
Open Project dialog box. Find the file you just saved and open it.

As soon as you open a VB 6 project in VB Express, the Conversion Wizard
kicks into action, as shown in Figure 16-1.

This wizard looks at the earlier, classic, pre-Express Visual Basic program-
ming code and does its best to translate VB 6 into VB Express for you. When
the wizard is finished with its efforts, examine the source code that the
wizard wrote in the code window. Sometimes this is the quickest way to
figure out how to translate classic Visual Basic to VB Express.

Figure 16-1:
The

Conversion
Wizard
at your

service.

266 Part V: The Part of Tens

24_597051 ch16.qxd 10/20/05 1:53 PM Page 266

Moving from Classic VB
or VB6 to VB Express

If you know how to write code in classic Visual Basic, such as VB 6 or earlier,
you can probably find the VB Express version of that code in the very large
Appendix B, which you can find on this book’s Web site. This Appendix is a
Rosetta stone for those making the transition to VB Express from previous
versions of Visual Basic. (See the book’s Introduction for details about this
Web site.)

Managing Directories
Here’s how to create and destroy directories and subdirectories in VB
Express. First, at the top of your VB Express code window, type this:

Imports System.IO

Then type the following code:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Try
Dim s As Integer
s = CreateDirectory()

Catch er As Exception
MsgBox(er.ToString)

End Try

End Sub

Public Function DestroyDirectory()

Dim objDir As New DirectoryInfo(“C:\TestDir”)

Try
objDir.Delete(True)

Catch
Throw New Exception(“Failed to delete”)

End Try

End Function

267Chapter 16: Ten Great Visual Basic Express Tips and Tricks

24_597051 ch16.qxd 10/20/05 1:53 PM Page 267

Public Function CreateDirectory() As String

Dim objDir As New DirectoryInfo(“c:\TestDir”)

Try
objDir.Create()

Catch
Throw New Exception(“Failed to create new directory”)

End Try

End Function

Public Function CreateSubDirectory() As String

Dim objDir As New DirectoryInfo(“c:\TestDir”) ‘parent directory

Try
objDir.CreateSubdirectory(“TestSubDir”) ‘name for new subdiretory

Catch
Throw New Exception(“Failed to create new subdirectory”)

End Try

End Function

Press F5 to run this code and then look in your C\: root directory to see that
TestDir has been created. Try some of the other functions in this example
by substituting their function names for DestroyDirectory in the
Form_Load event.

Talking to the Clipboard
Sometimes it’s useful to use the Windows Clipboard object in your program-
ming. Here’s how to bring text in from the Clipboard in VB Express:

MsgBox(My.Computer.Clipboard.GetText())

To import a picture from the Clipboard, type this:

PictureBox1.Image = My.Computer.Clipboard.GetImage()

To save the contents of a text box to the Clipboard, use this code:

My.Computer.Clipboard.SetText(TextBox1.Text)

268 Part V: The Part of Tens

24_597051 ch16.qxd 10/20/05 1:53 PM Page 268

Randomizing
Generating a series of random numbers has uses in games, encryption, and
other programming tasks. To create random numbers in VB Express, you first
put this line at the very top of your code window:

Imports System.Random

Then you can use the random function to get random numbers. Type this
code in a form’s Load event:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim i As Integer
For i = 1 To 15

Debug.WriteLine(rand(i))
Next

End Sub

Function rand(ByVal MySeed As Integer) As Integer
Dim obj As New system.Random(MySeed)
Return obj.next(1, 12)

End Function

The rand Function returns random numbers between 1 and 12.

When you press F5 to run this example, you see the Debug.WriteLine results
in the Immediate window in the IDE. (Choose View➪Other Windows➪
Immediate to display this window.)

Although the arguments say 1, 12 in the Return obj.next(1, 12) line,
you will never get a 12 in your results. The numbers provided by the
System.Random function in this case range only from 1 to 11. I guess some
programmers at Microsoft think this isn’t a bug. I sure do. But this odd usage
has been in VB now for several years, and nobody seems willing to fix it.

Here’s an example that illustrates how you can use the NOW command to seed
(initialize) your random generator. By using NOW, you’re providing this func-
tion with a random starting point.

Type this code in the Form_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

269Chapter 16: Ten Great Visual Basic Express Tips and Tricks

24_597051 ch16.qxd 10/20/05 1:53 PM Page 269

Dim sro As New coin()
Dim x As Integer
Dim i As Integer

For i = 1 To 100
sro.toss()

Dim n As String

x = sro.coinvalue
If x = 1 Then

n = “tails”
Else

n = “heads”
End If

n = n & “ “

debug.Write(n)
Next i

End Sub

Then, at the bottom of your code window, below the End Class line, type
this new class, which tosses a virtual coin and returns a random value in the
variable:

Class coin

Private m_coinValue As Integer = 0

Private Shared s_rndGenerator As New System.Random(Now.Millisecond)

Public ReadOnly Property coinValue() As Integer
Get

Return m_coinValue
End Get

End Property

Public Sub toss()
m_coinValue = s_rndGenerator.next(1, 3)

End Sub
End Class

Press F5 and see the results in the Immediate window.

270 Part V: The Part of Tens

24_597051 ch16.qxd 10/20/05 1:53 PM Page 270

Detecting Keystrokes
It’s sometimes useful to know what key the user is pressing. You can use the
KeyPress event to find out this information. Put a text box on a form and
then, using the drop-down list boxes at the top of the code window, create a
TextBox1_KeyPress event by clicking TextBox1 in the left list box and
KeyPress in the right list box. Then type this into the KeyPress event:

Private Sub TextBox1_KeyPress(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyPressEventArgs) Handles TextBox1.KeyPress

If e.KeyChar = Microsoft.VisualBasic.ChrW(13) Then
MsgBox(“They pressed the Enter Key”)

End If

End Sub

Now press F5 to test the program. Type some letters into the text box and
then press Enter and notice how the program detects this key press. To see a
complete list of all the character codes, use the Help Index feature and type
in character codes. You replace the (13) in this example with whatever
character’s code you want to detect and react to in your program. For exam-
ple (99) detects the letter c.

CStr versus .ToString
It would seem that the .ToString method (which many objects in VB
Express have) and the CStr function do the same job: converting an object
or numeric data type into a string data type. If you get an error message
telling you that something cannot be converted to a string, you can usually
correct the problem by using .ToString or CStr.

Here’s an example:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

MsgBox(sender)

End Sub

271Chapter 16: Ten Great Visual Basic Express Tips and Tricks

24_597051 ch16.qxd 10/20/05 1:53 PM Page 271

Press F5 to test this code. VB Express displays an error message saying,
among other things, Argument prompt cannot be converted to type
string. (Note that sender is an argument prompt; you can see it in the para-
meter list following Form1_Load.)

To correct this, change the code to

MsgBox(sender.ToString)

CStr, however, will not work in this case. It can be used only with objects
that can be formatted in more than one way. CStr checks to see what locale
(such as U.S. or China) is in effect in the current system and then formats the
string according to the needs of the local language. .ToString executes
faster because it does not bother with locale formatting issues.

Simplifying Source Code Two Ways
Programmers usually welcome ways to reduce the noise (unnecessary typing
and hard-to-read clutter) in source code. VB Express includes two optional
shortcuts that most programmers will quickly grow fond of.

Combining the declaration
and the assignment
Instead of declaring a variable on one line and then assigning a value to it on
a second line, like this:

Dim a As String
a = “Hello”

you can combine declaration and assignment into a single statement, like this:

Dim a As String = “Hello”

Avoiding repetition
In previous versions of VB, you could modify the current contents of a vari-
able in only one way: You had to repeat the variable name. For example, to
increment variable a, you would type

a = a + 1

272 Part V: The Part of Tens

24_597051 ch16.qxd 10/20/05 1:53 PM Page 272

That’s not so bad with a simple, short variable name like a. But in VB
Express, qualification can make object and variable names huge, like this:

Textbox1.Text = Textbox1.Text & objFileRead.ReadLine()

Some programmers (users of the C language and its offspring) have been
using a set of operators that combine two ideas into one. The fundamental
difference is that the C-style code moves the operator (+, -, *, or whatever)
over next to the assignment (=) symbol. For example, you can type

X += 1 ‘the new style

Instead of

X = X + 1

This shortcut comes in handy when you are working with longer variable or
object names:

textbox1.Text += objFileRead.ReadLine()

If you want to try out the C syntax, here are the variations:

Classic Visual Basic VB Express

X = X + Y X +=Y

X = X – 5 X –= 5

X = X * 4 X *= 4

X = X / 7 X /= 7

X = X ^ 2 X ^= 2

String1 = String1 & “ed” String1 &= “ed”

Understanding How the Registry
Works with VB Express

The Windows Registry is downplayed in VB Express programming languages.
Microsoft’s gurus avoid registration and the idea of a common repository of
DLLs by putting any necessary code libraries (assemblies) and other depen-
dencies in the same path (the same folder or a subfolder) as the application
that needs them. The idea is that you can deploy (give someone else your VB
Express project or solution) by merely copying the folder and its subfolders
from where your VB Express application resides to the other machine’s hard

273Chapter 16: Ten Great Visual Basic Express Tips and Tricks

24_597051 ch16.qxd 10/20/05 1:53 PM Page 273

drive. That’s it. No need to register code libraries or worry about which ver-
sion of those libraries is currently used by Windows.

Instead, your VB Express project relies only on the files it finds in its own
folder and subfolders. Oh, well, yes . . . all VB Express projects also need the
massive common language runtime (CLR) library that all Visual Studio lan-
guages rely on. But the CLR is supposed to be embedded as part of future
Windows operating systems; at least that was the promise several years ago.
At this point, though, your project will not work on a computer that doesn’t
have the CLR.

The Windows Registry, currently in disgrace in some ways, is nonetheless
unlikely to go away any time soon because too many applications and operat-
ing system features depend on the information held in the Registry. It holds
everything from user preferences to user identities — and much more. So in
the following sections, I explain how to read from and write to the Registry, in
case you ever need to do so.

