

Real World Instrumentation with Python

Real World Instrumentation
with Python

J. M. Hughes

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Real World Instrumentation with Python
by J. M. Hughes

Copyright © 2011 John M. Hughes. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Julie Steele
Production Editor: Adam Zaremba
Copyeditor: Rachel Head
Proofreader: Sada Preisch

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: J. M. Hughes and Robert Romano

Printing History:
November 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Real World Instrumentation with Python, the image of a hooded crow, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80956-0

[M]

1289573686

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xiii

1. Introduction to Instrumentation . 1
Data Acquisition 2
Control Output 4

Open-Loop Control 5
Closed-Loop Control 6
Sequential Control 9

Applications Overview 9
Electronics Test Instrumentation 9
Laboratory Instrumentation 11
Process Control 13

Summary 13

2. Essential Electronics . 15
Electrical Charge 15
Electric Current 17
Basic Circuit Theory 19
Circuit Schematics 20
DC Circuit Characteristics 24

Ohm’s Law 25
Sinking and Sourcing 27
More About Resistors 27

AC Circuits 30
Sine Waves 30
Capacitors 32
Inductors 36
Other Waveforms: Square, Ramp, Triangle, Pulse 38

Interfaces 39
Discrete Digital I/O 40
Analog I/O 44

v

Counters and Timers 49
PWM 50
Serial I/O 51
Parallel I/O 54

Summary 55
Suggested Reading 56

3. The Python Programming Language . 59
Installing Python 60
The Python Programming Language 61

The Python Command Line 61
Command-Line Options and Environment 63
Objects in Python 64
Data Types in Python 65
Expressions 77
Operators 78
Statements 84
Strings 91
Program Organization 96
Importing Modules 106
Loading and Running a Python Program 108
Basic Input and Output 110
Hints and Tips 115

Python Development Tools 117
Editors and IDEs 117
Debuggers 120

Summary 120
Suggested Reading 120

4. The C Programming Language . 123
Installing C 123
Developing Software in C 124

A Simple C Program 125
Preprocessor Directives 128
Standard Data Types 132
User-Defined Types 133
Operators 134
Expressions 143
Statements 143
Arrays and Pointers 150
Structures 153
Functions 156
The Standard Library 158

vi | Table of Contents

Building C Programs 159
C Language Wrap-Up 163

C Development Tools 163
Summary 164
Suggested Reading 164

5. Python Extensions . 167
Creating Python Extensions in C 168
Python’s C Extension API 169

Extension Source Module Organization 169
Python API Types and Functions 171
The Method Table 172
Method Flags 172
Passing Data 174

Using the Python C Extension API 175
Generic Discrete I/O API 175
Generic Wrapper Example 178
Calling the Extension 181

Python’s ctypes Foreign Function Library 184
Loading External DLLs with ctypes 184
Basic Data Types in ctypes 186
Using ctypes 187

Summary 188
Suggested Reading 188

6. Hardware: Tools and Supplies . 189
The Essentials 189

Hand Tools 190
Digital Multimeter 192
Soldering Tools 195
Nice-to-Have Tools 197

Advanced Tools 198
The Oscilloscope 198
Logic Analyzers 199
Test Equipment Caveats 202

Supplies 203
New Versus Used 204
Summary 204
Suggested Reading 205

7. Physical Interfaces . 207
Connectors 208

DB-Type Connectors 208

Table of Contents | vii

USB Connectors 210
Circular Connectors 212
Terminal Blocks 213
Wiring 215
Connector Failures 218

Serial Interfaces 218
RS-232/EIA-232 219
RS-485/EIA-485 225
USB 231
Windows Virtual Serial Ports 235

GPIB/IEEE-488 237
GPIB/IEEE-488 Signals 238
GPIB Connections 239
GPIB via USB 239

PC Bus Interface Hardware 241
Pros and Cons of Bus-Based Interfaces 242
Data Acquisition Cards 244
GPIB Interface Cards 244

Old Doesn’t Mean Bad 245
Summary 246
Suggested Reading 246

8. Getting Started . 249
Defining the Project 250

Requirements-Driven Design 251
Stating the Need 252
Project Objectives 253

Requirements 253
Why Requirements Matter 255
Well-Formed Requirements 256
The Big Picture 257
Requirement Types 257
Use Cases 258
Traceability 261
Capturing Requirements 264

Designing the Software 265
The Software Design Description 265
Graphics in the SDD 266
Pseudocode 270
Divide and Conquer 270
Handling Errors and Faults 272

Functional Testing 273
Testing to the Requirements 274

viii | Table of Contents

Test Cases 274
Testing Error Handling 277
Regression Testing 278
Tracking Progress 279

Implementation 279
Coding Styles 280
Organizing Your Code 281
Code Reviews 282
Unit Testing 286
Connecting to the Hardware 295
Documenting Your Software 296
Version Control 299
Defect Tracking 299

User Documentation 300
Summary 300
Suggested Reading 301

9. Control System Concepts . 303
Basic Control Systems Theory 304

Linear Control Systems 305
Nonlinear Control Systems 306
Sequential Control Systems 308
Terminology and Symbols 309
Control System Block Diagrams 310
Transfer Functions 312
Time and Frequency 313

Control System Types 318
Open-Loop Control 319
Closed-Loop Control 319
Nonlinear Control: Bang-Bang Controllers 326
Sequential Control Systems 330
Proportional, PI, and PID Controls 332
Hybrid Control Systems 340

Implementing Control Systems in Python 340
Linear Proportional Controller 340
Bang-Bang Controller 341
Simple PID Controller 342

Summary 346
Suggested Reading 347

10. Building and Using Simulators . 349
What Is Simulation? 350

Low Fidelity or High Fidelity 351

Table of Contents | ix

Simulating Errors and Faults 352
Using Python to Create a Simulator 356

Package and Module Organization 356
Data I/O Simulator 357
AC Power Controller Simulator 371

Serial Terminal Emulators 380
Using Terminal Emulator Scripts 381

Displaying Simulation Data 383
gnuplot 383
Using gnuplot 385
Plotting Simulator Data with gnuplot 388

Creating Your Own Simulators 391
Justifying a Simulator 392
The Simulation Scope 392
Time and Effort 393

Summary 393
Suggested Reading 394

11. Instrumentation Data I/O . 395
Data I/O Interface Software 395

Interface Formats and Protocols 396
Python Interface Support Packages 406
Alternatives for Windows 412
Using Bus-Based Hardware I/O Devices with Linux 412

Data I/O: Acquiring and Writing Data 414
Basic Data I/O 414
Blocking Versus Nonblocking Calls 421
Data I/O Methods 423
Handling Data I/O Errors 426
Handling Inconsistent Data 431

Summary 435
Suggested Reading 436

12. Reading and Writing Data Files . 437
ASCII Data Files 438

The Original ASCII Character Set 439
Python’s ASCII Character-Handling Methods 439
Reading and Writing ASCII Flat Files 442
Configuration Data 449
Module AutoConvert.py—Automatic String Conversion 451
Module FileUtils.py—ASCII Data File I/O Utilities 454

Binary Data Files 463
Flat Binary Data Files 464

x | Table of Contents

Handling Binary Data in Python 466
Image Data 476

Summary 485
Suggested Reading 485

13. User Interfaces . 487
Text-Based Interfaces 487

The Console 487
ANSI Display Control Techniques 500
Python and curses 515
To Curse or Not to Curse, Is That the Question? 523

Graphical User Interfaces 524
Some GUI Background and Concepts 524
Using a GUI with Python 526
TkInter 529
wxPython 535

Summary 543
Suggested Reading 544

14. Real World Examples . 547
Serial Interfaces 547

Simple DMM Data Capture 548
Serial Interface Discrete and Analog Data I/O Devices 553
Serial Interfaces and Speed Considerations 559

USB Example: The LabJack U3 560
LabJack Connections 560
Installing a LabJack Device 562
LabJack and Python 562

Summary 570
Suggested Reading 570

A. Free and Open Source Software Resources . 573

B. Instrument Sources . 579

Index . 583

Table of Contents | xi

Preface

This is a book about automated instrumentation, and the automated control systems
used with automated instrumentation. We will look at how to use the Python pro-
gramming language to quickly and easily implement automated instrumentation and
control systems.

Automated instrumentation can be found in a wide variety of settings, ranging from
research laboratories to industrial plants. As soon as people realized that collecting data
over time was a useful endeavor, they also realized that they needed some way to capture
and record the data. Of course, one could sit with a clock and a pad of paper, staring
at thermometers, dials, and gauges, and write down numbers or other information
every few minutes or so, but that gets tedious rather quickly. It’s much easier—and
more reliable—if the process can be automated. Fortunately, technology has advanced
significantly since the days of handwritten logbooks and clockwork-driven strip chart
recorders.

Nowadays, one can purchase inexpensive instrumentation for a wide variety of physical
phenomena and use a computer to capture the data. Once a computer is connected to
instrumentation, the possibilities for data collection, analysis, and control begin to
expand in all directions, with the only real limitations being the ability to implement
the necessary software and the implementer’s creativity.

The primary objective of this book is to show you how to create software that you can
use to get a capable and user-friendly instrumentation or control application up and
running with a minimum of hassle. To this end, we will work through the steps nec-
essary to create applications that incorporate low-level interfaces to the real world via
various types of input/output hardware. We will also examine some proven methods
for creating programs that are robust and reliable. Special attention will be paid to
designing the algorithms necessary to acquire and process the data. Finally, we will see
how to display the results to a user and accept command inputs. It is my desire that
you will find ideas here that you might take away and creatively apply to meet your
own needs in a wide variety of settings.

xiii

Who Is This Book For?
This is a hands-on text intended for people who want or need to implement instru-
mentation systems, also known as data acquisition and control systems. You might be
a researcher, a software developer, a student, a project lead, an engineer, or a hobbyist.
The application might be an automated electronics test system, an analysis process in
a laboratory, or some other type of automated instrumentation.

One of the objectives with the software in this book is that it be as platform-independent
as possible. I am going to assume that you are comfortable with at least the Windows
platform, and Windows XP in particular. With Linux I’ll be referring to the Ubuntu
distribution, but the discussion should apply to any recent Linux distribution and I will
assume that you know how to use either the csh or bash command-line shells.

Since this is a book about interfacing to the real world via physical hardware, some
electronics are involved, but I am not going to assume that you have an extensive back-
ground in electrical engineering. Chapter 2 contains an overview of the basics of elec-
tronics theory as it relates to instrumentation, for those who might benefit from it. It
turns out that it really doesn’t take a deep level of electronics knowledge to successfully
interface a computer with the physical world. But, as with anything else involving
technology, it never hurts to know as much as possible, just on the off chance that
things don’t quite work out as expected the first time.

Regardless of the type of work you do, or where you do it, the main thing I am assuming
that we have in common is a need to capture some data, and perhaps to generate control
signals, and to do so through some kind of computer interface. Most importantly, we
need the instrumentation and control software we create to be accurate, reliable, and
relatively painless to implement.

The Programming Languages
The primary programming language we will use is Python, with a bit of C thrown in.
Throughout the book, I will assume that you have some programming experience and
are familiar with either Python or C (ideally, both). If that is not the case, experience
with Perl or Tcl/Tk or analysis tools such as MatLab or IDL is also a reasonable starting
point.

This book explicitly avoids the more esoteric aspects of the Python language, and the
examples are profusely documented with comments in the code, diagrams, and screen
captures where appropriate. The amount of C involved is minimal; it is used only to
illustrate how to create and use low-level extensions for Python applications. Chap-
ter 3 covers the basics of Python, and Chapter 4 provides a summary of the essentials
of the C language. Some suggestions for further reading are also provided for those who
wish to go deeper into either (or both) of these languages.

xiv | Preface

Why Python?
Python is an interpreted language developed by Guido van Rossum in the late 1980s.
Because of its interpreted nature, there is no compilation step to deal with, and the user
can create and execute programs directly from Python’s command line. The language
itself is also easy to learn and comprehend, so long as one initially avoids the more
advanced features (generators, introspection, list comprehension, and such). Thus,
Python offers the dual benefits of rapid prototyping and ease of comprehension, which
in turn allows for the quick creation of sophisticated tools for a diverse range of
instrumentation applications, without the development burdens and learning curve
normally associated with conventional compiled languages or a vendor-specific pro-
gramming environment.

Python is highly portable, and it is available for almost every modern computing plat-
form. So long as a project sticks to using commonly available interface methods, an
application written initially on a PC running Windows will most likely work without
change on a machine running Linux. The odds are good that the application will also
run on a Sun Solaris machine or an Apple OS X system, although these systems are not
specifically covered in this text. It is only when Python is used in conjunction with
platform-specific extensions or drivers that it loses its portability, so in these cases I
will offer alternatives for both Windows and Linux wherever feasible.

The text includes example code snippets, block diagrams and flow charts to illustrate
key points, and some complete examples utilizing readily available and low-cost inter-
face hardware.

The Systems
The types of instrumentation systems we will examine might be utilized for laboratory
research, or they might be used in industrial settings. An instrumentation system might
be used in an electronics lab, in a wind tunnel, or to collect meteorological data. The
systems may be as simple as a temperature data logger or as complex as a thermal
vacuum chamber control system.

Generally, just about anything that can be interfaced to a PC is a potential candidate
for the techniques described in this book. There are, of course, some devices with closed
proprietary interfaces, but I will not address those, nor will I delve into complex data
collection and process control scenarios such as oil refineries, nuclear power plants, or
robotic spacecraft. Systems in those domains are usually best served with sophisticated
and complex custom control hardware, and equally sophisticated and complex soft-
ware. I will focus instead on those instruments, devices, and systems that can be easily
programmed using any of a number of common interface methods.

Preface | xv

Methodology
Using a step-by-step approach and real-world examples, we will examine the processes
necessary to define the instrumentation application, select the appropriate interfaces
and hardware, and create the low-level extension modules needed (if any) to interface
Python with instrumentation hardware. We will also investigate the use of TkInter,
wxPython, and curses for graphical and text-based user interfaces.

The book includes sections describing what is involved in writing an extension for
Python in order to encapsulate a hardware vendor’s DLL; how to communicate with
USB-based I/O devices; and how to use industry-standard interfaces such as RS-232,
RS-485, and GPIB, along with a survey of what types of hardware one might expect to
find using these interfaces. It also provides references to readily available open source
tools and libraries to reduce, as much as possible, the amount of time spent imple-
menting functionality from scratch.

How This Book Is Organized
This book is organized into 14 chapters and 2 appendixes. The first 12 chapters set the
stage for the implementation examples described in Chapter 14. Chapters 1 through
6 introduce basic concepts that the advanced reader may elect to skip over. Here’s a
closer look at what you’ll find in each chapter:

Chapter 1, Introduction to Instrumentation
Chapter 1 provides an overview of what instrumentation is, how control systems
work, and how these concepts are used in the real world. The examples covered
include automatic outdoor lights, test instrumentation in an electronics engineer-
ing environment, control of a thermal chamber in a laboratory, and batch chemical
processing.

Chapter 2, Essential Electronics
Because this is a hands-on book, we will need to know something about the phys-
ical hardware we want to interface to and have at least a general idea of how it
works. This chapter starts off with an introduction to the basic concepts of elec-
tricity and electronics. It then explores the functional building blocks for data ac-
quisition and control, including discrete digital interfaces, analog interfaces, and
counters and timers. Lastly, it reviews the basic concepts behind serial and parallel
interfaces. If you are already familiar with electric circuit theory and devices, you
could skip this chapter. However, I would recommend that you still at least skim
through the material, on the off chance that there might be something unique here
that you can make use of later.

Chapter 3, The Python Programming Language
Although this book is not a tutorial on Python, this chapter provides an introduc-
tion to the core concepts of Python and summarizes the basics of the language. The
primary emphasis is on the features of Python that will be used frequently in this

xvi | Preface

book. This chapter also provides a brief overview of the tools available to make life
easier for the person doing the programming, and where to go about finding them.

Chapter 4, The C Programming Language
Here, the C programming language is introduced in a high-level overview. The
objective is to provide enough information to enable you to understand the exam-
ples in this book, without delving into the arcane details. Fortunately, C is a rela-
tively simple language, and the information in this chapter should be sufficient to
get you started on creating your own extensions for Python.

Chapter 5, Python Extensions
This chapter describes how a Python extension is created, and what extensions are
typically used for. Examples are provided, both in this chapter and in later chapters,
for you to use as templates for your own efforts.

Chapter 6, Hardware: Tools and Supplies
Although is it possible that one could implement an instrumentation system and
never touch a soldering iron, there is a high probability that some screwdrivers,
wire cutters, and a digital multimeter (DMM) will come in handy. In this chapter
I provide a list of what I would consider to be a basic toolkit for doing instrumen-
tation work. It isn’t much and could all easily fit in a small box on a shelf some-
where. However, there could very well come a time when you really need to see
what’s going on in your system. To this end, I’ve included a discussion of the two
pieces of test equipment that can help you eliminate the guesswork and quickly
get to the root of an interface or control problem: the oscilloscope and the logic
analyzer. This chapter also covers what types of instruments are available and pro-
vides some suggestions for deciding between buying new equipment or picking up
something used.

Chapter 7, Physical Interfaces
Chapter 7 examines the types of interfaces one is most likely to encounter when
attempting to interface Python to data acquisition or control instrumentation.
RS-232 and RS-485, the two most commonly encountered types of serial interfaces,
are examined from an instrument interface perspective. This chapter also covers
the basics of USB and GPIB/IEEE-488 interfaces, along with a discussion of where
one might expect to encounter them. Finally, we turn our attention to I/O hardware
designed to be plugged into the bus of a PC, typically PCI-type circuit boards, and
what one can typically expect in terms of API support from the hardware vendor.

Chapter 8, Getting Started
This chapter contains a description of a proven approach to software development.
It is included here because, when implementing an instrument system in any lan-
guage, it is essential to plan and define what is to be implemented, and then to test
the result against the expectations captured in a set of requirements. By extending
the reach of Python into the real world, we open the door for the uncertainties and
vagueness of the real world to wander back in and impact—sometimes severely—
the instrumentation software.

Preface | xvii

Chapter 9, Control System Concepts
A book on real-world data acquisition and control would be incomplete without
a discussion of control systems and the theory behind them. Chapter 9 expands
on the concepts introduced in Chapter 1 with detailed examinations of common
control system concepts and models, including topics such as feedback, “bang-
bang” controllers, and Proportional-Integral-Derivative (PID) controls. It also pro-
vides an introduction to basic control system analysis and provides some guidelines
for choosing an appropriate model. Lastly, we’ll look at how the mathematics of
control systems translates into actual Python code.

Chapter 10, Building and Using Simulators
Chapter 10 examines simulators and how they can be leveraged to speed up the
development process, provide a safe environment in which to test out ideas, and
provide some invaluable (and otherwise unattainable) insights into the behavior
of not only the instrumentation software, but also the device or system being si-
mulated. Whether because the instrumentation hardware just isn’t available yet or
because the target system is too valuable to risk damaging, a simulation can be a
quick and easy way to get the software running, test it, and have a high degree of
confidence that it will work correctly in the real world.

Chapter 11, Instrumentation Data I/O
In this chapter we’ll look at how to use the interfaces that were introduced in
Chapter 7 to move data between the real world and your applications. We’ll start
with a discussion of interface formats and protocols in order to define the basic
concepts we will need for the upcoming software examples, and then we’ll take a
quick tour of some packages that are available for interface support in Python with
the pySerial, pyParallel, and PyVISA packages. Lastly, I’ll show you some techni-
ques to read and write instrumentation data. We’ll take a look at blocking versus
nonblocking I/O, asynchronous input and output events, and how to manage po-
tential data I/O errors to help make your applications more robust.

Chapter 12, Reading and Writing Data Files
Chapter 12 examines some of the implementation considerations and techniques
for saving instrumentation data in a variety of file formats, from plain ASCII and
CSV files to binary files and databases. We’ll also examine Python’s configuration
data file capabilities, and see how easy it is to store and retrieve configuration
parameters using Python’s library methods.

Chapter 13, User Interfaces
Unless an application is deeply embedded or specifically designed to run as a back-
ground process, it will probably need some type of user interface. Chapter 13 ex-
amines what one can do with just the command line and the curses screen control
package for Python, and how to use an ANSI-capable terminal emulator program
to display data and accept input. The chapter wraps up with a look at the TkInter
GUI toolkit provided with the standard Python distribution, and also provides an
overview of the wxPython GUI package.

xviii | Preface

Chapter 14, Real World Examples
In Chapter 14 we look at several different types of devices used for data acquisition
and control applications. This chapter starts with an example of capturing the
continuous data output from a digital multimeter. We then examine a common
type of data acquisition device that uses a serial interface for command and data
exchanges. Lastly, we wrap up with a detailed look at a data I/O device with a USB
interface and its associated API DLL provided by the vendor. The selected devices
illustrate key concepts shared by almost all instrumentation components, and the
examples draw on earlier chapters to show how the theory is put into practice.

Two appendixes provide additional useful information:

Appendix A, Free and Open Source Software Resources
Appendix B, Instrument Sources

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width
Used for program listings, as well as within paragraphs to refer to Python modules
and to program elements such as variable or function names, data types, state-
ments, and keywords

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values or values determined
by context

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xix

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Real World Instrumentation with Python
by J. M. Hughes. Copyright 2011 John M. Hughes, 978-0-596-80956-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xx | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596809560/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
I would like to acknowledge some of the people who helped make this book possible:
my wife, Carol, and daughter, Seren, for their patience and understanding when I nee-
ded to disappear into my office for extended periods; my friend and co-worker Michael
North-Morris for his perpetual optimism; my acquisition editor, Julie Steele, for her
willingness to take a chance and extend to me the opportunity to write for O’Reilly;
Rachel Head, the diligent copyeditor, for catching my abuses of the English language;
and all of the helpful and friendly staff at O’Reilly.

I would also like to thank the folks at LabJack Corporation for providing me with real
hardware to work with and graciously offering their time and support to help make
sure I got it working correctly. Thanks also to Janet Smith of Agilent for providing me
with high-quality photographs of some of their products.

—John Hughes
Tucson, Arizona, 2010

Preface | xxi

http://www.oreilly.com/catalog/9780596809560/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

CHAPTER 1

Introduction to Instrumentation

However far modern science and technics have fallen
short of their inherent possibilities, they have taught
mankind at least one lesson: Nothing is impossible.

—Lewis Mumford, Technics and Civilization, 1934

Instrumentation is a big word, with a broad and rich set of meanings. Like most words
with multiple interpretations, the exact meaning is largely a function of the context in
which it is used, and who is using it.

Instrumentation can be defined as the application of instruments, in the form of systems
or devices, to accomplish some specific objective in terms of measurement or control,
or both. Some examples of physical measurements employed in instrumentation sys-
tems are listed in Table 1-1.

Table 1-1. Examples of physical measurements

Acceleration Mass

Capacitance Position

Chemical properties Pressure

Conductivity Radiation

Current Resistance

Flow rate Temperature

Frequency Velocity

Inductance Viscosity

Luminosity Voltage

As natural human language is an imprecise communications medium, contextually
sensitive and rife with multiple possible meanings, the preceding definition still covers
a lot of territory. To a process engineer, it might mean pressure sensors, heater elements,
solenoid-controlled valves, and conveyors. A research scientist might think of lasers,

1

optical power sensors, servo-driven X-Y microscope stages, and event counters. An
electrical engineer might define instrumentation as digital voltmeters, oscilloscopes,
frequency counters, spectrum analyzers, and power supplies.

Generally speaking, whatever can be measured can also be controlled, although some
things are more difficult to control than others (at least with our current technology).
When a measured input value is used to generate a control output for a system, often
referred to as the plant, the input may need to be modified, or transformed, in some
way in order to match the operating parameters of the system. This might entail am-
plification, conversion from current to voltage, time delays, filtering, or some other
type of transformation.

In this book, we will examine how to utilize computer-based instrumentation using
readily available low-cost devices, along with the Python programming language (pri-
marily), to perform various tasks in data acquisition and control. Using a high-level
approach, this chapter introduces some of the basic concepts we will be working with
throughout the rest of the book. It also shows some simple instrumentation examples.
If you are not familiar with some of the concepts introduced in this chapter, don’t be
overly concerned about it. We will discuss them in more detail later. The primary ob-
jective here is to lay some groundwork and introduce some basic terminology.

Data Acquisition
From a computer’s viewpoint, all data is composed of digital values, and all digital
values are represented by voltage or current levels in the computer’s internal circuitry.
In the world outside of the computer, physical actions or phenomena that cannot be
represented directly as digital values must be translated into either voltage or current,
and then translated into a digital form. The ability to convert real-world data into a
digital form is a vast improvement over how things were done in the past.

In the days of steam and brass, one might have monitored the pressure within a boiler
or a pipe by means of a mechanical gauge. In order to capture data from the gauge,
someone would have to write down the readings at certain times in a logbook or on a
sheet of paper. Nowadays, we would use a transducer to convert the physical phe-
nomenon of pressure into a voltage level that would then be digitized and acquired by
a computer.

As implied above, some input data will already be in digital form, such as that from
switches or other on/off–type sensors—or it might be a stream of bits from some type
of serial interface (such as RS-232 or USB). In other cases, it will be analog data in the
form of a continuously variable signal (perhaps a voltage or a current) that is sensed
and then converted into a digital format.

2 | Chapter 1: Introduction to Instrumentation

When referring to digital data, we mean binary values encoded in the form of bits that
a computer can work with directly. Binary digital data is said to be discrete, and a single
bit has only two possible values: 1 or 0, on or off, true or false. Digital data is typically
said to have a size, which refers to the number of bits that make up a single unit of data.
Figure 1-1 shows digital data ranging from a single bit to a 16-bit word. The size of the
data, in bits, determines the maximum value it can represent. For example, an 8-bit
byte has 256 possible unique values (if using only positive values).

Figure 1-1. Binary data sizes

For inputs from things such as sensor switches, the size might be just a single bit. In
other cases, such as when measuring analog data like pressure or temperature, the input
might be converted into binary data values of 8, 10, 12, 16, or more bits in size. The
number of available bits determines the range of numeric values that can be represented.
Although it’s not shown in Figure 1-1, binary data can represent negative values as well
as positive values, and there is a standard format for handling floating-point values as
well.

Analog data, on the other hand, is continuously variable and may take on any value
within a range of valid values. For example, consider the set of all possible floating-
point values in the range between 0 and 1. One might find numbers like 0.01, 0.834,
0.59904041123, or 0.00000048, and anything in between. The name analog data is
derived from the fact that the data is an analog of a continuously variable physical
phenomenon.

Data Acquisition | 3

Figure 1-2 shows the various types of inputs that may be found in a computer-based
data acquisition system. Switches are the equivalents of single binary digits (bits). A
serial communications interface may be a single wire carrying a stream of bits end-to-
end, where each set of 8 bits represents a single alphanumeric character, or perhaps a
binary value. Analog input signals, in the form of a voltage or a current, are converted
into digital values using a device called an analog-to-digital converter (ADC). We will
take a close look at these devices—and their counterparts, digital-to-analog converters
(DACs)—in Chapter 2.

Figure 1-2. Digital and analog data inputs

Control Output
Whereas the data acquisition part of an instrumentation system senses the physical
world and provides input data, the control part of an instrumentation system uses that
data to effect changes in the physical world. Control of a physical device involves
transforming some type of command or sensor input into a form suitable to cause a
change in the activity of that device. More specifically, control entails generating digital
or analog signals (or both) that may be used to perform a control action on a device or
system. Linear control systems can be broadly grouped into two primary categories,

4 | Chapter 1: Introduction to Instrumentation

open-loop and closed-loop, depending on whether or not they employ the concept of
feedback.

Another common type of control system, the sequential control, utilizes time as its
primary control input. In a sequential system, events occur at specific times relative to
a primary event, and each event is typically discrete. In other words, a sequential event
is either on or off, active or inactive. A computer is, by its very nature, a form of
sequential controller, and sequential controls can usually be modeled using state ma-
chines. We’ll look at state diagrams in Chapter 8.

We will encounter all three types of control systems in this book. Chapter 9 goes into
the theory behind them in more detail, but for now, a high-level overview will suffice
to set the stage.

Open-Loop Control
In an open-loop scheme, there is no feedback between the output and the control input
of the system. In other words, the system has no way to determine if the control output
actually had the desired effect. However, this doesn’t prevent it from being useful. The
accuracy of an open-loop control system depends on the accuracy of its components
and how well the system models what it is controlling. Figure 1-3 shows a simple block
diagram of an open-loop control system. The block labeled “Controlled Device” might
be an electric motor, a lamp, a fan, or a valve. While it might appear that there isn’t
much going on here, open-loop controls can actually entail a high degree of complexity
and they are fairly common.

Figure 1-3. Open-loop control

Even though an open-loop control system is “blind,” in a sense, it can still incorporate
time into its design. An automatic light switch is one possible real-world example. A
greatly simplified diagram of such a device is shown in Figure 1-4.

Control Output | 5

Figure 1-4. Open-loop control example

These popular devices contain a sensor (typically infrared) that will activate a floodlight
if something appears in the field of view of the sensor. There is no feedback to ensure
that the lights actually come on (at least, not in the typical units for residential use),
nor can the sensor easily distinguish between a burglar and a large housecat.

An automatic light does, however, have a built-in time delay to hold the light on for a
period of time after the sensor’s input threshold has been crossed; otherwise, it would
just turn on and then immediately turn back off again when the sensor input dropped
back below the threshold. This is shown in the diagram in Figure 1-5. If there were no
time delay to hold the lamp on, a large housecat hopping up and down in front of the
sensor would cause the light to flash on and off repeatedly. This would probably annoy
the neighbors (then again, automatic lights with excessive time delays can annoy the
neighbors as well).

Closed-Loop Control
A closed-loop control scheme utilizes data obtained from the device or system under
control, known as feedback, to determine the effect of the control and modify the con-
trol actions in accordance with some internal algorithm (also known as the “control
laws”). Figure 1-6 shows a block diagram of a basic closed-loop control system.

6 | Chapter 1: Introduction to Instrumentation

Figure 1-5. Open-loop control with time delay

Figure 1-6. Closed-loop control

Notice that the control input and the feedback signal are summed with opposing signs
at the circle symbol in Figure 1-6, which is called a “summing junction” or “summing
node.” The output is called the control error. This is because the key to a closed-loop
control is the response of the controlled device to the control signal generated by the
block labeled “Control Signal Processing.” The control error is input to the control
signal processing block, and the system will attempt to drive its control output into the
controlled device to whatever extent is needed or possible in order to make the control
error zero. Those readers who are familiar with operational amplifier (op amp) circuits
will recognize this immediately: it’s the same principle that op amp circuits are based
on.

Control Output | 7

As one might suspect, there is more going on here than the system diagram in Fig-
ure 1-6 shows. Both the control and feedback processing blocks may have some degree
of amplification (gain) incorporated into their design. They may also include attenua-
tion, filters, or limit thresholds. Gain levels are selected based on the application, and
responses may even be nonlinear if necessary.

Here’s a somewhat more interesting closed-loop control example. Let’s assume that
we want to maintain a constant fluid level in a storage tank while its contents are
removed at varying rates. At some times the drain rate may be quite high, while at other
times it may be very low or even zero. Figure 1-7 shows the setup and its associated
control loop.

Figure 1-7. Closed-loop fluid level control

A sensor measures the fluid level in the tank, and if it is below the commanded value
the rate of the input pump is commanded to increase so more fluid will enter the tank.
As the fluid level approaches the target setting, the rate of the pump decreases, and
once the target is reached it stops completely. This arrangement will automatically
compensate for changes in how fast the fluid is drawn off from the tank, so long as the
drain rate does not exceed the ability of the pump to keep up with it.

8 | Chapter 1: Introduction to Instrumentation

Sequential Control
Sequential controls are a very common form of control system and are straightforward
to implement. Automated packaging systems, such as those used to form cereal boxes
or fill plastic bags with animal feed, are typically timed sequential controls that perform
specific actions using electrical or pneumatic actuators. Other sequential controls
might employ some type of sensing to change sequences as necessary, or to sense a fault
condition and halt the system.

Figure 1-8 shows the timing diagram for a sequential AC power controller with five
devices. In this example, a delay after each device is powered on allows it to stabilize
and respond to a query to verify that it is functioning correctly. In a system such as this,
each device would typically have three possible states: On, Off, and Fail. In addition
to commanding the devices on or off in a timed sequence, the controller would also
check each device to verify that it powered up correctly. Should a device fail, the con-
troller would either halt the sequence or begin an automatic shutdown by disabling the
devices already enabled, in reverse order.

Applications Overview
Let’s take a quick tour of some real-world examples of computer-based instrumentation
applications. Please bear in mind that these examples are intended to show what one
can do with automated instrumentation, not as specific, detailed examples of how to
do something. In later chapters we will get into the specifics of interfaces, control pro-
tocols, and software algorithms.

Electronics Test Instrumentation
In an electronics laboratory, or even a well-equipped hobbyist’s workshop, it wouldn’t
be unusual to encounter oscilloscopes, logic analyzers, frequency meters, signal gen-
erators, and other such devices. While these are useful devices in their own right, when
incorporated into an automated system they can become even more useful.

In order to use a piece of test equipment in an automated setup, there must be some
type of control or acquisition interface available. Many modern instruments incorpo-
rate USB, Ethernet, GPIB, RS-232, or a combination of these (these interfaces are ex-
amined in Chapters 7 and 11). In some cases, they are standard features; in other cases,
the functionality must be ordered as a separate option when the instrument is
purchased.

Figure 1-9 shows a simple arrangement for driving a device (the unit under test, or UUT)
with a signal while controlling its DC power source, and acquiring measurement data
in the form of logic analyzer traces and digital multimeter (DMM) readings.

Applications Overview | 9

The simple setup shown in Figure 1-9 has one instrument connected as a primary
stimulus input to the UUT: namely, the signal generator. The signal it generates has a
programmable shape (waveform) and rate (frequency). The signal level (amplitude) can
also be controlled by the PC. There are two instruments connected to outputs from the
UUT to capture digital logic signals (the logic analyzer) and one or more voltages (the
DMM). A programmable power supply rounds out the instruments by providing a
computer-controlled source of power to the UUT.

In this example, the various instruments are connected to the PC using a General Pur-
pose Interface Bus (GPIB, also referred to as IEEE-488). There are various GPIB inter-
face components available, ranging from plug-in PCI cards to external USB-to-GPIB
adapters. Later in this book, we’ll examine some of these and look at various ways to
write software for them in order to control instruments and collect data.

Figure 1-8. Sequential power control

10 | Chapter 1: Introduction to Instrumentation

But what does it do? What Figure 1-9 shows could well be a performance characteri-
zation setup. If the UUT generates a pattern of digital signals in response to an input
from the signal generator, this test arrangement will capture that behavior. It will also
capture how the UUT’s behavior might change as the output from the programmable
power supply is changed, or how some internal voltage might change as the frequency
of the input from the signal generator changes. All of this data can be displayed on the
PC’s monitor and captured to disk for storage and possible analysis at a later time.

Figure 1-9. Test instrumentation example

Laboratory Instrumentation
A research laboratory might contain pH meters, temperature sensors, precision ovens,
tunable lasers, and vacuum pumps (for starters). Figure 1-10 shows an example of an
instrumentation system for controlling an environmental chamber.

For our purposes, it’s not really important what the chamber is used for (it could be
used for microbe cultures, or perhaps for epoxy curing). What is important are the
instruments connected to it and how they, in turn, are interfaced to the computer.
Whereas in the previous example the instrument interface was implemented using
GPIB, here we have plain old vanilla serial connections in the form of RS-232 interfaces.

Applications Overview | 11

The data acquisition instrument is responsible for sensing and converting analog signals
such as temperature, and perhaps humidity. It might also monitor the electrical status
of any heaters or coolers attached to the chamber. The power controller instrument is
responsible for any heaters, coolers, cryogenic valves, or other controlled functions in
the chamber.

Figure 1-10. Laboratory instrumentation example

The primary objective of a setup such as this would probably be to maintain a specific
temperature over time within some predefined range. It might also incorporate tem-
perature ramp-up and ramp-down characteristics, depending on what exactly it is being
used for. Generally, nothing in a system like this happens on a short time scale; signif-
icant changes may take anywhere from minutes to hours.

12 | Chapter 1: Introduction to Instrumentation

If implemented as a bang-bang controller, a type of on-off non-linear controller that
we will look at in detail later on, there won’t be any need to vary the amount of power
applied to the heaters or the cooling system. It operates much like the thermostat in a
house. The instrumentation can utilize the rather slow RS-232 interfaces because there
is no need to run the controller with a small time constant (i.e, a fast acquisition rate).

Process Control
The diagram in Figure 1-11 is a representation of a simple automated process control
system. This system might be intended for producing artificial maple syrup, or it could
be some other kind of controlled chemical reaction to produce a specific output prod-
uct. Note that the diagram is somewhat nonstandard, mainly because its intent is to
illustrate without getting wrapped up in the details of standardized process control
symbology.

In Figure 1-11, we see yet another type of interface—the USB interface module. These
are common and relatively inexpensive. You can even buy one as a kit if you feel inclined
to build it yourself. Many provide a set of discrete inputs and outputs, some analog
inputs with 10- or 12-bit conversion, and perhaps even some analog outputs or a pulse-
width modulation (PWM) channel or two.

There are four valves in the diagram shown in Figure 1-11, labeled V1 through V4, each
of which is connected to one of the discrete outputs from the USB interface module. A
heater is also connected to a discrete output. Note that the diagram does not show any
circuitry that might be necessary to convert the 5-volt discrete signal from the USB
controller into something with enough current and/or voltage to drive the valves or the
heater. We’ll examine how to drive external devices that utilize high currents or high
voltages (or both) in Chapter 2. Three analog inputs are used to acquire liquid level,
temperature, and pressure data from sensors.

As with the previous example, this probably would not be a high-speed system. It would
most likely perform just fine if the sensors were read and the controls (valves and heater)
updated every 1 to 5 seconds.

Summary
The domain of instrumentation applications is both broad and deep, and there is no
way that a single chapter like this could possibly capture more than just a glimpse of
what it is and what is possible. Some of the terms and concepts may have seemed new
and strange, but they will be covered again in later chapters. The main goal here was
to give you some exposure to the basic concepts. We’ll fill in the details as we go along.

Summary | 13

Figure 1-11. Simple chemical processing system

14 | Chapter 1: Introduction to Instrumentation

CHAPTER 2

Essential Electronics

Electricity is actually made up of extremely tiny
particles called electrons that you cannot see with the

naked eye unless you have been drinking.

—Dave Barry, American humorist

Although this is a book primarily about instrumentation software, we must also con-
sider what the software is interacting with in the physical world—in other words, the
hardware aspects of instrumentation. This chapter is intended to provide a general
high-level overview of electricity and basic electronics from an instrumentation per-
spective, without delving too deeply into the theory and physics behind it all.

Electronics is a deep and vast field of study. Out of a desire to avoid turning this book
into a reference work on the subject, some topics are lightly glossed over here, or not
even covered at all. If you’re already familiar with electronics at more than just an Ohm’s
law level, feel free to skip over this chapter and forge ahead, but if you’re not quite
certain what Ohm’s law is, or about the difference between a current source and a
current sink, what the term “waveform” means, or how digital and analog input and
output differ from one another, this chapter is for you.

We’ll start off with a general description of electric charge and current, and then present
some of the symbols used in schematic diagrams. Next, we’ll take a look at very basic
DC and AC circuits, followed by a discussion of the types of input and output found
in instrumentation systems from an electrical viewpoint. In later chapters, new con-
cepts will be introduced and explained as necessary. We’ll conclude this chapter with
a list of references for those who would like to learn more about electronics.

Electrical Charge
For most people, the term “electricity” typically refers to the stuff that one finds in the
wires strung along poles beside the street, in a wall outlet, inside a computer, or at the
terminals of a battery. But what is it, exactly?

15

All matter is composed of atoms. Each atom has a nucleus at its core with a net positive
charge, and one or more electrons are bound to it, each of which has a negative charge
(although one might hear that the electrons “orbit” the nucleus, this is not entirely
accurate in the classical sense of an orbit, like, say that of the Earth around the Sun; I
would refer you to a modern chemistry or physics text for a better definition than I’m
prepared to deliver here). The nucleus of an atom may have one or more protons, each
with a positive charge. Most atoms also have a collection of neutrons, which have mass
but no charge (one might think of them as ballast for the atom’s nucleus). A typical
atom on a typical day in a typical chunk of matter will have a net charge of zero, because
there are as many electrons, each with a unit charge of −1, as there are protons in the
nucleus, each of which carries a unit charge of +1. Figure 2-1 shows schematic repre-
sentations of a hydrogen atom and a copper atom.

Figure 2-1. Atom organization

Some atoms have electrons that are tightly bound, whereas others can lose or gain
electrons rather easily. Here’s a simplistic description as to why that is.

In atoms, the electrons are arranged into what are called orbital shells. The outermost
shell is called the valence shell. Elements whose atoms have only one or two electrons
in the valence shell, and in which the shell is considered to be “incomplete,” tend to
release and gain electrons easily. Notice that the copper atom in Figure 2-1 has 29
electrons, one of which is shown outside of the main group of 28. This is copper’s

16 | Chapter 2: Essential Electronics

valence electron. Because this electron isn’t very tightly bound, copper doesn’t put up
too much of a fuss about passing it around. In other words, copper is a good conductor.
An element such as sulfur, on the other hand, does not willingly give up any electrons.
Sulfur is rated as one of the least conductive elements, so it’s a good insulator. Silver
tops the list as the most conductive element, which explains why it’s considered useful
in electronics.

This should be a sufficient model for our purposes, so we won’t pry any further into
the inner secrets of atomic structure. What we’re really interested in here is what hap-
pens when atoms do pass electrons around, and why they would do that to begin with.

Electric Current
There are two fundamental phenomena involved in electricity: electric charge and elec-
tric current. Electric charge is a basic characteristic of matter and is the result of some-
thing having too many electrons (negative charge) or too few electrons (positive charge),
with regard to what it would otherwise need to be electrically neutral.

A basic characteristic of electric charges is that charges of the same kind repel one
another, and opposite charges attract. This is why electrons and protons are bound
together in an atom, although they can’t directly combine with each other because of
some other fundamental characteristics of atomic particles. The important thing to
remember is that a negative charge will repel electrons, and a positive charge will attract
them.

Electric charge, in and of itself, is interesting but not particularly useful from an elec-
tronics perspective. For our purposes, it’s only when charges are moving that really
interesting things begin to happen. Electric current, or current flow, is the flow of elec-
trons through a circuit of some kind. It is also what happens when the static charge
you build up walking across a carpet on a cold, dry day is transferred to a doorknob:
in effect, the current flows from a high potential (you) to a lower potential (the door-
knob), much like water flows down a waterfall. The otherwise uninteresting static
charge suddenly becomes very interesting (at least, it gets your attention).

Current flow arises when the atoms that make up the conductors and components of
electrical circuits transfer electrons from one to another. Electrons move toward things
that are positive, so if one has a small lightbulb attached to a battery with some wires
(sometimes known as a flashlight), the electrons move out of the negative terminal of
the battery, through the lightbulb, and return back into the positive terminal. Along
the way, they cause the filament in the lamp to get white-hot and glow. One way to
visualize the current flow is shown in Figure 2-2, where we see a simplified diagram of
some copper atoms in a wire. When an electron is introduced into one end of the wire,
it causes the first atom to become negatively charged. It now has too many electrons.
Assuming that we have a continuous source of electrons with a net negative charge, the
new electron cannot exit the way it came in, so it moves to the next available neutral

Electric Current | 17

atom. This atom is now negative and has a surplus electron. In order to become neutral
again (the preferred state of an atom) it passes its extra electron to the next (neutral)
atom, and so on, until an electron appears at the other end of the wire.

Another way to think about current is shown in Figure 2-3. In this case, we have a tube
(a conductor) filled end-to-end with marbles (electrons).

When we push a marble into one end of the tube, a marble falls out the opposite end.
The net number of marbles in the tube remains the same. Note that the electrons put
into one end of a conductor are not necessarily the ones that come out the other end,
as one can see from Figures 2-2 and 2-3.

Figure 2-2. Electron movement in copper wire

Figure 2-3. Electron movement analogy

18 | Chapter 2: Essential Electronics

Basic Circuit Theory
Electricity flows when there is a closed circuit that allows for the electrons to move
from a high potential to a lower potential. Stated another way, in order to have current
flow we need a source of electrons, and there must be a return point for the electrons.
Electric current (a physical phenomenon) is characterized by four fundamental quan-
tities: voltage, current, resistance, and power. We’ll use the simple circuit shown in
Figure 2-4 as our baseline for the following discussion.

Figure 2-4. Simple electrical circuit

Current that flows in only one direction, as in Figure 2-4, is called direct current (DC).
This is what is produced by a common battery, and by the DC power supply in a typical
computer system. Current that changes direction repeatedly is called alternating cur-
rent (AC). This is what comes out of a household wall socket (in the US, for example).
It is also the type of current that drives the loudspeakers in a stereo system. The rate at
which the current changes direction is called the frequency, and is measured in cycles
per second in units of Hertz (abbreviated Hz). So, a 60 Hz signal is composed of a
current changing direction at a rate of 60 times per second. We’ll stick to DC circuits
for now, and save AC for later.

By convention, current is described as flowing from positive to ground (negative),
whereas in reality electrons flow from the negative terminal to the positive terminal of
the power source. In Figure 2-4, the arrows show the electron flow. Although you
should be aware of this, from this point onward we’ll use the positive-to-negative con-
vention for discussing current flow.

Basic Circuit Theory | 19

Voltage is the measure of how much electric charge, or electrical potential force, is
driving electrons into a circuit. It is measured in units of volts (V). Electric charge is a
force, in that a charge will exert a force on other charged objects. How much force is
exerted depends on how much charge is present. The concepts of energy, force, and
potential are described by classical mechanics, and they also apply to electric charge.
The main point to remember here is that a high voltage has more force than a low
voltage. This is why you don’t get much more than a barely visible spark from a common
flashlight battery at 1.5 volts, like the one shown in Figure 2-4, but lightning, at around
10,000,000 volts (or more!), is able to arc all the way from a cloud to the ground in a
brilliant flash. The lightning has more voltage, and hence more force behind it, so it is
able to overcome the insulating effects of the surrounding air.

Current is the measure of the volume of electrons moving through a circuit. What the
term current means depends on the context. As we’ve been discussing it so far, electric
current refers to the flow of electric charge in a conductor, which is a physical phe-
nomenon. In electronics, the word “current” is usually taken to mean the quantity of
electrons flowing through a conductor at a specific point at a single instant in time. In
this case, it’s referring to a physical quantity and is measured in units of amperes (A or
amp).

Resistance is the measure of how much the current flow is impeded in a circuit, and it
is measured in ohms. One might think of resistance as an analog of mechanical friction
(although the analogy isn’t perfect). When current flows through a resistance there is
a drop in voltage across the resistance (as measured at each end), so some of the energy
(voltage) in the current flow is being lost as heat. How much energy is lost is a function
of how much current is flowing through the resistance and the amount of the voltage
drop. As we will see very shortly, there is a famous equation that captures this rela-
tionship between voltage, current, and resistance.

Power is the measure of the amount of energy consumed in overcoming the resistance
in a circuit or performing work of some sort (perhaps running a motor), and is a function
of voltage and current. The common unit of measure is the watt (W), although one will
occasionally see electric power expressed in terms of joules (J).

Circuit Schematics
Before moving on, we need to acquire some symbols to help describe what we’re talking
about. Electrical circuits are described graphically using diagrams called schematics.
There are industry-standard symbols for every type of electrical component available,
and how one graphically arranges these describes how the actual components are con-
nected in the physical circuit. Figure 2-5 shows a small sampling of some of the more
common symbols one might encounter regularly for what are called “passive”
components.

20 | Chapter 2: Essential Electronics

Figure 2-6 shows the symbols for diodes (rectifiers) and transistors of various types.
These are referred to as solid-state components and are considered to be active compo-
nents in that they are capable of altering the current flow in a nonlinear fashion.

Figure 2-5. Common electronic schematic symbols

Circuit Schematics | 21

The wires (or circuit board traces) in a real circuit are shown as lines in a schematic.
Connections between wires are shown with a solid circle where they meet; otherwise,
they simply cross. This is illustrated in Figure 2-7. Some older schematic styles use a
small hump in one wire to show that it doesn’t connect to the wire it is crossing, but
this has become rather rare in modern diagrams. Also note that in order to avoid draw-
ing multiple parallel lines to represent sets of associated wires, such as digital data buses,
the bus is shown as a single heavy line with an indication of the number of individual
wires involved.

Figure 2-7. Schematic wiring notation

Figure 2-6. Solid-state components

22 | Chapter 2: Essential Electronics

Digital logic has its own set of symbols, and functions within integrated circuits (ICs)
such as flip-flops, timers, registers, latches, and so on, are generally shown as rectangles
with input and output connections. These types of symbols are shown in Figure 2-8.

Figure 2-8. Digital logic symbols

The set of schematic symbols presented in Figures 2-5 through 2-8 is by no means
complete. A full set of all currently used schematic symbols would be much more in-
volved than what is presented here. In reality, only a small subset of those symbols are
necessary for our purposes.

Also, like other specialized fields, electronics is rife with its own peculiar set of abbre-
viations, acronyms, and other jargon. Here is a small sampling:

DPDT
A double-pole, double-throw switch.

DPST
A double-pole, single-throw switch.

NPN
A type of transistor junction. The acronym refers to the negative-positive-negative
“doping” that is used to create the active junctions where modulation of current
flow occurs in the device.

PNP
The opposite of the NPN transistor. It uses positive-negative-positive junctions.

Polarity
The positive or negative state of a terminal or device.

Polarized
A device is said to be polarized when it is intended to be used such that one terminal
is always more positive (or negative) than the other. Nonpolarized devices are not
picky about how they are connected.

SPDT
A switch with a single pole but two active positions. May also refer to a switch with
a mechanical center-off position.

SPST
A single-pole, single-throw switch.

Circuit Schematics | 23

The small “bubbles” used with digital logic symbols (as shown in Figure 2-8) indicate
inversion. That is, if a logical True (1) encounters a bubble, it is inverted and becomes
a logical False (0), and vice versa. For example, the truth table for an AND device (where
A and B are the inputs) is shown in Table 2-1.

Table 2-1. AND gate logic

A B Output

0 0 0

0 1 0

1 0 0

1 1 1

The NAND (Not-AND) device, with a bubble on the output, produces the truth table
shown in Table 2-2.

Table 2-2. NAND gate logic

A B Output

0 0 1

0 1 1

1 0 1

1 1 0

Don’t be confused by the open circles often used to indicate terminal points in a circuit
diagram. These do not indicate logical inversion. Only when the open circle is next to
a digital component symbol does it mean that logical inversion is applicable.

Schematic symbols will be introduced or revisited as we go along, so there’s no need
to commit these to memory at this point. If you’re curious, I encourage you to inves-
tigate the references found at the end of this chapter for more details on schematics and
the various symbols utilized in creating them.

DC Circuit Characteristics
Now let’s examine the lamp and battery circuit in Figure 2-4 more closely. It may seem
simple, but there is actually quite a bit going on here.

When the lamp is connected to the battery, closing the circuit, current will flow through
the lamp and then return back to the battery. If it were an open circuit, there would be
no current flow and no light (switches are often used to open or close circuits). Gen-
erating current flow in a circuit requires a power source capable of producing some
volume of electrons (the current) at a voltage (the electrical potential) sufficient to
operate the circuit.

24 | Chapter 2: Essential Electronics

When electrical current flows through a circuit, there is always some amount of resist-
ance to the flow; even wires have some resistance. A circuit with low resistance will
move current more easily than a circuit with high resistance, and the high-resistance
circuit will require a higher voltage to achieve the same level of current flow as the low-
resistance circuit. For example, a circuit with a 10-volt supply and 50 ohms of resistance
will conduct 0.2 A (also stated as 200 mA, or milliamps—thousandths of an ampere)
of current. If the resistance is increased to 100 ohms and we still want to maintain 200
mA of current, the voltage will need to be increased to 20 volts. A high-resistance circuit
will also dissipate more power (heat) than a low-resistance circuit at the same current.
We’ll have more to say about this a little later.

Ohm’s Law
As you may have already surmised, there is a fundamental relationship between voltage,
current, and resistance. This is called Ohm’s law, and it looks like this:

E = IR

where E is voltage, I is current, and R is resistance. This simple equation is fundamental
to electronics, and indeed it is the only equation that one really needs to accomplish
many instrumentation implementations.

In Figure 2-4, the circuit has only two components: a battery and a lamp. The lamp
composes what is called the “load” in the circuit. Incandescent lamps have a resistance
that varies according to temperature, but for our purposes we’ll assume that the lamp
has a resistance of 2 ohms when it is glowing brightly. The battery is 1.5 volts, and we’ll
assume that it is capable of delivering a maximum current of 500 milliamps for one
hour (this is the battery’s total capacity, which is usually around 0.5 amp/hr for a typical
AA type battery) at its rated output voltage.

According to Ohm’s law, the amount of current the lamp will draw from the battery is
given by:

I = E/R

or:

I = 1.5/2

I = 0.75A

Here, the value for I can also be written as 750 mA (milliamperes). If we want to know
how long the battery will last, we can divide its capacity by the current in the circuit:

0.5/0.75 = 0.67 hours (approximately)

DC Circuit Characteristics | 25

This might explain why those cute little single-AA-battery flashlights sometimes
handed out at trade shows don’t last very long before a new battery is needed.

In the simple circuit shown in Figure 2-4, the flow of electrons through the filament in
the lamp causes it to heat up to the point where it glows brightly (1600 to 2800°C or
so). The filament in the lamp gets hot because it has resistance, so current flows less
easily through the filament than it does through the wires in the circuit. The power
expended to force the current through the filament is expressed as heat. The energy
converted and dissipated by a component is defined in terms of dissipated power and
is expressed in watts (W). Power in a DC circuit is computed by multiplying the voltage
by the current, like so:

P = EI

If we want to know how much power the lightbulb in our circuit is consuming, we
simply multiply the voltage across the bulb by the current:

P = 1.5 * 0.75P = 1.125 watts

Now let’s look at a slightly more complicated circuit with some new symbols. Consider
the simple LED circuit shown in Figure 2-9. Here we have a resistor in series with an
LED (light-emitting diode). There is a 5-volt DC power supply indicated but not shown,
and a ground connection (which is the current flow return back to the power supply).

Figure 2-9. Simple LED circuit

A typical garden-variety red LED device will exhibit a drop of about 1.7 volts across its
terminals. Note that this is not the same as the voltage drop across a resistor, but rather
a characteristic of the solid-state “junction” that is the heart of the device. If the LED
has a nominal rating of 10 milliamps (mA, or 0.01 amps) and we have a 5 V power
supply, what size of resistor should we use to get 10 mA through the LED?

26 | Chapter 2: Essential Electronics

Since we can assume a 1.7 V drop for the LED, we can also assume a 3.3 V drop across
the resistor. If we solve Ohm’s law for R, we get:

R = E/I

R = 3.3/0.01

R = 330 ohms

So, a resistor with a value of 330 ohms will supply the 10 mA of current the LED needs
to conduct and start glowing. This simple example is more important than you might
think, and it will pop up again when we look into connecting LEDs to discrete digital
I/O ports later.

Sinking and Sourcing
When reviewing the specifications for an interface device, one may encounter ratings
for current sink and source capabilities. What this means, essentially, is that when a
load is connected from the device to the positive power source, the device will be able
to “sink” up to the specified amount of current before risking damage. Conversely,
when the load is connected from the device to ground, it will be able to safely “source”
up to the rated amount of current. Figure 2-10 shows this schematically.

The step up and step down symbols indicate how the LED will respond when the
voltage from the device is high or low. When the output of the device is low with respect
to the +5 V supply the LED in the current sink configuration will be active, and when
it is high with respect to ground the LED will be active in the current source arrange-
ment. The same math we used to determine the value of R for Figure 2-9 applies here
as well. Note that it is important not to exceed a device’s maximum sink or source
ratings. For example, when a device is rated for 20 mA of current source capability, it
may mean 20 mA for the whole device, not just for a single output pin.

More About Resistors
Resistors are ubiquitous in electronic circuits. A resistor can be fabricated from a piece
of a poorly conductive carbon material, from a carbon film deposited on a ceramic core,
or from a section of resistive wire wound inside a protective package of some type. In
addition to a specific resistance value (in ohms), resistors also have a wattage rating.
Typical values are 1/10, 1/8, 1/4, 1/2, 1, 2, and 5 watts, with even larger ratings available
for special-purpose applications. This sets the maximum amount of power the device
can safely dissipate before it risks self-destruction. Lastly, resistors are manufactured
to specific tolerances, ranging from 20% to less than 1%, with the price rising as the
tolerance tightens. The most common tolerance value is 5%.

DC Circuit Characteristics | 27

Figure 2-10. Current sink and current source

Figure 2-11 shows a generic resistor. Notice that this type of resistor uses color bands
to denote its value. You can find the resistor color code in any basic electronics text,
and it is explained on numerous websites, so we won’t go into it here.

Figure 2-11. Generic carbon composition resistor

28 | Chapter 2: Essential Electronics

Resistors can be used to reduce a voltage level or limit the current in a circuit, among
other things. Resistors are often found in instrumentation applications in circuits such
as the one in Figure 2-9, in the role of current limiter. Resistors can be used singly, or
they can be connected in parallel or serial configurations. Figure 2-12 shows both, and
the simple math used to calculate the equivalent resistances.

Figure 2-12. Series and parallel resistance

We now have enough pieces of the DC puzzle to start to do useful and interesting things
with voltage, current, and resistance. Figure 2-13 shows a simple arrangement of two
resistors called a voltage divider. These appear quite frequently in electronic circuits.

Figure 2-13. Voltage divider

DC Circuit Characteristics | 29

The math necessary to determine the voltage across R2 in Figure 2-13 is straightfor-
ward. Once you know the total resistance, you can find the current, and since the
current through both resistors is the same it then becomes a simple matter of applying
E = IR to find Vout.

AC Circuits
As mentioned earlier, current flow that changes direction over time is called alternating
current, or AC. AC is a bit more complex than DC. As well as the expected character-
istics of voltage and current, it has the additional characteristics of frequency and phase.

When talking about the power wiring in a house, for example, one would expect to
hear terms such as “AC,” “AC voltage,” or “AC current” (which is somewhat redun-
dant). These terms typically refer to the electrical power type in general, the voltage in
the circuit, and the current in the circuit, respectively. However, when referring to the
low-voltage, low-current AC typically found in instrumentation circuits, the common
term is just “signal” or “AC signal.”

Sine Waves
AC signals can occur with any one of a number of types of waveforms, but the sine
wave is the prototypical AC signal. A sine wave is “pure”; that is, it is composed of just
one frequency. Other waveforms can be decomposed into a series of sine waves by
means of Fourier analysis techniques (which we won’t delve into here), but a pure sine
wave cannot be decomposed any further.

A generic sine wave is shown in Figure 2-14. The sine wave gets its name because
mathematically it is defined by the sine function:

V(t) = A sin(2πft + θ)

where A is the amplitude, f is the frequency, t is time, and θ is the phase. Sometimes
one might see this form:

V(t) = A sin(ωt + θ)

where ω, the angular frequency, is actually just 2πf.

A fundamental characteristic of an AC signal is its frequency. Frequency is the measure
of the number of times the signal changes direction (that is, changes polarity) in one
second of time and is measured in units of Hertz (Hz). The inverse of a signal’s frequency
(f) is its period (t), which is the time interval between each repetition of the waveform:

f = 1/t

t = 1/f

30 | Chapter 2: Essential Electronics

For example, if a video camera generates frames at a rate of 30 ms (milliseconds) per
frame, it is operating at a frequency of 33.33 Hz. The time period of a 60 Hz signal is
about 16.67 ms. A signal with a frequency of 10 KHz (kilohertz) has a time period of
100 μs (microseconds, often written as u instead of μ).

Another essential characteristic is amplitude. There are three ways to describe the am-
plitude of an AC signal: peak amplitude, peak-to-peak amplitude, and root-mean-
square (RMS) amplitude. Take a look at Figure 2-14 again and notice that the peak
value (the A in the sine wave equations) refers to the maximum value on either side of
the zero line. When we talk about the peak-to-peak value (written as Vpp), we are
referring to the range between the positive peak and negative peak. Lastly, the RMS
amplitude is used to compute power (measured in watts, as with DC circuits) in an AC
circuit. For a sine wave Vrms = 0.707 * Vpeak, and for other waveforms it will be a different
value.

Now, here’s something to consider: the AC power in your house is probably something
like 120 VAC (volts AC). That is its RMS value. The Vpeak value is around 165 volts,
and the Vpp value is about 330 volts. The Vpp value isn’t really something to get excited
about, but it might be useful to know that the actual Vpeak value is 165 volts when
selecting components for use with an AC power circuit. Just remember that the RMS
value of 120 VAC is used primarily to compute power.

Figure 2-14. Generic sine wave

AC Circuits | 31

Capacitors
A capacitor is a passive component that is basically two parallel plates with a small gap
between them. They come in a wide variety of materials, values, ratings, and sizes. Some
capacitors are built using thin layers of aluminum as the conductive plates with an
equally thin layer of insulting material between the layers; other types use a porous
material soaked in an electrolytic solution as the separator between the conductors,
and some incorporate a piece of ceramic material with metalized surfaces on opposite
sides. Figure 2-15 shows a generalized view of a capacitor.

Figure 2-15. Generic capacitor

Units of capacitance are measured in farads (F, named after Michael Faraday). In elec-
tronics applications one will typically encounter values ranging from tens of picofarads
(pF, 10−12 F) to upward of several hundred microfarads (μF, 10−6 F). Values measured
in whole farads are also available for specialized applications.

Capacitors are a type of charge storage device, similar in many ways to the Leyden jar
used to store electrostatic charges (the Leyden jar was invented around 1745 and named
after Leyden University in the Netherlands). In a capacitor, the area of the plates and
the size and type of the gap determine the capacitance of the device. The larger the
plates, the more charge they can hold, and the distance between them determines how
effectively the charges on the plates can interact. Capacitors can be fabricated using
nothing more than metal plates separated by air: versions of this scheme with movable
plates were once common in the tuning circuits of radio equipment and are still in use
today. Most small capacitors found in electronic circuits use a dielectric (insulating)
material that allows the plates to be very close without actually creating a directly con-
ducting path.

32 | Chapter 2: Essential Electronics

When a voltage is applied to a capacitor, one of the plates will become charged in one
polarity, while the other plate will take on the opposite polarity. This is illustrated in
Figure 2-16.

Figure 2-16. Capacitor in a DC circuit

When the switch in Figure 2-16 is set to the opposite position, the capacitor will dis-
charge the energy it accumulated through the resistor. As one might surmise, one way
to view a capacitor is as a type of short-term battery (in fact, the term “battery” was
coined by Benjamin Franklin to describe an array of the Leyden jars mentioned earlier).
Interestingly, there are now available capacitors with values measured in terms of whole
farads that are capable of holding a large amount of charge for long enough to actually
take on the role of a battery in some applications.

A capacitor will block DC but will pass AC. How well a capacitor will allow the AC
signal to pass is a function of the capacitance value, any associated resistances in the
circuit, and the frequency of the AC signal. In Figure 2-17, we have a circuit that com-
bines an AC voltage source with a DC voltage source (a battery, for instance).

We can see a couple of interesting things immediately in this figure. The first is that
AC and DC can exist simultaneously on the same wire (this is actually quite common
in electronic circuits). Secondly, the AC signal will “ride” on top of the DC voltage,
with the zero-crossing level of the AC signal at the maximum VDC level. This is often
referred as a DC offset or a DC bias, depending on the context.

Notice in Figure 2-17 that one can measure the composite AC-DC signal across R1,
but the capacitor C will block the DC and allow only the AC to pass, so taking a meas-
urement across R2 shows only the AC signal. Actually, we’ve neglected to consider the
interaction between the resistors and the capacitor, which will affect how the circuit
will respond to different signal frequencies. In other words, this is a type of passive filter.

AC Circuits | 33

Figure 2-17. DC blocking

Like resistors, capacitors can be combined in series and in parallel, although the math
involved is a little different. Figure 2-18 shows how to compute the equivalent capac-
itance for series or parallel arrangements of capacitors.

The ability of a capacitor to block DC can be put to use in a variety of interesting ways
in instrumentation systems. Consider the situation where one might have an electro-
magnetic tachometer for measuring the revolutions per minute (RPM) of a rotating
device. If the signal suddenly stops, how can one know if the tachometer failed, the
circuitry failed, or the mechanism came to a sudden stop without actually going and
looking? Figure 2-19 shows one way to do this.

34 | Chapter 2: Essential Electronics

Figure 2-18. Series and parallel capacitance

Figure 2-19. Tachometer continuity sense

In Figure 2-19 the circuit to the right is the equivalent DC circuit, where Rt is the DC
resistance of the tachometer itself. This would probably be on the order of only a few
ohms. The capacitors block the DC, and R1, R2, and Rt form a voltage divider. If the
tachometer should fail and open the circuit, the voltage detector will indicate the fault
when its input goes to zero. Conversely, if the voltage suddenly goes up, the tachometer
is probably shorted. Lastly, if the signal ceases but the continuity through R1, R2, and

AC Circuits | 35

Rt is still good, either the pulse sensor circuit has failed or there is a mechanical problem
(i.e., something isn’t moving).

Inductors
Electricity and magnetism are closely related (exactly how is still not fully understood).
Current flow through a conductor will create a magnetic field, and a magnetic field in
motion will induce current flow in a conductor in response. Consequently, when cur-
rent flows through a conductor an associated magnetic field is generated around the
conductor, as shown in Figure 2-20. If the current is DC, the magnetic field remains
static until the current flow stops, at which point it collapses. When a magnetic field
collapses it creates a current flow in the direction opposite to that which created it in
the first place (the collapsing magnetic field is in motion). When the wire is wound into
a coil, the magnetic field is concentrated. The use of an iron core further increases the
effect.

Figure 2-20. Inductor

When a coil is energized with DC the result might be an electromagnet, although AC
electromagnets are also common. Electromagnets can be found in relays, solenoids,
and electric motors.

When a coil is used to alter the behavior of a circuit, it can have the interesting effect
of presenting a variable amount of impedance to an AC signal that depends on the
frequency of the signal. The only effect a coil will have on a DC signal (other than the
creation and collapse of the magnetic field) is the basic resistance of the wire used to
wind the coil.

The frequency-dependent response of a coil (also called an inductor) to an AC signal
is referred to as the inductance of the coil, and it is measured in henries (H, named after
Joseph Henry). In electronic circuits, the millihenry (mH) is the unit most commonly
encountered.

From the preceding description it follows that a simple length of wire is an inductor,
particularly at high frequencies. This effect can degrade signals traveling over long dis-
tances, such as pulses or square waves.

36 | Chapter 2: Essential Electronics

In a DC circuit an inductor is basically a short (or a very, very low resistance), so it isn’t
all that interesting. However, in an AC circuit an inductor will impede AC (hence the
term impedance) by generating a reverse current each time the signal goes from a peak
amplitude (either negative or positive) back toward zero. The amount of the impedance
is a function of the inductance of the coil and the frequency of the AC signal.

We won’t go into the details of inductive circuits in this book, although the topic is by
no means any less important than any other aspect of circuit theory. In general, we
won’t really need to worry too much about it, and when the need arises we will deal
with it. The interested (or curious) reader should check out the references at the end
of this chapter for more information.

Just as current flow creates an associated magnetic field, a moving magnetic field can
generate current flow. Whenever a conductor intersects magnetic lines of force, a cur-
rent flow will occur. This is shown in Figure 2-21 in the form of a simplified AC gen-
erator, also known as an alternator.

Figure 2-21. AC generator (image by Egmason, Wikipedia Commons, under the Creative Commons
Attribution 3.0 Unported license: http://commons.wikimedia.org/wiki/File:Alternator_1.svg)

In Figure 2-21, an AC voltage is induced in the wire as the magnet rotates. One could
also arrange the device such that the coil rotated through a stationary magnetic field.
The end result would be the same. This effect has some useful applications in instru-
mentation, particularly when one wants to measure the rate of rotation of some mech-
anism. Figure 2-22 shows the basic idea behind an electromagnetic tachometer.

The output from the coil is idealized here, and in reality it may look quite a bit different.
The idea, however, is the same: as the magnets pass the coil a voltage pulse or spike
will be produced. Two magnets are shown here because one would usually want things
to be balanced on a rotating device or shaft, especially if the mechanism spins at high
revolutions per minute (RPMs). Because there are two magnets, every two output pulses
represent one revolution of the mechanism.

AC Circuits | 37

http://commons.wikimedia.org/wiki/File:Alternator_1.svg

Figure 2-22. Electromagnetic tachometer

Other Waveforms: Square, Ramp, Triangle, Pulse
Besides sine waves, there are other waveforms commonly found in electronic circuits.
The basic shapes are shown in Figure 2-23.

Figure 2-23. Common signal waveforms

38 | Chapter 2: Essential Electronics

There are, of course, very complex waveforms, such as those found in audio signals.
The complexity arises because an audio signal can contain many components with
different frequencies. We’ll focus on the types of waveforms one is most likely to en-
counter in instrumentation circuits.

One of the most common (and most useful) of the nonsinusoidal waveforms is the
square wave, together with its close relative, the pulse. Although a square wave is usu-
ally drawn with a shape that implies instantaneous on and off times, in reality square
waves tend to be rather messy. This is shown in Figure 2-24.

Figure 2-24. Ideal versus real square waves

The overshoot and ringing occur because of the various impedance and capacitance
effects in a circuit. Because a wire has intrinsic inductance (as was stated earlier), send-
ing a pulse or square wave over more than a few feet of unshielded wire will result in a
degraded signal at the receiving end. There are ways to get around this, or at least reduce
the effect, as we’ll see later.

When dealing with pulses and square waves, one often refers to the duty cycle of the
waveform. In fact, a square wave is actually a pulse with a 50% duty cycle. That is to
say that it is on for one-half of a cycle. Figure 2-25 shows some pulses at various duty
cycles.

Interfaces
In an instrumentation system, the interfaces are where the software meets the real
world. An interface might be as simple as an input to sense the open or closed state of
a switch, the voltage from a temperature sensor, or pulses from a magnetic sensor on
a rotating shaft. An interface can also be a data communications channel for interfacing
with a self-contained instrument or controller of some type. It could even be another
computer system, as in the case of an Ethernet interface.

Interfaces | 39

Figure 2-25. Duty cycles

Discrete Digital I/O
A discrete digital interface gets it name from how the input and output bits, also called
lines or pins, are organized, read, and controlled. Discrete digital I/O can be used
whenever there is a need for sensing discrete input states or controlling something with
discrete operational states. “Discrete” in this case means that each input or output line
has a finite number of unique discontinuous states. With a discrete digital interface,
this equates to two states: on or off, 1 or 0. Discrete I/O lines may be handled in software
as either singular bit values or members of a set of bits. In some cases, a particular line
may be configured as either an input or an output. In other cases, an interface may
provide a set of lines dedicated to output, and another set for input. As for terminology,
it is common to hear “discrete I/O” or “discrete line.” The digital part is understood.

Discrete I/O lines are often grouped in multiples of eight, which is the size of an 8-bit
byte, but one can build interfaces with almost any number of discrete I/O lines (at least
within practical limits). When a discrete interface is grouped by eight, each set of eight
lines may compose what is referred to as a port.

There are quite a lot of indefinites in the preceding sentences, because how an interface
is organized is entirely up the engineers who designed it. But from the viewpoint of a
microcontroller device, the use of ports containing eight discrete lines is a natural ex-
tension of the microcontroller’s internal architecture. Figure 2-26 shows how an 8-bit
discrete I/O port could be implemented. Prior to the advent of low-cost microcontrol-
lers and programmable logic devices this was a common way to implement such an
interface, and it is still used today.

40 | Chapter 2: Essential Electronics

Figure 2-26. Discrete I/O port

In Figure 2-26, there are two groups of eight signals (1 byte’s worth) connected to each
octal output latch device (octal means eight), and another set of eight coming out of
the octal input latch device. In other words, this interface will read or write 8 bits of
data, or 1 byte, at a time. These are internal data buses, and they would most likely be
connected to a main data bus at some point. The various signals shown going into the
output and input latches are used to control when the latch should sample the input
data (the latch enable signals) and when it should actually make the data available on
its outputs (the output enable signals). When the outputs on either latch are not enabled
they are in a high-impedance (Hi-Z) state, which is effectively an open circuit. This
allows the interface to be either an input or an output, but it cannot be both at the same
time. It would not make any sense to set an output line to a high level while trying to
read the input from an external device, which might be low. Even if nothing overheated,
it still would be a pointless thing to do. However, in the circuit shown in Figure 2-26
it would be possible to write data to the output lines and then read the data back. This
is sometimes done to verify that a short to ground does not exist on any of the I/O lines.

Some interface devices, and some microcontrollers, provide the ability to assign discrete
I/O pins as either inputs or outputs on an individual basis. In this case the I/O lines
would be addressed in the software individually, rather than as a group of 8 bits. As-
suming that the interface circuit had this capability, one could use something like the
line names P0.0, P0.1, and so on, in the software to refer to specific pins (in this case,
specific pins, or lines, on port 0).

Interfaces | 41

It is common for a discrete interface to utilize standard transistor-transistor logic (TTL)
voltage levels, although other voltage levels are sometimes used. With TTL, anything
below 0.8 volts is considered to be a zero, and anything from 2.0 volts to Vcc (assuming
the DC supply voltage is 5 volts) is a logical one. The range between 0.8 and 2.0 volts
is invalid. In order to ensure that the input levels don’t wander into the invalid range
resistors are often used to either pull the input up, or pull it down. This is shown in
Figure 2-27.

Figure 2-27. Pull-up and pull-down resistors

In Figure 2-27, the push-button switch will cause Vout to go to zero when the switch is
closed. The 4700-ohm resistor (shown as 4.7 K) will conduct slightly more than 1 mA
when the switch is closed, which is negligible in most cases. More importantly, it will
provide a constant source of voltage to a digital input, thereby holding it in the logic 1
state until the switch is closed and Vout is pulled to ground (the switch effectively being
a short). The active high switch circuit does the inverse, although here we’re trying to
hold Vout low until the switch is closed. When the switch is open, the digital input
connected to Vout is pulled to ground through the two resistors. When the switch is
closed, +5 V is applied to the input through the 470-ohm resistor and a logic 1 is sensed.
The 470-ohm resistor limits the amount of current applied to the digital input to about
11 mA. While this resistor may not be absolutely necessary, it is still a good idea. Oth-
erwise, the entire current capacity of the power supply, which may be many amperes,
is present at the input of whatever the circuit is connected to. About 2 mA of current
will flow through the 2200-ohm resistor when the switch is closed.

When using a mechanical switch as an input you should always keep in mind that
switches have a tendency to exhibit what is called contact bounce, or contact chatter.
In other words, the contact closure is seldom a clean, snap-on type of thing. Instead,
the contacts inside the switch will tend to bounce off of each other for a little while
after the switch is closed. This can result in a situation where a switch will generate a
series of short on-off events before it finally settles down into one state or the other.

42 | Chapter 2: Essential Electronics

Typically this occurs over an interval ranging from just a few milliseconds to upwards
of 100 ms or so, depending on the type of switch involved. To avoid reacting to contact
bounce the input is “debounced,” either using logic or in software.

The switches in Figure 2-27 could just as easily be limit switches on a moving part, or
optical sensors detecting objects passing by on a conveyor, or even float switches in a
vat or beaker. A pull-up resistor is also useful for helping to reduce signal degradation
over a length of wire by making the sender actively pull the signal low, and otherwise
holding it high, as shown in Figure 2-28. This helps to prevent the introduction of noise
and also helps make the high to low and low to high voltage transitions more definite
(i.e., the signal will have less tendency to “float” or drift between the high and low
states).

Figure 2-28. Signal pull-up

The value of R will largely depend on what type of output circuit device A happens to
have. Some logic devices have what is called an open-collector output, which is intended
to be used with an external pull-up resistor. Other devices do not have an open-collector
output but can still be used with an external pull-up, provided that the value of R does
not result in the device sinking more current than it is rated for.

We’ve already seen how a discrete digital output line can be used to directly control an
LED (recall Figure 2-9), but they can also control other interesting things if the right
type of interface circuit is used. Applications include relays for switching large amounts
of voltage or current, solenoid valves, mechanical actuators, or electric brakes, to name
but a few.

Figure 2-29 shows how one might arrange for a discrete output to drive a relay. Nor-
mally a discrete output is only capable of sourcing a small amount of current, on the
order of 10 to 20 mA, and a relay might require significantly more. Connecting a relay
directly to the output would result either in no operation or a damaged discrete I/O
interface, or both.

Interfaces | 43

Figure 2-29. Relay driver circuit

In Figure 2-29, an NPN transistor is used as a current switch. It doesn’t really matter
what type of NPN transistor is used for a circuit like this, so long as it is what is called
a “small signal” type and it can handle the current through the relay coil. A 2N2222A
is a typical choice for small, low-power relays. When the base terminal of the transistor
is positive (the “P” part of NPN), the transistor will conduct, and it is capable of han-
dling much more current than the discrete interface alone. R1 and R2 form a voltage
divider, supplying around 4.5 V or so at about 1.15 mA to the input (the base) of the
transistor when 5 V is present on the input terminal. When there is no input voltage,
R2 acts as a pull-down to hold the transistor in an off state. R1 is a current limiter to
provide enough current to drive the transistor but not so much as to damage it. Diode
D1 is used to prevent the relay coil from sending a reverse voltage spike back into the
transistor, which will almost certainly destroy it (recall from our earlier look at induc-
tors that when current through an inductor is removed it will generate a reverse current
flow as the magnetic field collapses). Now we have a circuit that can control a significant
amount of current by means of the relay contacts. This same circuit could be used to
drive a variety of high-current loads.

To avoid having to build such a circuit, one can purchase ready-made relay driver
modules and use them with discrete outputs. This is the approach I would advocate,
but it definitely doesn’t hurt to have some idea of how the modules work.

Analog I/O
Analog data is converted into digital values using a device called an analog-to-digital
converter (ADC). Conversely, a device called a digital-to-analog converter (DAC) is
used to convert a digital value into an analog voltage or current. These functions were
once quite expensive, and the necessary hardware occupied many circuit boards and a

44 | Chapter 2: Essential Electronics

lot of cabinet space. Nowadays, many low-cost microcontrollers have ADC and DAC
functions built into the chip itself. The voltage ranges and resolutions of these devices
vary widely; for some applications it makes more sense to use an external high-
resolution device capable of operating at high conversion rates, but even these are not
excessively expensive.

Analog data is problematic for a computer. Because of the discrete digital nature of a
computer, it is simply not possible to capture analog data and convert it into a digital
form with a level of accuracy that will allow for a 100% faithful representation of the
original signal. The same applies to converting digital data into an analog signal. This
effect is called quantization, and it arises as a consequence of obtaining or generating
a sequence of measurements of a continuously variable signal at discrete points in time.

Acquiring analog data

With analog inputs any changes in the analog signal between sample events are lost
forever, and the result is only as faithful to the original as the number of samples per
unit time permits. This is illustrated in Figure 2-30, which shows the difference between
a signal sampled once every two seconds and the same signal sampled twice per second.
Notice that the reconstructed result of the faster sampling rate is much closer to the
original, but it is still not a 100% faithful reproduction.

Of course, not every application needs a high level of fidelity in order to accomplish
the instrumentation objectives. In many cases it is perfectly acceptable to take data
samples at intervals of several seconds, or even minutes. This is particularly true when
the measured input doesn’t change very much within the sample period, such as might
be the case with something like an oven, an air conditioning system, or a culture incu-
bation chamber. Other applications, such as the conversion of audio to digital form,
require very high sampling rates in order to accurately capture the highest frequencies
of interest and maintain a high-fidelity representation of the original input.

Analog data is typically converted to digital form with a resolution, or data size, ranging
from 8 to 24 bits per sample. Resolutions of less than 8 bits or greater than 24 are not
readily available, but are possible. With an 8-bit resolution, the data will range in value
from 0 to 255 (or from −128 to +127 if negative values are used). Again, one does not
always need a high degree of precision for every application, and sometimes less is more
than sufficient.

When converting from analog to digital (or vice versa), one will encounter an inherent
limitation in the conversion referred to as quantization error. In general terms, this is
the error between the original signal and the digital values, or codes, resulting from the
conversion. As shown in Figure 2-31, the lower the resolution of the ADC, the more
pronounced the quantization error becomes.

According to Figure 2-31 (which is only an approximation for purposes of discussion),
a 9-bit ADC with a range of 512 possible values will generate a more accurate conversion
than an 8-bit ADC with a range of only 256 possible values. The sampling events (the

Interfaces | 45

sample rate) are shown on the time axis as TS0, TS1, and so on. Note that it doesn’t
matter if the 8-bit converter is sampled at a fast rate; it cannot do any better than its
fundamental 8-bit resolution, although it will be able to detect and convert fast changes
in the input that are within its resolution.