Reading from the Registry
A VB Express programmer may well need to know how to read information
from and write information to the Registry. In VB Express, you can query the
Registry by using the RegistryKey object. Here are examples that show you
how to access the Registry with VB Express code:

1. Start a new VB Express Windows-style project.

2. Add a TextBox from the Toolbox to your form.

3. Add a Button to the form as well.

4. Double-click the Button to get to its Click event in the code window.

5. Type this in the Button’s Click event:

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As
System.EventArgs)

Dim objGotValue As Object
Dim objMainKey As RegistryKey = Registry.CurrentUser
Dim objOpenedKey As RegistryKey
Dim strValue As String

‘ put this next on a single long line

274 Part V: The Part of Tens

24_597051 ch16.qxd 10/20/05 1:53 PM Page 274

objOpenedKey = objMainKey.OpenSubKey
(“Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings”)

objGotValue = objOpenedKey.GetValue(“User Agent”)

If (Not objGotValue Is Nothing) Then
strValue = objGotValue.ToString()

Else
strValue = “”

End If

objMainKey.Close()
TextBox1.Text = strValue

End Sub

Note that the complete name (path) of the entire Registry entry is
divided into three different locations in the example code. First, the pri-
mary key, CurrentUser, then the path of subkeys, and finally the actual
specific name: objOpenedKey.GetValue(“User Agent”).

6. You must also type Imports Microsoft.Win32 as the first line at the
top of the code window.

This gets rid of the nasty squiggly lines that show up when you entered
the code in Step 5.

The Microsoft.Win32 namespace contains the Registry-access func-
tions, such as the OpenSubKey method that you need in this example.

7. Press F5 to run this example and then click the button on the form
you created.

If your Registry contains the same value for this key as my Registry
does, you see a result similar to this:

Mozilla/4.2 (compatible; MSIE 5.0; Win32)

Writing to the Registry
The RegistryKey class includes a group of methods you can use to manage
and write to the Registry. These methods include Close, CreateSubKey,
DeleteSubKey, DeleteSubKeyTree, DeleteValue, GetSubKeyNames,
GetType, GetValue, GetValueNames, OpenSubKey, and SetValue.

275Chapter 16: Ten Great Visual Basic Express Tips and Tricks

24_597051 ch16.qxd 10/20/05 1:53 PM Page 275

Drawing Directly on a Control
In VB Express, you can get pretty down and dirty and take charge of precisely
how a control from your Toolbox will look to the user. Here’s how to frame a
Button control with blue — you might like the effect. Put a button on a form
and then type this into its Paint event:

Private Sub Button1_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles Button1.Paint

Dim g As Graphics = e.Graphics

ControlPaint.DrawBorder(g, e.ClipRectangle, Color.Blue, ButtonBorderStyle.Solid)

End Sub

You can experiment with the various parameters of the DrawBorder method
if you wish. You have my permission.

276 Part V: The Part of Tens

24_597051 ch16.qxd 10/20/05 1:53 PM Page 276

Chapter 17

Ten Important VB Resources
In This Chapter
� Finding the latest news about VB Express

� Getting answers to your questions

� Keeping up with updates

� Using Internet resources

� Forecasting the future of database technologies

� Saving favorite settings

� Using the Application Test Center

� Adding menus

� Protecting your source code

� Experimenting with graphics

Here are some places to go when you want additional information or
help with your VB Express projects, plus a few techniques you’ll want

to master: saving settings, adding menus, and drawing graphics.

Reading the Latest Info
Microsoft maintains Web sites devoted to the latest VB and Visual Studio
topics. You may want to visit the Web site at the following address:

http://msdn2.microsoft.com/library/default.aspx

And also look here for additional information:

http://msdn2.microsoft.com/library/2x7h1hfk.aspx

25_597051 ch17.qxd 10/20/05 1:54 PM Page 277

Getting Answers to VB Express Questions
Try newsgroups at the following location to ask questions and get (usually)
good answers. There are experts here, sometimes willing and able to assist
you with a difficult problem:

http://msdn.microsoft.com/newsgroups/

Keeping Visual Basic Healthy
Microsoft’s Visual Basic support sites contain information and, in particular,
occasional updates (service packs) that correct bugs.

Check these sites on a regular basis:

� http://msdn.microsoft.com/vstudio/downloads/updates/
sp/default.aspx: This page offers updates and downloads related to
database programming.

� http://msdn.microsoft.com/vbasic: The main Microsoft VB
home page.

� http://msdn.microsoft.com/vstudio/downloads/default.aspx:
Updates and bug fixes for VB and other Visual Studio components.

Visiting Other Web Sites of Interest
The leading site for information on Visual Studio .NET and related program-
ming is, as you might expect, hosted by Microsoft:

http://msdn.microsoft.com/default.aspx

Probably the best, most active, independent site of interest to VB program-
mers is DevX:

www.devx.com

One of the more active sources of useful VB information is Fawcette Technical
Publications, publisher of several programming magazines. Find Fawcette’s
latest news at

www.fawcette.com

278 Part V: The Part of Tens

25_597051 ch17.qxd 10/20/05 1:54 PM Page 278

Also, be sure to visit the following sites:

� www.pinpub.com/ME2/Default.asp: Visual Basic, SQL Server, .NET
Developer, and publications from Pinnacle

� http://visualbasic.about.com/

Discovering Microsoft’s Plans for the
Future of Database Technology

If you want to find out the latest information about ADO.NET, OLE DB, and
UDA (Microsoft’s initiatives for universal data access), take a look at this site:

http://msdn.microsoft.com/data/default.aspx

Importing Favorite Settings
If you have more than one preferred IDE (VB Express Editor) configuration,
you can easily save them and then import the best one for each situation.
The Text Editor, Environment, and other settings you specify in the Tools➪
Options dialog box can be saved and then imported as needed. Just choose
Tools➪Import and Export Settings to make your choices (which groups of
settings you want exported) and save them to a disk file.

Using the Application Test Center
If you create a Web site and want to give it a real run for its money, you
cannot simply use the built-in, single-machine testing features available when
you work with the version of SQL Server that comes with VB Express. Part IV
of this book points out that you can press F5 and your browser pops up and
“receives” the Web page you’re working on as if that page were sent in over
the Internet. That uses the stripped-down, local SQL server version.

However, if you want a more rigorous test involving the large numbers of
simultaneous connections that will be made to your site if it becomes wildly
popular, you need to check out Microsoft’s Application Test Center at

www.c-sharpcorner.com/Code/2002/Sept/AppTestCenter.asp

279Chapter 17: Ten Important VB Resources

25_597051 ch17.qxd 10/20/05 1:54 PM Page 279

It provides a stress test, as Microsoft puts it, of your system and software. It
not only pretends that you’ve suddenly reached a huge audience that’s trying
to connect to your site, but also tests security aspects as well.

Creating Menus via the MenuStrip
What applications don’t include menus? Not many. Here’s how you create
menus in VB Express — it’s pretty easy.

Typically, the File menu is the first one on the left of the menu bar, and,
equally typically, New, Save, and Open options are located on the File menu.
You can create such a menu, with submenus like Save, quite quickly in the
new VB Express menu-maker utility. Give the new VB MenuStrip control a try:

1. Double-click the MenuStrip icon in the Toolbox.

This control makes creating a menu structure a snap. The tray opens
below your form, displaying a MenuStrip icon. A box at the top left of the
form reads, “Type Here.” If you don’t see that, click the form.

2. Click the Type Here box to select it and then type &File.

As soon as you label a file item, surrounding empty squares open up,
inviting you to label them, too, if you want.

The & causes VB to underline the letter that follows it (F in this case), thus
providing the user with a shortcut key. The user can now open this menu by
pressing Alt+F rather than clicking it.

The menus across the top are called root menus (or sometimes parent
menus). They are always visible. Their only job is to drop down a list of sub-
menu items. In VB Express, these roots already know how to do their jobs, so
you don’t write any code for them.

Each submenu item, on the other hand, does have a Click event for which you
must write the programming to respond if the user chooses that menu item:

1. In the box just below the one you captioned “File,” type &New.

Note again that various adjacent empty boxes open up, in which you can
type additional submenus if you want.

2. Just below &New, type &Open.

3. Then, below &Open, type &Save.

280 Part V: The Part of Tens

25_597051 ch17.qxd 10/20/05 1:54 PM Page 280

What I’m calling submenus and secondary menus are referred to offi-
cially as child menus. Every child menu (or group of child menus) has a
parent. Notice that when clicked, parent menu items do nothing except
display their child. So you don’t write any programming code in parent
menus’ events — you write your code in child menu events.

4. Double-click the New item in your menu system to get to its Click
event in the Code window.

VB provides you with this Click event:

Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MenuItem2.Click

End Sub

Within this Sub named New, you write code to make your application offer the
user a “new” whatever it is: an empty text box, a picture box to draw on, or
whatever your application does. Likewise, within the Open menu event, you
write code to load an existing file.

Protecting Your Intellectual Property
If you’re not an intellectual, and some of my friends are emphatically not, you
can still protect the products of your brain. Writing source code is a form of
writing — so you’re a sort of author when you tell a computer what to do.
Your programming is intellectual property, technically speaking.

When you create a VB Express program, people can find ways to read it, even
if they can’t get ahold of your source code. They can use decompilers and
other tools to examine your work. This not only makes it possible for them to
copy and use your stunning programming concepts, but also to figure out
how to exploit any security weaknesses you might have inadvertently left
hanging open — gaping open might be a more accurate term.

You can make their job tough, if not impossible, though, by obfuscating your
code with the Dotfuscator utility. (You know, obfuscate, from the Latin for
“strong fishy smell keeps them out.”)

Read all about it at

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dotfuscator/dotf3e5x.asp

281Chapter 17: Ten Important VB Resources

25_597051 ch17.qxd 10/20/05 1:54 PM Page 281

Graphics Transformations:
Kitten with a Whip

I’ve never really understood why the graphics libraries are included as
defaults in VB Express projects. They’re just not used very often. How many
applications need to draw lines, circles, and other objects, fill them with tex-
tures and colors, and so on? Not too many. But, after a couple of cold ones,
I’ll accept anything, however bizarre and ill-conceived. By 5:15 p.m., after
happy hour is underway, I’m easy.

If you want to fool around with cartoon-like drawn graphics in VB Express (as
opposed to importing photographic files like .jpg or .bmp files, using the
BackGroundImage property of a form or PictureBox), here’s your chance.

This next code example shows you how to draw in VB Express. From here
you can figure out other techniques. This code draws a kitten with a whip;
well, the whip, anyway.

Double-click the PictureBox icon in the Toolbox to place a PictureBox on a
form. Then double-click the PictureBox itself to get to its Click event. Type or
copy this code into the event:

Private Sub PictureBox1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PictureBox1.Click

Dim i As Integer
Dim g As Graphics = PictureBox1.CreateGraphics

g.Clear(Color.WhiteSmoke)

Dim p1 As New Point(54, 12)
Dim p2 As New Point(212, 122)
Dim p3 As New Point(134, 129)

For i = 100 To 400 Step 100
g.DrawBezier(Pens.BlueViolet, p1, p2, p3, New Point(i, 400))

Next i

End Sub

Press F5 to run the program; then click the PictureBox to see the whip. A
larger PictureBox obviously produces a thicker, and some will say more
threatening, whip.

282 Part V: The Part of Tens

25_597051 ch17.qxd 10/20/05 1:54 PM Page 282

Appendix A

About the CDs

Two CDs come with this book. On one CD, you can find a full version of
Visual Basic 2005 Express Edition. The other CD — a Getting Started CD —

includes extras to help beginners, such as videos and Starter Kits.

System Requirements
Make sure your computer meets the minimum system requirements listed
below. If your computer doesn’t match up to most of these requirements, you
may have problems in using the contents of the CD.

� A PC with a 600 megahertz (MHz) Pentium or faster processor.

� Microsoft Windows 2000, XP or 2003 Server.

� At least 128 MB of total RAM installed on your computer. For best perfor-
mance, we recommend least 256 MB of RAM installed.

� A hard drive with up to 1.3GB of available space.

� A CD-ROM drive for the CD.

If you need more information on the basics, check out these books published
by Wiley Publishing, Inc.: PCs For Dummies, by Dan Gookin; Windows 2000
Professional For Dummies or Windows XP For Dummies, both by Andy Rathbone.

Using the CD with Microsoft Windows
To install from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. Click the Start button and choose Run from the menu.

3. Type D:\ where D is the letter of your CD-ROM drive.

26_597051 appa.qxd 10/20/05 2:17 PM Page 283

4. Double click the file called License.txt.

This file contains the end-user license that you agree to by using the CD.
When you are done reading the license, close the program, most likely
NotePad, that displayed the file.

5. Double click the file called Readme.txt.

This file contains instructions about installing the software from this CD.
It might be helpful to leave this text file open while you are using the CD.

6. Double click the folder for the software you are interested in.

Be sure to read the descriptions of the programs in the next section of
this appendix (much of this information also shows up in the Readme
file). These descriptions will give you more precise information about
the programs’ folder names, and about finding and running the installer
program.

7. Find the file called Setup.exe, or Install.exe, or something similar, and
double click on that file.

The program’s installer will walk you through the process of setting up
your new software.

To run some of the programs, you may need to keep the CD inside your
CD-ROM drive. This is a good thing. Otherwise, the installed program would
have required you to install a very large chunk of the program to your hard
drive space, which would have kept you from installing other software.

What You’ll Find
On the software CD, you’ll find a full version of Visual Basic 2005 Express
Edition that will help you get started with the program.

On the Getting Started CD, check out all the extras, including

� Videos: The Absolute Beginner’s Guide to Visual Basic Express is a video
series designed specifically for those interested in learning the basics of
creating applications using Visual Basic 2005 Express Edition. You’ll find
over eight hours of video-based instruction. Go from creating your first
“Hello World” application to setting up a fully functioning RSS Reader
application.

� Card Game Starter Kit: This Starter Kit is a complete Black Jack card
game. The starter kit contains an extensible framework for building card
games and a Black Jack game application that is built on top of this
framework. The project comes ready to compile and run, but it’s easy to

284 Visual Basic 2005 Express Edition For Dummies

26_597051 appa.qxd 10/20/05 2:17 PM Page 284

customize with only a little extra programming. The section Expanding
the Card Game contains a list of some customizations you might make.
You are also free to use the source code as the basis for your own card
game projects, and share your work with others or upload it to the
Internet.

� Amazon-Enabled Movie Collection Starter Kit (link): The Amazon-
Enabled Movie Collection Starter Kit is a Windows Form application that
uses Amazon.com’s Web services to dynamically search for movie titles.
This Starter Kit demonstrates technologies, such as calling XML Web
services, databinding, application settings, local data storage using SQL
Server 2005 Express Edition, and more.

� Links to additional resources: The Getting Started CD also points you to
additional resources on the Web. Most of these links will be updated in
the future, so you may want to occasionally check them for updated
information and resources. Here’s a brief introduction to each resource:

• Visual Basic Express Edition home page: This page on the
Microsoft Web site provides additional information and links for
Visual Basic Express.

• Visual Basic Developer Center: Here you can find the most recent
information on Visual Basic.

• Visual Basic forums: Read and post on the many ASP.NET forums.

• SQL Server query basics: Discover how to use the powerful T-SQL
language and see how easy and flexible it is for retrieving informa-
tion stored in SQL Server.

Shareware programs are fully functional, free trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.
Freeware programs are free copyrighted games, applications, and utilities.
You can copy them to as many PCs as you like — free — but they have no
technical support. GNU software is governed by its own license, which is
included inside the folder of the GNU software. There are no restrictions on
distribution of this software. See the GNU license for more details. Trial,
demo, or evaluation versions are usually limited either by time or functional-
ity (such as being unable to save projects).

If You’ve Got Problems (Of the CD Kind)
The programs and extras on the CDs were designed to work on most comput-
ers with the minimum system requirements. Alas, your computer may differ,
and some programs may not work properly for some reason.

285Appendix A: About the CDs

26_597051 appa.qxd 10/20/05 2:17 PM Page 285

The two likeliest problems are that you don’t have enough memory (RAM)
for the programs you want to use, or you have other programs running that
are affecting installation or running of a program. If you get error messages
like Not enough memory or Setup cannot continue, try one or more of
these methods and then try using the software again:

� Turn off any antivirus software that you have on your computer.
Installers sometimes mimic virus activity and may make your computer
incorrectly believe that it is being infected by a virus.

� Close all running programs. The more programs you’re running, the
less memory is available to other programs. Installers also typically
update files and programs. So if you keep other programs running,
installation may not work properly.

� Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step. However, if you
have a Windows 95 or later PC, adding more memory can really help the
speed of your computer and allow more programs to run at the same time.

If you have trouble with the CDs, please call the Wiley Product Technical
Support phone number at (800) 762-2974. Outside the United States, call
1(317) 572-3994. You can also contact Wiley Product Technical Support at
http://support.wiley.com. John Wiley & Sons will provide technical sup-
port only for installation and other general quality control items. For techni-
cal support on the applications themselves, consult the program’s vendor or
author.

To place additional orders or to request information about other Wiley prod-
ucts, please call (877) 762-2974.

286 Visual Basic 2005 Express Edition For Dummies

26_597051 appa.qxd 10/20/05 2:17 PM Page 286

• Symbols •
& (ampersand)

concatenating strings, 107–108, 124
Long declaration, BC37

&= (ampersand equal sign), concatenation
and assignment, 116, 273, BC91

<< and >> (bit shifting operators), BC1
* (asterisk)

multiplication operator, 124, 128
wildcard, 123

*= (asterisk equal sign), multiplication and
assignment, 116, 273, BC91

@ (at sign)
Currency data type, BC28
Decimal declaration, BC37

\ (backslash), integer division
operator, 124, 128

{} (braces), enclosing array values, 131
^= (caret equal sign), exponentiation and

assignment, BC91
^ (caret), exponentiation operator, 124, 128
: (colon), separating commands on one

line, 94
$ (dollar sign), String declaration, BC37
... (ellipsis) button, 29–30, 55
= (equal sign)

assignment, 109
equal to operator, 122

! (exclamation point), Single
declaration, BC37

> (greater than operator), 122
>= (greater than or equal to operator), 122
< (less than operator), 122
<= (less than or equal to operator), 122
-= (minus equal sign), subtraction and

assignment, 116, 273, BC91
- (minus sign)

negation operator (-), 124, 128
subtraction operator, 124, 128

<> (not equal to operator), 122
() (parentheses), operator precedence

and, 127
% (percent sign), Integer declaration, BC37
+= (plus equal sign), addition and

assignment, 116–117, 273, BC91
+ (plus sign)

addition operator, 124
concatenating strings, 107–108, 124
next to property name, 55

(pound sign), Double declaration, BC37
? (question mark), wildcard, 123
/ (slash), division operator, 124, 128
/= (slash equal sign), division and

assignment, 273, BC91

• A •
Abs function, BC85
AcceptsReturn property, 56
AcceptsTab property, 56
Accessibility property, 56
Active Server Pages (ASP), 234
ActiveControl object, BC58
Add method, Listbox, BC82
Add New Data Source option,

Data menu, 195, 199
Add New Item option

project context menu, 239
Web site menu, 256

Add Reference option, Project menu,
212, 213, BC74

AddDays method, BC31
AddHours method, BC31
AddItem method, ListBox, BC82
addition operator (+), 124
AddMinutes method, BC31
AddRange method, ArrayList, 138
ADO.NET, 279
AdRotator WebControl, 238–240

Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 287

alignment
of controls, 45–46
for printing, 144
of text in control, 64

All Languages menu option, 37
AllowDrop property, 56
ampersand (&)

concatenating strings, 107–108, 124
Long declaration, BC37

ampersand equal sign (&=), concatenation
and assignment, 116, 273, BC91

Anchor property, 57
<< and >> (bit shifting operators), BC1
And operator, 125–126, BC3–BC4
AndAlso operator, 126, BC3
App object, BC4, BC39
Append method, StringBuilder, BC123
Appendix B (Bonus Chapter),