In Figure 2-30, the loss of fidelity at the slower sampling rate arose because of a lack of
samples to accurately track the changes in the analog signal, not a lack of conversion
resolution (the resolution isn’t even mentioned, actually). In Figure 2-31, it is the lack
of resolution that results in the loss of fidelity due to quantization error.

Figure 2-30. Analog data sampling

46 | Chapter 2: Essential Electronics

Figure 2-31. ADC quantization error

The sampling rate and the sample resolution together determine how accurately an
ADC can convert an analog signal to digital form. Sample resolution can be expressed
in terms of volts/step, or, in other words, the measurable voltage difference between
each discrete digital value in the converter’s resolution range. If we have an 8-bit con-
verter with a maximum full-scale input range of 0 to 10 volts, each increment, or step,
in the digital output code will be the equivalent of 0.039 volts. This can be expressed as:

Interfaces | 47

Therefore, a 10-bit converter with a Vmax of 10 V can resolve 0.00978 volts/step, a 12-
bit device can resolve 0.0024 volts/step, and 16-bit ADC can resolve 0.0001526 volts/
step.

This should be enough information about ADCs to get us started for now, so we will
move on to the inverse of the ADC, the digital-to-analog converter. For more informa-
tion about ADC devices and their behavior, refer to the references listed at the end of
this chapter.

Generating analog data

The opposite of the ADC is the DAC, or digital-to-analog converter. These devices
generate an output voltage that corresponds to a digital input value. Like ADCs, DACs
have some inherent limitations in regards to resolution, and the devices also exhibit
quantization.

Figure 2-32 shows the relationship between the resolution and the output update rate,
or sample rate.

Figure 2-32. DAC output timing and resolution

48 | Chapter 2: Essential Electronics

For many instrumentation and control applications the output sample rate is not a
critical parameter, and something on the order of once or twice a second will suffice.
This is assuming, of course, that whatever the DAC is intended to control does not
need to change at a faster rate.

For some DAC devices, the output voltage range is established externally using a ref-
erence voltage. In other cases, the reference voltage is built into the DAC device itself.
The output resolution is determined by the number of bits used to generate the output
value, and is just the output voltage range divided by the number of possible digital
input values. The actual accuracy of the output is a function of the linearity of the device.

Counters and Timers
Counters and timers are essential components in many data acquisition and control
implementations. Figure 2-33 shows a generic 16-bit counter with Run/Stop and Clear
control inputs. When the Run/Stop input is high (true) the counter will increment an
internal count value for each input pulse detected. Otherwise, it will ignore the pulse
input. The Clear input allows the internal counter to be reset to zero. A counter does
not need a continuous stream of input pulses; it can count random events as well. As
implied in Figure 2-33, the length of time that the Run/Stop signal is in the Run state
can be used to determine the rate (i.e., frequency) of the input pulses.

Figure 2-33. Generic counter

Interfaces | 49

A timer is a device that also contains an internal counter, except that instead of counting
external events it is counting either up or down until it reaches some specific value.
Figure 2-34 shows a generic timer configured for single pulse output, and another ver-
sion that has been configured for continuous pulse output by tying the output to the
reset input.

Figure 2-34. Generic timer

A 16-bit count value is loaded into the device via the data input lines. The Run/Stop
input controls the counting action, and the Reset input restarts the counter either at
zero (if it is counting up) or at the preloaded value (if it is counting down). Some timer
devices also allow the current count value to be read out of the device.

PWM
Pulse-width modulation (PWM) is a common form of output signal used to control
lights, motors, and other devices. A PWM signal is a variable duty-cycle pulse, as shown
in Figure 2-35. As the duty cycle increases, the average amount of power increases.

50 | Chapter 2: Essential Electronics

Figure 2-35. Pulse-width modulation

PWM is particularly effective for efficiently controlling DC motors. The RPM of a DC
motor is proportional to the amount of power available to it. With PWM, unlike with
an active linear control device such as a transistor, the average power can be modulated
without wasting energy. A PWM signal can be generated directly from a digital source,
with no DAC required. Figure 2-36 shows a block diagram of a PWM DC motor control.

Figure 2-36. PWM DC motor control

Serial I/O
A serial interface is one wherein the data moves as a series of data bits over a single
path, as shown in Figure 2-37. Serial data is typically implemented in one of two forms:
synchronous or asynchronous. In a synchronous serial arrangement, there are one or
two lines for transmitting data and a line (or two) for clock signals. The clock signals
are used to inform the electronics at either end when a valid bit of data is present on
the serial lines. An example of a synchronous serial interface is the low-level serial
peripheral interface (SPI) feature found in some microcontroller and I/O ICs.

Interfaces | 51

Figure 2-37. Synchronous serial data communication

Notice in Figure 2-37 that device A is the source of the clock signal, so it effectively
controls the data exchange rate, or speed, of the interface. Device B sends and receives
data only when the clock is active, and only when it has been electrically selected via a
special device select input (not shown here). The diagram shows a situation where data
is valid on the falling edge of the clock signal. Also notice in Figure 2-37 that the falling
edge of the clock occurs in the middle of the data bit position. Recall the “real-life”
square wave from Figure 2-24: one can see that sampling (or, “latching,” as it is called)
the data between the nastiness on the edges of the square waves in the data bit stream
diminishes the risk of errors.

In an SPI interface, the clock is usually only active when the master device wishes to
initiate communications with a peripheral device. Other types of synchronous interfa-
ces may have the clock active all the time, and still others may utilize independent clock
signals for both ends of the channel.

When connecting computing or instrumentation devices to one another, a more com-
monly encountered type of serial interface is the asynchronous serial interface. In this
scheme there is no clock signal between the communicating devices, so the receiver

52 | Chapter 2: Essential Electronics

electronics must synchronize on the data itself. To this end, the serial bit stream in-
cludes additional start, stop, and parity bits for each character of data. Figure 2-38
shows a greatly simplified diagram of an asynchronous communications channel using
two Universal Asynchronous Receive-Transmitter (UART) devices. The RS-232 inter-
face that was once a common feature on PCs is an asynchronous serial interface and
was implemented in early versions of the PC using an Intel 8250 UART device. These
types of devices can still be purchased, but it is also common to find the logical model
of a more modern UART, such as the 16550, implemented within a custom gate array
device as part of the chipset on a motherboard (now you know where the reference to
“16550” in the serial port setup dialog box of your PC comes from, if you didn’t know
before—it’s still there, it’s just not a separate part anymore). An interesting historical
tidbit is the fact that in its original form the RS-232 specification set aside signals for
timing—it could also be implemented as a synchronous interface. This is still defined
in the specification but is seldom used nowadays in PCs.

Figure 2-38. Asynchronous serial interface

A modern UART chip contains all the circuitry necessary to implement one end of an
asynchronous serial interface channel. In Figure 2-38, the box labeled “Sync” is re-
sponsible for detecting the incoming data stream and adjusting the receiver section’s
clock to the data rate.

If an interface has signal lines for both sending and receiving data, it also has the ca-
pability for full-duplex operation. The term “full-duplex” means that an interface is
capable of sending and receiving data at the same time. Interfaces that have only a single
data path are typically half-duplex, meaning that the devices connected to the interface
can only be a sender or a receiver at any given time, not both at the same time.

SPI and RS-232 are just two examples of serial interfaces. Some others are I2C, USB,
RS-422, RS-485, MIL-STD-1553, FireWire, and Ethernet. They differ mainly in regard

Interfaces | 53

to how the interface operates electrically and the speed at which data can move across
the channel. In Chapter 7 we will examine serial interfaces in more detail, and also
explore some of the differences between full- and half-duplex operation.

Parallel I/O
Parallel I/O refers to a data communications channel where a set of discrete I/O lines
is used to transfer a set of data bits in a single read or write operation. A common
example of a parallel interface is the printer port on a PC, although in reality there is
nothing unique about the printer port except that the pins have been preassigned to
implement a printer interface. Figure 2-39 shows the pin-out and data transfer timing
diagram for a PC printer port.

Figure 2-39. PC printer port

54 | Chapter 2: Essential Electronics

In Figure 2-39, the timing diagram (we’ll see more of these later) shows the general
relationship between the Strobe, Busy, and ACK signals. The + and − symbols indicate
the active-high and active-low true states of the signals, respectively. Also notice the
shaded region in the ACK waveform. This indicates that the start of the ACK signal can
vary, which is OK since the sender won’t attempt another transfer until ACK returns
to the high state (False).

It is also possible to implement a parallel I/O channel using generic discrete I/O hard-
ware, such as the plug-in cards available for the PC’s PCI bus. This is shown in Fig-
ure 2-40.

Notice that in both cases there are signal lines set aside for “handshaking.” These are
the signals used to coordinate data exchanges between two devices, and are often im-
plemented as “active-low” logic (meaning that the signal indicates True when it is low,
rather than when it is high—this helps reduce false signals due to noise or other inter-
ference on the lines). In Figure 2-40, when one device has data available it will pull the
DRDY (data ready) line low. The receiver will acknowledge this by pulling its ACK
(acknowledge) line low and holding it low until the data transfer is complete. To initiate
the transfer the sender pulls its Strobe line low, and the receiver uses this to latch the
data into a buffer of some sort. When the receiver releases the ACK line, the sender is
free to begin the whole process again for another set of data bits.

Parallel data interfaces have the intrinsic advantage of being able to move many bits of
data at a time for every transfer cycle, and a parallel interface implemented entirely in
hardware can move data at very high speeds. When implemented using software con-
trol for all of the functionality it won’t run as fast as it might otherwise, but it can still
be a lot faster than an RS-232 interface. Figure 2-41 shows a block diagram for a system
implemented in the late 1990s that used a single board computer (an industrial-type
PC on a single PCB) to communicate with a dedicated controller PC that could not use
a network interface for timing and resource reasons, but could support a dedicated
bidirectional parallel interface.

Summary
In this chapter we’ve covered the basic concepts of charge, current, voltage, and re-
sistance, and we’ve looked at some examples of how these concepts are applied. We
also took a brief tour of interface electronics, but realistically, we’ve just barely
scratched the surface. Nonetheless, you should now have enough basic background
knowledge to feel comfortable with the data acquisition and control devices we will
encounter as we go forward.

Summary | 55

Figure 2-40. Bidirectional parallel interface

56 | Chapter 2: Essential Electronics

Suggested Reading
Electronics has become one of the cornerstones of modern civilization, and electronic
devices of one type or another have now touched every corner of the globe. So it is no
wonder that the field of electronics is vast and in a state of continuous change. Here
are some books that I would recommend for those who would like to go deeper than
what we could achieve in this chapter:

The Art of Electronics, 2nd ed. Paul Horowitz and Winfield Hill, Cambridge University
Press, 1989.

This book covers everything from the basics of electronic components through the
design and construction of high-speed, low-noise laboratory-grade devices. It is
written in a light and easy-to-read style, with just enough math to get the point
across without becoming mired in details. The book contains numerous interesting
examples of electronic circuits, and a good selection of “Bad Idea” circuits to avoid.

Electronics, 2nd ed. Allan Hambley, Prentice Hall, 1999.
Suitable for use as a college text for an introductory class (or classes) in electronics
theory, this book provides a formal and rigorous presentation, but the author does
make a point of easing the reader into a subject, rather than dumping a pile of
equations on the floor for the reader to sort out. It is a valuable resource for un-
derstanding the basics of the theory behind electronic devices and their
applications.

Data Conversion Handbook. Analog Devices Inc., Newnes, 2004.
Written by the engineering staff of Analog Devices, this book represents the de-
finitive treatment of data conversion topics by the people who have designed some
of the most advanced data conversion devices currently available. It includes cov-
erage of topics such as the history of data conversion, sampled data systems, and
data converter interfaces.

Figure 2-41. PC-to-PC parallel interface

Suggested Reading | 57

CHAPTER 3

The Python Programming Language

I just want to go on the record as being completely
opposed to computer languages. Let them have their

own language and soon they’ll be off in the corner plot-
ting with each other!

—Dr. Steven D. Majewski

A key requirement for automated instrumentation is the ability to describe what needs
to be done in terms that a computer, or some other type of automated control system,
can execute. While the term “programming” might immediately come to mind for some
readers, there are actually many ways to do this, some of which don’t even involve a
programming language (at least, not in the conventional sense). However, in this book
we will be using Python, along with a smattering of C, to create software for automated
instrumentation.

This chapter is intended to give you a basic introduction to Python. In the next chapter
I’ll introduce the C programming language, which we’ll use to create extensions for
Python that will allow you to interface with a vendor’s driver, or create modules for
handling computation-intensive chores. This chapter is not intended as an in-depth
tutorial or reference for Python; there are many other excellent books available that can
fill those roles (refer to the references at the end of this chapter for suggested reading).
There is also an extensive collection of documents available at the official Python web-
site, ranging from beginner’s tutorials to advanced topics.

Python was chosen as the primary programming language for this book for several
reasons: it’s relatively easy to learn; it doesn’t require a compilation step, so one can
execute programs simply by loading them (or just typing them in, if you’re brave
enough); and it is powerful and full-featured. Python is also rather unique in that it
supports three different programming models—procedural, object oriented, and
functional—simultaneously. To begin, we will generally be using the procedural para-
digm. Later, when we start working with graphical user interface (GUI) designs and
extensions written in C, we will encounter situations where it will be necessary to put

59

http://www.python.org
http://www.python.org

aside the purely procedural approach and more fully embrace objects by creating our
own.

However, as we will see shortly, Python is inherently object-oriented. Even variables
are actually objects, so even though Python doesn’t really force the OO paradigm on
the programmer, you will still be working with objects. If you’re not clear on what
“procedural” and “object-oriented” mean, please see the sidebar below.

Procedural and Object-Oriented Programming
The procedural paradigm is considered to be a form of imperative programming, where
the primary concept is that of a set of instructions arranged in an order-specific sequence
(akin to a recipe in a cookbook). Procedural programming extends the imperative
model with the concept of functions (procedures) contained within a source file, or
module. Each function performs a specific activity (an algorithm) and each can contain
its own private data. Functions may also reference “global” data within the scope of
the module in which they reside. Functions may call other functions, and functions
may optionally return data. Modules may refer to data and functions within other
modules. The idea is that programs are organized as hierarchies of modules (a technique
referred to as structured program design). A typical nontrivial C program is an example
of procedural programming. Note that here we’ve used “function” and “procedure” as
synonyms, but in some languages they are considered to be separate entities. In both
Python and C, there are just functions.

Object-oriented programming extends the procedural paradigm by employing the no-
tion of a class of things to describe the fundamental characteristics of an object of that
class (its data) and the operations that may be performed on it (an object’s methods).
An object is said to be instantiated using a class description or template. The class
description itself is not executable; only the objects created from it may be executed.
You might think of a class template as a cookie cutter and the objects based on the
template as the cookies made from it. Some of the cookies might have nuts, some might
have chocolate chips, and some may have frosting, but they are all members of the class
of things called “cookies.” You can create as many executable objects of a particular
class as necessary, and each object may have some methods or data unique to it in
addition to what it inherits from the parent class. An object’s data is usually referred
to as its attributes and the class functions that operate on that data are its methods.
Objects are often described in terms of “has-a” and “is-a” relationships. For example,
a rocking chair “is-a” member of the class of things called chairs; it “has-a” seat, a back,
and two rockers (its attributes); and people can sit on it and rock (its methods).

Installing Python
The first step is to install Python. In this book we will be using version 2.6 (not 3.x).
For the Windows environment, either the freely available ActiveState distribution,
which can be found at http://www.activestate.com/activepython/, or the distribution
from python.org is fine. Both include a nice help and reference tool tailored to Windows.

60 | Chapter 3: The Python Programming Language

http://www.activestate.com/activepython/

If you are running Linux, you should try to use your package manager (synaptic, apt-
get, rpm, or whatever) to install version 2.6.

If you need to build and install Python from the source code, see this page for more
information:

http://docs.python.org/using/unix.html#getting-and-installing-the-latest-version-of
-python

The Python Programming Language
Now that you have (hopefully) at least installed Python, we can take a quick tour
through some of the main features of the language.

Python is an interpreted language. More accurately, it is a bytecode compiled inter-
preted language. What this means is that Python performs a single-pass conversion of
program text into a compact binary pseudolanguage referred to as bytecode. This is
what is actually executed by the interpreter, which is itself a form of virtual computer
that uses the bytecode as its instruction set. This approach is common with modern
interpreted languages, and if the virtual machine and its instruction set are well de-
signed and optimized, program execution can approach some respectable speeds. Py-
thon is highly optimized internally and demonstrates good execution speeds. It will
never be as fast as a compiled language that is converted into the raw binary machine
language used by the underlying physical processor itself, but for most applications the
speed difference is of little concern. This is particularly true when one considers that
nowadays the typical processor (the CPU, or central processing unit) in an average PC
is running at between 1 and 3 gigahertz (GHz). Way back in time when a CPU running
at a speed of 30 megahertz (MHz) or so was considered fast, code efficiency and pro-
gram execution speed were much bigger concerns.

If you are new to Python, or even if you aren’t, the book Python Pocket Reference by
Mark Lutz (O’Reilly) is highly recommended. It provides a terse, cut-to-the-chase de-
scription of the primary features and capabilities of Python, and it is well organized and
actually very readable. It is also small, so you can literally put it into a pocket and have
it at hand when needed. Several other excellent books on Python are listed in the sug-
gested reading list at the end of this chapter.

The Python Command Line
How you will start the Python interpreter in interactive mode depends on which
operating system you are using. For Windows, the usual method is to first open a
command prompt window (this is sometimes erroneously called a “DOS box,” but
Windows hasn’t had a real DOS box for a long time). At the prompt (which may look
different than what is shown here), type in the following command:

C:\> python

The Python Programming Language | 61

http://docs.python.org/using/unix.html#getting-and-installing-the-latest-version-of-python
http://docs.python.org/using/unix.html#getting-and-installing-the-latest-version-of-python
http://oreilly.com/catalog/9780596158095/

You should see something like this (assuming you’ve installed the ActiveState distri-
bution, but the standard Python distribution is almost identical):

ActivePython 2.6.4.8 (ActiveState Software Inc.) based on
Python 2.6.4 (r264:75706, Nov 3 2009, 13:23:17) [MSC v.1500 32 bit
(Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

The procedure is similar for a Linux (or BSD, or Solaris) system. Open a shell window
(it shouldn’t matter if the shell is csh, ksh, bash, or whatever) and enter python at the
prompt. Assuming that Python has been installed correctly, you will see the startup
message.

The >>> is Python’s command prompt, waiting for you to give it something to do. To
exit from the Python command line on a Windows machine, use Ctrl-Z, and on a Linux
system use Ctrl-D. Typing “quit” will not work.

The Python command line is a great way to explore and experiment. You can get help
for just about everything by using the built-in help facility. Just typing help(), with no
arguments, results in the following display:

>>> help()

Welcome to Python 2.6! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help>

As the help display states, the tutorial material found on the official website is indeed
a good place to get a feel for what Python looks like and how to use it. This chapter
takes a somewhat different approach to the language, however, by introducing the
reader to the concept of data objects first, and reserving things like operators and state-
ments until a little later. I feel that the underlying object-oriented nature of the language
is important enough to be dealt with first, because when creating even trivial programs
in Python one will quickly encounter situations that will require the use of some of the
capabilities embedded in each type of data object.

Over the years I have observed that when tutorial material on Python attempts to ignore
or downplay the fundamental OO nature of the language, the result is often full of
statements like “Oh, and by the way...” and “It is also like this, but we won’t worry

62 | Chapter 3: The Python Programming Language

about that here...” Rather than trying to avoid the topic, we will just deal with it head-
on. Having a good understanding of what is going on under the hood helps make it a
lot easier to comprehend what is happening when things work correctly, and a whole
lot easier to have some idea of what to look for when they don’t. If you’re new to Python,
it would probably be a good idea to read through both this section and Python’s online
tutorial.

Command-Line Options and Environment
The manpage (manual page) for Python is very informative, but unfortunately it is hard
to get at if you only have a Windows machine. On a Linux system, simply type man
python at a shell prompt (actually, if Python was installed correctly, this should work
on any Unix-ish-type system).

On Windows, you can ask Python for some abbreviated help at the command line by
typing:

C:\> python -h

What you get back should look something like this:

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-B : don't write .py[co] files on import; also PYTHONDONTWRITEBYTECODE=x
-c cmd : program passed in as string (terminates option list)
-d : debug output from parser; also PYTHONDEBUG=x
-E : ignore PYTHON* environment variables (such as PYTHONPATH)
-h : print this help message and exit (also --help)
-i : inspect interactively after running script; forces a prompt even
 if stdin does not appear to be a terminal; also PYTHONINSPECT=x
-m mod : run library module as a script (terminates option list)
-O : optimize generated bytecode slightly; also PYTHONOPTIMIZE=x
-OO : remove doc-strings in addition to the -O optimizations
-Q arg : division options: -Qold (default), -Qwarn, -Qwarnall, -Qnew
-s : don't add user site directory to sys.path; also PYTHONNOUSERSITE
-S : don't imply 'import site' on initialization
-t : issue warnings about inconsistent tab usage (-tt: issue errors)
-u : unbuffered binary stdout and stderr; also PYTHONUNBUFFERED=x
 see man page for details on internal buffering relating to '-u'
-v : verbose (trace import statements); also PYTHONVERBOSE=x
 can be supplied multiple times to increase verbosity
-V : print the Python version number and exit (also --version)
-W arg : warning control; arg is action:message:category:module:lineno
-x : skip first line of source, allowing use of non-Unix forms of #!cmd
-3 : warn about Python 3.x incompatibilities that 2to3 cannot trivially fix
file : program read from script file
- : program read from stdin (default; interactive mode if a tty)
arg ...: arguments passed to program in sys.argv[1:]

Other environment variables:
PYTHONSTARTUP: file executed on interactive startup (no default)
PYTHONPATH : ';'-separated list of directories prefixed to the
 default module search path. The result is sys.path.

The Python Programming Language | 63

PYTHONHOME : alternate <prefix> directory (or <prefix>;<exec_prefix>).
 The default module search path uses <prefix>\lib.
PYTHONCASEOK : ignore case in 'import' statements (Windows).
PYTHONIOENCODING: Encoding[:errors] used for stdin/stdout/stderr.

You will probably not have much need for the majority of the option switches, but
occasionally they do come in handy (especially the -i, -tt, and -v switches). The en-
vironment variables, particularly PYTHONHOME, are important, and should be set initially
according to the installation directions supplied with the distribution of Python that
you are using.

Objects in Python
Generally speaking, everything in Python is an object, including data variables. An
assignment is equivalent to creating a new object, and so is a function definition. If
you’re not familiar with object-oriented concepts, don’t worry too much about it for
now (see the sidebar “Procedural and Object-Oriented Programming” on page 60 for
a nutshell overview). Hopefully it will become clear as we go along. For now, we just
want to show what types of objects one can expect to find in Python; we’ll look at how
they are used later.

Table 3-1 lists the various object types most commonly encountered in Python. The
type class name is what one would expect to be returned by the built-in type() method,
or if an error involving a type mismatch occurs.

Table 3-1. Object types

Object type Type class name Description

Character chr Single-byte character, used in strings

Integer int Signed integer, 32 bits

Float float Double-precision (64-bit) number

Long integer long Arbitrarily large integer

Complex complex Contains both the real and imaginary parts

Character string str Ordered (array) collection of byte characters

List list Ordered collection of objects

Dictionary dict Collection of mapped key/value pairs

Tuple tuple Similar to a list but immutable

Function function A Python function object

Object instance instance An instance of a particular class

Object method instancemethod A method of an object

Class object classobj A class definition

File file A disk file object

64 | Chapter 3: The Python Programming Language

We will touch on all of these before we’re finished: we’ll start with numeric data and
work up to things like lists, tuples, and dictionaries.

Data Types in Python
If you’ve done any programming in a language like Pascal or C, you are probably fa-
miliar with the notion of a variable. It’s a binary value stored in a particular memory
location. Python is different, however, and this is where things start to get interesting.
Python provides the usual numeric data types, such as integers, floats, and so on. It
also has a complex type, which encapsulates both the real and imaginary parts of a
complex number. The key thing is in how Python implements variables.

Numeric data as objects

When a variable is assigned a literal value in Python, what actually happens is that an
object is created, the literal value is assigned to it (it becomes an attribute of the object),
and then it is “bound” to a name. Objects usually have a special method called a
constructor that handles the details of creating (instantiating) a new object in memory
and initializing it. Conversely, an object may also have a destructor method to remove
it from memory when the program is finished with it. In Python, the removal of an
object is usually handled automatically in a process called garbage collection.

Here’s an example of how Python creates a new data object:

>>> some_var = 5

This statement instantiates a new object of type int with a value attribute of 5, and then
binds the name some_var to it (we’ll see how name binding works shortly). One could
also type the following and get the same result:

>>> some_var = int(5)

In this case, we are explicitly telling Python the object type we want (an integer) by
calling the int class constructor and passing it the literal value to be assigned when the
new object is instantiated. It is important to note that this is not a “cast” in a C or
C++ sense; it is an instantiation of an int object that encapsulates the integer value 5.

This way of doing things may seem a bit odd at first, but one gets used to it fairly quickly.
Also, most of the time you can safely ignore the fact that variables are actually objects,
and just treat them as you might treat a variable in C or C++:

>>> var_one = 5
>>> var_two = 10
>>> var_one + var_two
15

You can also query an object to see what type it is:

>>> type(some_var)
<type 'int'>

The Python Programming Language | 65

Although I just stated that int() is not a cast, it can be used as something akin to that
by letting the data objects do the type conversion themselves when a new object is
created:

>>> float_var = 5.5
>>> int_var = int(float_var)
>>> print int_var
5

Notice that the fractional part of float_var vanished as a result of the conversion.

Octal and hexadecimal integer notation is also supported, and work as in C:

Octal integer
Use a leading 0, as in 0157.

Hexadecimal integer
Use a leading 0x, as in 0x3FE.

Octal and hexadecimal values don’t have their own type classes. This is because when
a value written in either format is assigned to a Python variable, it is converted to its
integer equivalent:

>>> foo_hex = 0x2A7
>>> print foo_hex
679

This is equivalent to writing:

>>> foo_hex = int("2A7",16)
>>> print foo_hex
679

So exactly what is a “data object”? In Python, things like variable names reside in what
is called a namespace. There are various levels of namespaces, from the local namespace
of a function or method to the global namespace of the Python interpreter’s execution
environment. For now, we won’t worry too much about them; we’ll just work with the
concept of a local namespace.

Variable names do not have any value, other than the string that makes up the name.
They are more like handles or labels that we can attach to things that do have values—
namely, objects. Figure 3-1 shows how this works.

Typically objects have methods, or internal functions, that operate on the data encap-
sulated within them. Python’s data objects are no exception. If we create an integer
data object, we can ask Python to describe the object to us using the help() function,
like this:

>>> int_var = 5
>>> help(5)
Help on int object:

class int(object)
 | int(x[, base]) -> integer

66 | Chapter 3: The Python Programming Language

 |
 | Convert a string or number to an integer, if possible. A floating point
 | argument will be truncated towards zero (this does not include a string
 | representation of a floating point number!) When converting a string, use
 | the optional base. It is an error to supply a base when converting a
 | non-string. If base is zero, the proper base is guessed based on the
 | string content. If the argument is outside the integer range a
 | long object will be returned instead.
 |
 | Methods defined here:
 |
 | __abs__(...)
 | x.__abs__() <==> abs(x)
 |
 | __add__(...)
 | x.__add__(y) <==> x+y
 |
 | __and__(...)
 | x.__and__(y) <==> x&y
 |
 | __cmp__(...)
 | x.__cmp__(y) <==> cmp(x,y)
 |
 | __coerce__(...)
 | x.__coerce__(y) <==> coerce(x, y)
 |
 | __div__(...)
 | x.__div__(y) <==> x/y
 |
 | __divmod__(...)
 | x.__divmod__(y) <==> divmod(x, y)
 |
 | __float__(...)
 | x.__float__() <==> float(x)
 |
 | __floordiv__(...)
 | x.__floordiv__(y) <==> x//y
 |
 | __format__(...)
 |
 | __getattribute__(...)
 | x.__getattribute__('name') <==> x.name
 |
 | __getnewargs__(...)
 |
-- More --

There are more internal methods, and you can peruse them if you are so inclined (just
press the space bar for another screenful, Return for another line, or q to return to the
prompt), but the main point here is that in Python, data objects “know” how to ma-
nipulate their internal data using the built-in methods for a particular class. In other
words, the Python interpreter handles the details of converting a statement like this:

5 + 5

The Python Programming Language | 67

into the bytecode equivalent of this, internally:

int(5).__add__(int(5))

and then executing it.

Figure 3-1. Numeric data objects

The fact that variables in Python really are objects does take a little getting used to. But
it is a powerful feature of the language, and because you can selectively ignore this
feature it is possible to create what look like procedural programs, when in reality
Python is all about objects.

Sequence objects

Python provides three data types for ordered collections of data objects: lists (arrays),
strings, and tuples (list-like objects). These are also known as sequence objects. The
“sequence” part refers to the fact that each of these data objects may contain zero or

68 | Chapter 3: The Python Programming Language

more references to other data objects in an ordered sequence. All except for the string
type allow their member elements to be any valid Python object. All have methods for
manipulating their data; some methods are common to all sequence objects, and some
are unique to a particular type. Table 3-2 lists the three sequence types and some of
their properties.

Table 3-2. Sequence objects

Type Mutable? Delimiters

List Yes []

String No, immutable '' or ""

Tuple No, immutable ()

Python sequence objects are either mutable (changeable) or immutable (unchangea-
ble). A list object, for example, is mutable in that its data can be modified. A string, on
the other hand, is not mutable. One cannot replace, remove, or insert characters into
a string directly. A string object is an immutable collection of character values that is
treated as a read-only array of byte-sized data objects.

Actually, this applies only to 8-bit UTF-8 character encoding; other
character sets (e.g., Unicode) may require something other than just
single bytes for each character. In this book we’ll only be working with
the UTF-8 character encoding (see Chapter 12 for more on ASCII and
the UTF-8 character encoding standard).

In order to make a change to a string, one must create a new string that incorporates
the changes. The original string object remains untouched, even if the same variable
name is reused for the new string object (which “unbinds” the original string object;
unbound objects tend to evaporate through the process of garbage collection, but that’s
a low-level detail we don’t really need to worry about).

A list is Python’s closest equivalent to an array, but it has a few tricks that the
arrays in C and Pascal never learned how to do. A list is an ordered sequence, and any
element in the list may be replaced with something different. New elements are ap-
pended to a list using its append method (there is also a pop method, which means a list
can be a queue as well), and the contents of a list can be sorted in place. Each element
in a list is actually a reference to an object, just as a numeric data variable name is a
reference to a numeric data object. In fact, a list can contain references to any valid
Python object. Consider the following:

>>> import random
>>> alist = []
>>> alist.append(4)
>>> alist.append(55.89)
>>> alist.append('a short string')
>>> alist.append(random.random)

Lists.

The Python Programming Language | 69

alist now contains four elements, which are composed of an integer, a floating-point
value, a string, and a reference to a method from Python’s random module called, ap-
propriately enough, random (we’ll discuss the import statement in more detail later). We
can examine each member element of alist to verify this:

>>> alist[0]
4
>>> alist[1]
55.890000000000001
>>> alist[2]
'a short string'
>>> alist[3]
<built-in method random of Random object at 0x00A29D28>

If we want a random number, all we have to do in order to invoke random() is treat
alist[3] as if it were a function by appending the expected parentheses:

>>> alist[3]()
0.87358651337544713

We can change a particular element in alist simply by assigning it a new value:

>>> alist[2]
'a short string'
>>> alist[2] = 'a better string'
>>> alist[2]
'a better string'

Figure 3-2 shows what is going on inside the alist object.

Figure 3-2. List object internal organization

We can use a list object to demonstrate Python’s underlying OO nature by entering the
following at the Python prompt and observing the results:

>>> list_name = []
>>> list_name.append(0)
>>> list_name.append(1)
>>> list_name
[0, 1]
>>> var_one = list_name
>>> var_two = list_name

70 | Chapter 3: The Python Programming Language

>>> var_one
[0, 1]
>>> var_two
[0, 1]
>>> list_name[0] = 9
>>> var_one
[9, 1]
>>> var_two
[9, 1]

Because the names var_one and var_two both refer to the list object initially bound to
the name list_name, when list_name is altered the change in the list object is “seen” by
both of the other variable names.

Like most every other object in Python, a list has a collection of methods. These include
the indexing methods we’ve already seen, but there are more. Lists can be concatenated
and are appended end-to-end in the order specified, like so:

>>> alist1 = [1,2,3,4,5]
>>> alist2 = [6,7,8,9,10]
>>> alist1 + alist2
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

To find the index offset of a particular item in a list, we can use the index() method:

>>> alist2.index(8)
2

We can also reverse the order of a list:

>>> alist1.reverse()
>>> alist1
[5, 4, 3, 2, 1]

And we can sort a list:

>>> slist = [8,22,0,5,16,99,14,-6,42,66]
>>> slist.sort()
>>> slist
[-6, 0, 5, 8, 14, 16, 22, 42, 66, 99]

Notice in the last two examples that the list itself is modified “in place.” That is, a new
object is not created as a result of reversing or sorting a list. Lists are mutable.

Strings are ordered sequences of byte-value characters. Strings are immutable,
meaning that (unlike in C or C++) they cannot be altered in place by using an index
and treating them like arrays. In order to modify a string, one must create a new string
object. The contents of a string can, however, be referenced using an index into the
string.

Here are some string examples:

>>> astr1 = 'This is a short string.'
>>> astr2 = "This is another short string."
>>> astr3 = "This string has 'embedded' single-quote chracters."
>>> astr4 = """This is an example

Strings.

The Python Programming Language | 71

... of a multi-line

... string.

... """
>>>

Although one cannot change the contents of a string using an index value, the data can
be read using an index, and Python provides the ability to extract specific parts of a
string (or “slices,” as they are called). The result is a new string object. The following
line will read the first four characters of the string variable astr1, starting at the zero
position and stopping before, but not at, the fourth position:

>>> print astr1[0:4]
This

We could also eliminate the 0 in the index range and just let it be assumed:

>>> print astr1[:4]
This

This form tells Python to extract everything from the start of the string up to the fourth
position. We can also extract everything from the fourth position to the end of the line:

>>> print astr1[4:]
 is a short string.

Or we can get something from the middle of the string:

>>> print astr1[10:15]
short

Figure 3-3 shows how indexing works in Python.

Figure 3-3. String indexing

String objects also incorporate a set of methods that perform operations such as capi-
talization, centering, and counting the occurrences of particular characters, among
other things, each returning a new string object.

As with lists, concatenation uses the + operator:

72 | Chapter 3: The Python Programming Language

>>> str_cat = astr1 + " " + astr2
>>> print str_cat
This is a short string. This is another short string.

The result is, as you might expect by now, a new string object. Fortunately, Python
incorporates garbage collection, and objects that are no longer bound to a name, as in
the following situation, are quietly whisked away; their memory is returned to a shared
pool for reuse. This is a good thing, as otherwise memory could quickly fill up with
abandoned data objects:

>>> the_string = "This is the string."
>>> the_string = the_string[0:4]
>>> the_string
'This'

In this case, the name the_string is initially bound to the string object containing "This
is the string.". When a section of the initial string object is pulled out, a new object
is created and the name is reassigned to it. The original object, no longer bound, dis-
appears. However, if an object is shared between two or more names, it will persist so
long as one name is bound to it. This can come in handy when creating objects that
need to hang around for the life of a program.

Other string methods allow you to left- or right-align a string, replace a word in a string,
or convert the case of the characters in a string. Here are some examples.

The upper() method converts all alphabetic characters in a string to uppercase:

>>> print astr1.upper()
THIS IS A SHORT STRING.

find() returns the index of the first character in the search pattern string:

>>> print astr1.find('string')
16

The replace() method substitutes the new string for the search pattern:

>>> print astr1.replace('string', 'line')
This is a short line.

The rjust() method (and its counterpart, ljust()) justifies a string in a field, the width
of which is the method’s argument:

>>> print astr1.rjust(30)
 This is a short string.

The default fill character is a space, but one can specify an alternative as a second
argument:

>>> print astr1.rjust(30,'.')
.......This is a short string.

You can get a listing of the various string methods available by typing help(str) at the
Python prompt.

The Python Programming Language | 73

The tuple is an interesting data object with many uses. Like a list object, it is an
ordered set that may contain zero or more items, but unlike the list, it is immutable.
Once created, a tuple cannot be directly modified. Tuples are typically referred to by
the number of items they contain. For example, a 2-tuple has, as you might expect, two
data objects. A shorthand way of referring to a tuple of any size is to say “n-tuple.” Even
a 0-tuple is possible in Python; it isn’t particularly interesting or useful, except perhaps
as a placeholder, but Python will let you create one if you really want to.

Whereas lists in Python employ square brackets as delimiters, tuples use parentheses,
like this:

>>> tuple2 = (1,2)
>>> tuple2
(1, 2)

The contents of a tuple can be accessed using an index, just as with lists and strings:

>>> tuple4 = (9, 22.5, 0x16, 0)
>>> tuple4
(9, 22.5, 22, 0)
>>> tuple4[2]
22
>>> tuple4[0]
9

Like lists and strings, tuples may be concatenated (with a new tuple as the result):

>>> tuple2
(1, 2)
>>> tuple4
(9, 22.5, 22, 0)
>>> tuple6 = tuple2 + tuple4
>>> tuple6
(1, 2, 9, 22.5, 22, 0)

In this case, we can see that a new tuple object is created.

A tuple cannot be sorted, but it can be counted. To find out how many times a particular
value or object occurs, we can use the count() method:

>>> tpl = (0, 0, 2, 2, 6, 0, 3, 2, 1, 0)
>>> tpl.count(0)
4
>>> tpl.count(2)
3
>>> tpl.count(6)
1

Since the contents of a tuple are actually references to objects, a tuple can contain any
mix of valid Python objects, just like a list object.

Tuples.

74 | Chapter 3: The Python Programming Language

Mapped objects—dictionaries

Python’s dictionary is a unique data object. Instead of an ordered set of data elements,
a dictionary contains data in the form of a set of unordered key/value pairs. That is,
each data element has an associated key that uniquely identifies it. It is Python’s one
and only mapped data object.

Like any other Python data object, a dictionary can be passed as an argument to a
function or method, and returned as well. It can be a data element in a tuple or list, and
its values can be any valid Python object type. The types that are usable as keys are
limited to integers, strings, and tuples; in other words, keys must be immutable objects.

To create a dictionary object, we can initialize it with a set of keys and associated values:

>>> dobj = {0:"zero", 1:"one", "food":"eat", "spam":42}
>>> dobj
{0: 'zero', 1: 'one', 'food': 'eat', 'spam': 42}

To get at a particular key, we can use what looks like indexing, but is not:

>>> dobj[0]
'zero'
>>> dobj[1]
'one'

If we try a key that isn’t in the dictionary, Python complains:

>>> dobj[2]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 2

But so long as it’s a valid key, we will get a valid value back:

>>> dobj["spam"]
42

Dictionaries incorporate a set of powerful methods for manipulating their data. Ta-
ble 3-3 contains a list of what’s available, and we’ll look at a few in detail.

Table 3-3. Dictionary methods

Method Description

clear() Removes all items from a dictionary.

copy() Performs a “shallow” copy of a dictionary.

get() Returns the data associated with a key, or a default value if no matching key is found.

has_key() Returns True if a specified key is in a dictionary, and False otherwise.

items() Returns a list of a dictionary’s key/value pairs as 2-tuples.

iteritems() Iterates over the key/value pairs in a dictionary.

iterkeys() Iterates over the keys in a dictionary.

itervalues() Iterates over the values in a dictionary.

The Python Programming Language | 75

Method Description

keys() Returns a list of the keys in a dictionary.

pop() Pops off a specific item by key and removes it from the dictionary.

popitem() Pops off a specific key/value pair and removes it from the dictionary.

setdefault() Sets the default value to be returned should a get() fail.

update() Updates the values with the values from another dictionary. Replaces values in matching keys.

values() Returns a list of the values in a dictionary.

Note that there is no append() method like the one available for lists. To add a new
item to a dictionary, one simply assigns a value to a new key:

>>> dobj[99] = "agent"
>>> dobj
{0: 'zero', 1: 'one', 99: 'agent', 'food': 'eat', 'spam': 42}

Notice that the new key and its associated data are inserted in the dictionary at an
arbitrary location. A dictionary is not a sequence object, and data is accessed using
keys, so it really is unimportant where it is actually located amongst the other key/value
pairs in the data object.

This technique can also be used to modify an existing key’s value:

>>> dobj[1] = "the big one"
>>> dobj
{0: 'zero', 1: 'the big one', 99: 'agent', 'food': 'eat', 'spam': 42}

A safer way to fetch a value from a dictionary is to use the get() method:

>>> dobj.get(99)
'agent'

If we attempt to get a value for a key that doesn’t exist, get() will by default return the
special value of None. At the Python command line, this doesn’t show anything:

>>> dobj.get(256)

We can specify a default return value of our choosing, if we so desire, like this:

>>> dobj.get(256,"Nope")
'Nope'

Dictionaries are useful for keeping global data (such as parameters) in one convenient
place, and the ability to return a default value allows a program to use predefined
parameter values if no externally supplied values are available.

There may be times when we want to get a list of what’s in a dictionary. The items()
method returns all of a dictionary’s key/value pairs as a list object of 2-tuples:

>>> dobj.items()
[(0, 'zero'), (1, 'the big one'), (99, 'agent'), ('food', 'eat'), ('spam', 42)]

76 | Chapter 3: The Python Programming Language

If we want a list of the keys, we can get one using the keys() method:

>>> dobj.keys()
[0, 1, 99, 'food', 'spam']

Finally, if we are only interested in the values, the values() method comes in handy:

>>> dobj.values()
['zero', 'the big one', 'agent', 'eat', 42]

That should be enough on dictionaries for now. We will see other interesting ways to
use dictionaries and the other Python data types later, but in the meantime, feel free to
experiment with the Python command line. Trying out new things is one of the best
ways to learn about them.

Expressions
In this book, we’re going to use a mathematical-type definition of an expression. That
is, an expression is a well-formed sequence of variables and mathematical or logical
symbols that does not contain an equals (assignment) symbol but will evaluate to a
valid logical or numerical value. A statement (which we will look at shortly) does specify
an assignment or some other action, and statements may contain expressions.

Expressions make use of various operators, such as addition, subtraction, comparison,
and so on. Expressions may be simple, such as:

a + b

or they may be compound expressions, as in:

((a + b) * c) ** z

Parentheses are used to indicate order of evaluation. In the previous example, the mul-
tiplication operator (*) has a higher precedence than addition (+), and exponentiation
(**) has a higher precedence than multiplication, so without the parentheses the ex-
pression would be evaluated like this:

a + b * c**z

which is clearer if we put the implied parentheses back in:

a + (b * (c**z))

This is definitely not what was wanted in the original expression.

Expressions may contain things other than operators. For example, assume there is a
function called epow() that will return the value of e raised to the power of some number
or the result of some expression. An expression could contain a call to this function
and use it to create a new value:

n + epow(x - (2 * y))

This would be the equivalent of writing n + e(x − 2y) in standard mathematical notation.

The Python Programming Language | 77

Operators
Now that we’ve seen the data types Python supports and what an expression is, we can
look at the various things one can do with them using operators. Python provides a full
set of arithmetic, logical, and comparison operators. It also includes operators for bit-
wise operations, membership tests, and identity tests, and it provides various augmen-
ted assignment operators.

Arithmetic operators

Python provides the usual four basic arithmetic operators: addition, subtraction, mul-
tiplication, and division. It also has two operators that are not found in some other
languages: exponent and floor division. Table 3-4 lists Python’s arithmetic operators.

Table 3-4. Arithmetic operators

Operator Description

+ Addition

− Subtraction

* Multiplication

/ Division

% Modulus

** Exponent

// Floor division

When dealing with a mix of numeric data types, Python will automatically “promote”
all of the operands to the highest-level type, and then perform the indicated operation.
The type priorities are:

complex
float
long
int

This means that if an expression contains a floating-point value but no complex values,
the result will be a floating-point value. If an expression contains a long and no floating-
point or complex values, the result will be a long. If an expression contains a complex
value, the result will be complex. So, if one has an expression that looks like this:

5.0 * 5

the result will be a floating-point value:

25.0

78 | Chapter 3: The Python Programming Language

As I mentioned, Python also has a unique division operator called “floor division.” This
is used to return the quotient of a floating-point operation truncated down to the near-
est whole value, with the result returned as a float. In Python, the behavior of // is like
this:

>>> 5/2
2
>>> 5//2
2
>>> 5.0/2
2.5
>>> 5.0//2
2.0

Logical operators

Python’s logical operators, shown in Table 3-5, act on the truth values of any object.

Table 3-5. Logical operators

Operator Description

and Logical AND

or Logical OR

not Logical NOT

Python provides the keywords True and False for use in logical expressions. Note that
any of the following are also considered to be False:

• The None object

• Zero (any numeric type)

• An empty sequence object (list, tuple, or string)

• An empty dictionary

All other values are considered to be True. It is also common to find 1 and 0 acting as
true and false values.

Comparison operators

Comparison operators evaluate two operands and determine the relationship between
them in terms of equality, inequality, and magnitude (see Table 3-6).

Table 3-6. Comparison operators

Operator Description

== True if a equals b, else False

!= True if a does not equal b, else False

<> Same as !=

The Python Programming Language | 79

Operator Description

> True if a is greater than b, else False

< True if a is less than b, else False

>= True if a is greater than or equal to b, else False

<= True if a is less than or equal to b, else False

Python expressions that use comparison operators always return a logical true or false.

Bitwise operators

Python’s AND, OR, and XOR operators map across bit-to-bit between the operands; they
do not perform arithmetic operations. The bitwise operators are listed in Table 3-7.

Table 3-7. Bitwise operators

Operator Description

& Binary AND

| Binary OR

^ Binary XOR

~ Binary one’s complement

<< Binary left shift

>> Binary right shift

The AND operation will return only those bits in each operand that are true (1), whereas
the OR will “merge” the bits of both operands, as shown in Figure 3-4.

Figure 3-4. Python bitwise AND and OR operators

The bitwise operators are useful when there is a need to set a particular bit (OR) or test
for a bit with a value of 1 (AND). The XOR operator returns the bitwise difference between
two operands, as shown in the truth table in Figure 3-5.

80 | Chapter 3: The Python Programming Language

Figure 3-5. Python bitwise XOR operator

The one’s complement operator changes the value of each bit to its inverse. That is, a
binary value of 00101100 becomes 11010011.

The binary shift operators work by shifting the contents of a data object left or right by
the number of bit positions specified by the righthand operand. The effect is the equiv-
alent of multiplication by 2n for a left shift or division by 2n for a right shift (where n is
the number of bit positions shifted). For example:

>>> 2 << 1
4
>>> 2 << 2
8
>>> 2 << 3
16
>>> 16 >> 2
4

Assignment operators

As we’ve already seen, assignment in Python involves more than just stuffing some data
into a memory location. An assignment is equivalent to instantiating a new data object.
Python’s assignment operators are listed in Table 3-8.

Table 3-8. Assignment operators

Operator Description

= Simple assignment

+= Add and assignment (augmented assignment)

−= Subtract and assignment (augmented assignment)

*= Multiply and assignment (augmented assignment)

/= Divide and assignment (augmented assignment)

%= Modulus and assignment (augmented assignment)

**= Exponent and assignment (augmented assignment)

//= Floor division and assignment (augmented assignment)

The Python Programming Language | 81

In addition to the simple assignment operator, Python provides a set of augmented
assignment operators as corollaries to each of the arithmetic operators. An augmented
assignment first performs the operation and then assigns the result back to the name
on the lefthand side of the operator. For example:

>>> a = 1
>>> a += 1
>>> a
2

Membership operators

The membership operators are used to determine whether a value or object exists
(in), or doesn’t (not in), within a sequence or dictionary object (see Table 3-9). Note
that when used with a dictionary only the keys are tested, not the values.

Table 3-9. Membership operators

Operator Description

in Result is True if x is a member of y, else False

not in Result is True if x is not a member of y, else False

One way to use the in operator would be like this:

if x in some_list:
 DoSomething(x, some_list)

In this case, the function doSomething() will only be called if x is in some_list. Con-
versely, one could test to see if something is not in an object:

if x not in some_dict:
 some_dict[x] = new_value

If the key x does not already exist in the dictionary, it will be added along with a value.

Identity operators

Python’s identity operators (shown in Table 3-10) are used to determine if one name
refers to the same object as another name (is), or if it does not (is not).

Table 3-10. Identity operators

Operator Description

is Result is True if x and y refer to the same object, else False

is not Result is True if x and y do not refer to the same object, else False

The identity operators are handy when attempting to determine if an object is available
for a particular operation. An is expression will evaluate to True if the variable names
on either side of the operator refer to the same object. An is not expression will evaluate
to True if the variable names on either side of the operator do not refer to the same object.

82 | Chapter 3: The Python Programming Language

Here is a (nonexecutable) example:

def GetFilePath(name):
 global pathParse

 if pathParse is None:
 pathParse = FileUtil.PathParse()

 file_path = pathParse(name)
 if len(file_path) > 1:
 return file_path
 else:
 return None

The global name pathParse would be initialized (at the start of the module) to None, but
for this function it should refer to an object of the class pathParse in the FileUtil
module. If it does not (i.e., it is None), it is instantiated. If the function attempts to use
pathParse with a value of None, it will fail.

Operator precedence

We already saw some of the precedence characteristics of operators in the earlier dis-
cussion of expressions, but now let’s take a closer look. Table 3-11 lists Python’s op-
erators in order of precedence, from lowest to highest.

Table 3-11. Operator precedence

Precedence Operator

Lowest or

. and

. not x

. in, not in, is, is not, <, <=, >, >=, <>, !=, ==

. |

. ^

. &

. <<, >>

. +, -

. *, /, //, %

. +x, -x, ~x

Highest **

Parentheses are used to force the order of evaluation, as was shown earlier. If you can’t
remember how the evaluation order works, or the default order isn’t what you want,
use parentheses as necessary to get the desired result. Using parentheses for clarity is
never a bad thing.

The Python Programming Language | 83

Statements
A typical program is composed of statements, comments, and whitespace (blank lines,
spaces, tabs, etc.). Statements are composed of keywords and optional expressions,
and specify an action. A statement might be a simple assignment:

>>> some_var = 5

Or it could be a compound set of control statements, such as an if-else construct:

>>> if some_var < 10:
... print "Yes"
... print "Indeed"
... else:
... print "Sorry"
... print "Nope"
...
Yes
Indeed

Python is also interesting for what it doesn’t have. Those with experience in other
languages may notice that there is no “switch” or “case” statement. Python’s if-elif-
else construct is usually used for this purpose. There is also nothing that looks like the
structure data type in C. Dictionaries and lists can be used to emulate a structure, but
it’s often not necessary. Python also does not have a “do”, as in do-until or do-while.
It does have a for statement, but it doesn’t work in the way that a C programmer might
expect.

Indentation

When talking about program structure, one often refers to blocks of statements. A block
can be defined as a set of one or more statements that are logically associated. Unlike
C and some other languages, Python does not use special characters or reserved words
to denote how statements are logically grouped into blocks. It uses indentation. For
example, in C, one could write the if-else shown above like this:

if (some_var < 10) {
 printf("Yes\n");
 printf("Indeed\n");
}
else {
 printf("Sorry\n");
 printf("Nope\n");
}

The curly braces tell the C compiler how the statements are grouped, and C does not
care how much or how little each statement is indented—in C that’s considered to be
“whitespace,” and the compiler ignores it. In Python, however, the indentation is es-
sential, as it tells the interpreter how the code is structured and which statements are
logically associated. The amount of indentation is not critical so long as it is consistent.
The recommended amount is four spaces for each level, and no tabs (tabs are generally

84 | Chapter 3: The Python Programming Language

considered somewhat evil because they don’t always move between different editors
gracefully—one editor might interpret tabs as four spaces, whereas another might
translate tabs to eight spaces).

Some people have issues with Python’s use of indentation to denote blocks of code,
and for those with extensive experience in C or C++ it does seem rather odd at first
(although it is by no means a new idea in computer science). The advantages claimed
for indentation are that it helps to enforce a consistent style across different programs
by different authors and that it improves readability. Some people find that using com-
ments such as #endif, #endfor, and #endwhile helps to make large sections of code with
multiple levels of indentation easier to read, but we won’t get into that discussion here.

Comments

In Python, a comment is denoted by a # character (sometimes called a hash), and a
comment can appear anywhere on a line. The interpreter ignores everything following
the hash. Use comments liberally to document your programs, but make the comments
worthwhile. A comment like this:

a += 1 # increment by one

isn’t very useful (although they still show up quite often), but a comment like this:

if (a + 1) > maxval: # do not increment past limit

can help to dispel mystery.

Keywords

Python utilizes 31 distinct reserved keywords, listed in Table 3-12.

Table 3-12. Python’s keywords

and elif if print

as else import raise

assert except in return

break exec is try

class finally lambda while

continue for not with

def from or yield

del global pass

We will examine some of the more commonly used keywords in the remainder of this
chapter. Others will be introduced as necessary when we start developing some larger
and more complex programs.

The Python Programming Language | 85

Simple statements

In Python, a simple statement (see Table 3-13) is one that consists of an assignment or
keyword in a single line; there are no other components. The statement may have more
than one expression, however.

Table 3-13. Simple statements

Keyword Description

assert assert <expression>; if <expression> is not true, an exception will be raised

Assignment (=) Creates a new data object and assigns (binds) it to a name

Augmented
assignment

See Table 3-8

pass The null operation; when executed, nothing happens

del Removes the binding between a name or list of names and any associated objects

print Sends output to the standard output (stdout)

return May return an optional literal value or the result of an expression

yield Only used in generator functions

raise Raises an exception

break Used in for and while loops to terminate loop execution

continue Used in for and while loops to force the loop to jump back to the top and immediately start a new cycle

import Specifies an external module to be included in the current namespace

global Specifies a list of names that are to be treated as global variables within the current module

exec Supports dynamic execution of Python code

I have intentionally skipped the del, exec, raise, and yield statements in the following
subsections because they really won’t come into play for what we want to do in this
book. A discussion of the import statement is deferred until later in this chapter, in the
section titled “Importing Modules” on page 106.

The assert statement is typically used to determine if some condition has been
met. If not, an exception is raised. It is heavily used in unit testing and sometimes for
catching off-nominal conditions (although there are other ways to do this).

The assignment statement (=) is probably the most basic form of Python
statement. As we’ve already seen, an assignment is essentially equivalent to instantiat-
ing an object of some type and binding it to a name. We’ve already made extensive use
of assignment in the previous sections, so we won’t belabor it any more here.

Augmented assignment statements are very useful and show up
quite often in Python programs. Because an assignment of any type will create a new
data object, you cannot have an augmented assignment in an expression. In other
words, this won’t work:

assert.

Assignment.

Augmented assignment.

86 | Chapter 3: The Python Programming Language

if (a += 1) > maxval:

But this will:

if (a + 1) > maxval:

In an augmented assignment, the arithmetic operation is performed first, followed by
the assignment. For a list of Python’s augmented assignment operators, see Table 3-8.

The pass statement is a no-op statement that does nothing. It is typically used as
a placeholder when a statement is required syntactically. One often finds pass state-
ments in methods of a top-level class that are intended to be overwritten by methods
in a child class. They may also appear in “callback” functions or methods that don’t
really need to do anything, but must have a statement to be syntactically complete.

print writes the values of one or more objects to stdout, unless stdout has been
redirected or the output of print is itself redirected. If print is given an object that is
not a string, it will attempt to convert the data to string form. By default, print appends
a newline (/n) to the end of the output, but this can be suppressed.

The return statement is used to return control from a function or method back
to the original caller. The return statement may optionally pass data back to the caller,
and the data can be any valid Python object. As mentioned earlier, a function may return
a tuple instead of just a single value, which makes it possible to return both a status
code and a data value (or more). While it is possible to return a list or a dictionary, this
can be problematic in large programs with large and complex data objects because of
the inherently opaque nature of these data types. I’ll have more to say about this kind
of unintentional obfuscation in a later section.

The break statement may occur only within a for or while loop. It will terminate
the nearest enclosing loop construct and skip the else statement, if there is one.

The continue statement may occur only within a for or while loop. continue
forces the loop to return to the for or while statement at the start of the loop. Any
subsequent statements past the continue are skipped. If a continue causes control to
pass out of a try construct with a finally statement, the finally is executed before the
next iteration of the loop. We’ll look at the try-except construct in more detail shortly.

The global statement is used to declare names in a module context that are
modifiable by a function or method within the module. Normally such names are read-
only by functions or methods, and then only if the name does not already appear in the
function or method.

Compound statements

Compound statements are composed of groups of statements that are logically related
and control the execution of other statements. We will take a look at the if, while,
for, and try statements, but we will skip the with statement and save the def and
class statements until the next section. Table 3-14 lists Python’s compound statements.

pass.

print.

return.

break.

continue.

global.

The Python Programming Language | 87

Table 3-14. Compound statements

Keyword Description

if Conditional test with optional alternate tests or terminal case

while Executes loop repeatedly while initial condition is True

for Iterates over elements of an iterable object (e.g., a list, string, or tuple)

try Defines exception handling for a group of statements

with Used with context managers

def Declares a user-defined function or method

class Declares a user-defined class

Python’s if statement behaves as one would expect. Following the key-
word if is an expression that will evaluate to either True or False. In its simplest form
it is just an if statement and a block of one or more subordinate statements:

if <expression>:
 statement
 (more statements as necessary)

To specify an alternative action, one would use the else statement:

if <expression>:
 statement
 (more statements as necessary)
else:
 statement
 (and yet more statement if necessary)

To create a series of possible outcomes, the elif statement (a compression of “else if”)
is used. It is like an if and requires an expression, but it can only appear after an if,
never by itself:

if <expression>:
 statement
 (more statements as necessary)
elif <expression>:
 statement
 (more statements as necessary)
else:
 statement
 (and yet more statements if necessary)

The while statement repeats a block of statements as long as a control
expression is true:

while <expression>:
 statement
 (more statements as necessary)
else:
 statement
 (and yet more statement if necessary)

The if statement.

The while statement.

88 | Chapter 3: The Python Programming Language

The else block is executed if the loop terminates normally (i.e., the control expression
evaluates to False) and a break statement was not encountered. In the following ex-
ample, the loop is controlled using a Boolean variable, which is initialized to True and
then assigned the value of False from within the loop:

>>> loop_ok = True
>>> loop_cnt = 10
>>> while loop_ok:
... print "%d Loop is OK" % loop_cnt
... loop_cnt -= 1
... if loop_cnt < 0:
... loop_ok = False
... else:
... print "%d Loop no longer OK" % loop_cnt
...
10 Loop is OK
9 Loop is OK
8 Loop is OK
7 Loop is OK
6 Loop is OK
5 Loop is OK
4 Loop is OK
3 Loop is OK
2 Loop is OK
1 Loop is OK
0 Loop is OK
-1 Loop no longer OK

The else statement is completely optional.

The continue and break statements may also be used to cause a loop to re-cycle through
the while statement immediately or terminate and exit, respectively. If a break statement
is used to terminate a loop, the else statement is also skipped. No statements following
a continue statement will be evaluated.

Python does have a for statement, but not in the sense that one would
expect to find in some other languages. In Python, the for statement is used to iterate
through a sequence of values. The for statement also includes an optional else state-
ment, just as the while statement does, and it behaves in the same way:

for some_var in <sequence>:
 statement
 (more statements as necessary)
else:
 statement
 (and yet more statement if necessary)

One way to specify a sequence of integer values is to use the built-in function
range(), like this:

>>> for i in range(0,5):
... print i
...
0

The for statement.

The Python Programming Language | 89

1
2
3
4

Another place where for comes in handy is when dealing with a sequence object such
as a list:

>>> alist = [1,2,3,4,5,6,7,8,9,10]
>>> for i in alist:
... print i
...
1
2
3
4
5
6
7
8
9
10

The values that for traverses don’t have to be integers. They could just as well be a set
of strings in a tuple:

>>> stuple = ("this","is","a","4-tuple")
>>> for s in stuple:
... print s
...
this
is
a
4-tuple

Like the while statement, the for statement supports the continue and break statements,
and these work as one might expect.

The try statement is used to trap and handle exceptions, and it is sim-
ilar to the try-catch found in C++ or Java. It is very useful for creating robust Python
applications by allowing the program designer to implement an alternative to the de-
fault approach the Python interpreter takes when an error occurs (which is usually to
generate what is called a traceback message and then terminate). The full form of the
try-except construct looks like this:

try:
 statement
 (more statements as necessary)
except <exception, err_info>:
 statement
 (more statements as necessary)
else:
 statement
 (more statements as necessary)
finally:

The try statement.

90 | Chapter 3: The Python Programming Language

 statement
 (and yet more statements if necessary)

The use of a specific exception type (<exception>) is optional, and if it is not given, any
exception will invoke the statements in the except block. One way to find out what
happened to cause the exception is to use the base class Exception and specify a variable
for Python to write the exception information into:

try:
 f = open(fname, "r")
except Exception, err:
 print "File open failed: %s" % str(err)

In this case, if the file open fails the program won’t terminate. Instead, a message will
be printed to stdout with some information about why the open statement failed.

The else statement is executed if there was no exception, and the finally block will
be executed if there is a break or continue statement in the try block of statements.
Refer to the Python documentation for more information about the try statement and
exception handling in Python.

Strings
The ability to create strings of formatted data is used extensively in many Python pro-
grams, and the programs we will encounter in this book are no exception. Python’s
string objects provide a rich set of methods, and when they are combined with string
formatting Python can generate output with formatted columns, left- or right-justified
fields, and specific representations of various data types. Strings are important enough
to merit a separate section.

String quotes

A string literal is quoted using one of the following forms:

'A single-quote string.'
"A double-quote string."
'''This is a multiline string using triple single quotes.
It is a medium-length string. '''
"""This is a multiline string with triple double quotes containing many
characters along with some punctuation, and it is a very long string indeed."""

Multiline strings can span more than one line, and \n (newline) characters are inserted
into the string automatically to preserve the original formatting.

String methods

The string type provides numerous methods, some of which we have already seen.
Table 3-15 is a complete list (not including the Unicode methods) as given in the Python
2.6 documentation.

The Python Programming Language | 91

Table 3-15. String methods

capitalize lower

center lstrip

count partition

decode replace

encode rfind

endswith rindex

expandtabs rjust

find rpartition

format rsplit

index rstrip

isalnum split

isalpha splitlines

isdigit startswith

islower strip

isspace swapcase

istitle title

isupper translate

join upper

ljust zfill

Some of these get a lot more use than others, but it’s good to have some idea of what’s
available. For the methods we don’t cover here, refer to the Python documentation.
Also, remember that the form:

new_sring = "string text".method()

works just as well as:

new_string = string_var.method()

Also keep in mind that there needs to be a target name for the new string object created
as a result of invoking the method (strings are not mutable); otherwise, the modified
string data will simply vanish.

Table 3-16 lists 14 commonly used string methods. Other less commonly used methods
will be described as the need arises. In the following descriptions I will use the con-
vention used in the Python documentation to indicate (required) and [optional]
parameters.

92 | Chapter 3: The Python Programming Language

Table 3-16. Commonly used string methods

Method Description

capitalize() Returns a copy of the string with just its first character capitalized.

center(width[,fillchar]) Returns a copy of the text in the string centered in a new string of length width. If
fillchar is specified, the new string will be padded to width length on either side
of the string text with the fillchar character. The default (if fillchar is omitted)
is to use the space character.

count(sub[,start[,end]]) Counts the number of unique occurrences of the substring sub. The arguments
start and end may be used to specify a range within the original string.

find(sub[,start[,end]]) Locates the first occurrence of the substring sub within the original string and returns
an index value. If the substring is not found, −1 is returned.

isalnum() Returns True if all of the characters in the string are alphanumeric (0..9, A..Z, a..z);
otherwise, returns False.

isalpha() Returns True if all of the characters in the string are alphabetic (A..Z, a..z); otherwise,
returns False.

isdigit() Returns True if all of the characters in the string are numeric (0..9), and False otherwise.

islower() Returns True if all of the alphabetic characters in the string (a..z) are lowercase.

isspace() Returns True if the string consists of nothing but whitespace characters (space, tab,
newline, etc.); otherwise, returns False.

ljust(width[,fillchar]) Returns a new left-justified string of length width. If fillchar is specified, the string
will be padded with the specified character. The default pad character is a space. If
width is less than the length of the original string, the original is returned unchanged.

lower() Returns a copy of the original string with all alphabetic characters converted to lowercase.

rjust(width[,fillchar]) Returns a new right-justified string of length width. If fillchar is specified, the string
will be padded with the specified character. The default pad character is a space. If
width is less than the length of the original string, the original is returned unchanged.

split([sep[,maxsplit]]) Returns a list whose elements are the words from the string using sep as the delimiter.
sep may itself be a string. If sep is not specified, all whitespace between words is used
as the delimiter (the whitespace can be any length so long as it is contiguous). If
maxsplit is given, only up to maxsplit items will be returned.

upper() Returns a copy of the original string with all alphabetic characters converted to uppercase.

String formatting

There are basically two ways to format a string with variable data in Python. The first
is to use concatenation, which we saw earlier. The second is to make use of Python’s
string formatting capability. Which method is most appropriate depends on what you
are trying to accomplish. While concatenation is relatively easy with simple strings, it
doesn’t provide for a lot of control over things like the number of decimal places, and
data in strings with lots of embedded characters can be cumbersome when using con-
catenation. Consider the following example:

The Python Programming Language | 93

>>> data1 = 5.05567
>>> data2 = 34.678
>>> data3 = 0.00296705087
>>> data4 = 0
>>> runid = 1
>>> outstr1 = "Run "+str(runid)+": "+str(data1)+" "+str(data2)
>>> outstr2 = " "+str(data3)+" : "+str(data4)
>>> outstr = outstr1 + outstr2
>>> outstr
'Run 1: 5.05567 34.678 0.00296705087 : 0'

There is an easier way. Python employs string formatting placeholders that are very
similar to those used in the C sprintf() function. By using special formatting codes,
one can specify where data is to be inserted into a string and how the data will appear
in string form. Here is a string created using formatting placeholders with the same
data as above:

>>> outstr = "Run %d: %2.3f %2.3f %2.3f : %d" % (runid, data1, data2, data3, data4)
>>> outstr
'Run 1: 5.056 34.678 0.003 : 0'

Notice that the variables to be used in the string are enclosed in parentheses—it is an
n-tuple. If the parentheses are omitted, only the first variable name is evaluated and an
error will result:

>>> "%d %d %d" % 1, 2, 3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: not enough arguments for format string

The syntax for a string format placeholder is:

%[(name)][flags][width][.precision]type_code

Each placeholder can have an optional name assigned to it as the first item after the %
(the parentheses are required). Following that are optional flags for justification, lead-
ing spaces, a sign character, and 0 fill. Next is an optional width value that specifies the
minimum amount of space to allow for the data. If the data contains a decimal part,
the value of the .precision field specifies the number of decimal places to use. Finally,
a type code specifies what kind of data to expect (string, integer, long, floating point,
etc.). Table 3-17 lists the available flags. Table 3-18 summarizes the various type codes
available.

Table 3-17. String format placeholder flags

Flag Meaning

Use “alternate form” formatting (see the notes in Table 3-18).

0 Pad numeric values with a leading zero.

- Left-adjust (overrides 0 flag if both are specified).

(a space) Insert a space before positive numbers.

+ Precede the values with a sign character (+ or -). Overrides the “space” flag.

94 | Chapter 3: The Python Programming Language

Table 3-18. String format placeholder type codes

Type
code Meaning Notes

d Signed integer decimal.

i Signed integer decimal.

o Signed octal value. The alternate form prepends a leading zero
to the number if one is not already present.

u Obsolete type. Identical to d.

x Signed hexadecimal (lowercase). The alternate form prepends 0x if not al-
ready present.

X Signed hexadecimal (uppercase). The alternate form prepends 0X if not al-
ready present.

e Floating-point exponential format (lowercase). The alternate form always uses a decimal
point even if no digits follow it.

E Floating-point exponential format (uppercase). Alternate form same as e.

f Floating-point decimal format (lowercase). Alternate form same as e.

F Floating-point decimal format (uppercase). Alternate form same as e.

g Floating-point format. Uses lowercase exponential format if expo-
nent is less than –4 or not less than precision, and decimal format
otherwise.

The alternate form always contains a dec-
imal and trailing zeros are not removed.

G Floating-point format. Uses uppercase exponential format if expo-
nent is less than –4 or not less than precision, and decimal format
otherwise.

Same as g.

c Single character (accepts an integer or single-character string).

r String (converts any Python object using repr()).

s String (converts any Python object using str()).

% No argument is converted, results in a % character in the result.

String methods can be applied along with string formatting in the same statement. This
may look a bit odd, but it’s perfectly valid:

>>> "%d %d".ljust(20) % (2, 5)
'2 5 '
>>> "%d %d".rjust(20) % (2, 5)
' 2 5'
>>>

Because there is no assignment of the string object to a name, Python just prints it out
immediately after applying the formatting.

Lastly, Python provides a set of so-called escape characters for use with strings. These
are special two-character codes composed of a backslash followed by a character, as
shown in Table 3-19.

The Python Programming Language | 95

Table 3-19. String escape sequences

Escape sequence Description ASCII

\' Single quote '

\" Double quote "

\\ Single backslash \

\a ASCII bell BEL

\b ASCII backspace BS

\f ASCII formfeed FF

\n ASCII linefeed LF

\r ASCII carriage return CR

\t ASCII horizontal tab TAB

\v ASCII vertical tab VT

A backslash character (\) may also be used for line continuation if it is the last character
on a line, followed immediately by a newline (LF or CRLF). This causes the newline to
be ignored by the interpreter, so it treats the line and the subsequent line as a single
line of code.

Program Organization
So far we’ve been doing things at Python’s command prompt. Now we’ll look at how
to create program modules with functions, classes, and methods.

Scope

Earlier I obliquely referred to the notion of scope without actually defining what it is.
Let’s do that now.

As I’ve already mentioned, Python utilizes the concept of namespaces as collections of
names that are bound to objects. Actually, a namespace is more like a dictionary object,
where the names are the keys and the objects they reference are the values. There are
three levels of namespaces in Python: local, global, and built-ins. Figure 3-6 shows the
namespace scopes in a Python module.

When a name is referenced in a function or method, a search is first made of the local
namespace, including enclosing functions. Next, the global namespace is searched.
Finally, the built-in namespace is searched. If the name cannot be found, Python will
raise an exception. Figure 3-7 shows the namespace search hierarchy.

96 | Chapter 3: The Python Programming Language

Figure 3-6. Python’s namespaces

The local scope is the namespace of a particular function, class, or method.
In other words, any variables defined within a function are local to that function and
are not visible outside of it. The local scope also includes the nearest surrounding func-
tion (if any). We will look at nested functions shortly.

Local scope.

The Python Programming Language | 97

Figure 3-7. Namespace search hierarchy

Class objects introduce yet another namespace into the local context. In a class object,
any variables defined within the namespace of the class are accessible to any method
within the class by prefixing the name with self, like this:

self.some_var

The data variable attributes and methods of an object instance of a class are visible
outside of the object and may be accessed using the “dot notation” we’ve already seen:

SomeObj = SomeClass()
SomeObj.var_name = value

This will assign a value to the attribute var_name in the object instance SomeObj. If
var_name does not exist, it will be created in the object’s context. This leads us to an
interesting observation: Python objects do not have truly private data or methods in
the sense that they cannot be accessed from outside of the object. Everything is acces-
sible, although some things are not as readily available as others. You can prefix the
name of a function, class, or variable with a leading underscore to prevent it from being
included in a wildcard import, but that doesn’t hide it. Using two leading underscore
characters will “mangle” the object’s name, but even then it is still accessible if you
know how. So, while nothing is really hidden, the onus is on the programmer to be
polite and not look.

98 | Chapter 3: The Python Programming Language

If you’re not sure exactly what this means, don’t worry about it for now. We’ll address
objects in more detail later, when we start building user interfaces for our instrumen-
tation applications.

The global scope is the namespace of the enclosing module. Functions
cannot modify the module’s global variables unless the global statement is used. The
following example, named globals.py, illustrates this:

globals.py

var1 = 0
var2 = 1

def Function1():
 var1 = 1
 var2 = 2

 print var1, var2

def Function2():
 global var1, var2

 print var1, var2

 var1 = 3
 var2 = 4

 print var1, var2

To try it out, we will need to load it using the import statement. This tells Python to
read the module and populate the command line’s namespace using what it finds there:

>>> import globals

Once globals is imported, we can use the help() function to see what is inside:

>>> help(globals)
Help on module globals:

NAME
 globals

FILE
 globals.py

FUNCTIONS
 Function1()

 Function2()

DATA
 var1 = 3
 var2 = 4

Global scope.

The Python Programming Language | 99

If we execute Function1, we can verify that the global instances of var1 and var2 are not
changed:

>>> globals.var1
0
>>> globals.var2
1
>>> globals.Function1()
1 2
>>> globals.var1
0
>>> globals.var2
1

However, Function2 will change the values assigned to var1 and var2:

>>> globals.Function2()
0 1
3 4
>>> globals.var1
3
>>> globals.var2
4

If a function assigns values to variables with names identical to those in the global
namespace, the global statement must be used if the names are referenced before the
assignments are made. This example, called globals2.py, illustrates this:

globals2.py

var1 = 0
var2 = 1

def Function1():
 print var1, var2

def Function2():
 var1 = 1
 var2 = 2

 print var1, var2

def Function3():
 print var1, var2

 var1 = 1
 var2 = 2

 print var1, var2

Observe what happens when we execute the three functions:

>>> import globals2
>>> globals2.Function1()
0 1
>>> globals2.Function2()

100 | Chapter 3: The Python Programming Language

1 2
>>> globals2.Function3()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "globals2.py", line 14, in Function3
 print var1, var2
UnboundLocalError: local variable 'var1' referenced before assignment

Function1() succeeded because there was no conflict between its local variables and
the module’s global variables. In Function2() the local variables var1 and var2 are de-
fined within the function, so again, there is no problem. However, Function3() causes
Python to emit an error message. In this case the use of the global names is blocked
because identical names have already been placed into the function’s local namespace,
but the names aren’t yet bound to an object containing a value when the print statement
is invoked. Hence the UnboundLocalError exception. If the print statement were pre-
ceded by a global statement, the error would not have occurred.

The built-in namespace is the Python runtime environment. It includes
things like abs(), print, and various exception names. If you want a list of the built-in
names, just type dir(__builtins__) at the Python prompt. I won’t list the output here
because it’s rather large (144 names at least).

Modules and packages

A Python source code file is called a module. It is a collection of statements composed
of variable definition statements, import statements, directly executable statements,
function definition statements, and class definition statements, with the variables and
methods that go with them.

Modules are contained within packages. A package is, in effect, a directory that contains
one or more modules. Packages may contain other packages. Figure 3-8 shows this
graphically.

A module is an object, and as we’ve already seen, it has its own namespace. A module
also has attributes just like any other Python object. A module’s attributes include the
functions, classes, methods, and variables defined in its namespace.

Functions, classes, and methods

The def statement is used to define both functions within modules and methods within
classes:

def SomeName (parameters):
 """ docstring goes here.
 """
 local_var = value

 statement...
 statement...
 more statements...

Built-in scope.

The Python Programming Language | 101

When used to define a function, the def statement begins at the leftmost column and
all of the function’s statements are indented relative to it. When used to define a method
in a class, the def statement is indented relative to the class statement.

Figure 3-8. Packages and modules

Functions and methods may be nested. When this is done, the internal functions are
not accessible from outside of the enclosing function. Here is a rather contrived example
of nested functions called subfuncs.py:

102 | Chapter 3: The Python Programming Language

#subfuncs.py

def MainFunc():
 def SubFunc1():
 print "SubFunc1"
 def SubFunc2():
 print "SubFunc2"
 def SubFunc3():
 def SubSubFunc1():
 print "SubSubFunc1"
 def SubSubFunc2():
 print "SubSubFunc2"
 SubSubFunc1()
 SubSubFunc2()
 SubFunc1()
 SubFunc2()
 SubFunc3()

We can only execute the function MainFunc(); none of the other functions nested within
it are directly accessible from outside of the scope of MainFunc(). If you import
subfuncs and try to get help on it, this is all you will see:

>>> import subfuncs
>>> help(subfuncs)
Help on module subfuncs:
NAME
 subfuncs
FILE
 subfuncs.py
FUNCTIONS
 MainFunc()

However, if we execute MainFunc() we can see that the subfunctions do get executed:

>>> import subfuncs
>>> subfuncs.MainFunc()
SubFunc1
SubFunc2
SubSubFunc1
SubSubFunc2

The class statement defines a class object, which in turn is used to create object in-
stances of the class. The following class defines a timer object that may be used to get
elapsed times during program execution:

import time

class TimeDelta:
 def __init__(self):
 self.tstart = 0
 self.tlast = 0
 self.tcurr = 0

 self.Reset()

 def GetDelta(self):

The Python Programming Language | 103

 """ Returns time since last call to GetDelta(). """
 self.tcurr = time.clock()
 delta = self.tcurr - self.tlast
 self.tlast = self.tcurr
 return delta

 def GetTotal(self):
 """ Returns time since object created. """
 return time.clock() - self.tstart

 def Reset(self):
 """ Initializes time attributes. """
 self.tstart = time.clock()
 self.tlast = self.tstart

Objects of this class can be instantiated in the code wherever one might want to check
on elapsed times, and multiple occurrences may exist simultaneously. This would be
rather awkward to do if TimeDelta was a function in a module, but as a class each
instance can maintain its own data for when it was started and when it was last checked.

Docstrings

Docstrings are used to document modules, classes, methods, and functions. A multiline
string that appears at the start of a module, function, class, or method is seen by Python
as a docstring, and it is stored in the object’s internal __doc__ variable. This is what you
are seeing when you type help() for a specific function at the command-line prompt.

The following example shows how docstrings are used. The pass statement has been
used so that we can import this code and use help() to display the embedded
documentation:

#docstrings.py

""" Module level docstring.

 This describes the overall purpose and features of the module.
 It should not go into detail about each function or class as
 each of those objects has its own docstring.
"""

def Function1():
 """ A function docstring.

 Describes the purpose of the function, its inputs (if any)
 and what it will return (if anything).
 """
 pass

class Class1:
 """ Top-level class docstring.

 Like the module docstring, this is a general high-level
 description of the class. The methods and variable
 attributes are not described here.

104 | Chapter 3: The Python Programming Language

 """

 def Method1():
 """ A method docstring.

 Similar to a function docstring.
 """
 pass

 def Method2():
 """ A method docstring.

 Similar to a function docstring.
 """
 pass

When the help() function is used on this module, the following output is the result:

>>> import docstrings
>>> help(docstrings)
Help on module docstrings:

NAME
 docstrings - Module level docstring.

FILE
 docstrings.py

DESCRIPTION
 This describes the overall purpose and features of the module.
 It should not go into detail about each function or class as
 each of those objects has its own docstring.

CLASSES
 Class1

 class Class1
 | Top-level class docstring.
 |
 | Like the module docstring, this is a general high-level
 | description of the class. The methods and variable
 | attributes are not described here.
 |
 | Methods defined here:
 |
 | Method1()
 | A method docstring.
 |
 | Similar to a function docstring.
 |
 | Method2()
 | A method docstring.
 |
 | Similar to a function docstring.

FUNCTIONS

The Python Programming Language | 105

 Function1()
 A function docstring.

 Describes the purpose of the function, its inputs (if any)
 and what it will return (if anything).

Importing Modules
Python modules can bring in functionality from other modules by using the import
statement. When a module is imported Python will first check to see if the module has
already been imported, and if it has it will refer to the existing objects by including their
names in the current namespace. Otherwise, it will load the indicated module, scan it,
and add the imported names to the current namespace. Note that “current namespace”
may refer to the local namespace of a function, class, or method, or it might be the
global namespace of a module.

Statements in a Python module that are not within a function or method will be exe-
cuted immediately when the module is loaded. This means that any import statements,
assignments, def or class statements, or other code will be executed at load time. Code
within a function or method is executed only when it is called, although an object for
it is created when the def or class statement is processed.

Import methods

The import statement comes in several different forms. This is the most common, and
safest, form:

import module

The objects in module are added to the current namespace as references of the form
module.function() or module.class(). To access data attributes within a module, the
notation module.variable is used.

A variation on this is the aliased import form:

import module as alias

This is identical to the import module statement, except now the alias can be used to
reference objects in module. This is handy when a module has a long name. For example:

import CommonReturnCodes as RetCodes

One can also specify what to import from a module:

from module import somename

This form imports a specific function, class, or data attribute from a module. The func-
tion or attribute somename can then be used without a module prefix.