Web site for, 7
application. See program
Application category, My object, 100
Application object, 260
Application scope, 72
Application Settings feature

alternatives to, 66–68
changing properties using, 70–72
disadvantages of, 65–66

Application Test Center, 279–280
arguments. See parameters
arithmetic operators

definition of, 121
list of, 124–125
precedence of, 128

Array command, BC6
Array object, 133–135, 136–137, BC9–BC10
ArrayList object

definition of, 137–138, BC7–BC9
ranges in, manipulating, 139
resizing, 141

arrays
binding to, 139–140
control arrays, BC22–BC23
declaring, 130–131, BC4, BC36–BC37
declaring and initializing simultaneously,

131, BC36, BC77

definition of, 115, 129
looping through, 140–141
of objects, 131–133, BC5–BC6
one-based, 130–131
random numbers filling, BC109
reversing, 137
searching, 133–135, BC9–BC10
sorting, 133–136, BC9–BC10
zero-based, 130–131, BC4, BC135–BC136

As Any command, BC36, BC95
As command, 112, BC132
ASP (Active Server Pages), 234
ASP.NET. See also Web programming

definition of, 234–235
server-side controls, 246–250, 252–260
WebControls, 235–241

ASP.NET Web Site icon, 228, 246
assembly (library)

adding to project, 213, BC74
browsing, BC76
importing, BC71–BC72
name of, changing, BC98
namespaces in, BC74

asterisk (*)
multiplication operator, 124, 128
wildcard, 123

asterisk equal sign (*=), multiplication and
assignment, 116, 273, BC91

at sign (@)
Currency data type, BC28
Decimal declaration, BC37

Atan function, BC85
Auto Hide option, BC70
Auto List Members feature, BC10
AutoCompleteCustomSource

property, 57
AutoCompleteMode property, 57
AutoCompleteSource property, 57
auto-list members, 36–37, BC10, BC70
automatic windows, disabling, 41–42
AutoNumber field, 188
AutoRedraw property, BC11
AutoRelocate property, 57
AutoSize property, 57
auto-statement completion, 36–37

288 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 288

• B •
BackColor property, 57
BackgroundImage property, 29
backslash (\), integer division operator,

124, 128
Base Class Events, BC60
BinarySearch method, arrays, 133–135
binding

controls to collections, 139–140
controls to DataSet, 197–199
DataGridView control to DataSet, 199–200

BindingNavigator control, 195
bit shifting operators (<<, >>), BC1
bitwise operators, BC3–BC4
black sawtooth underline, 163–164
blue sawtooth underline, 162–163
.bmp files, 31
Bonus Chapter (Appendix B),

Web site for, 7
Boolean data type

definition of, 117, 120, BC29
value of True and False for, BC127

Boolean expressions, 121
Boolean (logical) operators

definition of, 121
list of, 125–126
precedence of, 128
in VB .NET, BC3–BC4

BorderStyle property, 58
braces ({}), enclosing array values, 131
branching

definition of, 91–92
If...Then structure, 92–94
Select Case structure, 94–96

Break All option, Debug menu, 167
break mode, 165–166, 167
breakpoints, 165–166, 167, 168–169
built-in constants, BC17–BC18
built-in functions

in “classic” VB, using in VB Express,
BC2–BC3

in VB Express, 80–81
Burd, Barry (Java 2 For Dummies), 132
Button control, 52, 276

ByRef command, BC11–BC12
Byte data type, 120, BC29
ByVal command, BC11–BC12

• C •
c (currency format), BC63
C language

compared to Visual Basic, 14–15
defaults in, 16

Calendar WebControl, 237–238, 241
Call command, BC96–BC97
Call Stack feature, 171
Capacity property, ArrayList, 141
Caption property, BC13
caret equal sign (^=), exponentiation and

assignment, BC91
caret (^), exponentiation operator, 124, 128
cascading style sheets (CSS), 233
case of text in control, forcing, 58
case sensitivity, BC13–BC14
Catch command, 174–176, 178, BC45–BC48
CausesValidation property, 58
CBool function, 118, BC27
CByte function, 118, BC27
CChar function, 118, BC27
CDate function, 118, BC27
CDbl function, 118, BC27
CDec function, 118, BC27
CDs accompanying book

contents of, 284
installing, 283–284
running programs on, 284
system requirements for, 283
troubleshooting, 285

Change event, BC125
Char data type, 118, 120, BC29
CharacterCasing property, 58
CheckBox control, 52
CInt function, 118, BC27
Circle command, BC14–BC15
circular definition, 29
“classic” Visual Basic. See Visual Basic

(version 6 and earlier)
Clear method, Listbox, BC82

289Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 289

client-side scripting, 231, 235
Clipboard object, 268, BC16
CLng function, 118, BC27
Closing event, BC16–BC17
CObj function, 118, BC27
code. See program
code snippets

customizing, 39–41
reusing, 38–39

code view, 26
Code window, 20–21
“Code Wise” community, 47
code-behind features, 229, 247, 250
collections. See also arrays

binding controls to, 139–140
of controls, BC27
in DataSet, 219
hashtables, 141
multi-property collections, 56

colon (:), separating commands on
one line, 94

color constants, BC17–BC18
columns (fields), 182, 183–185, 186
ComboBox control, 53
commands. See also specific commands

auto-statement completion for, 36–37
executing during debugging, 167
multiple, on one line, 94
viewing, BC2

Common Controls section, Toolbox, 52–53
comparison operators

definition of, 121
list of, 121–123
precedence of, 128

components. See controls
Computer category, My object, 100
concatenation

of strings, 107–108, 116, 124, 273, BC91
of variables, 115–116

.config files, 70
“Connecting to the Community” links, 47
constants, built-in, BC17–BC18
constructors

multiple, BC20–BC21
parametized, BC18–BC21

ContainsFocus property, BC22
context menus, 58, BC22
ContextMenu property, BC22
ContextMenuStrip property, 58
control arrays, BC22–BC23
controls. See also specific controls

accessibility features for, 56
adding to form at run time, BC23–BC25
aligning, 45–46
auto-complete feature for, 57
auto-relocate feature for, 57
background color, 57
binding to collections, 139–140
border style of, 58
children of, 58, BC69
collection of, BC27
common, list of, 52–53
default names for, BC32–BC33
dialogs, viewing, 53
docking of, 58, BC42
drag-and-drop, allowing, 56
drawing on, 276, BC42
enabling or disabling, 59
focus, determining whether a control

has, BC22
focus, order of, 63
focus, setting, BC58
focus, showing indication of, BC113
font for, 59, BC58–BC59
group of, manipulating, BC23–BC27
location of, 60
locking, 60
modified indicator for, 61
name of, 56
padding between control and frame or

border, 61–62
positioning, BC80–BC81
properties for, changing, 54–55
properties for, defaults for, 53–54
properties for, list of, 56–65
read only, 62
resizing, 57, 61, BC104
Return key, handling of, 56
scroll bars for, 62
server-side controls, 246–250, 252–260

290 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 290

shortcuts used in, enabling or
disabling, 62

size of, 63, BC113
sizing, 46, BC80–BC81
space between, 60–61
Tab key, handling of, 56
tags (extra information) for, 63, BC124
text entered in, alignment of, 64
text entered in, as password, 62, 64
text entered in, contents of as lines, 60
text entered in, contents of as string, 64
text entered in, forcing case of, 58
text entered in, maximum length of, 61
text entered in, multiple lines

allowed in, 61
text entered in, wrapping, 65
top level control, determining, BC128
visibility of, 64–65
WebControls, AdRotator WebControl,

238–240
WebControls, Calendar WebControl,

237–238
WebControls, definition of, 235
WebControls, Image WebControl, 236
WebControls, Panel WebControl, 236
WebControls, style objects for, 240–241
WebControls, Table WebControl, 236–237
window handle for, BC67
windowless controls, BC134–BC135

Controls property, 58, BC27
conventions used in this book, 8–9
Convert method, 118, BC27
cookies, 260–261
CShort function, 118, BC27
CSng function, 118, BC27
CSS (cascading style sheets), 233
CSSClass property, 241
CSSStyle property, 241
CStr function, 118, 271–272, BC27–BC28
Ctrl+Arrow shortcut (align controls), 46
CType function, 118, BC27
Currency data type, BC28–BC29, BC32
currency format (c), BC63
Cursor property, 58, BC29
Customize option, Tools menu, 43

• D •
d (decimal format), BC63
data binding

controls to collections, 139–140
controls to DataSet, 197–199
DataGridView control to DataSet, 199–200

Data menu, Add New Data Source
option, 195, 199

data processing, 106, 181–182
Data Source Configuration Wizard,

195–196, 199–200
Data Sources tab, 197, 200
data types

assigned when stored, 110
converting, 118–120, BC27–BC28
implicit conversions of, enabling or

disabling, 110–111, BC90
list of, 117–118, 120, BC29–BC30
user-defined, BC128–BC131

databases. See also tables
attaching to Web program, 241–244
connecting program to, 194–196
definition of, 182–183
fields, 182, 183–185, 186, 191–193
indexes for, 189–190
location of, 204–206
records, 185, 186
sample, downloading, 193–194
saving edited records from

DataSet to, 206–207
user interface for, binding controls to

DataSet, 197–199
user interface for, placement

of fields, 191–192
user interface for, tab order

of fields, 192–193
user interface for, tabular format

(DataGridView control), 199–203
Web site about, 279

DataBindings property, 56
DataGridView control, 53, 199–203
DataRow object

creating, 216
sorting, BC95

291Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 291

DataSet
adding records to, 221–223
binding controls to, 197–199
binding DataGridView control to, 199–200
collections in, 219
creating programmatically, 211–219
creating with Data Source Configuration