The wildcard form imports everything from the external module and adds it to the
current namespace:

from module import *

106 | Chapter 3: The Python Programming Language

The wildcard import is generally considered to be a bad idea except in special cases,
such as when importing a module that has been specifically designed to be used in this
fashion and contains only unique names that are unlikely to conflict with existing
names. It is considered problematic because it imports everything from the imported
module unless special precautions are taken. If the imported module happens to have
attributes with the same names as those in the current module, the current names will
be overwritten.

There is, as one might expect from Python, a way to control what is exported by using
single or double leading underscore characters for attribute names. An attribute name
of the form:

_some_name

will not be included in a wildcard import, but it can still be referenced using the module
prefix notation. A double leading underscore of the form:

__some_name

is about as close as Python gets to data hiding. It can still be accessed from outside the
parent module, but its external name is “mangled” to make it more difficult to get at.

Import processing

Because Python executes any import statements that are not within the scope of a
function immediately when a module is imported, it will descend through the import
statements in each module in a depth-first fashion until all imports have been processed.
Figure 3-9 shows graphically how this works.

Figure 3-9. Module import sequence

The Python Programming Language | 107

The import sequence in Figure 3-9 is indicated by numbers in circles. Module A imports
module B, which imports Module C, which in turn imports modules G and H. Module
D and the modules it imports will be next in line after module H is processed.

Cyclic imports

One drawback to Python’s import scheme is that it is possible to create situations where
imports can become “hung.” This is called a cyclic import. Consider the diagram in
Figure 3-10.

Figure 3-10. Cyclic import situation

Here we have a situation where Module A imports Module B, which in turn imports
Modules C and D. However, Module C attempts to import Module A, which is cur-
rently waiting for Module B to finish importing Module C, so Module B can then move
on to Modules D and E. Because the import of Module B cannot complete, the entire
process deadlocks.

One sure way to avoid cyclic imports is to remember the rule “Never import up, only
down.” This means that modules should be imported hierarchically, and also that
modules should be architected such that there is no need to import from a higher-level
module. A typical mistake made by many newcomers to Python is to place a set of
pseudoconstants (assignments to names with values that don’t change) in a module
with other related functionality, and then import the entire module solely to gain access
to the pseudoconstant objects. Things like pseudoconstants that are referenced by more
than one module should go into their own module, which can then be imported when
needed without worrying about causing a cyclic import situation.

Loading and Running a Python Program
The following example is a complete Python program that contains no function or class
definitions—it is what is commonly referred to as a “script.” It will generate a PGM
format image file consisting of random data. The result looks like an old-style TV screen

108 | Chapter 3: The Python Programming Language

tuned to an empty channel—it’s a lot of “snow.” The main point here is to get a look
at what a small Python program looks like. Any image viewer capable of handling PGM
files should be able to load and display the image (ImageJ, a free tool from http://rsbweb
.nih.gov/ij/, works quite well for this, and check out http://netpbm.sourceforge.net for
information about the PGM image format.)

Executing this program doesn’t require that you start the Python interpreter first. Just
run python from the command line with the program filename as its only parameter,
like this:

C:\samples\> python pgmrand.py

or, on Linux:

/home/jmh/samples/% python pgmrand.py

The prompt will most likely look different on your system (unless you’re keeping your
Python samples in a directory called “samples”).

If you are using Linux, you’ll probably need to put the following line at the top of the
program file:

#! /usr/bin/python

On some systems you may need to modify this to point to where Python is actually
installed. A likely alternate location is /usr/local/bin/python.

Here’s the source code:

""" Generates an 8 bpp "image" of random pixel values.

The sequence of operations used to create the PGM output file is as follows:
 1. Create the PGM header, consisting of:
 ID string (P5)
 Image width
 Image height
 Image data size (in bits/pixel)
 2. Generate height x width bytes of random values
 3. Write the header and data to an output file
"""
import random as rnd # use import alias for convenience

rnd.seed() # seed the random number generator

image parameters are hardcoded in this example
width = 256
height = 256
pxsize = 255 # specify an 8 bpp image

create the PGM header
hdrstr = "P5\n%d\n%d\n%d\n" % (width, height, pxsize)

create a list of random values from 0 to 255
pixels = []
for i in range(0,width):

The Python Programming Language | 109

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
http://netpbm.sourceforge.net

 for j in range(0,height):
 # generate random values of powers of 2
 pixval = 2**rnd.randint(0,8)
 # some values will be 256, so fix them
 if pixval > pxsize:
 pixval = pxsize
 pixels.append(pixval)

convert array to character values
outpix = "".join(map(chr,pixels))

append the "image" to the header
outstr = hdrstr + outpix

and write it out to the disk
FILE = open("pgmtest.pgm","w")
FILE.write(outstr)
FILE.close()

The string join() method and the map() function are used to create an output string
that is written to the image file.

It would be a worthwhile exercise to review the program and look up the things that
don’t immediately make sense to you. The only really “tricky” part is the use of the
string join() method and the map() function to create the output string. This was done
because Python does not have a native byte type, but it does have a chr type for use
with strings. If one wants an array of bytes, one way to get these is to create a string by
scanning through a list of integers, converting each to a chr type, and then joining it to
an empty string (the "" in the "".join(map(chr,pixels)) statement). Note that all the
parameters one might want to change to experiment with the output file are hardcoded
in this example.

Basic Input and Output
In order to be generally useful, a program must have some means to input data and
output results. Python provides several ways to achieve both objectives using the con-
sole, the command line, and file objects. Later on we will examine things like serial
ports, USB interfaces, network sockets, and data acquisition hardware, but for now
let’s look at what can be done with Python as it comes right out of the box.

User input

Getting user input from stdin (standard input) is straightforward. Python provides the
raw_input() function for just this purpose.

110 | Chapter 3: The Python Programming Language

The module getInfo.py contains a simple example of how raw_input() can be used:

getInfo.py

def ask():
 uname = raw_input("What is your name? ")
 utype = raw_input("What kind of being are you? ")
 uhome = raw_input("What planet are you from? ")
 print ""
 print "So, %s, you are a %s from %s." % (uname, utype, uhome)
 uack = raw_input("Is that correct? ")
 if uack[0] in ('y', 'Y'):
 print "Cool. Welcome."
 else:
 print "OK, whatever."

To see how this works, we can import the module getInfo and then call its function
ask():

>>> import getInfo
>>> getInfo.ask()
What is your name? zifnorg
What kind of being are you? Zeeble
What planet are you from? Arcturus III

So, zifnorg, you are a Zeeble from Arcturus III.
Is that correct? y
Cool. Welcome.

The raw_input() function accepts an optional prompt string and always returns the
data from stdin as a string. If the program is looking for a numeric value, it will need to
be converted. A safe way to do this is by using the try-except construct. Here is
getInfo2.py with the try-except modification:

def ask2():
 uname = raw_input("What is your name? ")
 utype = raw_input("What kind of being are you? ")
 uhome = raw_input("What planet are you from? ")
 getgumps = True
 while (getgumps):
 intmp = raw_input("How many mucklegumps do you own? ")
 try:
 ugumps = int(intmp)
 except:
 print "Sorry, you need to enter an integer number."
 continue
 else:
 getgumps = False
 print ""
 print "So, %s, you are a %s from %s, with %d mucklegumps."\
 % (uname, utype, uhome, ugumps)
 uack = raw_input("Is that correct? ")
 if uack[0] in ('y', 'Y'):
 print "Cool. Welcome."
 else:
 print "OK, whatever."

The Python Programming Language | 111

Before we move on, there are a few things to consider about this simple function. First,
it will only accept an integer value for the number of “mucklegumps.” Strings and floats
will be rejected. Secondly, there is no way for the user to gracefully abort the input
process. This could be easily handled by checking for a special character (a ., for ex-
ample), or just detecting null input (just pressing the Enter key with no input). Speaking
of null input, if the user does press the Enter key in response to the last question, Python
will raise an exception:

Is that correct? <enter>
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "getInfo2.py", line 18, in ask2
 if uack[0] in ('y', 'Y'):
IndexError: string index out of range

The expression in the if statement is attempting to match whatever is in uack[0] with
either of the values in the 2-tuple ('y', 'Y'), and just pressing Enter returns a zero-
length string, which causes the exception. Using a try-except here will prevent this
from happening:

 uack = raw_input("Is that correct? ")
 try:
 if uack[0] in ('y', 'Y'):
 print "Cool. Welcome."
 else:
 print "OK, whatever."
 except:
 print "Fine. Have a nice day."

When dealing with user input (that is, whatever a human being types in response to a
prompt), one must always be aware of possible input errors or exceptions. Humans
can, and often will, type in erroneous data, values that are out of range, unexpected
words or phrases, or even nothing at all. Users are unpredictable, so building in safe-
guards to catch bad input values is always a good idea.

Command-line parameters

Program parameters entered at the command line are captured by the operating system
and passed to the program via the Python interpreter as a list. The first item in the list
(at index 0) is always the name of the program itself. Python’s included sys module
contains methods for dealing with this data.

This simple program (argshow.py) will print out all the items from the command-line
parameter list:

import sys

print "%d items in argument list\n" % len(sys.argv)

i = 1
for arg in sys.argv:

112 | Chapter 3: The Python Programming Language

 print "%d: %s" % (i, arg)
 i += 1

And here is what happens when we run it:

C:\samples> python argshow.py 1 2 3 4 -h -v
7 items in argument list

1: argshow.py
2: 1
3: 2
4: 3
5: 4
6: -h
7: -v

Python also provides tools for detecting specific arguments and extracting values from
command-line parameters, which we won’t cover at this point. We will see them in
action in later chapters.

Files

Python has a basic built-in object type for dealing with files that provides methods to
read and write data from and to a disk file, among other actions. We’ve already seen a
little bit of it with the pgmrand.py script we looked at earlier.

The open() method is used to create an instance of a file object:

>>> fname = "test1.txt"
>>> fmode = "w"
>>> f = open(fname, fmode)

Of course, you could also write:

f = open("test1.txt", "w")

and get the same result.

Once we have a file object, we can write something to it using its write() method:

>>> f.write("Test line 1\n")
>>> f.write("Test line 2\n")
>>> f.close()

The resulting file should now contain two lines of text:

Test line 1
Test line 2

Notice that the strings to be written to the file end with a \n (the code for a newline
character). The file write() method does not append a newline to the end of a string
like print does, so it must be explicitly included in the string.

Table 3-20 lists the most commonly encountered file modes.

The Python Programming Language | 113

Table 3-20. File I/O modes

Mode Meaning

r Read

rb Read binary

w Write

wb Write binary

a Append

ab Append binary

Table 3-21 lists some commonly used file object methods. For a description of the other
file object methods that are available, refer to the Python documentation.

Table 3-21. File methods

Method Description

close() Close a file.

flush() Flush the internal buffer.

read([size]) Read at most size bytes from the file.

readline([size]) Read an entire line from the file.

write(str) Write a string to the file.

Console output using print

We’ve already seen Python’s print function in action. Its primary purpose is to send
output to whatever is currently defined as stdout (standard output). The print function
is capable of handling conversions between numeric types and strings for console out-
put in a transparent fashion. The string formatting discussed earlier works with the
print statement to create nicely formatted output.

Redirecting print

By default, the output of print is sent to whatever is currently defined as stdout. By
using the “chevron” (>>) operator this behavior can be modified, and print can send
output to any object that provides a write() method. Typically this would be a file
object, as shown here:

>>> datastr = "This is a test."
>>> f = open("testfile.txt", "w")
>>> print >> f,datastr
>>> f.close()

114 | Chapter 3: The Python Programming Language

Hints and Tips
Here is a semirandom collection of observations that may prove useful to you.

Module global variables

It is usually a good idea to initialize module global `variables at the start of a module
file. Attempting to check a global variable that does not yet exist will result in an ex-
ception, and taking care of this beforehand can save some aggravation later.

Latent defects

Because Python does not execute the internal statements (i.e., the body) of functions
or methods when a module is imported, only the def statement, it is always possible
for bugs to be lurking there that will not become apparent until the code is invoked. In
such situations the try statement is a powerful ally, but it is not a cure-all. Good unit
testing is key to detecting and removing such defects before they can cause problems.

Deferred imports

Sometimes you may encounter code where the original author attempted to resolve a
cyclic import by deferring the import of the problematic module by placing the
import statement within a function or method, instead of at the top of the module file.
While this is syntactically allowed in Python it is considered to be bad form, and it’s a
sure sign that someone didn’t think the design through before sitting down at the key-
board and hammering away at it. However, when dealing with legacy code (or just
poorly written code) it may not be possible to avoid using this trick. Use it sparingly,
only when you really have to, and test it thoroughly.

Dictionaries as function parameters

Although Python allows any data object to be used as a parameter to a function or
method, resist the temptation to use dictionary objects unless you have a compelling
reason to do so. If a dictionary object is used as a parameter, document it in detail and
try to avoid altering its structure dynamically as it gets passed from function to function.
Code that dynamically alters the structure of a shared dictionary object can be very
difficult to understand and a nightmare to debug. It could even be considered a form
of obfuscation, albeit (hopefully) unintentional. The same common-sense rationale
applies to lists.

Function return values

Tuples are a handy way to return more than one value from a function. For example,
one could return a tuple containing both a status code value and a data value by using
a 2-tuple. To see if the function succeeded one would examine the status code, and if
it is OK one would then get the data value.

The Python Programming Language | 115

Think of modules as objects

Of course, in Python a module actually is an object (everything is, as you may recall),
but the tendency seems to be to treat a module as something akin to a source code
module in C or C++. One can achieve some neat and tidy data encapsulation using
just a module with nothing in it but assignment statements to associate names with
values. Here is part of a module that contains nothing but event ID values for use with
a wxPython GUI, which we will get to in a later chapter:

ResourceIDs.py

import wx

File
idFileSave = wx.NewId()
idFileSaveAs = wx.NewId()
idFileNew = wx.NewId()
idFileOpen = wx.NewId()
idFileOpenGroup = wx.NewId()
idFileClose = wx.NewId()
idFileCloseAll = wx.NewId()
idFilePrint = wx.NewId()
idFilePrintPreview = wx.NewId()
idFilePrintSetup = wx.NewId()

The wxPython package includes a function called NewID() that automatically assigns a
new ID number each time it is called. When ResourceIDs is imported, every statement
is evaluated and a value is assigned to each data object. To use these one simply imports
the module (perhaps using an alias, as shown here):

import ResourceIDs as rID

event_id = rID.idFileSave

This comes in handy in large programs, especially those that employ a GUI with lots
of event ID names. A data-only module can also be imported from any other module
without worrying about creating a cyclic import, provided that it does not itself import
anything else (except perhaps system-level modules). If the attribute names in a data-
only module are unique (using, say, a special prefix on each name), it could also be
safely imported using the wildcard import style.

Use docstrings and descriptive comments

Once upon a time, a physics professor told me: “Document everything you do in the
lab like you were going to get struck with amnesia tomorrow.” Sage advice, to be sure,
but many people are loath to spend the time necessary to include docstrings and de-
scriptive comments in their code. This is silly, because no one can be expected to re-
member exactly what something does or why it’s even there 12 months or more down
the road (some might say that even a couple of months is a stretch). It also says some-
thing about how the author of the software feels about those who might come along
later and try to fix or maintain the code.

116 | Chapter 3: The Python Programming Language

Coding style

The document known as “PEP-8” (available from http://www.python.org) contains
some suggested coding style guidelines. You may not agree with all of it, but you should
at least read it and be familiar with it. There is a lot of good advice there. In any case,
you should attempt to arrive at some type of consistent style for your code, if for no
other reason than that it improves readability and makes things a whole lot easier when
there is a need to revisit old code.

Python Development Tools
A good development environment can make the difference between success and frus-
tration. The development environment must, at a minimum, provide some way to cre-
ate and edit Python source code as a standard ASCII text file. Additional tools, such as
debuggers, automatic documentation generators, and version control are all good, but
one could get by without them if absolutely necessary. Fortunately this isn’t necessary,
given that there are a lot of excellent FOSS (Free and Open Source Software) tools
available, and some very good and inexpensive commercial tools as well.

In this section we’ll take a brief look at what is available, with a primary emphasis on
FOSS tools. It doesn’t really matter what tools you use, and most people have (or
develop over time) their own preferences and work habits. The important thing to take
away here is that there are many paths available, and choosing the right one is simply
a matter of picking the tools that feel right and selecting the right tools for the job.

Editors and IDEs
At the very least, you will need a text editor or integrated development environment
(IDE) of some sort for entering and editing Python source code. You may also want to
use the editor for your C source code when writing extensions (which we will delve
into in Chapter 5), so it may be a good idea to pick something that’s language-neutral,
or perhaps language-aware with syntax highlighting.

The primary difference between an editor and an IDE lies in how much one can ac-
complish from within the tool itself. An editor typically allows you to do just one thing:
editing. An IDE, on the other hand, lets you do much more—from editing, to compil-
ing, debugging, and perhaps even metrics and version control. An IDE is intended to
be an environment the developer doesn’t need to leave until either it’s time to quit and
go home, or the program is complete.

With some editors there is also the capability to launch another program from within
the tool and then capture and display program output, but this is usually more of an
add-on capability, not something that is inherently part of the editor tool, and some
editors support this capability better than others. A full-featured IDE incorporates all
of this functionality in some form or another, although some IDEs also require

Python Development Tools | 117

http://www.python.org

functionality from external tools and applications. In other words, the line between an
editor with lots of bells and whistles and an IDE is sometimes blurry.

Using an IDE with Python is probably not necessary (although there are a few available),
since it is not a compiled language, and most of what happens with Python is either
happening at the command line or within the Python application’s GUI (if it uses one).

Editors

If you think you would prefer to use a standalone editor (which is what I use, by the
way), there are several excellent packages to choose from. Table 3-22 lists a few of the
more popular ones to consider.

Table 3-22. Short list of text editors

Name OS FOSS? Pros Cons

Emacs Linux

Windows

Others

Yes Supports sophisticated editing functions,
scripting, syntax highlighting, and multi-
window displays.

Has a somewhat steep learning curve and
uses some nonintuitive multikey com-
mands that must be memorized.

vi/vim Linux

Windows

Others

Yes The basic functions are easy to learn, and
vi is very widespread across different
Linux- and Unix-like platforms. vim also
provides a GUI interface in addition to the
conventional command-line operation.

Learning the more complex and sophisti-
cated functionality can be a slog. Nonin-
tuitive key combinations and codes are a
holdover from the days of mainframes,
minicomputers, and terminals.

nano Linux Yes Very simple. Provides some syntax
highlighting.

Based on the Pico editor and its Control-
key commands. Limited capabilities.

Slickedit Linux

Windows

Others

No
($$$)

Lots of features, full GUI interface, pro-
grammable macros, and syntax highlight-
ing. Capable of emulating other editors.

Lots of knobs and dials to learn—may be
overkill for most development tasks.
Rather hefty price tag.

UltraEdit Linux

Windows

No ($) Very easy to learn with a full GUI interface.
Multiple tabbed text windows,
programmable macros, and syntax
highlighting.

Has lots of features that the average
developer will probably never use. Re-
quires some effort to figure out how to ad-
just the default settings and disable some
unnecessary defaults. It costs money (but
not a whole lot).

This is only a partial list, and there are other editors available, including some good
FOSS ones. If you don’t already have a favorite editor (or even if you do), it would
probably be worthwhile to try to compare what’s available for your development plat-
form. But, a word of caution: some people seem to become rather attached to a par-
ticular editor, even to the point of being somewhat fanatical about it. This is particularly
apparent in the Emacs versus vi debate that has been going on now for well over 20
years (refer to http://en.wikipedia.org/wiki/Editor_war for details). Just keep an open

118 | Chapter 3: The Python Programming Language

http://en.wikipedia.org/wiki/Editor_war

mind, select the right tool for the job, and see the editor war for what it really is: free
entertainment.

IDE tools

An IDE attempts to integrate everything a programmer might need into a single tool.
The first popular and low-cost IDE for the PC was Borland’s Turbo Pascal, developed
by Philippe Kahn in the mid-1980s. Most modern IDEs provide a text editor for source
code, an interface to a compiler or interpreter, tools to automate the build process,
perhaps some support for version control, and a debugger of some sort. In other words,
it’s a one-stop shopping experience for software development. Not every IDE will pro-
vide all the functionality we’ve listed here, but at the very least you should expect a text
editor and the ability to run external tools and applications such as a compiler, inter-
preter, and debugger. In this sense even editors such as UltraEdit and Emacs (listed in
Table 3-22) could be used as IDEs (and often are, actually). Table 3-23 lists some readily
available IDE tools suitable for use with Python.

Table 3-23. Short list of IDEs

Name OS FOSS? Pros Cons

Boa Any that
Python and
wxPython
support

Yes Excellent tool for creating and maintain-
ing wxPython GUI components and ap-
plications. Includes a decent editor and a
basic Python debugger.

Targeted for the wxPython GUI
add-on package. It does a lot but
isn’t as full-featured as a dedica-
ted editor.

Idle Any that
Python
supports

Yes Provided with Python and coded entirely
in Python. Provides multiple editing win-
dows, function/method lists, a Python
shell window, and a rudimentary
debugger.

Idle’s multiple editing windows
are free-floating, and it is some-
times annoying trying to track
down a particular window.

Eclipse

(with PyDev)

Linux

Windows

Others

Yes A very flexible multilanguage IDE written
in Java. Additional functionality and lan-
guage support are provided by plug-in
modules such as PyDev for Python
development.

A rather steep learning curve and
a project/package model for cap-
turing project components that
may not be suitable for everyone.

PythonWin Windows Yes Provided with the ActiveState Python dis-
tribution. Includes most of the same
capabilities as Idle.

Specifically for the Windows
platform.

WingIDE Linux

Windows

Others

No
($$)

Lots of functionality specifically geared
toward Python development and
debugging.

Python-specific, although the ed-
itor can, of course, be used with
other languages. The interface
can be somewhat busy and clut-
tered, so spending time with the
configuration is usually
necessary.

Python Development Tools | 119

Debuggers
Debuggers allow a software developer to see inside the software, so to speak, while it
is running. While one could perhaps argue that a debugger is seldom, if ever, actually
necessary, they can save a lot of time and quickly expose serious problems in a program.
However, as with any addictive substance, a debugger may be good in moderation, but
it can develop into a serious dependency problem if one is not careful.

What, exactly, can one do with a debugger? For starters, a debugger allows the devel-
oper to set “breakpoints” in the code by selecting a particular line in the source listing.
When the program execution reaches that point, it is halted and the local variables may
be examined. A debugger also provides the ability to step through the code, one line at
a time. If the debugger supports the concept of a “watch,” specific variables may be
selected and their values displayed to the developer at breakpoints or while stepping
through the code.

A debugger is, by necessity, language-specific—there is no “one size fits all” debugger
currently available, although there are some “shells” that provide a similar interface
across several languages.

For Python, the Boa, Idle, Eclipse, and WingIDE tools provide capable debuggers. A
standalone Python debugger, Winpdb, is also available, and Python itself ships with an
integrated command-line debugger, pdb.

Summary
This concludes our brief tour of Python. You should now have a general feel for what
Python looks like and what it is capable of. I have intentionally glossed over many
aspects of the language, because, after all, this book is not a tutorial on Python. As I
stated going in, there are many excellent books available that can provide copious
amounts of detail, and the official Python website is the authoritative source of all things
Python. As we go along we will encounter other features of the language, and we will
examine them when the need arises.

Suggested Reading
If you would like to get deeper into the realm of Python programming, the following
books would be good places to start:

Python in a Nutshell, 2nd ed. Alex Martelli, O’Reilly Media, 2006.
A compact reference that’s very handy to have on the desk when you’re working
with Python. Well organized and easy to use, this is an essential reference work
when you need to look up something in a hurry and want more than a pocket
reference, but less than a massive tome.

120 | Chapter 3: The Python Programming Language

http://oreilly.com/catalog/9780596100469/

Programming Python, 3rd ed. Mark Lutz, O’Reilly Media, 2006.
A comprehensive introduction to Python and a massive reference, this 1,600-page
book covers everything from string methods to GUI programming. The one book
anyone working with Python should have.

In addition to the URL references already provided in this chapter, there are numerous
other online resources available for Python, including the following:

http://diveintopython3.org
This site hosts the complete text of Mark Pilgrim’s book Dive Into Python, also
available as a PDF download. The book takes a learn-by-doing approach and uses
numerous examples to illustrate key concepts and techniques.

http://effbot.org
Fredrik Lundh’s blog site. Here you can find hundreds of articles on Python,
downloadable and viewable books, and some software to examine and try. The
articles are well written and interesting to browse, and they are useful for the in-
sights they provide into the language and its uses.

Suggested Reading | 121

http://oreilly.com/catalog/9780596009250
http://diveintopython3.org
http://effbot.org

CHAPTER 4

The C Programming Language

Low-level programming is good for the
programmer’s soul.

—John Carmack, cofounder of Id Software

The C programming language was created at Bell Laboratories by Ken Thompson and
others between 1969–1973 as part of the early development work on Unix. C has been
an integral part of Unix ever since, and Unix is itself written mostly in C (with a few
parts written in assembly language where necessary). Linux, Solaris, BSD, and other
modern operating systems are also written primarily in C. In this book we will use ANSI
C, standardized in the mid-1980s and described in the book The C Programming Lan-
guage, Second Edition, by Brian Kernighan and Dennis Ritchie (Prentice Hall).

This chapter is not intended to be a comprehensive tutorial on the C programming
language; it is merely intended to provide enough detail to enable you to effectively
apply the C language later, when you need to create extensions for Python. If you
happen to be familiar with the original version of C (sometimes called “K&R”), you
may notice that things have changed somewhat, but it shouldn’t be difficult to grasp
the new features.

Installing C
The gcc compiler is a popular and widely used C compiler. Unfortunately, it doesn’t
work with Windows (at least, not directly). Those working in a Linux or Solaris envi-
ronment with access to gcc are ready to go with nothing else to install, and if gcc is not
installed a short session with a package manager can usually solve the problem. If you
will be using a Windows machine, you’ll need to do some extra work, or spend some
money, to get a C compiler installed and running.

One solution is to obtain a copy of Microsoft’s Visual Studio, but I would recommend
against this. It’s not that Visual Studio is a bad tool—it’s not. It is, however, so heavily
integrated with the Microsoft GUI paradigm that just compiling a simple C program

123

can involve a lot of mouse pushing and button clicking. If you’re going to start a major
project developing a Windows application, that’s not such a big deal, but we really
don’t need to go through all that just to write a simple Python extension. The alternative
is to bypass the Visual Studio environment completely.

Although one can use the Microsoft C compiler and linker from the Windows com-
mand line, this is not an exercise for the faint of heart. An easier alternative is to install
the MinGW (Minimalist GNU for Windows) compiler for Windows. It isn’t hard to
install and provides a gcc experience for creating Python extensions. A detailed step-
by-step description of how to install and configure MinGW can be found here:

http://boodebr.org/main/python/build-windows-extensions

Developing Software in C
C is a purely procedural compiled language. All functionality is encapsulated into
functions, and C programs are structured such that they are collections of functions
grouped into files (roughly the equivalent of Python’s modules). Each file may also
include some global variables and various preprocessor directives. In a C source file
global variables can be designated as static, which effectively hides them from functions
outside of the current file.

A C source code file is compiled into an object file, which in turn is linked with other
object files (either part of the immediate program or perhaps system library object files)
to produce a final executable object. I should point out that the terms “object file,”
“library object,” and “executable object” have nothing to do with object-oriented pro-
gramming. These are historical terms from the days of mainframes and refrigerator-size
minicomputers.

In the procedural paradigm a program’s functions are the primary focus and are distinct
from the data they operate on, whereas in object-oriented programming the data and
the methods unique to that data are encapsulated into an object. Figure 4-1 attempts
to illustrate this graphically.

Unlike Python programs, C programs are compiled directly into a binary form (machine
language) that is executed by the CPU. There is no conversion into an intermediate
bytecode form, and no virtual processor to interpret the bytecode. C is thus considered
to be “close to the metal,” and it is commonly used in applications where performance
and compactness are primary considerations. Operating systems are a primary exam-
ple. C and its OO cousin C++ are also typical first choices for creating libraries, which
are collections of functions that can be reused in other programs. In fact, C is so close
to the underlying hardware that it has sometimes been jokingly referred to as an as-
sembler with fancy clothing, and most C compilers have an option to output the as-
sembly language that corresponds to the original source code.

124 | Chapter 4: The C Programming Language

http://boodebr.org/main/python/build-windows-extensions

A Simple C Program
Most tutorials on C start off with the infamous “hello world” program example. I would
prefer to start with something a bit more substantial, but still (hopefully) comprehen-
sible. My selection for this is a simple program that generates a plot of a sine wave using
nothing more than simple printable characters. If you’ve ever taken a college-level pro-
gramming class, you may well have encountered something very much like this.

Every standalone C program has a starting point in the form of a function named
main(). Some C programs are not intended to be standalone modules, but rather are
libraries (collections) of functions for other modules to use. In those cases, there is no
main() function; it is provided by some other part of the application. For a quick peek
at a small C program, consider the following example:

/* sine_print.c
 Print a sideways sine wave pattern using ASCII characters

 Outputs an 80-byte array of ASCII characters (otherwise
 known as a string) 20 times, each time replacing elements
 in the array with an asterisk ('*') character to create a
 sideways plot of a sine function.
*/

#include <stdio.h> /* for I/O functions */
#include <math.h> /* for the sine function */
#include <string.h> /* for the memset function */

Figure 4-1. Procedural versus OO functional organization

Developing Software in C | 125

int main()
{
 /* local variable declarations */
 int i; /* loop index counter */
 int offset; /* offset into output string */
 char sinstr[80]; /* data array */

 /* preload entire data array with spaces */
 memset(sinstr,0x20, 80);
 sinstr[79] = '\0'; /* append string terminator */

 /* print 20 lines to cover one cycle */
 for(i = 0; i < 20; i++) {
 offset = 39 + (int)(39 * sin(M_PI * (float) i/10));

 sinstr[offset] = '*';
 printf("%s\n", sinstr);
 /* print done, clear the character */
 sinstr[offset] = ' ';
 }
}

If you have installed a C compiler (as described at the start of this chapter) or already
had one available, you can compile and run this program. We will assume that it is
named sine_print.c. On Linux, one would do the following:

% gcc sine_print.c -o sine_print
% chmod 775 sine_print
% ./sine_print

The output should look like that shown in Figure 4-2.

Figure 4-2. sine_print output

126 | Chapter 4: The C Programming Language

I chose to start with this example rather than “hello world” because it illustrates several
key features of the C language. We’ll go through them quickly here, and then examine
them in more detail in later sections.

The first eight lines are a comment block. In C, comment blocks begin with /* and end
with */. A comment block may span more than one line.

Although you may see the // comment notation in ANSI C programs (I
have, many times), it is not part of the ANSI C standard. // is valid
comment notation for C++ programs, and most modern ANSI C/C++
compilers also honor it. However, its use in pure C programs is not
recommended.

Next, we have three #include statements. These specify external files to be included in
the program, that is, separate files that will be read in and merged into the existing code
before the compiler is invoked. The #include statement is not actually part of the C
language itself: it is a preprocessor directive. The preprocessor recognizes a number of
reserved words; in fact, preprocessor directives could be considered a minimal language
in their own right. The preprocessor also removes all comments from the source code
before it is passed on to the compiler.

Next comes the declaration of the function main(). In C, a function’s return type is
declared before the function name, and if it has no return type specification the int
type is used by default. As in Python, the use of arguments is optional, so here we have
an empty set of parentheses.

C uses curly brackets (the { and } characters) to mark the start and end of blocks of
code. A block may contain zero or more statements. C is a free-format language, and
so long as the syntax is correct and there is at least one whitespace character between
names (or tokens, as they are called), the compiler doesn’t care how much additional
whitespace there is. As a result, one can create perfectly valid programs in C that are
almost impossible for a human reader to decipher. There is even an annual contest to
write the most obfuscated C program. We will endeavor to avoid writing code like that.

The sine_print program declares three local variables, i, offset, and sinstr. The vari-
ables i and offset are integers, and sinstr is an array of characters (bytes). These
variables persist only for as long as sine_print persists, and they are actual memory
locations, not objects as in Python.

Next up is a call to the standard C library function memset(). This sets all the elements
of sinstr to space characters. Notice that it has three parameters. The first is the target
memory location, which in this case is sinstr. The second is the character value we
want to write into memory starting at the location of the first element of the array
sinstr, which is an ASCII space character (its value is 0x20 in hexadecimal notation,
or 32 in decimal). Finally, there is an integer that specifies how many elements
sinstr has (that is, its size—in this case, 80). Notice that although sinstr is an array,

Developing Software in C | 127

we didn’t write it like one. This is because of the close relationship in C between arrays
and pointers, which we’ll get to shortly. For now, you can safely assume that using the
name of an array variable without an index is equivalent to specifying the memory
address of the zeroth element in the array. So, in a nutshell, memset() will fill 80 con-
secutive memory locations with the space character starting at the address of the zeroth
element of the character array sinstr.

Now notice the assignment statement on the following line. In C, a string is always
terminated with a so-called string null. This is really nothing more than an 8-bit zero
value. As you may recall, Python does not use string terminators, because a Python
string object “knows” how big it is when it is instantiated. In C, a string is just another
type of array, and without the terminator it is very possible for code to “walk off the
end” of the string.

Now that the string array has been initialized, the fun can start. The for loop modifies
sinstr 20 times and prints each modification to stdout. Within the for loop, the first
statement computes where to place an asterisk using C’s sin() function from the math
library and writes this value to the variable offset. The index counter i is divided by
10 and used to divide up the value of pi from the math library. The constant value 39
in the offset calculation statement determines where the output will start relative to the
start of the string array.

The variable offset is used as an index into sinstr to change the space character at
that location to an asterisk. The entire string in sinstr is then printed, including the
newly inserted asterisk. After the string has been printed, the asterisk in the string array
is replaced by a space and the process is repeated again.

Finally, the program returns a value of zero and terminates.

Preprocessor Directives
C provides a preprocessor that supports capabilities such as file inclusion (#include)
and named literals (#define), to name the two most commonly used functions. The
#define preprocessor directive is commonly referred to as a macro. The preprocessor
also provides a basic conditional test and control capability (#if, #elif, #ifdef, #ifndef,
#else, and #endif), and the ability to “undefine” a macro definition (#undef). Notice
that the preprocessor directives begin with a pound (hash) symbol. These are not com-
ments, as in Python.

In some C implementations, the preprocessor is a separate program that is invoked as
the first step in the compilation sequence, but can also be run by itself if necessary. The
preprocessor scans the source file, acting on any directives encountered and stripping
out comments. What comes out the other end will usually look quite different from
what goes in (sometimes radically so). The output is in a form that the compiler can
deal with directly: pure C language tokens, whitespace characters, and nothing more.

128 | Chapter 4: The C Programming Language

For most of what we’ll be doing, we won’t need the more advanced capabilities of the
preprocessor. We just need to be able to include files in our code, define some constants,
and then let the compiler have at it.

#include

The #include directive, as its name implies, is used to include the contents of one file
into another. For example, it is often used to include the contents of a header file, which,
as its name implies, is included at the start of a source file. Header files typically contain
things like function definitions for code in other modules or library objects, and macro
definitions related to those functions. The #include directive could also be used to
include one source file into another, but this is generally frowned upon. We will look
at header files and how they are used when we discuss the structure of a C program.

An #include statement must appear before the contents of the file that it refers to are
used, and it is common practice (and a Very Good Idea) to place these statements at
the start of a source file. In the example program we looked at earlier (sine_print.c),
there are three #include directives at the top of the listing:

#include <stdio.h> /* for I/O functions */
#include <math.h> /* for the sine function */
#include <string.h> /* for the memset function */

These tell the preprocessor to include the contents of the files stdio.h, math.h, and
string.h into our program. These are part of the standard library for C, and all three of
these files contain #define statements, function declarations, and even more #include
statements. They contain everything necessary to make use of the standard I/O func-
tions (printf(), memset(), and the value of pi) and the sin() function from the basic
math facilities available in the libraries that come with the C compiler.

#define

The #define macro directive associates a name (a string) with a substitution string.
Anywhere in the source code where the macro name occurs, it will be replaced with
the substitution string. #define macro names can appear anywhere where it would be
valid to type in the substitution string. Consider the following example:

#define UP 1
#define DOWN 0

if (avar < bvar) {
 return DOWN;
}
else {
 return UP;
}

After the source has been through the preprocessor, it will look something like this:

if (avar < bvar) {
 return 0;

Developing Software in C | 129

}
else {
 return 1;
}

The #define macro is commonly used to define constants that are used in various places
in one or more source modules. This is much preferable to using literal values as “naked
numbers” typed directly into the source. The primary reason is that if a program has a
constant used in calculations in multiple places, using one macro in a common included
file makes it much easier to change and is less error-prone than hunting through the
code for each occurrence of the literal value and replacing it. Also, unless there is a
comment specifically stating that some literal value is a special constant, it might be
difficult to tell the difference between two constants of the same value that are used for
completely different purposes. Changing the wrong literal value could lead to highly
annoying results.

#define is also sometimes used to define a complex statement or set of statements, and
supports the ability to accept variables. This is really where it gets the macro moniker.
Here’s a simple example:

#define MAX(a, b) ((a) > (b)?(a) : (b))

The ternary conditional (?:) is a shorthand way of testing the (a) > (b) expression. If
it evaluates to true, the value of (a) is returned; otherwise, (b) is the result. This is a
somewhat risky macro, however, because if a happened to be of the form ++a (which
we will discuss shortly) it would get evaluated twice—once in the comparison and once
when it is returned as the result—and its value would be incremented twice. This might
not be the desired result.

If we were to put the two #define statements from this example into their own file,
called updown.h, it could then be included in any other C source file that needed those
definitions:

/* updown.h */

#define UP 1
#define DOWN 0

And here is how it is used:

#include "updown.h"

if (avar < bvar) {
 return DOWN;
}
else {
 return UP;
}

When updown.h is included into the program source, the result is the same as if the
two #define statements had been written into the code from the outset.

130 | Chapter 4: The C Programming Language

As a final example before we move on, here is what sine_print.c looks like if #define
macros are used instead of simple literals in the code (I’ve named this version
sine_print2.c):

/* sine_print2.c
 Print a sideways sine wave pattern using ASCII characters

 Outputs an 80-byte array of ASCII characters (otherwise
 known as a string) 20 times, each time replacing elements
 in the array with an asterisk ('*') character to create a
 sideways plot of a sine function.

 Incorporates #define macro for constants.
 */

#include <stdio.h> /* for I/O functions */
#include <math.h> /* for the sine function */
#include <string.h> /* for the memset function */

#define MAXLINES 20
#define MAXCHARS 80
#define MAXSTR (MAXCHARS-1)
#define MIDPNT ((MAXCHARS/2)-1)
#define SCALEDIV 10

int main()
{
 /* local variable declarations */
 int i; /* loop index counter */
 int offset; /* offset into output string */
 char sinstr[MAXCHARS]; /* data array */

 /* preload entire data array with spaces */
 memset(sinstr, 0x20, MAXCHARS);
 sinstr[MAXSTR] = '\0'; /* append string terminator */

 /* print MAXLINES lines to cover one cycle */
 for(i = 0; i < MAXLINES; i++) {
 offset = MIDPNT + (int)(MIDPNT * sin(M_PI * (float) i/SCALEDIV));

 sinstr[offset] = '*';
 printf("%s\n", sinstr);
 /* print done, clear the character */
 sinstr[offset] = ' ';
 }
}

This version makes it much easier to see what happens if one changes the maximum
line length from 80 to, say, 40 characters. The #define macros for MAXSTR and MIDPNT
are computed from the value defined by MAXCHARS, so all one needs to do is change
MAXCHARS to 40. It should be noted that when the macro substitutions for MAXSTR and
MIDPNT occur in the code, it will look like this when the C compiler gets it from the
preprocessor:

Developing Software in C | 131

sinstr[(80-1)] = '\0';

and:

sinstr[((80/2)-1) + (int)(((80/2)-1) * sin(3.14159265358979323846 \
* (float) i/10))] = '*';

The M_PI macro is supplied by the included file math.h, and in this case is defined as:

3.14159265358979323846

Try changing MAXCHARS to 40 or 20 and then recompile the program to see for yourself
how this works.

Standard Data Types
C has only four fundamental numeric data types. These are listed in Table 4-1.

Table 4-1. Basic C data types

Type Description

char A single byte (8 bits). Signed unless specified as unsigned.

int An integer, which is typically the size of native integer values on the host system. Commonly found in either 16- or
32-bit sizes. Signed unless specified as unsigned.

float A single-precision floating-point value, typically expressed in 32 bits (4 bytes). Always signed.

double A double-precision floating-point value, typically expressed in 64 bits (8 bytes). Always signed.

In addition, there are four modifiers that can be applied to the basic types to specify
the amount of storage that should be allocated and the expected range. They are short,
long, signed, and unsigned.

Putting it all together yields the type definitions shown in Table 4-2.

Table 4-2. Extended C data types

Type Bytes Range

unsigned char 1 0 to 255

signed char 1 –128 to 127

char (same as signed char) 1 –128 to 127

short (int) 2 –32,768 to 32,767

unsigned short (int) 2 0 to 65,535

unsigned int 4 0 to 4,294,967,295

signed int 4 –2,147,483,648 to 2,147,483,647

int (same as signed int) 4 –2,147,483,648 to 2,147,483,647

unsigned long 4 0 to 4,294,967,295

long (int) 4 –2,147,483,648 to 2,147,483,647

132 | Chapter 4: The C Programming Language

Type Bytes Range

float 4 approximately +/– 3.4 E +/–38

double 8 approximately +/– 1.798 E +/–308

long double 12 (Note: 12 bytes, not 16)

These are typical range values. Actual ranges depend on machine
architecture and implementation. Refer to your C compiler documen-
tation for details.

There is no string type in C; a string is just an array of type char with the last element
containing a zero as a terminator value. In C, strings are alterable (or mutable, to borrow
Python’s terminology) arrays just like any other array.

One will often encounter the use of short and long without the int portion of the type
name. When specifying a short or long integer type, the int is implied, and although
the compiler will (or at least, should) accept the int keyword, it is not necessary. Also,
unless specifically stated otherwise, all integer types are assumed to be signed.

Lastly, we should mention the void keyword. It’s not a type in the conventional sense,
but rather serves as a placeholder that indicates an undefined type. It is typically used
to indicate that a function returns nothing (the default expected return type for a func-
tion is int), or as a placeholder for a pointer that can refer to any valid memory location
(we’ll discuss pointers later).

User-Defined Types
C allows the programmer to define an identifier that represents an existing data type
or a construct that incorporates existing data types. For example:

typedef signed short int16_t;
typedef unsigned short uint16_t;
typedef float float32_t;
typedef double float64_t;

These are actually found in the header file /usr/include/sys/types.h.

If these are defined, one can write:

int16_t var1, var2;

and it will mean the same thing as:

short var1, var2;

typedef can also be used to create new type definitions for things like pointers and
structures.

Developing Software in C | 133

Operators
C provides the usual selection of arithmetic, logical, and comparison operators. It also
has some rather unique unary (single-operand) operators such as pre- and post-
increment, pre- and post-decrement, logical negation, and unary plus and minus (arith-
metic negation).

Some operators appear more than once in the following tables to reflect their status as
members of more than one class of operations.

Arithmetic operators

The arithmetic operators (see Table 4-3) in C are much like the arithmetic operators in
any other language.

Table 4-3. C arithmetic operators

Operator Description

+ Addition

− Subtraction

* Multiplication

/ Division

% Modulus

One does need to be careful, however, when performing operations on variables of
different types. For example, when two integer types are used, the smaller type is “pro-
moted” to a size equal to that of the larger type. Thus, if a short integer is added to a
long, the short is promoted to a long for the operation.

Unary operators

C’s unary operators (shown in Table 4-4) perform a specific action on one, and only
one, variable. They will not work on expressions, but they can appear in expressions.

Table 4-4. C unary operators

Operator Description

+a Unary plus

-a Unary minus (arithmetic negation)

++a Pre-increment

a++ Post-increment

--a Pre-decrement

a-- Post-decrement

!a Logical negation (NOT)

134 | Chapter 4: The C Programming Language

Operator Description

~a Bitwise one’s complement (NOT)

* Pointer dereference (see section on pointers)

& Memory address (see section on pointers)

These operators might need a few words of explanation. The unary plus and minus
operators change the sign of a variable. Consider the following bit of code:

#include <stdio.h>
void main() {
 int a, b;

 a = 5;
 printf("%d\n", a);
 b = -a;
 printf("%d\n", b);
}

When this code is compiled and executed, the following output is generated:

5
-5

The increment and decrement operators increase or decrease the value of a variable by
1. When this occurs is determined by the location of the operators. If the ++ or --
operator appears before the variable, the increment or decrement operation occurs
before any subsequent operations using that variable. If the ++ or -- operator appears
after the variable name, the increment or decrement occurs after the indicated opera-
tion. The following code shows how this works:

#include <stdio.h>

void main()
{
 int a = 0;
 int b;

 b = ++a;
 printf("a: %d, b: %d\n", a, b);
 a = 0;
 b = a++;
 printf("a: %d, b: %d\n", a, b);
}

The output looks like this:

a: 1, b: 1
a: 1, b: 0

In the first case, the value of a is incremented and then assigned to b. In the second case,
the assignment occurs before the increment (the increment is a post-increment), so b
gets a’s original starting value, not the incremented value.

Developing Software in C | 135

The ! and ~ operators work as one might expect. It is common to see expressions of
the form:

a = !(b > c);

which means that if b is greater than c, the result will be false, even though the b > c
part of the expression is true. It is logically negated. The binary negation (~, one’s
complement) operator inverts the sense of each bit in a variable, so that a variable with
a bitwise value of:

00100010

becomes the complement of the original value:

11011101

We will discuss the * and & operators when we get to pointers, so we’ll put those aside
for now.

Assignment and augmented assignment operators

The C language provides a number of useful assignment operators. These are shown
in Table 4-5.

Table 4-5. C assignment operators

Operator Description

= Basic assignment

+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and assignment

/= Division and assignment

%= Modulus and assignment

<<= Assignment by bitwise left shift

>>= Assignment by bitwise right shift

&= Assignment by bitwise AND

|= Assignment by bitwise OR

^= Assignment by bitwise XOR

The assignment operator in C works by copying a value into a memory location. If we
have two variables and we write:

x = y;

the value contained in the memory location called y will be copied into the memory
location called x. Note that both x and y must have already been declared before an
assignment can take place, so that the compiler can allocate memory space for the
variable ahead of time.

136 | Chapter 4: The C Programming Language

As in most other modern programming languages, C’s augmented assignment opera-
tors work by performing the indicated operation using the values of the variables on
either side of the operator and then assigning the result back into the lefthand variable.
So, if we have an expression that looks like this:

cnt += 10;

we can expect that the value cnt will have 10 added to it and the sum will then be
assigned back to cnt.

Comparison operators

C’s comparison and relational operators (shown in Table 4-6) only work on numeric
values. They don’t work on strings, structures, or arrays, although it is possible to
compare two characters, as in ("a" < "b"). In this case the result will be true, since the
numeric ASCII value of "a" is less than the numeric value of "b". C simply treats them
as byte values.

Table 4-6. C comparison and relational operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

!= Not equal to

== Equal to

Expressions that use comparison operators always return a logical true or false. In C,
false is defined as zero (0), and anything else is considered to be true (although the value
1 is typically given this honor). The operands may be single variables or other expres-
sions, which allows for some rather complex compound expressions.

Logical operators

C provides three logical operators, shown in Table 4-7.

Table 4-7. C logical operators

Operator Description

!a Logical negation (NOT)

&& Logical AND

|| Logical OR

Developing Software in C | 137

C’s logical operators act on the truth values of the operands. Thus, a statement such
as this:

tval = !x && (y < z);

has a truth table that looks like Table 4-8.

Table 4-8. Truth table for tval

tval x (y < z)

F F F

T F T

F T F

F T T

In this case, tval will be assigned a true value if and only if x is false and the expression
(y < z) evaluates to true.

Bitwise operators

The rich set of bitwise operators found in C is a legacy of its long history as a systems-
level language, and these operators are ideally suited to applications that are “close to
the metal.” Table 4-9 lists C’s bitwise operators. Manipulating the bits in a hardware
register is much easier to do in a low- to mid-level language like C than in a high-level
language such as Python.

Table 4-9. C bitwise operators

Operator Description

<< Bitwise left shift

>> Bitwise right shift

~a Bitwise one’s complement (NOT)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<<= Assignment by bitwise left shift

>>= Assignment by bitwise right shift

&= Assignment by bitwise AND

|= Assignment by bitwise OR

^= Assignment by bitwise XOR

138 | Chapter 4: The C Programming Language

C extends the concept of augmented assignment by including bitwise operations. The
shift-assign operators shift the value of the lefthand operand in a bitwise fashion either
left or right by the number of bits specified in the righthand operand, and assign the
result to the lefthand operand.

If we have a variable that contains the value 1 and we shift it left by 2, the result will be
the value 4. This is shown graphically in Figure 4-3.

Figure 4-3. Bitwise left shift

In the first case (on the left), the original value of 1 becomes 4. In the second case, the
original value of 12 becomes 48. A left shift is, in effect, multiplication by powers of 2
wherein the original value is multiplied by 2n, where n is the number of bit positions
shifted. Conversely, a right shift is equivalent to division. And, yes, one can do some
speedy math tricks using shifts, but only if it works out that a power of 2 is suitable for
the operation.

The AND, OR, and XOR bitwise operators map across bit-to-bit between the operands. The
AND and OR operators are used fairly heavily in situations where one must manipulate
the individual bits in a hardware register, such as might be found in an interface circuit
of some kind. The bitwise AND is often used to isolate a particular bit in an integer value,
which may have been read from a hardware register. The following code snippet shows
how the AND operator can be used (we’ll assume that the variables have all been properly
defined elsewhere):

regval = ReadReg(regaddr);
if (regval > 0) {
 if (regval & 0x08)
 SetDevice(devnum, SET_ON);
 else
 SetDevice(devnum, SET_OFF);

 regval &= 0xf7;
 WriteReg(regaddr, regval);
}

The first step is to obtain the current contents of a hardware register and write the data
into the variable regval. Next, regval is checked to see if any bits are set (it will be >
0). If so, then the bit at position 23 (0x08) is tested by “masking” all the other bits. With
the AND operator, if the 23 bit is 1, the result will be nonzero (it will be 0x08, actually)
and the TRUE portion of the second if statement will be executed. Otherwise, the

Developing Software in C | 139

FALSE portion of the if will be executed. Lastly, the snippet clears the 23 bit by applying
the one’s complement of 0x08 (which is 0xf7) and writes the value back into the hard-
ware register. If the bit at the 23 position in regval is already 0, it will remain 0. This
could have the effect of resetting a trigger condition or perhaps terminating some action
in the external physical world. Figure 4-4 shows how the snippet operates on the bits
in regval.

Operator precedence

To complete our overview of operators in C, we need to consider the subject of operator
precedence. Each operator in C has a specific priority, or precedence, in the order of
execution when an expression is evaluated. Consider these two expressions:

2 * 4 + 12
2 * (4 + 12)

They may look similar, but they will give very different results. The first expression will
yield a value of 20. The second will yield a value of 32. The reason is that the multipli-
cation operator has a higher precedence than the addition operator, so unless the
compiler is told otherwise by mean of parentheses grouping, it will perform the mul-
tiplication first.

Associativity also affects how an expression will be evaluated. In general terms, asso-
ciativity defines how evaluation of an expression associates operands with operators,
and in which direction, for operators of the same precedence. For example, if we have
the following:

3 + 5 + 7 − 2 + 6

the addition and subtraction operators associate left to right. The result is the same as
if the expression had been written as:

((((3 + 5) + 7) − 2) + 6)

Now consider this expression:

3 + 2 * 6 + 8 / 4

Multiplication and division also associate left to right, but they are of a higher prece-
dence than addition or subtraction, so this expression could be stated as:

((3 + (2 * 6)) + (8 / 4))

If a different outcome is desired, parentheses can be used to group the operands
accordingly.

In general, it is a good idea to use parentheses to make the original intent clear rather
than relying on the precedence and associativity rules of a language. The result is more
readable and less prone to misinterpretation.

Table 4-10 lists the operators available in C in order of precedence, from highest to
lowest, along with the associativity of each.

140 | Chapter 4: The C Programming Language

Figure 4-4. Using C’s AND operator

Developing Software in C | 141

Table 4-10. C operator precedence

Operator Description Associativity

()

[]

.

->

++ −−

Parentheses

Brackets (array subscript)

Member selection via object name

Member selection via pointer

Postfix increment/decrement

Left to right

++ −−

+ −

! ~

(type)

*

&

sizeof

Prefix increment/decrement

Unary plus/minus

Logical negation/bitwise complement

Cast (change type)

Dereference

Address

Determine size in bytes

Right to left

* / % Multiplication/division/modulus Left to right

+ − Addition/subtraction Left to right

<< >> Bitwise shift left, bitwise shift right Left to right

< <=

> >=

Relational less than/less than or equal to

Relational greater than/greater than or equal to

Left to right

== != Relational is equal to/is not equal to Left to right

& Bitwise AND Right to left

^ Bitwise exclusive OR (XOR) Right to left

| Bitwise inclusive OR Right to left

&& Logical AND Left to right

|| Logical OR Left to right

?: Ternary conditional Right to left

=

+= −=

*= /=

%= &=

^= |=

<<= >>=

Assignment

Addition/subtraction assignment

Multiplication/division assignment

Modulus/bitwise AND assignment

Bitwise exclusive/inclusive OR assignment

Bitwise left/right shift assignment

Right to left

, Comma (separate expressions) Left to right

142 | Chapter 4: The C Programming Language

Expressions
An expression in C makes use of one or more of the available operators to define a
computational action. This might be as straightforward as a comparison, or as complex
as a multivariable Boolean equation. When used within control statements (which we
will examine shortly), an expression is always enclosed in parentheses. Expressions
used in an assignment statement may have optional parentheses to help establish the
desired order of operations to be performed. Parenthesized expressions always return
a value as a side effect, which may or may not be useful.

Statements
A C program is composed of statements. A statement is executable code, such as an
assignment, a function call, a control statement, or a combination of these. Statements
consist of tokens (variable and function names), expressions, and possibly other state-
ments. C is a logically rich language and allows for a great deal of flexibility in how
statements are assembled by the programmer.

Assignment statements copy the value of whatever is on the right side of the assignment
operator to the token on the left side. The lefthand token must be a variable (either a
single variable, an element in an array, or a member of a structure), whereas the right-
hand operand may be any valid variable name, a constant, an expression, or a statement
that returns a value. One cannot assign a value to a function or a constant, but one can
assign the return value of a function or the value of a constant to a variable.

A function call statement transfers program execution to another function. It might be
within the same module as the calling function, or it in another module altogether.
When the external function finishes and returns, control resumes at the next statement
following the call statement. It is common to see a combination of an assignment with
a function call, like this:

ret_val = ext_function();

The control statements of a C program control program execution. There are various
types of control statements available to perform branching, implement loops, and di-
rectly transfer control to another part of the program.

Groups of statements are referred to as statement blocks, and are delimited using the
curly brace characters ({}).

if-else statement

The if statement is used to direct control flow, or the path of execution, through the
code. The test expression will be evaluated as either true (any nonzero value) or false
(a zero). The basic form of if statement looks like this:

if (expression) {
 statement(s)
}

Developing Software in C | 143

If only a single statement is used, the curly braces are optional.

In a simple if statement, when (expression) is true, the statement or statements asso-
ciated with the if are executed. Because C is an unstructured language, one could also
write a simple if like this:

if (expression) statement;

or:

if (expression) {statement; statement;}

While there are situations where this might make the intent of the code more readable
and concise, it should be used sparingly, if at all.

The else statement allows for an alternative to handle the condition where
(expression) evaluates to false and some alternative action is necessary:

if (expression1) {
 statements(s)
}
else {
 statements(s)
}

If (expression) is true, the first block of statements is executed; otherwise, the second
block of statements is executed.

Multiple conditional tests may be grouped into a set of alternative actions by using the
else if statement:

if (expression1) {
 /* block 1 */
 statements(s)
}
else if (expression2) {
 /* block 2 */
 statements(s)
}
else if (expression3) {
 /* block 3 */
 statements(s)
}
else {
 /* block 4 */
 statements(s)
}

If (expression1) is true, the statements in block 1 are executed. If expression1 is not
true, (expression2) is evaluated, and if it is true the statements in block 2 are executed.
The same applies to (expression3). If none of the expressions are true, the statements
in block 4 under the final else are executed. Note that the use of the last else is optional.

144 | Chapter 4: The C Programming Language

switch statement

The switch statement is used to select an execution path based on the value of an
expression. The value of the expression is compared to a constant and, if it matches,
the statement or statements associated with that branch are executed:

switch (expression) {
 case constant: statement;
 case constant: statement;
 case constant: statement;
 default: statement;
}

The constant may be a char, an int, a float, or a double, and all case values must be
unique. The optional default statement is executed if none of the case statements are
matched.

If more than one statement is used with a case statement, the statements do not need
to be grouped into a block using curly braces, although it is syntactically legal to do so:

switch (expression) {
 case constant:
 statement;
 statement;
 case constant: {
 statement;
 statement;
 statement;
 }
}

One tricky—and often misunderstood—behavior of a switch statement is called fall-
through. Consider the following example program, c_switch.c:

/* C switch example */
#include <stdio.h>

int main(void)
{
 int c;

 while ((c = getchar()) != EOF) {
 if (c == '.')
 break;

 switch(c) {
 case '0':
 printf("Numeral 0\n");
 case '1':
 printf("Numeral 1\n");
 case '2':
 printf("Numeral 2\n");
 case '3':
 printf("Numeral 3\n");
 }

Developing Software in C | 145

 }
}

This compiles just fine, and when a period (.) is entered the while loop is exited using
a break statement as it should, but the output looks like this:

0
Numeral 0
Numeral 1
Numeral 2
Numeral 3
1
Numeral 1
Numeral 2
Numeral 3
2
Numeral 2
Numeral 3
3
Numeral 3
.

What is happening here is that when a case statement matches the variable c, it not
only executes its statement, but then execution “falls through” and all subsequent
statements are executed. This may not be what was intended (although there are some
cases where this behavior might be desirable). In order to prevent fall-through, the
break statement can be used. Here is the revised version of c_switch.c with break
statements:

/* C switch example */
#include <stdio.h>

int main(void)
{
 int c;

 while ((c = getchar()) != EOF) {
 if (c == '.')
 break;

 switch(c) {
 case '0':
 printf("Numeral 0\n"); break;
 case '1':
 printf("Numeral 1\n"); break;
 case '2':
 printf("Numeral 2\n"); break;
 case '3':
 printf("Numeral 3\n");
 }
 }
}

146 | Chapter 4: The C Programming Language

The output now looks like what we would expect:

0
Numeral 0
1
Numeral 1
2
Numeral 2
3
Numeral 3
1
Numeral 1
3
Numeral 3
2
Numeral 2
.

One should always use break statements in a switch construct unless there is a very
good and compelling reason not to do so. The default statement is also a good idea.
In some coding style requirements, such as those employed in the aerospace industry,
a default statement is always required, even if it does nothing. One use for a switch
construct with a default statement is as an input verifier. Suppose a function expects
a specific set of input parameter values, and anything else is an error that must be
trapped and handled. Here’s a simple example code snippet:

switch(inval) {
 case 0:
 case 1:
 case 2:
 case 3:
 rc = OK;
 break;
 default:
 rc = BAD_VAL;
}

This will set the variable rc (i.e., the return code) to whatever the macro OK is defined
to be if the input value (inval) is between 0 and 3, inclusive. If it is anything else, rc is
set to BAD_VAL. It is assumed that rc will be checked further down in the code to handle
the invalid input condition. Although one could have written an equivalent bit of code
using an if and comparison operators, like so:

if ((inval >= 0) && (inval <= 3)) {
 rc = OK;
else
 rc = BAD_VAL;

the switch method also handles noncontiguous sequences of values quite nicely without
resorting to long and complex combinations of logical and comparison operators.

Developing Software in C | 147

while loop

The while loop executes a statement or block of statements so long as a test expression
evaluates to true:

while (expression) {
 statement(s)
}

Because the test expression is evaluated before the body of the loop, it is possible that
it may not execute any of its statements at all.

do-while loop

The do-while loop is similar to while, but the loop test expression is not evaluated until
the end of the loop’s statement block:

do {
 statement(s)
} while (expression);

The statement or statements in the body of a do-while loop will always be executed at
least once, whereas in the while loop they might not be executed at all if the test ex-
pression evaluates to false.

for loop

The for loop is typically used as a counting loop, although it is not restricted to using
just numeric types:

for (<initialization expression>, <test expression>, <iteration expression>) {
 statement(s)
}

The for statement contains three distinct components, all of which are optional. When
the test expression is omitted, the logical value is assumed to always be true. The ini-
tialization and iteration expressions are treated as no-ops when either or both are omit-
ted. The semicolons in the syntax are sufficient to indicate the omission of one or more
of the expressions.

For example, a for loop can omit the initialization and test expressions:

int i = 0;

for (; ; i++) {
 if (i > 9)
 break;
}

To emulate an unbounded loop, all of the for loop’s expressions can be omitted:

int i = 0;

for (;;) {
 if (++i > 9)

148 | Chapter 4: The C Programming Language

 break;
}

“Unbounded” in this case simply means that there is no implicit way for the loop to
terminate. If the internal test never becomes true, the loop will execute forever.

C’s for loop is very flexible, but it is typically found in the role of a counting loop (by
way of contrast, a for statement in Python is designed to iterate through a range of
values or data objects). The initialization expression establishes the starting value of a
loop counter variable, the test expression controls execution of the loop (it will execute
so long as the test expression is true), and the iteration expression is invoked each time
through the loop immediately after the test expression is evaluated. The following code
snippet illustrates this:

int i;

for (i = 0; i < 10; i++) {
 /* statements go here */
};

The loop starts with the value of the counter variable i set to 0. The statements in the
body of the loop are then executed and the counter variable is incremented by 1. It is
then tested and, if the result is true, the loop repeats.

break statement

The break statement is used to terminate, or break out of, a loop (while, do, or for) or
a switch construct. When it is encountered, it will cause the surrounding loop to ter-
minate. No further statements in the loop’s statement block will be executed. The
c_switch.c example shown earlier demonstrated the use of break in both a loop and a
switch context.

continue statement

The continue statement forces execution to immediately branch back to the top of a
loop. It is used only with while, do, and for loops. No statements following the
continue statement are executed.

goto statement

The C language provides a statement that is inherently dangerous, potentially evil, and
prone to much abuse and misuse. This is the goto statement, which, as you might
surmise, causes program execution to abruptly jump to a labeled location in the code.
As Kernighan and Ritchie put it: “Formally, the goto is never necessary, and in practice
it is almost always easy to write code without it.” Sage advice. We won’t be using
goto in any of the C code in this book.

Developing Software in C | 149

Arrays and Pointers
Arrays and pointers are closely related in C; both refer to contiguous areas of memory
set aside for data storage. Arrays have an inherent structure imposed by the type and
the size (number of elements) specified when the array is declared. A pointer also ref-
erences an area of memory that has structure and size, although how this is achieved
differs from an array declaration, as we’ll see shortly. Because of this close relationship,
it is possible, for example, to refer to the contents of an array using a pointer. Con-
versely, an array index might be thought of as a pointer into a specific memory space.

In this section, we’ll look at arrays and pointers and see how they are related. We’ll
also see exactly what pointers are and how they are used.

Arrays

An array is an ordered set of data items in a contiguous region in memory. Arrays are
defined with a type when they are declared, and all the data elements in the array must
be of that type. As we’ve already seen, a string in C is an array of char (byte) type data
items. One can also have arrays of int, float, and double values, as well as pointers.

In C, an array is fixed in size. Its size cannot be changed once it is defined (actually,
this is not entirely true if one is using pointers, but we’ll get to that in a moment). Each
element, or cell, in an array occupies the amount of memory required to hold a variable
of the type of the array.

Here is a contrived example that will print each element in a string array on its own
line of output:

#include <stdio.h>

int i;
char cval = ' ';

int main(void)
{
 char str[16] = "A test string\0";

 for (i = 0; cval != '\0'; i++) {
 cval = str[i];
 if (cval != '\0') printf("%c\n", cval);
 }
}

Notice that the string in str has a char zero value at the end. Without this, the for loop
would run off the end of the array and into some other part of memory. Also notice
that if cval contains the null character (\0), it is not printed.

Lastly, there is the array of pointers, which are treated as unsigned integer values of a
size corresponding to the native address size of the underlying machine (typically 32
bits).

150 | Chapter 4: The C Programming Language

When an array is accessed using an index, the actual position in the array’s memory
space is based on the size of the data type of the array, as shown in Figure 4-5.

Figure 4-5. Array indexing

When the index of array1 is incremented, it advances one byte (char). When the index
of array2 is incremented, it advances by two bytes. For array3, the index advances by
four bytes. Note that in C array indexing is zero-based.

Pointers

A pointer is a variable that contains a memory address. This address might be that of
another variable, or it could point to a contiguous region of memory. It might also be
something like the address of a control register in an I/O device of some type. Pointers
are a powerful concept, and they make some classes of problems much more tractable
than would otherwise be possible. For this reason, C has sometimes been called “the
language of pointers.” Understanding what a pointer is and how to use it effectively is
key to writing efficient and powerful programs in C. Occasionally one hears criticism
leveled at C because of pointers, and while it is true that a stray pointer can cause serious
problems, it is also true that if pointers are used carefully and with some discipline, the
result is as safe and robust as any code written in a language that lacks the concept of
a pointer.

Developing Software in C | 151

For a real-life example of how pointers in C can be used to manage
memory for image data processing on a spacecraft, see Chapter 3 of the
book Beautiful Data, edited by Jeff Hammerbacher and Toby Segaran
(O’Reilly).

To define a pointer, we use the * unary operator:

int *p;

This statement defines a pointer named p of type int, and it can be used to point to an
integer data location. To assign an address to it, we can use the & unary operator, like so:

int x = 5;
int y;
int *p;

p = &x;

The pointer variable now contains the address of the variable x, and we can access the
contents of x using p:

y = *p;

This will assign the value of x to the variable y. When the * operator is used in this
fashion, it is called dereferencing, or indirection.

Pointers can be passed as parameters to functions. This allows a C function to manip-
ulate data in some location outside of itself, or return more than just a single value.
Here’s a common swap function:

void swap (int *x, int *y)
{
 int tmp;
 tmp = *y;
 *y = *x;
 *x = tmp;
}

The parameters x and y are pointers provided by a calling function, like so:

int a = 10
int b = 20;

swap(&a, &b);

Note that when swap() is called, the & address operator is used to pass the addresses of
the two variables a and b. When swap() returns, a will contain 20 and b will contain 10.

We stated earlier that arrays and pointers are related, and this is a good time to explore
that relationship a bit further. In C, the first element in an array is the base address of
the array’s memory space. We can assign the base address of an array to a pointer using
the & operator, like so:

152 | Chapter 4: The C Programming Language

http://oreilly.com/catalog/9780596157128/

int anarray[10];
int *p;
p = &anarray[0];

Since both anarray and p are defined as int types, these two statements are equivalent:

anarray[5];
*(p+5);

Both refer to the value stored at index position 5 in the anarray memory space. With
the pointer form, the address it contains is incremented by five, not the value it is
pointing to. If we had written *p+5, the array element at anarray[0] would have had 5
added to it instead. One can also assign the base address of an array to a pointer, like
this:

p = anarray

This form implies &anarray[0] and is usually how an array base address is assigned to
a pointer. The &anarray[0] form is not necessary; unless there is a specific need to
reference the address of a particular array element other than the zeroth element, one
would just use the array name.

Pointers can be used to point to things other than simple variables and arrays. A pointer
can refer to a structure (discussed in the next section), or it can point to a function.
Pointers in C take a little getting used to if one has never dealt with them before, but it
is worth the effort to learn them as they allow for compact and efficient expressions
that would otherwise be difficult, or even impossible, to achieve.

Structures
A structure in C is a collection of variables of different types. A structure has a unique
name, and structures may include substructures.

Figure 4-6 shows a graphical representation of structure syntax.

Figure 4-6. C structure syntax

Developing Software in C | 153

Here is a definition for a simple structure that contains three variables that hold the
result from a single input measurement of some sort:

struct measdata {
 float meas_vpp;
 float meas_f;
 long curr_time;
};

This, by itself, isn’t particularly interesting, but if we had an array of these structures
we would have a set of measurements:

struct measdata measurements [100];

Note that the structure definition does not allocate storage space—it is just a definition.
In other words, it’s a new programmer-defined type. We can also skip the extra step
of declaring a variable of the structure type by appending one or more variable names
to the structure definition:

struct measdata {
 float meas_vpp;
 float meas_f;
 long curr_time;
} measurements[100], single_meas;

The so-called “dot notation” is used to refer to a structure member. If we wanted the
value of meas_vpp from the 47th measurement, we would use:

vpp_value = measurements[46].meas_vpp;

Here is a more fully realized example that will obtain up to 100 measurements from an
input source:

#define MAXMEAS 100

struct measdata measurements [MAXMEAS];
int stop_meas = 0;
int i = 0;

while (!stop_meas) {
 measurements[i].meas_vpp = GetMeas(VPP); /* VPP defined elsewhere */
 measurements[i].meas_f = GetMeas(FREQ); /* FREQ defined elsewhere */
 measurements[i].meas_time = (long) time(); /* use standard library function */
 i++;
 if (i >= MAXMEAS) {
 stop_meas = 1;
 }

 /* maybe put some code here to check for an external stop condition */
}

We can use the typedef keyword (discussed in the section “User-Defined
Types” on page 133) to create a new structure type:

typedef struct dpoint {
 int unit_id;

154 | Chapter 4: The C Programming Language

 int channel;
 float input_v;
} datapoint;

When used with typedef, the structure name is optional. This form works just as well:

typedef struct {
 int unit_id;
 int channel;
 float input_v;
} datapoint;

The new type may then be used to create new variables:

datapoint input_data;

Before moving on, we need to look at pointers to structures and how the contents of a
structure are accessed via a pointer. The follow example program shows how one can
create an array of pointers to structures, acquire memory for the structure data, and
then reference the contents of the structures:

#include <stdio.h>
#include <stdlib.h>

typedef struct {
 int unit_id;
 int channel;
 float input_v;
} datapoint;

int i;

datapoint *dpoint[10];

int main(void)
{
 for (i = 0; i < 10; i++) {
 dpoint[i] = (datapoint *) malloc(sizeof(datapoint));
 dpoint[i]->unit_id = i;
 dpoint[i]->channel = i + 1;
 dpoint[i]->input_v = i + 4.5;
 }

 for (i = 0; i < 10; i++) {
 printf("%d, %d: %f\n", dpoint[i]->unit_id,
 dpoint[i]->channel,
 dpoint[i]->input_v);
 }

 for (i = 9; i > 0; i--) {
 free(dpoint[i]);
 }
}

Developing Software in C | 155

When we execute this code, the following output is generated:

0, 1: 4.500000
1, 2: 5.500000
2, 3: 6.500000
3, 4: 7.500000
4, 5: 8.500000
5, 6: 9.500000
6, 7: 10.500000
7, 8: 11.500000
8, 9: 12.500000
9, 10: 13.500000

There are some new things here, so now would be a good time to look at them. First,
notice that an array of pointers of type datapoint is created and called dpoint. When a
pointer or array of pointers is defined in this fashion, the pointer values are not yet
valid—they point to nothing because no memory addresses have been assigned.

In the main() function, the first for loop handles the chore of assigning a datapoint-
sized chunk of memory to each of the elements in the array of pointers by calling the
standard library function malloc(). The malloc() function requests a block of memory
of a specified size (in this case, large enough to hold an instance of a datapoint structure)
from the operating system. The first for loop also assigns values to locations in that
memory allocation that map to the structure defined in the datapoint type.

Since dpoint is of type datapoint, the memory block provided by malloc will be treated
just like a datapoint structure. Figure 4-7 shows this graphically.

To access individual elements in each structure, the so-called arrow notation is used.
This notation is used in C to relate pointers to structures with the defined data elements
within the structure type.

The second for loop reads out the data in structures and prints it, while the last for
loop works backward through the array of pointers and frees the memory for each entry.

Functions
In C, all executable statements are contained within functions (preprocessor directives
are not executable parts of the compiled code). C does not support the use of immediate
execution statements such as those found in Python modules. Also, every executable
C program must have a function named main(). This is the primary entry point when
the program is started. Utility, support, and library modules that are intended to be
compiled and then “linked” with other modules (more on this in a bit) do not have a
main() function.

156 | Chapter 4: The C Programming Language

Figure 4-7. Structure mapping to allocated memory

Function syntax

The basic syntax of a C function looks like this:

[type] name (parameters)
{
 statements...
}

The optional [type] qualifier specifies the return type of the function, and if it is not
present the compiler typically assumes that the function will return an integer (some
compilers, such as gcc, may generate a warning message about it). The function name
is composed of alphanumeric characters; how they are utilized is largely a stylistic issue.
The function name is followed by zero or more parameters enclosed in parentheses.
Parameters also have type qualifiers, and may be either values or pointers. On the next
line, there is a left curly brace ({), followed by zero or more statements, and then a final
closing right curly brace (}).

Functions cannot normally be nested in standard ANSI C, although some compilers
do allow functions to be nested as a nonstandard extension (hint: don’t do it—you will
most likely hate yourself for it later). Each function is treated as a single unique entity
with its own local scope.

Developing Software in C | 157

Function prototypes

A function prototype defines a function to the C compiler in a format that can be used
to resolve forward and external references. Because C requires that things like variables,
typedefs, and functions be defined before they are used, it is convenient to place the
prototypes for the functions in a module at the top of the module, or in an external file.
This allows the functions in the module itself to appear in any order. The alternative is
to arrange the functions such that they appear and are defined before they are called.
This might be acceptable for a small module, but it can quickly become a major head-
ache with a large module containing many functions.

A function prototype is just the function definition statement terminated with a semi-
colon (;). A C function prototype defines a reference to an as-yet-undefined function
within the current source file, or an external function within a separate object module.
Prototypes are used to create placeholders in the compiled code that will be filled in
later by a tool called a linker. For example:

void bitstring(char *str, long dval);

The function prototype specifies the function’s return type (void in this case), its name,
and the number and types of its parameters. The use of parameter names is optional,
which means we could just as easily have written the following and it would work just
fine:

void bitstring(char *, long);

The Standard Library
An ANSI-compliant C compiler comes with a number of header files and library mod-
ules that provide support for math operations, string processing, memory management,
and I/O operations, among many others. Table 4-11 gives an abbreviated listing of what
is available. For more information, refer to the documentation supplied with your par-
ticular C compiler.

Table 4-11. ANSI C standard library components

Filename Description

assert.h Defines the assert() macro. This is used to assist with testing and detection of errors in a debug version of a
program. If debugging is not active, the assert() macro is disabled.

ctype.h Declares functions for testing and classifying characters, such as isalpha(), isdigit(), and so on.

errno.h Captures error codes generated by other functions in the standard library.

float.h Defines macro constants for use with floating-point math operations.

limits.h Defines macro constants that are implementation-specific values for things such as the number of bits in a byte
and the minimum and maximum values for integer types.

locale.h Defines things like local currency representation and decimal point formatting. Declares the setlocal() function.

158 | Chapter 4: The C Programming Language

Filename Description

math.h Declares mathematical functions such as sin(), log(), pow(), and floor(). Macro definitions include M_PI,
M_TWOPI, M_SQRT2, and M_LOG2E, among others.

setjmp.h Declares the macro setjmp() and the function longjmp(), which are used for nonlocal exits.

signal.h Provides a means to generate and handle various system-level signals, such as SIGTERM and SIGSEGV.

stdarg.h Defines the va_start(), va_arg(), and va_end() macros for accessing a variable number of arguments
passed to functions.

stddef.h Defines several useful types and macros that are used in other standard library headers.

stdio.h Provides input and output functionality, including printf(), output formatting, input formatting, and file I/O
operations.

stdlib.h Contains declarations for a variety of utility functions, including atoi(), rand(), malloc(), and abs(). The
functions and macros declared in stdlib.h support a variety of operations, including conversions, random numbers,
memory allocation, process control, environment variables, and sorting.

string.h Defines string-manipulation functions such as strcpy(), strcat(), and strcmp(), and memory-
manipulation functions such as memcpy() and memset().

time.h Provides several functions useful for reading and converting the current time and date. Some behavior of the
functions declared here is defined by the LC_TIME category of the location setting.

The most commonly used standard library components are math.h, stdio.h, stdlib.h,
and string.h. I would advise you to take a look at these components so you can get an
idea of what is available.

Building C Programs
A nontrivial C program is usually a collection of files. Some of these may contain source
code directly related to the program, while some might be local files containing function
prototypes and macro definitions. Still other files may reside in a common library
directory. When the program is compiled it is all pulled into the compiler, converted
into object files, and then linked into a complete executable program. Figure 4-8 shows
the steps involved in compiling C source code into an executable program file.

Header files

In C, one will typically see two types of file extensions: .c and .h. The .h extension is
used to denote a header file, so called because one typically includes all necessary .h
files at the start of a module, before any of the actual code.

Header files are included in their entirety via the #include directive. They typically
contain function prototypes, macro definitions, and typedef statements, and a header
file can—and often does—include other header files. However, it is considered both
bad form and bad practice to place executable function code in a header file. Since it
is rather trivial to build execution-safe linkable object files in C, there really is no reason
to do this.

Developing Software in C | 159

Object files

The C compiler does not itself generate executable output. It generates what are referred
to as object files, which is an ancient term from the land of mainframes that refers to
the notion of a binary object consisting of machine-code instructions. Actually, how-
ever, an object file is an intermediate product. In order to execute, it still needs some
additional code, and this is provided by the linker.

If an object file references other binary objects outside of itself, the compiler inserts a
placeholder and creates a list of these in the object file. The linker then reads this data
in order to resolve the external references. Some C compilers (most notably Microsoft
C) also automatically incorporate a runtime object to allow a program to access Win-
dows system functionality.

Figure 4-8. C program compilation

160 | Chapter 4: The C Programming Language

Libraries

Library files are collections of binary objects that may be incorporated into other pro-
grams. Binary library files have specific formats, and there really isn’t a universal format.
Figure 4-9 shows a generic example of the internal format of a library file.

Figure 4-9. Generic library file internal format

The header identifies the type of library file, which may be either static or dynamic.
The symbol table contains a list of the object names in the file along with address offset
values that point to each object. Lastly, there are the binary objects themselves.

Linking

The linker is a standalone utility that links program binary objects to external library
modules. It uses the external reference placeholders in the program binary object to
determine what is needed and where the address reference for the external object should
be inserted. Figure 4-10 shows how the linking works.

Figure 4-10. Program binary object linkage

Developing Software in C | 161

The linker is typically language-independent. So, for example, one could link a binary
object originally created using FORTRAN with an object created using C, provided
that the compilers for both objects create binary objects that adhere to the same format
as that expected by the linker. Figure 4-11 shows a generic linked executable with one
program binary object, two library modules, and a runtime object to interface with the
underlying operating system. Not every C implementation uses or requires a runtime
object module, and in some implementations the functionality to support things like
the printf() function is included automatically, even if it isn’t used in the program.

Figure 4-11. Linked executable

Program execution always begins with the main() function, and this is where the default
runtime code will point the CPU when the program is loaded.

make

Lastly, we should mention the make utility. make is not part of the C compiler; it is a
separate program, although it might be included with a C compiler distribution.
make is a tool for maintaining a set of source files based on the use of rules and actions.
The rules specify actions to take if a file is missing or has been modified. When used
to help manage large C programs with many source and header files, make will invoke
either the compiler or the linker (or both) as necessary, to keep all binary objects,
libraries, and executable files up-to-date. Almost all versions of make incorporate their
own unique “little language” that allows for macro definitions, name substitutions,
generic and specific rule forms, and the ability to access other programs in the host
system. We won’t delve into make in this book, but I would encourage you to read
about make on the Web or in the documentation supplied with your operating system
or C compiler.

162 | Chapter 4: The C Programming Language

C Language Wrap-Up
C is a procedural language originally used for system-level programming. It has since
evolved into a general-purpose language that occupies a niche just above assembly
language and well below high-level languages such as Python, Java, or Lisp. Because
of C’s low-level nature, it is well suited to tasks that involve direct interaction with
system hardware and the underlying operating system. These capabilities are a double-
edged blade, however, and it’s easy to write C code that can do very unpleasant things
to the host system. Care and discipline are required to write solid, safe, and reliable C
code.

C Development Tools
As with Python, you will need a text editor or IDE of some sort for entering and editing
C source code.

Whereas Python handles the chores involved with keeping the various packages and
modules up-to-date dynamically at runtime and provides capabilities like introspection
as built-in functionality, a C program must be compiled and linked from its component
parts as a separate step in the development process.

Also, C does not support the ability to dynamically examine a running program, nor
does it output messages stating what modules are being loaded (unless the programmer
explicitly writes this functionality into the code). The end product for a C program is
a binary executable object, so debugging requires a specialized tool that is capable of
reading the various headers and symbol tables found in binary objects and matching
these to the original source code. If you want visibility into the compiled code, it must
be compiled with debugging enabled. This generates a larger object file because it in-
cludes various symbol tables and other data for a debugger to use.

For a list of some of the editors that are available, see Chapter 3. As for IDE tools, the
Eclipse IDE offers a plug-in for C as well as one for Python, and of course Microsoft’s
Visual Studio supports C and C++ right out of the box.

For C on Linux- and Unix-like systems, the classic GNU debugger, gdb, is supplied
with most gcc distributions. If your system has gcc, the odds are very good that gdb is
also present. On a Windows platform with either Cygwin or MinGW installed, gdb
should also be available. Microsoft’s Visual Studio has an excellent symbolic debugger
with a GUI interface. For Linux platforms, the DDD debugger is an excellent tool that
provides a GUI “wrapper” for the gdb debugger used with gcc. It also supports several
other C debuggers on Unix systems.

C Development Tools | 163

Summary
C is a fascinating language, so low-level that it removes almost all of the constraints on
the programmer by opening up the internals of the computer system to examination
and manipulation. At the same time, it fits comfortably in the role of a mid-level pro-
cedural language. We have only touched on some of the capabilities of the language,
but we’ve still managed to cover quite a bit. With what you’ve seen here, you should
be able to write your own extensions to the Python language to give it new functionality
and new interfaces into the real world.

Suggested Reading
C is now almost 40 years old, and mountains of books, papers, essays, and presenta-
tions have accumulated over the years. The following is just a minute sample of what
is available:

C Programming Language, 2nd ed. Brian W. Kernighan and Dennis M. Ritchie, Prentice
Hall, 1988.

Written and reviewed by the people at Bell Labs who invented C, this is considered
to be the original definitive reference for the C language. It has been updated since
it was first published and now incorporates the ANSI standard version of the lan-
guage. Short, to the point, and easy to follow, this little book made an indelible
impact on a generation (or two) of C programmers and software engineers. A must-
have for anyone working with C.

The Standard C Library. P. J. Plauger, Prentice Hall, 1991.
A detailed and handy resource the covers the standard C library components. This
is definitely a reference work, and it’s a good thing to have on the bookshelf.

Practical C Programming, 3rd ed. Steve Oualline, O’Reilly Media, 1997.
A straightforward, no-nonsense approach to the C language in particular, and
software engineering best practices in general. Examples help to illustrate the types
of pitfalls commonly encountered in C programming, and there are numerous in-
sights into the whys and wherefores of writing code in C.

As one might expect, the Internet is brimming with websites devoted to the C language.
Entering the search phrase “C programming language” into Google returns something
on the order of 15 million results. Here are a few highlights:

http://cm.bell-labs.com/cm/cs/who/dmr/chist.html
An interesting account of the early history and development of the C language by
Dennis Ritchie that outlines some of the thinking that went into the language as it
came into existence in the early 1970s.

http://cprogramminglanguage.net
Contains lots of brief but useful introductory material neatly organized like chap-
ters in a book.

164 | Chapter 4: The C Programming Language

http://oreilly.com/catalog/9781565923065/
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html
http://cprogramminglanguage.net

http://www.gnu.org/s/libc/manual/html_node/index.html
Online documentation for the libraries supplied with the GNU gcc compiler suite.
Also includes a very useful “concept index” that groups related subjects by specific
topic.

http://en.wikipedia.org/wiki/C_(programming_language)
Wikipedia has a large entry on the C language, along with many links to other
sources of information.

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/
The student chapter of the ACM at UIUC (University of Illinois at Urbana/Cham-
paign, home of the NCSA) has an online version of The C Library Reference
Guide by Eric Huss available, with a comprehensive up-front index into the various
pages.

http://citeseerx.ist.psu.edu
An incredibly useful site chock-full of research papers and technical publications.
Although almost none of the documents are at the tutorial level, there is still a lot
of fascinating and useful material to be found here.

Suggested Reading | 165

http://www.gnu.org/s/libc/manual/html_node/index.html
http://en.wikipedia.org/wiki/C_(programming_language)
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/
http://citeseerx.ist.psu.edu

CHAPTER 5

Python Extensions

Simplicity, carried to the extreme, becomes elegance.

—Jon Franklin

The main objective of this chapter is to show you how you can extend Python to take
advantage of existing binary library modules. Python provides a couple of ways to
achieve this, and we’ll take a look at both of them.

Out of the box, Python cannot directly access the underlying hardware, nor can it
interface directly with the software library modules provided by most hardware ven-
dors. Python can, however, communicate with anything connected to a serial port or
to a USB device that utilizes what is referred to as a virtual serial port (many USB–to–
RS-485 converters use this technique). For those types of applications, an extension
module typically isn’t necessary.

One way to give Python access to the real world, or just add some faster or specialized
functionality, is to use the C programming language to create extensions. These are
basically dynamically linked library (DLL) objects that give Python capabilities beyond
what is included in its own libraries. We’ll mainly be using extensions as “wrappers”
for the DLL modules supplied with commercial instruments and interfaces, but they
might also be used to optimize a particular part of a Python program to improve on
processing speed.

Another approach is to use Python’s ctypes library, which contains methods to directly
access the functions in an external DLL. The ctypes library can be used directly from
within a Python program without the need to write any C code, and it supports both
the Linux and Windows environments. The downside is that if you need additional
functionality in the interface between your program and the external library object, it
will need to be written in Python, and it won’t be as fast as the equivalent code written
in C as a wrapper for the external library. ctypes also imposes a processing penalty in
that it is not particularly fast. But, if your application doesn’t have a need for speed, it
might be the easiest way to go.

167

Which method to use depends largely on what you want to accomplish with the in-
terface. If the external DLL already does everything you need, there’s probably no good
reason to go through the process of writing your own extension wrapper in C. On the
other hand, if you need to incorporate some additional functionality, such as error
checking, buffer handling, or custom capabilities based on the functions in the external
DLL, you should probably consider writing a custom wrapper in C.

Throughout this chapter I’ll be using the acronym DLL to refer to both Windows-style
DLL objects and Linux-type .so (shared object) dynamic libraries. Python’s shared li-
brary objects typically have a .pyd extension. Also, bear in mind that most discussions
about vendor DLL modules that provide an API for data acquisition and control hard-
ware will, by default, be referring to the Windows environment. The reality is simply
that there isn’t much available (yet) for Linux. The electronics engineering world is very
Windows-centric, and that’s just something we’ll have to deal with when working with
plug-in cards for data acquisition and control signal output.

Creating Python Extensions in C
In order to use Python for an automated instrumentation application, we will need to
build a bridge between an instrument or interface hardware and the Python application
that will access it. In some cases the application program interface (API) DLL supplied
by the vendor provides all the necessary functionality; the Python program just needs
to be able to access it. In a situation like this you might want to consider using the
ctypes library, discussed in a later section. In other cases, however, the vendor’s DLL
may not supply the necessary functionality, or it may be architected such that it is
difficult to use without helper functions of some sort. This is where C comes into the
picture. Figure 5-1 shows the relationships between a low-level API library object, an
extension module, and a Python application.

This section is an overview of the basic steps involved in creating a Python extension
module. In some ways this might seem like a big step from the overviews of Python and
C presented in the preceding chapters, but not to worry. The intent here is to take a
look at what is entailed, and not get too wrapped up in the gory details. Later, when
we explore some specific applications in detail, we will go through the steps involved
and explain each one. By that point you should be comfortable enough with Python
that it will all make a lot more sense. Of course, if you already know Python or C, or
both, this won’t be much of a stretch for you: it’s just a new library API to learn and
some caveats to observe.

168 | Chapter 5: Python Extensions

Figure 5-1. Python extension hierarchy

Python’s C Extension API
Adding new functionality to Python is straightforward and fairly painless. Python pro-
vides an API for just this purpose that defines the types, macros, and external variables
and functions needed to allow a Python application to import an extension module
written in C and treat it as if it had been written in Python from the outset. The Python
API is incorporated into a C source file by including the header file Python.h and then
linking the module with the Python libraries.

The intent of this section is to provide an overview of what an extension module looks
like and how it is structured, since in this book we will be building most of our exten-
sions by hand. While something like the SWIG tool (available from http://www.swig
.org) can help automate the process of creating a C extension module, using the header
files for the external module or modules to create (most of) the necessary extension
code, most of what we will need extensions for won’t really warrant this approach.
SWIG does, however, have some interesting uses, one of which is using Python to test
C code. A description of this can be found here: http://www.swig.org/papers/Py96/py
thon96.html.

Extension Source Module Organization
The internal layout of an extension source module typically follows a pattern like the
one shown in Figure 5-2.

Python’s C Extension API | 169

http://www.swig.org
http://www.swig.org
http://www.swig.org/papers/Py96/python96.html
http://www.swig.org/papers/Py96/python96.html

Figure 5-2. Python extension module internal layout

170 | Chapter 5: Python Extensions

The primary sections shown in Figure 5-2 are described in Table 5-1.

Table 5-1. Python extension module sections

Section Purpose

#include directives Python.h must be the first header file included. One would also want to include whatever C standard
library headers are necessary and the vendor-supplied API header file.

Global module
variables

Any necessary global module variables are declared here, and are defined as static. In fact, just about
every variable and function in the module is defined as static, with the exception of the initialization
function.

Callable methods An extension module may have any number of methods available to a Python program. Although
Python treats these as methods, they are written as functions in the C source module. Each is defined
as static with a type of PyObject. Parameters are also defined as pointers to data objects of type
PyObject.

Method table The method table provides the dynamic linkage between the methods in the compiled extension
module and whatever Python program is importing it.

Initialization The initialization function always begins with the “init” prefix. This is what Python will expect to
execute when the extension is imported.

Python API Types and Functions
The skeleton example shown in Figure 5-2 utilizes the following types from the Python
API:

PyObject
Represents an arbitrary Python data object.

PyMethodDef
Defines the methods declared in the extension module as a NULL-terminated array.
This table is passed to the Python interpreter by the extension module’s initializa-
tion function.

It also uses the following API functions:

PyArg_ParseTuple()
Parses the arguments in the list pointed to by the *args parameter according to a
format definition string and sets the values of the variables following the parameter
definition string.

Py_BuildValue()
Builds a Python return value according to a format definition string.

Py_InitModule
Passes the address of the method table to the interpreter.

Python’s C Extension API | 171

The Method Table
The method table defines the entry points for accessing the internal functions in the
extension, and it deserves a bit more explanation. The full syntax of an entry in the
table is as follows:

{method_name, method_function, method_flags, method_docstring}

The fields are defined in detail in Table 5-2.

Table 5-2. PyMethodDef table fields

Field Description

method_name A C char * type that defines the name of the extension function as it will be seen by the Python
code that imports this module. A literal string is commonly used here.

method_function A pointer to a function within the extension module that is called when the name is invoked. It is of
the type PyCFunction.

method_flags A bit field used to indicate either a calling convention or a binding convention. METH_VARARGS is
probably the most commonly used, although in some cases no flags are needed at all. This field is
explored in more detail in the following section.

method_docstring An optional string that will be used as the docstring for the function. In other words, this is what will
appear if you type help(extension) after importing the extension.

Method Flags
The method_flags entry is a bit field. Its value depends on what flags are specified, and
each flag is defined to be a value that is the equivalent of setting a unique bit within an
integer variable. Although this implies that the flags can be combined without over-
writing each other, in actuality only the calling convention flags METH_VARARGS and
METH_KEYWORDS can be used at the same time, although they can be combined with a
binding flag. For a detailed discussion of the method flags, refer to the Python docu-
mentation (you can view it online here: http://docs.python.org/c-api/structures.html).

We will be using only a few of the available method flags. The rest are more useful
when dealing with complex interfaces that we won’t be using. Table 5-3 lists the three
most common method flags. In reality, if you are writing your own extension it is usually
possible to design the extension functions such that the more esoteric flags are not
necessary.

Table 5-3. Common method flags

Field Description

METH_VARARGS This defines the typical calling convention. In this case, the extension functions are of the type PyCFunc
tion and the functions use two input parameters of type PyObject*. The first parameter is PyObject
*self (by convention), and the second is PyObject *args (although you can name this whatever
you wish). A call to PyArg_ParseTuple (or one of the other related functions) is used to extract
parameter values from args.

172 | Chapter 5: Python Extensions

http://docs.python.org/c-api/structures.html

Field Description

METH_KEYWORDS If you want to use functions with predefined keyword values (i.e., a Python-style parameter of the type
varname = value), you will need to specify the METH_KEYWORDS flag. In this case, the function will
take three parameters: PyObject *self, PyObject *args, and PyObject *kwargs, which
is a dictionary containing the keywords and their associated default values.

METH_NOARGS Functions that take no parameters still need to define two input parameters, although the functions don’t
need to check them. The first parameter, PyObject *self, is required. The second argument is
effectively a NULL.

METH_VARARGS example

We can use PyArg_ParseTuple() to extract the parameter values and write the data into
variables defined within the function:

static PyObject *ex_varargs(PyObject *self, PyObject *args)
{
 int param1;
 double param2;
 char param3[80];

 PyArg_ParseTuple(args, "ids", &dev_handle, ¶m2, param3);

 return PyString_FromFormat("Received %d, %f, %s" % (param1, param2, param3));
}

Notice that we don’t need the address operator with the string (although we could have
used ¶m3[0] to achieve the same effect). Also note that if the function takes three
parameters, it needs to receive three parameters when called; no more, no less.

METH_KEYWORDS example

A function using the METH_KEYWORDS calling convention uses the Python C API method
PyArg_ParseTupleAndKeywords() to extract parameter values and associate parameter
keywords with names. The syntax of PyArg_ParseTupleAndKeywords() is defined as:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
 char *format, char **kwlist, ...);

The parameter kwdict is a pointer to a dictionary object passed in from the Python
runtime when the function is called, and kwlist is a null-terminated list of strings con-
taining the names of the parameters. METH_KEYWORDS is useful when you want to assign
a value to a specific parameter by name. In other words, a METH_KEYWORDS function
supports both positional and named parameters. The PyArg_ParseTupleAndKey
words() function is used as follows:

static PyObject *ex_keywords(PyObject *self, PyObject *args, PyObject *kw)
{
 int param1;
 double param2;
 char param3[80];

Python’s C Extension API | 173

 static char *kwlist[] = {"param1", "param2", "param3", NULL}

 if (!PyArg_ParseTupleAndKeywords(*args, *kw, "ids", kwlist,
 &dev_handle, ¶m2, param3);
 return NULL;

 return PyString_FromFormat("Received %d, %f, %s" % (param1, param2, param3));
}

METH_NOARGS example

A function using the METH_NOARGS calling convention can simply ignore the args
parameter:

static PyObject *ex_keywords(PyObject *self, PyObject *noargs)
{
 return PyString_FromFormat("No arguments received or expected");
}

Passing Data
Passing integers between an application program and a wrapper is fine, but what if we
want to work with things like strings, floating-point values, lists, or other Python ob-
jects? The methods PyArg_ParseTuple(), PyArg_ParseTupleAndKeywords(), and Py_Build
Value() can handle the common Python data types, and there are also other methods
available, such as PyArg_VaParse(), PyArg_Parse(), PyArg_UnpackTuple(), and
Py_VaBuildValue(). Refer to Python’s C API documentation for details.

The key to PyArg_ParseTuple() and PyArg_ParseTupleAndKeywords() lies in understand-
ing the various format codes that are used. Table 5-4 lists some of the more commonly
used codes.

Table 5-4. PyArg_ParseTuple type codes

Code Python type C type Description

b integer char Converts a Python integer to a small (byte-sized) int.

c string of length
1

char Converts a Python character (a string of length 1) to a C char.

d float double Converts a Python floating-point number to a C double.

D complex Py_complex Converts a Python complex number to a C Py_complex structure.

f float float Converts a Python floating-point number to a C float.

h integer short int Converts a Python integer to a C short int.

i integer int Converts a Python integer to a default C int.

l integer long int Converts a Python integer to a C long int.

s string char * Creates a pointer to a string. The string may not be None or contain any null
bytes.

174 | Chapter 5: Python Extensions

Code Python type C type Description

s# string char *, int Generates two values: the first is a pointer to the string, and the second is
its length.

z string or None char * Creates a pointer to a string, which may be None (if None, the result is a
pointer to NULL).

z# string or None char *, int Same as s#, but accepts None or a string with null bytes.

For example, if we had an extension function that expected a floating-point value as
an input parameter, like, say, an analog output function, we could write something like
this:

static PyObject *WriteAnalog(PyObject *self, PyObject *args)
{
 int dev_handle;
 int out_port;
 float out_value;

 PyArg_ParseTuple(args, "iif", &dev_handle, &out_port, &out_pin, &out_value);
 rc = AIOWriteData(dev_handle, out_port, out_pin, out_value);

 return Py_BuildValue("i", rc);
}

In this example, the function AIOWriteData() would be supplied by the vendor’s DLL.
In reality, analog I/O tends to be somewhat more complex than this, because there are
often parameters for things like the output range (+/− V), the reference source, a con-
version clock, and so on.

Using the Python C Extension API
There are many other functions and types available in Python’s API that we have not
covered here. However, what we have already seen should be sufficient for most of the
extension modules we will need to create.

Generic Discrete I/O API
Let’s take a look at what an extension written in C for a hypothetical discrete digital
I/O card would look like. First off, the device uses a DLL to access the hardware via
the PCI bus, so we need to know what API functions the DLL exposes. These are defined
in the header file supplied with the DLL. This is a very simple piece of hardware, so
just eight basic functions are needed. Here is the hypothetical header file (PDev.h) we’ll
be using:

/* PDev.h - API for a simple discrete digital I/O card */

typedef int dev_handle;

Using the Python C Extension API | 175

#define PDEV_OK 1
#define PDEV_ERR 0

/*
 * Open Device Channel
 *
 * Opens a channel to a particular I/O device. The device is specified
 * by passing its unit number, which is assigned to the device by a
 * setup utility. dev_handle is an int type.
 *
 * Returns: If dev_handle is > 0 then handle is valid
 * If dev_handle is = 0 then an error has occurred
 */
dev_handle PDevOpen(int unit_num);

/* Close Device Channel
 * Closes a channel to a particular I/O device. Once a channel is
 * closed it must be explicitly re-opened by using the PDevOpen API
 * function. Closing a channel does not reset the DIO configuration.
 *
 * Returns: If return is 1 (true) then channel closed OK
 * If return is = 0 then an error has occurred
 */
int PDevClose(dev_handle handle);

/*
 * Reset Device Configuration
 *
 * Forces the device to perform an internal reset. All
 * configuration is returned to the factory default
 * setting (All DIO is defined as inputs).
 *
 * Returns: 1 (true) if no error occurred
 * 0 (false) if error encountered
 */
int PDevCfgReset(dev_handle handle);

/*
 * Configure Device Discrete I/O
 *
 * Defines the pins to be assigned as outputs. By default all
 * pins are in the read mode initially, and they must be
 * specifically set to the write mode. All 16 I/O pins are
 * assigned at once. For any pin where the corresponding binary
 * value of the assignment parameter is 1, then the pin will
 * be an output.
 *
 * Returns: 1 (true) if no error occurred
 * 0 (false) if error encountered
 */
int PDevDIOCfg(dev_handle handle, int out_pins);

/*
 * Read Discrete Input Pin
 *

176 | Chapter 5: Python Extensions

 * Reads the data present on a particular pin. The pin may be
 * either an input or an output. If the pin is an output the
 * value returned will be the value last assigned to the pin.
 *
 * Returns: The input value for the specified pin, which
 * will be either 0 or 1. An error is indicated
 * by a return value of −1.
 */
int PDevDIOReadBit(dev_handle handle, int port, int pin);

/*
 * Read Discrete Input Port
 *
 * Reads the data present on an entire port and returns it as a
 * byte value. The individual pins may be either inputs or outputs.
 * If the pins have been defined as inputs then the value read
 * will be the value last assigned to the pins.
 *
 * Returns: An integer value representing the input states
 * of all pins in the specified port. Only the
 * least significant byte of the return value is
 * valid. An error is indicated by a return value
 * of −1.
 */
int PDevDIOReadPort(dev_handle handle, int port);

/*
 * Write Discrete Output Pin
 *
 * Sets a particular pin of a specified port to a value of either
 * 0 (off) or 1 (on, typically +5V). The pin must be defined as
 * an output or the call will return an error code.
 *
 * Returns: 1 (true) if no error occurred
 * 0 (false) if error encountered
 */
int PDevDIOWriteBit(dev_handle handle, int port, int pin, int value);

/*
 * Write Discrete Output Port
 *
 * Sets all of the pins of a specified port to the unsigned value
 * passed in port_value parameter. Only the lower eight bits of the
 * parameter are used. If any pin in the port is configured as an
 * input then an error code will be returned.
 *
 * Returns: 1 (true) if no error occurred
 * 0 (false) if error encountered
 */
int PDevDIOWritePort(dev_handle handle, int port, int value);

Our hypothetical device has two 8-bit ports, and the pins (bits) of each port may be set
to be either inputs or outputs. Pins may be read or written either individually or as a
group of eight bits (a port).

Using the Python C Extension API | 177

Generic Wrapper Example
Let’s create a simple wrapper for the device’s DLL. We won’t try to be clever here,
although there are some things that could be implemented if we wanted to give the
wrapper extended capabilities. I’ll talk about those a little later.

The first step is to determine what we will need to import, and define any global vari-
ables the wrapper will need:

#include <Python.h>
#include <stdio.h>
#include <PDev.h>

Notice that in this example we don’t really need any static global variables.

So, now that we have the top of the file, let’s do the bottom. The second step is to create
the initialization function, which is what Python will execute when the wrapper DLL
(a .pyd file) is loaded, and define the function mapping table:

static PyMethodDef PDevapiMethods[] = {
 {"OpenDevice", OpenDev, METH_VARARGS,
 "Open specific DIO device."},
 {"CloseDevice", CloseDev, METH_VARARGS,
 "Close an open DIO device."},
 {"ConfigOutputs", ConfigDev, METH_VARARGS,
 "Config DIO pins as outputs."},
 {"ConfigReset", ConfigRst, METH_VARARGS,
 "Reset all DIO pins to input mode."},
 {"ReadInputPin", ReadPin, METH_VARARGS,
 "Read a single specific pin."},
 {"ReadInputPort", ReadPort, METH_VARARGS,
 "Read an entire 8-bit port."},
 {"WriteOutputPin", WritePin, METH_VARARGS,
 "Write to a specific pin."},
 {"WriteOutputPort", WritePort, METH_VARARGS,
 "Write to an entire port."},
 {NULL, NULL}
};

/***/
/* initPDevapi
 *
 * Initialize this module when loaded by Python. Instantiates the methods table.
 *
 * No input parameters.
 *
 * Returns nothing.
 ***/
void initPDevAPI(void)
{
 Py_InitModule("PDevapi", PDevapiMethods);

 dev_handle = −1;
}

178 | Chapter 5: Python Extensions

There’s nothing fancy here; I’ve basically just mapped the functions in the API to
wrapper functions on a one-to-one basis. This does mean, however, that the Python
code that calls this module will need to be responsible for keeping track of the device
ID and the device handle, at a minimum.

Lastly, we define the interface functions. Here’s the entire extension, which I’ve called
PDevAPI.c:

#include <Python.h>
#include <stdio.h>
#include <PDev.h>

static PyObject *OpenDev(PyObject *self, PyObject *args)
{
 int dev_num;
 int dev_handle;

 PyArg_ParseTuple(args, "i", &dev_num);
 dev_handle = PDevOpen(dev_num);

 return Py_BuildValue("i", dev_handle);
}

static PyObject *CloseDev(PyObject *self, PyObject *args)
{
 int dev_handle;
 int rc;

 PyArg_ParseTuple(args, "i", &dev_handle);
 rc = PDevClose(dev_handle);

 return Py_BuildValue("i", rc);
}

static PyObject *ConfigDev(PyObject *self, PyObject *args)
{
 int dev_handle;
 char cfg_str[32];
 int rc;

 memset((char *) cfg_str, '\0', 32); /* clear config string */

 PyArg_ParseTuple(args, "is", &dev_handle, cfg_str);
 rc = PDevDIOCfg(dev_handle, cfg_str);

 return Py_BuildValue("i", rc);
}

static PyObject *ConfigRst(PyObject *self, PyObject *args)
{
 int dev_handle;
 int rc;

 PyArg_ParseTuple(args, "i", &dev_handle);
 rc = PDevCfgReset(dev_handle);

Using the Python C Extension API | 179

 return Py_BuildValue("i", rc);
}

static PyObject *ReadPin(PyObject *self, PyObject *args)
{
 int dev_handle;
 int in_port;
 int in_pin;
 int in_value;

 PyArg_ParseTuple(args, "iii", &dev_handle, &in_port, &in_pin);
 in_value = PDevDIOReadBit(dev_handle, in_port, in_pin);

 return Py_BuildValue("i", in_value);
}

static PyObject *ReadPort(PyObject *self, PyObject *args)
{
 int dev_handle;
 int in_port;
 int in_value;

 PyArg_ParseTuple(args, "iii", &dev_handle, &in_port);
 in_value = PDevDIOReadPort(dev_handle, in_port);

 return Py_BuildValue("i", in_value);
}

static PyObject *WritePin(PyObject *self, PyObject *args)
{
 int dev_handle;
 int out_port;
 int out_pin;
 int out_value;

 PyArg_ParseTuple(args, "iii", &dev_handle, &out_port, &out_pin, &out_value);
 rc = PDevDIOWriteBit(dev_handle, out_port, out_pin, out_value);

 return Py_BuildValue("i", rc);
}

static PyObject *WritePort(PyObject *self, PyObject *args)
 int dev_handle;
 int out_port;
 int out_value;

 PyArg_ParseTuple(args, "iii", &dev_handle, &out_port, &out_value);
 rc = PDevDIOWritePort(dev_handle, out_port, out_value);

 return Py_BuildValue("i", rc);
}

static PyMethodDef PDevapiMethods[] = {
 {"OpenDevice", OpenDev, METH_VARARGS,

180 | Chapter 5: Python Extensions

 "Open specific DIO device."},
 {"CloseDevice", CloseDev, METH_VARARGS,
 "Close an open DIO device."},
 {"ConfigOutputs", ConfigDev, METH_VARARGS,
 "Config DIO pins as outputs."},
 {"ConfigReset", ConfigRst, METH_VARARGS,
 "Reset all DIO pins to input mode."},
 {"ReadInputPin", ReadPin, METH_VARARGS,
 "Read a single specific pin."},
 {"ReadInputPort", ReadPort, METH_VARARGS,
 "Read an entire 8-bit port."},
 {"WriteOutputPin", WritePin, METH_VARARGS,
 "Write to a specific pin."},
 {"WriteOutputPort", WritePort, METH_VARARGS,
 "Write to an entire port."},
 {NULL, NULL}
};

/***/
/* initPDevapi
 *
 * Initialize this module when loaded by Python. Instantiates the methods table.
 *
 * No input parameters.
 *
 * Returns nothing.
 ***/
void initPDevAPI(void)
{
 Py_InitModule("PDevapi", PDevapiMethods);

And that’s it.

I should point out that this API uses integers and strings only as parameter values, and
the functions return only integers. The extension code shown is just a translation
wrapper between the device API and Python, nothing more. In many cases, however,
that’s all a wrapper really needs to be.

Calling the Extension
In a real-life situation, you would probably want to create a Python module with func-
tions for opening the device channel and saving the handle the API returns in a persis-
tent variable object, writing to specific bits and then verifying that the bits changed
state as expected, and even setting up an output pattern playback capability, among
other things.

Let’s assume that we want to get the value of a particular input pin and write an 8-bit
value to a port to set the status of some external hardware based on the true or false
state of that particular input pin. Here’s a simple example:

import PDevAPI

PDdevID = 1

Using the Python C Extension API | 181

PDev = 0

open device, check for error return
PDev_handle = PDevAPI.OpenDevice(PDevID)

if PDev_handle:
 # define port 0 as inputs, port 1 as outputs
 PDevAPI.ConfigOutputs(PDev_handle, 0xFF00)

 pinval = PDevAPI.ReadInputPin(PDev_handle, 0, 2)
 if pinval:
 portval = 49
 else:
 portval = 0
 PDevAPI.WriteOutputPort(PDev_handle, 1, 42)
 PDevAPI.CloseDevice(PDev_handle)
 return 1
else:
 print "Could not open device: %d" % PdevID
 return 0

The example starts by attempting to open the interface to the hardware. If it succeeds,
the handle value contains some positive integer, which is equivalent to True in Python.
Should it fail and return 0, we can treat it as False.

Next, we want to define the inputs and outputs. The call to PDev.ConfigOutputs does
this. The value of 0xFF00 indicates that we want the uppermost 8 bits of the 16 bits
available in the hardware to be outputs:

0xFF0016 = 11111111000000002

Now that we have a valid device handle and the I/O has been configured, we can read
a specific bit and take action based on its returned value. In this case we will write the
decimal value 42 to the output port if the input bit is true; otherwise, we write all 0 bits
to the output port.

The number 42 is interesting in its own right, but in this case it is the decimal equivalent
of 001010102. These might be control signals for a bank of heater elements, a set of
valves, perhaps some lights, or just about anything else that could be controlled effec-
tively in an on/off fashion.

Lastly, let’s look at some of things I didn’t put into this code.

For starters, there’s no error return checking for the ConfigOutputs(), ReadInput
Pin(), WriteOutputPort(), and CloseDevice() calls. I left this out just to keep things
simple, but in reality you would probably want to include this, especially if whatever
this interface is controlling could possibly do something that could cause damage in
the real world. In fact, it’s not uncommon for high-reliability software to have as many,
or even more, lines of code dedicated to error checking and fault handling than lines
of code that deal directly with the control logic. It’s easy to set an output value, but it
can take some effort to detect a problem after the value has been set, when something
doesn’t work correctly. The software must then take action to try to recover from the

182 | Chapter 5: Python Extensions

fault, or at least put the system into a safe state to minimize any possible damage. In a
later chapter I’ll show you how to do a simple fault analysis so you can get an idea of
what might go wrong, and the possible actions the software could take to deal with the
problem.

The example also doesn’t provide any support for dealing directly with bits. We could
easily write a couple of utility functions that would allow us to enable or disable a
specific bit without disturbing any other bits in the byte that makes up a port. A time-
honored way to do this is called read-modify-write. Here’s how to set a particular bit:

def SetPortBit(PDev_handle, portnum, bitpos):
 # read the current port state
 portval = PDevAPI.ReadInputPort(PDev_handle, portnum)

 if portval >= 0:
 insval = 1 << bitpos
 # change the designated bit
 newval = portval | insval
 # write it back out
 rc = PDevAPI.WriteOutputPort(PDev_handle, portnum, newval)
 else:
 rc = 0
return rc

The shift operation generates a value that is a power of two (2n). So, a bit at position
20 is 1, 24 is 16, and so on. The resulting value, or mask, is then ORed into the value read
from the port (most discrete digital I/O devices will allow you to read from any port or
pin, even those designated as outputs), and the mask value is applied. It doesn’t matter
what is already at the designated bit position, it will be set to 1. The rest of the bits in
the mask value are 0s, so a 1 in the original data in portval stays 1, and a 0 stays 0.
(Refer back to Chapter 3 for an overview of how Python’s bitwise operators work.)

Clearing a bit (setting it to 0) involves creating a mask with all the bits except the one
we want to clear set to 1, and then using an AND instead of an OR. Here’s an example:

def ClearPortBit(PDev_handle, bitpos):
 # read the current port state
 portval = PDevAPI.ReadInputPort(PDev_handle, portnum)

 if portval >= 0:
 insval = 1 << bitpos
 newval = ~insval & portval
 rc = PDevAPI.WriteOutputPort(PDev_handle, portnum, newval)
 else:
 rc = 0
return rc

The function ClearPortBit() reads the current output port state, creates a bit value
using a left shift, and then applies the one’s complement of the bit value to the current
port value using Python’s bitwise AND operator. If bitpos is 2 and the resulting value of
insval is 4, the bit at position 22 is 1, or 00000100 in binary. Inverting this results in
11111011, or 251. When this is ANDed with the port bit values in portval, any port bit

Using the Python C Extension API | 183

that is a 1 will remain 1, 0s will remain 0s, and the bit we want to clear at 22 will always
end up as 0.

You might be concerned about the output port glitching, or outputting a short spike
when the new value is written back, but not to worry. A correctly designed discrete
digital I/O port will not do this, so you can safely assume that the hardware will do
what you expect. If you do happen run across some hardware that behaves this way,
well, you might want to consider using something else instead. The reason you don’t
have to worry is that almost every discrete digital I/O device made utilizes latches. The
data is loaded into the latch, and the latch drives the output pins. The result is that any
latched output that is already a 1 will remain a 1. (See Chapter 2 for a schematic of a
latched discrete digital I/O port.)

You could, of course, write utility functions to handle bit manipulation in C and put
them into the extension, rather than writing them in Python, as I’ve done. The resulting
code would execute faster than native Python, but it might not be worth the trouble.
It is often easier to keep the core low-level I/O functions in the wrapper module, and
then create a module specifically to interface with the low-level wrapper. The Python
interface module could also implement error checking and parameter verification, and
provide additional utilities that aren’t speed-critical. In effect, the wrapper would have
two parts: one part in C to interface with the hardware, and one part in Python to
provide extended capabilities to the application that uses it. Figure 5-3 shows this con-
cept in block diagram form.

Python’s ctypes Foreign Function Library
There is another way to get at the functions exposed by a DLL: ctypes, Python’s library
for accessing external DLL objects. This section provides a general overview of ctypes.

The ctypes library gives Python programs the ability to directly access the functions
within an external DLL without the need to create interface code in C. ctypes is part of
the standard distribution with Python 2.5 and later, and it supports both Linux and
Windows environments, with the usual caveats concerning the fundamental differen-
ces between the two platforms.

Loading External DLLs with ctypes
ctypes exports three primary interface classes: cdll, windll, and oledll. cdll is used for
both Linux and Windows and supports library modules that use the cdecl calling con-
vention. The windll class supports Windows libraries that use the stdcall convention.
oledll also uses the stdcall convention, but it assumes that the library functions return
an HRESULT error code. cdecl is the default for C programs, so most library objects on
Linux will use this convention. On a Windows system you should check the appropriate
Windows technical documentation to see what the various library objects use as their
calling convention.

184 | Chapter 5: Python Extensions

Using ctypes is straightforward. Here is what happens when the Windows C runtime
library, msvcrt (Microsoft Visual C Run-Time), is accessed using ctypes:

>>> from ctypes import *
>>> msvcrt = cdll.msvcrt
>>> msvcrt
<CDLL 'msvcrt', handle 78000000 at 97b0f0>
>>> msvcrt.printf("Testing...\n")
Testing...
11
>>> rc = msvcrt.printf("Testing...\n")
Testing...

Figure 5-3. DLL wrapper extension and support module

Python’s ctypes Foreign Function Library | 185

This calls the trusty printf() function, which behaves exactly like you might expect.
Note that the call returns the number of characters passed to printf(). If you look up
the documentation for the printf() function you will see that this is exactly what it is
supposed to do, although in most cases the return value is simply ignored. In order to
catch the return value and prevent it from showing up on the console, I used the variable
rc.

On a Linux system, you will need to specify the full name of the shared library object:

libc = cdll.LoadLibrary("libc.so.6")

Alternatively, you can pass the library name into the class constructor method, like this:

libc = CDLL("libc.so.6")

This technique also works with Windows DLLs:

libc = CDLL("msvcrt.dll")

Notice that with Windows the .dll extension is supplied automatically, but with Linux
the full name must be used.

Once a DLL has been loaded using one of the ctypes classes, its internal functions are
accessed as methods of the resulting ctypes object.

Basic Data Types in ctypes
When calling a function in an external DLL or capturing a return value, one needs to
be aware of how ctypes translates between Python’s native data types and those used
in C. Table 5-5 shows a comparison of ctypes, C, and Python data types.

Table 5-5. Comparison of ctypes, C, and Python types

ctypes type C type Python type

c_char char 1-character string

c_wchar wchar_t 1-character unicode string

c_byte char int/long

c_ubyte unsigned char int/long

c_short short int/long

c_ushort unsigned short int/long

c_int int int/long

c_uint unsigned int int/long

c_long long int/long

c_ulong unsigned long int/long

c_longlong __int64 or long long int/long

c_ulonglong unsigned __int64 or unsigned long long int/long

c_float float float

186 | Chapter 5: Python Extensions

ctypes type C type Python type

c_double double float

c_longdouble long double float

c_char_p char * (NULL-terminated) string or None

c_wchar_p wchar_t * (NULL-terminated) unicode or None

c_void_p void * int/long or None

Understanding how ctypes handles the conversion between Python and C is essential.
For example, if we want to pass a floating-point value to a DLL function from Python,
it must be converted into the appropriate type. Just handing off a float value from
Python won’t work.

Let’s assume that a DLL has been loaded and we now have an object called someDLL to
reference it. If it contains a function called someFunc() that we want to use, and this
function accepts an integer parameter and a floating-point parameter, we might think
that the following would work:

int_var = 5
float_var = 22.47
someDLL.someFunc(int_var, float_var)

Unfortunately, this won’t work, and Python will issue an exception traceback. The
reason for this is that all Python types except for integers and strings have to be wrapped
with the appropriate ctypes type, like this:

someDLL.someFunc(int_var, c_double(float_var))

This will now work as expected.

The native Python object types None, integer, long, and string are the only types that
can be used directly as parameters via ctypes to functions in a DLL. A None object is
passed as a NULL pointer. A string object is passed as a pointer to the location in memory
where the data resides. Integer types (both integer and long) are passed as whatever
the platform’s default C int type happens to be. Note that a long data object will be
masked to fit into the default C int type.

Using ctypes
Although ctypes may appear to be simple, it can quickly become rather complex if you
want to do things like pass pointers, define a callback function, or get the value of a
variable exported from a DLL. We will stick with the basic capabilities in this book,
but I would encourage you to take a look at the ctypes documentation located at http:
//docs.python.org/library/ctypes.html. Also, the various data types in ctypes are useful
for more than just accessing an external DLL. In Chapter 12 I’ll show you how to use
ctypes to handle binary data directly in a Python program, including C structures, and

Python’s ctypes Foreign Function Library | 187

http://docs.python.org/library/ctypes.html
http://docs.python.org/library/ctypes.html

in Chapter 14 we’ll see how ctypes is used in a commercial API for a USB interface
device.

Summary
In this chapter we’ve seen the basics of what is involved with creating an interface
between a Python program and an external device via a vendor-supplied DLL. Fortu-
nately, adding functionality to Python is not necessarily a painful process; it just re-
quires some up-front planning. This means that reading the available documentation
on designing and implementing Python extensions is really not optional, which is why
this chapter is peppered with URLs to sources of information.

Reading and understanding the API for a foreign DLL is also essential. When creating
a wrapper extension for an existing DLL, the biggest obstacle one typically encounters
is the API for the DLL. Occasionally it will be necessary to contact the vendor directly
and request some technical support. Be forewarned, however, that many vendors either
don’t have a clue about Python or don’t want to be bothered with it, so you may need
to invest some time experimenting to find the best approach for creating a working
interface.

With what we’ve covered here, you should be able to see where you want to go from
where you are, and have a general idea about how to get there. In Chapter 14 we’ll see
a working extension wrapper for real hardware using ctypes, and we’ll fill in more of
the details in the process.

Suggested Reading
Interestingly, it seems that there are no books devoted solely to the subject of creating
extensions for Python. There are, however, resources available at various websites, the
foremost being Python’s primary documentation site:

http://docs.python.org/release/2.6.5/
The official Python documentation for version 2.6.5 contains several sections on
the topic of extending Python using C or C++. This should be your first stop when
looking for additional information.

http://docs.python.org/release/2.6.5/extending/index.html
http://docs.python.org/release/2.6.5/c-api/index.html

These two sections of the online Python documentation provide a detailed discus-
sion of extension modules and the functionality available for creating them.

http://docs.python.org/library/ctypes.html
This is essential reading if you want to use the ctypes library.

188 | Chapter 5: Python Extensions

http://docs.python.org/release/2.6.5/
http://docs.python.org/release/2.6.5/extending/index.html
http://docs.python.org/release/2.6.5/c-api/index.html
http://docs.python.org/library/ctypes.html

CHAPTER 6

Hardware: Tools and Supplies

Byrne’s Law: In any electrical circuit, appliances and
wiring will burn out to protect fuses.

—Robert Byrne

Although it may be possible that one could implement a complex instrumentation
system and never touch a tool more complicated than a screwdriver, there is a high
probability that a soldering iron, wire cutters, and a digital multimeter (DMM) will
come in handy at some point—particularly if things don’t work quite right from the
outset, or if there’s a reason to be concerned should something accidentally be
damaged.

In this chapter, we’ll look at what might go into a basic toolkit for doing instrumenta-
tion work. It isn’t much and could all easily fit in a small box on a shelf somewhere.
Additionally, as there may very well come a time when you really need to see what’s
going on in your system, I’ve included a short discussion of the two pieces of test
equipment that can help eliminate the guesswork and get to the root of an interface or
control problem: the oscilloscope and the logic analyzer.

The Essentials
First and foremost, one needs some decent hand tools. These can be had à la carte from
the local hardware store, or in a kit form in a nice zippered carrying case. Having even
a modest set of hand tools available can make the difference between getting the job
done quickly and efficiently, or having to trudge down the hall, or across town, to try
and find the right tool. Even if they are only used once for one project, the expense is
minimal, and they will be there should a need arise again in the future.

A digital multimeter is an essential item for dealing with instrumentation interfaces. It
is handy for determining whether a voltage is present on an input or output terminal
and whether DC power is enabled (and at the correct voltage), and some models come

189

with a built-in interface that allow the meter to serve as single-channel data acquisition
device.

Hand Tools
Your toolkit should contain a selection of Phillips and regular screwdrivers, mostly on
the small side. Many hardware and “big box” home improvement stores sell kits of
these. A basic toolkit should also have a set of miniature screwdrivers like those used
by jewelers. These are essential for dealing with the tiny screws used with multipin
connectors and with the terminals of many interface modules. At least one pair each
of needle-nose pliers and diagonal cutters are essential for dealing with wires. A 6"
adjustable wrench and a combination wire stripper and crimping tool would round out
a very basic kit. These tools can often be found in prepackaged sets, and electronics-
production-grade tools can be ordered from several online sources. Figure 6-1 shows
a basic set of hand tools.

Figure 6-1. Basic hand tools

Of course, one could go all out and assemble a fully stocked toolkit. Figure 6-2 shows
an overstuffed kit with a lot of miles on it. This would definitely be overkill for a one-
time job, but if you have a consistent need for tools and odd small parts, a toolkit like
this is essential.

190 | Chapter 6: Hardware: Tools and Supplies

Be kind to your tools

Never use a pair of pliers on things like nuts if you can avoid it. Pliers will usually slip
and round off the edges of the nut that define its six-sided shape. It only takes a few
moments of effort with pliers to make it impossible to remove a nut with even the
correct tool, which is a wrench or a socket.

Also, try to avoid using something like the black-handled wire cutters shown in Fig-
ure 6-1 to cut heavy wire. The thin, sharp blades of the cutters can easily become nicked
and render the tool useless. It’s also best not to use the cutters as wire strippers. Al-
though this is possible with some practice, it is very difficult to control the amount of
pressure sufficiently to avoid nicking the wire inside, or even cutting it. Damaged wires
tend to break easily at the nick location. Use a wire-stripping tool for removing insu-
lation. The large tool in Figure 6-1 with the lettering on it is a combination wire stripper,
lug crimper, and screw cutter. For fine-gauge wire (in the 18- to 32-gauge range)
consider the purchase of a dedicated wire-stripping tool with adjustable sizing. These
range from just a few dollars to upwards of $100 or more for production-grade models,
depending on the quality and features.

Figure 6-2. Overstuffed toolkit

The Essentials | 191

Where to purchase tools

Apart from the local hardware store, there are numerous places to purchase tools. Some
of these are retailers specializing in discount tools imported from Asia, which you might
also find in the “bargain bins” in some home improvement stores. Professional-grade
tools are available from electronic supply houses and various distributors. In most cases
there’s nothing wrong with the bargain-bin tools, but be careful to check for smooth
operation, sharp blades, evenly machined surfaces, and sharp—not rounded—angles
on the insides of sockets and the outside of hex wrenches.

Table 6-1 is just a representative sampling of possible sources for tools, and is in no
way meant as an endorsement of any particular brand or distributor.

Table 6-1. Electronics tool sources

Source Description URL

Allied Electronics Online electronics components and tools distributor http://www.alliedelec.com

Digi-Key Corporation Online electronics components and tools distributor http://www.digikey.com

Electronic Toolbox Offers a variety of low-cost tools and supplies http://www.electronictoolbox.com

MCM Electronics Carries a range of parts, supplies, kits, and tools http://www.mcmelectronics.com

RadioShack Carries a good selection of tools and supplies online; avail-
ability varies from store to store

http://www.radioshack.com

Stanley Supply and
Services

Carries a range of tool brands for electronics http://www.stanleysupplyservices
.com

Techni-Tool Supplier of tools and supplies to the electronics industry http://www.techni-tool.com

One of the best ways to get information about tools is to ask someone who has been
working in the electronics industry for a while. Most technicians and engineers will
have their favorites, and also some opinions about which tools they don’t like (and
why). Spending some time online browsing websites is also a good way to get a feel for
what is available and the price ranges one can expect.

Digital Multimeter
The modern digital multimeter has evolved over the years from its humble beginnings
into a complex and capable instrument. Prices vary widely, depending on factors such
as accuracy, ruggedness, and features. A simple and usable handheld DMM can be had
for as low as $20, while some of the professional high-accuracy models can run to
upwards of $500. Figure 6-3 shows both a low-cost model and a more expensive unit
that includes an output port for data acquisition.

Both of the units shown can measure DC voltage, AC voltage, DC current, AC current,
and resistance. The unit on the left in Figure 6-3 has a socket for testing small transistors,
while the fancier instrument on the right has the ability to measure frequency and

192 | Chapter 6: Hardware: Tools and Supplies

http://www.alliedelec.com
http://www.digikey.com
http://www.electronictoolbox.com
http://www.mcmelectronics.com
http://www.radioshack.com
http://www.stanleysupplyservices.com
http://www.stanleysupplyservices.com
http://www.techni-tool.com

capacitance. It can also capture and hold a measurement. DMM instruments also come
in bench models, like the one shown in Figure 6-4.

Figure 6-3. Digital multimeters

Figure 6-4. Bench model precision DMM (Agilent 34405A)

The high-end instruments can range to upwards of several thousand dollars in price,
but they do offer accurate operation, high reliability, and a selection of data and control
interfaces. We will be referring to instruments like the one shown in Figure 6-4 in
Chapter 11, when we look at instruments with serial and GPIB interfaces.

With the high-end DMM units you also get a certificate of calibration, and most pro-
fessional-grade instruments are calibrated periodically using a commercial or in-house
calibration service. Unless what you will be doing involves requirements for high pre-
cision and repeatable measurements, this is not really necessary, although it is a good
idea to occasionally cross-check one meter against another using the same voltage
source and resistance reference.

The Essentials | 193

DMM resolution

DMMs come in several different resolutions. In this case, resolution refers to the num-
ber of significant digits the meter will accurately display. Generally speaking, the higher
the resolution, the more expensive the instrument will be.

Commonly available resolutions are 3½, 4½, and 5½ digits. The ½ refers to the last
digit, which shows only 0 or 1. The basic resolution of a DMM is a function of the
number of bits used in the analog-to-digital converter (ADC) inside the meter.

DMM usage tips

The following is a list of things to keep in mind when using a DMM:

• When measuring voltages relative to ground, always connect the negative lead to
ground first. If possible, connect it with a clip of some kind so it doesn’t come
loose, and use only the positive lead to probe around. Remember that if the ground
lead should come loose, the meter (and the unattached ground lead) will be at the
same potential as whatever the positive lead is touching. This might not be a big
deal when you’re working with low-voltage DC, but it can become a definite hazard
when dealing with high voltages.

• Be aware that the probe tips on the measurement leads can slip. If this happens on
a live printed circuit board, the result can be catastrophic if the probe tip creates a
short between the pins on a connector or an integrated circuit. A probe slip can
also bring your hands into contact with potentially lethal voltages, which is another
justification for clipping the ground lead and just using the positive lead to poke
around. The old “keep one hand behind your back” rule applies when dealing with
voltages that could injure or kill, such as AC wall voltage or high-voltage DC
circuits.

• Never measure resistance in a circuit of any kind with power applied. A meter set
to a resistance measurement mode will usually not tolerate a voltage input for very
long before something fails.

• Never connect the meter to a voltage source greater than its rated maximum. Since
most modern DMMs are capable of handling input voltages of up to 600 volts, this
is usually not a problem. If you need to measure more than the meter’s maximum
rating, consider purchasing a special high-voltage probe. Also remember that AC
voltages are often given as the RMS value, not the peak value.

• Always check the meter’s settings before attempting to take a measurement. Al-
though almost every DMM has internal fuses on the inputs, it is still a very bad
idea to try to measure a voltage when the meter is set to the current measurement
mode. This is effectively a short between the positive and negative terminals (with
a low-value series shunt resistor), and if one of the probes is connected to ground
it can blow the meter’s fuse, damage its internal circuitry, or even damage the circuit
being measured.

194 | Chapter 6: Hardware: Tools and Supplies

• The meter leads have resistance. It is usually very low, on the order of 0.5 ohms or
so, but if you are trying to measure something like a wire-wound power resistor
with a low resistance (0.1 ohms, for example), the meter leads can contribute more
to the reading than the part being measured. Some DMMs have the ability to com-
pensate for the lead resistance, but with others you should measure the leads first
and then subtract that from whatever the meter indicates. For things like current
shunts, with resistances on the order of a few milliohms, one would typically use
something like a Wheatstone or Carey Foster bridge to measure a very low resist-
ance. As a historical footnote, Figure 6-5 shows a vintage bridge test set.

Figure 6-5. Vintage Leeds and Northrup Resistance Bridge Test Set

Soldering Tools
Soldering is the application of a molten low-temperature alloy to join two wires or make
a connection between the leads of a component and the copper paths on a printed
circuit board (among other uses). An alloy of tin and lead (typically 60% tin and 40%
lead, although other formulations are available) was once the most commonly used
solder, but with the recent push to move away from materials containing lead, new
alloys are starting to appear. However, when one purchases solder for occasional use,
the most readily available type is still tin-lead. It is relatively safe (the lead is bound to
the tin in the alloy), and so long as one takes reasonable precautions it should not
present a significant health hazard.

Solder for electrical use typically comes in the form of a very pliable thick silvery wire
that also incorporates a hollow core filled with a rosin flux material. The flux melts and
flows before the solder melts, and helps to remove oxidation from the solder and the
surfaces being soldered. Some people prefer a paste flux, which is a thick, sticky brown
paste that is supplied in small tins. It is applied to the pieces to be soldered before the
actual soldering starts, and is also sometimes used in conjunction with flux-core solder

The Essentials | 195

wire to help make solid connections on printed circuit boards. A solder with a 60/40
composition melts at about 188°C.

Soldering irons come in a variety of sizes, temperatures, and prices. The low-cost mod-
els typically found at local electronics and hardware stores are around 15 watts and
have small pencil-point tips. These can handle most small-gauge wires and circuit board
work, and cost anywhere from $10 to $25. They are not, however, temperature-
controlled, so the tip can sometimes get too hot, resulting in a weak solder joint or
a burned circuit board. They also have a tendency to cool off rapidly when one is
attempting to solder large objects or heavy-gauge wire. If you plan on doing more than
just occasional soldering work, it is worthwhile to invest in a unit with temperature
control and interchangeable tips. These can range in price from $50 to $300, depending
on the wattage and the features included (operator-controlled temperature, digital
temperature readout, internal grounding, and so on). Figure 6-6 shows a low-cost 15
W pencil-type soldering iron. You might also have noticed a similar unit in the top tray
of the toolbox shown in Figure 6-2.

Figure 6-6. Pencil-type soldering iron

You will also need something to clean the tip and some way to hold the soldering iron
when it’s not in use (just laying it down on the bench or table is generally not a good
idea). Wire stands are available that include a small tray for a damp sponge to clean
residue and oxidation from the tip. There are also tip cleaners in the form of small tins
filled with a loosely coiled wire that require no water, and a paste-like material is avail-
able that will clean and brighten a soldering iron’s tip (it also comes in a small tin).
Both are commonly used in electronics manufacturing, but they are not very common
in the toolkit of the occasional user.

There are numerous resources available online that deal with solder, soldering irons,
and how to solder. It is a good idea to get some scrap wire or a defunct printed circuit
board and practice a bit before tackling a real project. Soldering may sound easy and
look simple, but getting it right takes a degree of skill that only practice can provide.

196 | Chapter 6: Hardware: Tools and Supplies

Soldering Guns Versus Soldering Irons
A word of caution: do not purchase a soldering gun unless you really have a need for
such a thing. Soldering guns can produce a significant amount of heat, and are intended
for working with thick and heavy materials like heavy-gauge wires and copper tubing.
They are not suitable for small wires, connectors, or printed circuit boards, and even a
skilled operator can inadvertently do some serious damage with a soldering gun.

Nice-to-Have Tools
In addition to the tools we’ve already discussed, there are some other tools that are
incredibly useful, if not essential, for certain types of work. They aren’t used as fre-
quently as the more common hand tools, but when they are needed there is really
nothing that can do the work as well. Consider acquiring the following:

Lineman’s pliers
These heavy, square-jawed pliers are designed to bend, twist, and cut heavy-gauge
wires. They can also be used to bend thin strips of sheet metal, or cleanly break off
pieces of plastic. Lineman’s pliers are available at most well-stocked hardware
stores, and inexpensive imported versions can occasionally be found in bargain
bins.

Hex wrench set
Also sometimes called hex keys or Allen wrenches, these are simple tools with a
hexagonal cross-section used to drive bolts and screws with a hexagonal socket in
the head. These types of fasteners are commonly found in electronic devices and
laboratory equipment, and there is nothing else that can deal with them. Hex
wrenches also tend to be relatively inexpensive, and they are available in both SAE
and metric sizes.

Nut drivers
As the name implies, these tools are designed to handle nuts. They typically look
like screwdrivers with a socket instead of a screwdriver tip, and some have a “T”
handle to enable more torque to be applied to a nut. They are available in both
SAE and metric sizes, and can be purchased as kits containing from four to eight
or more tools in various sizes.

Miniature socket set
Like nut drivers, sockets are designed to drive hex nuts and hex-head bolts, but
they use a right-angle ratcheting handle to apply much more torque than is possible
with a nut driver (too much, sometimes). Small, compact sets with a selection of
sockets, a drive extension, and a ratchet handle are available in both SAE and metric
sizes (often combined in the same set). These tools are intended for larger nuts and
bolts, and typically range from 3/16" to 9/16" for SAE sizes, and from 4 mm to 14
mm for metric sizes.

The Essentials | 197

Advanced Tools
There is a lot one can do with a tool like a DMM, but there are some things it simply
cannot do. One application the DMM cannot handle is the direct measurement of
electrical waveforms. Another is the visualization of logic signals on multiple parallel
lines. For these situations, tools such as an oscilloscope and a logic analyzer can make
the difference between knowing and just guessing.

The Oscilloscope
The oscilloscope is a very old instrument, and has been around in one form or another
for at least 80 years (perhaps longer, depending on how one defines what an oscillo-
scope is). The reason for its success is its inherent usefulness for examining changing
electrical signals over time. Early electronic oscilloscopes used vacuum tubes for signal
amplification, and a specialized type of tube called an electrostatic cathode ray tube
(CRT) for the primary display. An oscilloscope CRT is similar in operation to the CRT
found in older computer monitors and television sets, except that it typically uses elec-
trical fields rather than magnetic deflection fields to guide the beam onto the screen.

Modern oscilloscopes are digital instruments with LCD displays like those found in
flat-screen monitors—the days of vacuum tube amplifiers are long past, and the CRT
is quickly heading for obsolescence. Figure 6-7 shows the front panel of a simplified
generic dual-trace digital oscilloscope.

Figure 6-7. Generic digital oscilloscope

Dual-trace oscilloscopes with the ability to display two simultaneous signals are the
most common, although single-trace instruments are available. Instruments capable of
displaying four or more channels are also available. The latest high-end models provide

198 | Chapter 6: Hardware: Tools and Supplies

color displays, advanced built-in signal processing and measurement capabilities, and
network interfaces.

The vertical input channels amplify the input signals and cause the display point to
move either up or down relative to a horizontal line defined as zero, or ground. The
horizontal section of the instrument drives the display point across the screen from left
to right, which is referred to as the horizontal sweep. A trigger circuit synchronizes the
horizontal sweep with the incoming signal from either of the vertical channels in order
to generate a waveform display that doesn’t “walk” or wander across the screen.

One fundamental characteristic of an oscilloscope is its bandwidth. Low-end instru-
ments are usually limited to a 25 MHz bandwidth, meaning that they will start to
attenuate signals above 25 MHz. This comes into play when a signal has harmonic
components above its fundamental frequency. For example, if a 25 MHz signal is
measured by a 25 MHz oscilloscope, it will probably display the fundamental wave-
form, but it will not accurately display harmonics above that, so some key features of
the signal will not be shown. This can become an issue when examining square waves,
which may contain higher-order components that are causing problems, as these will
not appear on a slow oscilloscope. This is shown in Figure 6-8.

As a general rule of thumb, one should try to use an oscilloscope with a bandwidth at
least four times the fundamental frequency of the signal of interest. If the only oscillo-
scope available has a bandwidth around the frequency of the fastest signal of interest,
you should expect that there are probably things going on in the signals that you cannot
see.

Figure 6-9 shows an image of a digital oscilloscope screen. This image shows two
channels, one with a 0 to 3 V range and the second with a 0 to 12 V display range.
Measurement cursors (the x and o symbols) are used to determine the time interval
between the cursor locations, which in this case is 36.3 seconds. This particular in-
strument is an older model that uses a CRT display.

If you are not very familiar with oscilloscopes, then it is worthwhile to spend a little
time and read up on how they work and how to use them. There are lots of excellent
sources of information available online. The thing to remember is that an oscilloscope
(and most other test instruments, for that matter) can only present data within the range
of its capabilities, and attempting to interpolate missing data, or assuming that what is
shown is completely accurate, can lead to erroneous conclusions.

Logic Analyzers
The logic analyzer is a very useful instrument for measuring and monitoring activity
within digital circuits. Logic analyzers capture a set of digital inputs simultaneously
and store the binary values in a short-term trace memory. The contents of the trace
memory are then read out and displayed in the form of a timing diagram. We saw these
types of diagrams in Chapter 2, and we will be seeing more of them in later sections.

Advanced Tools | 199

Figure 6-8. Effect of oscilloscope bandwidth

Figure 6-10 shows a block diagram of a simple logic analyzer. This diagram would be
applicable to a self-contained instrument, but there are other ways to achieve a similar
result. For example, if the signals are changing relatively slowly, one can use the parallel
printer port on a PC as a simple four-channel logic analyzer (the PC parallel port has
four input lines available).

One can also purchase inexpensive USB logic analyzer modules that use the PC’s dis-
play rather than providing one of their own. An example is shown in Figure 6-11.

200 | Chapter 6: Hardware: Tools and Supplies

Figure 6-9. Digital oscilloscope display

Figure 6-10. Logic analyzer internal organization

Advanced Tools | 201

Figure 6-11. USB logical analyzer module

Prices and capabilities for USB logic analyzer modules vary, from about $150 to upward
of $6,000. For most instrumentation applications, a low-cost unit will do all that is
needed, as there really is no need to capture and display signals above about 50 MHz.
Also, some models include features such as a serial protocol analyzer, which is handy
for examining the data stream in a serial interface.

Test Equipment Caveats
The following are some key points to keep in mind when working with electronic test
equipment:

• As a general rule, never connect the ground lead of any AC line-powered oscillo-
scope, logic analyzer, or other instrument to the DC power in a circuit, unless that
instrument is specifically designed with a so-called “floating ground.” The ground
lead is for ground only and should always be connected to a ground point when
attempting to take a measurement unless the instrument is specifically designed to
allow the ground to “float.” If you just want to verify the presence of a voltage
across two points, neither of which is at ground, use a DMM or a battery-powered
handheld oscilloscope instead.

• Always observe the maximum voltage ratings for an instrument’s inputs. Some
instruments are limited to 25 V DC, while others can handle upwards of several
hundred volts with the correct probe attached.

• If you are using a digital oscilloscope or logic analyzer, be aware that there is a limit
on the input frequency. If this limit is exceeded, the display will be “aliased” and
show a (usually) distorted signal with a frequency that is lower than that actually
present on the input. The manufacturer’s specifications should state the maximum
measurable input frequency.

202 | Chapter 6: Hardware: Tools and Supplies

Supplies
Having a supply of items such as wire, wire nuts, electrical tape, and so on, readily
available can make things a whole lot less frustrating and help to ensure that the end
result will be both reliable and professional-looking. Table 6-2 shows a list of suggested
supplies to keep handy.

Table 6-2. Suggested supplies

Item Description

Insulated hookup wire #22 stranded, various colors

 #20 stranded, various colors

 #18 stranded, various colors

 #16 stranded, various colors

Shielded coaxial cable RG-58, 50 ohms impedance

Wire nuts Small (#18–14 size)

Electrical tape Black

Kapton tape 1/4″ wide

Heat-shrink tubing Various diameters (from 3/32 to 1/2″)

Resistors 1/4 watt; 100, 330, 1K, 2.2K, 4.7K, and 10K ohms

Wire lugs #18 to #16 wire gauge size

Wire and cable typically come on spools in lengths from 10 feet to over 1,000 feet. For
hookup wire, 25 feet is a good length, and a selection of standard colors (red, black,
white, blue, and green) allows one to readily identify power (red), ground (black), and
signal wires. Some types of wire, particularly in the smaller gauges, will have only a
single copper conductor instead of multiple strands. Single-conductor wire is not rec-
ommended unless there is a specific reason to use it, as the single conductor can break
if bent too far or nicked when the insulation is removed. Stranded wire is much more
flexible and durable.

The Kapton tape mentioned in Table 6-2 deserves a brief explanation, as most folks
outside of the aerospace and electronics production realms may not have heard of it.
Basically, Kapton is a polyimide film with excellent temperature tolerance (–273 to
+400°C). Among other applications, it is used to make flexible printed circuit boards,
as insulation for wiring, as a protective wrap for the cable bundles on spacecraft, and
as one of the outer layers of spacesuits. It is much better than electrical tape for many
applications, as it leaves virtually no residue. It is also suitable for many uses in envi-
ronments where low outgassing is a consideration (such as in vacuum chambers).
Lastly, Kapton tape is a transparent golden color, which makes it useful for applying
labels to already fabricated cabling.

Supplies | 203

Most of the supplies listed in Table 6-2 can be purchased from the suppliers listed in
Table 6-1, with the possible exception of the Kapton tape. One place to purchase Kap-
ton in small quantities is http://www.kaptontape.com.

New Versus Used
For most instrumentation projects, the demands placed on test equipment are very
modest. Data sampling and control update intervals are relatively long (100 ms to many
minutes), so having the latest expensive high-speed equipment really isn’t necessary.
This means that the old oscilloscope that’s been gathering dust on the shelf in the
storage room is probably more than adequate (assuming that it still works, of course).

It also means that there is no reason not to look into buying used test and instrumen-
tation equipment. eBay is one possible source for used items, provided that you bear
in mind that you should be prepared to unpack a broken or nonfunctional item when
it arrives. This is a relatively rare occurrence, but it does happen.

There is buyer protection available through PayPal (eBay’s preferred
payment system) just in case your item does get drop-kicked somewhere
in shipping, or doesn’t work as advertised, but there’s no way to recover
the wasted time.

A local electronics store might also carry a selection of used or surplus equipment at
discounted prices. The secret to putting older equipment to work is knowing what it
will need to measure. For example, 100 MHz would be a reasonable lower limit for the
bandwidth of an oscilloscope. A DMM should have at least enough digits to satisfy the
accuracy requirements of the voltages you might want to measure in your system. While
3½ digits are usually acceptable for most purposes, 4½ digits are necessary for verifying
the basic operation of an ADC or DAC.

Summary
You should now have some ideas for a shopping list of at least the basic tools you will
need, and some idea of where to find them. We’ve also covered some of the basic
electronics test equipment that you might need, and briefly discussed the pros and cons
of buying new versus acquiring used tools and equipment.

Beyond the basic hand tools and a decent DMM, there isn’t much else you should need
to get started, except perhaps some specialized tools for working with connectors.

204 | Chapter 6: Hardware: Tools and Supplies

http://www.kaptontape.com

Suggested Reading
If you would like to explore test equipment and measurement topics in more depth, I
would suggest the following book as a good place to start:

Electronic Test Instruments: Analog and Digital Measurements, 2nd ed. Robert A. Witte,
Prentice Hall, 2002.

This book provides a solid introduction to basic measurement theory, followed by
a very readable and informative survey of modern electronic test instruments and
their applications. Each topic is supported with real-world examples drawn from
the author’s own experiences.

You can also find appendixes in books on electronic circuit theory that describe the
basic theory and applications of instruments such as DMMs and oscilloscopes.

Finally, many test equipment manufacturers offer excellent online tutorials for their
products, so I would suggest that you look there first for more information when
searching the Web.

Suggested Reading | 205

CHAPTER 7

Physical Interfaces

Connectors usually cause more failures than any other
type of component. Many of these failures are not
reported because they can be “fixed” by reseating

the connector.

—W. Ireson, Clyde Coombs, and Richard Moss,
Handbook of Reliability Engineering and

Management, Second Edition, 1995

In this chapter we will examine the types of interfaces, both physical and software, that
one is most likely to encounter when attempting to interface Python to data acquisition
or control instrumentation. We looked briefly at some of these in Chapter 2, but here
we’ll start to get into the details.

But first we’ll take a look at physical connectors, and in particular the types commonly
used with the interfaces found in PC-based instrumentation. By the end of this chapter
you should be able to determine what type of interface you might expect to find with
a given connector type, or at least be able to readily identify the connector. You should
also bear in mind that the conventions for connector usage aren’t always followed, so
don’t be surprised to find a DB-9 connector being used in an interface for motor control
signals, or an aerospace-style circular connector serving as an Ethernet connection.

We will then turn our attention to serial interfaces—namely, RS-232 and RS-485, the
two most commonly encountered types of serial interfaces. We then cover the basics
of the USB and GPIB/IEEE-488 interfaces, along with a discussion of where one might
expect to encounter them.

Finally, we will look at I/O hardware designed to be plugged into the bus of a PC—
typically, PCI-type circuit boards—and what one can usually expect in terms of soft-
ware support from the hardware vendor.

207

Connectors
Physical interfaces are implemented with a connector of some type. It might be one of
the common 9- or 25-pin DB-type serial and printer connectors found on PCs, or per-
haps a 4-pin USB connector. It might be a circular connector with anywhere from 2 to
100 or more pins, like those commonly found in industrial and aerospace equipment.
Connectors also come in sizes and shapes suitable for use on printed circuit boards
(PCBs), and even some types that directly accept the edge of a PCB, such as the plug-
in cards on the motherboard of a PC. Terminal blocks are used to connect single wires,
and come in a variety of types for different applications. A quick glance through the
“Connectors” section of a major electronics distributor’s catalog will give you some
idea of what is available.

Figure 7-1 shows the business end of a gadget that uses both circular connectors and
terminal blocks. We’ll look at both of these types of connectors in just a bit.

Figure 7-1. A gadget with various connector types

DB-Type Connectors
Figure 7-2 shows the female version of a DB-9 connector, and Figure 7-3 shows its male
counterpart. These are commonly used for RS-232 interfaces, although they are also
used as DC power connectors, RS-485 connectors, and even instrument-specific inter-
face signal connectors.

208 | Chapter 7: Physical Interfaces

Another commonly encountered connector is the DB-25. It has the same general shape
as the DB-9, with the main difference being that it is wider in order to accommodate
25 pins instead of 9. The DB-25 is the connector most commonly used with the full
implementation of the RS-232 standard. It is also commonly used for the parallel data
printer output port on desktop PCs (and some older notebook/laptop machines). The
DB-9 has generally replaced it because it is smaller and not all of the original RS-232
signals are necessary in order to implement a serial interface. Figure 7-4 shows a female
DB-25 connector with “solder cup” connections on the back for wiring (more on this
in a bit).

Note that all of the DB-type connectors shown so far are panel-mount or shell types.
In other words, they are designed to either be mounted in a metal or plastic panel by
way of screws through the holes in the flanges on either side of the connector body, or
be used with what is called a “backshell,” as shown in Figure 7-5.

The fully assembled connector looks like the one shown in Figure 7-6.

Both male and female DB-style connectors are available in PCB-mount versions as well.
The DB-9 and DB-25 connectors on a PC motherboard connect directly to the circuit
traces on the motherboard. As for pin counts, DB-type connectors are also available in
15, 37, and 50 pin types. Finally, several types of high-density D-type connectors are
available, such as those used with analog video display monitors. These utilize three or
more rows of pins or sockets in the connector body.

Pin numbering for a DB-9 connector is shown in Figure 7-7. Notice that the pins are
reversed between the male and female connectors when viewed from the face of the
connector.

Figure 7-2. DB-9 female connector

Figure 7-3. DB-9 male connector

Connectors | 209

USB Connectors
Universal Serial Bus (USB) connector shapes and sizes are defined by the USB standards.
They all have four contacts: two for the data signals (D+ and D−) and the other two for
power (+5 V) and ground. Typically these are premolded, so (hopefully) you won’t
need to assemble any of them. What you should be aware of are the different types of
connectors defined by the USB standard.

Figure 7-4. DB-25 front and rear views

Figure 7-5. DB-9 backshell parts

Figure 7-6. DB-9 connector with backshell assembly

210 | Chapter 7: Physical Interfaces

Figure 7-7. DB-9 pin and socket numbering

There are four basic USB connector types, as shown in Table 7-1.

Table 7-1. Basic USB connector types

Type Description

Type A Used primarily at the host or controller end of a USB connection. On a PC, these are used
to connect keyboards, mice, drawing tablets, cameras, printers, and hubs, among other
things.

Type B A square-shaped connector with beveled exterior corners on one side to orient it to a socket.
This connector is typically found on external devices such as hubs and printers.

Mini USB This type is commonly found on consumer digital cameras and other mobile devices.

Micro USB Similar to the mini USB but slimmer. The micro USB connector is designed to be more
resistant to wear than the mini USB type.

Connectors | 211

The instruments we will encounter will generally use the A and B types. It is uncommon
to find mini and micro connectors on instrumentation devices. Standards aside, con-
sumer electronics manufacturers have been known to come up with variations of the
mini and micro styles that are unique to their products. Even today, many popular MP3
players and cell phones use oddball connectors on the “B” end of what would otherwise
be a standard USB cable.

Circular Connectors
Circular connectors are all around us, although they are not always specifically referred
to by that name. The “phono”-type connectors on the back of a TV monitor or stereo
receiver are examples of single-circuit circular connectors. The BNC connectors used
with shielded cable and often found on test equipment and radio gear are another type
of circular connector. For professional audio applications, one will find circular con-
nectors with one, two, or four circuits (pins) used for microphone inputs, patch cables,
and low-voltage power connections. The 2.5 mm and 3.5 mm stereo-plug-type con-
nectors found on the end of headset or earbud cables are also types of circular connec-
tors, but these are more commonly referred to as “plugs,” which are inserted into
“jacks.”

In this book, when the term “circular connector” is used it will refer to the type of
connector shown in Figure 7-8.

Figure 7-8. MIL-type circular connector

The connector shown in Figure 7-8 is known as a “MIL-type” connector. The reason
for this is that these types of connectors were originally intended for military and aero-
space applications. As such, they are very robust and can endure harsh environments.
Some types, made entirely of plastic, are inexpensive but still relatively robust. Other
types, made from aircraft-grade materials and assembled to order by manufacturers
with facilities for handling custom orders of various sizes, can be quite expensive (over
$200 is not uncommon for a connector built to military standards). Both types are
available with pin counts from two to over a hundred.

212 | Chapter 7: Physical Interfaces

Figure 7-9 shows the AN/ARC-220. This is a mobile radio system used by the US mili-
tary that utilizes circular connectors of various types and configurations to interface
with an aircraft’s power and avionics systems.

Figure 7-9. AN/ARC-220 radio set (image credit: US Army)

Although you might never encounter the AN/ARC-220 in the wild, it is possible that
you might come across some ruggedized instrumentation equipment that looks some-
thing like this.

Wiring a MIL-type circular connector involves either soldering the wires into solder
cups on the ends on the pins or sockets, or using a special (and typically rather expen-
sive) crimping tool with specially machined pins and sockets. Some of the low-cost
multipin circular connectors use stamp-formed pins and sockets rather than solid ma-
chined parts, and although they’re not as rugged or reliable, they can be considerably
less expensive.

Terminal Blocks
Terminal blocks are ancient (in a technology time sense). They started to appear in
common use in the early part of the 20th century, replacing the threaded binding posts
and clip-type connectors of the late 19th century. World War II provided a major in-
centive for the development of more robust and reliable connectors, and the pace of
innovation hasn’t slowed since that time.

The name “terminal block” actually refers to a number of different styles of termination
devices. A barrier terminal block, like the one shown in Figure 7-10, uses screws to hold
down a wire or crimp-on lug-type connector.

Figure 7-10. Barrier terminal block

Connectors | 213

Although one can simply loop bare wire under the screw head, this is not an optimal
method. The wire may slip out, especially if it is multistranded. When using bare wire,
single-conductor copper wire works best with a barrier-type terminal block. However,
because the screw head can create an immobile pressure point where wire flexing is
concentrated, there is also a possibility that it will break off. A lug connector is the
optimal way to connect a wire to a barrier terminal block. A typical lug connector
suitable for use with a barrier-type terminal block is shown in Figure 7-11. You can also
see them on the gadget shown in Figure 7-1.

Figure 7-11. Crimp-type spade lug

This type of connector does require the use of a crimping tool, but these are common
and easily obtainable at any well-stocked hardware store or automotive parts supplier.

A type of compact terminal block more commonly encountered in instrumentation
devices is the PCB-mount type shown in Figure 7-12. These are designed to be soldered
directly onto a circuit board, and provide a convenient and reliable way to interface
with a circuit.

Figure 7-12. Typical PCB-mount terminal block

These types of compact connectors are very common in instrumentation devices in-
tended for use with a PC, such as the USB-based interface devices we will examine later.
It is also common for interface cards installed in a PC to connect to a module with
compact terminal blocks by way of a special multiconductor cable, shown in Fig-
ure 7-13.

214 | Chapter 7: Physical Interfaces

Figure 7-13. PC interface card breakout module example

Wiring a compact terminal block simply involves stripping about 1/4 to 3/16 of an inch
of insulation from the end of a wire, inserting the bare wire into the hole below the
screw, and then tightening the screw until it clamps the wire firmly in place. No sol-
dering or crimping is required. The downside is that terminal blocks take up more space
than some other connector types, and they aren’t always suitable for environments
where ruggedness is a primary concern.

Wiring
Wiring a connector correctly the first time can save an immense amount of time, and
possibly money, further down the road. As you have probably gathered by now, the
two primary means of connecting wires to a connector other than a terminal block are
soldering and crimping, and for terminal blocks either a bare wire is inserted into a
terminal position or a crimp-on lug is secured under a terminal screw. Regardless of
the connector type, there are correct (and incorrect) ways to wire a connector, and we’ll
look at a few of them here.

Soldering

If you are new to soldering, it is probably a good idea to get in some practice before
tackling a connector. Spending some time with some scrap wires and old circuit boards
will pay dividends later. US government publications are an excellent source of infor-
mation on soldering techniques and standards. For example, NASA STD 8739.3 de-
scribes solder connections and contains a wealth of useful information.

Connectors that are designed for solder connections have a special feature called a
“solder cup” machined or formed into the end of the pin where the wire is attached.
Figure 7-14 shows how NASA defines a good solder cup connection.

Connectors | 215

Figure 7-14. Solder cup connection (image credit: NASA)

Crimping

Crimp-type connectors are easier to assemble than solder-cup connections, and for
some applications they provide for a more robust connection, but only if the crimp is
made according to the manufacturer’s specification using the correct tool. Fig-
ure 7-15 shows a machined crimp pin for a circular connector. Once the wire is crimped
into the pin it is inserted into the connector from the back using a special tool, where
it locks into place within the connector body. It can be removed using another special
tool. Of course, for each pin there is a matching socket in the female connector. These
are also crimped and inserted into the connector body. Crimped pins and sockets re-
quire unique tools that are specifically made for a particular type and size of connector.
Crimping tools for MIL-type connectors can cost upwards of $500 (or more) apiece.
Other types of crimping tools, such as those used with DB-type connectors or low-cost
rectangular connectors such as those made by Molex or Hirose, are usually not as
expensive, but nonetheless they still aren’t cheap.

Crimped pins and sockets are inherently strain-relieved by virtue of the design of the
crimped part. A crimp-style pin or socket not only “bites” into the bare wire but also
has a second area, near the open end of the pin or socket, that clamps down on the
wire’s insulation. When assembled correctly and combined with the appropriate back-
shell, a crimp-style circular or DB-type connector is a very rugged item—which is why
you can find a lot of them in aircraft, spacecraft, military field gear, and harsh industrial
environments.

216 | Chapter 7: Physical Interfaces

Figure 7-15. MIL-type crimp pin

Wiring caveats

Here are a few points to keep in mind when wiring a connector:

• As a general rule, do not tin the end of a stranded wire when it’s used with a screw-
type terminal block. This might seem like a good idea, but it creates a situation
that can lead to metal fatigue and broken wires. Leave the wire bare, twist it tightly,
and let the screw in the terminal block do its job.

• You really want to avoid soldering a wire to a connector that wasn’t originally
intended to be soldered. In other words, if a connector uses inserted pins and
sockets designed for a crimping tool, attempting to solder a wire to the pin or socket
will often result in a connection that is mechanically fragile. It may also turn out
to be the case that while a soldered pin or socket can be inserted into a connector
body, any stray bits of solder hanging over the sides may jam it in place. It will then
be next to impossible to ever remove it should the need arise. This could result in
the entire connector ending up in the trash can.

• Always use the right wire for the job. Don’t use grossly undersized wire, and don’t
try to cram a heavy-gauge wire into a terminal block or lug meant for a smaller
gauge. By the same token, if the solder cups on a connector are designed for, say,
18- to 22-gauge wire, trying to solder a 14-gauge wire to it probably won’t allow
the wire to seat completely within the cup, and the connection may cause a short
with adjacent pins.

• Keep things neat. Bundle individual wires with related signals using nylon or plastic
cable ties as much as possible. If there are a lot of cable bundles, labeling them can
save time and reduce frustration in the future when you have to follow a cable and
figure out what each line is supposed to be connected to.

• Always use a backshell with connectors on the end of a cable. This goes for circular
as well as DB-type connectors. The backshell not only protects the wiring from

Connectors | 217

damage, it also provides essential strain relief. It is common to see DB-type con-
nectors lying around a lab or shop with no backshells. While not assembling the
backshell spares you some effort, the odds are good that the wiring on the con-
nector won’t last long if it gets frequent use.

Connector Failures
There are a number of reasons why a connector might fail, and they are all mechanical
in one way or another. Bad solder connections, broken or bent pins, loose screws on a
terminal block, and broken wires are just some of the possible ways a failure can occur.

As the quote at the start of this chapter states, loose or improperly seated connectors
are a major source of problems. If a connector is designed to be used with screws to
secure it, use them. If a connector is designed to be locked into place with a threaded
or bayonet-type outer shell, by all means use that. Some connectors, such as RCA phono
plugs or USB connectors, are designed to be plugged in without any additional hard-
ware to physically secure them, but just plugging in a connector that is meant to be
secured and then letting it go at that is an excellent way to increase the odds of expe-
riencing mysterious intermittent failures later.

If a connector is carrying low-level signals, especially in high-impedance circuits, cor-
rosion or dirt can cause the connection to introduce noise into the signal, or cause
intermittent failures that mysteriously appear and disappear. Corrosion can occur due
to oils and acids from fingertips. Using connectors not intended for harsh environments
can also cause problems.

Lastly, you should be aware that connectors are often rated in terms of the number of
“insertion cycles” they can tolerate before things become worn and the connection
becomes unreliable. Each time a connector is “mated” to its matching part, it counts
as an insertion cycle. Some inexpensive DB-type connectors may only be good for
around 50 insertion cycles (or less, if they’re really cheap connectors). Other types,
such as USB connectors, may have ratings of over 5,000 cycles before the connector
starts to experience noticeable wear-related issues.