Wizard, 196
definition of, 209–210
interaction with database, 210
namespaces required for, 211–213
navigating, 223–224
opening, 220–221
removing records from, 223
saving edited records to

database, 206–207
schema for, 217
updating, 203–204

DataTable object
creating, 216
sorting, BC95–BC96

Date data type, 120, BC30, BC32
Date function, BC30
DATE$ function, BC30
DateTime data type, 120, BC30–BC32
Debug menu

Break All option, 167
Stop Debugging option, 199

debugging. See also errors; testing
break mode, 165–166, 167
breakpoints, 165–166, 167, 168–169
Call Stack feature, 171
executing commands during, 167
Just My Code feature for, 161
logic errors, 164–169
Print method for, 107, BC32
Run to Cursor tool, 170
Set Next Statement tool, 170
Show Next Statement tool, 171
single-stepping through program,

167, 169–171
Step Out tool, 170
Step Over tool, 169
syntax errors, 162–164
watching variables, 164–166, 167–168

Write command for, 167, BC32
WriteLine command for,

167, 215–216, BC32
Debug.Print method, 107, BC32
Debug.Write command, 167, BC32
Debug.WriteLine command,

167, 215–216, BC32
Decimal data type

declaration symbol for, BC37
definition of, 118, 120, BC30
using instead of Currency

data type, BC29
whether to use, 118

decimal format (d), BC63
Default.aspx file, 228
Default.aspx.vb file, 229
DefaultPageSettings property,

PrintDocument control, 151
DefaultPrinter object

methods for, 145
properties for, 145
using, 144–146

DefType commands, BC34
deployment, BC33
design time, 26
design view, 26
deterministic finalization, BC66
DevX Web site, 278
Dialog controls, viewing, 53
Dim command

assigning values in, 131, 272
declaring variables, 112–113, BC34–BC37
multiple variables on one line, BC132
scope of, BC38–BC39
in Visual Basic, BC33–BC34, BC37, BC38

directories
creating and destroying,

267–268, BC40–BC41
current, determining, BC39–BC40

DirectoryListBox control, BC41
disabilities, features for people with, 56
disconnectedness, 210
distributed applications, 210
distributed programming, 210
<div> sections, 234

292 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 292

division by zero, BC41–BC42
division operator (/), 124, 128
DLL (dynamic link library). See

assembly (library)
.dll files, 212
Dock property, 58, BC42
dollar sign ($), String declaration, BC37
Dotfuscator utility, 281
Double data type

declaration symbol for, BC37
definition of, 117, 120, BC30

Do...Until loop, 90
Do...While loop, 89–90
drag and drop, controls allowing, 56
DrawBorder method, 276
DrawEllipse method, BC15
DrawImage method, 158
drawing graphics

on controls, 276, BC42
methods for, BC14–BC15
persistence of, BC11
in PictureBox control, 282
printing, 157–159

DrawLine method, BC15
DrawPolygon method, BC15
DrawRectangle method, BC15
DrawString method, 153
DriveListBox control, BC41
dynamic link library (DLL). See

assembly (library)

• E •
e (exponential format), BC63
Each command, 91
editor. See IDE (integrated design environ-

ment); Visual Web Developer (VWD)
ellipsis (...) button, 29–30, 55
Else command, 92–93
ElseIf command, 92–93
Empty command, BC43
Enabled property, 59
Enter key, control’s handling of, 56
enumerators, 140–141
Environment menu option, 42

Environment object, BC4, BC39–BC40
equal sign (=)

assignment, 109
equal to operator, 122

eraser icon, in list of members, 144
Error List window, displaying, 42
errors. See also debugging

handling, 171–178, BC44–BC50
jagged underline indicating,

82, 102, 162–164
list of, BC46–BC47
logic errors, 164–169
obscure, BC44
possible fixes for, IntelliSense

providing, 36, 48–49
runtime errors, 171–178
syntax errors, 162–164
throwing (generating), 177
trapping, 173–176, 178
usefulness of, 17–18

event handlers, 78, BC67–BC69
events. See also members; procedures

adding code for, 27–28
definition of, 26, 77–78
triggering, BC126

examples
by Microsoft, 34
in this book, source code for, 6

Exception Helper, 48–49
exceptions. See errors
exclamation point (!), Single

declaration, BC37
Exit For command, 88–89
Exit Try command, 176, BC49
exponential format (e), BC63
exponentiation operator (^), 124, 128
expressions

arithmetic operators, 121, 124–125
bitwise operators, BC3–BC4
comparison operators, 121–123
definition of, 120–121
logical operators, 121, 125–126, BC3–BC4
operator precedence for, 127–128

External Help, BC70

293Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 293

• F •
f (fixed point format), BC63
F5 key

compiling project using, BC33
testing program using, 28, 230
windows opened by, changing, 42

F8 key, single-stepping through
program, 167

F10 key, redefining, 42–43
False value. See Boolean data type
Fawcette Technical Publications, 278
fields

in database, 182, 183–185, 186
in user interface, placement of, 191–192
in user interface, tab order of, 192–193

File menu
New Project option, 25
New Web Site option, 241, 246

FileListBox control, BC41
files

creating and destroying, BC41
for graphics, types allowed, 31
initialization, 68, 70
opening, 98–99
for project, adding, 72–73
for project, viewing, 72
reading from, BC50–BC54
writing to, BC54–BC56

FileStream object, BC52
FillRectangle method, BC15
Finally command, 174, 176, BC49–BC50
firewall, 235, 250
fixed point format (f), BC63
fixed-length strings, BC57
floating point data types, 117
focus

determining whether a control has, BC22
order of, 63
setting, BC58
showing indication of, BC113

Focus method, BC58
Focused property, BC22, BC58
Font property, 59, BC58–BC59
fonts used in this book, 8
FontSize property, DefaultPrinter

object, 146

For...Each loop, 91
ForeColor property, 59
forms

background image for, modifying, 29–32
Closing event, BC16–BC17
creating, 25–28
dimensions of, BC110
events for, displaying, BC17, BC60
properties of, modifying, 29–32
references between, BC61–BC63

Forms category, My object, 100–101
form-wide scope, 84
For...Next loop, 85–89
Frame control, BC64
Friend command, 85
FromOADate method, BC30
functions. See also methods; parameters;

procedures; specific functions
built-in functions, 80–81, BC2–BC3
creating, 81
definition of, 80–81
overloading, 102, BC92–BC95
returning values from, BC64–BC65, BC104

• G •
garbage collection (GC), BC65–BC66
GenerateMember property, 59
Get procedure, BC98–BC99
GetPixel method, BC15
GetRange method, ArrayList, 139
GetSetting command, BC101
.gif files, 31
Global command, BC66–BC67
global variables, 213–214, 216, BC66–BC67
GNU software, 284
Gookin, Dan (PCs For Dummies), 283
GoSub structures, BC67
GoTo structures, BC67
graphics

controls in Visual Basic for, BC14–BC15
displaying in Web program, 236
drawing, in PictureBox control, 282
drawing, methods for, BC14–BC15
drawing, on controls, 276, BC42
drawing, persistence of, BC11
drawing, printing, 157–159

294 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 294

file types for, 31
importing, 30–31
printing, 156–159
as resource, 31

Graphics object, BC14–BC15
greater than operator (>), 122
greater than or equal to operator (>=), 122
GridView control, 242
GroupBox control, 52, BC64

• H •
hand icon, in list of members, 144
Handle property, BC67
Handles command, BC26, BC67–BC69
HasChildren property, BC69
hashtables, 141
Height property, 63, BC110
Help

alternatives to, 19
External Help, BC70
problems with, BC69
usefulness of, 18–19, 46–47
using, BC70

hex format (x), BC63
Hide Advanced Members option, BC70
HideSelection property, 59–60
highlighted text

assigned text highlighted incorrectly,
135, BC125

hiding, 59–60
HorizontalAlignment property,

DefaultPrinter object, 144
hourglass icon, 64
HTML (Hypertext Markup Language),

234–235

• I •
icons used in this book, 9
IDE (integrated design environment)

automatic windows, disabling, 41–42
customizing, 41–45, BC70
definition of, 23
displaying all class members, BC70
external Help window, BC70
hiding windows, BC70

keyboard, redefining keys in, 42–43
layout of, modifying, 44–45
layout of, returning to default, 45
toolbars, adding and removing, 44

If...Then structure, 92–94
image control, BC134
Image property, PictureBox control, 156
Image WebControl, 236
images. See graphics
ImeMode property, 60
Immediate window, 165–166, 167, 269
Implements command, BC70–BC71
Imports command, 212–213, BC71–BC76
indexes for database, 189–190
IndexOf method, BC117
infinity, as result of division by

zero, BC41–BC42
information processing, 106
inheritance, BC76–BC77
.INI files, 68
initialization information
.config files containing, 70
.INI files containing, 68
Registry containing, 68–69
storing on user’s hard drive, 66–68

input validation, 58, 250–252, BC131–BC132
InputBox function, 81
Insert method, StringBuilder,

BC123–BC124
Insert Snippet menu option, 38–39
InStr function, BC115–BC116
InStrRev function, BC116
Int16 data type, 120, BC30
Int32 data type, 120, BC30
Int64 data type, 120, BC30
Integer data type

declaration symbol for, BC37
definition of, 117, 120, BC30
length of, changed in VB.NET, BC78

integer division operator (\), 124, 128
integer expressions, 121
integrated design environment. See IDE
intellectual property, protecting, 281
IntelliSense

auto-list members, 36–37, BC10, BC70
auto-statement completion, 36–37
enabling or disabling, 37

295Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 295

IntelliSense (continued)
errors, possible fixes for, 36
features of, 36–37

Internet programming. See Web
programming

Interval property, Timer, BC125
Is command, 95–96
Is operator, 122, 123
IsDBNull function, BC43
IsEmpty command, BC78
IsInfinity method, BC42
IsMissing command, BC43
IsNegativeInfinity method, BC42
IsNull command, BC43, BC79
IsObject command, BC43
IsPositiveInfinity method, BC42
IsReference command, BC43