Serial Interfaces
The three most common types of serial interfaces you are likely to encounter when
dealing with instrumentation device interfaces are RS-232, RS-485, and USB. The
RS-232 and RS-485 standards were originally given the RS (Recommended Standard)
designation by the Electronic Industries Alliance (EIA). When the maintaining organ-
ization changed its name the prefix changed as well, first to EIA-232 and finally to
TIA-232. The standards are currently revised and maintained by the Telecommunica-
tions Industry Association, but since the RS nomenclature is so deeply ingrained in the
history of electronics engineering and telecommunications, it has refused to go away.
In this book I will use the RS-232 and RS-485 names for these standards.

218 | Chapter 7: Physical Interfaces

USB interfaces have become very common over the past decade, to the point where
USB has largely supplanted the RS-232 interface once found on just about every PC.
Only desktop or rack-mounted PCs still provide serial interfaces (and even some of the
thin rack-mount units have done away with them). The latest models of notebooks and
so-called netbook computers now have only USB ports.

There are a variety of different types of special-purpose, high-reliability serial interfaces
used in specific applications. These include CAN (Controller Area Network), FieldBus,
and Profibus. The MIL-STD-1553 serial bus found in military applications and some
avionics is yet another example. These are specialized interfaces that are not often en-
countered outside of limited domains, so we won’t cover them here. However, the basic
concepts behind serial communications apply to all serial interfaces, and the RS-485
interface is the underlying framework on which some industrial interfaces are based.

Half- and Full-Duplex
The terms “half-duplex” and “full-duplex” refer to the data transfer modes used with
a pair of devices (or people) communicating over a channel of some sort. In a half-
duplex system, the devices on either end take turns as either sender or receiver and do
not talk simultaneously. A common example of a half-duplex communication channel
is two-way radio (e.g., walkie-talkies), where the person on each end waits for the other
to finish before talking back. This is where the terms “10-4,” “over,” “roger,” and “over
and out” come into play: they indicate whose turn it is to speak so that the people at
the ends of the communication channel know when to talk. Otherwise, they would be
talking on top of each other, and no one would be able to understand what was being
said. In terms of serial interfaces, a half-duplex channel will have one set of wires. The
direction of data flow between the endpoint devices is determined by the communica-
tions protocol the devices employ.

In a full-duplex system there are two channels, and each end of the channel can send
whenever there is data ready to transmit. For example, an RS-232 connection may have
only one cable, but inside there are two wires, one per data direction (actually, there
are more than two wires, but we’ll get to that later). Each wire is its own communica-
tions channel. Ethernet is another full-duplex type of interface, although it can also
operate in half-duplex mode as well. RS-485, on the other hand, is often implemented
as a half-duplex interface. In a basic RS-485 interface there is only one pair of wires to
support a single interface channel, and the devices at each end must take turns being
the transmitter and receiver during a data exchange.

RS-232/EIA-232
RS-232 is a voltage-based interface; that is, the difference between a logical 0 and a
logical 1 is determined by the voltage level present on the signal lines. The standard
does not specify the data encoding, only the hardware interface, but it is so closely
associated with ASCII character encoding (discussed in detail in Chapter 12) that the
two standards have become deeply intertwined. RS-232 has some limitations to be

Serial Interfaces | 219

aware of. For example, there cannot be more than one device connected to a single
“port” on a PC or other system (usually). In other words, it’s a point-to-point interface,
as shown in Figure 7-16. It also has line length and speed limitations because of the use
of voltage swings to perform the signaling, and RS-232 tends to be susceptible to noise
and interference from the surrounding environment.

Figure 7-16. RS-232 device connections

RS-232 data formats

As we just mentioned, RS-232 is a voltage-based interface. That is, it uses one voltage
level to signify a logical true (1), and another for logical false (0). Figure 7-17 shows
how this works.

Figure 7-17. RS-232 signal levels

Notice that RS-232 data signals employ negative logic. That is, a logical true (1) is a
negative voltage level, and a logical false (0) is a positive level.

220 | Chapter 7: Physical Interfaces

When using ASCII encoding, an RS-232 character consists of a start bit (a mark), fol-
lowed by 5 to 9 data bits, an optional parity bit, and 1 or 2 stop bits (a space). Fig-
ure 7-18 shows the format for 8 data bits with no parity and 1 stop bit, and 7 data bits
(true ASCII) with even parity and 1 stop bit. In both cases the actual number of bits
sent or received for each character or byte is 10 bits. Each unit of data, from the start
bit to the stop bit (if used), is referred to as a “frame.”

Figure 7-18. RS-232 data formats

In order for a specific format to work correctly, both ends of the communications
channel must be configured correctly from the outset. Attempting to connect a device
configured as 8-N-1 to a device set up for 7-E-1 won’t work, even though both ends
are sending and receiving 10 bits of data per frame. It will, at best, result in erroneous
data at the 8-bit end, and a lot of parity errors at the 7-bit end.

Serial Interfaces | 221

The speed, or data transmission rate, of an RS-232 interface is measured in baud, which
is the number of bits per second. What this means is that a serial interface running at
9,600 baud will not send or receive 1,200 bytes or characters per second (9600/8),
because at least 2 of the 10 bits in the frame are taken up by the start and stop bits.
That is, only 80% of the frame contains actual data. The actual maximum rate just
happens to work out to 960 characters per second in this case. As a general rule, if you
know the number of bits per data frame, dividing the baud rate by that number will
give you the effective rate in characters per second (CPS).

RS-232 signals

The RS-232 interface employs a number of signals for both data transfer and hand-
shaking between two devices. Most of these signals are from the days when RS-232 was
first defined and its intended application was to connect a terminal or mainframe to a
modem. External modems are becoming scarce, but most RS-232 interfaces still retain
the various lines shown in Figure 7-19. Note that these are for a DB-9–type connector;
when used with a DB-25 connector there are other signal lines that may be implemen-
ted, although they are seldom used.

Figure 7-19. RS-232 signals

The basic RS-232 signals shown in Figure 7-19 are really all that are necessary to im-
plement a full RS-232 interface with hardware handshaking. The signals are defined in
Table 7-2.

222 | Chapter 7: Physical Interfaces

Table 7-2. RS-232 DB-9 pin definitions

Signal Definition

RxD Received Data

TxD Transmitted Data

RTS Request to Send

CTS Clear to Send

DTR Data Terminal Ready

DSR Data Set Ready

DCD Data Carrier Detect

RI Ring Indicator

RS-232 is a full-duplex interface, meaning that data may move in both directions si-
multaneously. It is also asynchronous, and all data clock synchronization is derived
from the incoming data stream itself, not from an additional clock signal line in the
interface (there is, of course, an exception to this—RS-232 can be implemented as a
synchronous, or clocked, interface—but it is seldom used). RS-232 can also be used in
half-duplex mode. See the sidebar “Half- and Full-Duplex” on page 219 for more
information.

In many cases all one really needs are the RxD (receive) and TxD (transmit) data lines,
and some instruments are indeed wired this way. Most instruments with an RS-232
interface will work fine when connected to a PC using the correct cable (typically sup-
plied with the instrument), and no modifications to the interface wiring should be
necessary.

DTE and DCE

When working with RS-232 interfaces you will no doubt encounter the acronyms DTE
(Data Terminal Equipment) and DCE (Data Communications Equipment). Hailing
from the days of mainframes and acoustic coupler modems, these terms were used to
define the endpoints and link devices of a serial communications channel. The terms
were originally introduced by IBM to describe communications devices and protocols
for its mainframe products.

In the context of RS-232, DTE devices are found at the endpoints of a serial data com-
munications channel. The “terminal” in DTE does not refer to a device with a roll of
paper and a keyboard (a teletype terminal, or TTY), or a CRT and a keyboard (an old-
style computer terminal, or “glass TTY” as they were once known). It literally means
“the end.” Figure 7-20 shows this arrangement graphically.

Serial Interfaces | 223

Figure 7-20. DTE/DCE modem communications

Another way to look at it is in terms of “data sink” and “data source.” A data sink
receives data, and a data source emits it. Either end of the channel (the two DTE devices)
can be a sink or a source. The DCE devices provide the channel between the endpoints
using some type of communications medium. For a system using modems, this would
typically be a telephone line.

Nowadays modems are becoming something of an endangered species, although they
are still used for data communications in some remote parts of the US and around the
world that lack high-speed Internet services. However, the wiring employed in RS-232
cables and connectors still reflects that legacy, which is why it’s important to under-
stand it in order to correctly connect things using RS-232.

The signals described in the previous section are named with reference to the DTE. In
other words, on a DTE device, TxD is a data source, or output. On a DCE, it is a sink,
or input, for the TxD of the DTE. This also applies to the RxD line. In effect, the DCE’s
data source and sink connections are functionally inverted with respect to the DTE’s
TxD and RxD lines, even though they have same names. This may seem confusing, but
the upshot of it all is that when connecting a DTE to a DCE, the interface is wired pin-
to-pin between them (1 to 1, 2 to 2, and so on).

If you need to connect two devices that happen to be DTEs, you will need to use what
is called a crossover cable or, if you don’t need the handshake lines, a null-modem
cable. Figure 7-21 shows how the TxD and RxD lines would cross over for a DTE-to-
DTE interface. It does not show how the handshake lines would need to be connected.

Most devices with a serial port are wired as DTE devices, although some do have the
ability to be configured as DCEs. This can be done using jumpers, small PCB-mounted
switches, a front-panel control, or even via software. The built-in serial port on a PC is
typically implemented as a DTE.

224 | Chapter 7: Physical Interfaces

For devices with low-speed interfaces, or when the communications protocol is strictly
a command-response format, you probably don’t need the rest of RS-232’s handshak-
ing lines. In this case, you can use a ready-made commercial null-modem cable or a
null-modem adapter. Such an adapter is shown in Figure 7-22.

Figure 7-22. DB-9 null-modem adapter

RS-485/EIA-485
RS-485 is commonly found in instrument control interfaces and in industrial settings.
Like its predecessor, RS-422, it has a high level of noise immunity, and cable lengths
can extend up to 1,200 meters in some cases. RS-485 is also faster than RS-232. It can
support data rates of around 35 Mbit/s with a 10-meter cable, and 100 Kbit/s at 1,200
meters.

Figure 7-21. Crossover or null-modem interface

Serial Interfaces | 225

RS-485 signals

RS-485 owes these capabilities to the use of differential signaling. Instead of using a
dedicated wire to carry data in a particular direction, there are two wires that are elec-
trically paired that carry data in either direction, but not at the same time. The two
wires in a differential interface are always the opposite of one another in polarity. The
state of the lines relative to each other indicates a change from a logic value of “1” to a
“0,” or vice versa. Figure 7-23 shows a typical situation involving asynchronous serial
data that incorporates a start bit and a stop bit. For comparison, it also shows the digital
TTL input that corresponds to the RS-485 signals.

Figure 7-23. RS-485 signal levels

Note that the + and − signals always return to the initial starting state at the completion
of the transfer of a byte of data.

Line drivers and receivers

In an RS-485 interface, each connection point uses a pair of devices consisting of a
differential transmitter and a differential receiver. This is shown in Figure 7-24.

RS-485 may be implemented as a two-wire half-duplex interface or a bidirectional four-
wire full-duplex interface, but for many applications full-duplex operation is not re-
quired. A four-wire arrangement is shown in Figure 7-25.

226 | Chapter 7: Physical Interfaces

RS-485 multi-drop

RS-485 also allows for more than one device, or node, to be connected to the serial
“bus” in what is called a multidrop configuration. This is shown in Figure 7-26. In order
to do this, the transmitter (output) section of an RS-485 driver must be capable of being
placed into a Hi-Z, or high impedance, mode. This capability is also essential when
RS-485 is connected in two-wire mode.

Figure 7-26. RS-485 multidrop

The reason for this is that if the transmitter was always actively connected to the in-
terface it could conflict with another transmitter somewhere along the line. In Fig-
ure 7-27 you can see how the drivers take turns being “talkers,” or data sources, when

Figure 7-24. RS-485 interface drivers in two-wire mode

Figure 7-25. RS-485 interface drivers in four-wire mode

Serial Interfaces | 227

wired in half-duplex mode, depending on the direction in which the data is moving.
There is really no need to disconnect the receivers, so they can listen in to the traffic on
the interface at any time.

Figure 7-27. RS-485 half-duplex data flow

In a typical multidrop configuration, one device is designated as the controller and all
other devices on the RS-485 bus are subordinate to it, although it is possible to have
multiple controllers on an RS-485 network. The default mode for the controller is
transmit, and for the subordinate devices it is receive. They trade places when the con-
troller specifically requests data from one of the subordinate devices. When this occurs,
it is called “turn-around.” Figure 7-28 shows how data moves between two devices
connected using RS-485 in a two-wire configuration.

When using a half-duplex RS-485 interface, one must take into account the amount of
time required to perform a turn-around of the interface. Even with an interface that can
sense a turn-around electronically and automatically change its state from sender to
receiver, there is still a small amount of time involved. Some RS-232–to–RS-485 con-
verters can use the RTS line from the RS-232 interface to perform the turn-around as
well. Figure 7-29 shows how this works.

Notice that when either device in Figure 7-29 is in the receive mode, there is an explicit
wait involved while the device listens for a response from the other end of the channel.

228 | Chapter 7: Physical Interfaces

RS-232 versus RS-485

Table 7-3 contains a comparison of some of the electrical characteristics of RS-232 and
RS-485.

Table 7-3. RS-232 versus RS-485

Characteristic RS-232 RS-485

Differential No Yes

Max. number of drivers 1 32

Max. number of receivers 1 32

Modes of operation Half- and full-duplex Half- or full-duplex

Network topology Point-to-point Multidrop

Max. distance 15 m 1,200 m

Max. speed at 12 m 20 kbit/s 35 Mbit/s

Max. speed at 1,200 m n/a 100 kbit/s

Figure 7-28. RS-485 half-duplex operation

Serial Interfaces | 229

In general, RS-232 is fine for applications where there isn’t a need for speed and where
the cable lengths are under 5 meters (about 15 feet) or so. Many external instrumen-
tation devices utilize very short (2- to 10-character) commands, return equally short
responses, and sometimes take significantly longer to perform the commanded action
than the time required to send it from the host system to the instrument. For these types
of devices an RS-232 interface at a speed of 9,600 baud is perfectly acceptable. In other
cases, such as when one might have sensors or controllers distributed throughout a
large system on a single communications bus, RS-485 works quite well. Many manu-
facturers sell such devices for just this sort of application, and we will look at one in
detail in Chapter 14.

Figure 7-29. RS-485 command-response sequence

230 | Chapter 7: Physical Interfaces

USB
Universal Serial Bus is yet another form of half-duplex asynchronous serial interface.
It is similar in some respects to RS-485 in that data is carried as a differential signal on
a pair of wires in the USB cable. The cable also includes wires for power and ground.
Also, in a USB network only one interface can act as the controller (or host), and all
other devices are subordinate.

Figure 7-30 shows a USB network consisting of a host system with an internal hub, two
external hubs, and eight USB devices.

Figure 7-30. USB network

For the most part, we don’t need to worry about the low-level details of the USB in-
terface itself. Both the Windows and Linux operating systems incorporate low-level
drivers to handle the host chores, and instruments that utilize USB at a low level are
provided with software that deals with the communications. In some cases, the vendor
may also provide a library module that supports access from user-written application
programs. This is more common for Windows than it is for Linux, although some Linux
interface drivers are available as well.

USB classes

The USB standard defines various classes of devices that utilize USB interfaces. Some
of the more common classes that you might encounter on a regular basis are listed in
Table 7-4.

Serial Interfaces | 231

Table 7-4. Common USB device classes

USB class Example(s)

Communications Ethernet adapter, modem

HID (Human Interface Device) Keyboard, mouse, etc.

Imaging Webcam, scanner

IrDA Infrared data link/control

Mass Storage Disk drive, SSDD, flash memory stick

PID (Physical Interface Device) Force feedback joystick

Printer Laser printer, etc.

Smart Card Smart card reader

Test & Measurement (USBTMC) Test and measurement devices

Video Webcam

You are most likely already familiar with the HID and Mass Storage classes. These two
classes include things like keyboards, mice, simple joysticks, outboard USB disk drives,
and flash memory sticks (so-called thumbdrives). The HID class is relatively easy to
implement, and most operating systems come with generic HID class drivers, so it is
not uncommon to find devices implemented using the HID class that don’t look at all
like a keyboard or mouse.

If a USB device uses a unique interface (there’s a USB class for this, too), it is up to the
vendor to supply the necessary interface drivers, including any low-level drivers needed
by the operating system. In cases like this you typically need to install the driver software
before attaching the device so that it will be available to the operating system when the
new device is detected.

Since we won’t be writing any low-level USB driver software, we won’t delve any deeper
into USB classes. The working assumption here is that the device will come with what-
ever software is needed.

USB data rates

When working with USB devices, it is good to know what to expect of the interface in
terms of performance. One potential downside to USB interface devices is speed: many
are not particularly fast when compared to what can be achieved using a PCI bus–based
interface or a dedicated standalone data acquisition system.

The maximum data rate for a USB interface can vary from 1.5 Mbit/s (megabits/second)
to 4 Gbit/s (gigabits/second), depending on the standards compliance level of the in-
terface. The data transfer rates for USB are defined in terms of a revision level of the
USB standard. In other words, devices that are compliant with USB 1.1 have a theo-
retical maximum data rate of 12 Mbit/s in full-speed mode, whereas USB 3.0–compliant

232 | Chapter 7: Physical Interfaces

devices have a maximum data transfer rate of 4 Gbit/s. Table 7-5 lists the specification
levels and the associated maximum data transfer rates.

Table 7-5. USB versions

Version Release date Maximum data rate(s) Rate name Comments/features added

1.0 1996 1.5 Mbit/s Low speed Very limited adoption by industry

 12 Mbit/s Full speed

1.1 1998 1.5 Mbit/s Low speed Version most widely adopted initially

 12 Mbit/s Full speed

2.0 2000 480 Mbit/s High speed Mini and micro connectors, power management

3.0 2007 4 Gbit/s Super speed Modified connectors, backward compatible

USB 3.0 is still rather new, and most USB devices that one will encounter will either be
1.1- or 2.0-compliant. You should also know that even if a device claims to be a USB
2.0 high-speed type, the odds of getting sustained rates of 480 Mbit/s are slim. The
time required for the microcontroller in the USB device to receive a command, decode
it, perform whatever action is requested, and respond back to the host can be consid-
erably slower than what one might expect from the data transfer rate alone. In addition,
the ability of the host controller to manage communications can contribute to slower
than theoretical maximum data rates. If the host is busy with other tasks, it may be
unable to service the USB channel fast enough to sustain a high data throughput.

How USB devices and hubs are connected can also play a big part in how responsive
the communications will be. A USB 1.1 network using 1.1 hubs and devices is only as
fast as the slowest device in the network. USB 2.0 hubs deal with this by separating the
low/full-speed traffic from the high-speed data. When purchasing new USB compo-
nents, you should avoid 1.1 hubs and stick to 2.0 units. That way, you can avoid having
a high-speed 2.0 device run into a bottleneck due to 1.1 devices on your USB network
(assuming that the host controller is itself USB 2.0 high-speed capable).

But speed isn’t everything, and in many instrumentation systems it’s not critical so long
as the basic response time requirements are met. Because of the appeal of low cost and
ease of use, we will examine various low-cost USB instrumentation devices in the fol-
lowing sections.

USB instrumentation

A generic version of the type of USB instrumentation device we can expect to encounter
is shown in Figure 7-31. This is similar to several readily available commercial devices
and is intended to illustrate the types of inputs and outputs one can expect to find.

Many USB interface devices also incorporate a high degree of internal functionality and
configuration options. For example, the hypothetical device shown in Figure 7-31 has
discrete I/O lines that may be configured as either inputs or outputs on an individual

Serial Interfaces | 233

basis, analog inputs and outputs, and some counter and timer ports. These are typical
and are found on many devices of this type. The PWM outputs should be able to accept
control parameters to determine the base clock rate and the duty cycle. Some devices
may even incorporate the ability to control the duty cycle directly through one of the
analog inputs.

Figure 7-31. Generic USB instrumentation I/O device

Now let’s look at a real USB interface device. Figure 7-32 shows one type of commer-
cially available USB instrumentation device, the LabJack U3. This is a low-cost (around
$110) unit that features configurable discrete I/O; analog input and output channels;
timers; counters; and support for SPI, I2C, and asynchronous serial protocols. The U3
employs a full speed (12 Mbit/s) USB interface.

234 | Chapter 7: Physical Interfaces

Windows Virtual Serial Ports
Under Windows, one can implement what is known as a virtual serial port (VSP) or
virtual COM port (VCP). An aspect of “port redirection,” VSPs have been a part of
Windows for quite a long time. A virtual serial port supports most or all of the func-
tionality normally found with any other Windows serial port interface. You can set the
baud rate and the number of data bits, and read and write data just as you would with
a “real” serial port. The virtual port also emulates the control lines used in a physical
serial port, such as RTS, CTS, and so on.

One primary application for a virtual serial port is to provide a common and convenient
interface to a physical USB port and the devices that might be connected to it. Fig-
ure 7-33 shows a simplified diagram of a VSP-to-USB interface.

Figure 7-33. Virtual serial port interface

Figure 7-32. LabJack USB interface device

Serial Interfaces | 235

In some cases, a virtual serial port is used with a USB-to-serial converter. USB converters
for RS-232 and RS-485 interfaces are readily available, and Figure 7-34 shows a generic
diagram of such a device used to interface a serial instrument with a USB port on a PC.
ICs from vendors such as FTDI and Silicon Labs are available that incorporate all of
the necessary functionality to implement a USB-to-serial interface. With the demise of
the RS-232 serial port on the latest computers, particularly notebook and netbook ma-
chines, many manufacturers are turning to these types of interfaces for products that
would otherwise use RS-232 or RS-485 as their primary control and data interface. In
other cases it might serve as the primary connection to an instrument or device that
has only a USB interface incorporated into its design, but includes a driver that can
translate between serial data and the interface protocol used by the device. The USB-
to-GPIB interface we will look at later is one such device.

Figure 7-34. USB-to-serial interface

USB redirection is just one application for a virtual serial port and port redirection. A
Windows virtual serial port can be used just like a regular serial interface to redirect
I/O to another port, or even a network interface. One open source utility that we will
see more of later is the com0com package by Vyacheslav Frolov. com0com uses port
redirection to implement a pair of virtual serial ports that are connected internally in a
default null-modem configuration (although this can be changed when the driver is
installed). In other words, writing data to one port will result in the data appearing on
the other port. Figure 7-35 shows how com0com does this.

By using a utility called com2tcp (included with com0com) it is possible to link two
pairs of virtual serial ports on different PCs via a network connection, as shown in
Figure 7-36.

A utility like com0com can be very handy for implementing a real-time monitor and
trace facility or a command-line-type user interface, or to simulate an instrument that
utilizes a serial interface. The ability to redirect serial interfaces is a powerful tool for
working with instrumentation devices.

236 | Chapter 7: Physical Interfaces

GPIB/IEEE-488
The General Purpose Interface Bus (GPIB) was developed by Hewlett-Packard in the
late 1960s to interface HP test equipment with other test instruments, HP printers, and
HP’s line of laboratory minicomputers and mass data storage devices. Originally known
as the Hewlett-Packard Interface Bus (HPIB), it was given an IEEE standards designa-
tion in 1975.

Although GPIB (HPIB at the time, actually) was used in the late 1970s with some HP
computer equipment to interface large external disk drives and line printers, it never
really caught on as a data peripheral interface standard. It was, and still is, most com-
monly found in test and data acquisition equipment.

Figure 7-35. The com0com VSP utility

Figure 7-36. com0com over TCP/IP

GPIB/IEEE-488 | 237

GPIB/IEEE-488 Signals
GPIB is a type of parallel interface that contains data, command, and interface signal
lines in one cable. GPIB addressing allows up to 15 devices to share a single 8-bit parallel
data bus. The maximum data rate is around 8 MB/s for the latest versions of the
standard.

Internally, GPIB uses 12 lines for various signals and 12 lines for shield and ground
connections. Table 7-6 lists the GPIB signals, and Figure 7-37 shows the pin-out of a
GPIB connector.

Table 7-6. GPIB signals

Signal Pin Function

DIO1 1 Data/command

DIO2 2 Data/command

DIO3 3 Data/command

DIO4 4 Data/command

EOI 5 End or identity

DAV 6 Data valid

NRFD 7 Not read for data

NDAC 8 Not data accepted

IFC 9 Interface clear

SRQ 10 Service request

ATN 11 Attention

Shield 12 Cable shield

DIO5 13 Data/command

DIO6 14 Data/command

DIO7 15 Data/command

DIO8 16 Data/command

REN 17 Remote enable

Ground 18 Ground

Ground 19 Ground

Ground 20 Ground

Ground 21 Ground

Ground 22 Ground

Ground 23 Ground

Ground 24 Ground

238 | Chapter 7: Physical Interfaces

GPIB Connections
GPIB uses a special 24-pin connector that allows connections to be stacked. The slowest
device on the bus sets the maximum data transfer rate. Figure 7-38 shows an outline
of a GPIB/IEEE-488 connector and how the connectors are stacked to connect two or
more devices in a sequential arrangement.

GPIB devices may also be connected in a star configuration, as shown in Figure 7-39.

GPIB via USB
Although one can install a GPIB PCI interface card in a full-sized computer, there are
now inexpensive USB-to-GPIB interface modules available. One of these is shown in
Figure 7-40. These work well with notebook-class computers, and most include inter-
face software for use with custom applications, as well as drivers with an application
program interface (API) for custom software.

The Prologix interface shown in Figure 7-40 uses the FTDI FT245R USB interface chip,
and you have a choice of two interface modes: Windows virtual serial port/Linux serial
driver, or direct access via a library module. FTDI provides drivers for both Windows
and Linux. It is also useful to note that the Prologix device can be connected directly
to the GPIB port of an instrument, so one can avoid purchasing a GPIB cable if only
one GPIB instrument is involved. It is also possible to equip multiple instruments with
their own converters and use a USB hub instead of daisy-chaining GPIB cables between
instruments.

Figure 7-37. GPIB connector pin assignments

GPIB/IEEE-488 | 239

Figure 7-38. GPIB instrument interface

Figure 7-39. GPIB star connection configuration

Internally, a USB-to-GPIB interface will typically have two main sections: the USB in-
terface hardware and a GPIB interface processor, as shown in Figure 7-41.

240 | Chapter 7: Physical Interfaces

Figure 7-40. USB-to-GPIB interface

Figure 7-41. USB-to-GPIB converter block diagram

With a USB-to-GPIB converter, you are basically using a serial port (USB) to commu-
nicate with a parallel instrumentation bus (GPIB). Internal logic in the converter han-
dles the GPIB handshaking and data transfer operations. If the converter utilizes a
virtual serial port, everything that applies to serial programming applies here as well.

PC Bus Interface Hardware
A device designed to connect directly to the internal bus of a computer doesn’t usually
have a command-response protocol in the same sense that one would find with the
serial or GPIB-type device. Instead, the interface protocol is embodied in the form of
callable functions provided by driver software. They are also typically somewhat more
difficult to use due to a higher level of software interface complexity.

You can buy various interface cards for a PC that are capable of capturing high-
frequency signals in real time, whereas there are no such devices for RS-232 or RS-485,

PC Bus Interface Hardware | 241

and only a handful with high-speed USB interfaces (and the USB devices often employ
some type of buffering, or temporary storage, to help move data between the device
and the host system).

The most common type of bus-based interface cards utilize the industry-standard Pe-
ripheral Component Interconnect (PCI) bus and the newest variant, the PCI Express
(PCIe) bus. A typical PCI multifunction data acquisition (DAQ) card is shown in Fig-
ure 7-42. There are also add-on cards available for the industrial VME bus and the
instrumentation PXI bus, but we won’t get into those in this book as most of what we
will want to do can be done with PCI- or PCIe-type cards.

Figure 7-42. PCI interface card (ADDI-DATA APCI-3001)

Pros and Cons of Bus-Based Interfaces
Bus-based interfaces have a couple of inherent advantages over serial-interface-type
devices:

• The bus-based interface is always faster than a serial interface, since it has direct
access to the internal data bus in the computer. Data can be moved to and from
the device in parallel at full (or almost full) bus speed, thereby avoiding the serial
interface bottleneck.

• The internal settings of the device are directly accessible and the device can generate
internal interrupt signals to get the attention of the host system, which makes it
possible to incorporate functionality that would otherwise be difficult to build into
a device connected using a serial interface.

Figure 7-43 shows the relationship between various types of PCI interface cards and
the rest of the host computer system.

242 | Chapter 7: Physical Interfaces

The main thing to notice in Figure 7-43 is that a PCI card always requires additional
driver software to interface between the operating system, the application, and the
hardware of the interface card itself. A driver will present an API that defines various
functions for accessing the interface hardware, such as read, write, set a parameter,
return a status value, and so on. We will discuss VISA drivers for instrumentation in
Chapter 11.

The driver requirement is one downside to plug-in interface hardware. One cannot just
pass ASCII strings back and forth via a serial port. You have to either create software
that can interact with the driver’s API, or use the application software provided by the
card vendor. The other downside is that the back of a PC can get very crowded very
quickly, and some cards use special high-density connectors that are somewhat fragile
and must be used with strain-relief brackets so as to prevent them from being pulled
or twisted (which can result in a damaged connector, a damaged card, or both). In
addition, a PC loaded with interface cards isn’t very portable, whereas a PC that uses
serial, USB, or GPIB interfaces can (usually) be unplugged and moved without too much
effort.

Figure 7-43. PCI interface cards

PC Bus Interface Hardware | 243

Data Acquisition Cards
There are numerous types of PCI cards available for data acquisition. Often referred to
as DAQ cards, they range in functionality from simple discrete I/O interfaces to com-
plex multifunction devices that almost qualify as computers in their own right.

There are four basic categories of functionality found in PCI data acquisition and con-
trol cards. These are listed in Table 7-7.

Table 7-7. Basic PCI data acquisition and control card functions

Function Description

Analog output Multiple analog outputs, typically with 12- or 16-bit resolution. Some models also provide discrete digital
I/O capability.

Analog input Multiple single- or double-ended (differential) analog inputs at 12- or 16-bit resolution. Eight input
channels are common. Some models also provide discrete digital I/O capability.

Discrete digital I/O 24 to 96 channel models available, typically TTL-compatible.

Counter/timer Provide multiple counter/timer functions (up to 20 counters in some models). Some models also provide
discrete digital I/O capability.

A fifth type, known as a multifunction DAQ card, combines most or all of the four basic
functions on one card. These types of PCI cards might include analog inputs (typically
12- or 16-bit resolution), two or more analog outputs, discrete I/O, and counter/timer
functions, all under control of logic embedded on the card itself. The PCI card shown
in Figure 7-42 is a multifunction DAQ card.

GPIB Interface Cards
Several manufacturers produce PCI GPIB interface cards. These cards are accessed
through driver software supplied by the manufacturer, and most provide a program-
ming interface that exposes functions for configuration, addressing, and data exchange.

Given that GPIB has a maximum data throughput of 8 MB/s, or 64 Mbit/s, a GPIB
interface running at its theoretical maximum is over five times faster than a full-speed
USB interface (but not as fast as a high-speed USB interface at 480 Mbit/s). Conse-
quently, while a full-speed USB-to-GPIB interface may be convenient and easy to use,
it becomes less useful as the need for high-speed data transfers over GPIB increases.
There are some high-speed USB-to-GPIB interfaces available, but they tend to cost
several times what a full-speed device costs.

One example of a plug-in GPIB interface card for the PCI bus is the 82350B from
Agilent, shown in Figure 7-44.

A PCI interface card will often provide features such as buffering for high-speed data
transfers and a full suite of IVI standard interface functions.

244 | Chapter 7: Physical Interfaces

Old Doesn’t Mean Bad
Just as with used test equipment, there are a lot of used instrumentation and interface
devices available. Most of them are still perfectly usable—they’re just not likely to be
as fast as newer equipment, or to have the bells and whistles that the newer units offer.
Realistically, this shouldn’t matter when you’re working with systems that exhibit
changes and responses that take anywhere from seconds to minutes (or even hours).
What does matter is how easily the older equipment can be interfaced to a PC, and
what kind of software interface it will need.

One downside to the older items is that they usually won’t have any USB support. But
that’s really not a big deal in many cases. Unless a device uses a special custom interface,
it should still have either a serial or GPIB interface available.

Older devices that employ a custom interface using a plug-in card won’t work with
modern computers if the interface card uses an ISA-type bus connection. Other than
some models of industrial rack-mount computers, it is simply impossible to buy a new
computer with ISA bus slots. Although it is possible to acquire an older PC with a decent
CPU and run Python on it, the effort required to assemble the system and then write
custom interface software is usually not worth it. It would make more sense to purchase
a newer piece of equipment with a more modern type of interface.

Figure 7-44. Agilent 82350B GPIB PCI interface card

Old Doesn’t Mean Bad | 245

That still leaves a lot of older instruments available with serial or GPIB interfaces, and
these could well be worth the effort of incorporating them into a system rather than
consigning them to the recycler or the landfill. As we will see in Chapter 11, commu-
nicating with an external instrument can be readily accomplished with a suitable in-
terface, and the software necessary to achieve this isn’t that difficult to implement.

Summary
We’ve covered a lot of ground in this chapter, and we should now be in a position to
actually start thinking about how to select and use the physical interfaces of an instru-
mentation system. We’ve seen how different connectors are used with different inter-
face types, and we learned the basics of assembling a connector. We then reviewed the
various types of interfaces we’ll be dealing with later, from a hardware perspective. We
will put this knowledge to good use when we start discussing real instruments and
systems in upcoming chapters.

Suggested Reading
While there are some books available on the topics we’ve covered in this chapter, you
can probably find everything you need to know on the Web. There is a large amount
of information available for RS-232, RS-485, USB, and GPIB. For example:

http://www.omega.com/techref/pdf/rs-232.pdf
Omega Engineering has made available a compact one-page summary of the
RS-232 standard. It’s a handy thing to keep on the workbench or in your lab binder
for quick reference.

Also, as you might expect, Wikipedia has entries on all manner of serial communica-
tions topics.

Some of the best places to look for technical information on connectors and the spe-
cialized tools that go with them can be found on distributors’ websites. Here are a few:

http://www.DigiKey.com
http://www.alliedelec.com
http://www.mouser.com

Federal and military standards are another good resource. Many of these documents
go into great detail concerning assembly and interface techniques, and while you prob-
ably won’t need all of the information, they also typically include some high-level ma-
terial, and some even have what can only be described as tutorials. The NASA document
referenced here is one such standard, and there are many more available:

246 | Chapter 7: Physical Interfaces

http://www.omega.com/techref/pdf/rs-232.pdf
http://www.DigiKey.com
http://www.alliedelec.com
http://www.mouser.com

NASA STD 8739.3, “Soldered Electrical Connections.” NASA Technical Standards Pro-
gram, NASA, 1997.

One of many technical standards freely available from NASA through its Technical
Standards Program, this is a concise guide to high-reliability soldering techniques.
It is available from http://www.hq.nasa.gov/office/codeq/doctree/87393.htm.

A catalog of available NASA technical standards can be found at http://standards
.nasa.gov/documents/nasa.

Suggested Reading | 247

http://www.hq.nasa.gov/office/codeq/doctree/87393.htm
http://standards.nasa.gov/documents/nasa
http://standards.nasa.gov/documents/nasa

CHAPTER 8

Getting Started

The secret of getting ahead is getting started. The secret
of getting started is breaking your complex overwhelm-
ing tasks into small manageable tasks, and then starting

on the first one.

—Mark Twain

In this chapter we will look at some things that have been shown, time and again, to
contribute to successful software projects of any size. I am, of course, talking about
planning. This includes defining what you intend to do in the form of requirements
and a design description, documenting how you plan to test it in order to catch as many
bugs as possible, and then verifying that it actually meets the requirements and does
what the original design called for. Lacking or unclear requirements are by far one of
the leading causes of software project failures. Another big factor is inadequate testing.

With a small project, not having things work out as expected is annoying, but it may
not be a major disaster. For larger projects, though, the result can be catastrophic. For
substantial or logically complex programs, it is essential to have some solid require-
ments and a good testing strategy in place before coding ever starts. Also, one should
be mindful of the fact that extending the reach of Python into the real world opens the
door for the uncertainties and ambiguity of the real world to creep back in and impact,
sometimes severely, the instrumentation software. Having a clear path and a well-
defined set of goals to guide the effort is especially critical.

The reason for this chapter is simple: I want you to succeed. I am assuming that you
could well be writing software for something that, while perhaps simple in and of itself,
is a critical part of some other activity. Perhaps it is a controller for a piece of lab
equipment, or maybe a data acquisition system to be used during research activities. It
might be an automated test system for a production environment, or it could be a
sprinkler control system for a world-class golf course. Whatever it is, if it doesn’t work,
or doesn’t work reliably, it could mean lost time, lost revenue, or unusable data. Or
worse.

249

Over the years I’ve become convinced that requirements, of some kind, are essential. I
don’t believe that anyone can sit down at the keyboard and start whacking away and
expect to produce anything more complex than just a trivial application that is bug-
free and feature-complete. Yet, many times I’ve encountered people who actually do
seem to think that it is possible (a lot of whom really should know better), or worse,
who don’t understand that the trivial exercises they learned in college programming
classes don’t scale into full-size applications without some significant extra effort.
These are the same people who can’t understand why the software doesn’t do what
they (or their customers) expect and why it’s so buggy. It doesn’t have to be that way.

I hope this chapter will show you how easy it really is to define some basic requirements
and create a plan for the software you want to create. The time and effort you spend
up front doing this will pay dividends at the end of the project. Instead of fixing bugs
or wondering why the data looks wrong, you can be proudly demonstrating your
handiwork, secure in the knowledge that you’ve taken the right steps to ensure that it
will work as intended.

Defining the Project
So, what is it, exactly, that you want to create? This is an important question that too
often doesn’t get much more consideration than a doodle on a whiteboard or some
vague handwaving during a meeting. One of the most often cited reasons for the failure
of software projects (as it currently stands, somewhere between 50 and 70% of all
significant software projects are failures—depending on how one defines “failure”) is
the lack of a solid set of requirements and a plan for translating those requirements into
working code. Try entering the terms “poor requirements software failures” into Goo-
gle to see how much has been written about this.

All projects begin with a statement of need of some kind or another. It might be just an
informal idea, or perhaps a request in an email. In some cases it might even be a formal
document. From this starting point the project objectives are developed, usually in the
form of a statement of work (SOW). The SOW captures details that the statement of
need does not. Then come the various requirements, and finally the software design
specification. Figure 8-1 shows the progression of each step from statement of need to
design specification.

At each step, the level of detail increases. The level of detail eventually culminates in
the software design description (SDD), which should (ideally) contain sufficient detail
to generate the necessary software that will meet the requirements. In the following
sections we will examine each step leading up to the SDD.

250 | Chapter 8: Getting Started

Requirements-Driven Design
Just so you know up front, what we’re going to be looking at here may be defined as a
relative of the so-called “waterfall” software life-cycle model for software development.
If you’re not familiar with the term “waterfall,” don’t be too concerned about it; it’s
just one way of conceptualizing and organizing development activities. Or, to put it
another way, the waterfall model is one way of describing the software development
life cycle (SDLC). Figure 8-1 is basically the frontend of a waterfall model diagram, and
we’ll see more a little later. There are, of course, other approaches that have been ad-
vanced as superior for one reason or another, and it is true that for some problem
domains there are other models that are perhaps better. However, I’m not hard-over
one way or the other with regard to models, nor do I believe that it is sacrilege to go
back and modify requirements in order to synchronize them with reality. The major
problem with modifying requirements is minimizing the impact the changes may have
on work that’s already been accomplished. Changes create a ripple effect, and if the
ripples are too large they can turn into really big waves. In large projects this can be a
major issue, but for small projects like the ones we will be dealing with it’s not such a
big deal.

Figure 8-1. Evolution of requirements

The approach I will be using throughout this book is what is often called requirements-
driven design (RDD). RDD works best when the requirements can be established early
on, without much chance of major changes. Some types of projects—particularly those

Defining the Project | 251

that deal with human-oriented transactions (e.g., banking, medical records, and other
“fluid” domains)—may need more flexibility than is afforded by an RDD model. In our
case, however, we are going to be discussing systems that incorporate “black boxes”
in the form of commercial instruments or devices, use established interface and control
protocols, and are intended to accomplish very specific tasks, usually over and over
again until either something wears out or someone flips the power switch. The main
challenge lies in defining how all the parts will fit together and what will become of the
data collected, if any is collected at all.

Software development models are like tools in a toolbox: you always (I would assume)
want to use the appropriate tool for the job at hand. Screwdrivers don’t work well on
nails, and hammers are useless for dealing with screws. It makes sense to use the most
appropriate tool for the job, and in our case I believe that tool happens to be the RDD
paradigm. The same thinking applies to programming languages, editors, and plat-
forms. As Abraham Maslow, a well-known 20th century sociologist, once said: “If the
only tool you have is a hammer, you tend to see every problem as a nail.” If you’d like
to know more about other software development models, I would encourage you to
explore, as there is a lot of information available. There are also some rather amusing
debates that have raged both online and at conferences on the advantages of one de-
velopment model over another.

Stating the Need
Regardless of what development model is employed, the statement of need is the start-
ing point from which all else follows. It can be as simple as “We need to be able to
monitor and control the temperature and illumination levels in a test chamber to preset
values,” or it might be a bit more involved, as in “We want to be able to simultaneously
adjust the power levels and monitor the operating states of up to 20 solid-state laser
units at one time while they are undergoing initial stress testing.” Notice, however, that
neither statement contains any specifics, just a general notion of what is desired. As
we’ll see by the time we get to the discussion of requirements, one cannot build some-
thing from an input as vague as this and then count on it to behave in an expected
fashion—mainly because there is no way to know for sure what the actual expectations
happen to be. If you’re building something for someone else (i.e., a customer), there is
a good chance that they won’t really be clear about what their expectations are, either.

Figure 8-2 shows the statement of need for a hypothetical AC power controller project.
This statement of need doesn’t include any specific details, but it does have a lot of
implications. Although there are a lot of unanswered questions, we can infer that the
desired system needs to be computer-controlled and it needs to be able operate unat-
tended. A few moments of thought should also lead to the conclusion that if it is going
to run automatically on a 24-hour basis, it should also be able to detect when something
is wrong, take appropriate action, and alert an operator somehow.

252 | Chapter 8: Getting Started

The important point to remember is that a statement of need is not the same thing as
a requirement. In some circles it is sometimes humorously referred to as a “desirement.”
It is only the outline of the foundation; it is not the whole structure, but carefully
considering what is stated and asking some questions shows the way forward to ac-
quiring the necessary details.

Figure 8-2. Statement of need

Project Objectives
The next level of detail lays out the project objectives, also known as the statement of
work. These still aren’t requirements in the strictest sense, but rather definite goals that
can be translated into requirements. For example, the project objectives for our hypo-
thetical AC control system might look like the statement of work shown in Figure 8-3.

The primary thing to notice here is that the objectives still don’t contain any definite
values for parameters such as time durations, what constitutes an anomaly, or data
communication protocols. What they do contain are specific statements about the de-
sired high-level functional characteristics of the finished system (i.e., the general be-
havior), and those are what the specific functional requirements will be derived from.
The SOW defines what will be the basis for determining the ultimate success or failure
of the project from an end user’s point of view (or from your point of view, if you
happened to write the SOW for your own project).

Requirements
Requirements come in many levels of detail. The next level after the SOW might be
high-level project objectives, science requirements, operational requirements, and so
on, descending in ever-increasing levels of detail until finally arriving at the software
implementation requirements contained in the SDD.

Requirements | 253

Lower levels of requirements are derived from the requirements above them, in a top-
down fashion. At each level more details emerge and are incorporated into the require-
ments set in a process known as requirements decomposition, which is a part of the
requirements analysis activity. How much time and effort one spends doing require-
ments decomposition depends on the type of project; some projects are simple enough
that a basic set of testable functional requirements will suffice, while others (like the
full-authority digital engine controls on jet aircraft, or the guidance and propulsion
control systems on spacecraft) might require extensive requirements analysis and
decomposition to ensure that all the relevant requirements have been captured, all the

Figure 8-3. Statement of work

254 | Chapter 8: Getting Started

off-nominal conditions have been accounted for, and all the low-level implementation
requirements necessary to build and program the system are defined and reviewed. The
requirements documents for these types of projects can easily run to hundreds of pages.
One of the trickier parts of the requirements analysis activity is knowing when enough
is enough, and when to keep going to fill in necessary details.

Why Requirements Matter
Without requirements, or at least a statement of work, there is really no way to get a
clear idea of exactly what the end result is supposed to be or how it should behave.
Sure, there might be some vague notion of what the system is supposed to do, but it is
only that—a vague notion—and it’s a sure bet that your vague notion isn’t going to be
the same as someone else’s vague notion. A doodle on a napkin during lunch is not a
requirement, and neither are the notes jotted down on a whiteboard during a meeting.
These types of things are insufficient as requirements, not only because they don’t meet
the criteria for verifiability, but also because they are only the tops of the waves in what
might actually be a very deep ocean.

Requirements, even a minimal set, allow us to define what is desired in clear and specific
terms. A good set of requirements is something that everyone should be able to agree
on. They are also the yardstick against which the behavior of the finished product is
measured to verify success, or perhaps failure.

A True Requirements Story
Once upon a time I was tasked with creating a real-time filter array data acquisition
system for a large radio telescope. The filter array was an old thing that someone had
hauled out of storage, but it had 640 discrete channels, each narrowly tuned to a specific
frequency. My job was to obtain a set of high-speed analog-to-digital converters for
acquiring data from each channel, integrate various pieces of new hardware with the
old filter array system, and then program the whole thing using a real-time operating
system. An RF engineer was lined up to tune the beast once it was running. All good
so far. The fun started when I tried to get the person who was to be in charge of operating
the filter array to agree to any specific requirements.

“What is the maximum allowable conversion time for each channel?” I asked. “Well,
as fast as possible,” was the response. That wasn’t going to work, so I tried again by
rephrasing the question. Still the vague answer. Things went on like this for at least 30
minutes, with me getting more frustrated and the other person getting increasingly
annoyed at my attempts to pin down some actual numbers. I finally did manage to get
a few basic numbers to work with, but I still had to interpolate some of the missing
values and just make educated guesses at the others.

In the end, the resulting system met, and even exceeded, the timing and stability ex-
pectations. In fact, it did its job a little too well. The first time we tried to run it at full
speed and stream all 640 channels’ worth of data into the telescope’s control and data
processing system, we managed to crash it. The entire multimillion-dollar radio

Requirements | 255

telescope was dead. It took something like two hours for the operators to bring it all
back up again. Fortunately it happened during allocated engineering time, otherwise
we would probably have had to deal with an irate scientist. The moral of the story:
don’t ever assume that the person who needs to supply the baseline values for the
requirements actually knows the answers (and is willing to admit he doesn’t know). Be
prepared to fill in the blanks yourself and double-check your assumptions. It’s also a
good idea to give the people from whom you need answers some advance warning as
to the type of information you will be looking for. At least that way they can’t reasonably
accuse you of springing a pop quiz on them.

Well-Formed Requirements
A requirement describes, in a clear, precise, and unambiguous manner, what charac-
teristics something must possess and what behaviors it must demonstrate in order to
meet one or more project objectives. A requirement almost always contains the word
“shall.” Here is an example of a functional requirement statement:

The system shall be capable of detecting a nonresponsive UUT within 100 milliseconds
after AC power is commanded to the ON state for any particular UUT.

One key characteristic of a good requirement is that it is verifiable. In other words, it
defines specific values for rates, limits, and exceptions (if any) that can be verified by
testing. The preceding example functional requirement is testable—it states a specific
event and a time interval. However, it is easy to write a requirement that is not testable,
even if it does contain the word “shall.” For example:

The system shall incorporate the ability to detect and handle invalid data appropriately.

By itself, this requirement isn’t really a requirement; it’s a desirement. For instance,
what exactly does it mean? What is “invalid data”? What does “handle” mean? What
is appropriate? There are no definitions, so therefore there is nothing specific to test
for. The bottom line is that this “requirement” is not a requirement, and it cannot be
verified.

There are basically five essential characteristics of a well-formed requirement, and these
are listed in Table 8-1.

Table 8-1. Essential requirements characteristics

Characteristic Description

Necessary Requirements must only address the functionality or characteristics necessary in order for the system to meet
the objectives defined in the SOW. In other words, there should be no “bells and whistles” requirements.

Unambiguous A requirement may have only one possible interpretation. Requirements with multiple possible interpretations
may result in a system that does not meet the SOW objectives. Requirements must be clear and concise.

Consistent Requirements must not introduce conflicting objectives, parameters, or functionality. Within the requirements
set for a project, requirements must support one another.

256 | Chapter 8: Getting Started

Characteristic Description

Traceable Every requirement must have a reason to exist, and traceability establishes that reason. It defines the link
between a requirement and the higher-level item that it was derived from, which may itself be a requirement
or an element in the SOW. In other words, requirements flow downward, and traceability flows upward.

Verifiable A requirement must be capable of being verified by testing, analysis, inspection, or, in some cases, demon-
stration. A requirement that cannot be verified cannot be implemented with confidence, because there will
be no way to know for sure that the software is in compliance.

There are other criteria in use, but these five are usually considered to be the most
important.

The Big Picture
Now that we’ve examined the basics of requirements, this would be a good time to see
how things fit in with the software development and verification activities. Figure 8-4
shows how requirements progress from the SOW (project description and objectives)
through to the actual software, and also how testing is dependent on requirements.

Requirement Types
Let’s discuss Figure 8-4 a little, since there’s a lot going on here, and we’ll be referring
back to it later. We already know about the SOW (“Project Description and Objec-
tives”), so we can move past that. If we follow the flow, the next thing we encounter
are three primary types of requirements in a box, labeled “Integration,” “Performance,”
and “Functional.” These are all closely related, and may even appear together in the
same document. There is also something hovering up above called “Derived Require-
ments.” Let’s take a closer look at these different types of requirements:

Functional requirements
Functional requirements, and any associated performance and integration require-
ments, typically deal with the overt external behavior of a device or system. Or, to
put it another way, they deal with what should happen when the power switch is
set to “On” and the system is stimulated with some type of input. Functional re-
quirements can be defined as the required behaviors of a system or device from a
“black box” perspective. In other words, for any given input it must generate a
specific output. Exactly how it does this is not within the scope of the functional
requirements; that is covered by the implementation requirements in the SDD.

Performance requirements
Performance requirements describe how well a system must perform. Typically
these requirements are concerned with characteristics such as speed (i.e., amount
of data transferred per some unit of time), capacity (how much data can be stored),
and real-time display update rates (live video, live data graph displays, etc.), among

Requirements | 257

other things. Performance requirements complement the functional requirements,
and the two are sometimes merged into a single requirements document.

Integration requirements
Integration requirements define how the system will interact or interoperate with
other systems. These requirements deal with things like communications proto-
cols, command and data formats, and physical interfaces. Sometimes requirements
of this type are contained in the functional requirements document along with the
performance requirements. Alternatively, the integration requirements may be in
a separate Interface Control Document (ICD).

Derived requirements
A derived requirement is a requirement that was not explicitly stated in the func-
tional, performance, or integration requirements, but was instead derived during
the requirements analysis or perhaps during the creation of the design documen-
tation. For example, a communications interface may need to have error detection
and reporting capabilities that are not explicitly captured anywhere else, but that
need to be taken into account when the low-level design is developed. A derived
requirement “plugs the hole,” so to speak, in the other high-level requirements and
provides a traceable justification for a design element.

For the most part, the example requirements we’ll be looking at are what are sometimes
known as contract-style requirements. That is, each requirement is a single statement
containing a “shall,” and each is written in a rather stiff and formal style intended to
be concise, unambiguous, and verifiable. They are organized such that they form a sort
of checklist. For many years this was the standard way to capture and document re-
quirements, and it is still in use today, particularly in the aerospace and defense indus-
tries. However, current trends in requirements engineering for commercial software
and systems have moved away from this model in favor of use cases and other techni-
ques. Figure 8-5 shows an example of this type of requirements style. We’ll look at use
cases in the next section.

For a small set of requirements (between, say, 20 and 50), there is really nothing wrong
with the contract style. It is when the requirements set becomes very large that it can
become a problem. For one thing, a set of contract-style requirements tends to abstract
the requirements away from the SOW and other sources that originally drove them, so
the context can get lost and it can be difficult to perceive how the requirements relate
to one another.

Use Cases
Contract-style requirements are not the only way to capture requirements. In addition
to the issues already mentioned, contract-style requirements tend to get a bit unwieldy
when dealing with things like graphic user interfaces or other aspects of human-
machine interaction. The use case type of requirement definition may be more appro-
priate for some aspects of a system’s requirements.

258 | Chapter 8: Getting Started

Figure 8-4. Software requirements in the development flow

Conversely, use cases are not well suited to capturing things like
algorithmic or mathematical requirements, nor do they work well for
nonfunctional characteristics such as performance, timing, or safety
requirements.

Requirements | 259

Figure 8-5. Contract-style requirements

Use cases were invented in 1986 by Ivar Jacobson as a way to model the interactions
between a system and the user or users of the system (which might be real people or
other systems) in order to accomplish a specific task. Use cases treat the system as a
black box and focus solely on input and output actions. In this sense, use cases are
functional requirements. They may not be appropriate for use as low-level implemen-
tation descriptions, although some people have tried to coerce use cases into the SDD
role. Use-case methodology was integrated into the Unified Modeling Language (UML)
paradigm in the late 1990s.

In its simplest form, a use case has four primary features: the actor, the system, a goal
for what the actor needs to accomplish using the system, and the steps necessary to
achieve the goal. Use cases can refer to other use cases in a hierarchical arrangement,
starting with a set of general high-level use cases and descending into greater levels of
detail. A use case can also refer to other use cases at the same level when two or more
use cases are necessary to describe the actions required to meet a common goal.

Figure 8-6 shows an (admittedly somewhat contrived) example of a use case for a hy-
pothetical greenhouse control system. In this example the use case has six elements,
which are listed in Table 8-2.

260 | Chapter 8: Getting Started

Table 8-2. Basic use case elements

Element Description

Identification A unique identifier for the use case. May be whatever format makes sense for the project, just so long as it can
be used to unambiguously refer to a specific use case.

Title A title for the use case. This, along with the identification, might appear in a listing of use cases for the project,
so the title should be short yet descriptive.

Description Also known as the “goal” of the use case. This describes, briefly and at a high level, what the use case is
attempting to define.

Actors The agents (biological or otherwise) that need to accomplish the goal or goals stated in the description.

System The thing that will respond to the actor(s) to allow for the realization of the goal.

Assumptions The conditions that must exist in order in order for the goal to be accomplished.

Steps The sequence of events (which may be just one) that must occur to accomplish the goal.

If you’ve had only limited exposure to use cases, you might think they are just the
cartoons known as “use-case diagrams.” They are not. Use-case diagrams are intended
as a way to present a high-level view of how a system will be used and by whom; they
are not intended to define functional requirements. What is shown in Figure 8-6 is
typically referred to as a formal use case, or sometimes as a traditional or concrete use
case.

Another thing to note about use cases is that the criteria we looked at for well-written
requirements also apply to use cases. They are, after all, requirements. In fact, a formal
use case is somewhat like a set of one or more contract-style requirements grouped
under a single heading, the goal.

The finer points of use-case generation and organization are outside the scope of this
book, so if you’re interested I would suggest that you look into some of the titles in the
“Suggested Reading” section at the end of this chapter, or just peruse the Web. Wiki-
pedia has a good introduction at http://en.wikipedia.org/wiki/Use_case.

I would recommend using plain ASCII text files for use cases, because you can place
text files under version control using a tool like CVS or Subversion. Both CVS and
Subversion have the ability to automatically modify specially tagged lines in the files to
note things like the last author, the version number, and the date of the last check-in.

Traceability
Traceability refers to the linkage that must exist between a requirement and whatever
drove it to exist in the first place. It doesn’t matter what form the requirement takes,
be it contract-style or use case, it must still have a reason to exist.

Figure 8-7 is a graphical illustration of traceability, starting with the SOW, then the
functional and derived requirements, on to the SDD, and finally the software itself.
This is also indicated in Figure 8-4 by the dashed lines labeled “Trace.”

Requirements | 261

http://en.wikipedia.org/wiki/Use_case

Figure 8-6. Example formal use case

262 | Chapter 8: Getting Started

Figure 8-7. Requirements traceability

Establishing traceability is essential for verifying that there is “requirements coverage”
at each level. In other words, do the functional and derived requirements cover every-
thing in the SOW? Does the SDD cover everything in the functional and derived
requirements? Without traceability it might be impossible to know for certain, partic-
ularly in cases where there are more than just a few requirements to deal with.

A requirements traceability matrix like the one shown in Table 8-3 is a document that
shows exactly how each functional requirement is mapped to the SDD. A similar table,
called the verification matrix, is used to map the requirements to the tests used to verify
each one.

Table 8-3. Requirements traceability matrix

FR ID Requirement SDD ref.

1.1 The data acquisition subsystem software shall be capable of acquiring and converting analog data as 16-
bit signed data samples at a sustained rate of 1,000 samples per second.

3.2.1

1.2 The data acquisition subsystem software shall generate values between –32,768 and +32,767 across a
nominal input range of –10 to +10 V with an accuracy of +/– 1 bit.

3.2.2

1.3 The data acquisition subsystem software shall detect both positive and negative voltage input over-range
conditions in the conversion hardware, set a software status bit to indicate the condition, and return the
maximum possible positive or negative digital value depending on the sign of the over-range condition.

3.3.1

3.7.3

1.4 The data acquisition subsystem software shall incorporate the ability to set upper and lower limits for
acceptable input values via a configuration parameters file.

3.3.2

1.5 In the event of an input beyond the configurable range limits, the data acquisition subsystem software
shall set a status bit to indicate the condition, and return the actual value of the conversion.

3.4.1

4.2.4

Requirements | 263

FR ID Requirement SDD ref.

1.6 The data acquisition subsystem software shall incorporate the ability to detect a failure in the data
conversion hardware, set a status bit to indicate the condition, and return an error code value in lieu of
valid data.

3.4.2

4.2.5

In Table 8-3, the entire text of the original requirements is shown. If the requirements
had titles, just having those would be sufficient. You should also be aware that I just
pulled the SDD section references out of the air for the purpose of filling in the table.

Capturing Requirements
Capturing requirements can be a daunting task, especially if the people with a vested
interest in the outcome don’t know the answers themselves. In a research environment
this is actually more often the case than not, mainly because the principal stakeholders
(the principal investigator, the department head, etc.) are likely to be more interested
in the data the project will generate than in how it does it. They really don’t care all
that much about the details of how a device does what it does, so long as it does it
reliably and accurately, so asking specific questions about data conversion rates, bit
resolution, over-voltage limits, and so on, is often not a very productive exercise.

A similar situation can exist in a commercial setting where requirements for a product
are driven by marketing desirements. The folks in the marketing department may know,
in general functional terms, what features the product needs in order to be competitive,
but asking them specific low-level questions is typically not appropriate or fruitful.

Of course, there are situations where specific requirements for functionality, perform-
ance, error handling, and so on, have already been worked out in advance to some level
of detail. This is common in the aerospace and defense industries, and in some indus-
trial processing situations, but outside of these domains it is more the exception than
the rule. Even in cases where detailed requirements are provided, they should not be
blindly accepted. Someone will need to review them for consistency and feasibility, as
they will be a major driver in determining the level of effort, and hence the cost, of the
project.

What this really boils down to is that in most situations, if you want to have solid
requirements to work from (and this is something you really should want), you will
need to help create them. To this end, you may need to conduct interviews with the
various stakeholders to determine what their primary objectives are for the project. If
a statement of need does not exist, it should be created, and everyone with a vested
interest will need to agree to it (or, in biz-speak, you will need to get “buy-in”). Once
that key piece is in place, the rest of the requirements-creation effort is a matter of
defining successively greater levels of detail until there is enough to design, build, and
test the desired system.

264 | Chapter 8: Getting Started

When attempting to capture low-level details, it is a good idea to write up a list of
questions and provide it in advance to the people whom you will be interviewing to
obtain the answers. If you think you already know some of the answers, or they can be
surmised from information already on hand, you should also write up your deductions
and assumptions and provide those as well.

While there are specialized commercial tools available for formal requirements capture
and documentation, a word processor or even a spreadsheet is often more than suffi-
cient for most small- to medium-size projects. If you elect to use another approach,
such as use cases, there are open source tools available to help with that too, but a
decent word processor will again work pretty well.

Designing the Software
Now that you have some functional requirements, in whatever format, it’s time to think
about designing the software to meet those requirements. How much latitude is avail-
able in the design will depend on how detailed the functional requirements happen to
be. If they are extremely detailed, you won’t have as much leeway as with a loose set
of functional requirements.

The Software Design Description
In Figure 8-4 the last thing in line before the software is the software design description,
also known as the SDD. The SDD is, in effect, a set of low-level implementation re-
quirements. Often the SDD is written in a more narrative form than the functional-level
requirements. It typically contains things like definitions of return code values, flow-
charts, block diagrams, inheritance diagrams, message sequence charts, and so on. The
SDD is the theory of operation document for the system to be built, and it should
contain enough details such that a programmer can translate it directly into working
code. Typically, the SDD is organized along the same lines as the software. In other
words, there might be a section describing data acquisition, another dealing with data
processing, one that describes the user interface, and so on. A comprehensive SDD may
also contain one or more introductory overview sections that reiterate the SOW in a
more technical context and lay the groundwork for the detailed descriptions in subse-
quent sections of the document.

For small projects an SDD may not even be necessary, but unless you are the only person
who will be working on the software it is essential to make sure everyone involved
understands what is required and how the software will meet the requirements. The
SDD fulfills that role, and serves as the implementation requirements for creating both
the software and the unit tests.

An important thing to keep in mind regarding the SDD is that it is driven by the re-
quirements preceding it, not the other way around. Each distinct descriptive item in
the SDD must be traceable back to one or more of the functional-level requirements.

Designing the Software | 265

In an RDD development model, if something can’t be traced back to a higher-level
requirement, it doesn’t belong in the design. If something really needs to be in the
design, but there is no requirement for it, a derived requirement must be created to
cover it.

If nothing else, the presence of an SDD shows that some thought went into the design
of the software—i.e., it wasn’t just pulled full-grown from some nebulous place and
assumed to be complete and accurate. Such an assumption is seldom, if ever, borne out.

Graphics in the SDD
An SDD can be a simple thing with only a few pages, but it can help make things clearer
if there is something graphical for a reader (maybe you, at some later date) to illustrate
some of the key aspects of the architecture of the software. Graphical representations
also allow you, the designer, to see your design from new angles. It’s not uncommon
for the designer to discover that the approach originally adopted won’t work as inten-
ded when it’s modeled using some type of diagramming methodology. Not only do
graphical representations and models help make problems in the design more visible,
they can also help identify inefficiencies and suggest better ways of doing things.

This section is by no means a tutorial on any of the graphical representation and mod-
eling techniques presented here. It is an overview, and I am assuming that the reader
will be able to infer how these tools are used from the material presented in this book.
There is also a vast amount of information freely available on the Web. The main point
here is to introduce the terms and concepts.

Block diagrams

A block diagram is intended to show how different functional sections of a system—
be it software, hardware, or both—relate to one another. In fact, we have already seen
a lot of block diagrams in this book. Figure 8-4 is a block diagram, for instance (actually,
it’s something of a hybrid that combines elements of both a block diagram and a flow-
chart). If done correctly, a block diagram can convey a tremendous amount of infor-
mation in a very compact format.

A block diagram showing an overview of the system to be built is a good starting point
for writing an SDD. In fact, a good block diagram, along with a page or two of text,
might make up the entire SDD for a simple project.

Flowcharts

The concept of the flowchart is older than computers themselves, and predates the
advent of programming languages by at least 30 years. Flowcharts were originally de-
veloped to represent and model the flow of activities in industrial processes. At IBM
around 1947 Herman Goldstine and John von Neumann created what we know today
as the software flowchart. The ISO standard 5807:1985 contains the latest definitions

266 | Chapter 8: Getting Started

for flowcharts; unfortunately, ISO wants over $100 for it, but an older document from
IBM (GC20-815-1, “Flowcharting Techniques,” 1969) can be found online without
too much searching and downloaded for free.

Figure 8-8 shows a simple flowchart for a simple controller. The flowchart not only
shows the essential functionality of the algorithm, but also shows where there might
be some room for improvement. Notice, for example, that there is no provision to
handle an error from Sensor 1. There is also no check to determine if the Output
(whatever that might be) is actually responding.

Figure 8-8. Example flowchart

Some people may scoff at flowcharts and claim they are obsolete, but in reality flow-
charts are very much alive and well. In UML the equivalent to a flowchart is called an
activity diagram. A flowchart is an effective way to visualize decision paths through a
program, but it starts to become bogged down when dealing with control flow con-
structs such as switches or loops. Still, a flowchart can illustrate a section of program
logic in a visually intuitive fashion, and should not be overlooked if it will benefit the
SDD.

Designing the Software | 267

State diagrams

A state diagram is a powerful tool for modeling state changes. In fact, state diagrams
have evolved to the point where there are tools available that can translate a state dia-
gram directly into program code ready for compilation. In addition, a tool of this type
can usually create a simulation based on the state diagram and execute it to allow the
developer to observe its behavior.

Figure 8-9 shows the state diagram for a simple on-off control. The channel might be
an AC power control, or it could be a relay. From the diagram we can see that the
control will accept three types of input: an ON command, an OFF command, and a
RESET command. You might also notice that if an error occurs due to something not
working correctly, the logic will ignore any further incoming commands except for a
RESET.

Figure 8-9. Example state diagram

Message sequence charts

The message sequence chart (MSC) is defined by the guidelines document Z.120, main-
tained by the International Telecommunication Union (ITU). In its current form, an
MSC is a powerful tool for modeling command-response transactions between multiple
entities. The UML equivalent of the MSC is the sequence diagram. A simple MSC is
shown in Figure 8-10.

268 | Chapter 8: Getting Started

Figure 8-10. MSC example

An MSC models the transactions that may occur between entities such as users, pro-
cesses, or services. The transactions typically involve exchanges in the form of requests,
commands, or data. In the simple MSC shown in Figure 8-10 there are four processes:
a remote system, the primary system monitor, a logging subsystem, and the data ac-
quisition hardware (represented by the interface API process). When the remote system
wants to obtain data, it sends a request to the system monitor. This, in turn, passes a
command to the interface API, which then interacts with the hardware and returns the
data requested. The system monitor logs the response from the interface API and com-
pletes the transaction cycle by responding to the remote system’s original request.

Even with a simple MSC like that shown in Figure 8-10 there are some things that may
have caught your eye. First, a status request takes a finite amount of time to process.
What the MSC does not show is just how long that finite amount of time might be. In
a more detailed MSC this could be indicated as an upper limit on acceptable response
time. Secondly, our simple MSC doesn’t show the alternate scenario where an error
occurs at the interface API level, although it could have done so if the full syntax for an
MSC had been used.

The latest revision of Z.120 contains a large amount of detail on the syntax of MSCs,
and if you’re interested in using them it’s worth looking through it to get an idea of just
what these diagrams are capable of. There are also various tools available for creating
MSC diagrams, both commercial and open source.

Designing the Software | 269

Pseudocode
OK, so perhaps you’re not visually inclined and prefer to deal with text. There’s a
modeling and representation technique for that, too: it’s called pseudocode.

Pseudocode is a human-readable description of what a computer program or algorithm
must do, written using a formalized style in some natural language (it doesn’t matter
which one, actually, so long as it supports the necessary technical vocabulary, but
English does seem to show up a lot). Pseudocode typically uses the structural conven-
tions of a programming language, such as indentation, if statements, and so on, but it
is not intended to serve as a programming language.

There is currently no standard form for pseudocode, but in general it borrows from the
syntax of an existing programming language, with C being a common choice. Elements
such as variable declarations are usually omitted, and things such as function calls or
blocks of code within loop structures are replaced with one or two sentences of natural-
language description. The main intent is to capture the functionality of an algorithm
or program, not the low-level nitty-gritty details of how it will be implemented, al-
though in some cases it might make sense to include some details as well.

In practice, pseudocode may vary widely in style, depending on who is writing it and
the environment in which it is used. It can range from something that looks like a real
programming language at one extreme, to a description approaching something like
an essay at the other. Ideally the writer should strive to strike a balance somewhere in
between.

Figure 8-11 shows a sample of pseudocode for a function to read analog data from a
lower-level function. As you can see, the main intent of ReadAnalog is to wrap the lower-
level function ReadAnalogChan with parameter checking, and also replace the return
code from the driver API with something the higher-level program can understand
(actually, it simplifies the return code, because some API calls might return 20 or 30
different values primarily of interest to hardware engineers, depending on what went
wrong with the hardware).

Pseudocode should be detailed enough to capture the essential functionality of a pro-
gram or algorithm, but still be easily readable by someone who is not familiar with the
programming language that will be used to implement it. This allows it to be inspected
and reviewed as a way to ensure that the final program will meet design specifications,
and that there are no lurking deficiencies that the original author may have overlooked
(which happens all the time, since humans tend to overlook errors in their own writing).

Divide and Conquer
Now that we’ve looked at some of the tools available for creating an SDD, let’s look at
how an SDD might be organized. Figure 8-12 shows how we can use a high-level block
diagram of a system to create the outline structure for an SDD.

270 | Chapter 8: Getting Started

The idea here is very simple: just write a section for each major functional block in the
system diagram. You will also need some words and maybe a diagram or two describing
how the functional blocks integrate into the overall system. The integration details can
be included in the appropriate sections, or they might be a section of their own; that’s
up to you.

As I stated earlier, the SDD doesn’t need to be a tome of detailed minutiae, but it does
need to have enough information to allow someone reading it to understand how to
implement the software, and why the software was written the way it was. It also dem-
onstrates that the software was planned, rather than just being hacked into existence.
This, by the way, isn’t just a “warm and fuzzy” sort of thing. Should something not
work as planned, or if a problem should occur months, or even years, after the software
was created, the SDD will be invaluable in helping to determine why the problem oc-
curred and what options might be available to deal with it. If the software is generating
data for research purposes, it can also come in handy should a question ever arise as
to the accuracy of the data and the methods used to process it. Should you ever find

Figure 8-11. Pseudocode example

Designing the Software | 271

yourself defending the data generated by software that you wrote, an SDD could be
worth its weight in gold.

Handling Errors and Faults
Unfortunately we don’t live in a perfect world, and I’ve yet to meet a perfect software
developer, so a design document must plan for the unexpected and describe how the
software will deal with errors or faults, should they occur. And it’s a safe bet that even
if the obvious bugs in the software are found and dealt with, nonobvious things like
off-nominal input values, hardware errors, or unplanned sequences of events can still
occur when least expected.

Figure 8-12. SDD organization

272 | Chapter 8: Getting Started

Identifying potential failures

One way to identify potential failures is by doing a basic failure analysis. A failure
analysis is a simple and effective way to list all of the possible ways a system might fail,
and then identify how the software might deal with the failures. It is, in essence, a set
of “what if?” questions, along with your best attempt at a reasonable answer for each.
Table 8-4 shows a simple failure analysis table.

Table 8-4. Simple failure analysis

Failure Cause Response

Input hardware error Invalid input channel specified Notify user and log error. System does not halt.

 Invalid input port specified Notify user and log error. System does not halt.

 Hardware nonresponsive Notify user and halt system.

Output hardware error Invalid output channel specified Notify user and log error. System does not halt.

 Invalid input port specified Notify user and log error. System does not halt.

 Hardware nonresponsive Notify user and halt system.

Invalid user input User-supplied parameter or command code is
invalid

Notify user and log error. System does not halt.

This type of analysis can easily be done using a spreadsheet. With a little thought (and
a real system to work from), Table 8-4 could most likely be expanded to cover more
possible failure cases, but the idea here is that for every possible failure listed, a response
is defined. You should also be aware of the temptation to say, “Nah, that could never
possibly happen” when reviewing potential failures. Such assumptions have resulted
in some spectacular software failures over the years.

Failure responses

Failure conditions can generally be categorized into three groups: fatal, nonfatal, and
trivial. It is important to plan out how the system will respond to each class of failure.
For example, should a fatal error occur, will the system try to shut itself down gracefully,
or will it just drop dead (i.e., crash)? If a nonfatal error crops up, what functionality, if
any, will or should be disabled? Will the system still be usable? And what of trivial
failures? Should the system try to send some type of notification, silently log the event
for later review, or just ignore it completely? These are the kinds of things you should
consider when formulating your responses.

Functional Testing
We now have some requirements and hopefully a design document, but before the first
line of code is written we need to think about testing. Here I am referring to functional
testing, as opposed to unit testing; they are very different things, with different objec-
tives and methods. We’ll get to unit testing in just a bit, but for now, let’s look at

Functional Testing | 273

functional testing and see why it’s an essential (and arguably the only) method for
verifying compliance with the requirements.

Testing to the Requirements
A functional test, as the name implies, tests the functionality of a system against the
requirements that defined the system in the first place. Creating functional test cases
from the requirements is actually very straightforward. A well-written requirement
should contain all the information necessary for the test case. For example, assume we
have a requirement that reads:

The data acquisition subsystem software shall be capable of acquiring and converting
analog data as 16-bit signed data samples at a sustained rate of 1,000 samples per second.

From this we can see that we’ll need an input that will result in the system generating
values between –32,768 and 32,767. We will also need to be able to count the samples
generated in a one-second window. If the software has the ability to determine its actual
sample rate in real time and display it (or at least record it), we’re basically done. If it
doesn’t, maybe this is something that should go into a derived requirement and then
into the SDD (this example is one way that derived requirements are discovered).

But even without a new derived requirement, it may still be possible to determine the
sample rate. Perhaps the system saves data samples, along with timestamps, to a buf-
fered file. It doesn’t have to save each sample, but perhaps it will save data every 100
samples. If a logging capability is incorporated into the software, it may be possible to
obtain the necessary verification data that way. Finally, it may be possible to connect
instrumentation to the hardware and observe the timing of the data acquisition and
conversion pulses while it is running.

This, by the way, is why it’s a Good Idea to start working on the functional tests before
the coding starts. In the process of designing the test cases it is very possible that defi-
ciencies in the design will become apparent, and now is the time to deal with them, not
later, when the code is already written. Writing the test cases before the code can illu-
minate dark corners and stimulate thinking in ways that will save time (and probably
money) later on in the development process.

Test Cases
A functional test case describes the context and procedures necessary to test a particular
aspect of the system against a particular requirement. Requirements drive test cases,
and test cases in turn are used to define or generate the methods that will actually
perform the tests. A functional test case may also be part of a use case, but in this book
I will treat use cases and functional tests as two separate entities.

The block diagram in Figure 8-13 shows the relationship between a test case and the
requirement that drives it, along with the procedures that will execute it, and finally
the data that is used to determine the pass/fail status of the test.

274 | Chapter 8: Getting Started

In some environments one might hear of “test procedures,” or perhaps a “test proce-
dures document.” These are just the “scripts,” or series of actions, that need to occur
in order to perform the tests. They might actually be something like a script that an
actor (the tester) would follow (e.g., Step 1, Step 2, Step 3, etc.), or they could be scripts
in the sense of being some type of programmatic test procedure (e.g., a Python script,
say, or a control script for a communications simulator). This would be the box labeled
“Automated Test” in Figure 8-13.

Separating out the tests into two separate but related documents, cases and procedures,
is not really necessary in most situations. However, with some projects the level of
complexity may be such that it makes sense to separate the nonexecutable description
of the test (the test case) from the executable portion (the test procedure) for verification
and tracking purposes. Abstracting out the test cases from the procedures makes it
possible to independently write, verify, execute, and modify the procedures without
disturbing the associated test cases any more than is absolutely necessary. This also has
the effect of adding more effort (and cost) to the whole process, because now there are
two documents to manage instead of one. But regardless of how the tests are structured,
it is the test procedure that is “buying off” the requirement, because it is the test pro-
cedure alone that determines if the test is marked as a pass or fail.

Figure 8-13. Requirement and test case relationship

Functional Testing | 275

A template for a test case is shown in Figure 8-14. In this example, as in Figure 8-13,
the test case incorporates the procedure as part of the body of the test case.

Figure 8-14. Generic test case template

276 | Chapter 8: Getting Started

Also notice that the template in Figure 8-14 has a little something extra up at the top.
I like to put a block at the top of each of my test cases that shows, in a nutshell, what
type of test it is and what it needs in the way of a script or program if it happens to be
scripted (i.e., automatic). The summary block also states whether the test is valid with
the software running in a simulation mode, or if it needs the actual hardware in order
to be executed. Note that it is possible to have a “Yes” for “Valid with Simulator” and
a “No” for “Valid with Hardware.” This scenario can arise when the software’s internal
simulation capabilities, if it has any, allow some functionality to be exercised that can-
not be performed on a live system (e.g., during error-handling tests that use fault in-
jection). Next, if an automated script is used, it is named here. Lastly, if an external
source of commands and/or control signals is utilized for the test, that is noted here.

Test cases may reside in a larger document as subsections, or they might be single
entities created as text files. Both approaches have their pros and cons. One large
document puts everything in one convenient place. Separate text files allow the test
cases to easily be placed under version control and revised independently.

You will need some way to record the pass/fail status of each test case, along with the
date on which it was last executed. A spreadsheet works well for this, as does a printed
listing of the test case IDs along with space to record the test results.

Testing Error Handling
One aspect of testing that too often gets overlooked is fault detection and error han-
dling. We touched on this briefly earlier when we discussed failure analysis, and here
we’ll see why it’s essential not only to test for correct functionality, but also to test for
the appropriate responses when things don’t go as planned.

The problem with testing error handling in software is that it is often much harder to
do than success testing. How, for instance, does one instigate a fault condition in a
communications channel? And how can a fault be simulated in the interface between
the software and an analog-to-digital converter? These are the types of errors that can,
and will, rear their ugly heads when least expected, so it’s to everyone’s benefit to test
them before the software is turned loose on the world.

A common approach to testing error handling is called “fault injection.” As the name
implies, this involves incorporating some functionality into the code that will allow the
tester to reach inside, so to speak, and set an internal variable that will induce the fault.
One way to do this is via a network socket connection that is used only for this purpose
and must be specifically enabled via a configuration parameter before it will commu-
nicate. A serial port connection can also serve in this role.

If the test involves an external device, just disconnecting it will inject a fault, but only
one type of fault. This approach won’t inject errors arising from corrupted data; it will
only simulate a complete lack of communications.

Functional Testing | 277

It is important to remember that the purpose of testing the system’s response to error
conditions isn’t necessarily to simulate the errors themselves, but rather to stimulate
the code that is supposed to handle the errors. An approach that I’ve found useful is
to create a collection of global state variables, perhaps in their own module, that are
used to record error conditions as the software executes. For example, the low-level
function that reads data from some hardware might record its success or failure in the
set of global state variables, and it should not overwrite an existing error indication.
The error state can then be checked by code further up that needs to obtain the data
from the hardware, and if an error is indicated it will initiate the appropriate action.
With a scheme like this it is possible to simply set the error condition by modifying
the appropriate global variable externally. The low-level code won’t override it, and
the upper-level code will see it and respond as if an actual error had occurred. Only the
lowest-level portions of the code will not be tested by this approach, but they can be
handled separately using other testing techniques.

We will leave error handling and fault injection at that for now, but we’ll return to it
later on. Of course, the usual caveat applies: there’s more than one way to get there
from here, and what I’ve described here is just one way to do it.

Regression Testing
The idea behind regression testing is simple: the question to ask is “Did any recent
changes break anything?” Any time you make a change to the code, whether to fix an
existing problem or to implement new functionality, you should do regression testing.
In order to perform regression testing, you would typically take some or all of the
existing set of functional tests and run them again on the modified software. A partial
regression test will focus on the functionality in the software where changes have oc-
curred. A full regression test will execute all available functional tests.

It is a well-established fact that changes to software will frequently introduce defects,
perhaps by allowing a previously dormant bug to manifest itself, or perhaps by creating
a new execution path that contains previously unknown defects. There is always the
possibility that the “fix” won’t turn out to be as good as hoped. Maybe it’s “brittle”
because it doesn’t account for things like range errors or off-nominal and unexpected
inputs. Regression testing can help uncover these and other problems before they be-
come unwieldy or, worse, before they escape into the wild as part of the released
software.

Regression testing isn’t, and shouldn’t be, just something one does with functional
tests. It also applies to unit tests, which we will get to shortly. Regression testing is also
something that can be automated in many cases, which means that it’s possible, and
often practical, to run a full suite of tests on the software overnight on a daily basis. A
quick review of the test results first thing in the morning will let you know if there’s
something from the day before that needs attention.

278 | Chapter 8: Getting Started

Tracking Progress
If you were to track the results from each round of functional testing over the life of the
project, you would probably end up with something like the series of bar graphs shown
in Figure 8-15. This is fairly typical for projects that rely heavily on functional testing
for verification, in that things start out a little rough and then start to improve as the
project progresses. If the project activities also include extensive unit testing and code
reviews, this scenario can be improved, and the overall level of functional test failures
should drop toward zero much sooner than what is shown here. But, in any case, the
ultimate objective is to have zero test failures and 100% requirements coverage by the
time the project wraps up.

Figure 8-15. Functional testing pass versus fail results over time

Implementation
Now, at last, we come to the fun part: writing the software. We’ve covered require-
ments, the design, and the functional tests, so now we can turn our attention to some
of the activities that go into creating the code.

What the code should do should already have been defined by the requirements and
the SDD. This section deals with how it is organized, formatted, reviewed, and tested
using unit test methods. These aspects are sometimes overlooked or pushed aside as
trivial matters, but that is a mistake that can come back to haunt the developer months

Implementation | 279

or even years later. Careless programming can also make life miserable for those who
come along after the code has been written and released, if there is a need to do main-
tenance or just to try to understand what the software really does.

Coding Styles
A coding style has been created for almost every programming language. Sometimes
there are different styles for the same programming language. It’s not uncommon to
find that different companies, government agencies, research groups, open source
projects, and individual developers have their own styles. In some cases the coding
might be formalized in a document, whereas in other cases it’s just something that
evolved over time and has been used so often that it has simply become a habit.

In some cases the coding style may be enforced by a set of verifiable coding require-
ments. This is typical in environments that produce high-reliability or safety-critical
software. There are tools available that can analyze the source code against a set of
coding rules and generate messages when the software deviates from those rules. I don’t
feel it’s necessary to advocate that level of rigor for the projects in this book, but I do
think it’s important to define or adopt a good coding style, establish some basic rules,
and then stick to them consistently.

Why coding style is important

One benefit of consistently following a particular coding style is that it will result in
software that is stylistically consistent, preferably with a clear and easy-to-comprehend
format. This typically isn’t done just for aesthetic reasons. It’s done so that the code
can be read and reviewed by someone other than the original author with a minimum
of effort.

Another benefit is that it defines a programming style that avoids potentially dangerous
features in the language. In the C language, for example, one can use pointers to directly
reference memory that has been allocated to the program. That may be fine for many
applications, but when the software is running on a memory-constrained embedded
system, the coding rules will usually prohibit the use of dynamic memory allocation in
order to avoid fatal pointer errors and memory “leaks.” In an embedded system, with
no one around to push a reset button, these situations can produce effects that are much
worse than just having the program crash. As another example, the Python language
allows the programmer to create dictionary objects on the fly, pass them around as
both parameters and return values, and modify them dynamically along the way. After
a dictionary object has been tweaked by multiple functions or methods, it can become
difficult to know just what’s in it, where it came from, and what it does.

280 | Chapter 8: Getting Started

Adopting existing coding style guidelines

The good folks at Python.org have documents available online that define a set of basic
coding style guidelines. The primary document is PEP-8, “Style Guide for Python
Code”; PEP-257, “Docstring Conventions,” also contains useful information.

Style is about consistency, primarily in the layout, names, and organization of your
code. To quote from PEP-8: “A style guide is about consistency. Consistency with this
style guide is important. Consistency within a project is more important. Consistency
within one module or function is most important.”

If you’re new to Python, or programming in general, I would suggest that you stick to
PEP-8 as much as possible. This is the best way to find out what works, and what
doesn’t. After you’ve gained more experience, or if you already have a lot of experience,
you might be in a position to make a case for using your own variations.

While there are some guidelines for C programming style floating around, there also
seem to be a large number of variations. Some programmers use the K&R “ANSI C”
reference book as their style guide. In other cases, a style guide might already exist, or
there may be explicit coding style requirements. Regardless of the style you select, be
consistent with it.

Organizing Your Code
If you have a good SDD to start with, the organization of the code should be obvious
from the organization presented in the SDD. Applying some basic guidelines can also
help keep things neat, tidy, and easy to read.

First off, avoid the temptation to wedge everything into a single source module. There
is no penalty for having multiple modules, each containing functions or classes with
related functionality. This is a good thing because it helps keep things comprehensible,
and it can help make it easier to change something without impacting other parts of
the code. So, even if the SDD implies that 20 different functions (for example) could
reside in the same module, you might want to consider having two, three, or four
modules instead, each containing closely related functions.

Python’s concepts of packages and modules help to keep things neatly organized, and
you should take a little time and read up on them if you aren’t already familiar with the
concepts. C has no corresponding source code organization, but it too can easily be
modularized into header files, source files, and library modules.

Figure 8-16 shows a block diagram of just one way that the source code for an instru-
mentation application might be organized. This is only one way to do it, and other
approaches are certainly possible. The main point here is that the code is divided into
levels based on functionality, and each block in the diagram pertains to a particular
group or class of functions.

Implementation | 281

Figure 8-16. Code organization example

Code Reviews
Code reviews can be incredibly useful, particularly for helping to maintain stylistic
consistency and for spotting errors that the original author of the code may have con-
tinually overlooked, or just not been aware of. Code reviews cannot, however, take the
place of testing—the two activities are the opposite sides of the same coin.

Code reviews can also be a monumental chore if they aren’t done correctly. I once
participated in a series of code reviews that lasted for almost eight days. Why? Because
the other people participating in the review hadn’t bothered to read through the code
beforehand or review the SDD, so they didn’t know the structure, didn’t know the
intent of the functionality, and had to be walked through it line by line and have every
little detail explained to them as if it was a detailed design walk-through. The really

282 | Chapter 8: Getting Started

aggravating part was that this was code we’d all seen before, so there was really no
excuse for the waste of time.

A code review can be as simple as two people going over the code, or as formal as a
meeting with a moderator, a secretary, several reviewers, and the author of the software.
It all depends on the complexity of the software, how critical it is, and how complete
the SDD is from the outset. For most of the projects in this book, just having someone
else look it over will be very useful. Even if you have to walk the other person through
it (maybe she’s not a programmer), the activity of verbalizing what you’ve done can
often shed light on things you might have overlooked before.

Here are some ground rules for code reviews that I’ve found useful:

• Everyone should have at least skimmed through the code beforehand. If someone
shows up who hasn’t read through the code, call off the review and reschedule it,
or just carry on without that person (if possible).

• Everyone participating in the code review should have read the relevant parts of
the SDD before showing up.

• Focus on the things that are best suited for a code review: stylistic consistency,
obvious logical errors (a problem with an if-elif-else structure, for example),
uninitialized variables, a mismatched number of malloc and free calls (for C code),
or improper placement of class variables in module scope (and vice versa) are just
some examples.

• Use a checklist and try to stick to it. A code review checklist should contain the
key things to look for during the review. Try not to deviate too far from the check-
list, as this could end up wasting time better spent somewhere else.

The last item is particularly important. A basic checklist can save time and effort by
helping to focus attention and effort during the review, and it provides a convenient
way to keep track of results from the review. A minimal checklist might look something
like Figure 8-17.

Let’s look at the items in Figure 8-17 a bit more closely:

1. Has the design been correctly implemented in accordance with the SDD?

The code must follow the SDD to the maximum extent possible (this depends, of
course, on how well defined the SDD happens to be). Assuming that the intent is
to comply with the requirements (initial or derived), code that does not follow the
SDD is most likely not in compliance with the requirements. Bells and whistles
may be cool and all that, but if there’s no requirement for them, at best the pro-
grammer has wasted time building them into the software. At worst, undocumen-
ted, noncompliant features may introduce all sorts of evil defects into the code that
unit testing may not catch.

Implementation | 283

Figure 8-17. Minimal review checklist

2. Are there any obvious misspellings and typos?

While unit testing may catch some misspelled variable names, it won’t catch all of
them, especially with a language like Python that allows the code to create variables
dynamically. A variable may have been defined at the start of a module, function,
or method and then misspelled further down, and the code might still pass a unit
test. This is something to watch for if a module or class has a variable that is used
to track some internal state, and that variable is only set inside the code and only
read by code somewhere outside of the class or module. It might never change if
it’s misspelled, and the external caller will never know the difference.

3. Does the software follow the project coding guidelines and conventions?

This one is rather obvious, and it’s even more obvious during a review. If a coding
style is going to be used, it should be used consistently.

4. Do the comments make sense? Are they necessary? Are there enough comments,
or too many?

Comments are sometimes used as a way to cover up poor coding (perhaps there
was a lack of understanding, or a section of code was a bit of a stretch when it was
written). They can also be overused (commenting a line like a += 1, for example—

284 | Chapter 8: Getting Started

it happens quite often, actually). Comments should only appear when necessary
to explain something that might not otherwise be obvious, including what a func-
tion or method is supposed to do.

5. Are data objects (e.g., structures, dictionaries, arrays, etc.) adequately defined?

All data objects should have a comment unless their use is immediately obvious.
This is especially true for compound objects like Python’s dictionaries or structures
in C. A variable used as a simple index counter in a loop probably doesn’t need a
comment.

6. If literal constant values are used, are they the correct values?

Whenever a literal constant value is used it is “cast in stone,” so to speak, so it
really needs to be right from the outset. Mistyping a value can result in some de-
cidedly unwanted behavior on the part of the software.

7. Are the same constant values used in multiple places when they should be defined
in a common location?

If the same literal value is used in two or more places, it should be converted into
a global literal of some form and its name should be used in the code instead of the
“naked number.” This allows it to be changed in just one place, and that change
will then take effect wherever the name appears. The alternative is to try to track
down every place where it appears, and as the number of occurrences increases,
so too does the chance that it will be missed somewhere and will cause grief later.

8. Are there any obvious repeated sections of the code that could be encapsulated as
a function or method?

If the code contains what essentially amounts to the same functionality repeated
in multiple locations, that functionality should probably be a function or method
that can be called whenever it is needed.

9. Is there any code that, just on inspection, appears that it will never be executed?

So-called “dead code” is something to be avoided. It clutters up the software,
making it difficult to determine what it is really supposed to do. It might also be
inadvertently activated later by someone who doesn’t fully understand why it’s
there, or through an untested path that occurs only under very unique circum-
stances. In other words, it presents a risk and a potential place for bugs to lurk. If
it’s not used, take it out. To really ensure that all the code is executed you need to
use a code coverage tool, but catching the obvious during a review is a good start.

10. Are all the variables and constants defined in the code actually used in the code?

If a module, function, method, or class defines variables, it should be used. If it is
not used, like sections of dead code, it should be removed.

You could, of course, have a checklist with many more items than this, but I feel that
this is a good place to start. It’s short enough that you could feasibly review your own
code (if there is no one else available to review it with you), although having a second
pair of eyes (or more) is always better.

Implementation | 285

Unit Testing
The intent of unit testing is to exercise the functionality of a small portion of the overall
software. A unit might be a function, a class, or a single method within a class. It is
typically the smallest possible logical unit of code capable of execution on its own. For
example, a function that accepts a raw binary data value from an external instrument,
performs some scaling and range checking, and returns a binary value along with a
return code would be a unit. It can be tested by supplying it with both nominal and
off-nominal input values. While a Python unit is being tested, the code coverage can
also be determined. This is a bit more difficult in C, particularly if the code is part of a
low-level extension module, but it is doable. However, we’ll stick to Python unit testing
in this book.

Defining a unit test

A unit test doesn’t necessarily map directly to a requirement, but it does map directly
to the SDD. Assume the SDD defines a function that scales the data. It might look like
this somewhat trivial example:

def ScaledInput(data):
 rc = NO_ERR

 scaled_data = data

 if data >= DATA_MIN and data <= DATA_MAX:
 scaled_data = (data * data_scale) + data_offset
 if scaled_data > SCALE_MAX:
 scaled_data = SCALE_MAX
 rc = ERR_MAXSCALE
 elif scaled_data < SCALE_MIN:
 scaled_data = SCALE_MIN
 rc = ERR_MINSCALE
 else:
 rc = ERR_OVER

 return (rc, scaled_data)

For our purposes, we can assume that data_scale and data_offset are set elsewhere
(perhaps when the software initializes itself). DATA_MIN, DATA_MAX, SCALE_MIN, SCALE_MAX,
NO_ERR, ERR_MAXSCALE, and ERR_MINSCALE are “constants” that do not change during
program execution and that have hardcoded values, perhaps in another module where
such things reside by themselves.

Lastly, note that the data return value is initialized to the value of the raw input data.
Should an input range error occur, the function will still return data, but it won’t be
scaled or otherwise adjusted. If a scaling error occurs, the data returned will be either
the scaled maximum possible or the minimum. It is the responsibility of whatever called
this function to check the return code (rc) portion of the returned 2-tuple to see if an
error has occurred.

286 | Chapter 8: Getting Started

A unit test is constructed such that all possible inputs are used to force the execution
to traverse all possible paths. One way to achieve this is to create a test table. In the
case of ScaledInput(), we can see that there are three obvious input cases: too low, too
high, and within range. Table 8-5 shows these three test cases for this function.

Table 8-5. ScaledInput() test cases

Test Input RC Output

1 data < DATA_MIN ERR_OVER Raw input data

2 data > DATA_MAX ERR_OVER Raw input data

3 min <= data <= max NO_ERR Processed data

This is a good start, but it’s incomplete: there are no tests for the cases where
scaled_data might exceed the scaling limits, so there are paths in the code that may not
be exercised by the original three test cases. We need something more. Table 8-6 shows
the complete suite of test cases for this deceptively simple function.

Table 8-6. ScaledInput() test cases (complete)

Test Input data_scale data_offset RC Output

1 data < DATA_MIN 1.0 0.0 ERR_OVER Raw input data

2 data > DATA_MAX 1.0 0.0 ERR_OVER Raw input data

3 min <= data <= max 2.0 0.0 NO_ERR Processed data

4 min <= data <= max 10.0 0.0 ERR_MAXSCALE SCALE_MAX

5 min <= data <= max –10.0 0.0 ERR_MINSCALE SCALE_MIN

6 min <= data <= max 1.0 1000.0 ERR_MAXSCALE SCALE_MAX

7 min <= data <= max 1.0 –1000.0 ERR_MINSCALE SCALE_MIN

The actual values for data_scale and data_offset would, of course, depend on the
values of SCALE_MAX and SCALE_MIN, but for our purposes here we can assume that they
are appropriate for the results defined in the table of test cases. This also applies to
DATA_MIN and DATA_MAX.

Although it might be argued that the last two cases aren’t really necessary, they do
provide complete coverage of all possible inputs to the function. I should also point
out that the table describes the expected behavior, which includes the cases where rc
contains something other than NO_ERR. In a unit test a failure would be any result that,
given the specified inputs, does not conform to the table, not just the presence of an
error value in the return code. A unit test case document should contain a table like
Table 8-6 for every unit test to be performed. It would also define any necessary con-
ditions for the tests.

Implementation | 287

Creative Time Wasting—Testing Without Justification
Even though unit tests do not necessarily map directly to driving requirements in the
same way that functional tests do, they still need to have some kind of documentation
to describe what they are intended to demonstrate and how to execute them. Imple-
menting any tests, either unit or functional, without some kind of justification for their
existence and a description of the pass/fail criteria is usually just a waste of time, even
if it’s just a simple test. If you don’t know what a test is supposed to demonstrate, how
can you tell if it really succeeds or not?

It is also worthwhile to consider this tidbit of wisdom: code that includes undocumen-
ted tests is actually worse than code that includes no tests at all. Why? Well, with
untested code you can be fairly certain that it has bugs, whereas code that contains
meaningless tests may lull you into a false sense of security, even though the odds of
the code containing serious defects remains high. Or, to put it in a nutshell (and repeat
what has been said many times before by many others): testing badly done is worse
than no testing at all.

Implementing unit tests

With a table of test cases, we can now write the actual unit test. Fortunately, Python
includes a built-in unit test facility, and code coverage capability as well (as the Python
folks say: batteries included). The following is a module called InputUtils.py contain-
ing just one function, ScaledInput(). There is no reason it couldn’t contain more utility
functions for input verification and processing, but for now, this is it.

The return code “constants” used by ScaledInput() are defined within the same mod-
ule, although in reality you would probably want to put them in a module by themselves
(and with nothing else) so they can easily be imported and used by other parts of your
application. Because we know that using a wildcard import is generally to be avoided,
I haven’t put leading underscore characters on any of the variable names, but in practice
it would be a good idea to do so because you don’t know what someone may decide
to do with your code at a later date.

That said, let’s take a look at the module code:

""" InputUtils.py

 A collection of input verification and processing functions.

 Just have one (ScaledInput) for now.
"""
NO_ERR = 0
ERR_OVER = −1
ERR_MAXSCALE = −2
ERR_MINSCALE = −3

DATA_MIN = −10.0
DATA_MAX = 10.0

288 | Chapter 8: Getting Started

SCALE_MIN = −50.0
SCALE_MAX = 50.0

data_scale = 1.0
data_offset = 0.0

def ScaledInput(data):
 rc = NO_ERR
 scaled_data = data

 if data >= DATA_MIN and data <= DATA_MAX:
 scaled_data = (data * data_scale) + data_offset
 if scaled_data > SCALE_MAX:
 scaled_data = SCALE_MAX
 rc = ERR_MAXSCALE
 elif scaled_data < SCALE_MIN:
 scaled_data = SCALE_MIN
 rc = ERR_MINSCALE
 else:
 rc = ERR_OVER

 return (rc, scaled_data)

Now we just need some way to exercise ScaledInput() using the test parameters listed
in Table 8-6. Python’s unittest facility is the tool of choice for this.

As with just about everything else in Python, there are several ways to use the Python
unittest facility, and this is just one of them. I prefer this approach because it’s
straightforward and (at least to me) rather obvious. Let’s look at the code, which resides
in the module test_001.py, and then we’ll walk through it and see what it does:

import unittest
import InputUtils as UUT

class test_001_UT(unittest.TestCase):

 def test_001_UT_01(self):
 UUT.data_scale = 1.0
 UUT.data_offset = 0.0
 data = −11
 rc, sdata = UUT.ScaledInput(data)
 assert rc == UUT.ERR_OVER
 assert sdata == data

 def test_001_UT_02(self):
 UUT.data_scale = 1.0
 UUT.data_offset = 0.0
 data = 11
 rc, sdata = UUT.ScaledInput(data)
 assert rc == UUT.ERR_OVER
 assert sdata == data

 def test_001_UT_03(self):
 UUT.data_scale = 2.0
 UUT.data_offset = 0.0

Implementation | 289

 data = 5
 rc, sdata = UUT.ScaledInput(data)
 assert rc == UUT.NO_ERR
 assert sdata == data * UUT.data_scale

 def test_001_UT_04(self):
 UUT.data_scale = 10.0
 UUT.data_offset = 0.0
 data = 10
 rc, sdata = UUT.ScaledInput(data)
 assert rc == UUT.ERR_MAXSCALE
 assert sdata == UUT.SCALE_MAX

 def test_001_UT_05(self):
 UUT.data_scale = −10.0
 UUT.data_offset = 0.0
 data = 10
 rc, sdata = UUT.ScaledInput(data)
 assert rc == UUT.ERR_MINSCALE
 assert sdata == UUT.SCALE_MIN

 def test_001_UT_06(self):
 UUT.data_scale = 1.0
 UUT.data_offset = 1000.0
 data = 10
 rc, sdata = UUT.ScaledInput(data)
 assert rc == UUT.ERR_MAXSCALE
 assert sdata == UUT.SCALE_MAX

 def test_001_UT_07(self):
 UUT.data_scale = 1.0
 UUT.data_offset = −1000.0
 data = 10
 rc, sdata = UUT.ScaledInput(data)
 assert rc == UUT.ERR_MINSCALE
 assert sdata == UUT.SCALE_MIN

suite = unittest.TestLoader().loadTestsFromTestCase(test_001_UT)
unittest.TextTestRunner(verbosity=3).run(suite)

The first thing to notice is that it imports only two things: the unittest library from
Python and the module to be tested, InputUtils, which is aliased to the name UUT. The
next step is to declare a class that inherits from the generic test case template,
TestCase. Within this new class we create seven member methods, one for each of the
test cases in Table 8-6.

Each test case method is identical with the exception of the data, scale, and offset
parameters. The variables data_scale and data_offset reside in the UUT module,
whereas the input data is passed directly to the function ScaledInput() by each test case
method.

After a test case method sets up the initial conditions, it calls ScaledInput(). The return
code and the processed data are captured in the variables rc and sdata, respectively.

290 | Chapter 8: Getting Started

The returned values are then tested using Python’s assert statement. If the expression
is True, the assertion passes; both assertions in each test case method must be True for
the test case to pass. The resulting output looks like this:

>>> import test_001
test_001_UT_01 (test_001.test_001_UT) ... ok
test_001_UT_02 (test_001.test_001_UT) ... ok
test_001_UT_03 (test_001.test_001_UT) ... ok
test_001_UT_04 (test_001.test_001_UT) ... ok
test_001_UT_05 (test_001.test_001_UT) ... ok
test_001_UT_06 (test_001.test_001_UT) ... ok
test_001_UT_07 (test_001.test_001_UT) ... ok

--
Ran 7 tests in 0.000s

OK

assert versus assertEqual() and friends

The unittest library has its own collection of assert-type methods in the TestCase class
that have been tailored specifically to unit testing. Two of the more commonly used
are assertEqual() and assertNotEqual(). As an example, we can rewrite
test_001_UT_07 using these methods to look like this:

 def test_001_UT_07(self):
 UUT.data_scale = 1.0
 UUT.data_offset = −1000.0
 data = 10
 rc, sdata = UUT.ScaledInput(data)
 self.assertEqual(rc, UUT.ERR_MINSCALE)
 self.assertEqual(sdata, UUT.SCALE_MIN)

Why use assertEqual() and not just assert? There are two possible reasons: first, if the
code is run with optimization enabled (the -O command-line switch), assert statements
are ignored; second, the assertEqual() method generates some additional information
that assert does not (at least, not without some extra work, as we’ll see shortly). Let’s
say that test case 07, using the vanilla assert statement, encounters an error and the
last assertion fails. Here’s what the output of the test run would look like:

>>> import test_001
test_001_UT_01 (test_001.test_001_UT) ... ok
test_001_UT_02 (test_001.test_001_UT) ... ok
test_001_UT_03 (test_001.test_001_UT) ... ok
test_001_UT_04 (test_001.test_001_UT) ... ok
test_001_UT_05 (test_001.test_001_UT) ... ok
test_001_UT_06 (test_001.test_001_UT) ... ok
test_001_UT_07 (test_001.test_001_UT) ... FAIL

==
FAIL: test_001_UT_07 (test_001.test_001_UT)
--
Traceback (most recent call last):

Implementation | 291

 File "test_001.py", line 61, in test_001_UT_07
 assert sdata == data
AssertionError

--
Ran 7 tests in 0.050s

FAILED (failures=1)

While this does indicate that test 7 failed, it doesn’t tell us why. If we replace the
assert statements with assertEqual() and run the test again, it will still fail, but the
assertEqual() method will display the values of the two variables that failed the equality
check:

>>> import test_001
test_001_UT_01 (test_001.test_001_UT) ... ok
test_001_UT_02 (test_001.test_001_UT) ... ok
test_001_UT_03 (test_001.test_001_UT) ... ok
test_001_UT_04 (test_001.test_001_UT) ... ok
test_001_UT_05 (test_001.test_001_UT) ... ok
test_001_UT_06 (test_001.test_001_UT) ... ok
test_001_UT_07 (test_001.test_001_UT) ... FAIL

==
FAIL: test_001_UT_07 (test_001.test_001_UT)
--
Traceback (most recent call last):
 File "test_001.py", line 61, in test_001_UT_07
 self.assertEqual(sdata, data)
AssertionError: −50.0 != 10

--
Ran 7 tests in 0.000s

FAILED (failures=1)

Here we can plainly see what caused the problem, and on what line it occurred.

To be fair, I should point out that I rigged this test to illustrate a
test failure by comparing the processed data value from the
ScaledInput() function to the original data input parameter, not to
UUT.ERR_MINSCALE, which is what it actually is.

There have been arguments made about the merits of assert versus assertEqual(),
some better than others, but I think that in the end it comes down to what you need
to accomplish with your unit testing and what makes sense for you. If you are never
planning to run your unit tests under optimization, and you don’t have a compelling
need to see the test parameters for every failure, go ahead and use the plain old vanilla
assert statement. That being said, there is a way to see what failed; it just requires a
bit more typing. I should point out that I’m showing you this just to be complete—it’s
not something I think you should actually do on a regular basis.

292 | Chapter 8: Getting Started

The formal syntax for assert (as stated in Section 6.3 of the Python 2.6.5 documenta-
tion) is:

assert_stmt ::= "assert" expression ["," expression]

The second expression can be used to append a message to the exception’s output, like
so:

>>> var1 = 1
>>> var2 = 2
>>> assert var1 == var2, "%s != %s, at least not in this universe!" % (var1, var2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError: 1 != 2, at least not in this universe!

This is just a bird’s-eye view of what unittest can do, but we’ll leave it at that for now.
And, of course, there is much more information about unittest and its methods in the
Python documentation.

Unit testing is something that should be done as a normal part of software development.
As soon as a new function or method is complete you should create a unit test for it,
and then run it often. In some environments other people may be responsible for cre-
ating the functional tests and setting up the test environment, but the person who wrote
the code is uniquely qualified to create the unit test. This is also more efficient than
having someone try to figure out what the code does and then create the tests for it
after the fact.

Code coverage

While unit testing is good for performing basic low-level tests, it can also serve another
equally important purpose: code coverage analysis.

If you’re not familiar with code coverage analysis, the idea is actually very simple. Every
line of code in a program must be executable. Or, to put it another way, you don’t want
any “dead code” in your software that might come back to haunt you later. Code cov-
erage analysis also tells you if your unit tests are complete. Incomplete unit tests can
leave dark corners in the software where evil things may be lurking, so you really want
to touch everything while you’re testing.

Figure 8-18 shows the flowchart for the ScaledInput() function. If you compare this to
the test cases listed in Table 8-6, you should be able to readily identify the paths of
execution that each of the test cases will follow (just look for the return codes). I’ve
changed some of the variable names so things will fit nicely.

As we discussed earlier, one way to find dead code is through code reviews. Another
way is to use a tool that can follow along with the execution of the software and keep
track of which statements have been executed and which have not. I recommend the
coverage package from Ned Batchelder, which is available at http://nedbatchelder.com/
code/coverage/.

Implementation | 293

http://nedbatchelder.com/code/coverage/
http://nedbatchelder.com/code/coverage/

Once you’ve installed it, you can run it by simply typing coverage along with a com-
mand parameter and a source filename at the command prompt (note, not python
coverage, just coverage). This command will execute the specified program module and
generate some coverage statistics. Using our example unit test, we would enter:

Figure 8-18. ScaledInput() flowchart

294 | Chapter 8: Getting Started

coverage -x test_001.py

The -x command-line switch tells coverage to execute the program and collect coverage
data. The newer run parameter is also available. Type coverage help at the command
line to see what the newer-style parameters look like, and coverage help classic to see
alternate older-style command-line parameters. I prefer the older style, myself. The
output should look exactly like what you would expect to see when running the
unittest module as we did previously, but coverage has generated something extra for
us: a coverage metrics data file.

Using coverage’s report function, we can see the code coverage data in a nice tabular
format. The -m switch tells coverage to also show the line numbers of code that wasn’t
executed:

coverage report -m

The output looks like this:

Name Stmts Exec Cover Missing
--
inpututils 23 23 100%
test_001 54 54 100%
--
TOTAL 77 77 100%

This demonstrates that all of the statements in ScaledInput() are executed by the test
cases, and that every possible path in Figure 8-18 has been taken. No dead code here!
coverage has also tracked the execution of the test_001 wrapper, but you can exclude
that from the analysis if you wish, as explained in the documentation for coverage.

Connecting to the Hardware
There comes a point during the development of software when you will need to see if
it will actually play nice with the hardware. Hopefully this point will come sooner rather
than later, because what you really don’t want is to get close to the end of the effort
and then discover that the hardware doesn’t really work like you thought it did, or that
your code has a bug—or two, or more—that doesn’t appear until the interface is active
(I’ve been faced with both of these situations in the past, and they weren’t the least bit
fun). These types of bugs typically involve things like data representation, bit order,
timing, or some other subtle thing that unit testing may have a hard time catching. It
is even possible that the hardware has a problem, and you really don’t want to be on
the phone at the eleventh hour trying to get your hardware repaired or replaced after
it’s been sitting on a shelf for months waiting for you to use it.

Start with small, manageable low-level modules and build on them. In other words, if
your application uses a serial port to communicate with an external device, first test
just the serial interface module with the hardware (or a simulator, which we will discuss
in Chapter 10). Once that is working correctly, add on more functionality. One of the
biggest mistakes people make when attempting to implement a new system is to

Implementation | 295

immediately throw all of the software at the hardware in one go. If you’re really lucky
it might work, but the odds are good that it won’t. The real problem with the all-or-
nothing approach is that you might have more than one thing going wrong at once,
and it can be very difficult to determine what is causing which error because they can
mask one another. Worse yet, there may be nothing wrong with the individual units
of the software, but there may be some major issues when you attempt to integrate
them all at once.

You may need to do things a little differently in your project, but here’s one suggested
integration order:

1. Low-level extensions (driver wrappers and such)

2. Communications (serial interface handlers and remote communications, for
example)

3. Utility functions and classes (like the InputUtils.py module we saw earlier)

4. Data-processing and error-handling functionality

In other words, start integrating the software to the hardware, and to itself, from the
bottom up. The following is a summary of the benefits of early integration:

• Low-level supporting functionality is tested and verified first, providing a solid
foundation on which to add more complex functionality.

• If the code is correctly and sufficiently modular, the low-level (and even some of
the mid-level) modules can go into your “software parts box” for possible reuse on
future projects.

• Errors can be easily identified and resolved while they are small and manageable,
hopefully before they appear and propagate anomalous behavior throughout the
rest of the software.

Once you have all the underlying functionality in place, the last steps involve integrating
the upper-level functionality, such as the data-processing and user interface, with the
modules that have already been tested and verified.

Documenting Your Software
While the SDD may constitute a plan for your software, it doesn’t necessarily take the
place of code-level documentation. Depending on the level of detail in the SDD, it may
describe the architecture of the application only in general terms, without specific de-
tails such a function or method parameters, global variables, and so on. In fact, it typ-
ically makes sense to not put an excessive amount of detail into the SDD, because
invariably things will change as result of unit testing and integration activities. So where
do we put things like descriptions of function parameters? In the code, of course.

Python includes the embedded documentation concept known as the docstring. My
recommended tool for extracting docstrings and generating nicely formatted and

296 | Chapter 8: Getting Started

indexed HTML pages of code documentation is the Epydoc tool from Edward Loper.
You can download it from http://epydoc.sourceforge.net.

To illustrate how it works, here is the InputUtils module again, only this time I’ve
added docstrings and renamed it to InputUtils2.py:

""" InputUtils.py

 A collection of input verification and processing functions.

 Just have one (ScaledInput) for now.
"""
NO_ERR = 0 #: No error
ERR_OVER = −1 #: Overrange error code (+ or −)
ERR_MAXSCALE = −2 #: Maximum + output value exceeded
ERR_MINSCALE = −3 #: Maximum − output value exceeded

DATA_MIN = −10.0 #: Maximum − input value
DATA_MAX = 10.0 #: Maximum + input value
SCALE_MIN = −50.0 #: Maximum − output value
SCALE_MAX = 50.0 #: Maximum + output value

data_scale = 1.0 #: scaling coefficient
data_offset = 0.0 #: offset coefficient

def ScaledInput(data):
 """ Input data checking and scaling.

 Uses global coefficients to scale a data value and apply an offset to it.

 The operation is, in effect, the common y = mx + b slope intercept form,
 where m is the scaling coefficient, b is the offset, and x is the input
 data. The values of m and b are provided via adjustable global variables.

 The input data is checked against predefined range limits. The result is
 also checked to ensure that it does not exceed predefined output range
 limits.

 If the input is out of range then ERR_OVER (overrange) is returned.

 If the output is out of range then the maximum possible value (+ or −)
 is returned.

 The output is a 2-tuple consisting of the return code and the result value.

 @param data: The input data value

 @return: Returns a 2-tuple with the return code and the modified
 input data if no range errors occur. Otherwise returns
 the unmodified input data value.
 """
 rc = NO_ERR
 scaled_data = data

Implementation | 297

http://epydoc.sourceforge.net

 if data >= DATA_MIN and data <= DATA_MAX:
 scaled_data = (data * data_scale) + data_offset
 if scaled_data > SCALE_MAX:
 scaled_data = SCALE_MAX
 rc = ERR_MAXSCALE
 elif scaled_data < SCALE_MIN:
 scaled_data = SCALE_MIN
 rc = ERR_MINSCALE
 else:
 rc = ERR_OVER

 return (rc, scaled_data)

Epydoc generates a set of HTML files by default. If we open the top-level file,
index.html, the result looks like Figure 8-19. Notice that the module global variables
are also documented.

Figure 8-19. Example Epydoc output

Epydoc is a very useful and powerful tool. For C or C++ there is a similar tool, Doxygen,
by Dimitri van Heesch, that also generates HTML output and uses markup tags in the
comment text. It is available from SourceForge at http://sourceforge.net/projects/doxy
gen/.

298 | Chapter 8: Getting Started

http://sourceforge.net/projects/doxygen/
http://sourceforge.net/projects/doxygen/

Version Control
Version control is a critical part of any design and development activity. A good version-
control tool allows you to track changes and maintain a history for a particular file. It
also gives you a way to “step back” to an earlier revision if you find that something
didn’t work quite as planned. Even if you are the only software developer, having a
version-control tool available can make the difference between wails of anguish and
“Oh, no problem, I’ll just go back to the previous version.”

My tool of choice for version control is CVS. Granted, it’s starting to show its age, but
it’s still in widespread use. Newer tools, such as SubVersion, have appeared, but I go
back far enough to remember learning to use RCS and SCCS, so I just happen to feel
more comfortable with CVS (which, by the way, is descended from RCS). I advocate
using it for any text file, be it source code, use cases, or HTML files. It doesn’t work
quite as well with binary or mixed-mode files, such as those generated by Word, but
there are open source tools available that can handle Word and Excel documents and
maintain a version history.

There is much that can be said about version control, and whole books have been
written about it. This book is not one of those, but I would encourage you to seek them
out and read them. The book Essential CVS, by Jennifer Vesperman (O’Reilly), is an
excellent place to start. The home of CVS is http://www.nongnu.org/cvs/, and of course
Wikipedia has a write-up on it, which is located at http://en.wikipedia.org/wiki/Concur
rent_Versions_System.

Lastly, I have found that the manpages for CVS on most Linux installations have a
massive amount of well-organized information. In fact, my favorite CVS “manual” is a
binder with a printout of the CVS manpages and a few extra pages of notes.

Defect Tracking
Bug-tracking tools, also known as defect trackers, are essential in a team environment,
where one person (a tester, perhaps) may be finding defects that another person (usually
the person who wrote the code) will then attempt to resolve. For a one-person project,
a full-on defect tracker might not be necessary if you are good at taking notes and
keeping track of your “to-do” items, and you use a version-control tool. Because the
focus of this book is on small projects with one or perhaps two software developers, I
won’t spend a lot of time on defect tracking. I will, however, try to provide enough
information to give you an idea of what is involved, and provide some URLs you can
check out for more information and software packages.

The idea behind a defect tracker is simple. First, a defect is discovered. It is then entered
into the system, and the resulting “ticket” is assigned to someone. The defect entry then
goes through a series of states, typically along the lines of unread, working, testing,
verified, and resolved. It might also transition from working to testing and back to
working again a few times before it is finally ready to be verified and marked as resolved.

Implementation | 299

http://oreilly.com/catalog/9780596527037/
http://www.nongnu.org/cvs/
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Concurrent_Versions_System

Most open source defect trackers utilize a web-based interface, and some require a web
server. I happen to prefer the Roundup tool, which is available on SourceForge, because
it’s simple to set up, easy to use, and it doesn’t require a web server (although you can
use it with one, if you want to). It’s also written entirely in Python.

If you want to learn more about Roundup, you can check out its home page: http://
roundup.sourceforge.net.

Finally, Steve McConnell has an interesting paper on how defect tracking can be used
to determine if software is really ready for release. It is available at http://www.stevemc
connell.com/ieeesoftware/bp09.htm.

User Documentation
At some point, your project will (hopefully) be done. All the requirements have been
defined, the SDD is complete, the code is written and the testing is finished, and it all
seems to work as intended. If everything has gone according to plan, you should have
working software as the end result of your hard work and diligent attention to detail.
But there is one last step that needs to be completed before it is really done: the user
documentation.

Even if you’ve created something primarily for your own use, you still should have some
kind of documentation that describes how to use your creation. For projects with a
limited distribution, I often use a three-ring binder and clear sheet protectors. I print
out key procedures, parameter values, error codes, and other essential information on
single sheets and slip them into the protectors. In essence, this is a highly condensed
version of what a full-on user manual might contain. The advantage to this approach
is that I can create each page as it’s needed, put them into the notebook as they become
available, and easily replace them if things change (as they almost always will). The
binder then lives in the lab with the system so that anyone, including myself, who might
need a quick refresher on how to use it can grab the binder and look it up.

If the system is intended for broad distribution, though, you’ll need to consider creating
an actual user manual for it. This may seem daunting, but a good place to start is to
look at other user manuals. Which ones do you like (or not like), and why? Pick one
or two that you think are well written and model your documentation on those.

Summary
In this chapter we’ve covered requirements, design, implementation, testing, and doc-
umentation. It should be obvious now why a software project without requirements is
a like a ship without a rudder. Without at least some basic requirements, it’s all too
easy to create something that doesn’t do what was originally intended, or doesn’t work
correctly at all. We have also seen how testing, when done to the requirements, not
only helps to identify defects in the code, but also helps to ensure that the code stays

300 | Chapter 8: Getting Started

http://roundup.sourceforge.net
http://roundup.sourceforge.net
http://www.stevemcconnell.com/ieeesoftware/bp09.htm
http://www.stevemcconnell.com/ieeesoftware/bp09.htm

on track and meets the requirements. Writing, in the form of documentation, has been
stressed throughout the discussion, and in all honesty, if you aspire to achieve recog-
nition for your work you need to document it so that others (who may not have your
depth of understanding) can readily understand and appreciate it. However, the main
point in this chapter isn’t about rigorous adherence to a particular process or life-cycle
model, nor is it about creating massive tomes of technical details. It’s about knowing
where you want to go by knowing what you need to do in order to get there, knowing
when you’ve arrived, and creating a map of your journey in the form of documentation
so that others can follow the path.

Suggested Reading
There are hundreds of good books available on the topics we’ve covered in this chapter,
but in the interest of keeping things brief I’ll list a few that I particularly like:

Code Complete, Second Edition. Steve McConnell, Microsoft Press, 2004.
I have both the first and second editions of this book, and I think they’re both
excellent. McConnell does a good job of laying out the steps necessary to success-
fully define and implement quality software, and he does it in a semiformal way
that’s engaging and enjoyable to read. I can only hope to encourage more people
to read and apply the material in his book.

Software Requirements: Objects, Functions and States, 2nd ed. Alan Davis, Prentice Hall,
1993.

This is one of my favorite books on the subject of software requirements. I’ve been
known to take it with me to meetings and quote from it now and again. The author
discusses different approaches to requirements analysis and capture in a clear and
lucid style, and also includes useful examples of different approaches. An extensive
list of references provides numerous paths for further exploration and discovery.

Software Testing. James McCaffrey, Booksurge, 2009.
This book provides a good overview of the skills and techniques directly applicable
to software testing, gleaned by the author from interviews and conversations with
test managers in a number of settings. Short, simple, and to the point, it is a good
starting place for someone new to software testing, and a useful quick refresher for
the seasoned practitioner.

Writing Effective Use Cases. Alistair Cockburn, Addison-Wesley, 2001.
A well-written guide for writing well-written use cases, this book describes what
constitutes a good use case and points out some of the pitfalls one might encounter
while collecting the information necessary to craft a useful description of the in-
tended behavior of the software. While I’m not a big fan of use cases (I prefer formal
hierarchical requirements), if you are planning to employ use cases, you owe it to
yourself to read this book.

Suggested Reading | 301

Essential CVS, Second Edition. Jennifer Vesperman, O’Reilly, 2006.
This book starts with an introduction to the basic concepts behind CVS and builds
from there, with discussions of tagging, branching, merging, and logging, among
other topics. It helps to fill the gaps in the formal reference documentation found
in CVS’s online documentation, and to clarify some of the more opaque features
and functions of CVS.

When it comes to online resources, well, they are legion. Entering the phrase “software
requirements” will provoke Google into returning something like 1 million hits. Here
are a few from my own bookmarks that I think are noteworthy:

http://software.gsfc.nasa.gov
NASA has many documents available online in the Process Assets Library at the
Goddard Space Flight Center. While a lot of these will be far too complex and
detailed for the typical small project, the overall concepts and methods are uni-
versally applicable. It’s worth a look to see if there’s something here that you can
apply to your own activities.

http://www.techwr-l.com/techwhirl/magazine/writing/softwarerequirementspecs.html
TECHWR-L, a website oriented toward technical communicators, hosts this over-
view of what is entailed in writing a software requirements specifications
document.

http://www.aspera-3.org/idfs/APAF_SRS_V1.0.pdf
This is the SRS for the Aspera-3 project (part of the Mars Express mission) from
the Swedish Institute of Space Physics. It’s not often that one gets to see what a
real SRS looks like (particularly not from recent NASA projects, thanks to ITAR),
but here is one you can examine at your leisure.

302 | Chapter 8: Getting Started

http://oreilly.com/catalog/9780596527037/
http://software.gsfc.nasa.gov
http://www.techwr-l.com/techwhirl/magazine/writing/softwarerequirementspecs.html
http://www.aspera-3.org/idfs/APAF_SRS_V1.0.pdf

CHAPTER 9

Control System Concepts

If everything seems under control,
you’re just not going fast enough.

—Mario Andretti

A book on real-world data acquisition and control systems would be incomplete with-
out a discussion of the basics of control systems and the theory behind them. Although
this chapter is not intended as a detailed or rigorous treatment of control systems, it
will hopefully provide enough of a foundation, if you should need it, to enable you to
start assembling usable control systems of your own.

Building on the material presented in Chapter 1, this chapter further explores common
control system concepts and introduces additional essential details in the form of
slightly more formal definitions. It also provides an introduction to basic control system
analysis, and gives some guidelines for choosing an appropriate model.

Our primary focus in this chapter will be on simple control systems based on software
and electromechanical components. These types of systems would ideally be construc-
ted from readily available instrumentation and control devices such as DMMs, data
acquisition units, motor controller modules, power supplies, and power control mod-
ules. You shouldn’t have to design and assemble any circuit boards (unless you really
want to, of course), or deal with esoteric devices and interfaces—everything you need
should be available in an off-the-shelf form. In fact, it might already be on a shelf
somewhere gathering dust.

We’ll start off the chapter with an overview of linear, nonlinear, and sequential control
systems, followed by definitions of some of the terms and symbols used in control
system design. Next, we’ll explore block diagrams and how they are used to diagram
control systems. We’ll then take a quick look at the differences between the time and
frequency domains, and how these concepts are applied in control systems theory. I
won’t go into things like Laplace transfer functions, other than to introduce the con-
cepts, mainly because the types of control systems we’ll be working with can be easily
modeled and implemented using garden-variety math.

303

The next section covers a selection of representative control systems, and shows how
the terminology and theory presented in the first section can be applied to them. I’ll
present descriptions and examples of open-loop, closed-loop, sequential, PID,
nonlinear bang-bang, and hybrid control systems.

To wrap up this chapter, we’ll look at what goes into designing and implementing a
control system in Python. We’ll see examples of a proportional control, a nonlinear
bang-bang control, and a simple implementation of a proportional-integral-derivative
(PID) control.

Basic Control Systems Theory
We are surrounded by control systems, and we ourselves are a form of control system,
albeit of a biological nature. A control system may be extremely simple, like a light
switch, or very complex, like the autopilot device in an aircraft or the control system
in a petrochemical refinery.

Broadly speaking, a control system is any arrangement of components, be they biolog-
ical, mechanical, pneumatic, electrical, or whatever, that will allow an output action to
be regulated or controlled by some form of input. Control systems with the ability to
monitor and regulate their own behavior utilize what is called feedback, which is based
on the ability to compare the input to the output and generate an error value that is the
difference between the two. The error value is used to correct the output as necessary.

A control system isn’t always a single thing in a box by itself. It may contain multiple
subsystems, each of which might use a different control paradigm. When assembled
together, the subsystems form a cohesive whole with well-defined behavior (ideally,
anyway). The overall size of a control system, in terms of its scale and complexity, is a
function of its scope. On that basis we could even say that the Earth’s atmosphere is a
largely self-regulating climate control and hydraulic distribution system, itself a sub-
system of the entire system that is the planet. On a slightly smaller scale, a large ship,
like a freighter, is a system for carrying cargo. It contains many subsystems, from the
engines and their controls to the helm and the rudder.

If you look around at the various control systems in your immediate environment, you
might notice that they are either rather simple or are composed of simple subsystems
acting in concert to produce a particular (and perhaps complex) result.

In this chapter we’ll be dealing primarily with three types of control systems: linear,
nonlinear, and sequential. A linear control system utilizes a variable control input and
produces a variable output as a continuous function of the input. Nonlinear controls,
on the other hand, produce a response to a linear input that does not exhibit a contin-
uous relationship with the input. A sequential system, as the name implies, is one that
moves through a specific series of states, each of which may produce a specific external
output or a subsequent internal state. We won’t be delving into things like fuzzy logic,
adaptive controls, or multiple-input/multiple-output control systems. These are deep

304 | Chapter 9: Control System Concepts

subject areas in modern control systems research, and they’re way beyond the scope
of this book.

Linear Control Systems
As I stated in the introduction to this section, a linear control system produces a variable
output as a continuous linear function of the input. For example, consider the following
simple equation:

y = mx + b

This is the well-known slope intercept equation, and it defines a linear proportional
relationship between x and y as a result of m (the slope). The b term applies an optional
offset to the output. Could this be used in a control system? Absolutely. In fact, by itself
it could be applied as a form of proportional control. Equation 9-1 shows the same
equation recast in control system notation.

Equation 9-1.

u = Kp * e + P

For discrete-time applications, Equation 9-1 can be written as Equation 9-2.

Equation 9-2.

u(t) = Kpe(t) + P

In Equation 9-2, u(t) is the control output, e(t) is the system error, Kp is the proportional
gain applied to the error, and P is the steady-state bias (which could well be zero). The
symbol t indicates instantaneous time, otherwise known as “right now.” It doesn’t
actually do anything in the equation except to say that the value of u at some time t is
a function of the value of e at the same time t.

Don’t worry about what the error is or about the symbols used here for now; we’ll get
to them shortly. The important thing to notice is that this is just the slope intercept
equation in fancy clothes.

Control systems are typically grouped into two general categories: closed-loop and
open-loop. The primary difference between the two involves the ability (or lack thereof)
of the system to sense the effect of the controller on the controlled system or device
(i.e., its response to the control signal) and adjust its operation accordingly. Closed-
loop control systems are also called feedback controllers.

Figure 9-1 shows the response we would expect to see from Equation 9-1. Here I’ve
used the error variable as the input, but it’s actually the difference between a reference
or control input and the feedback from the device under control (we’ll get into all this
in just a bit). The main point here is that it is ideally linear.

Basic Control Systems Theory | 305

I should point out that while linear models are used extensively in control system anal-
ysis and modeling, in reality there are no truly linear systems. For various reasons, every
system will exhibit some degree of nonlinear behavior under certain conditions. Also,
in a closed-loop feedback system the output response of the controller is dependent on
the feedback, and as we will see a little later, feedback from devices with mass, inertia,
and time delays can and often do create situations where the resultant graph of the
system is not a nice straight line.

Nonlinear Control Systems
A nonlinear control system is one where the input and the output do not have a con-
tinuous linear relationship. For example, the output might vary between two (or more)
states as a function of a linear input level, as shown in Figure 9-2.

Mathematically, the basic behavior of the system responsible for the graphs in Fig-
ure 9-2 can be written in piecewise functional notation, as shown in Equation 9-3.

Equation 9-3.

Figure 9-1. Linear control system proportional response

306 | Chapter 9: Control System Concepts

Figure 9-2. Nonlinear control system response

This is typical of the behavior of what is called a bang-bang or on-off type of controller.
If the input exceeds a particular high or low limit, the output state changes. Otherwise,
it remains in its current state. We’ll take a closer look at this class of controller shortly,
and see where it is commonly used in real-life applications.

Now let’s consider a system where a control action occurs for only a specific period of
time, like a short burst, and in order to realize a continuous control function both the
burst rate and burst duration must be controlled during operation. This is shown in
Figure 9-3.

This type of control is found in various applications, such as the antilock braking sys-
tems on late-model automobiles, and as the control paradigm for the variable-duty-
cycle rocket engines used on robotic planetary landers. In this case the engines are either
on or off, and they can only be active for a certain amount of time before they will need
to be shut down in order to cool off (otherwise, they will overheat and self-destruct).

Note that the ability to perform continuously variable control of a system is a property
of both linear and nonlinear systems. The distinction lies in how the output is manip-
ulated in response to the input in order to achieve control. As we’ll see a little later, the
result of a nonlinear control can be a smooth change in the system response, even
though the output of the controller itself is definitely not smooth and linear.

Basic Control Systems Theory | 307

Sequential Control Systems
A sequential control system is one wherein the controller has a discrete set of states
with inputs and outputs consisting of discrete control signals. The controller might
enable or disable devices that themselves utilize discrete states, or they could be linear
(or nonlinear) subsystems. The main point is that the devices under control will be
either active or inactive, on or off, in a predefined sequence.

Sequential control systems are often found in applications where a series of timed steps
are performed in a specific sequence. An example would be an automatic sprinkler
system. Internally the sprinkler controller is based on a model composed of sprinkler
zones, which typically define groups of commonly plumbed sprinkler heads in certain
areas of a yard (or golf course, park, etc.).

Figure 9-4 shows the timing chart for a five-zone sprinkler system. The system is pro-
grammed to activate each zone at a certain time on a specific day of the week, and to
stay active for some specific duration.

In this example the sequence starts at 2200 hours (10 p.m.) and ends at 0400 (4 a.m.).
A typical automatic sprinkler control system is a form of sequential control that relies
solely on the current time; it has no other inputs to regulate its behavior. It doesn’t
matter if the soil is already damp, or if it is pouring rain; the grass will get watered
anyway at the designated times.

Figure 9-3. Nonlinear pulse control

308 | Chapter 9: Control System Concepts

Terminology and Symbols
Before we get too much further into control systems, we need to have some terminology
to work with, and some symbols to use. Control systems engineering, like any advanced
discipline, has its own jargon and symbols. Table 9-1 lists some of the basic terms
commonly encountered when dealing with control systems.

Table 9-1. Control systems terminology

Term Description

Closed-loop
control

A control system that incorporates feedback from the process or plant under control in order to automatically
adjust the control action to compensate for perturbations to the system and maintain the intended process
output.

Continuous
time

A control system with behavior that is defined at all possible points in time.

Control signal Also referred to as the “output.” This is the signal that is applied to a controlled plant or process to make it
respond in a desired way.

Control
system

A system with the ability to accept an input and generate an output for the purpose of modifying the behavior
of itself or another system. See “System.”

Controlled
output

The response generated by the system as the result of some input and, in a closed-loop control system, the
incorporation of feedback into the system. Designated by the letter u in block diagrams.

Discrete time A control system with behavior that is defined only at specific points in time.

Error The difference between the reference input and the feedback from the plant.

Feedback A type of input into the control system that is derived from the controlled plant and compared with the reference
input to generate an error value via a summing junction. Designated by the letter b in block diagrams.

Gain A multiplier in a system that is used to alter the value of a control or feedback signal. Gain can be changed,
but in a conventional control system it is usually not a function of time. In some types of adaptive or nonlinear
control systems, gain may be a function of time.

Figure 9-4. Sprinkler system sequential control

Basic Control Systems Theory | 309

Term Description

Input Also known as the “reference input” when referring to the controller as a whole; otherwise, it can refer to the
input of any functional component (block) within the controller.

Linear control A control wherein the output is a linear continuous function of the input.

Nonlinear
control

A control wherein the output is not a linear continuous function of the input, but may instead exhibit discrete-
state discontinuous behavior as a result of the input.

Output Typically refers to the output of a controller or a functional component within the controller, not the plant or
process under control (see also “Controlled output”). Designated by the letter c in block diagrams.

Open-loop
control

A control system that does not employ feedback to monitor the effect of the control signal on the plant. An
open-loop control system relies primarily on the inherent accuracy and calibration of the control components
in the system.

Plant An object or system that is to be controlled. Also known as a “process” or a “controlled system,” depending
on the type of device or system being controlled.

Reference
input

A stimulus or excitation applied to a control system from some external source. The reference input represents
the desired output or behavior of the controlled plant. Designated by the letter r in block diagrams. See also
“Input.”

Sampled data Data values obtained at specific intervals, each representing the state of a particular signal or system at a
discrete point in time.

Summing
node

The point in the control system where the feedback signal is subtracted from the reference input to obtain the
error. Can also refer to any point where two or more signals or values are arithmetically combined.

System A collection of interconnected functional components that are intended to operate as a unit.

Some of the alphabetic symbols commonly encountered when working with control
system diagrams are listed in Table 9-2.

Table 9-2. Common control system diagram symbols

Symbol Meaning

b Feedback variable (or signal)

c The controlled output of the system

e The error derived from r – b

K A gain value

r The reference input to the system

u The controlled variable (i.e., the input to the plant)

Control System Block Diagrams
Block diagrams are used extensively in control system design and analysis, so I’d like
to introduce some of the basic concepts here that we will use throughout the rest of
this chapter. Figure 9-5 shows the block diagrams for both an open-loop and a closed-
loop control system, along with typical notation for the internal variables.

310 | Chapter 9: Control System Concepts

Every control system has at least one input, often called the reference input, and at least
one output, referred to as the control signal or the controlled variable. The final output
from the plant is called the controlled output, and in a closed-loop system this is what
is measured and used as the input to the feedback path. The relationship between the
input and the controlled output defines the behavior of the system. In Figure 9-5, the
reference input is denoted by the symbol r, the control signal is u, and the controlled
output is c. The symbols are historical and still in common use, so I’ll use them here
as well.

Input-output relationships

The blocks in a block diagram define processing functions, and each has an input and
an output. There may also be auxiliary input variables for things such as bias or external
disturbances.

The output may or may not be equal to the response implied by the input. Actually, it
is common to find some kind of math going on between the input and the output of a
block, which in Figure 9-5 is indicated by the block labeled “Control Signal Processing.”
Notice that this block has a symbol for its internal function, which in this case is g (or
g1 in the closed-loop system). This might be as simple as multiplication (gain), or

Figure 9-5. Control system block diagrams

Basic Control Systems Theory | 311

perhaps addition (offset). It can also involve integration, differentials, and other oper-
ations. It all depends on how the control signal needs to respond to the input in order
for the system to perform its intended function.

Feedback

In a closed-loop control system, the control signal is generated from the error signal
that is the result of the difference (or sum) of the input and the feedback. The symbol
for the feedback signal is b, and it is generated by the function h(c), where c is the
feedback signal obtained from the output of the controlled plant. The circle symbol is
called the summing node, or summing junction. In Figure 9-5 the b input to the summing
node has a negative symbol, indicating that this is a negative feedback system. It is
possible, however, to have a positive feedback system, in which case the symbol would
be a plus sign.

Transfer Functions
The relationship between the input and the output of a system is typically described in
terms of what is called a transfer function. Every block in a control system block diagram
can denote a transfer function of some sort, and the overall system-level input/output
relationship is determined by the cumulative effects of all of the internal transfer func-
tions. One of the activities that might occur during the design and analysis of a control
system is the simplification of the internal transfer functions into a single overall transfer
function that describes the end-to-end behavior of the system.

Mathematically, a transfer function is a representation of the relationship between the
input and output of a time-invariant system. What does that mean? We’ll get to the
definition of time-invariant shortly, but for now what this is saying is that transfer
functions are applied in the frequency domain and that the functional relationship does
not depend directly on time, just frequency.

In control systems theory the transfer functions are derived using the Laplace trans-
form, which is an integral transform that is similar to the Fourier transform. The primary
difference is that the Fourier transform resolves a signal or function into its component
frequencies, whereas the Laplace transform resolves it into its “moments.” In control
systems theory the Laplace transform is often employed as a transformation from the
time domain to the frequency domain. When working with complex or frequency-
sensitive systems, the Laplace forms of the transfer functions are usually much easier
to deal with and help to simplify the system model.

Although Laplace transforms are widely used, their use is not mandatory. In this chap-
ter I won’t be using Laplace transforms, mainly because much of what we’ll be doing
is very straightforward, and also because we will be working almost exclusively in the
time domain with systems that are slow enough to not have significant issues with
frequency response. For our purposes, basic algebra and calculus will serve just fine.

312 | Chapter 9: Control System Concepts

Time and Frequency
Time and frequency are key components in control system design. Activities occur for
specific periods of time, events might occur at some set rate or at varying rates, and AC
signals have a particular frequency (or a number of frequencies, in complex signals).
The processing operations within a digital control system also require a finite amount
of time, and this too must be accounted for in the system design.

Time and frequency domains

When discussing things such as mathematical functions or electrical signals with re-
spect to time, we are dealing with what is called the time domain. If, on the other hand,
our main concern is analyzing and processing AC signals in terms of frequency, we will
be working in the frequency domain. The two terms refer to how one might perform
the mathematical analysis and modeling of a function within a system, and which one
is more appropriate depends on what one is looking for as a result of the analysis.

These distinctions may apply to an entire system, but they are more commonly applied
to specific subfunctions within a system. For example, a clock or timing subsystem
operates in the time domain, whereas a filter or phase-shifting subsystem operates in
the frequency domain.

One way to think of the distinction between the time and frequency domains is to
consider how you might go about graphing variable data in each domain. Figure 9-6
illustrates what one might expect to see on the displays of an oscilloscope (which we
discussed briefly in Chapter 6) and a frequency spectrum analyzer (FSA).

The important point here is that the oscilloscope operates in the time domain, and the
FSA operates in the frequency domain. The key is what is being used for the x-axis of
the display. With the oscilloscope, the x-axis of the display is time and the y-axis is the
amplitude of the signal at any given point along the x-axis. An oscilloscope can be used
to determine the time interval between waveforms and the amplitude of the waveforms,
but it can’t directly tell you how the component frequencies are distributed within the
signal. For that, you’ll need to use the FSA.

The x-axis of the FSA display is frequency, and in Figure 9-6 it ranges from 0 to 50 KHz.
I’ve shown the display as a vertical bar graph, but there are other ways to generate the
graph. The FSA works by extracting the component frequencies from a signal (perhaps
using a set of discrete filters, or by processing the signal using a Fourier analysis tech-
nique). The result is a set of values representing the relative amplitudes of the compo-
nent frequencies within the signal.

Basic Control Systems Theory | 313

Figure 9-6. Time and frequency domain graphs

We can move back and forth between domains as needed, because time and frequency
are just the inverse of one another. It all depends on your perspective. So, given a signal
with a period of 20 ms between waveforms, its frequency would be the inverse, or 50
Hz. In other words:

f = 1/t

and:

314 | Chapter 9: Control System Concepts

t = 1/f

Another example might be a system where pulses from some type of sensor are arriving
every 500 μs. If we take the inverse of 0.0005 we get 2,000 Hz, or 2 KHz. This is im-
portant to know if we’re thinking of using a data acquisition device with an upper input
frequency limit of 1 KHz.

Time and control systems behavior

The behavior of a control system over time is determined by how time affects its op-
eration. The terms time-invariant and time-variant are used to categorize a system’s
sensitivity to time.

A time-invariant system is one wherein the output does not depend explicitly on time,
and the relationship yt0 = f(xt0) at time t0 will produce the same value for y as the
relationship yt1 = f(xt1) at time t1. In other words, the value of y will always be the same
for any given value of x regardless of the time.

Time-invariant systems, and particularly linear systems (referred to as linear time-in-
variant systems, or LTIs), operate primarily in the frequency domain. Each has an input/
output relationship that is given by the Fourier transform of the input and the system’s
transfer function. An amplifier is an example of an LTI. It doesn’t matter what time it
is when a signal arrives at the input; it will be processed according to its frequency and
the transfer function embodied in the circuitry, and for any given signal an ideal am-
plifier will always produce the same output.

A time-variant system is one that is explicitly dependent on time. Time, in this sense,
may also be a component of velocity (recall that velocity = distance/time), so a system
that is moving is a time-variant system. For example, the autopilot and flight manage-
ment systems in an aircraft must take time and airspeed into account in order to de-
termine the aircraft’s approximate position as a function of both its velocity and its
heading. All of these factors are dependent on time.

Discrete-time control systems

Lastly, we come to discrete-time control systems. This class of control system may be
linear or nonlinear, and it is this type of control that we will be working with directly
when we’re not using a sequential control scheme. Virtually all control systems that
incorporate a computer and software to implement the control and signal processing
are discrete-time systems.

In a traditional analog control system, the relationship between the input and output
is immediate and continuous—a change in the input or the feedback is immediately
reflected in the output. In a discrete linear control system, the input data acquisition
(both reference and error), control processing, and output processing occur in discrete
steps governed by a clock, within either a computer or some other type of digital control

Basic Control Systems Theory | 315

circuitry. To illustrate this, Figure 9-7 shows the block diagram of a discrete-time
closed-loop control system.

In Figure 9-7, the block labeled “Clock” drives some sequential control logic. This could
be a microprocessor, or it could be some software. This, in turn, activates the input,
processing, and output functions in sequence, as indicated by the signals labeled t1,
t2, and t3. It is important to note that just because this is a discrete-time system does
not mean that it is also a time-variant system. In this case, any given set of values for
r and b at any time t will produce the same values for u and c that would be produced
at time t + n, given the same input conditions. It is a discrete-time LTI control.

Figure 9-7. Discrete-time closed-loop control system

There is a technique for modeling and analyzing discrete-time systems,
referred as the z-transform. This is similar in application to the Laplace
transforms used with systems in the continuous domain. When a system
contains a mix of both continuous and discrete components, it is not
uncommon to map from one domain to the other as necessary for the
analysis. We won’t be getting into z-transforms in this book, but I wan-
ted you to be aware of them. What we will be concerned with is discrete
system timing and how it can affect a control system’s responsiveness.

In a discrete-time control system, when data is acquired and when control outputs are
generated or updated is a function of the overall time required for the controller to
complete a full cycle of input, processing, and output activities.

316 | Chapter 9: Control System Concepts

The system under control also has an element of time in the form of a system time
constant. The system time constant is the amount of time required for a change to occur
over some specific range. In other words, small changes (such as noise) may not be of
any concern, but large changes need to be sensed and controlled. How often the control
system will need to go through a complete control cycle is a function of the time con-
stant of the system it is controlling.

Figure 9-8 shows a simplified block diagram of the primary software functions in a
computer control system, which is composed of the three key functions from Fig-
ure 9-7: ADC data acquisition (the “Acquire” block), data-processing algorithms (the
“Process” block), and DAC control output (the “Control” block). In the discrete-time
environment of the computer these steps occur in a fixed order, and each requires a
specific amount of time to execute (as indicated by ta, tp, and to).

Figure 9-8. Control system software flow

There is also a circular symbol that stands for a time delay of duration td. After the
output has been generated, the delay allows the external system to respond before the
process is repeated and new control outputs are generated. The delay time would typ-
ically be “tuned” to accommodate the time constant of the system it is controlling.

Also notice that the diagram shows an endless loop. This is typical of computer pro-
grams for instrumentation applications. Once the steps required for the application
have been defined and implemented, the resulting control program runs in a loop,
repeating the acquire/process/control steps until either the loop or the entire applica-
tion is terminated.

Basic Control Systems Theory | 317

Figure 9-9 shows a timing chart representation of the block diagram in Figure 9-8. Here
we can see that each activity consumes a specific amount of time. When the line is up,
the step is active, and when it’s down, that step is inactive.

Figure 9-9. Control system software timing

In Figure 9-9 the fundamental time constant for the control system, or the control cycle
time, is equivalent to the interval between acquire events. From Figure 9-9 we can see
that:

tc = ta + tp + to + td

This may seem like a trivial equation, but as we will soon see, the values assigned to
these variables can have some profound effects on the system under control. In many
cases the delay will contribute the most to the overall control cycle time, although the
acquisition time can also be a major factor if external devices are slow in responding.

Control System Types
Up to this point we’ve seen only the basic outline of the domain of things called control
systems. In this section we’ll take a look at some specific examples, and apply some of
the concepts and terminology. We’ll start by examining examples of open-loop sys-
tems, then move on to closed-loop controls, sequential controls, and nonlinear
controls. Ultimately we’ll end up at proportional-integral-derivative (PID) controls, the
most common form of closed-loop linear control in use today.

318 | Chapter 9: Control System Concepts

Open-Loop Control
In Chapter 1, an automatic outdoor light was used as an example of a nonlinear open-
loop system. Linear and nonlinear open-loop control systems operate on the basis of a
specific relationship between a control input and the resulting output, and as we’ve
already seen, an open-loop controller has no direct “knowledge” of what the actual
system is doing in the form of feedback. The accuracy and repeatability of the input/
output control relationship is solely dependent on the initial accuracy and calibration
of the components in the system.

A gas stove is a familiar example of the input/output relationship in an open-loop
control system. The amount of heat applied to a frying pan is determined by the gas
control valve on the front of the range top (the control input), and the gas pressure at
the valve might be limited by a pressure regulator somewhere in the line (usually at the
gas meter outside the house). Once the burner is lit it will produce a flame with an
intensity proportional to how the valve is set, but it cannot determine when the pan
reaches some specific temperature and regulate the flame accordingly. Some older
stoves cannot even determine if the burner is actually lit, and will readily spew raw gas
into the kitchen (which is why natural gas has an odor added to it before it is piped to
the customer). It is a linear relationship, more or less, but it is a purely open-loop
relationship. If the operator (i.e., the cook) sets the flame too high, the scrambled eggs
might get a bit too crunchy or the pasta will get scorched. The stove will burn the food
just as readily as it will cook it to perfection.

Open-loop controls are useful for applications where the relationship between the input
and the output is well defined, and where feedback is not critical for acceptable oper-
ation under nominal conditions. However, an open-loop control system cannot re-
spond to continuously changing conditions in the system under control, nor can it deal
with transient disturbances or errors. Manual intervention is necessary to adjust the
operation of the system as conditions change.

Closed-Loop Control
A closed-loop controller employs feedback to achieve dynamic automatic system con-
trol. Closed-loop control systems are also known as feedback control systems, and they
may be linear, nonlinear, or even sequential.

Controlling position—Basic feedback

In a closed-loop feedback control system, one or more sensors monitor the output and
feed that data back into the system to affect the operation of the controlled system, or
plant. In a system that employs negative feedback the objective of the controller is to
reduce the error from the summing node to zero (recall the closed-loop part of Fig-
ure 9-5).

For example, Figure 9-10 shows the water tank control system from Chapter 1.

Control System Types | 319

Figure 9-10. Closed-loop water tank level control

In this system time is irrelevant and the functionality is for the most part linear, so it’s
an LTI-type system. As with the other examples in this chapter, it is assumed that the
control times are slow enough that the frequency response of the system is not a sig-
nificant concern. The level control setting and the level sensor feedback are the sole
inputs to the pump controller.

Let’s take a closer look at this seemingly simple linear system. Figure 9-11 shows the
system in block diagram form, and Figure 9-12 shows a pair of graphs depicting the
behavior of the pump in response to changes in the water level.

The system block diagram includes additional details such as amplifiers with adjustable
gain inputs and an AC power controller for the motor. Since this is a proportional
control system, the amount of gain applied to the amplifiers will determine the re-
sponsiveness of the system (recall Figure 9-1). The gain variables Km and Kf have a
cumulative effect on the system. With the gains set too low, the system will not be able
to command the pump to run fast enough to keep up with outflow from the tank. With
the gains set too high, the water level will tend to overshoot the target level. In this
system, Km is the master gain and Kf is the feedback gain.

The upper graph in Figure 9-12 shows how the level changes as water is drawn off from
the tank. The lower graph depicts the behavior of the pump motor in response to a
change in the water level. There is a direct inverse linear relationship between the water
level and the pump speed.

320 | Chapter 9: Control System Concepts

Figure 9-11. Closed-loop water tank control system details

Figure 9-12. Water tank control system response graphs

Control System Types | 321

This is a positional control system, with the position in question being that of the float
in the tank. When the water level has reached or exceeded a target position, the pump
is disabled. When the float is lower than the target water level, the pump is active. In
other words, the whole point of this system is to control the position of the float. The
pump motor just happens to be the mechanism used to achieve that objective by
changing the water level.

Of course, these graphs are just approximations. In a real system you could expect to
see things like a small lag between a change in the error value and the motor response.
There might also be some overshoot in the water level, and if there was a slow but
steady outflow from the tank the level might tend to oscillate around the fill set-point.
These and other issues can be addressed by incorporating things like a deadband, time
delays, and signal filters into the controller. The gain settings can also play a major role.
Adjusting the gain levels in a control system for optimal performance is referred to as
tuning, and while it probably wouldn’t be too difficult with a system like this, with
other types of control systems it can be a challenge.

Controlling velocity—Feed-forward and PWM controllers

When dealing with systems that involve velocity or speed, the basic closed-loop control
won’t quite do the job without some modifications. The reason is that in a system like
the water tank (Figure 9-11) the objective is to control the position of the water level
in the tank by controlling the position of the float. Once the float has reached the
commanded position, the error goes to zero and the control action stops (ideally).

If we want to control the speed of a device like a DC motor, the control system must
control the voltage input to the motor to maintain a constant output shaft speed, pos-
sibly while handling varying load conditions. Obviously, some kind of feedback is nec-
essary to achieve this, but first consider Figure 9-13, which shows a simple open-loop
DC motor control.

Figure 9-13. Simple open-loop DC motor control

322 | Chapter 9: Control System Concepts

This is a linear control, meaning that the voltage supplied to the motor is a linear
function of the voltage at the input of the DC amplifier (Vin), and the shaft speed
Srpm is proportional to the input voltage to the motor. The amplifier is an essential
component because a typical potentiometer won’t handle the current that a DC motor
can draw, and it can also provide gain if needed.

In its simplest form, the equation for Figure 9-13 would be:

Srpm = MrGVin

where:

Srpm
Is the motor output RPM

Mr
Is the motor’s response coefficient

G
Is the gain of the amplifier

Vin
Is the input to the amplifier

In the open-loop motor control equation, the Mr coefficient indicates that there are
some other factors involving the motor itself. These include the electrical characteristics
of the motor as a function of load and shaft RPM, but for our purposes we can lump
all these into Mr.

If we want to be able to set the motor speed and then have the system maintain that
speed, some type of feedback is required. Assuming that we have some kind of tach-
ometer on the motor shaft that produces a voltage proportional to the motor’s speed,
we can use that as the input to the feedback loop.

An arrangement like the closed-loop control shown earlier in Figure 9-11 can be made
to work, but it would require some tweaking in terms of the gain values for r, b, and
e. Stability is also an issue, and any changes in the load on the motor may result in
oscillations in the shaft output speed. Depending on how the various gains are set, the
oscillations may take a while to die out.

Another solution is to incorporate a feed-forward path in the control system along with
the ability to sense the load on the motor. In a feed-forward type of controller, a control
value is passed directly to the controlled device, which then responds in some deter-
ministic and predictable way. Does that sound familiar? It should. Feed-forward is
essentially an open-loop control scheme like the one shown in Figure 9-13. In fact,
another name for feed-forward is open loop.

Control System Types | 323

To implement a stable velocity control system, we can add one or more feedback loops
for load compensation and speed stability, and use these to adjust the motor’s operation
by summing them with the feed-forward input. This arrangement is shown in Fig-
ure 9-14. Here, the feedback from a DC tachometer (essentially, a small DC generator)
is used to provide stability. The feed-forward input is summed with the velocity error
and feedback from a current sensor to compensate for changing torque loads on the
motor.

Figure 9-14. Feed-forward DC motor velocity controller

The velocity error bvel will converge to zero so long as the motor’s output RPM matches
the reference input. Notice that the reference input is proportional to the speed input.
If the load on the motor should change, bload will act to compensate by adjusting the
voltage to the motor to hold the speed constant (a motor with no load draws less current
at a given RPM than one with a heavy load). Figure 9-15 shows how the error value
evel acts to help stabilize the system.

Another way to achieve velocity control is to use pulses for both the motor control and
the velocity feedback, as shown in Figure 9-16. For motor velocity control, a pulse-
width modulation (PWM) type of control offers better electrical efficiency than a
variable voltage controller. A PWM control is also simpler to implement and doesn’t
require a DAC component to generate the control signal. A pulse-type encoder that
emits one, two, or even four pulses per shaft revolution can be used to determine the
rotation speed of a motor’s output shaft by counting the number of pulses that occur
within a specific time period. As with the PWM output, this is electrically simple, but
notice that a controller of this type, while capable of continuously variable control, is
a nonlinear controller. As such, it is heavily dependent on internal processing to read

324 | Chapter 9: Control System Concepts

the encoder input, determine the output RPM of the motor, and then modulate the
PWM input to the motor to maintain velocity control. The end result is much like what
is shown in Figure 9-3.

Figure 9-15. Error versus command input response

I’ve shown what is involved in a basic motor control so you will have an idea of what
goes into one. These types of controllers are typically implemented as electronic circuits
or microcontroller-based modules. Should you encounter a need to control the speed
of a motor, I would suggest purchasing a commercial motor speed control unit. Fig-
ure 9-17 shows a block diagram with a commercial motor control module.

The commands sent to the motor controller in Figure 9-17 would, of course, be in
whatever format the manufacturer designed into the controller. In general, a motor
controller that accepts ASCII strings will use one character per parameter (direction,
velocity, time, and so on), along with the appropriate numeric data for each parameter.
The use of RS-232 or RS-485 interfaces for communication with the controller is com-
mon, although there are some motor controllers available that are sold as plug-in cards
with bus interfaces.

Control System Types | 325

Nonlinear Control: Bang-Bang Controllers
Bang-bang controllers, also known as on-off controllers, are a very common and simple
type of nonlinear control system. Bang-bang controllers are so named because the con-
trol output responds to a linear input by being either on or off, all or nothing. In pre-
electronic times this type of control might have been built with a control arm moving
between two mechanical stops, which would result in a “bang” each time the arm

Figure 9-16. PWM motor speed control

Figure 9-17. Commercial DC motor controller

326 | Chapter 9: Control System Concepts

moved from the off position to the on position, or vice versa. The thermostat for a
typical residential heating and air conditioning system is the control for a closed-loop
bang-bang control system. The automatic floodlight we looked at in Chapter 1 is an
example of an open-loop bang-bang control system.

Nonlinear control systems often incorporate a characteristic referred to as hysteresis—
in effect, a delay between a change in a control input and the response of the system
under control. The delay can apply to both “ON” actions and “OFF” actions. In me-
chanical terms, one can think of it as a “snap action.” A common example of mechanical
hysteresis can be found in a typical three-ring notebook, with rings that suddenly open
with a “snap” when pulled apart with some amount of force, and then close with a
similar snap when moved back together. If the rings simply opened or closed as soon
as any force was applied, they would be useless.

In a bang-bang controller, hysteresis is useful for moderating the control action. Fig-
ure 9-18 shows the hysteresis found in a common thermostat for an air conditioning
unit. It also shows what would happen if there was no built-in hysteresis in the ther-
mostat: the rapid cycling of the air conditioner would soon wear it out.

Figure 9-18. Hysteresis

Because of the hysteresis shown in Figure 9-18, the air conditioner won’t come on until
the temperature is slightly higher than the set-point, and it will remain on until the
temperature is slightly below the set-point. While this does mean that the temperature
will swing over some range around the set-point, it also means that the unit will not

Control System Types | 327

continuously and rapidly cycle on and off. Without hysteresis the thermostat would
attempt to maintain the temperature at the set-point, which it would do by rapidly
cycling the power to the air conditioner. Generally, this is not a good thing to do to a
compressor in a refrigeration system.

Electromechanical bang-bang controllers are simple, robust devices that rely mainly on
hysteresis in the controller mechanism to achieve a suitable level of responsiveness.
However, if a bang-bang control is implemented in software as a discrete-time control
system, the various time constants in the software will play a major role in determining
how the system responds to input changes and how well it maintains control.

The flowchart in Figure 9-19 shows a simple controller for an air conditioning system.
In this implementation hysteresis is determined by the offset constant H, which is ap-
plied to the set-point variable s. If the sensed temperature (t) is above or below the set-
point with the hysteresis offset applied, the A/C unit will be either powered on or
powered off, respectively.

Figure 9-19. Software bang-bang controller

328 | Chapter 9: Control System Concepts

If we refer back to Figure 9-9 and examine Figure 9-19, we can see that in the overall
scheme of things, times ta, tp, and to in this system should be negligible. What really
counts here is the controller’s cycle time, tc, which is largely composed of the delay
time, td.

The control cycle time should be as short as possible (the meaning of short is relative
to the system under control, and could well be on the order of many milliseconds). This
is a discrete-time control, so it will not have the continuous input response that we
would expect from an electromechanical or analog electronic controller. The input
needs to be sampled fast enough to avoid situations where the controlled output will
overshoot or undershoot the set-point by excessive amounts. With a high sampling
rate, the hysteresis coefficient becomes the dominating factor in determining the
controlled-output duty cycle.

When determining the optimal value for tc, one must take into account the respon-
siveness of the system being instrumented. Figure 9-20 shows the idealized response
of a bang-bang controller with a relatively high control-sampling rate. The timing for
ta, tp, and to is not shown, but we can assume that it’s only a small fraction of tc.

Figure 9-20. Bang-bang control response

The controller’s cycle time and the amount of hysteresis in the system interact to de-
termine the overall control responsiveness of a discrete-time bang-bang controller. In
real applications, a bang-bang controller shouldn’t be used where changes occur rap-
idly, because the controller will be unable to track the changes. If the time interval
between ta and to becomes large relative to the rate of change in the controlled system,
the controlled output may continue to change significantly during that time. This can
result in overshoot and undershoot, possibly exceeding allowable limits.

Control System Types | 329

Sequential Control Systems
Sequential control systems are typically straightforward to implement, and they can
range in complexity from very simple to extremely complex. They are commonly en-
countered in applications where a specific sequence of actions must be performed to
achieve a deterministic result. Earlier, we looked at a simple example of a sequential
control system in the form of an automated sprinkler system. Now I’d like to examine
a slightly more complex and more interesting example.

Figure 9-21 shows a sequentially controlled robotic device. Here we have a mechanism
consisting of a horizontally mounted rail, a fixed-speed electric motor, a couple of limit
sensors, and a tool head of some sort. This system might be used to transfer biological
samples from one station to another, string wires across a frame, or perhaps do some-
thing at one position while another robotic mechanism does something at the other
position.

Figure 9-21. Sequentially controlled robotic system

330 | Chapter 9: Control System Concepts

The mechanism has only one degree of freedom (one range of motion), either left or
right, which in Figure 9-21 is shown as CW (clockwise) or CCW (counterclockwise)
to indicate the rotation of the motor driving the lead screw. It doesn’t keep track of
where the tool head is during travel; it only senses when the tool head is at one of the
stop positions. The stop positions are determined by the physical positions of each of
the end limit sensors.

In Figure 9-21, the motor activity indicated in the timing chart for CW Drive and CCW
Drive has no sharp corners. This is because electric motors have inertia, and it takes
some finite amount of time for the motor to come up to full speed, and some time for
it to come to a complete stop when the power is removed. Notice that the state of the
limit sensors changes as soon as the motor moves the tool off the limit in the opposite
direction, but not when the motor starts, since it may take a little time to move off the
limit sensor. Finally, we can assume that if the system is moving CW it doesn’t need
to check the CCW limit sensor (which should be active), as it’s already there at the start
of the movement. The same reasoning applies to CCW motion and the CW limit sensor.

I mentioned earlier that a sequential control system can often be modeled as a state
machine, and this is shown in the simplified state diagram in Figure 9-22. When the
tool head reaches a limit sensor the motor (and motion) stops, and the system then
waits (delays) for some period of time before sending the tool head back in the opposite
direction. This cycle will repeat continuously until intentionally stopped.

Figure 9-22. Sequential control system states

In a real system, you would also want to incorporate some type of error checking: say,
a timeout to determine if the motor has stalled and the tool head is stuck somewhere
between the two limit sensors. If a fixed-speed motor is used, the time required for the

Control System Types | 331

tool head to move from one station to the other should be consistent to within a few
tens of milliseconds, so you could also put in a time limit for moving the tool head
between station positions. If the limit sensor takes too long to report a stop, there is
probably something wrong that needs attention.

Sequential control systems are common in industrial process environments, and they
are often implemented using programmable logic controller (PLC) devices. State dia-
grams are a common way to describe a sequential control system, and PLC technology
has its own types of diagrams, known as ladder diagrams and sequential function charts
(SFCs). Flowcharts can be used to model sequential systems, but they are actually too
verbose for anything but the most trivial designs.