• J •
jagged underline, 82, 102, 162–164
Japanese text, 60
Java 2 For Dummies (Burd), 132
joining tables, 183, 185–186
.jpeg files, 31
.jpg files, 31
Just My Code feature, 161
justification of text in control, 64

• K •
katakana text, 60
key constants, BC17–BC18
key, primary, 188
keyboard

redefining keys in, 42–43
simulating typing on, SendKeys

command for, BC111
keyboard shortcuts

for aligning and resizing controls, 46
creating, 280
enabling or disabling, 62
redefining, 42–43
showing indication of, BC113

KeyChar object, BC79
KeyPress event, 271
keystrokes, detecting, 271

• L •
Label control, 52
LCase function, BC79–BC80, BC117–BC118
Left function, BC118
Len function, BC119
Length method, BC119
Length property, arrays, 130
less than operator (<), 122
less than or equal to operator (<=), 122
Let procedure, BC98–BC99
library. See assembly (library)
lifetime

of application, 83
of session state, 260
of variables, 113, BC114

Like operator, 122, 123
Line command, BC14–BC15
Lines property, 60
LinkLabel control, BC81–BC82
ListBox control, 53, BC82–BC83
Load event, 26–27
LoadPicture function, BC84
local variables, 82–84
Locals window, 165–166
Location property, 60, BC84
Locked property, 60
logic errors, 164–169
logical operators

definition of, 121
list of, 125–126
precedence of, 128
in VB .NET, BC3–BC4

Long data type
declaration symbol for, BC37
definition of, 117, 120, BC30
length of, changed in VB.NET, BC78

looping
counter for, initializing, BC1
definition of, 85
Do...Until loop, 90
Do...While loop, 89–90
exiting early from, 88–89
For...Each loop, 91
For...Next loop, 85–89
nested loops, 88
through arrays, 140–141

296 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 296

While...End While loop, BC134
While...Wend loop, 90–91,

BC133–BC134
LSet command, BC84
LTrim function, BC79–BC80, BC119

• M •
managing state. See also persistence

across pages, 256–258
with Application object, 260
with cookies, 260–261
identifying first visit, 253–254
within a page, 255–256
reasons for, 252–253
with Session property, 258–260

Mansfield, Richard (Visual Basic .NET All-in-
One Desk Reference For Dummies), 234

mapping scheme, 42–43
Margin property, 60–61
MarginBounds object, 152
math, code snippets for, 39
math functions, BC85
mathematical operators

definition of, 121
list of, 124–125
precedence of, 128

MaximumSize property, 61
MaxLength property, 61
Me object, BC61–BC63
MeasureString method, 152
members. See also events; methods;

properties
auto-list members, 36–37, BC10, BC70
definition of, 36
naming, BC13–BC14

menus. See also specific menus
context menus, 58, BC22
creating, 280–281
in VB Express, availability of, 17, 23

MenuStrip control, 280–281
methods. See also functions; members;

specific methods
auto-list members feature for, 36–37,

BC10, BC70
in My object, categories of, 100–101
overloading, 36, BC92–BC95

Microsoft Developer Network (MSDN), 47
Mid function, BC119–BC120
MinimumSize property, 61
minus equal sign (-=), subtraction and

assignment, 116, 273, BC91
minus sign (-)

negation operator (-), 124, 128
subtraction operator, 124, 128

Missing command, BC43
Mod operator, 124, 128
Modified property, 61
Modifiers property, 61
modules

adding subroutines to, 78
definition of, 79
scope of, BC110

MouseIcon property, 61, BC29. See also
Cursor property

MSDN (Microsoft Developer Network), 47
MsgBox function, 81, 215
MultiLine property, 61
multiplication operator (*), 124, 128
multi-property collections, 56
My Movie Collection Starter Kit, 33
My object

advantages of, 16
definition of, 97
disadvantages of, 103
Help topics for, 99–100
opening file using, 98–99
subcategories of, 100–101
using, 101–103

• N •
n (number format), BC63
name collisions, BC74
Name property, 56, BC86
namespaces

alternatives to importing, 212
browsing, BC76
compatibility namespace for “classic”

Visual Basic, BC2
definition of, BC74
importing, 211–213, BC71–BC76
learning to use, BC75
name collisions and, BC74

297Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 297

negation operator (-), 124, 128
nested loops, 88
.NET Framework

history of, 14
relationship to VB Express, 1, 16

New Item menu option, 73
New method, BC19
New Project option, File menu, 25
New Web Site option, File menu, 241, 246
newsgroups, 47, 278
Next command, 85–89
Northwind sample database, 193–194
not equal to operator (<>), 122
Not operator, 125–126, BC3–BC4
Nothing keyword, BC95–BC96
Now command, 269–270
Null command, BC43
number format (n), BC63
numbers

data types for, 117–118
definition of, 108–109

• O •
OA (Ole Automation), BC32
Object Browser, BC76
Object data type, 120, BC30
object-oriented programming. See OOP
objects. See also specific objects

arrays of, 131–133, BC5–BC6
garbage collection for, BC65–BC66
instantiating, BC86–BC87
instantiating when declaring, BC37–BC38
public variables in, accessibility of, BC100

ObjPtr command, BC87
Ole Automation (OA), BC32
OLE DB, 279
On... commands, BC67
one-based arrays, 130–131
online resources

Appendix B (Bonus Chapter), 7
Application Test Center, 279–280
database technologies, 279
DevX Web site, 278
Dotfuscator utility, 281
examples, 6, 34

Fawcette Technical Publications, 278
newsgroups, 278
Northwind sample database, 194
Pinnacle publications, 279
starter kits, 24, 33, 34
support, 278
for this book, 7–8
VB Express download, 24
VB Express home page, 24
Visual Basic, 277, 279
Visual Studio .NET, 277, 278
Visual Web Developer (VWD), 228
Webcasts, 24
Wiley Product Technical Support, 285

OnPaint method, BC11
OOP (object-oriented programming)

classification scheme, problems with, 103
code reuse, 38
object arrays, 131–133
overloading and, 102
procedure scope and, 85
taxonomies, problems with, 69
variable scope and, 82, 84, 112–113

OpenFileDialog control, BC41
operators

arithmetic operators, 121, 124–125
bitwise operators, BC3–BC4
comparison operators, 121–123
logical operators, 121, 125–126, BC3–BC4
precedence of, 127–128
types of, 121

Option Base option, 130–131, BC135–BC136
Option Explicit option, 113, 162, BC89–BC90
Option Strict option, 110–111, 118, BC90
Or operator, 125–126, BC3–BC4
order of precedence for operators, 127–128
OrElse operator, 126, BC3
Output window, displaying, 42
overloading, 36, 102, BC92–BC95

• P •
p (percent format), BC63
Padding property, 61–62
PadLeft command, BC84
PadRight command, BC84

298 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 298

page size for printing, 150–152
PageSettings object, 155
Panel WebControl, 236
ParamArray argument, BC13
Parameter Information option, BC70
parameters

auto-list members feature for, 36–37,
BC10, BC70

default values for, BC88
for functions, BC11–BC13
missing, BC43
omitting, BC95–BC96
optional, BC43, BC88
for subroutines, 79–80

parametized constructors, BC18–BC21
Parent property, BC96
parentheses (()), operator precedence

and, 127
PasswordChar property, 62
passwords, character shown when

typing, 62, 64
pattern matching, 122, 123
PCs For Dummies (Gookin), 283
percent format (p), BC63
percent sign (%), Integer declaration, BC37
persistence. See also managing state

of data, 68–70, 247
of graphics, BC11

Petroutsos, Evangelos (contributor,
printing code examples), 143

PictureBox control
definition of, 52
drawing graphics in, 282
image control replaced by, BC134
printing graphics from, 156–159
putting graphics in, BC84

Pinnacle publications, 279
plus equal sign (+=), addition and assign-

ment, 116–117, 273, BC91
plus sign (+)

addition operator, 124
concatenating strings, 107–108, 123
next to property name, 55

.png files, 31
Point command, BC14–BC15
pound sign (#), Double declaration, BC37

preserving state. See managing state
primary key, 188
Print command, BC97
Print method
Debug, 107, BC32
DefaultPrinter, 144

PrintDocument control, 147
Printers object, 144
PrinterSettings object, 154
printing
DefaultPrinter object for, 144–146
graphics, 156–159
parsing text for, 147–149
preview of, 155–156
printable page size for, 150–152
text, 147–156
users setting options for, 155
in Visual Basic, BC97

PrintPage event, 149–150, 153–155
PrintPreview control, 155–156
Private command, 85
problems, fixing. See debugging
procedures. See also parameters

definition of, 77
events, adding code for, 27–28
events, definition of, 26, 77–78
events, triggering, BC126
functions, creating, 81
functions, definition of, 80–81
functions, overloading, 102, BC92–BC95
functions, returning values from,

BC64–BC65, BC104
overloading, BC43
scope of, 85
static procedures, BC114
subroutines, adding to modules, 78
subroutines, creating, 79
subroutines, definition of, 78

program. See also project
Application scope for, 72
code snippets of, 38–41
code-behind features, 229, 247, 250
currently running, getting information

about, BC4, BC39–BC40
as intellectual property, 281
lifetime of, 83

299Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 299

program. See also project (continued)
obfuscating, 281
running, Shell command for, BC111
testing, 28, 230–232
Windows, creating, 24–28

project. See also program
compiling, BC33
files for, adding, 72–73
files for, viewing, 72
location of, 73
properties for, changing, BC98

Project menu, Add Reference option,
212, 213, BC74

properties. See also members; specific
properties

auto-list members feature for,
36–37, BC10, BC70

changing, 29, 54–55
default properties, BC33, BC112–BC113
defaults for, 53–54
design time use of, 54
exposing, BC98–BC99
list of, 56–65
multi-property collections, 55
overloading, BC92–BC95
run time use of, 54
scope of, BC99
users changing, 65–68, 70–72

Properties window
accessing, 29, 54
changing properties in, 29, 54–55
definition of, 51