If you will be implementing sequential controllers, it would be worthwhile to explore
what’s available in terms of diagram methodologies. Personally, I happen to prefer the
SFC-type diagrams. They provide a slightly higher level of abstraction than a ladder
diagram and are much more compact than a flowchart. Figure 9-23 shows an IEC
61131-3–type SFC.

In Figure 9-23, the heavy bars across the lines indicate a gating condition, which is some
condition that needs to be true in order for the execution to proceed down a particular
path. At each step there are actions that can be taken that will provide the inputs to a
subsequent conditional test, or perform some system function.

An important thing to take away from Figure 9-23 is that a sequential controller doesn’t
just perform a series of steps in a fixed order; it can have branches to alternate sequences
as well. In other words, a sequential system can incorporate if-then-type decision
points and conditional loops. A sequential control system can also incorporate feed-
back in a closed-loop fashion.

Proportional, PI, and PID Controls
Proportional control is a key component in linear feedback control systems. A propor-
tional controller is slightly more complex than a bang-bang controller, but it offers
some significant advantages in terms of its ability to automatically accommodate a
changing control environment and provide smooth, continuous linear control func-
tionality. Purely proportional controls do have some drawbacks, though, including
what is known as “droop,” and poor response behavior to sudden changes in the control
input.

We’ve already seen some basic examples of proportional controls (e.g., in Fig-
ure 9-11), but now we’ll look at them in a bit more detail. We will then look at how
the shortcomings of the purely proportional controllers can be dealt with by incorpo-
rating integral and derivative control modes into a system in the form of PI
(proportional-integral) and PID (proportional-integral-derivative) controllers.

332 | Chapter 9: Control System Concepts

Figure 9-23. Example SFC diagram

Control System Types | 333

Off-the-shelf controllers versus software implementation

There are a number of commercial PID controllers available on the market for various
applications. Some are intended specifically for temperature control, some are marke-
ted as pressure controllers, and others are designed for motion control, to name a few
applications. Prices vary, starting at around $100 for an entry-level PID servo controller,
about $400 for an industrial-grade modular temperature controller, and upward of
several thousand dollars for high-reliability industrial-grade units.

So, should you buy a PID controller, or should you write your own in software? The
answer depends on how much you have in your budget for hardware components, what
you have on hand in the way of data I/O devices, and how much time you are willing
to spend implementing a custom PID algorithm and getting it running correctly.

If all you really need is a simple control system with acceptable impulse response, you
might want to consider using something like the example Python code we’ll look at
shortly. On the other hand, if your application needs a high degree of precision with
fast real-time responses, you would most likely be better off purchasing a commercial
controller. I should also point out that if you don’t really need a PI or PID controller
for your application, you might as well save yourself the effort and not use one.

A Real-Life PID Story
Once, long ago, I was working on a servo control in a very large CNC vertical milling
machine. A milling machine is used to cut pieces of aluminum and steel into various
shapes, and they tend to be very large and very, very heavy.

One of the PID servo controllers in the system was having a problem trying to converge
and settle on a commanded position. It would slowly wander back and forth across the
set-point ever so slightly, just enough so that after the machine cut a piece of metal you
could just barely see little ripples in the cut surface. Since this machine was used in a
shop that produced high-precision parts for scientific research, this behavior was not
considered to be acceptable. My job was to figure out if it was noise in the system, a
loose mechanism, or a flaky controller, and then try to eliminate it.

As I was working in the control enclosure on the side of the machine, I accidentally
discovered the problem: a bad solder connection on the suspect servo controller’s cir-
cuit board. Unfortunately, it happened to be in a part of the circuit associated with the
controller’s feedback. The unit did not have a safeguard against a feedback fault, and
I was poking around in a live system. While scrutinizing the suspect part I heard one
of the servos for the machine’s worktable start up at full speed. It had lost its feedback,
and was doing its best to try to run itself out to infinity. Just as I managed to reach up
and slap the emergency stop button on the control panel, the table—all 600 pounds of
it—slammed into the hard end stops on its rails. The mass of the table was great enough
that its inertia took it right through the motion limit switches without even pausing.

There was the loud, sharp sound of heavy metal coming to an abrupt stop, and the
whole two-ton milling machine jumped slightly. Part of that sound was the table’s lead
screw drive nut meeting an untimely end. It just so happened that it was a very expensive

334 | Chapter 9: Control System Concepts

type of drive nut filled with ball bearings, and it shattered. I was showered with hun-
dreds of little ball bearings, and pieces of the shattered drive nut clattered onto the
floor. The machinists in the shop all gathered and stared at the mess, and at me sitting
on the floor staring at the huge steel table hanging above my head while I tried to
comprehend what had just happened. Later, after I’d replaced a one-inch-diameter
stainless steel lead screw (it was bent), the drive nut, the limit switches, the table’s hard
end stops, and the servo controller, the machine behaved fine. For me, it was a valuable
(and expensive) lesson in how not to design a potentially dangerous system, and what
to watch out for when working with live motion controllers.

PID overview

In industrial control applications the most commonly encountered controller type is
the PID, in both linear and nonlinear forms. Linear PID-type controls have been around
in one form or another for over 100 years. In the earliest incarnations they were im-
plemented as mechanical, hydraulic, or pneumatic devices based on levers, gears,
valves, pistons, and bellows. As technology progressed, DC servos, vacuum tubes, and
transistors were used. All of these designs operated in the continuous linear time do-
main. With the advent of computer-controlled systems the analysis and implementa-
tion of PID controls moved into the nonlinear and discrete-time domains, and topics
such as sampling intervals and sample resolution became important design consider-
ations. We’ll start here by looking at the basic theory behind PID controls in the
continuous-time domain. Later we’ll see how a PID control can be implemented in
software by translating it into the discrete-time domain.

A full PID controller is composed of three basic parts, or terms. These are shown in the
block diagram in Figure 9-24.

The output of a PID control is just the sum of three terms:

u = P + I + D

Each has a specific role to play in determining the stability and response of the
controller.

Mathematically, the control function for an ideal PID control can be written as shown
in Equation 9-4.

Equation 9-4.

where:

e
Represents the system error (r – b)

Control System Types | 335

Kp
Represents the proportional gain

Ki
Represents the integral gain

Kd
Represents the derivative gain

t
Represents instantaneous time

u
Is the control output

τ
Is the integral interval time (which may, or may not, be the same as t)

Figure 9-24. PID control block diagram

In practice, though, it’s more common to find the PID equation written like Equa-
tion 9-5.

Equation 9-5.

336 | Chapter 9: Control System Concepts

Equations 9-4 and 9-5 both describe a PID control in the continuous-time domain. The
primary difference between them is that in Equation 9-5 the gain parameter Kc is applied
to all three terms, and the independent behavior of the I and D terms is determined by
Ti and Td, which are defined as the integral time and the derivative time, respectively.
I mention this because you may come across a PID description that uses a single gain
variable, in what is called the standard form (Equation 9-6).

Equation 9-6.

In a PID controller, the proportional term is the primary contributor to the control
function, with the integral and derivative terms providing smaller (in some cases, much
smaller) contributions. In fact, a PI controller is just a PID controller with the D term
set to zero. You can also make a PID controller behave like a purely proportional control
by setting the I and D terms to zero.

The proportional control term

A proportional control is a type of linear feedback control system, and we’ve already
seen some examples of these types of systems (see “Linear Control Sys-
tems” on page 305). What I want to discuss here are some of the shortcomings of
proportional controls as a prelude to the introduction of the I and D terms.

A proportional control works pretty well when the input changes slowly over time and
there are no sudden jumps in the input level or in the feedback from the plant. However,
proportional controls don’t handle sudden changes or transient events very well, and
tend to exhibit overshoot, undershoot, and a reluctance to converge on the set-point
(the reference input) if things are changing too rapidly. This is shown in Figure 9-25
for different values of Kp with a step input.

A step input is useful for control system response analysis, even if it will never be ex-
perienced by a control system in its operational setting. The main thing to take away
from Figure 9-25 is how the gain variable Kp affects the ability of the control to respond
to a quickly changing input and then damp out any swings around the set-point. A high
gain setting will make for a more responsive system, but it will tend to overshoot and
then dither around the set-point for a while. If the gain is set high enough it may never
completely settle, and if the gain is set too high the entire system can go into oscillation.
Conversely, if the gain is too low, the system will not be able to respond to input changes
in a timely manner and it will have significant droop.

Control System Types | 337

Figure 9-25. Proportional term control response

“Droop” is a problematic characteristic of proportional control systems wherein the
output of the controller may never settle exactly at the set-point, but will instead exhibit
a steady-state error in the form of a negative relative offset from the set-point. This is
due largely to the difference between the gain of the controller and the gain of the
process (or plant). Droop can be mitigated by applying a bias to the output of the
controller, or it can be dealt with by using an integral term, as in a PI- or PID-type
controller. Figure 9-26 shows the effect of droop.

Figure 9-26. Proportional controller droop

338 | Chapter 9: Control System Concepts

There are also other external factors that affect how well a proportional control term
will respond to control inputs. These include the responsiveness of the plant, time
delays, and transient inputs.

PI and PID controls

The integral term, also known as the reset, is in effect an adaptive bias. The purpose of
adding the integral term to the output of the controller is to account for the accumulated
offset in the output and accelerate the output toward the set-point. Consequently, the
proportional gain, Kp, must be lowered to account for the inclusion of the I term into
the output.

If we recall that the error is the result of r – b, it should be apparent that the value of
the integral term will increase rapidly when the error is largest, and then slow as the
output converges on the reference input set-point and the error value goes to zero. So,
the effect of the integral term will be to help to drive the system toward the set-point
more rapidly than occurs with the P term alone. However, if Ki is too large, the system
will overshoot, and it may become unstable. The effect of the integral term is dealt with
when the controller is tuned for a particular application.

The derivative term in a full PID controller acts to slow the rate of change in the output
of the controller. The effect is most pronounced as the control output approaches the
set-point, so the net result of the derivative term is to limit or prevent overshoot. How-
ever, the derivative term also tends to amplify noise, and if Kd is too large, in the presence
of transients and noise the control system may become unstable.

When all three terms are active and the controller is correctly tuned, it will exhibit a
response like that shown in Figure 9-27.

Figure 9-27. Tuned PID controller response

Control System Types | 339

Hybrid Control Systems
The distinction between sequential and linear control systems is not always clear-cut.
It is not uncommon to find control systems that are a mix of various paradigms, because
of the different subsystems that are incorporated into them.

Consider the control system one might find in a brewery for beer bottling. Such a system
could be composed of various subsystems. One subsystem might control the bottle
conveyor, and its function would be to ensure that empty bottles appear under a nozzle
at specific times. In order to do this it must control the speed of the conveyor precisely,
taking into account the weight of different bottle styles. Another subsystem might con-
trol the filling operation. It would need to sense when a bottle is under the nozzle and
then dispense a specific amount of beer. The amount of beer to dispense could be a
function of time (valve open for some number of seconds). You can extend this thought
experiment further if you like, and it will soon become apparent that the beer-bottling
part of a brewery is actually a rather complex system, itself consisting of many inter-
related subsystems (some operating as sequential controls, others operating as linear
controls, and perhaps even some nonlinear controls).

Implementing Control Systems in Python
We’ll start off by creating a simple linear closed-loop proportional control function. It
may not look like much, but it has everything a basic proportional control requires.
Next up is a nonlinear control in the form of a basic bang-bang controller. It has enough
functionality to find immediate application as the controller for an air conditioning
system, but it doesn’t handle heating. Adding the ability to control heating as well as
cooling is straightforward, though, and shouldn’t present any significant challenge (it’s
just the inverse of cooling).

Finally, we’ll look at a simple implementation of a basic linear PID controller, and find
out how to translate the PID equation in Equation 9-4 into a discrete-time form that
can be easily coded in Python.

In Chapter 10 I’ll present a simulator that can be used to obtain realistic data and
generate response plots from the output of this function.

Linear Proportional Controller
A proportional controller is straightforward. Recall the basic equation we saw at the
start of this chapter:

u(t) = Kpe(t) + P

We can expand this a bit to explicitly incorporate the summing node with its r and b
inputs, as shown in Equation 9-7.

340 | Chapter 9: Control System Concepts

Equation 9-7.

u(t) = Kp(r(t) – b(t)) + P

Here is the code to implement Equation 9-7:

""" Simple proportional control.

 Obtains input data for the reference and the feedback, and
 generates a proportional control value using the equation:

 u = Kp(r – b) + P

 b is obtained from c * Kb, where c is the output of the
 controlled device or system (the plant), and Kb is a gain
 applied to scale it into the same range as the r (reference)
 input.

 The gain parameters Kp and Kb should be set to something
 meaningful for a specific application. The P parameter is
 the bias to be applied to the output.
"""
local global variables. Set these using the module.varname
external access method.
Kp = 1.0
Kb = 1.0
P = 0

replace these as appropriate to refer to real inputs
rinput = 0
cinput = 1

def PControl():
 rval = AnalogIn(rinput)
 bval = AnalogIn(cinput) * Kb
 eval = rval - bval
 return (Kp * eval) + P

In this example, the function AnalogIn() is just a dummy placeholder. You will need
to replace it, and the rinput and cinput variables, with something that makes sense for
your application.

Bang-Bang Controller
Recall from earlier that a bang-bang controller is a type of nonlinear control wherein
the output is nonlinear, but it is a function of a linear input. In this example we’ll assume
that the nonlinear output response is determined by two set-point values, one high and
one low. When examining the following code, you might wish to refer to Equa-
tion 9-3 as a reference:

import time # needed for sleep

pseudo-constants
OFF = 0

Implementing Control Systems in Python | 341

ON = 1

H = 2.0 # hysteresis range
delay_time = 0.1 # loop delay time

replace these as appropriate to refer to real input and output
temp_sense = 0
device = 0

def BangBang():
 do_loop = True
 sys_state = OFF

 while (do_loop):
 if not do_loop:
 break

 curr_temp = AnalogIn(temp_sense) # dummy placeholder

 if curr_temp <= set_temp - H:
 sys_state = OFF

 if curr_temp >= set_temp + H:
 sys_state = ON

 # it is assumed that setting the port with the same value isn't
 # going to cause any problems, and the output will only change
 # when the port input changes
 SetPort(device, sys_state) # dummy placeholder

 time.sleep(delay_time)

This function maps directly to Equation 9-3, and it will behave as I described earlier,
when we first looked at nonlinear controls. As with the other examples in this section,
it doesn’t have error detection, and it could be extended to include the ability to handle
both heating and cooling. Also, the functions AnalogIn() and SetPort() are dummy
placeholders, and the variables temp_sense and device will need to be replaced with
something that matches the real execution environment.

Simple PID Controller
The first step in creating PID algorithms suitable for use with software is to convert
from the continuous-time domain PID form in Equation 9-4 to a form in the discrete-
time domain.

First, we formulate a discrete approximation of the integral term (Equation 9-8).

Equation 9-8.

342 | Chapter 9: Control System Concepts

In this equation:

e(i)
Is the error at integration step i

i
Is the integration step

Ts
Is the time step size (Δt)

Now for the derivative term (Equation 9-9).

Equation 9-9.

In this equation:

t
Is the instantaneous time

e(t − 1)
Is the previous value of e, which is separated in time from e(t) by Ts

Just remember that we’re now in the discrete-time domain, and the t is there as a sort
of placeholder to keep things temporally correlated.

We don’t really need to do anything with the proportional term from Equation 9-4; it’s
already in a form that can be translated directly into code.

We can now substitute the discrete-time approximations in Equation 9-4 to obtain
Equation 9-10.

Equation 9-10.

In Equation 9-10:

Ti
Is the integral time substep size

Td
Is the derivative time substep size

Ts
Is the time step size (Δt)

While this form does allow for fine-grained control in regard to time in order to generate
better approximations of the integral and derivative term values, it often isn’t necessary

Implementing Control Systems in Python | 343

to divide the overall Ts period into smaller slices for the integral and derivative terms.
If we have a relatively fast control loop and we assume a unit time interval for all terms,
Equation 9-10 can be simplified to Equation 9-11.

Equation 9-11.

The following code listing shows a simple PID controller that implements the unit step
time form from Equation 9-11:

class PID:
 """ Simple PID control.

 This class implements a simplistic PID control algorithm. When
 first instantiated all the gain variables are set to zero, so
 calling the method GenOut will just return zero.
 """
 def __init__(self):
 # initialize gains
 self.Kp = 0
 self.Kd = 0
 self.Ki = 0

 self.Initialize()

 def SetKp(self, invar):
 """ Set proportional gain. """
 self.Kp = invar

 def SetKi(self, invar):
 """ Set integral gain. """
 self.Ki = invar

 def SetKd(self, invar):
 """ Set derivative gain. """
 self.Kd = invar

 def SetPrevErr(self, preverr):
 """ Set previous error value. """
 self.prev_err = preverr

 def Initialize(self):
 # initialize delta t variables
 self.currtm = time.time()
 self.prevtm = self.currtm

 self.prev_err = 0

 # term result variables
 self.Cp = 0
 self.Ci = 0
 self.Cd = 0

344 | Chapter 9: Control System Concepts

 def GenOut(self, error):
 """ Performs a PID computation and returns a control value based
 on the elapsed time (dt) and the error signal from a summing
 junction (the error parameter).
 """
 self.currtm = time.time() # get t
 dt = self.currtm - self.prevtm # get delta t
 de = error - self.prev_err # get delta error

 self.Cp = self.Kp * error # proportional term
 self.Ci += error * dt # integral term

 self.Cd = 0
 if dt > 0: # no div by zero
 self.Cd = de/dt # derivative term

 self.prevtm = self.currtm # save t for next pass
 self.prev_err = error # save t-1 error

 # sum the terms and return the result
 return self.Cp + (self.Ki * self.Ci) + (self.Kd * self.Cd)

Tuning a PID controller by adjusting the values of Kp, Ki, and Kd is often considered to
be a black art. There are several approaches used for PID tuning, including the Ziegler-
Nichols method, software-based automated tuning, and the trial-and-error method.

Here are some general rules of PID behavior that are useful for tuning a controller:

• Kp controls the rise time. Increasing Kp results in a faster rise time, with more
overshoot and longer settling time. Reducing Kp results in a slower rise time with
less (or no) overshoot. The Kp term by itself is subject to droop.

• Ki eliminates the steady-state error (droop). However, if Ki is set too high the con-
trol output may overshoot and the settling time will increase. Ki and Kp must be
balanced to obtain an optimal rise time with minimal overshoot.

• Kd provides a minor reduction in overshoot and settling time. Too much Kd can
make the system unstable and cause it to go into oscillation, but a small value for
Kd can improve the overall stability.

To use the PID control shown previously, you would first instantiate the controller and
set the Kp, Ki, and Kd parameters:

pid = PID()
pid.SetKp(Kp)
pid.SetKi(Ki)
pid.SetKd(Kd)

A simple loop is used to read the feedback, call the PID method GenOut(), and then
send the control value to the controlled device (the plant):

fb = 0
outv = 0

Implementing Control Systems in Python | 345

PID_loop = True

while PID_loop:
 # summing node
 err = sp - fb # assume sp is set elsewhere

 outv = pid.GenOut(err)
 AnalogOut(outv)

 time.sleep(.05)

 fb = AnalogIn(fb_input)

Note that the set-point, sp, must be set somewhere else before the loop is started.
Alternatively, you could call the PID control as part of a larger control loop, which
would then make it possible to change sp on the fly while the system is running:

def GetPID():
 global fb

 err = sp - fb

 outv = pid.GenOut(err)
 AnalogOut(outv)

 time.sleep(.05)

 fb = AnalogIn(fb_input)

The system loop could also perform other functions, such as updating a user interface,
processing acquired data, checking for errors, and so on:

while sys_active:
 # do some stuff
 UpdateUI() # get sp from user
 GetPID()
 # do more stuff

If sp is a global variable in the context of the system loop, the GUI might allow the user
to change it, and GetPID() will use it the next time it is called.

Summary
This has been a very lightweight introduction to control systems theory and applica-
tions, and it is by no means complete. We have only skimmed the surface of the field
of control systems theory and applications. This is a deep topic in engineering, drawing
upon years of experience by an uncountable number of engineers and researchers.

346 | Chapter 9: Control System Concepts

It is my hope that you now have a general idea of what types of control systems can be
built, how they work, and how to select the one that makes sense for your application.

Suggested Reading
If you would like to learn more about control systems and their applications, I would
suggest that you pick up one (or more) of the following books:

Advanced PID Control. Karl Åström and Tore Hägglund, ISA—The Instrumentation,
Systems, and Automation Society, 2005.

If you want to dig deeper into control systems theory, and PID controls in partic-
ular, this book is a good place to start. It covers nearly every aspect of using PID
controllers, and combines discussions of real-world examples with a solid presen-
tation of the mathematical theory behind PID control technology. With chapters
dealing with topics such as process models, controller design, and predictive con-
trol, it is a valuable resource for anyone working with control system technology.

Introduction to Control System Technology, 7th ed. Robert Bateson, Prentice Hall, 2001.
I would recommend this book as a good starting point to learning about control
systems and their applications. The math doesn’t require much more than first-
year calculus, and the author employs numerous real-world examples to help
illustrate the concepts. It also contains extensive definitions of terms in the form
of chapter-specific glossaries and a section on basic electronics.

Computer-Controlled Systems, 3rd ed. Karl Åström and Bjorn Wittenmark, Prentice Hall,
1996.

While it is well written (albeit a bit terse) and contains examples for Matlab® and
Simulink®, this is probably not a book I would recommend as a first read on the
subject of control systems. It is, however, a good reference once you’ve gotten your
feet wet and need to find insight into specific problems. If you work with control
systems on a regular basis (or you’re planning on it), I’d recommend this book as
a handy reference and for advanced study.

Real Time Programming: Neglected Topics, 4th ed. Caxton C. Foster, Addison-Wesley,
1982.

Foster’s book is a short, concise treatment of various topics relevant to real-time
data acquisition and control systems. Well written with a light and breezy style,
the book contains several short chapters dealing with basic control systems theory
using a minimal amount of mathematics. It also covers the basics of digital filters,
signal processing, and constrained communications techniques, among other top-
ics. It has been out of print for a long time, but it is still possible to find used copies.

Suggested Reading | 347

There are also numerous websites with excellent information on control systems, and
even some software available for free. Here are a few to start off with:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1850&rep=rep1&type=
pdf

PDF version of the book Feedback Control Theory, by John Doyle, Bruce Francis,
and Allen Tannenbaum (Macmillan, 1990). It can also be purchased in paperback
form. Oriented toward classical control theory and transfer function analysis, this
book is a good introduction to advanced concepts. Its particular emphasis is on
robust performance.

http://aer.ual.es/modelling/
Home site for a set of excellent interactive learning modules from the University
of Almeria (Spain). Check this out after you’ve spent some time reading through
one of the books cited previously; the interactive applets are very useful for dy-
namically illustrating various control system concepts. The module on PID con-
trols is a companion resource for the book Advanced PID Control. Note that the
commercial site for the Swiss company Calerga Sarl at http://www.calerga.com/
contrib/index.html hosts the same learning modules.

http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page
Karl Åström’s and Richard Murray’s wiki. Contains the complete text of the book
Feedback Systems: An Introduction for Scientists and Engineers (Princeton Univer-
sity Press), along with examples and additional exercises. This is a good introduc-
tion to feedback control systems that doesn’t shy away from the necessary
mathematics. But even if your memories of calculus are a bit fuzzy, you should still
find plenty to take away from this book.

http://www.me.cmu.edu/ctms/controls/ctms/pid/pid.htm
A collection of control system tutorials written for use with Matlab and Simulink.

And, of course, Wikipedia has numerous articles on control systems topics.

348 | Chapter 9: Control System Concepts

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1850&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1850&rep=rep1&type=pdf
http://aer.ual.es/modelling/
http://www.calerga.com/contrib/index.html
http://www.calerga.com/contrib/index.html
http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page
http://www.me.cmu.edu/ctms/controls/ctms/pid/pid.htm

CHAPTER 10

Building and Using Simulators

Is that some kind of a game you are playing?

—C. A. Chung, Simulation Modeling Handbook:
A Practical Approach

So far in this book we’ve covered the basics of programming in Python, reviewed some
essential electronics, and explored the tip of the iceberg of control systems theory.
We’ve covered a lot, to be sure, but there is still one major topic left before we take on
the challenges of actually connecting a computer to an instrument or a control system
and turning it loose: simulation.

In engineering, simulation can be applied to many things, from a simple device to an
entire complex system. In electronics engineering, circuit simulations are used to ex-
plore and analyze analog and digital designs well before an IC is fabricated or a soldering
iron comes into play. Systems engineers build complex simulations of industrial sys-
tems to evaluate various control strategies and process flow models long before the
pipes are laid out and the conveyors are installed. Military and commercial pilots are
trained in realistic aircraft simulators where procedures and techniques can be learned
and practiced with no risk to an actual vehicle or the people in it (or on the ground).

The primary objective of this chapter is to equip you with extensible simulation tools
that you can reuse in other projects later, as well as an understanding of when and
where simulation is useful, and where it is not. To this end, we’ll examine a couple of
complete simulators written entirely in Python. We’ll wrap up by looking at some ways
to leverage commonly available (and free) software tools to create other simulators.

The first example we will consider is a simulation of a generic multifunction device
with both analog and discrete I/O. The second simulator example is an eight-channel
AC power controller. Although the simulators in this chapter will touch on topics such
as data I/O, data capture, and user interfaces, we will defer in-depth discussions of
those topics to later chapters. Chapter 11 will examine data I/O in detail, and in Chap-
ter 12 we will look at some ways to load and save data using files. In Chapter 13 we’ll
explore user interfaces in more detail, including the TkInter and wxPython GUIs. It is

349

my hope that you will take the initiative to return to these simulators and extend their
usefulness with the knowledge you gain later.

What Is Simulation?
If you’ve ever played a video game, you’ve used a simulator. One of the first commer-
cially successful video games, Atari’s Pong, was a simulation (albeit crude by today’s
standards) of a ping-pong game. In fact, all video games are simulations of something—
what they simulate might not actually exist in the real world, but they’re still simula-
tions. By the same token, a simulation of a control system that doesn’t really exist allows
us to try out different novel ideas, invent worst-case scenarios to evaluate system be-
havior, and explore various behavioral models, all without risking any hardware or
jeopardizing personal safety.

The key concept of simulation is that all simulators are based on a model of some sort.
Models can be simple, or they can be complex. A model may be event- or time-series-
based (automated handling of luggage at a large airport), purely mathematical (optical
performance of lenses and mirrors), or some combination of these and other factors.
One way to think of the core model in a simulation is as a dynamic virtual system. If,
for example, you have a high-fidelity simulator for some type of chemical processing
system, there is, in essence, a virtual chemical processing system in the simulation
software that will exhibit as many of the responses and characteristics of the real thing
as the fidelity of the simulation will allow. A truly high-fidelity simulation might even
produce a simulated chemical product.

Figure 10-1 shows how a simulation corresponds to its real-world counterpart. The
instrumentation system (which would typically be what we are developing or testing
in this book) uses a simulated interface to interact with a model. The model allows us
to observe and analyze how the instrumentation software will behave when connected
to a system (in this case, a virtual system). We can implement a crude simulation model
with basic behavior, or we could build something that has a very high degree of fidelity.
We can also inject simulated faults into the model and examine the response of the
instrumentation system.

When implementing data acquisition and control systems, simulations of the devices
connected to the control PC can be used to speed up the development process and
provide a safe environment to test out ideas. Simulation can also provide some invalu-
able, and otherwise unattainable, insights into the behavior of the instrumentation
software and the device or system being simulated. Whether it’s implemented because
the instrumentation hardware just isn’t available yet or because the target system hard-
ware is too valuable to risk damaging, a simulation is a good way to get the software
running, test it, and have a high degree of confidence that it will work correctly in the
real world.

350 | Chapter 10: Building and Using Simulators

Low Fidelity or High Fidelity
When talking about simulation, one of the first considerations to come up is the issue
of fidelity. The fidelity of a simulation defines how accurately it will model a real system.
The cost and effort of implementing a simulation can rise significantly with each in-
crease in the level of fidelity, so you’ll have to decide when it’s good enough and resist
the temptation to polish it up too much.

A common error made when attempting to write a simulator for the first time is to
throw everything into it. Even seasoned pros with access to lots of real data from a real
system don’t usually do this. There are too many unknowns at the outset. Subtle be-
havioral interactions can be surprising and might never have been seen in a real system,
and assumptions made about the more opaque parts of a system may contain all sorts
of traps and pitfalls.

This is why simulations are typically built up incrementally. First, the software inter-
face, or API, is defined. A generic interface may use different names for the API func-
tions, but it should accept and return data that looks as much like real API data as
possible. In other words, the simulation should support the basic algorithmic

Figure 10-1. Simulation versus the real world

What Is Simulation? | 351

functionality of the control or instrumentation system you are building in terms of the
data that needs to pass through the interface. Once the interface simulation is at a point
where it can support initial testing and development, simulation fidelity can be im-
proved as necessary.

That being said, sometimes a low-fidelity simulator consisting of just an API will work
fine. For example, if all you really want to do is verify that a proportional control func-
tion is working correctly, a simple data source to drive the simulation and some way
to capture and save the output may be all that’s necessary.

Simulating Errors and Faults
In addition to simulating the functionality of a working system, a simulation may also
need to have the ability to simulate an error. In other words, it should be able to simulate
being broken in some predefined way.

If you’ve done a failure analysis, as outlined in Chapter 8, you should have an idea of
what types of errors might occur and how they will cause the system to fail. The ability
to simulate those errors allows you to see how well your software will deal with them.

If you do want to include the ability to do fault injection in a simulation,
a preliminary failure analysis is an essential first step.

In general terms, there are two primary classes of faults (not including bugs that may
be lurking in the instrumentation code itself) that come into play: interface faults and
system faults. The line between these two classes of faults isn’t always distinct, but in
a simulated environment it’s usually possible to treat them as separate classes. This, in
turn, makes it much easier to clearly distinguish cause and effect without the complexity
and messiness of dealing with real physical components.

Interface faults

An interface fault results in an error that, as the name implies, occurs in the API layer
between the system under development or in test, and the system simulation behind
it. These types of faults might manifest as communications errors, such as corrupt data
or no response. In other words, an interface fault occurs in between the instrumentation
software and the simulated system. In the real system, errors in the interface might arise
as a result of broken wires, corroded connections, a defective electronic component,
or spurious noise.

Simulating interface faults typically involves things like disabling a communications
channel or injecting random data into a channel. You can also simulate a fault in a piece
of bus interface hardware (e.g., a plug-in I/O card), although this falls into that gray
area I alluded to earlier and may be better dealt with as a system fault.

352 | Chapter 10: Building and Using Simulators

Figure 10-2 shows a diagram of an interface simulation with basic fault injection ca-
pabilities. Notice that the TxD (transmit) output from the instrumentation software to
the instrument simulator doesn’t have a disable capability. This isn’t an oversight. If
the instrument employs a command-response type of control interface, disabling the
TxD link between it and the instrumentation software doesn’t really accomplish much.
The instrument (or simulated instrument) should just sit and wait for a command, and
it won’t have any way to detect whether the link is broken or not.

Figure 10-2. Interface fault injection

The path from the instrument to the instrumentation software is another matter. In
this case, the instrumentation software should be able to detect when it has not received
a response from the instrument and react in a predefined manner.

A reasonable question to ask at this point would be: why not just simulate the disabled
communications in the instrument simulator, instead of using an interface simulation?
The reason is that the instrument, or control system, may interact with some other
component in the system that the instrumentation software can sense even if the pri-
mary link to the instrument is disabled. In other words, clever instrumentation software
can sometimes get verification from another source (e.g., sensing a power state change)
indicating that a correct command action has occurred, and thereby determine that the
interface is the probable cause of the problem.

Figure 10-2 also indicates that both the TxD and RxD (receive) channels have noise
injection capabilities. In the context of a communications channel that handles streams
of ASCII characters, this could involve the injection of random characters to simulate
line noise. Anyone who has ever had to use a modem to communicate with a remote

What Is Simulation? | 353

computer system has mostly likely seen examples of line noise when the modem con-
nects to or disconnects from the remote host.

Instrumentation software that is able to deal with corrupted data will most likely have
the ability to retry an operation, or at least issue a query to determine whether a com-
mand was accepted correctly. It is also possible to determine where the noise occurred
by examining the response from the instrument. If the instrument complains that it
received an invalid command, the noise occurred on the TxD channel from the instru-
mentation software. If the response from the instrument is garbage, the noise is most
likely in the RxD channel to the instrumentation software.

System faults

A system fault is something that arises from within the external system, or perhaps one
of its subsystems (depending on the complexity of the system). The ability to simulate
various system faults increases the value of the simulation, allowing you to exercise and
verify the fault response of the instrumentation software while interfaced with the
simulation.

A system fault can be any number of things, but in a simulator it usually comes down
to a value in a table or the return code from a function. In other words, if the simulator
would normally return an expected value in response to a particular input, simulating
a fault is simply a matter of including some logic to return an invalid value or an error
indication instead.

One approach is to directly inject the fault at the return point of a function or method
in the simulation, as shown in Figure 10-3.

Figure 10-3. System-level fault injection

Assuming that ret_val in Figure 10-3 holds the nominal value that the function or
method would normally return, setting simerr to True will result in the error return
value (err_val) being passed back to the caller instead. The error value could be set via

354 | Chapter 10: Building and Using Simulators

an accessor method, loaded from a fault table, or even entered manually from a user
interface of some sort.

Another approach is to establish a fault condition using a module global variable or an
object variable, as shown in Figure 10-4.

Figure 10-4. Simulator fault injection using object variables

In Figure 10-4, the class definition for SimObject has been designed to specifically ex-
pose key variables used by the methods in the class. In a simplistic scenario these would
be read-only variables, set once at object instantiation and not modified by the class
methods. It is possible to implement a lockout capability to prevent methods from
modifying shared object variables, but that usually entails a level of complexity that’s
not always necessary.

If you’re experienced with unit testing techniques, you might be thinking that all this
sounds rather familiar, and you would be correct (we also discussed this in Chap-
ter 8). In unit testing, a primary objective is to exercise all possible paths of execution
to achieve complete statement coverage. If the unit under test has paths that can be
executed only when an error occurs, the unit test environment must be able to set
variables or coerce inputs to stimulate the appropriate error responses. A simulation
that has fault injection capabilities does much the same thing, although for a somewhat
different reason.

As a test environment, a simulator can be used to create fault scenarios that would
otherwise be difficult (or even near impossible) to replicate with real hardware, at least
not without the possibility of risking some serious (and expensive) physical damage.
Simulation with fault injection allows you to observe the behavior of the control or data
acquisition system you are building to see how it will respond to various error condi-
tions and, if you have been following some requirements that define error responses,
to determine whether it meets those requirements.

What Is Simulation? | 355

Using Python to Create a Simulator
In this section we will examine two complete simulators written in Python: DevSim
and the Simple Power Controller (SPC). Later, we’ll look at some other ways to achieve
simulation using free and open source software. The sources for the simulators are
located in the resource repository for this book, which can be accessed from the book’s
web page. While these are fully functional simulators, they are also only examples, not
production-grade tools. My hope is that you will use them as inspiration, or perhaps
as starting points, to create your own simulator tools to meet your particular needs.

Python is well suited to creating simulators. It is easy to use, very flexible, and allows
you to easily implement things such as plug-in modules. Working simulators can often
be gotten up and running very quickly, and once in place they can be readily extended
and revised as necessary. In addition, Python is capable of some impressive math tricks
when add-on libraries such as SciPy or NumPy are installed, and as we’ll see shortly,
generating graphical output is not that difficult.

On the other hand, Python is not as fast as code written in C or C++. That’s just the
nature of the language and its underlying interpreter. If you need high-speed data gen-
eration and fast responses, you should probably consider another approach. Fortu-
nately, most instrumentation applications have rather long time constants to begin
with, so speed is usually not an issue.

Package and Module Organization
The simulators we’ll examine in this chapter are DevSim and SPC. Each can reside in
its own package (subdirectory). This is how I’ve arranged them, with SPC residing in
the ACSim directory. DevSim imports the FileUtils module that we’ll see in Chap-
ter 12 for reading and writing ASCII data files. It also imports a module called
RetCodes, which contains a set of pseudoconstants for return code values. It is intended
to be a read-only shared file. Typically the FileUtils and RetCodes modules would
reside in a separate package called SimLib, as shown in Figure 10-5, along with any
other modules that your simulators and utilities might need to share.

Figure 10-5. Simulation package structure

356 | Chapter 10: Building and Using Simulators

If you have not already done so, now would be a good time to pause and download the
source code for this book from its website. There’s more there than what you’ll see
here, and it’s all already neatly organized with installation instructions.

Notice that the top-level package, PySims, has a file called __init__.py. This establishes
PySims as the “anchor” of the package hierarchy; it may contain a docstring, package
initialization code, or nothing at all. When we look at gnuplot later, we’ll see how one
developer elected to use __init__.py to handle package initialization.

Data I/O Simulator
First up is a rather substantial simulator that is intended to stand in for a bus-based
multifunction I/O card. Right out of the box it can be used with the PID control code
we saw in Chapter 9 (and I’ll show you how to do that in just a bit). It also has the
ability to incorporate user-defined functions as part of the response data processing,
which is useful for simulating things like mechanical inertia or applying a filter function.

DevSim internals

Although the DevSim API may look daunting, it’s mainly just a collection of accessor
methods to set simulation parameters and return the current values. In its basic form,
it doesn’t actually simulate any particular external device or system. That functionality
is added by you, in the form of user-definable functions or additional software to meet
project-specific needs.

Rather than list it all here (it’s almost 1,000 lines of code), I’m going to describe its
internal structure, list the various methods available, show some highlights, and discuss
how the simulator is used. You should have the source listing handy for reference, if
possible.

Internally, DevSim is the most complex thing we’ve seen so far, but keep in mind that
it’s mostly just data routing. Figure 10-6 is an IC data-sheet-style logic diagram for
DevSim.

Data is buffered as it moves though DevSim, and each activity is synchronized so as to
occur in a lock-step fashion. DevSim is also multithreaded: four threads handle cyclic
functions (waveform generation), another four manage file input, and a ninth thread
handles the simulator’s primary sequencing in a main loop.

Using Python to Create a Simulator | 357

Figure 10-6. DevSim internal logic

The DevSim class’s __init__() method presets the internal parameters to default values,
and then calls the internal method __run() as its final action. The code for __run()
follows:

#---
Simulator launch
#---
def __run(self):
 """ Simulator start.

 Instantiates the main loop thread, sets up the cyclic and
 file I/O threads, and then waits for the start flag to go
 True. When the start flag becomes True the main loop

358 | Chapter 10: Building and Using Simulators

 thread is started.
 """
 # input thread object lists
 cycThread = [None, None, None, None]
 fileThread = [None, None, None, None]

 simloop = threading.Thread(target=self.__simLoop)

 # create the cyclic and file input handling threads,
 # four of each
 for inch in range(0,4):
 cycThread[inch] = \
 threading.Thread(target=self.__cyclic, args=[inch])
 fileThread[inch] = \
 threading.Thread(target=self.__fileData, args=[inch])

 # start the cyclic and file I/O threads just created
 cycThread[inch].start()
 fileThread[inch].start()

 # wait for start signal then start the main thread
 wait_start = True
 while wait_start:
 if self.startSim == True:
 wait_start = False
 else:
 time.sleep(0.1) # wait 100 ms
 simloop.start() # start it up

First, the primary thread, simloop(), is created. Next, the eight input threads are in-
stantiated in a pair of lists. As each thread is created, it is subsequently started. The
__run() method then waits for a start signal, and finally starts the simloop() main
thread.

The simulator is designed to start running when a Boolean variable (startSim) is set to
True. You can set the various parameters before enabling the simulator, or they can be
set “on the fly” while it is running. The simulation is stopped by setting the value of
the Boolean object variable stopSim to True.

The four cyclic threads and the four file input threads each load data into a buffer when
an “event” occurs. In the case of DevSim, an event is simply a flag variable that is set
and reset to control activity; it is not a true event in the sense of a low-level message
such as one would find in a GUI. Figure 10-7 shows how the threads are used to obtain
input data and place it into buffers for eventual routing to the outputs. Notice that the
__cyclic() threads can each select from one of five possible inputs: DC (constant
value), sine wave, pulse (square wave), ramp, and sawtooth. The cyclic data is updated
at a rate set by the parameter accessor setCyclicRate(), and each cyclic input may have
a unique rate value. The cyclic inputs are very useful for generating a fixed DC-like
value or periodic waveforms that the instrumentation software connected to the sim-
ulator can read and process.

Using Python to Create a Simulator | 359

Figure 10-7. Cyclic and file input threads

Using threads for the cyclic inputs allows them to run at different rates than the sim-
ulator’s main thread, and this in turns allows them to create waveform data at specific
frequencies. If they weren’t implemented as threads they would generate changes in
the simulated waveforms at the main loop rate of the simulator, which wouldn’t be
suitable for a lot of situations. Allowing the cyclic data generators to run asynchro-
nously is an example of timing decoupling. The buffers are necessary to capture the
asynchronous data as it is generated.

360 | Chapter 10: Building and Using Simulators

Threads of Execution
Modern operating systems support multiple processes, running more or less at the same
time, by quickly switching the CPU between processes. A process, in this context, refers
to a program and its memory space, its system environment variables, and possibly
whatever I/O resources it is assigned when it is created. These make up the execution
environment of the process, and it can be a lot of baggage for a process to haul around
with it.

A thread, on the other hand, is also sometimes called a lightweight process because
threads typically execute within the context of a parent process. In other words, the
threads within a process share the memory space and execution environment of the
parent process. One way to look at threads of this type is to think of them as functions
that are capable of independent execution. Because they execute in a shared environ-
ment, it is possible for one thread to interfere with the global variables used by another
within the parent process context. This type of data coupling can result in some nasty
data corruption or deadlock situations, so some careful thought needs to go into where
and how threads are implemented.

The __fileData() threads are used to obtain data values from a file and pass them
through to the instrument software under test. This feature allows you to replay a set
of input data over and over again. It is useful when evaluating the instrumentation
software under test against a known set of input values, to observe its behavior.

The main loop thread, shown next, is where all the data is collected and routed to the
output buffers:

def __simLoop(self):
 """ Simulator main loop.

 The main loop continuously checks for input data (either
 from an external caller or from a cyclic source) for each
 input channel. If data is available it starts the
 processing chain that will ultimately result in the data
 appearing in the output buffers.

 The main loop runs forever as a thread. All externally
 supplied data is buffered, and all output data is buffered.
 When running in cyclic mode the output buffers will be
 overwritten with new data as it becomes available.
 """
 while self.stopSim != True:
 # scan through all four input channels, get available data
 for ichan in range(0, 4):
 if self.in_src[ichan] == DS.EXT_IN:
 indata = self.inbuffer[ichan]
 else:
 indata = __getCycData(ichan)

 # if a user-supplied function is defined, then apply
 # it to the data

Using Python to Create a Simulator | 361

 self.databuffer[ichan] = self.__doUserFunc(ichan, indata)

 # fetch file data (if configured to do so)
 self.__getFileData(ichan)

 # step through each output channel, move data as nesc
 for ochan in range(0,4):
 if (self.out_src[ochan] >= DS.INCHAN1) and \
 (self.out_src[ochan] <= DS.INCHAN4):
 outdata = self.databuffer[ochan]
 else:
 outdata = self.filebuffer[ochan]

 randdata = self.__getRandom()

 oscaled = self.__scaleData(outdata, self.outscale[ochan])
 rscaled = self.__scaleData(randdata, self.randscale[ochan])

 self.outbuffer[ochan] = oscaled + rscaled
 self.outavail[ochan] = True

 time.sleep(self.simtime)

Reading through the code for the __simloop() method is equivalent to following the
data flow through Figure 10-6 from left to right. The first step is to get either externally
supplied data (via the sendData() method, described in the following section), or from
one of the cyclic data sources. Next the data is passed to a user-defined function, if one
exists. It is then written to a buffer (databuffer).

If the data input is a file, the data is read from the file and stored in another buffer. Note
that although a method is called, this doesn’t mean that anything will actually happen.
An input method might be quiescent and therefore skipped internally, depending on
how the simulator is configured.

Once the input data is in one of the two input buffers, it is read out and passed to the
output. Along the way random data is obtained (for noise simulation), and the data is
optionally scaled before it is summed with scaled random data. Finally, the data ends
up in the output buffers for each channel.

DevSim methods

The DevSim class contains 26 public methods and 15 internal methods. Most of the
public methods are devoted to setting or retrieving internal parameter values. The
public methods are described in the following lists.

When used, the parameters inchan and outchan may be any channel
number from 0 to 3.

362 | Chapter 10: Building and Using Simulators

Parameter accessor methods:

getCyclicLevel(inchan)
Returns a 2-tuple with either NO_ERR and the current cyclic level of the specified
channel, or BAD_PARAM and None if inchan is out of range.

setCyclicLevel(inchan, level)
Sets the output value for a cyclic source in CYCNONE mode for a specific input chan-
nel. Returns NO_ERR if successful or BAD_PARAM if inchan is out of range.

getCyclicOffset()
Returns the current cyclic offset value.

setCyclicOffset(offset)
Sets the current cyclic offset value for all cyclic data. The offset is the shift of the
peak-to-peak range of the output relative to zero, otherwise known as the bias.

getCyclicRate(inchan)
Returns a 2-tuple with either NO_ERR and the current cyclic rate of the specified
channel, or BAD_PARAM and None.

setCyclicRate(inchan, rate)
The parameter rate defines the cyclic rate in fractional seconds for a specific input
channel. Note that this is the period of the cyclic data, not the frequency. The
frequency is the inverse of the rate. Returns NO_ERR if successful or BAD_PARAM if
inchan is out of range.

getCyclicType(inchan)
Returns a 2-tuple with either NO_ERR and the current cyclic wave shape of the speci-
fied channel, or BAD_PARAM and None.

setCyclicType(inchan, cyctype)
Defines the output wave shape of a cyclic data source. The available wave shapes
are sine, pulse, ramp, and sawtooth. A cyclic source may also be set to generate a
constant output value, and the value may be changed at any time while the simu-
lator is active. This, in effect, emulates a variable voltage source. Table 10-1 lists
the five cyclic data types available.

Table 10-1. Simulator cyclic data types

Cyclic type Data value Description

CYCNONE 0 Constant output level

CYCSINE 1 Sine wave

CYCPULSE 2 50% duty-cycle pulse (i.e., a square wave)

CYCRAMP 3 Ramp wave shape with leading slope

CYCSAW 4 Sawtooth wave with symmetrical rise/fall

Returns NO_ERR if successful or BAD_PARAM if cyctype is invalid or inchan is out of
range.

Using Python to Create a Simulator | 363

setDataFile(infile, path, filename, recycle=True)
Defines and opens a data file for input as a data source specified by the infile
index. If path is not specified (empty string or None), the default path is assumed
to be the current working directory. The input file must contain data in one of the
four formats supported by the ASCIIDataRead class in the module FileUtils.

If the parameter recycle is True, the file will be reset to the start and reread when
an EOF is encountered. The default behavior is to recycle the data file. If a data
source file is already opened for a given input channel and this method is called,
the currently open file will be closed and the new file will be opened.

Returns OPEN_ERR if the file open failed or BAD_PARAM if infile is invalid; otherwise,
returns NO_ERR.

getDataScale(outchan)
Returns a 2-tuple with either NO_ERR and the current data scaling for a specific
channel, or BAD_PARAM and None.

setDataScale(outchan, scale)
Sets the output channel’s input data scaling factor. Each output channel may have
an optional unique multiplicative scaling factor applied. Returns NO_ERR if success-
ful or BAD_PARAM if inchan is out of range.

getFunction(inchan)
Returns a 2-tuple with either NO_ERR and the current function string for the specified
channel, or BAD_PARAM and None.

setFunction(inchan, funcstr=' ')
Applies a user-supplied function expression to the data stream of a specified input
data channel using two predefined variables:

x0
Input data

x1
Previous (1/z) data

The function is a string. It may reference the x0 and x1 variables but may not contain
an equals sign (an assignment). The result is used as the data input to the output
channels. Passing None or an empty string disables the application of a function to
the data. Returns NO_ERR if successful or BAD_PARAM if inchan is out of range.

getInputSrc(inchan)
Returns a 2-tuple with either NO_ERR and the input source for a specific channel, or
BAD_PARAM and None.

setInputSrc(inchan, source)
Selects the data source for an input channel. inchan may be any valid input channel
number from 0 to 3. The source parameter may be one of EXT_IN (default) or
CYCLIC. The input source may be changed on the fly at any time. Returns NO_ERR if
successful or BAD_PARAM if inchan is out of range or source is invalid.

364 | Chapter 10: Building and Using Simulators

getOutputDest(outchan)
Returns a 2-tuple with either NO_ERR and the current output channel data source,
or BAD_PARAM and None.

setOutputDest(outchan, source)
Selects the data source for an output channel. outchan may be any valid output
channel number between 0 and 3. The source parameter may be one of INCHAN1,
INCHAN2, INCHAN3, INCHAN4, SRCFILE1, SRCFILE2, SRCFILE3, or SRCFILE4. Returns
NO_ERR if successful or BAD_PARAM if inchan is out of range or source is invalid.

getRandScale(outchan)
Returns a 2-tuple with either NO_ERR and the current random data scaling multiplier,
or BAD_PARAM and None.

setRandScale(outchan, scale)
Sets the output channel’s random data scaling factor. Each output channel may
have an optional multiplicative scaling factor applied to the random data. If the
scaling is set to zero, no random values are summed into the data. Returns
NO_ERR if successful or BAD_PARAM if inchan is out of range.

getSimTime()
Returns the current simulator cycle time.

setSimTime(time)
Sets the overall cycle time of the simulation. This is, in effect, the amount of time
for which the main loop will be suspended between each loop iteration. The time
is specified in fractional seconds. Returns nothing.

getTrigMode(inchan)
Returns a 2-tuple with either NO_ERR and the current trigger mode for the specified
channel, or BAD_PARAM and None.

setTriggerMode(inchan, mode)
Sets the trigger mode for a particular channel. The trigger mode may be one of
NO_TRIG (0), EXT_TRIG (1), or INT_TRIG (2).

In NO_TRIG mode, all cyclic sources run continuously at the clock rate set by the
setCyclicClock() method, and data source file reads do not occur until an output
channel is accessed.

In EXT_TRIG mode, cyclic sources perform a single operation and file sources are
read once for each trigger occurrence.

In INT_TRIG mode, cyclic sources perform a single cycle and data source files are
read once each time an output channel is accessed.

Returns NO_ERR if successful or BAD_PARAM if inchan is out of range or mode is invalid.

Simulator control and I/O methods:

Using Python to Create a Simulator | 365

genTrigger(inchan)
Generates a trigger event. Depending on the trigger mode, a trigger event will result
in one iteration of a cyclic data source, or one record read from a data input file.
Returns NO_ERR if successful or BAD_PARAM if inchan is out of range.

Input/output methods:

readData(outchan, block=True, timeout=1.0)
Returns the data available for the specified output channel from the output buffer.
If blocking is enabled, this method will block the return to the caller until the data
becomes available or the specified timeout period has elapsed.

Returns a 2-tuple consisting of the return code and the data value from the output
channel. Returns NO_ERR if successful or BAD_PARAM if outchan is out of range. If the
return code is anything other than NO_ERR, the data value will be zero.

sendData(inchan, dataval)
Writes caller-supplied data into the specified channel. The data in the input buffer
will be read on each cycle of the simulator. Returns NO_ERR if successful or
BAD_PARAM if inchan is out of range.

For all its apparent complexity, the simulator really boils down to just two main meth-
ods: readData() and sendData(). Everything else just sets the stage for what will occur
between the inputs and the outputs.

Some simple examples

The following example code demonstrates the data flow from an input to an output in
the simulator. It doesn’t use the optional user function, nor does it apply scaling or
noise to the data:

#! /bin/python
TestDevSim1.py
#
Echos data written into the simulator back to the output.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

from DevSim import DevSim
import SimLib.RetCodes as RC
import DevSimDefs as DS

def testDevSim1():
 simIO = DevSim.DevSim()

 # set up the simulated device
 simIO.setInputSrc(DS.INCHAN1, DS.EXT_IN)
 simIO.setOutputSrc(DS.OUTCHAN1, DS.INCHAN1)

 loopcount = 0
 while loopcount < 10:

366 | Chapter 10: Building and Using Simulators

 simIO.sendData(DS.INCHAN1, (5.0 + loopcount))
 print simIO.readData(DS.OUTCHAN1)
 loopcount += 1

 simIO.stopSim = True # set the stop flag

Referring to the code and to Figure 10-6, the first points of interest are the
setInputSrc() and setOutputSrc() statements. In both method calls, the first parameter
identifies the input or output channel to use and the second parameter specifies where
the data will come from. The first call states that the data for input channel 1 will be
obtained from the channel 1 external input, which occurs when the sendData() method
is called. In other words, it controls the “Input Channel Source Select” (the small two-
input trapezoid symbol in Figure 10-6). The second method call (setOutputSrc()) de-
termines where the data that will appear on output channel 1 will be obtained. In this
case, the selection parameter governs the behavior of the eight-input source selector,
and it specifies input channel 1. Note that input channel 1 could mean either a direct
input from an external source, or one of the internal cyclic data sources. If we follow
the data path in Figure 10-6 we see that it goes through the user function block in the
input side, and then through a scaling block and a summing junction for random data
(noise) on the output side. This example does not use any of those features, so it’s
effectively a straight connection between the input and the output.

The second example uses a data file as the input to the simulator:

#! /bin/python
TestDevSim2.py
#
Reads data from an input file and passes the data to the output. A
data file containing 10 values in ASCII form must exist in the
current directory.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

from DevSim import DevSim
import SimLib.RetCodes as RC
import DevSimDefs as DS

def testDevSim2():
 simIO = DevSim.DevSim()

 # define the source file to use
 rc = simIO.setDataFile(DS.SRCFILE1, None, "indata1.dat")
 if rc != RC.NO_ERR:
 print "Error opening input data file"
 else:
 # set up the simulated device
 simIO.setOutputSrc(DS.OUTCHAN1, DS.SRCFILE1)

 loopcount = 0
 while loopcount < 10:
 # read and print data from file

Using Python to Create a Simulator | 367

 print simIO.readData(DS.OUTCHAN1)
 loopcount += 1

 simIO.stopSim = True

The call to the method setDataFile() defines the data file that will be associated with
the index SRCFILE1. Note that setDataFile() also opens the file, and will return an error
value of OPEN_ERR if the open fails. In this simple example we’re not checking the value
of the error code, except to determine whether it’s anything other than NO_ERR. The call
to setOutputSrc() associates OUTCHAN1 with the data file. Whenever the readData()
method is called, the file is accessed and a single entry is read. The data is then passed
through the eight-input source selector (see Figure 10-6) to the output scaling and
random data summing stages, and finally appears on the output. Calling readData() is,
in effect, a trigger event for the internal data file read operation.

Since there is no scaling and no random data “noise” applied to the values from the
input file, this is basically just a way to open and read a data file. However, it’s also a
useful building block for creating a more complex simulation setup, as shown in Fig-
ure 10-8. Here, DevSim is used to read data from an input file, process the data by
applying a user-defined function and scaling, and then drive some test code with the
resulting stimulus. This is just one way that DevSim can be leveraged to provide en-
hanced test and simulation functionality.

User-defined functions

DevSim incorporates the ability to insert a simple user-defined function into the input
data stream just after the input source selector. A user-defined function is a string con-
taining a valid Python statement. It is processed internally using Python’s built-in
eval() method, and two predefined variables, x0 and x1, are provided. x0 is the current
input data value, and x1 is the last current data value (a 1/z unit delay). You can actually
do quite a bit with just these two variables. The result of the statement evaluation
becomes the output to the eight-channel source selector. If the function string is empty,
it is ignored.

For example, the statement x0 * 2 will multiply the input data by 2; it’s a simple scaling
function. However, the statement (x0/(x0**2))+x1 is rather more interesting. It is an
exponential expression, and given a linear series of input values (say, 0 to 10) it will
generate an output that will produce a graph like the one shown in Figure 10-9.

The main restrictions on what you can do with a user-defined function are as follows:

1. A user-defined function cannot refer to any variables other than x0 and x1.

2. The x0 and x1 variables are read-only (i.e., inputs).

3. A user-defined function cannot contain an assignment.

4. A user-defined function must be a single statement; multiple statements and con-
ditionals are not allowed.

368 | Chapter 10: Building and Using Simulators

Even with these restrictions there is quite a lot that can be accomplished with user-
defined functions, including the simulation of physical characteristics such as inertial
lag or a simple digital filter.

The following example shows how a user-defined function is used:

#! /bin/python
TestDevSim3.py
#
Demonstrates the use of a user-defined function string.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

from DevSim import DevSim
import SimLib.RetCodes as RC
import DevSimDefs as DS

Figure 10-8. DevSim usage example

Using Python to Create a Simulator | 369

def testDevSim3():
 simIO = SimDev.SimDev()

 # set up the simulated device
 simIO.setInputSrc(SimDev.INCHAN1, SimDev.EXT_IN)
 simIO.setOutputSrc(SimDev.OUTCHAN1, SimDev.INCHAN1)
 simIO.setFunction(SimDev.INCHAN1, "x0 * 2")

 loopcount = 0
 while loopcount < 10:
 # send data to simulator
 simIO.sendData(SimDev.INCHAN1, loopcount)

 # acquire data input from simulator with function applied
 rc, simdata = simIO.readData(SimDev.OUTCHAN1)
 if rc != RC.NO_ERR:
 print "SimDev returned: %d on read" % rc
 break

 print "%d %f" % (loopcount, simdata)

 loopcount += 1
 # loop back for more

 simIO.stopSim = True

This example is just the 2x scaling function mentioned earlier.

Figure 10-9. Plot of (x0/(x0**2))+x1

370 | Chapter 10: Building and Using Simulators

Cyclic functions

The cyclic functions of the simulator provide a convenient source of predictable cyclic
data. You have complete control over the wave shape and the timing, so you can, for
example, set up a simulation using the pulse mode to evaluate the response of a control
algorithm. The other cyclic functions might be used to simulate the velocity feedback
from a mechanism, to simulate temperature change over time, or as a source of data to
check limit sensing.

Because the cyclic functions have the ability to run in an asynchronous mode, you need
to make sure that you don’t end up with a situation where the cyclic data is aliased
because the data read rate is too slow, as shown in Figure 10-10. In this case, either the
sample rate needs to be increased or the cyclic rate needs to be decreased so that the
sample data read rate is no less than four times the cyclic rate.

Figure 10-10. Aliased cyclic data readout

Noise

Lastly, there is the random data injection that occurs just before the output. The relative
range, or level, of both the data and the random “noise” are controllable. This allows
you to set the balance between the two. Note that the random data is summed into the
data stream, not simply injected. It won’t allow for the simulation of discrete transient
events, but it does simulate modulation noise, such as might be found in a noisy voltage
source (or a corroded connector).

AC Power Controller Simulator
The next example we’ll look at is a simulation of an eight-channel AC power control
unit of the type often found in large server installations, laboratories, and industrial
facilities. This example is intended to show how a simple command-response-type
instrument behaves, and also to provide some insight into instruments that employ a

Using Python to Create a Simulator | 371

serial interface. The concepts introduced here can also be seen in devices such as laser
controllers, electronic test equipment, temperature controllers, and motion control
units. We’ll also look at how to communicate with a serial interface simulator without
using a second computer and a physical cable.

The SPC model

This simulation models a hypothetical device called the Simple Power Controller (SPC).
It doesn’t have some of the bells and whistles found on real units, such as password
protection, controller unit ID assignment, and so on, mainly because these features
aren’t really necessary to control power. It does, however, simulate the inclusion of
electronic circuit breakers (ECBs) for each AC channel. These are similar to the power
control devices found in aerospace applications. They protect each channel from an
over-current condition and can be reset remotely if necessary.

A diagram of the hypothetical SPC controller is shown in Figure 10-11. As you can see,
it’s rather simple electrically (most devices like this are, actually). The “smarts” of the
unit are contained entirely within its microcontroller.

In Figure 10-11, the blocks labeled SSR are solid state relays, and the microcontroller
could be any suitable device. Notice that the diagram does not show any front-panel
controls, because the simulator won’t be concerned with them. The objective of the
simulator is to emulate the functionality of the microcontroller in terms of the remote
control interface. You are, of course, welcome to add a nice GUI if you wish (we’ll
discuss user interfaces in Chapter 13).

The SPC serial interface and virtual serial ports

Unlike the DevSim simulator with its API, the SPC simulator uses a serial interface. It’s
a simple 9,800-baud N-8-1–type interface that is implemented using the pySerial li-
brary, which we will examine in detail in Chapter 11. For now we can assume that
pySerial provides all the necessary functionality to open a serial port, set the serial port
parameters, and read and write data.

There’s a catch to using a simulator that employs a serial interface, and that is inter-
facing with it. One way is to use two computers with a null-modem cable between them
(as shown in Chapter 7), but a second computer is not always a viable option, and some
machines don’t even have a serial port available (such as notebook and netbook PCs).

The solution is to use what are called “virtual ports” to create a link between two
applications that utilize a serial interface. One such utility for the Windows environ-
ment is Vyacheslav Frolov’s com0com package. You can download it from http://
com0com.sourceforge.net.

372 | Chapter 10: Building and Using Simulators

http://com0com.sourceforge.net
http://com0com.sourceforge.net

Figure 10-11. AC simulator block diagram

com0com works by creating a pair of virtual serial ports configured as a null-modem
connection. You can assign standard names to the ports when they are created in order
to accommodate applications that can only deal with names like COM1, COM2,
COM3, and so on, and from an application’s perspective these ports will behave exactly
like real physical interface ports. You can set the baud rate, query the status, and in
general do just about anything that can be done with a normal serial port. Fig-
ure 10-12 shows how instrumentation software can communicate with a serial
interface–type simulator using two virtual serial ports.

Linux users can instead use tty0tty, which is available from http://tty0tty.sourceforge
.net. It’s rather minimal, and the documentation is somewhat thin, but the user-level
version worked just fine for me on Ubuntu 10.04 after compilation.

Using Python to Create a Simulator | 373

http://tty0tty.sourceforge.net
http://tty0tty.sourceforge.net

Figure 10-12. Using com0com

Communicating with SPC

There are basically two ways to interact with the SPC simulation: directly via a terminal
emulator, or by way of instrumentation software. If you just want to manually exercise
the simulator, you will need some way to send commands and view the responses. The
tool of choice here is a terminal emulator. It doesn’t really matter what terminal emu-
lator you use, so long as you can configure it to use the virtual serial ports that com0com
(or tty0tty) creates.

On Windows 2000 and XP systems you can use the venerable Hyperterm or you may
wish to check out Tera Term (which we’ll look at shortly), and on Linux the minicom
emulator is available. If you are using Windows Vista or Windows 7, you will need to
look around for a terminal emulator, but there are many available. When using a ter-
minal emulator and virtual serial ports the setup will be basically the same as that shown
in Figure 10-12, but with “Instrument Software” replaced by “Terminal Emulator.”

The SPC command set

SPC utilizes 10 simple commands to control outputs, check status, and set configura-
tion parameters. All commands are three characters in length, with no exceptions, and
all commands take at least one parameter. The commands are listed in Table 10-2.

Table 10-2. SPC commands

Command Parameters Description

ALL state Enables or disables all eight AC channels at once

POW ch, state Sets the power state of a specific channel to either On or Off

SEQ state Starts either a power-up or a power-down sequence

374 | Chapter 10: Building and Using Simulators

Command Parameters Description

STM time Sets the delay time between sequence steps, in milliseconds

SOR ch, ch, ch, ch, ch, ch, ch, ch Defines the power-up and power-down sequence

SEM mode Sets the sequence error-handling mode

CHK ch Returns the on/off status of a specific channel or all channels

ECB ch Returns the OK/error status of a specific ECB or all ECBs

LIM ch, amps Sets the ECB current limit for a specific channel

RST ch Resets the ECB for a specific channel

Command descriptions

Here are a few general notes on the SPC commands:

• All commands require at least one parameter. There are no zero-parameter
commands.

• Channels are identified by ASCII digits between 1 and 8, inclusive. The value 0 is
used to indicate all channels with the CHK command.

• The ASCII digits 1 and 0 are used to indicate On and Off, respectively, for the
ALL and POW commands, and startup and shutdown for the SEQ command.

• The sequence mode command, SEM, takes a single ASCII digit (0, 1, or 2) to indicate
the mode selection.

• Time and current limit values used with the STM and LIM commands are whole
integer values in ASCII form, and are limited to two digits (0 to 99) for current limits
(in amps) and three digits (0 to 999) for time (in seconds).

• The SOR command takes a comma-separated list of one to eight channel numbers.

• All commands return a response; there are no silent commands. Command re-
sponses are either 1 or 0. A 1 indicates either On or OK, and a 0 indicates either
Off or an error.

Now, let’s take a closer look at the commands:

ALL state
Enables or disables all eight AC channels in sequence order without a dwell delay.

The state parameter may be 1 (On) or 0 (Off).

Responds with 1 (OK) if successful, or 0 (error) if the ECB is tripped for any channel
at power-up. Returns immediately (does not wait for command completion).

POW ch, state
Sets the power state of a channel to either On or Off.

ch is a channel number, and state may be 1 (On) or 0 (Off).

Responds with 1 if successful, or 0 if the ECB is tripped at power-up or some other
error occurred. Waits for command completion before returning.

Using Python to Create a Simulator | 375

SEQ state
Commands the controller to start either a power-up or power-down sequence. If
no sequence order has been defined using the SOR command, the startup order will
be from lowest to highest and the shutdown order will be the inverse.

The parameter state may be 1 (startup) or 0 (shutdown).

Responds with 1 if successful, or 0 if the ECB is tripped for any channel at power-
up. Returns immediately (does not wait for command completion).

STM time
Sets the amount of time to pause between each step in a power-up or power-down
sequence. The default pause time is 1 second, and the time is specified as an integer
value.

Responds with 1 if successful, or 0 if the time value is invalid.

SOR ch, ch, ch, ch, ch, ch, ch, ch
Defines the startup and shutdown sequence order. Shutdown is the inverse of
startup. The list may contain from one to eight channel ID entries. Any channel
not in the list will be excluded from sequencing, and unused list positions are
marked with a 0.

Responds with 1 if successful, or 0 if a sequence parameter is invalid.

SEM mode
Sets the error handling for power-up sequencing, where mode is defined as follows:

0
Normal (default) operation. If the ECB for any channel trips, the controller
will disable power to any channels that are already active, in reverse order.

1
Error hold mode. If the ECB for any channel trips, the controller will halt the
startup sequence but will not disable any channels that are already active.

2
Error continue mode. If the ECB for any channel trips during a startup se-
quence, the controller will continue the sequence with the next channel in the
sequence list.

Responds with 1 if successful, or 0 if the mode is invalid.

CHK ch|0
Returns the on/off/error status of channel ch as either 1 or 0. If ch is set to 0, the
statuses of all eight channels are returned as a comma-separated list of channel
states. Also returns a 0 character for a channel if that channel’s ECB is tripped. Use
the ERR command to check the ECB state.

ECB ch|0
Returns the ECB status of channel ch as either 1 (OK) or 0 (error). If n is set to 0,
the ECB statuses of all eight channels are returned as a comma-separated list of
states.

376 | Chapter 10: Building and Using Simulators

LIM ch|0, amps
Sets the current limit of the ECB for channel ch. If 0 is given for the channel ID, all
channels will be assigned the limit value specified by amps.

Responds with 1 if successful, or 0 if the channel ID or current limit value is invalid.

RST ch
Attempts to reset the ECB for channel ch.

Responds with 1 if successful, or 0 if the ECB could not be reset.

SPC simulator internals

The SPC is a simple command-response-type device. It will never initiate communica-
tions with the host system. This means that it can be effectively simulated using a simple
command recognizer. Also, since the SPC is a discrete state-based simulator, it needs
a set of data to define the state of each of the power control channels. How and when
a channel transitions from one mode to another is determined by the commands de-
scribed in the previous section. Figure 10-13 shows the internal data that the SPC sim-
ulator needs in order to model a physical system.

Figure 10-13. SPC internal data

The sequence control data objects apply to all channels, and each channel has three
attributes: power state (1 or 0), ECB state (1 or 0), and a current limit for the channel’s
ECB.

Using Python to Create a Simulator | 377

Next up is the command recognizer, which is very simple:

 def Dispatch(self, instr):
 cmdstrs = instr.split()

 if len(cmdstrs) >= 2:
 if len(cmdstrs[0]) == 3:
 if cmdstrs[0].upper() == "ALL":
 self.SetAll(cmdstrs)
 elif cmdstrs[0].upper() == "POW":
 self.SetPower(cmdstrs)
 elif cmdstrs[0].upper() == "SEQ":
 self.SetSeq(cmdstrs)
 elif cmdstrs[0].upper() == "STM":
 self.SetSTM(cmdstrs)
 elif cmdstrs[0].upper() == "SOR":
 self.SetOrder(cmdstrs)
 elif cmdstrs[0].upper() == "SEM":
 self.SetSEM(cmdstrs)
 elif cmdstrs[0].upper() == "CHK":
 self.ChkChan(cmdstrs)
 elif cmdstrs[0].upper() == "ECB":
 self.ChkECB(cmdstrs)
 elif cmdstrs[0].upper() == "LIM":
 self.SetLimit(cmdstrs)
 elif cmdstrs[0].upper() == "RST":
 self.RstChan(cmdstrs)
 else:
 SendResp("ER")
 else:
 SendResp("ER")
 else:
 SendResp("ER")

After a command is received, the method Dispatch() is called. The incoming string
from the host system is split into a list, which should contain two or more elements.
The first element should be the command keyword. The number of parameters after
the keyword will vary depending on the command, but no command has zero
parameters.

When the command is decoded, one of 10 utility methods is called to write data into
the internal data table, get data from the table, and invoke the channel control to per-
form the commanded action (if it’s not just a status query). Notice that there is a com-
mand utility method for each command.

Figure 10-14 shows the message sequence chart (MSC) for a typical command-response
interaction with the SPC simulator.

There are two possible return paths from the SPC command processor back to the host
(the terminal emulator or instrumentation software), depending on the command.
Some commands provide an immediate response and do not wait for the channel con-
trol logic to complete an activity. Other commands will wait and then return an indi-
cation of success or failure.

378 | Chapter 10: Building and Using Simulators

Configuring the SPC

The SPC simulator uses a configuration file, also known as an “INI” file, to hold various
configuration parameters that are read in at startup. Here is what spc.ini might look like:

[SPC]
SPORT=COM4
SBAUD=9600
SDATA=8
SPAR=N
SSTOP=1
ECB1=2.5
ECB2=2.5
ECB3=5.0
SOR=[3,2,1,4,5,8,7,8,6]
STM=2.0
SEM=0

The values from the INI file will be loaded into the internal data table, but they may be
overwritten with new values using the SPC commands. Parameters not defined in the
INI file will assume their default values.

Interacting with the SPC simulator

When the SPC simulator is started, it will first attempt to open the serial port defined
in the INI file. If successful, it will start its primary loop and wait for incoming com-
mands. When the SPC receives a carriage return (CR) and nothing else, it will return
the prompt character (>). Here’s an example session that enables power channel 1:

Figure 10-14. SPC command-response MSC

Using Python to Create a Simulator | 379

> CHK 0
[0, 0, 0, 0, 0, 0, 0, 0]
> POW 1, 1
1
> CHK 0
[1, 0, 0, 0, 0, 0, 0, 0]

To use the SPC simulator with instrument software, the first step is to get the SPC’s
attention. Something like the following code snippet should suffice (we’ll assume that
a serial port is already open and referenced by the sport object):

gotprompt = False
last_time = time.time()
MAXWAIT = 5.0

while True:
 sport.write("\r")
 instr = sport.read(2)
 if instr=="> ":
 gotprompt = True
 break
 if time.time() - last_time > MAXWAIT:
 break
 time.sleep(0.5)

This snippet will send a carriage return character every 500 milliseconds until the SPC
responds or five seconds has elapsed, whichever comes first. When the SPC responds
with a prompt, it exits the loop, and the system is ready to communicate.

Using the SPC as a framework, you can create a simulator for just about any simple
device or instrument with a serial control interface. The SPC simulator also shows how
a simulation can be used to evaluate a device or instrument that does not (yet) exist in
the real world. There is no substitute for working with a live system, be it real or si-
mulated, to get a feeling for what it can, and cannot, do.

Serial Terminal Emulators
When working with instruments and subsystems that employ a serial interface, it is
sometimes possible to repurpose some commonly available tools to create a perfectly
usable simulator.

One such tool for Windows systems is called Tera Term; this is the tool I will focus on
in this section. Originally written by T. Teranashi in the mid-1990s (and last updated
in 1999, when version 2.3 was released), Tera Term supports Telnet logins as well as
serial I/O, but the original release of 2.3 does not support SSH.

Although there is no longer a big demand for serial terminal emulators, and Tera Term
is getting rather dated, it has something that makes it particularly interesting: a powerful
scripting language. When combined with a tool such as com0com, it is possible to use
Tera Term to create a respectable simulation of a serial I/O instrument and

380 | Chapter 10: Building and Using Simulators

communicate with it from your instrumentation software during development and
testing. Tera Term works well at the other end of the communications link as well, and
I’ve used it as a functional test driver for an embedded imaging system and a laser
interferometer system, among other applications. Of course, I have also used it many
times as just a terminal emulator.

You can download Tera Term and get more information about it from http://hp.vector
.co.jp/authors/VA002416/teraterm.html. The source code is freely available, and there
are some add-ons available as well. Check the website for details.

Installing Tera Term is easy. After downloading the archive, unzip it into a temporary
location. Then find and run the file setup.exe. This will install Tera Term in c:\Program
Files\TTERMPRO (unless you specify a different location). After the installation is
complete, you can delete the contents of the temporary directory.

The installation will create a subsection in the Windows Start→Programs menu called
“Tera Term Pro.” You can use the right mouse button to drag the program icon labeled
“Tera Term Pro” out onto the desktop and create an icon. Tera Term is known to work
with Windows 2000 and Windows XP.

Almost all Linux installations come with a serial terminal emulator tool called mini-
com, and there are other emulators available as well. Some like, minicom, are rather
limited in terms of their scripting capability, whereas others are more feature-complete.
I tend to view Tera Term as a model of what a free and open source serial terminal
emulator should be able to do, so I will stick to that for the rest of this discussion. If
you are using a Linux system, by all means explore the options available to you. Given
the huge amount of software available for Linux, I’m sure there is something that will
meet your needs. In any case, after seeing what Tera Term can do you should have
some idea of what to look for.

Using Terminal Emulator Scripts
The main focus of terminal emulator scripts is the conditional test. In other words: if
something is this, then do that, else do another thing. Although a terminal emulator may
have a lot of bells and whistles, a basic script to dial a number and announce a con-
nection boils down to something like this:

:dial
send string "555-1212"
if busy then goto dial
wait connected
if connected print "CONNECTED"
if not connected print "ERROR - COULD NOT CONNECT"
exit

If we accept that the wait statement is actually a form of IF-ELSE statement, we can see
that this simple script is really just a sequence of conditional tests.

Serial Terminal Emulators | 381

http://hp.vector.co.jp/authors/VA002416/teraterm.html
http://hp.vector.co.jp/authors/VA002416/teraterm.html

I’m making a point of this because once you understand the paradigm behind the
scripting languages employed in terminal emulators it becomes much easier to leverage
these tools into roles for which they were never originally intended.

The Tera Term scripting language (Tera Term Language, or TTL as the author calls it)
is a full-featured language that not only provides the basic commands for handling
IF-THEN decisions in a communications context, but also includes commands for gen-
erating dialog windows, writing data to files, reading from files, string conversions, and
executing external applications. The language provides flow control statements such
as IF-THEN (plus ELSEIF and ELSE), FOR, and WHILE. It does not have a complete set of
math functions, and it supports only two data types: integers and strings. But, given
what it was originally intended to do, this makes perfect sense, and it really isn’t a major
hurdle. You can view the online documentation included with Tera Term by selecting
the Help menu item (there is no user manual). Note that the main help display refers
to the scripting facility as “MACRO.”

Here is the connection test for the SPC that we saw earlier in Python, translated into
TTL:

waitcnt = 0

:connect
; check for max attempts
if wantcnt > 9 then
 goto noconnect
endif

send ""
recvln
; recvln puts its return into "inputstr"
strcompare inputstr "> "
; strcompare sets "result" based on the comparison
if result = 0 then
 goto start
else
 ; pause only uses whole numbers
 pause 1
 ; jump back and try it again
 goto connect
endif

:start
; skip over the error dialog display
goto endconnect

:noconnect
messagebox "SPC not responding" "Error"

:endconnect
; at this point the user can start entering commands

382 | Chapter 10: Building and Using Simulators

If you’ve ever worked with BASIC, or the so-called batch files on an MS-DOS or Win-
dows system, this should look familiar. Tera Term’s TTL does support subroutines
(CALL-RETURN), and it has a perfectly usable WHILE statement, but I elected not to use
them in this example.

Like most terminal emulators, Tera Term handles only one external connection at a
time, so it’s not really possible to employ Tera Term as the control logic in an instru-
mentation system (at least not easily—this can be done using external programs and
data files). Where Tera Term is useful is in creating a simulation of an instrument or
device for a Python instrumentation application to communicate with. One could, in
fact, implement the SPC simulator entirely in TTL using Tera Term. Almost any other
simple instrument with a serial interface could also be a candidate for simulation using
Tera Term.

Tera Term is also useful for driving other systems for repetitive testing. In fact, during
the development of the image acquisition and processing software for a space probe,
Tera Term was used to push tens of thousands of test images through the image com-
pression software and log the results of each test. It worked flawlessly, and generated
a mountain of data to sift through.

Displaying Simulation Data
A simulation can generate a lot of useful data, but just looking at a file with a list of
numbers isn’t as intuitive as seeing a graph of the data. In this section I will show you
how to use the data generated by a simulator to create interesting and useful graphical
output in the form of data plots.

We’ll focus on gnuplot, a venerable tool that has been available for Unix and Linux
systems for many years. There is also a Windows version available, and both can work
with Python to display dynamically generated data. Later, in Chapter 13, we’ll look at
user interfaces and more sophisticated ways to generate graphical output, but this is a
good place to begin.

gnuplot
gnuplot is a powerful and well-established graphical plotting tool that is capable of
generating graphical output ranging from simple line graphs to complex data visuali-
zations. Although it was originally developed for Unix, there is a Windows version
available as well. gnuplot has a serviceable built-in command-line-style user interface
and the ability to load plot command and data files. It can also use so-called pipes for
its command input, thus allowing other applications to drive the plot display. This
section briefly describes two methods to allow Python programs to send data and com-
mands to gnuplot for display. The first is a simple demonstration of Python’s popen()
method. While this method is straightforward and easy to implement, it does nothing
to assist you with gnuplot; it just sends commands. Consequently, the programmer

Displaying Simulation Data | 383

http://www.gnuplot.info

needs to have a good understanding of the gnuplot application and its various command
and configuration options. The second method uses Michael Haggerty’s gnuplot.py
package, which implements a wrapper object for gnuplot that handles some of the
details of the command interface for the programmer. The documentation for gnu-
plot is contained in a set of HTML pages included with the distribution, and is also
available online at http://gnuplot-py.sourceforge.net/doc/Gnuplot/index.html.

The first step is to install gnuplot, if it isn’t already installed on your system. If you’re
running Linux, there’s a good chance it’s already available. If it isn’t, a quick session
with a package manager (apt-get, rpm, synaptic, etc.) can be used to do the installation.
If you’re running Windows, you’ll need to download the gnuplot installation package
from SourceForge. If you are so inclined, you can also download the source code and
build it from scratch (not recommended unless you really know what you’re doing and
your system doesn’t have a package manager tool available). The current version of
gnuplot (at the time of publication) is 4.4.2. It is available from http://gnuplot.source
forge.net.

Installing gnuplot on Windows

I will assume that Linux users will install gnuplot using a package manager, so I won’t
describe the process here. This procedure applies only to Windows users.

If installing the support packages for the first time, perform the setup in the following
order:

1. Unzip the archive file gp440win32.zip to your C: drive, or somewhere else where
you would like it to live permanently. You might even put it under “Program Files”
on the C: drive. A directory called gnuplot will be created when the archive is
unzipped.

2. Open the environment variables dialog (on Windows 2000 and XP) by using
Settings→Control Panel→System→Advanced→Environment Variables, or right-
clicking on the “My Computer” icon on the desktop and selecting “Properties.”
Set the GNUPLOT environment variable (as a system variable, not a user variable) to
refer to the directory binary in the gnuplot directory structure. See the INSTALL
file in the gnuplot directory for more information about the various environment
variables available.

Using the Environment Variables dialog, put the gnuplot\binary directory into the
Windows search path (the PATH environment variable). For example, if you put
gnuplot in the root of the C: drive, you would add C:\gnuplot\binary to the search
path string. Note that entries in the path string are separated by semicolons.