PropertyBinding property, 70
PSet command, BC14–BC15
Public command

for procedures, 85
for variables, 84, BC67

public variables, 84, BC67, BC100
publications

Fawcette Technical Publications, 278
Java 2 For Dummies (Burd), 132
PCs For Dummies (Gookin), 283
Pinnacle publications, 279
Visual Basic .NET All-in-One Desk Refer-

ence For Dummies (Mansfield), 234

Windows 2000 Professional For Dummies
(Rathbone), 283

Windows XP For Dummies
(Rathbone), 283

purple eraser icon, in list of members, 144

• Q •
question mark (?), wildcard, 123
Quick Watch option, Debug menu, 168

• R •
RadioButton control, 52–53
random function, 269
random numbers, generating,

269–270, BC106–BC109
Random object, BC106–BC109
Randomize function, BC106
rapid application development, 2
Rathbone, Andy

Windows 2000 Professional For
Dummies, 283

Windows XP For Dummies, 283
read only controls, 62
ReadOnly property, 62
records, 185, 186
ReDim command

definition of, BC103
restrictions on, BC35
in Visual Basic, BC34, BC103

references, adding to project,
212, 213, BC74

Region property, BC104
Registry

definition of, 68, 273–274
disadvantages of, 69
reading from, 274–275, BC101–BC103
writing to, 275, BC103

RegistryKey object, 274–275,
BC101–BC103

RegQueryValueEx command, BC101
relational (comparison) operators

definition of, 121
list of, 121–123
precedence of, 128

300 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 300

relational database, 182–183. See
also databases

Remove method, ArrayList, 138
RemoveAt method
ArrayList, 138
Listbox, BC83

Replace method, StringBuilder,
BC123–BC124

ResizeRedraw property, BC104
Resources category, My object, 101
resources (information). See also publi-

cations; Web site resources
“Code Wise” community, 47
“Connecting to the Community” links, 47
examples, 6, 34
MSDN (Microsoft Developer Network), 47
newsgroups, 47
videos, 33
Webcasts, 24

resources (project), imported
graphics as, 31

Return command, BC65, BC104
Return key, control’s handling of, 56
reusing code, 38–41
Reverse method, arrays, 137
Right function, BC105, BC118
Right property, BC104, BC105
RightToLeft property, 62
Rnd function, BC106
rows (records), 185, 186
RSet command, BC84
RTrim function, BC79–BC80, BC119
Run to Cursor tool, 170
runat=”server” attribute, 247
runtime errors

definition of, 171–173
handling, 173–178

• S •
SaveFileDialog control, BC41
sawtooth underline, 82, 102, 162–164
scalability, 227
ScaleHeight command, BC110
ScaleWidth command, BC110
schema for DataSet, 217

scope
Application scope, 72
definition of, 81–82
of Dim command, BC38–BC39
form-wide scope, 84
of local variables, 82–84
of modules, BC110
of procedures, 85
of properties, BC99
of public variables, 84
User scope, 72
of variables, options for, 113

scripting, 231, 235
ScrollBar control, 53
Scrollbars property, 62
security

firewalls, 235, 250
risks, 252
viruses, 231

Select Case structure, 94–96
selected text

accessing, BC110–BC111
highlighting or hiding, 59–60

SelectedLength property, BC111
SelectedStart property, BC111
SelectedText property, BC111
SelectionLength property, BC125
SelLength property, BC110
SelStart property, BC110
SendKeys command, BC111
server-side controls

definition of, 246–247
example using, 247–250
managing state using, 252–260

Session property, 258–260
session state. See managing state
Set command, BC86, BC111
Set Next Statement tool, 170
Set procedure, BC98–BC99
SetFocus method, BC58
SetPixel method, BC15
SetValue method, 134
Sgn function, BC85
Shape command, BC14–BC15
shareware programs, 284
Shell command, BC111

301Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 301

Shift+Arrow shortcut (resizing
controls), 46

Short data type, 120
shortcuts

for aligning and resizing controls, 46
creating, 280
enabling or disabling, 62
redefining, 42–43
showing indication of, BC113

ShortcutsEnabled property, 62
Show Next Statement tool, 171
ShowFocusCues property, BC113
ShowKeyboardCues property, BC113
Sign function, BC85
Single data type

declaration symbol for, BC37
definition of, 117, 120, BC30

single-stepping through program,
167, 169–171

Size property, 63, BC113
SizeMode property, PictureBox

control, 156
slash (/), division operator, 124, 128
slash equal sign (/=), division and

assignment, 273, BC91
Snap to Grid feature, 45
snippets, code

customizing, 39–41
reusing, 38–39

solution. See project
Solution Explorer

adding files to, 72–73
adding libraries to, BC74
application settings listed in, 66
data sources listed in, 197
default libraries listed in, 212, BC74
definition of, 51, 72
finding solution in, 73
hiding, 44
project properties, changing, 162, BC70
projects, switching, BC70

Sort method, arrays, 133–136
SortedList, 139
Sqr function, BC85
Sqrt function, BC85
starter kits

definition of, 23–24
usefulness of, 32–33
Web site for, 24, 33, 34

StartsWith method, BC120
startup screen, disadvantages of, 16–17
state, managing. See also persistence

across pages, 256–258
with Application object, 260
with cookies, 260–261
identifying first visit, 253–254
within a page, 255–256
reasons for, 252–253
with Session property, 258–260

statements. See commands
Static command, 83, 126, BC114
static procedures, BC114
Step command, 86–87
Step Out tool, 170
Step Over tool, 169
Stop command, 167
Stop Debugging option, Debug menu, 199
StreamReader object, BC52
stress test, 280
String data type, 120, BC30, BC37
String object, BC124
String$ function, BC124
StringBuilder object, BC121–BC124
strings

building, BC120–BC124
case of, changing, BC79–BC80,

BC117–BC118
comparing using pattern matching,

122, 123
concatenating, 107–108, 116,

124, 273, BC91
definition of, 106–107
fixed-length strings, BC57
formatting, BC63
functions for, in Visual Basic, BC115
length of, BC119
padding, BC84
searching, BC115–BC117
substrings of, BC118–BC120
trimming, BC79–BC80, BC119

StrPtr command, BC87
Structure command, BC129–BC131
structured error handling, BC44
Style Builder, 233
Style menu option, 233
style objects, 240–241
Sub command, 79

302 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 302

subroutines. See also parameters;
procedures

adding to modules, 78
creating, 79
definition of, 78

Substring method, BC118–BC120
subtraction operator (-), 124, 128
support for VB Express, 278
syntax errors, 162–164
system requirements for CDs, 283
System.Environment object, BC39–BC40

• T •
Tab key

control’s handling of, 56
order of focus and, 63

tab order of fields, 192–193
Tabbed Documents option, BC70
TabIndex property, 63, 193
Table WebControl, 236–237
tables

AutoNumber field in, 188
creating for DataSet, 216–217
definition of, 182, 183
joining, 183, 185–186
multiple, reasons to use, 187
primary key for, 188
querying, 183, 186

TabStop property, 63
Tag property, 63, BC124
Terminate event, BC65–BC66
testing. See also debugging

Application Test Center, 279–280
with F5 key, 28, 230
stress test, 280
Web programs, 230–232

text. See also strings
in controls, alignment of, 64
in controls, as password, 62, 64
in controls, contents of as lines, 60
in controls, contents of as string, 64
in controls, forcing case of, 58
in controls, maximum length of, 61
in controls, multiple lines allowed, 61
in controls, wrapping, 65
highlighted text, 59–60, 135, BC125
importing from Clipboard, 268

katakana (Japanese) text, 60
parsing, 147–149
printing, 147–156
saving to Clipboard, 268
selected text, 59–60, BC110–BC111
validating, 58, 250–252, BC131–BC132

Text property, 64, BC13
TextAlign property, 64
TextBox control

bug in, assigned text is highlighted,
135, BC125

changed text in, determining, BC125
definition of, 52
selected text in, 59–60, BC110–BC111

TextChanged event, TextBox, BC125
Then command, 92–94
Throw command, 177
Tick event, Timer, BC126
Time function, BC30
TIME$ function, BC30
TimeOfDay function, BC30
Timer control, BC125–BC126
Timer event, Timer, BC126
TimeSpan object, BC31
To command, 96
Today function, BC30
ToDouble method, BC30
ToLower method, BC79–BC80,

BC117–BC118
toolbars, adding and removing, 44
Toolbox

accessing, 51–52
Common Controls section, 52–53
definition of, 19–20
Web programming controls in, 21

Tools menu, Customize option, 43
ToolTip control, BC127
ToolTipText property, BC127
TopLevelControl property, BC128
ToString method, 118, 271–272,

BC27–BC28
ToUpper method, BC79–BC80,

BC117–BC118
Trim function, BC79–BC80
Trim method, BC79–BC80, BC119
TrimEnd method, BC79–BC80
TrimStart method, BC79–BC80
TrimToSize method, ArrayList, 141

303Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 303

True value. See Boolean data type
Try...End Try structure,

173–176, BC45–BC50
tutorials, video, 24
Type command, BC128
typefaces used in this book, 8

• U •
UBound function, 130
UCase function, BC79–BC80, BC117–BC118
UDA (universal data access), 279
UInteger data type, 120
ULong data type, 120
underline, jagged, 82, 102, 162–164
unique ID, 188
Until command, 90
Upgrade Wizard, 265–266
User category, My object, 101
user interface for database

binding controls to DataSet, 197–199
placement of fields, 191–192
tab order of fields, 192–193
tabular format, 199–203

User scope, 72
user-defined types, BC128–BC131
users

changing properties, 65–68, 70–72
initialization information, storing, 66–68
setting print options, 155

UseSystemPasswordChar property, 64
UseWaitCursor property, 64
UShort data type, 120

• V •
Validate event, 58, BC131
Validated event, BC131–BC132
Validating event, BC131–BC132
validation of data, 58, 250–252,

BC131–BC132
Variable type, BC133
variables. See also data types; strings

adding values to, 116–117
assigning values to, 109, 114, 115–116, 131

concatenating, 115–116
declaring and initializing, 131, 272, BC77
declaring explicitly, 111–113,

BC34–BC36, BC89–BC90
declaring implicitly, 113–114
declaring, multiple on one line, BC132
declaring with symbols, BC37
definition of, 105, 109
displaying values of, for debugging

purposes, 167
global variables, 213–214, 216, BC66–BC67
lifetime of, 113, BC114
local variables, 82–84
naming, 111, BC13–BC14
numbers, 108–109, 117–118
operating on and assigning in one

statement, 116, 272–273, BC91
public variables, BC100
static, BC114
watching, for debugging purposes,

164–166, 167–168
Variant variable type, BC132–BC133
VarPtr command, BC87
VarType function, BC133
VB. See Visual Basic (version 6 and earlier)
VB Express

advantages of, 13
features of, 2–3, 15–19
history of, 15
installing, 24
migrating Visual Basic programs

to, 265–267
.NET Framework incorporated in, 1, 16
settings for, saving, 279
starting, 24–25
support for, 278
trial version of, 284
Web site for, 24

VB Express editor. See IDE (integrated
design environment)

VB for Developers, 15
VB .NET. See also .NET Framework

“classic” built-in functions, using,
BC2–BC3

history of, 14–15
version 2003, changes in, BC1–BC2

304 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 304

.vbp files, 266
video tutorials, 24
viruses, Web programming and, 231
Visible property, 53, 64–65
Visual Basic Express Edition.

See VB Express
Visual Basic for Developers, 15
Visual Basic .NET. See VB .NET
Visual Basic .NET All-in-One Desk Reference

For Dummies (Mansfield), 234
Visual Basic Toolbox

accessing, 51–52
Common Controls section, 52–53
definition of, 19–20
Web programming controls in, 21

Visual Basic (version 6 and earlier)
As Any command, BC36, BC95
App object, BC4, BC39
array declarations, BC4
Array object, BC6
AutoRedraw property, BC11
bitwise operators, BC3
built-in constants, BC17–BC18
built-in functions, using in

VB .NET, BC2–BC3
Call command, BC96
Caption property, BC13
case sensitivity, BC13
Change event, BC125
Clipboard, BC16
commands, VB Express equivalents for, 7
commands, viewing, BC2
compatibility namespace for, BC2
control arrays, BC22–BC23
Currency data type, BC28–BC29
data type conversions, BC27–BC28
data types, BC29–BC30
Date function, BC30
Debug.Print method, BC32
default control names, BC32–BC33
default properties, BC33
defaults for, 16
DefType commands, BC34
Dim command, BC33–BC34, BC37, BC38
DirectoryListBox control, BC41
DriveListBox control, BC41

Empty command, BC43
error handling, BC44–BC45
FileListBox control, BC41
files, reading and writing, BC50–BC51
fixed-length strings, BC57
focus, setting, BC58
form, dimensions of, BC110
form events, BC60
form references, BC61
Frame control, BC64
functions, returning values from,

BC64–BC65, BC104
garbage collection, BC65–BC66
Global command, BC66
GoSub structures, BC67
GoTo structures, BC67
graphics controls, BC14–BC15
Handles command, BC67
history of, 2, 14
Implements command, BC70
IsEmpty command, BC78
IsMissing command, BC43
IsNull command, BC43, BC79
IsObject command, BC43
ListBox control, BC82–BC83
LoadPicture function, BC84
LSet command, BC84
math functions, BC85
migrating programs to

VB Express, 265–267
Missing command, BC43
MouseIcon property, BC29
Null command, BC43
ObjPtr command, BC87
On... commands, BC67
overloading, BC92
passing parameters to functions,

BC11–BC12
printing, BC97
properties, exposing, BC98
public variables in a class, BC100
random numbers, generating, BC106
ReDim command, BC34, BC103
Registry, reading from, BC101
Right function, BC105
RSet command, BC84

305Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 305

Visual Basic (version 6 and earlier)
(continued)

Set command, BC86, BC111–BC112
string functions, BC79–BC80, BC115
String$ function, BC124
strings, building, BC120–BC121
StrPtr command, BC87
Tag property, BC124
Time function, BC30
Timer control, BC125–BC126
ToolTipText property, BC127
Type command, BC128
Validate event, BC131
Variant variable type, BC132–BC133
VarPtr command, BC87
VarType function, BC133
Web site for, 277, 279
windowless controls, BC134
zero-based arrays, BC135–BC136

Visual Studio .NET, Web site for, 277, 278
Visual Web Developer (VWD)

definition of, 21
downloading, 227–228, 246

• W •
WaitCursor, 64
warnings, 163–164
Watch window, 165–166, 167–168
Web programming

client-side scripting, 231, 235
compared to Windows programming, 227
controls for, 235–241
cookies and, 260–261
creating Web program, 228–230,

233, 247–252
database, attaching to Web page, 241–244
firewalls and, 235
managing state, 252–260
persistence and, 247
positioning objects, 233
server-side controls, 246–250, 252–260
testing Web program, 230–232
validation of data, 250–252

viruses affecting, 231
Visual Web Developer (VWD) for,

21, 227–228, 246
Web Site menu option, 228
Web site resources

Appendix B (Bonus Chapter), 7
Application Test Center, 279–280
database technologies, 279
DevX Web site, 278
Dotfuscator utility, 281
examples, 6, 34
Fawcette Technical Publications, 278
newsgroups, 278
Northwind sample database, 194
Pinnacle publications, 279
starter kits, 24, 33, 34
support, 278
for this book, 7–8
VB Express download, 24
VB Express home page, 24
Visual Basic, 277, 279
Visual Studio .NET, 277, 278
Visual Web Developer (VWD), 228
Webcasts, 24
Wiley Product Technical Support, 285

Webcasts, 24
Web.config file, 230
WebControls

AdRotator WebControl, 238–240
Calendar WebControl, 237–238
definition of, 235
Image WebControl, 236
Panel WebControl, 236
style objects for, 240–241
Table WebControl, 236–237

WebServices category, My object, 101
Website menu, Add New Item option, 256
Wend command, 90–91, BC133–BC134
While command, 89–90
While...End While loop, BC134
While...Wend loop, 90–91, BC133–BC134
Width property, 63, BC110
wildcards, 123
Wiley Product Technical Support, 285

306 Visual Basic 2005 Express Edition For Dummies

27_597051 bindex.qxd 10/20/05 1:55 PM Page 306

window handle, for controls, BC67
windowless controls, BC134–BC135
Windows 2000 Professional For Dummies

(Rathbone), 283
Windows Application icon, 25
Windows Clipboard, 268
windows (in program). See forms
windows (in VB Express), automatic, 41–42
Windows programming. See also IDE

(integrated design environment)
compared to Web programming, 227
creating Windows programs, 24–28

Windows Registry
definition of, 68, 273–274
disadvantages of, 69
reading from, 274–275, BC101–BC103
writing to, 275, BC103

Windows XP For Dummies (Rathbone), 283
With...End With structure,

157–158, BC80–BC81
.wmf files, 31
WordWrap property, 65

Write command, 167, BC32
Write method, DefaultPrinter

object, 144
WriteLine command, 167, 215–216, BC32
WriteXML command, 218
WriteXMLSchema command, 217

• X •
x (hex format), BC63
Xor operator, 126, BC3–BC4

• Y •
yellow hand icon, in list of members, 144

• Z •
zero, division by, BC41–BC42
zero-based arrays, 130–131,

BC4, BC135–BC136

307Index

27_597051 bindex.qxd 10/20/05 1:55 PM Page 307

Notes

27_597051 bindex.qxd 10/20/05 1:55 PM Page 308

Notes

27_597051 bindex.qxd 10/20/05 1:55 PM Page 309

Notes

27_597051 bindex.qxd 10/20/05 1:55 PM Page 310

Notes

27_597051 bindex.qxd 10/20/05 1:55 PM Page 310

Notes

27_597051 bindex.qxd 10/20/05 1:55 PM Page 310

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

28_597051 bob.qxd 10/20/05 1:56 PM Page 311

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

28_597051 bob.qxd 10/20/05 1:57 PM Page 312

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
�Alzheimer’s For Dummies

0-7645-3899-3
�Asthma For Dummies

0-7645-4233-8
�Controlling Cholesterol For Dummies

0-7645-5440-9
�Depression For Dummies

0-7645-3900-0
�Dieting For Dummies

0-7645-4149-8
�Fertility For Dummies

0-7645-2549-2

�Fibromyalgia For Dummies
0-7645-5441-7

�Improving Your Memory For Dummies
0-7645-5435-2

�Pregnancy For Dummies †
0-7645-4483-7

�Quitting Smoking For Dummies
0-7645-2629-4

�Relationships For Dummies
0-7645-5384-4

�Thyroid For Dummies
0-7645-5385-2

HEALTH & SELF-HELP

0-7645-6820-5 *† 0-7645-2566-2

Also available:
�Algebra For Dummies

0-7645-5325-9
�British History For Dummies

0-7645-7021-8
�Calculus For Dummies

0-7645-2498-4
�English Grammar For Dummies

0-7645-5322-4
�Forensics For Dummies

0-7645-5580-4
�The GMAT For Dummies

0-7645-5251-1
�Inglés Para Dummies

0-7645-5427-1

�Italian For Dummies
0-7645-5196-5

�Latin For Dummies
0-7645-5431-X

�Lewis & Clark For Dummies
0-7645-2545-X

�Research Papers For Dummies
0-7645-5426-3

�The SAT I For Dummies
0-7645-7193-1

�Science Fair Projects For Dummies
0-7645-5460-3

�U.S. History For Dummies
0-7645-5249-X

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-5194-9 0-7645-4186-2

* Separate Canadian edition also available
† Separate U.K. edition also available

28_597051 bob.qxd 10/20/05 1:57 PM Page 313

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

From hobbies to health,
discover a wide

variety of fun products

DVDs/Videos • Music CDs • Games
Consumer Electronics • Software

Craft Kits • Culinary Kits • and More!

28_597051 bob.qxd 10/20/05 1:57 PM Page 314