3. Optionally, you can also create an icon on the desktop to launch gnuplot using the
file wgnuplot.exe. Make sure that the “Start in” parameter refers to the gnuplot
\binary directory (right-click on the icon and select Properties from the menu that
appears).

384 | Chapter 10: Building and Using Simulators

http://gnuplot-py.sourceforge.net/doc/Gnuplot/index.html
http://gnuplot.sourceforge.net
http://gnuplot.sourceforge.net

4. Look through the documentation found in the directory gnuplot\docs, and the file
gnuplot-4.4.0.pdf in particular. Also read README.windows, located in the root
directory of the gnuplot directory tree.

The gnuplot package for Windows contains the following executable files:

wgnuplot.exe
A Windows GUI version of gnuplot. Provides the same command-line console in-
terface as the non-GUI version, but uses a GUI text-editor-type display for the
command line and includes a menu bar and buttons to click for common
operations.

wgnuplot_pipes.exe
Same as wgnuplot, but with the advantage of support for internal pipe specifications
of the form:

plot `<awk -f change.awk data.dat`

gnuplot.exe
The classic text (console) interface version of the gnuplot executable, with all the
associated pipe functionality as found on other platforms. This means that this
program can also accept commands on stdin (standard input) and print messages
on stdout (standard output). This is the preferred executable to use when integrat-
ing gnuplot with other programs, such as Python applications.

pgnuplot.exe
A “helper” program that will accept commands on stdin (standard input) and pipe
them to an active (or newly created) wgnuplot.exe console window. Command-line
options are passed on to wgnuplot.

wgnuplot is what you would typically put on the Windows desktop as an icon, and
gnuplot is what a Python program would open when creating a pipe.

Using gnuplot
As I stated earlier, we are going to look at two ways to interface with gnuplot from a
Python application. The first is simple, but requires a solid grasp of the gnuplot com-
mand set. The second method handles a lot of the details for you, but it also hides some
of those command details from you, and it implements someone else’s notion of what
a Python-gnuplot interface should be. It’s up to you to pick the path of least resistance
to accomplish your objectives, and you should at least skim through the available doc-
umentation for gnuplot and gnuplot.py before deciding which method makes the most
sense for your application.

Displaying Simulation Data | 385

Method 1: Using Python’s popen() method

If you want to be able to use a pipe to send commands to gnuplot running under Win-
dows, you must use the gnuplot version, not wgnuplot. This is because Windows GUI
applications (such as wgnuplot) do not accept input from stdin. You can tell Python to
use gnuplot when creating the pipe using popen(). Alternatively, you can use pgnuplot
to achieve the same results with wgnuplot. On a Linux system this is not an issue (there
are no wgnuplot or pgnuplot binaries).

The following example, gptest.py, will launch gnuplot and display a series of plots:

#! /usr/bin/python
gptest.py

import os
import time

f=os.popen('gnuplot', 'w')

print >> f, 'set title "Simple plot demo" 1, 1 font "arial, 11"'
print >> f, 'set key font "arial, 9"'
print >> f, 'set tics font "arial, 8"'

print >> f, "set yrange[-20:+20]"
print >> f, "set xrange[-10:+10]"
print >> f, 'set xlabel "Input" font "arial,11"'
print >> f, 'set ylabel "Output" font "arial,11"'

for n in range(100):
 # plot sine output with zero line (the 0 term)
 print >> f, 'plot sin(x * %i) * 10, 0' % (n)
 time.sleep(0.1)

f.flush()

pause before exit
time.sleep(2)

To run this example, just save the code to a file (gptest.py, for example) or load the
file from the source code for this book. On a Windows machine, type in the following
at a command prompt:

python gptest.py

Under Linux you can just enter the script’s name, assuming that the file is marked as
executable and the Python interpreter resides in /usr/bin:

% gptest.py

When it runs, you should see a sine wave that expands and contracts several times.
What is actually happening is that gnuplot is regenerating the plot across the x range
of −10 to +10 each time the plot command is called. The result appears as an animated
image, but in fact it is a series of plots presented in rapid succession. Note that the
gnuplot window will close as soon as the script completes and Python terminates.

386 | Chapter 10: Building and Using Simulators

The following lines from the Method 1 example are possible candidates for inclusion
into the gnuplot.ini file, which should be located in the binary directory with the gnu-
plot executables:

set key font "arial, 9"
set tics font "arial, 8"

Refer to the gnuplot documentation for more about the gnuplot.ini file and its uses.

Method 2: gnuplot.py

The second method uses Michael Haggerty’s gnuplot.py package (version 1.8), which
is available from http://gnuplot-py.sourceforge.net. You will also need the NumPy pack-
age (version 1.4.1), available from http://numpy.scipy.org. For Windows, you should
download and install numpy-1.4.1-win32-superpack-python26.exe (just execute the file
to start the installation).

To install gnuplot.py, follow these steps:

1. Unzip gnuplot-py-1.8.zip into a temporary directory. It will create a directory called
gnuplot-py-1.8.

2. Open a command window, and from within the command window change to the
directory gnuplot-py-1.8 in the temporary directory where gnuplot-py-1.8 was un-
packed. You should see a file called setup.py.

3. At the command prompt, type:

python setup.py install

During the execution of the setup script, you should see many lines of output go by on
the screen. If an error is encountered, the setup script will halt; otherwise, you should
now be ready to go.

Testing gnuplot.py

In the directory <python>\Lib\site-packages\Gnuplot run the file demo.py, like so:

python demo.py

<python> is where you installed Python 2.6, and on a Windows system it may be
something like C:\Python2.6.

If all goes well, you’ll see a plot display. Pressing the Enter key from within the command
window will cause a series of graphs to be displayed.

Using gnuplot.py

gnuplot.py is somewhat unusual in terms of how it is imported into your application.
If you look at demo.py, you’ll see that it is importing Gnuplot and Gnuplot.funcutils.
But there is no “Gnuplot.py” in the Gnuplot directory where the package resides. What
is happening here is that the package initializer, __init__.py, is imported. It, in turn,

Displaying Simulation Data | 387

http://gnuplot-py.sourceforge.net
http://numpy.scipy.org

imports the rest of the necessary modules. The __init__.py module also contains a top-
level docstring with lots of information. If you examine __init__.py you may also notice
that it contains the following code at the bottom of the file:

if __name__ == '__main__':
 import demo
 demo.demo()

What this means is that you can type in:

python __init__.py

from the Gnuplot directory, and the demo will execute.

This approach is interesting in that when the gnuplot.py package is imported the
__init__.py module will be evaluated immediately, and the necessary imports will be
in place and available from that point onward in your application.

To import gnuplot.py into your application, you must at least import the main module:

import Gnuplot

You can import additional modules using dot notation, like so:

import Gnuplot.funcutils

Plotting Simulator Data with gnuplot
This next couple of examples will plot the contents of a data file containing a set of
records with a single field (we will look at ASCII data files in more detail in Chapter 12).

We’ll use the PID class introduced in Chapter 9, and create a data file to graph the
impulse response of the controller.

First, here’s how to do it using the pipe method:

#! /bin/python
PIDPlot.py
#
Uses gnuplot to generate a graph of the PID function's output
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import time
import os
import PID

def PIDPlot(Kp=1, Ki=0, Kd=0):
 pid = PID.PID()

 pid.SetKp(Kp)
 pid.SetKi(Ki)
 pid.SetKd(Kd)

 time.sleep(.1)

388 | Chapter 10: Building and Using Simulators

 f = open('pidplot.dat','w')

 sp = 0
 fb = 0
 outv = 0

 print "Kp: %2.3f Ki: %2.3f Kd: %2.3f" %\
 (pid.Kp, pid.Ki, pid.Kd)

 for i in range(1,51):
 # summing node
 err = sp - fb

 # PID block
 outv = pid.GenOut(err)

 # control feedback
 if sp > 0:
 fb += (outv - (1/i))

 # start with sp = 0, simulate a step input at t(10)
 if i > 9:
 sp = 1

 print >> f,"%d % 2.3f % 2.3f % 2.3f % 2.3f" %\
 (i, sp, fb, err, outv)
 time.sleep(.05)

 f.close()

gp=os.popen('gnuplot', 'w')
print >> gp, "set yrange[-1:2]"

for i in range(0, 10):
 kpval = 0.9 + (i * .1)
 PIDPlot(kpval)
 print >> gp, "plot 'pidplot.dat' using 1:2 with lines, \
 'pidplot.dat' using 1:3 with lines"

raw_input('Press return to exit...\n')

This will generate a series of graphs, with a Kp value ranging from 0.9 to 1.8. The last
graph is shown until the user presses the Enter key, and when the program terminates
gnuplot closes. The output for the last graph (Kp = 1.8) is shown in Figure 10-15.

As you may recall from Chapter 9, if the proportional gain is too high the system will
exhibit instability in response to a sudden input change, and there it is in Figure 10-15.

Now here’s the gnuplot.py way to plot the data:

PIDPlot.py
#
Uses gnuplot to generate a graph of the PID function's output
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

Displaying Simulation Data | 389

import Gnuplot, Gnuplot.funcutils

import time
import os
import PID

def PIDPlot(Kp=1, Ki=0, Kd=0):
 pid = PID.PID()

 pid.SetKp(Kp)
 pid.SetKi(Ki)
 pid.SetKd(Kd)

 time.sleep(.1)
 f = open('pidplot.dat','w')

 sp = 0
 fb = 0
 outv = 0

 print "Kp: %2.3f Ki: %2.3f Kd: %2.3f" %\
 (pid.Kp, pid.Ki, pid.Kd)

 for i in range(1,51):
 # summing node
 err = sp - fb

 # PID block
 outv = pid.GenOut(err)

 # control feedback
 if sp > 0:
 fb += (outv - (1/i))

 # start with sp = 0, simulate a step input at t(10)
 if i > 9:
 sp = 1

 print >> f,"%d % 2.3f % 2.3f % 2.3f % 2.3f" %\
 (i, sp, fb, err, outv)
 time.sleep(.05)

 f.close()

gp = Gnuplot.Gnuplot()
gp.clear()
gp.title('PID Response')
gp.set_range('yrange', (-1, 2))

for i in range(0, 10):
 kpval = 0.9 + (i * .1)
 PIDPlot(kpval)
 gp.plot(Gnuplot.File('pidplot.dat', using=(1,2), with_='lines'),
 Gnuplot.File('pidplot.dat', using=(1,3), with_='lines'))

390 | Chapter 10: Building and Using Simulators

raw_input('Press return to exit...\n')

The output looks the same as before, except that now there is a title above the graph.
For some examples of the other things that gnuplot.py can do, see the demo.py and
test.py files included with gnuplot.py and located in the gnuplot directory where the
package was installed (usually python26/Lib/site-packages).

Figure 10-15. gnuplot PID graph

Creating Your Own Simulators
Now that we’ve touched on what simulators are and seen some ways they can be used,
it’s time to consider what goes into creating such a thing. I’m a big fan of simulators,
but I also try to temper my enthusiasm with some realism. It’s all too easy to eat up a
big chunk of the time and budget for a project just fiddling with the simulation. So,
before starting to build your own simulator, there are three key questions you should
ask yourself:

1. Why do you want to use a simulator?

2. What do you want to simulate?

3. How much time and effort can you expend to create a simulator?

Creating Your Own Simulators | 391

How you answer these questions will help you avoid spending time on something you
don’t really need (even if it is fun to build and play with).

Justifying a Simulator
First and foremost, there must be a real need for a simulation. If it is really not possible
to develop the instrumentation or control software without one, that is probably
enough justification. As I stated at the start of this chapter, such a situation might arise
when software needs to be written, but the hardware won’t arrive until some later date.
Rather than wait for the hardware, and run the risk of running over schedule as a result,
you can use a simulation to start at least building and testing the framework of the
instrumentation software.

Another example would be where the hardware is something unique and special, and
there is a definite risk that the software could make it do something that might damage
it. Some motion control systems fall into this category (recall the story of the runaway
PID servo controller in Chapter 9), as might systems that involve high temperatures or
pressures.

The Simulation Scope
When considering something like a simulator, it is essential to define the scope of the
simulation before any code is written: in other words, what it will simulate, and how
accurate the simulation needs to be in order to be useful.

Figure 10-16 shows one way to visualize the levels of detail and complexity that can go
into a simulation. Starting at the bottommost level, I/O, the fidelity of the simulation
increases as additional layers are added. However, the costs in terms of time and effort
also increase.

In many cases, just having the I/O and command processing levels may be sufficient.
The simulators we’ve already seen in this chapter really aren’t much more than this,
with a little bit of functionality to handle setting and recalling states and parameters.
As the size of the blocks in Figure 10-16 implies, the more capabilities you add, the
more complex and costly the simulator becomes.

Although each simulator you might contemplate must be evaluated based on the spe-
cific needs of the project, it is generally safe to say that if you can accurately simulate
the interface and the command processing, it’s probably good enough to get you star-
ted. You can always add details in the behavior level later if it turns out that they are
really necessary.

392 | Chapter 10: Building and Using Simulators

Figure 10-16. Simulation levels

Time and Effort
Writing a simulator takes time and effort. Sometimes this can be significant, and it is
not uncommon to have a situation where creating and verifying the simulator takes as
much (or more) effort than that required to implement the system being developed.
This might be justified if the system is something critical (like part of an experimental
aircraft), if the simulator is generic enough to be reused on other projects, or if it can
be used later in a production environment for product testing. If it’s just a one-time
thing for a simple system, it shouldn’t be any more complicated than it really needs to
be. It might even turn out that a simulator isn’t really necessary at all if a good debugger
is available, and you’re willing to use simple files to capture data.

Summary
When used appropriately, simulation is a powerful tool that can help save effort and
avoid costly mistakes and delays later on, when the software meets real hardware. It is
also a potential time-sink and source of development delays, so deciding when and how
to employ simulation is important.

Summary | 393

Suggested Reading
If you’re interested in digging deeper into simulation, the following books are good
places to start:

Simulation Modeling Handbook: A Practical Approach. Christopher Chung (ed.), CRC
Press, 2003.

A collection of papers and essays on simulation topics with a focus on practical
applications rather than on theoretical issues. Provides step-by-step procedures
and covers problem analysis, model development, and data analysis.

Software Fault Injection: Inoculating Programs Against Errors. J. Voas and G. McGraw,
John Wiley & Sons, 1998.

One of the first books to deal with the subject of fault injection in depth. Although
oriented toward high-end safety-critical and fault-tolerant systems, the techniques
and concepts in this book can be applied to any software development project.

Gnuplot in Action. Philipp K. Janert, Manning Publications, 2009.
A thorough review of gnuplot, along with a wealth of ideas for how to use it to
create useful and interesting data visualization displays.

There are also some general resources available on the Web, although there seems to
be very little in the way of introductory material available. Here are a few URLs that
may be of interest to you:

http://www4.ncsu.edu/~hp/simulation.pdf
This link points to the PDF version of Computer Simulation Techniques: The De-
finitive Introduction!, by Harry Perros. While not quite as broad in scope as the title
might suggest, this book introduces traditional Operational Research (OR)–type
simulations and contains extensive discussions of randomness, sampling theory,
and estimation techniques.

http://sip.clarku.edu/index.html
The companion website for the book Introduction to Computer Simulation Meth-
ods, by Harvey Gould, Jan Tobochnik, and Wolfgang Christian (Addison-Wesley).
While the book itself is not available here, there are lots of useful notes, tutorials,
and a couple of sample chapters in PDF format. The main focus of the book itself
is on computational physics and the simulation of physical systems. I’ve recom-
mended it here mainly for the examples it provides of ways to approach various
simulation problems using mathematical techniques.

394 | Chapter 10: Building and Using Simulators

http://www4.ncsu.edu/~hp/simulation.pdf
http://sip.clarku.edu/index.html

CHAPTER 11

Instrumentation Data I/O

It is a capital mistake to theorize before one has data.

—Sir Arthur Conan Doyle

In Chapter 7 we looked at the various physical interfaces and signal protocols that you
might encounter with instrumentation systems. Now we’ll look at how to use those
interfaces to move data between the real world and our applications.

The data an instrumentation system collects or generates comes in a variety of formats
and fulfills a wide range of needs. We’ll start this chapter with a discussion of interface
formats and protocols, defining the basic concepts we will need for the upcoming soft-
ware examples. Then we’ll take a quick tour of some packages that are available for
interface support in Python: namely, the pySerial, pyParallel, and PyVISA packages.

Lastly, I’ll show you some techniques to read and write instrumentation data. We’ll
take a look at blocking versus nonblocking I/O, asynchronous input and output events,
and how to manage potential data I/O errors to help make your applications more
robust.

Data I/O Interface Software
Over the years, computer interface hardware has evolved from simple devices using
serial communications and I/O registers mapped into a computer’s memory address
space to complex subsystems with their own built-in processors, onboard logic, ad-
vanced protocols, and complex API definitions. As the complexity grew, the number
of unique interface methods and protocols also began to grow. As you might imagine,
if a large system had to support more than just two or three unique interfaces, each
with its own unique way of doing things, this could result in a significant hassle.

Early on, people began to realize that it didn’t make much sense for each device to have
a custom interface, especially when many devices shared common internal functions
and had similar capabilities. In order to rein in the impending chaos and establish
consistent interfaces across different application domains, various industry standards

395

organizations were formed. These organizations began to define guidelines and rules
for interfaces and the software that would use them. These could then be applied to
different types of equipment in a wide variety of situations. The Electronics Industries
Association (EIA) published its initial definition of RS-232 in 1962, and after several
revisions, it is still in use today. Various common standards have also been developed
by other organizations, such as the American National Standards Institute (ANSI), the
Institute of Electrical and Electronics Engineers (IEEE), and the Interchangeable Virtual
Instrument (IVI) Foundation.

That being said, one must occasionally deal with exceptions. Although there are a
number of common standards for communications and instrumentation interfaces, not
every manufacturer follows them, and sometimes a device just doesn’t fit easily into an
existing framework. If you want to use a device in your system that does things in its
own special way, you’ll need to be able to accommodate that device. This is particularly
true if you are planning to use an older instrument or device that might predate a more
current standard.

Interface Formats and Protocols
Regardless of the type of connector used for a particular interface, or even the way in
which data moves through an interface, the key thing is that data is moving between a
host system (the master controller, if you will) and whatever devices or instruments are
connected to it.

Naturally, when it comes to data acquisition and instrument control, there are multiple
ways to get there from here. One approach is to use custom software with common
interfaces to external instruments, such as serial and USB interfaces. Another way is to
utilize industry-standard drivers and protocols that provide a consistent API across a
range of physical interfaces, including serial, USB, GPIB, and bus-based hardware. In-
terface drivers that are based on the IVI standards are one example of this approach.
In this section we’ll take a brief look at how various command and data protocols are
implemented, at some of the more common standards and guidelines used to imple-
ment them, and at the physical interfaces commonly found in instrumentation devices.

The simplest way to interface a computer with the real world is through a serial or
parallel port interface of some sort. The apparent simplicity is a result of the physical
simplicity: the computer already (usually) has a serial or parallel interface of some sort,
so the physical connection is typically just a cable. However, from a software viewpoint
it may be anything but simple, especially with USB or GPIB. We’ll get to that in just a
bit.

The other method, which we saw in Chapter 7, is the plug-in circuit board that is
connected directly to the computer’s internal data and address buses. With an ar-
rangement like this, the circuit board (or “circuit card,” as it’s often called) appears to
the CPU (central processing unit) as just another address or set of addresses in memory
space, I/O space, or both. Figure 11-1 shows how this works with a generic CPU that

396 | Chapter 11: Instrumentation Data I/O

does not provide a separate I/O bus for peripherals (such as the Motorola 68000 family),
and a CPU that incorporates a bus specifically for I/O functions (like the Intel process-
ors found in most modern PCs).

The first generation of PCs used the Industry Standard Architecture (ISA) bus for add-
on circuit boards. The earliest incarnations of the ISA bus, also known as the AT bus
(it appeared in AT class PCs from IBM), took advantage of the Intel CPU’s built-in
I/O bus and directly exposed the various add-on boards to the CPU in the form of
registers. Later bus schemes, such as VESA Local Bus, EISA, and PCI, used special
circuitry (called “chipsets”) to act as intermediaries between the CPU and the I/O de-
vices. This resulted in more addressing flexibility, better support for direct memory
access, and faster data rates. But regardless of the bus type, plug-in circuit boards still
use registers to pass command and response data between the board’s circuitry and the
CPU.

Figure 11-1. CPU I/O addressing schemes

Data I/O Interface Software | 397

When working with I/O hardware that uses registers, a piece of software called a
driver is employed to handle the low-level details of the interface. The driver provides
an interface to programs that use the hardware, and it typically handles things like
interrupts and bulk data transfers in a more or less transparent fashion. From the view-
point of the application software, the driver appears as a set of function calls. From the
viewpoint of the driver, the hardware appears as a set of registers in memory or I/O
address space. Another characteristic of a driver is that it can be integrated into the
operating system as an extension to its basic functionality. In modern operating sys-
tems, programs running at what is called the user level cannot usually access the
underlying hardware directly, for various security and system-stability reasons. The
operating system needs to be able to coordinate access to the hardware in the system
to avoid conflicts and possible system failure.

Drivers might also be used to access a standard serial or parallel port, and they are
always used with USB- or GPIB-type interfaces. In some cases, such as with a standard
serial interface, the stock driver supplied with the operating system might be sufficient.
In other cases, a special driver is needed to handle the interface. In those cases where
software is provided to communicate with an external device using a common interface,
I will refer to it as an I/O handler, rather than as a device driver. You can think of an
I/O handler as something akin to a translator.

The upshot here is that whatever form the I/O takes, there is a driver or I/O handler of
some type acting as an intermediary between the hardware and the application soft-
ware. At the other end, in the hardware or external instrument, there are functions for
handling the physical interface and communicating with the device’s hardware logic
and control circuitry. Figure 11-2 shows the more common functional components one
might encounter when interfacing with an external instrument or bus-based device
connected to a host controller PC.

We will define the various acronyms in the figure and look at each component more
closely in the following sections. For now, think of Figure 11-2 as a reference. I will
refer back to it in later sections as we explore the various functional components within
each level.

IVI—Interchangeable Virtual Instrument

In the instrumentation industry, the IVI suite of standards is becoming commonplace
for Windows platforms, and many instrument manufacturers now provide IVI-
compliant drivers. Aimed mainly at instrumentation applications, the IVI defines a
standard set of instrument interfaces and commands. Prior to the creation of the IVI
suite of standards, there were multiple standards in use, with the most notable being
the Standard Commands for Programmable Instruments (SCPI, sometimes pro-
nounced “skippy”) and the newer Virtual Instrument Software Architecture (VISA)
standards. Each vendor could, and sometimes did, do things a little differently in its
own special way.

398 | Chapter 11: Instrumentation Data I/O

The SCPI standard defines a standard set of commands for instrumentation, and VISA
defines a common API usable with different I/O interfaces, such as GPIB and VXI. SCPI
and VISA are now both part of the IVI suite. The primary focus of these standards is
to define common interfaces that help to reduce, or eliminate, the necessity of treating
each instrument as a unique programmable object. Note that while SCPI and VISA are
now part of the overall IVI suite, they are actually two different things.

If you will be using instruments such as DMMs and counters in your instrumentation
setup with GPIB interfaces, the odds are good that you will need to know about SCPI.
If you want to take advantage of a manufacturer’s VISA drivers, you’ll need to know
about those as well. In just a bit we’ll take a look at how to use VISA drivers with Python
for both Windows and Linux systems.

There are, of course, situations where things like SCPI or VISA simply aren’t available.
In these cases there may be no choice but to either try to use whatever interface software
the manufacturer did provide or, lacking that, just write your own. That said, I should

Figure 11-2. Instrument interface components

Data I/O Interface Software | 399

point out that writing a device driver or I/O handler is often a nontrivial task, and you
really should avoid it if at all possible.

Depending on the complexity of the project and the operating sys-
tem on the host PC, it may make more sense to adopt something like the IVI drivers
instead of attempting to “roll your own” API. The IVI Foundation standards define the
driver architecture for various classes of instruments and interface hardware. The IVI
approach is based on the notion of shared software components with common func-
tionality, so that the API for one instrument looks much like the API for another. It is
based on the VISA I/O standard (which we will encounter shortly), and also incorpo-
rates the SCPI protocol standard. Figure 11-3 shows an overview of the IVI architecture.

Figure 11-3. IVI architecture overview

IVI-compliant software can offer some significant advantages. These include state
caching, multithreaded drivers, simulation capabilities, and instrument interchangea-
bility. One of the claims made for IVI is that its standardized interface handles the
details between different instrument types, thus allowing the system implementer to
focus on the data handling and display software, rather than having to deal with unique
interface code for each instrument in the system. For the most part this is true, but only

IVI-compliant drivers.

400 | Chapter 11: Instrumentation Data I/O

insofar as it applies to commercial off-the-shelf (COTS) software that is IVI-compliant.
If you need to access an instrument using a programming language that isn’t supported
(such as Python), or use data capture and analysis tools that don’t come with IVI
interface capabilities already built in, you will need to do some work to get things to
play nice with one another.

One potential downside to IVI is that fully IVI-compliant (and IVI-certified) drivers are
available only for the Microsoft Windows platform. This is stated clearly in the IVI
specifications published by the IVI Foundation. Although some instrumentation ven-
dors have created “IVI-style” drivers for their products that will work with Linux sys-
tems, if you’re looking for true cross-platform compatibility across a variety of vendors
you may want to take this into consideration.

VISA—Virtual Instrument Software Architecture

VISA is a widely used interface I/O API specification for communicating with instru-
ments connected to a PC using GPIB, VXIbus, serial, Ethernet, or USB-type interfaces.
The VISA standard is also a core component in the IVI suite.

The VISA library defines a standardized API using a Windows DLL module, typically
named visa32.dll. VISA also supports the Microsoft Component Object Model (COM)
technology. If applications are written against the VISA standard, they should be gen-
erally interchangeable with VISA driver implementations from different vendors.

Not all instruments come with VISA drivers, and for some VISA support may be an
optional add-on at the time of purchase. GPIB-interface products, such as the plug-in
cards sold by National Instruments (NI), usually do come with VISA drivers, and a
Linux version is readily available as well. Agilent also sells GPIB interfaces with VISA
components, and Agilent recommends a VISA interface for Linux that is available from
a third-party source.

SCPI—Standard Commands for Programmable Instruments

The SCPI standard defines the syntax, command structure, and data formats for use
with programmable instruments. SCPI does not define the actual physical interfaces
(GPIB, RS-232, USB, etc.), meaning that it is an interface-neutral standard. SCPI was
preceded by the IEEE-488.2 standard, which is similar but with a more limited scope.

SCPI commands are ASCII strings. Responses may also be ASCII strings, although in
some cases they are binary data (for example, when transferring bulk measurement
data). SCPI commands are organized into instrument classes, each of which defines a
baseline set of commands. Instruments that support the SCPI protocol do not require
the low-level VISA I/O functions so long as there is some way available for the host
system to communicate with the instruments (remember that SCPI is a command pro-
tocol, so it is interface-neutral). Figure 11-4 shows the instrument model employed by
the SCPI standard. The SCPI functionality resides in the logical interface layer in the
instrument interface, as shown previously in Figure 11-2.

Data I/O Interface Software | 401

Figure 11-4. SCPI instrument model

Not all of the functions shown in Figure 11-4 are used in all instruments. Some instru-
ment types, such as temperature sensors or digital multimeters, may be input-only
devices. For these, there would be no signal generation section. Others, such as some
types of spectrum analyzers, might incorporate both input and output functions, so
they could include all of the SCPI model (or at least a good portion of it).

The commands available for a given instrument are based on the instrument type, or
class. The SCPI 1999 standard defines eight instrument classes, each of which utilizes
a particular subset of the SCPI commands:

• Chassis Dynamometers

• Digital Meters

• Digitizers

• Emissions Benches

• Emission Test Cell

• Power Supplies

• RF & Microwave Sources

• Signal Switchers

402 | Chapter 11: Instrumentation Data I/O

Some of the terminology in these class names might not be intuitively obvious. In SCPI
parlance, a digitizer is a device designed to measure voltage waveforms over time—in
other words, an oscilloscope or a logic analyzer. A signal switcher is an instrument
designed to control the path of signals through some kind of routing or switching
network. This might be as simple as an on-off switch, or as complex as a multipath
input-output switch matrix. Several instrument manufacturers produce devices that
incorporate signal-switching capabilities along with optional data acquisition or con-
trol functions. The Agilent 34970A Data Acquisition Switch Unit and the Keithley 3706
System Switch/Multimeter are examples of these types of devices.

SCPI commands are organized as related groups of instructions. A group is composed
of a primary, or root, command, and each root command has a number of optional
parameters. One example of a command group is the MEASure command. (SCPI allows
commands to be abbreviated, as indicated by the use of capitalization; so, for example,
instead of using MEASure one could use MEAS.)

Figure 11-5 shows a simplified command tree diagram for the MEASure command as it
might be used with a digital multimeter. To build up a command string, you would
start at the left side with MEASure and then move to the right through the tree, picking
up the necessary parameter keywords as you go.

Figure 11-5. SCPI MEASure command tree example

Here is an example of a SCPI command for use with a digital multimeter, such as an
Agilent 34405A DMM (refer to Figure 6-4) with a GPIB interface:

MEASure:VOLTage:DC?

Data I/O Interface Software | 403

Assuming that access to the GPIB port or interface device has already been established,
and the instrument has been correctly initialized, this command instructs the instru-
ment to take a DC measurement using whatever autoranging is appropriate and return
the result (as implied by the question mark at the end of the command string).

Here is an alternate command sequence for the Agilent 34405A DMM to set the DC
input range and then acquire a measurement:

CONFigure:VOLTage:DC 1, 0.0001
TRIGger:SOURce IMMediate
INITiate
FETCh?

This command sequence configures the DC input for the 1 V input range with a 0.1
mV resolution and sets the measurement trigger mode to immediate. The INITiate
command places the instrument in the “wait for trigger” mode, which in this case is
immediate, so the instrument begins taking continuous readings. The FETCh command
returns the most recent voltage reading.

As mentioned earlier, the SCPI commands can be abbreviated. Here’s what the pre-
ceding command sequences look like in short form:

MEAS:VOLT:DC?

and:

CONF:VOLT:DC 1, 0.0001
TRIG:SOUR IMM
INIT
FETC?

A description of the entire SCPI specification would be beyond the scope of this book.
For more information, consult the section “Suggested Reading” on page 436. You
should also refer to the programming documentation supplied with each instrument
you intend to use to determine exactly how it implements SCPI. While many instrument
manufacturers follow the SCPI standard, there may be variations to accommodate spe-
cial features.

Unique protocols

Some instruments (e.g., some low-cost DMMs) use command and data protocols that
are unique to that particular model. For example, the tpi 183 has a 3.5 mm jack built
into the side of the meter and continuously outputs a stream of RS-232 data at 1,200
baud. The type of data is determined by the meter’s manual control settings (a large
rotary switch)—there is no way to set it via the serial interface. The output is a string
of ASCII characters, and the format is defined as FAR DDDDDDT. The character in the F
position is the function code (0 to B), A is the manual or autorange mode (0 or 1, re-
spectively), and R is the range code (0 to 5). This is followed by a space character (which
is somewhat unusual) and six ASCII characters for data in floating-point format (the
DDDDDD part of the format string). The T character indicates the end of the output string.

404 | Chapter 11: Instrumentation Data I/O

Although this interface may be unique to the tpi 183, it is by no means a singular
example. Many instruments—especially older units—have unique interface protocols.
Even some modern USB-type devices have their own unique command and data in-
terface protocols.

Another example is the command and response protocol used with devices connected
to an RS-485 bus. A common scenario is where one device is designated as the master
(typically the host PC), and the other devices respond only when they receive com-
mands addressed specifically to them. In this case, a device identifier must be included
with each command on the RS-485 bus, alerting the relevant device that this command
is intended for it. The other devices will “hear” the command, but they will not respond
to it. One possible format for the command and response messages s shown in Fig-
ure 11-6.

Figure 11-6. Command and response formats

Data I/O Interface Software | 405

Notice in Figure 11-6 that the response always begins with /0, because in a scheme like
this the master controller is typically assigned a device ID of zero. Since there is only
one ASCII digit available for the device ID number, this protocol will only be able to
support 15 unique devices, addressed as 1 through F. From Figure 11-6 we can also
infer that there are 256 possible command or response codes (assuming that hexadec-
imal notation is used, i.e., 00 through FF). The number of characters sent as command
or parameter data or returned as response data is variable and is defined by the com-
mand type. A command message is terminated with a ! character, and a response is
terminated with a # character. Remember that this is just one possible protocol, al-
though it is actually modeled on real products that are commercially available. How
the command and response messages are defined is ultimately up to the engineers de-
signing the product.

Python Interface Support Packages
There are several I/O support packages available for Python to help with the imple-
mentation of various types of interfaces in Python applications. These include serial,
parallel port I/O, USB, and VISA-type instrumentation interfaces, including GPIB. In
this section we will take a quick look at three different packages, all of which aim for
easy portability between platforms (Windows and Linux, primarily).

pySerial

The pySerial package, written and maintained by Chris Liechti, encapsulates the func-
tionality necessary to communicate with a serial port from a Python program. It is
available from http://pyserial.sourceforge.net. pySerial will automatically select the ap-
propriate backend (the physical interface and its OS-supplied driver), depending
on the host OS, and it supports the Windows, Linux, BSD, Jython, and IronPython
environments.

A single class, Serial, provides the necessary functionality with the same set of methods
for all platforms, and once installed it is straightforward to use. Assuming that there is
something connected to the serial port that can display the data written from Python,
sending a string is as simple as this:

>>> import serial
>>> sport = serial.Serial(0) # open a serial port
>>> print sport.portstr # print port string
>>> sport.write("Port opened\r\n") # write a string with CR and LF

When these lines are executed from the Python prompt, it will respond with:

COM1

(assuming that COM1 was used, of course), and at the other end of the connection you
should see:

Port Opened

406 | Chapter 11: Instrumentation Data I/O

http://pyserial.sourceforge.net

When we’re done with the serial port we can close it gracefully (it can be reopened later
on, if need be):

>>> sport.close() # close port

pySerial also supports various port configuration parameters and timeout values, and
it provides methods such as read(), write(), and readln().

If there is no serial port available, which is typical with notebook and netbook com-
puters, you’ll see an error traceback that looks something like this:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "c:\APython26\lib\site-packages\serial\serialwin32.py", line 30,
 in __init__
 SerialBase.__init__(self, *args, **kwargs)
 File "c:\APython26\lib\site-packages\serial\serialutil.py", line 201,
 in __init__
 self.open()
s File "c:\APython26\lib\site-packages\serial\serialwin32.py", line 56,
 in open
 raise SerialException("could not open port %s: %s" % (self.portstr,
 ctypes.WinError()))
serial.serialutil.SerialException: could not open port COM1: [Error 2]
The system cannot find the file specified.

You can also create a serial port instance without actually opening the port by simply
not passing any parameters to the Serial object’s initialization method:

>>> import serial
>>> sport = serial.Serial()
>>> sport.baudrate = 19200
>>> sport.port = 0

Now that the serial port object has been instantiated and some basic parameters de-
fined, it can be opened and closed as necessary. The isOpen() method is used to check
the state of the serial port:

>>> sport.open()
>>> sport.isOpen()
True
>>> sport.close()
>>> sport.isOpen()
False

Tables 11-1 through 11-6 provide a summary of some of the methods available with
pySerial, organized by functional category. In all likelihood you won’t need more than
a handful of these, but pySerial does provide a fairly comprehensive suite of methods
for dealing with serial communications. Even some of the more arcane capabilities of
RS-232 are supported.

Data I/O Interface Software | 407

Table 11-1. pySerial port open/close methods

Method Description

open() Opens (or reopens) the port using the current settings.

close() Closes the port but does not destroy the port object. It may be reopened later.

isOpen() Returns True if the port is open; otherwise, returns False.

Table 11-2. pySerial port read/write methods

Method Description

read(size=1) Reads size bytes from the serial port. If a timeout is set, it may return fewer
characters than requested. With no timeout enabled, this method will block until
the requested number of bytes is read.

readline(size=None, eol='\n') Reads a string of characters until an end-of-line (eol) character (a \n by default)
is received, or until a read timeout occurs.

readlines(sizehint=None,
eol='\n')

Reads a list of lines until the read timeout occurs. The sizehint parameter is
ignored.

write(data) Outputs the given string over the serial port.

writelines(lines) Writes a list of strings to the serial port.

Table 11-3. pySerial data buffer management methods

Method Description

flushInput() Clears the input buffer, discarding all data currently in the buffer.

flushOutput() Clears the output buffer, aborting the current output and discarding all remaining data currently in the
buffer.

inWaiting() Returns the number of characters currently in the input buffer.

outWaiting() Returns the number of characters waiting in the output buffer.

Table 11-4. pySerial port parameter methods

Method Description

getBaudrate() Returns the current baud rate setting.

setBaudrate(baudrate) Sets the port’s baud rate. This method cannot be used if the port is already open.

getByteSize() Returns the current byte size setting.

setByteSize(bytesize) Sets the data character bit size.

getDsrDtr() Returns the current DSR/DTR flow control setting.

setDsrDtr(dsrdtr=None) Sets the DSR/DTR flow control behavior.

getParity() Returns the current parity setting.

setParity(parity) Sets the port parity.

getPort() Returns the current port setting.

408 | Chapter 11: Instrumentation Data I/O

Method Description

setPort(port) Sets the port number or name.

getRtsCts() Returns the current RTS/CTS flow control setting.

setRtsCts(rtscts) Sets the RTS/CTS flow control behavior.

getStopbits() Returns the current stop bits setting.

setStopbits(stopbits) Sets the number of stop bits to use.

getTimeout() Returns the current timeout setting.

setTimeout(timeout) Sets the read timeout period.

getWriteTimeout() Returns the current write timeout setting.

setWriteTimeout(timeout) Sets the write timeout period.

getXonXoff() Returns the current XON/XOFF setting.

setXonXoff(xonxoff) Sets the XON/XOFF flow control behavior.

Table 11-5. pySerial port capabilities methods

Method Description

getSupportedBaudrates() Returns a list of baud rates supported by the serial port.

getSupportedByteSizes() Returns a list of the character bit sizes supported by the serial port.

getSupportedParities() Returns a list of parity bit settings supported by the serial port.

getSupportedStopbits() Returns a list of stop bit settings supported by the serial port.

Table 11-6. pySerial hardware handshake line status methods

Method Description

getCD() Returns the state of the Carrier Detect line.

getCTS() Returns the state of the Clear To Send line.

getDSR() Returns the state of the Data Set Ready line.

getRI() Returns the state of the Ring Indicator line.

setDTR(level=1) Sets the Data Terminal Ready line to the specified state.

setRTS(level=1) Sets the Request To Send line to the specified state.

pySerial does not support RS-485 interfaces directly, but it works fine with RS-232–to–
RS-485 converters that provide half-duplex auto-turnaround capability. It will also
work with USB‒to–RS-485 converters, provided that they use a virtual serial port (for
Windows) or a tty-type device entry in the /dev directory (for Linux). An experimental
implementation of an RFC 2217 server is also provided with the pySerial package.

For installation and additional usage instructions, refer to the pySerial website.

Data I/O Interface Software | 409

pyParallel

pyParallel (http://pyserial.sourceforge.net/pyparallel.html) is a companion project to
pySerial by the same author. The purpose of pyParallel is to encapsulate access to a
parallel port by a Python program in a platform-independent manner (refer back to the
discussion of parallel ports in Chapter 2 if you need a refresher). At present, it supports
only Windows and Linux.

Unlike pySerial, pyParallel has no open or close methods. If instantiated with no port
parameter, pyParallel will attempt to use the first available parallel port. Optionally,
you can specify a particular port name as a string.

Here’s a simple example of how it can be used:

>>> import parallel
>>> pport = parallel.Parallel() # open first available parallel port
>>> pport.setData(0x55)
>>> pport.setData(0xAA)

This will write the value 0x55 to the parallel port, followed immediately by the value
0xAA. Table 11-7 lists the methods available.

Table 11-7. pyParallel methods

Method Description

setData(value) Applies a byte value to the data pins of the parallel port

setDataStrobe(level) Sets the Data Strobe line to level (0 or 1)

setAutoFeed(level) Sets the Auto Feed line to level (0 or 1)

setInitOut(level) Sets the Initialize line to level (0 or 1)

getInSelected() Reads the state of the Select line

getInPaperOut() Reads the state of the Paper Out line

getInAcknowledge() Reads the state of the Acknowledge line

Notice that pyParallel does not provide functions to read the Busy or Error inputs.
However, pyParallel does allow you to directly manipulate the handshaking output
lines on the port.

On Windows machines, pyParallel requires direct access to the physical port hardware.
It cannot be used with USB parallel port adapters, so it won’t work on a notebook or
netbook with only USB ports. It also does not support Extended Parallel Port (EPP)
functionality.

Sending data to an external device via pyParallel involves outputting byte values one
at a time under software control. This may sound clumsy, but there really is no other
way to do it, short of using smart hardware with built-in flow control management and
internal buffering capabilities. When communicating with a printer the program must,
at a minimum, set and clear the Data Strobe and check the Acknowledge line coming
back from the printer.

410 | Chapter 11: Instrumentation Data I/O

http://pyserial.sourceforge.net/pyparallel.html

The parallel port on a PC isn’t restricted to just sending data to a printer, however. An
interesting example of how you can drive an LCD display from a parallel port can be
found at http://pyserial.svn.sourceforge.net/viewvc/pyserial/trunk/pyparallel/examples/.

Other interesting uses for a parallel port include controlling a DAC device, sensing
discrete digital inputs, and using the 8 bits of output to control relays or other devices.
The downside is that the port circuitry isn’t designed to handle very much current, so
external interface circuitry is often required.

PyVISA

The PyVISA package provides a Python API for an IVI-standard VISA driver on Win-
dows, or an IVI-compatible VISA driver for Linux systems. It uses a driver DLL or
library file provided by an instrument vendor. On Windows machines, the package
expects to find a DLL by the name of visa32.dll in the path, typically in C:\WINNT
\system32. For Linux systems, National Instruments (NI) supplies an IVI-compliant
VISA driver as a shared object library module (the Linux equivalent of a DLL on Win-
dows systems), called libvisa.so.7. This file usually resides in /usr/local/vxipnp/linux/bin.

The NI Linux version of visa32 specifically supports the following distributions:

• Red Hat Enterprise Linux Workstation 4

• Red Hat Enterprise Linux Desktop + Workstation 5

• SUSE Linux 10.1

• openSUSE 10.2

• Mandriva Linux 2006

• Mandriva Linux 2007

Refer to the section “Suggested Reading” on page 436 for more information about the
NI VISA driver.

For Windows, you shouldn’t have to do a lot of digging to find what you need. Modern
instruments with IVI-compliant interface capabilities typically come with a VISA driver
for the Windows platform, so if you don’t have the original CD that came with an
instrument you may want to look around and see if you can locate it, or perhaps one
from a similar instrument. You may also be able to download the VISA components
from an instrument vendor’s website.

VISA, and by extension PyVISA, supports serial, GPIB, GPIB-VXI, VXI, TCP/IP, and
USB interfaces. We will be using VISA primarily to interface with GPIB-capable devices.
A simple example of PyVISA in action looks like this:

>>> import visa
>>> dmm = visa.instrument("GPIB::2")
>>> print dmm.ask("*IDN?")

Data I/O Interface Software | 411

http://pyserial.svn.sourceforge.net/viewvc/pyserial/trunk/pyparallel/examples/

This tells the VISA driver that we want to use the instrument with GPIB address 2 as
the object dmm. The dmm.ask method sends the string specified ("*IDN?", in this case). It
then returns the instrument’s response, which should be the device’s internal identifi-
cation string.

You can find more information about PyVISA at the project’s home page, located at
http://pyvisa.sourceforge.net.

VISA provides far too many different functions to go into all of them here. For a detailed
look at VISA itself, the VPP-4.3 VISA library reference is available from the IVI
Foundation.

Alternatives for Windows
There is an OSS project called PyUniversalLibrary that is developing a wrapper for
Measurement Computing’s Universal Library API. According to the website it is not
100% complete, but it does have enough functionality to be useful. You can find out
more about it here: https://code.astraw.com/projects/PyUniversalLibrary.

The UNC Python Tools package contains, among other things, a wrapper for National
Instruments’s older NI-DAQ drivers. It is available from http://sourceforge.net/projects/
uncpythontools/.

Using Bus-Based Hardware I/O Devices with Linux
Plugging an interface into a Windows machine is usually straightforward, and vendors
typically supply interface drivers with their products. With Linux, an instrumentation
device that uses a serial, GPIB, or USB port to communicate isn’t really a problem in
most cases. However, when it comes to the cards that plug into the PC’s internal PCI
bus, things get more complicated. In Chapter 5 we looked at what goes into an exten-
sion to allow it to serve as a wrapper for a DLL used with Windows to access a device
connected to the internal bus of a PC. In the realm of Linux, each I/O device requires
a driver written specifically for the Linux environment, along with whatever tools and
utilities the device might need to configure its internal settings. Many instrumentation
manufacturers simply don’t support Linux, at least not directly. This usually isn’t an
intentional snub; there just aren’t enough Linux systems being used in instrumentation
applications (yet) to justify the effort and expense of supporting two different versions
of the interface software. There is, however, a project called Comedi that aims to pro-
vide a way to connect instrumentation interface hardware to PCs running Linux.

The Comedi project

The Comedi project was started in 1996 by David Schleef as a collection of low-level
drivers to allow a Linux system to communicate with various types of data acquisition
and digital interface cards. It is an open source project and is currently hosted at its
own website, http://www.comedi.org.

412 | Chapter 11: Instrumentation Data I/O

http://pyvisa.sourceforge.net
https://code.astraw.com/projects/PyUniversalLibrary
http://sourceforge.net/projects/uncpythontools/
http://sourceforge.net/projects/uncpythontools/
http://www.comedi.org

The comedi package is a combination of three complementary software components.
The first component is a generic, device-independent API. This interacts with a collec-
tion of Linux kernel modules that provide the interface support for the generic API (the
second component), and lastly there is a library of functions that provides an interface
to configure various cards (the third component). The Comedi team works with hard-
ware vendors (whenever possible) to gather information, obtain hardware for test and
verification, and develop the drivers. In one sense, you might say that Comedi is the
Linux corollary to the IVI suite of drivers.

If you want to download and build Comedi yourself, make sure you get both the
comedi and comedilib packages. You might also want to get the comedi_examples file.

Comedi hardware support

Comedi supports the following interface hardware manufacturers, to one degree or
another:

• ADLink

• Advantech

• Amplicon

• Analog Devices

• ComputerBoards

• Contec

• Data Translation

• Fastwel

• General Standards Corporation

• ICP

• Inova

• Intelligent Instrumentation

• IOTech

• ITL

• JR3

• Keithley Metrabyte

• Kolter Electronic

• Measurement Computing

• Mechatronic Systems, Inc.

• Meilhaus

• Micro/sys

• Motorola

• National Instruments

Data I/O Interface Software | 413

• Quanser Consulting

• Quatech

• Real Time Devices

• Sensoray

• SSV Embedded Systems

• Winsystems

Not every card from every vendor is supported, but with over 400 different types (and
growing), Comedi covers a lot of territory. For a complete list, see the Comedi website.

Using comedi with Python

comedi is shipped with the ability to use the Simplified Wrapper and Interface Gener-
ator (SWIG) to generate a wrapper for comedilib. You can learn more about SWIG at
http://www.swig.org. There is also a discussion group on Google that is a good first
place to look if you encounter problems with comedi.

Data I/O: Acquiring and Writing Data
Now that we have some idea of what to expect in terms of the software we’ll need to
interact with instrument hardware, let’s take a look under the hood and see how we
can put it to work for us.

Basic Data I/O
When considering data acquisition, there are basically two types of data sources: ex-
ternal instruments, and data acquisition hardware installed in the computer itself. In
both cases there is a transaction that occurs between your application software and the
device. Sometimes the transaction is direct, such as when accessing the hardware reg-
isters of a device directly from the application-level code. This style of interface pro-
gramming is rather rare nowadays, as the underlying operating system tends to prohibit
direct hardware access by user-level code. In most cases, it will involve an intermediary
such as a driver with a vendor-defined API (recall Chapter 5), or an interface library
(e.g., pySerial).

When acquiring data from an external device, or sending data (e.g., a command) to a
device, there are several ways to get there from here. If you want to send data, the first,
and most obvious, approach is to just write the data to the port or device and let it go
at that. When you want to read data, the obvious approach is to simply read the data
on demand.

Both of these methods assume that when the device is sent a command or queried for
data it will automatically and immediately perform whatever hardware functions are
necessary to convert the data into an internal register address, an internal command

414 | Chapter 11: Instrumentation Data I/O

http://www.swig.org

code, or a return value. For the most part, this is a valid assumption. But there can be
situations where things don’t work out like you might expect. Instead of a successful
write operation, an error might occur, or the device’s driver API function might take a
while to return or, worse still, not return at all.

Reading data

When reading data from a bus-based device, the device’s interface will typically return
a binary value that can be used immediately. There is no need to send a command, per
se; you can just use a function call. With an external instrument, on the other hand,
the commands and data are typically in the form of ASCII strings and utilize a com-
mand-response format. ASCII-to-binary conversions can be handled fairly easily in
Python.

Instruments that utilize SCPI will typically return strings containing a numeric value,
or multiple numeric values separated by commas. Fortunately, Python can easily deal
with numeric data in a string format. Assume that we have an instrument that returns
something like "+4.85510000E-01" when queried for a measurement. In the following
code snippet, the hypothetical function getDataResponse() will return a string contain-
ing the instrument response string, or it will return None. We can use Python’s float
type object constructor to do the necessary conversion for us:

raw_data = getDataResponse(instID)
if raw_data:
 data_val = float(raw_data)

If raw_data is not None, the variable data_val will contain 0.48851, as expected.

Let’s look at another example, this time involving more than one return value in re-
sponse to a measurement command. Assume that an instrument returns four values
when queried, as the string "+5.50500000E00, −2.66000000E-01, +8.24000000E01,
−6.34370000E00". In Python, it is very easy to convert a string of comma-separated values
into a list of strings. The following code snippet can be used to deal with a situation
like this:

data_val = []
data_str = getDataSet(instID)
raw_vals = data_str.split(",")
for raw_data in raw_vals:
 data_val.append(float(raw_data))

After this, the list variable data_val will contain four floating-point values:

[5.5049999999999999, −0.26600000000000001, 82.400000000000006,
 −6.3437000000000001]

The numbers look a bit odd due to the way that Python handles the string–to–floating-
point value conversions, but they are essentially the same numbers as in the original
string. The oddness is a result of the way that floating-point values are handled in the
CPU (Python doesn’t make it pretty unless you ask it to do so).

Data I/O: Acquiring and Writing Data | 415

If you are acquiring data from an instrument that returns an ASCII string that contains
something other than just numeric data, you may need to do some type of parsing to
extract the specific sections of interest from the returned string. The ASCII data will
also need to be converted into a binary format of some type. The RS-485 interface we
looked at earlier is an example of this type of situation.

In some cases the return string may contain a mix of numeric and nonnumeric char-
acters, and not always in a fixed format. The tpi 183 DMM we looked at earlier gen-
erates a fixed-format data string. This is very easy to deal with, as all you need to do is
extract a slice from the string that contains the data (see Chapter 3 for more on slices
in Python). However, this is not always the case; sometimes the length of the data
portion, and even the leading header characters, of the return string can vary.

If you’re dealing with an instrument or device that employs a format with a fixed starting
position for the data and uses an end marker character, you can obtain the position of
the end marker in the string and use a slice to pull out what you need. If the starting
position is not fixed, you’ll need to scan through the string and find the start of the data
field before you can use a slice to extract it.

Writing data

As mentioned earlier, accessing a bus-based device typically involves just calling a
function in the device’s API. There are no commands, as such, but it is common to
write parameter values to the device, or call a function to start or stop some action (such
as, say, a timer or clock function).

Writing ASCII data (i.e., commands and parameter values) to an external instrument
that utilizes SCPI, or a unique command format, involves creating the necessary com-
mand string, writing it, and then waiting for the instrument to respond. In this com-
mand-response scenario the instrument returns data only when requested to do so; it
does not spontaneously send data on its own. Also, in some cases there is no response.

For example, let’s assume that we have a GPIB instrument such as a programmable
power supply. This example is based on the Agilent E364xA series, which includes
some non-SCPI commands that I won’t cover here. For now, I’ll just use the following
commands:

OUTPut
 [:STATE] {ON|OFF}
 [:STATE]?

[SOURce:]
 CURRent
 CURRent?
 VOLTage
 VOLTage?

MEASure
 :CURRent?
 [:VOLTage]?

416 | Chapter 11: Instrumentation Data I/O

The curly braces around the ON|OFF parameters indicate a choice. Also, notice that some
of the items are in square brackets, including the key command SOURce. This indicates
that these are optional, and whatever parameter is in square brackets is the default. So,
in the case of the MEASure command, if the command is given as:

MEAS?

it will return the voltage at the outputs of the power supply. To get the current, the
command must explicitly specify it:

MEAS:CURR?

Since the SOURce command is optional, the following set of command strings will set
the output to 5.1 volts DC and the current limit to 1.0 amperes:

VOLT 5.1
CURR 1.0

If we wish, we can also control the output from the supply using the OUTPut command,
like so:

OUTP:OFF
SOUR:VOLT 5.1
SOUR:CURR 1.0
OUTP:ON

This disables the output before changing the V and I parameters.

To read back the settings, we can use the SOURce:VOLTage or SOURce:CURRent commands
with a question mark to indicate a query:

VOLT?

This will return a response like this:

5.00000

To see what is really happening on the output terminals we can use the MEASure com-
mand, like so:

MEAS:CURR?

This returns (for example):

0.20000

This command will read the output voltage:

MEAS?

and it returns:

5.00000

Finally, we can check to see whether the supply’s output is enabled or not using the
query form of the OUTPut command:

OUTP?

Data I/O: Acquiring and Writing Data | 417

If the supply is enabled, it will return an ASCII “1”; otherwise, a “0” is returned.

I haven’t indicated how the commands are sent and the response returned because
there are several ways to do this, such as serial, USB, and GPIB. But let’s assume that
there is a function called sendCommand() that will take care of this for us. For this example
we’ll create a function called setPowerSupply() that will accept the voltage and current
parameters and send them to the instrument:

def setPowerSupply(volts, current):
 rc = OK
 volts_str = "%2.2f" % float(volts)
 current_str = "2.2f" % float(current)

 cmd_str = "VOLT " + volts_str
 rc = sendCommand(instID, cmd_str)
 if rc == OK:
 cmd_str = "CURR ", current_str
 rc = sendCommand(instID, cmd_str)

 return rc

This seems rather straightforward, but there are some things going on that might not
be readily obvious.

After rc (the return code) is preset to OK (to be optimistic), the input parameters
volts and current are converted to string representations. Notice that the format is
specified as %2.2f. This will create a string representation that the instrument can easily
handle. Also notice that the input parameters are used to create float variable objects,
which are then inserted into the string variables. If the input parameters are given as
floats, nothing changes, but if the input parameters are integers they will be converted.
Also, this function will accept string representations of integer or floating-point values
for either parameter.

This, by the way, is a very handy and powerful trick. It will deal with almost any numeric
value, in any valid format, that you might care to throw at it, and gracefully convert it
to a floating-point type. It will fail if an input parameter is a nonnumeric string, a hex
value in string format, an n-tuple, or a dictionary, but these cases can easily be trapped
and handled using a try-except construct.

Next, the sendCommand() function is called. This might use GPIB, or it might be the
access function for serial I/O. It really doesn’t matter how the command is sent, as long
as the instrument gets it.

So now that we’ve seen how to send a command, how can we tell if the instrument
actually accepted the command and did what the command specified? In the case of a
power supply, we would mainly be interested in knowing if the output is active and
what the output values actually are. Sensing the output state (On or Off) is straight-
forward, as we’ve already seen, but determining if the output levels are at, or near, the
commanded values can be somewhat challenging.

418 | Chapter 11: Instrumentation Data I/O

The reason is that we’ve now made the leap from digital to analog, and the analog world
is full of subtle variations. Depending on the accuracy of the instrument, if we command
it to generate a 5.000 V DC output, in reality the voltage on the output terminals might
be 4.999 V DC, or anything within the tolerance range of the device. The following
snippet shows one way to implement a return value check with upper and lower tol-
erance bounds:

def testDelta(testval, targval, tolerance=0.001):
 testval_float = float(testval)
 targmax = float(targval) * (1 + tolerance)
 targmin = float(targval) * (1 − tolerance)
 if (testval_float >= targmax) or (testval_float <= targmin):
 return False
 else:
 return True

The float object conversion is also used here, as in the previous example. This ensures
that all the internal variables will be float types.

If the value passed to testDelta() is within some +/− range of the target value
(targval), the function will return True; otherwise, False is returned. The tolerance
check is symmetrical around the target value, as shown in Figure 11-7.

Figure 11-7. Value tolerance checking

If we wanted an asymmetrical tolerance check, we would need to specify an offset
relative to the target value. Between the tolerance range and the offset, we could move
the acceptance window to any position and width necessary.

Figure 11-8 shows a flowchart for a function used to set the output of an instrument
(such as a power supply or some other type of analog output), and then read the output
and compare the value returned to the original commanded value. Depending on the

Data I/O: Acquiring and Writing Data | 419

system, just checking the actual output value and then reporting an error (if any) might
be sufficient, but as we’ll see in a just a bit we could also attempt to retry the command,
or initiate a system shutdown.

Now, at this point you may be wondering: “Why would I want to go to all that trouble?”
Good question, and here’s an example of why you might want to do that.

With a programmable power supply you can set the maximum current as well as the
output voltage. What happens when the current exceeds the programmed limit? Some
power supplies can be configured to go into what is called “constant current” mode.
What this means is that the supply will endeavor to maintain the output current at the
preset limit, even if that means that the voltage begins to fall toward zero as the load
gets closer to being a short. The same can apply if the output voltage is commanded to
a point where the load draws more current than the present limit.

Figure 11-8. Set and check instrument output

420 | Chapter 11: Instrumentation Data I/O

For example, if you command the current limit to something like 1.0 amps and the
output voltage to 5.0 volts DC, and there is a 10-ohm load connected to the supply,
the actual current will be 500 mA. At 500 mA the voltage should stay at 5.0V, since it’s
well below the 1 A limit. However, if the load resistance is reduced to 4 ohms, the
supply cannot deliver more than 1 amp (the commanded maximum), and the voltage
decreases to 4 V DC while the current holds steady at 1 A. This is just a simple appli-
cation of Ohm’s law, which we covered in Chapter 2. So, if the current limit is set at
or near the maximum you would ever expect the supply to experience in a system, you
can sense the voltage to detect a problem. In such a case, the control software might
send an OUTP OFF command immediately upon detecting a voltage set failure.

Blocking Versus Nonblocking Calls
Now it’s time to introduce some concepts that you will need to use later to build robust
and reliable software. We’ll start with a discussion of blocking and nonblocking func-
tion calls, and then take a look at some basic techniques for handling errors.

One way to describe the behavior of a function or method is in terms of how quickly
it will return after it has been invoked. Some only return after a result of some type is
obtained, while others may return immediately without waiting for something else
downstream to produce a particular response. In other words, functions may be either
blocking (the calling code must wait for a response), or nonblocking (the call returns
immediately, usually with a response that indicates success or failure).

Actually, all software functions (and methods, too) can be classified as either blocking
or nonblocking, and the majority of functions within a typical software application are
of the blocking variety—that is, they don’t return until the intended action is complete
or an error is detected. You can see this in the message sequence chart (MSC) shown
in Figure 11-9. Here we have Function1() calling Function2(), which in turn calls
Function3() and finally Function4(). The time required for Function1() to receive a
response from Function2() is dependent on how long it takes for functions 2, 3, and 4
to complete their processing and return. During this entire time, Function1() is blocked.
(In an MSC diagram, events in a function or process occur in a top-to-bottom order,
and transactions between functions or processes are the horizontal lines.)

Blocking allows functions to maintain synchronization and honor the intended flow of
execution through the code. The action or data that the call is requesting may or may
not be available at the time the call is made, so a blocking call will wait for the other
end to respond in some fashion before returning to the caller. As a side effect, it will
also effectively suspend your application until it returns.

Data I/O: Acquiring and Writing Data | 421

Figure 11-9. Function blocking

The type of blocking we’re most interested in is when an application process is forced
to wait for an interface, which in turn waits for a hardware device to respond. This is
shown in Figure 11-10. Notice that there is a timer symbol in this diagram. This means
that if the hardware does not respond within some preset period of time, the interface
process will terminate and return an error.

Figure 11-10. I/O transaction

In some cases it may not matter if a blocking call waits for a bit before returning to the
caller, and allowing this is more convenient than writing the necessary code to support

422 | Chapter 11: Instrumentation Data I/O

continual query and retry actions. But, there is a warning in order here: when working
with I/O devices, a blocking call without a timeout of some sort can potentially hang
forever. This is usually a bad thing, and often the only way to get out of the situation
is to shut down Python and restart the application. If your code is running on an un-
attended machine somewhere in the middle of nowhere, a fault that hangs a blocking
call can be really, really bad.

One way to deal with this is to use nonblocking function calls. This entails some ad-
ditional code, but it’s very useful when dealing with network communications and data
acquisition. We’ll look at some ways to use this approach shortly.

Data I/O Methods
Now that we’ve seen what blocking and nonblocking functions entail, let’s look at how
these concepts are involved with various operational modes of interface I/O. We’ll start
with the simplest form, on-demand I/O, then proceed to polled I/O, and finally take a
quick a look at multithreaded I/O.

On-demand data I/O

As I stated earlier, the two most obvious ways to move data into or out of your appli-
cation are just a matter of reading from or writing to a port or device. When sending
(writing) data using a serial (RS-232 or RS-485) or GPIB-type interface, there usually
is no need to worry about the use of a blocking call. In the case of an RS-232 interface
that does not use hardware handshaking, the data is sent out through the hardware
port immediately. An RS-485 interface with a single master and multiple listeners
should never block on a write by the master device, but the listeners may be unrespon-
sive for a period of time. GPIB can also get into a situation where there are no listeners
responding to the sender, but most GPIB interface APIs and the associated hardware
can detect this and return an error code. Writing to a hardware interface API for a device
such as a PCI interface card is usually not a problem in terms of blocking, but the call
might still return an error code if something is amiss.

If your software uses on-demand calls to read data, they should be blocking calls, and
your software should always check the return codes. If timeout parameters are available
for a blocking function call they should definitely be used, but not every API provides
blocking calls with timeouts (perhaps it was assumed that a timeout couldn’t possibly
happen). For those situations you’ll need to use a nonblocking version of the API func-
tion and employ a different approach to implement a timeout in your own software.

Polled data I/O

A nonblocking call will return immediately, and its return code or return value will
(hopefully) let the caller know whether or not it succeeded. A nonblocking call can be
used to avoid an I/O hang, but it requires more code to support it. For example, let’s
assume that the API we’re using has both blocking and nonblocking versions of I/O

Data I/O: Acquiring and Writing Data | 423

functions to read data from a device, or perhaps that the I/O functions have a parameter
that can be set to control blocking. You can then put a nonblocking call into a loop
that also checks for a timeout, like this:

def GetData(port_num, tmax=5.0):
 checking = True
 tstart = time.time()
 while checking:
 rc, data = ReadNonBlocking()
 if rc == ERR:
 break
 if time.time() - tstart > tmax:
 checking = False
 rc = TIMEOUT
 else:
 time.sleep(0.05) # wait 50 ms between checks

 return rc, data

This is an example of polling: this function will attempt to get data from a specific data
acquisition device by continually polling the port (using the ReadNonBlocking() function
call) until valid data appears. In between each read attempt it will sleep for 50 milli-
seconds. The delay is mainly for the benefit of the device being read, as many devices
can’t tolerate being hammered continuously for data.

In order to actually have a polling function that doesn’t cause the rest of an application
to suspend while it’s active, you need to use a thread.

Acquiring data using a thread

So far we’ve looked at on-demand and polled data I/O. Now let’s take a quick look at
how we might check for incoming data without bogging down the entire system in a
continuous polling loop.

There are two API functions in the following skeleton example that we haven’t seen
before: SendTrigger() and GetData(). It is assumed that these exist as part of the API
for the data acquisition hardware, and they do what their names imply. Also, the type
of data being acquired isn’t specified, primarily because it doesn’t really matter for this
example. It could be anything, just so long as the specified number of samples are
acquired and no errors occur:

class AcqData:
 def __init__(self, port_num, timeout):
 self.timeout = timeout
 self.dataport = port_num
 self.dvals = [] # list for acquired data values
 self.dsamps = 0 # number of values actually read
 self.get_rc = 0 # 0 is OK, negative value is an error
 self.get_done = False # True if thread is finished

 def Trigger(self):

424 | Chapter 11: Instrumentation Data I/O

 SendTrigger(self.dataport)

 def _get_data(self, numsamples):
 cnt = 0
 acqfail = False

 while not acqfail:
 self.get_rc, dataval = GetData(self.dataport, self.timeout)
 if self.get_rc == OK:
 self.datasamps = cnt + 1
 self.dvals.append(datavalue)

 cnt += 1
 if cnt > numsamples:
 break
 else:
 acqfail = True
 self.get_done = True

 def StartDataSamples(self, samplecnt):
 try:
 acq_thread = threading.Thread(target=self._get_data, args=(samplecnt))
 acq_thread.start()

 self.Trigger() # start the data acquisition

 except Exception, e:
 print "Acquire fault: %s" % str(e)

 def GetDataSamples(self):
 if self.get_done == True:
 return (get_rc, self.dsmaps, self.dvals)
 else:
 return (NOT_DONE, 0, 0)

This bit of code uses a thread, in the form of the function _get_data(), to continuously
read the external device to obtain some number of data samples. Notice that the hy-
pothetical API function GetData() supports the use of a timeout parameter, and we can
assume that it will return an error code if a timeout does occur.

The key things in this simple example are how the thread is created, and how we can
check to see if the data acquisition is complete. Python’s threading library includes a
thread object method called join(), which accepts an optional timeout parameter and
is typically used to block the execution of one thread while it is waiting for another to
complete. In this case we won’t use join(), so the thread is allowed to run on its own.
The accessor function GetDataSamples() checks the variable self.get_done to deter-
mine if the thread has finished. If so, GetDataSamples() will return the data collected.
If the thread is still running, it will return a 3-tuple with the first item set to NOT_DONE.
It is up to the caller to determine if the sample count returned matches the sample count
requested.

Data I/O: Acquiring and Writing Data | 425

This is just one way to do this, but it illustrates a fundamental issue that is often en-
countered when working with threads; namely, at what point does the program come
to a halt and wait for something else to finish what it’s doing? In a program that
is designed to run continuously, this can be dealt with by placing the call to GetData
Samples() in a single main loop in the application. This allows it to be checked each
time through the loop if data is expected, with the results read back if they are available.
Otherwise, the program could just continue to use the last known results.

Handling Data I/O Errors
No matter how unlikely it may seem, errors can still happen, especially when dealing
with interfaces to the real world. They might be the result of spurious noise on a serial
interface, an out-of-range voltage level on an analog input, or a fault in an external
instrument. How the software detects and handles errors is directly related to its ro-
bustness. Another way to put it would be to say that robust software tends to exhibit
a high degree of fault tolerance.

Faults, Errors, and Failures
Here are some terms commonly used when discussing and describing fault-tolerant
systems. Although these are common terms, often used interchangeably, they have
special and specific meanings when used in a fault-tolerant context:

Fault
A defect in the code, the electronics, or the mechanisms of a system. A fault only
becomes apparent when it is encountered and an error occurs. A fault that is not
encountered is called a latent fault.

Error
Some abnormal behavior that results when the system encounters a fault. The
abnormal behavior might be an erroneous result in a computation, unexpected or
missing data in a communications channel, or an unwanted (and potentially dis-
astrous) physical behavior. Errors are generally categorized as being either fatal or
nonfatal in terms of the continued operation of the software.

Failure
The nonperformance of an expected action as the result of an error, typically ex-
pressed as a deviation from the required behavior as defined in the system
specification.

In summary, faults cause errors, and errors cause failures. It is well known that it is
extremely unlikely that all possible faults in complex systems will be identified, and
even seemingly simple systems can harbor latent faults. The objective of fault-tolerant
design is to create systems that can continue to function at some level, even in the
presence of faults.

For a system (be it software, hardware, or a combination of the two) to be called fault-
tolerant implies that it has the ability to detect a fault condition, take action to correct

426 | Chapter 11: Instrumentation Data I/O

or bypass the fault, and continue to function (perhaps at a reduced level of functionality)
instead of just crashing or abruptly halting. The ability to continue to function at re-
duced levels of capability in the presence of an increasing level of errors is called graceful
degradation. Of course, if the errors continue to mount, at some point the system will
eventually come to a halt, but the idea is that it will do so after giving ample notice and
it will not do it in a catastrophic fashion.

The reality is that there are almost always faults, and most things will eventually break
or wear out. How much planning you should do for the mostly likely faults and the
resulting errors is largely down to how much of a problem a failure will create. It might
be insignificant (just ignore it and move on), or it could be a really big deal (something
might explode, catch fire, or otherwise fail to stop an impending disaster). If you’ve
done your up-front planning, as discussed in Chapter 8, you should be able to identify
the nastiest scenarios and give some thought to how your system might deal with them
should they arise.

Classes of errors

Errors can be grouped into two broad categories: nonfatal and fatal. A nonfatal error
might be something like an intermittent communications channel, perhaps due to noise
or other perturbations in the medium, or someone’s foot occasionally kicking a con-
nector under a desk. Depending on the speed of the system and the duration of the
failure, it may be possible to continue operation without adverse effects until commu-
nications can be reestablished. Another example might be an instrument that occa-
sionally does not respond in a timely fashion, for whatever reason. If the command or
query can be retried successfully with no ill effect, the error could be considered non-
fatal. (Note that nonfatal does not mean nonannoying!)

A fatal error is one that requires significant intervention if the system is to continue
functioning. Lacking that, it will need to perform a complete shutdown. An example
of a fatal error would be the loss of control for the primary DC power supply used in
an experiment. Unless there is a backup supply available that can automatically take
over, the system will need to shut down until the problem can be resolved. Another
example might be the failure of the control system for the liquid nitrogen supply used
for the sorption pumps on a vacuum chamber, perhaps due to a failure in the control
interface electronics, or a failure in the command communications channel. In either
case, the system will begin to lose vacuum and potentially damage things like ion gauges
or sputter emitters. At the very least, the current activity should be stopped until the
problem is resolved.

Error retry and system termination

Sometimes it may make sense to retry an operation if an error is detected, perhaps after
altering a parameter to compensate for the error. While this might sound clever (and
it can be), it’s not something that should be done without some serious consideration

Data I/O: Acquiring and Writing Data | 427

of the context, cause, and consequences of the error. Blithely attempting to retry a failed
operation can sometimes cause serious damage.

The more error-detection and self-recovery capabilities one attempts to build into a
system, the more complicated the system becomes. This is fairly obvious, to be sure,
but what isn’t obvious is how that complexity will manifest, and the subsequent im-
plications it might have, not only for a particular subsystem, but for the system as a
whole. As complexity increases, so too does the chance of new defects being introduced.
Increased complexity can also increase the number of possible execution paths in the
software, some of which may be unintended.

Figure 11-11 shows a scheme for handling a data I/O error in a fault-tolerant fashion.
While this approach may not be suitable for every application, it does show why robust
or fault-tolerant software tends to be an order of magnitude (or more) more expensive
to implement than something that just does the I/O operation and returns either pass
or fail. This is particularly true when performing testing to verify the fault-tolerant
behavior. In Figure 11-11, there are three possible paths that can be taken should an
error occur. In addition to the I/O operation itself, each of these paths must be tested
by simulating the I/O and the error context. This rigorous testing involves a lot of work,
but if you need that level of robustness there really is no other way to achieve it.

An interesting point to note about Figure 11-11 is the amount of code it implies. The
data I/O operation and its return code (pass or fail, perhaps) are simple and straight-
forward, and might take no more than a line or two of code to implement. With the
error handling included in the design, the code for performing a data I/O operation will
grow by anywhere from 10 to 100 times in size. This is typical of fault-tolerant software.
A large portion of it is concerned with error detection and handling, and only a fraction
actually deals directly with the I/O. Also note that the last decision block, “Backup
active?,” means that if the backup is already in use (i.e., the test is True), there are no
more options left except to fail.

When detecting and attempting to deal with an error, the system has to make a decision
as to whether to attempt to recover from the error (and what recovery strategy to use)
or just try to shut down gracefully. The logic making that decision must have inputs in
the form of data describing the context in which the error occurred and the current
state of the system, and there may also be a need to define excluded operations that
should not be used.

For example, it may not be a good idea for a system controlling a pressure vessel to just
relinquish control of the system without first performing some kind of check to deter-
mine if the pressure needs to be released. If the pressure continues to build even after
the pumps and heaters are disabled (this can happen), there is a risk that the vessel may
explode, especially if the error involved an over-pressure-related situation to start with.
A graceful shutdown could possibly involve some type of venting action before control
is completely terminated.

428 | Chapter 11: Instrumentation Data I/O

Similarly, if an error occurs in a system that is moving a mass of some type, does it make
sense for the system to just stop? If the action of lifting or moving the mass entails
control of power to a motor or servo, it might not be a good idea to just kill the power.

Figure 11-11. Fault-resistant data I/O error handling

Data I/O: Acquiring and Writing Data | 429

The system may need to engage some type of braking or locking mechanism, or it might
make sense for the mass to be lowered to a safe position prior to shutdown (if possible).

These considerations also come into play when attempting to retry a failed operation.
Retries may not be appropriate after some types of failures, such as the loss of direct
positional feedback, or the failure of a temperature sensor. Other failures may be known
to be transient, and the operations can be retried some number of times before the
situation is declared hopeless.

Consider the situation where the position of a secondary mechanism is dependent on
the position of a primary mechanism, both of which are moving at a slow and relatively
continuous rate for extended periods of time. The link between the two is a commu-
nications channel that is known to occasionally drop out due to system load or other
factors. In a situation like this, the secondary mechanism that is following the primary
one might be able to predict where it should be over short periods of time. This allows
it to continue to function without an update from the primary mechanism. If after some
period of time the communications with the primary mechanism cannot be reestab-
lished, the secondary mechanism will enter an error condition. If it does reestablish the
communications channel with the primary mechanism before the timeout period, it
can update its position, if necessary, and reset the timeout.

Failure analysis, which we discussed briefly in the section “Handling Errors and
Faults” on page 272 in Chapter 8, comes into play when making decisions like these.
If done correctly, it can provide the guidance needed to make the decision to terminate
abruptly, terminate gracefully, or attempt to recover. Lacking a failure analysis, the best
choice is often to just terminate gracefully, and provide sufficient information (typically
in a crash log or something similar) to allow someone to go back and ascertain the cause
of the problem later.

Error/warning message single-shot logic

It sometimes happens that something in a system will occasionally generate a nonfatal
error or warning message, and while you do want to know that the error has occurred,
you probably don’t want to see the warning messages over and over again.

An example of this might be a high-speed data acquisition device that, depending on
whatever else is going on, might miss a data acquisition operation every now and again.
The author of the API library might have considered this to be bad, but you might not,
especially if your software is clever enough to toss out a bad sample and simply try it
again (as we just discussed). So long as your software is applying a timestamp to the
data and there are no specific requirements that the data be acquired at precise intervals
(having an accurate timestamp can help with this), you can often just ignore the error
and try for another sample.

430 | Chapter 11: Instrumentation Data I/O

Here’s one way to handle this:

somewhere in the module's global namespace, we define some control
variables and assign initial values (these could also be object
variables):

msglock = False
errcnt = 0
errcntmax = 9 # this will result in 10 counts before lockout

And here is the function/method that does the actual data
acquisition and error message lockout:

def grabData():
 global msglock, errcnt

 rc = Acquire()

 if rc != OK:
 if msglock == False:
 errcnt += 1
 if errcnt > errcntmax:
 print "ERROR: Data acquisition failed %d times" % (errcntmax + 1)
 msglock = True
 else:
 msglock = False
 errcnt = 0

 return rc

The idea here is to not emit an error message unless some number of consecutive errors
have occurred. When errors occur back-to-back, the variable errcnt will be incremen-
ted. When it reaches a threshold count, an error message will be printed, but it will
only be printed once. The first nonerror return from the Acquire() call will reset the
error count and the lockout variable, msglock.

It is also possible to put the error count and lockout logic into a separate function, but
remember that a function or method call takes time, and if you have a need for speed
it might make more sense not to try to encapsulate this functionality, but just to leave
it as inline code.

Handling Inconsistent Data
When attempting to acquire data, you may occasionally run into a situation where the
quantity being measured exhibits some type of instability. This often occurs with de-
vices that need time to stabilize after power-on before they begin to provide consistent
readings. In other cases, the values being measured are so small that just the inherent
noise in the system can introduce significant errors into the data.

Data I/O: Acquiring and Writing Data | 431

Waiting for stability

Sometimes an instrument or external device needs a period of time to stabilize before
it will return valid data. If you happen to know what that time period is in advance, all
you need to do, theoretically, is wait until it has elapsed before attempting to take a
reading. However, if the time period is variable (perhaps due to changes in the ambient
temperature of the operating environment), a deterministic timeout period cannot
necessarily be relied upon.

Figure 11-12 shows how a series of measurements can be used to determine when an
input is stable.

Figure 11-12. Waiting for stability

Depending on the inherent behavior of the instrument, the delta, or difference, between
measurements may decrease as the instrument warms up, until it is close to zero. Hence,
the difference between measurements 1 and 2 will be large, but it will be small (close
to zero) between measurements 6 and 7. Due to noise or conversion errors, the delta
may never be exactly zero.

In other cases the data may vary widely at first and then start to converge on a stable
(more or less) output value, as shown in Figure 11-13. Precision solid-state laser con-
trollers sometimes exhibit this type of behavior when attempting to measure the wave-
length of the output beam. Until the controller and the laser head have both achieved

432 | Chapter 11: Instrumentation Data I/O

an optimal operating temperature, the wavelength and the power of the beam may
jump around, sometimes considerably.

Figure 11-13. Warm-up convergence

The delta test function shown earlier (in the section “Writing data” on page 416) is a
good candidate for checking warm-up stability convergence. A little additional logic
could be used to set the delta match acceptance to something like two or three con-
secutive readings within tolerance.

Data I/O: Acquiring and Writing Data | 433

The warm-up read and test approach offers a notable advantage over a simple timed
wait in terms of fault detection. By taking a series of test readings and examining the
delta between them, it is possible to determine if the data source is actually becoming
more stable, or if it is having a problem achieving a stable output within a reasonable
period of time.

Dealing with noise: Averaging

Now, let’s consider Figure 11-14. This shows a series of measurements that appear to
be bouncing around in a random fashion. Depending on the scale, this might look worse
than it actually is, but nonetheless the readings are not stable. This is not an uncommon
situation when dealing with analog data inputs, particularly if the intent is to obtain a
precise measurement over a small variance range and there is noise in the system.

Figure 11-14. Noisy data

One way to deal with this is by averaging the inputs over some period of time. Here’s
a simple function to compute the average of an incoming stream of data:

data_sum = 0
data_avg = 0
samp_cnt = 0

def sampAvg(data_val):
 global data_sum, data_avg, samp_cnt

 samp_cnt += 1
 data_sum += data_val
 data_avg = data_sum / samp_cnt

 return data_avg

The global variables data_sum, data_avg, and samp_cnt must be set to zero before this
function is called. For now, assume that there is a list called dataset that will hold the
incoming data values after they’ve been averaged. Each call like this one will acquire a
sample, average it with the samples already acquired, and append the new value to the
list:

dataset.append(sampAvg(readInputData()))

Averaging works best with data that is changing with each input sample. Fig-
ure 11-15 shows how averaging can help smooth out data that is fluctuating very rap-
idly.

434 | Chapter 11: Instrumentation Data I/O

Of course, this isn’t real data (to produce data this nasty, something would have to be
seriously wrong), but it shows how averaging fares with this type of input.

By the way, the averaging function used in this example is not optimal; it’s just there
to illustrate one way of doing this. It would be better if the function calculated a con-
tinuous running average, so that there would be no need to worry about the summation
variable eventually becoming a monstrous number.

Averaging can handle a lot of cases where data is changing on a small scale around a
stable or very slowly changing mean, but it should be used with caution. An averaged
signal that is trending either positive or negative will pull the average along with it, but
if a change happens rapidly—say, a short-term variance that returns to the original
level—the change will tend to be averaged out.

Summary
With the material that we’ve covered in this chapter, you should now have a good idea
of what is involved when using an external instrument or device with Python, and the
various tools that are available to help make everything work together. We’ve looked
at serial, parallel, USB, GPIB, SCPI, and VISA interfaces, and at the basics of how one
can implement an interface that is both robust and fault-tolerant. There are, of course,
many deeper levels that we didn’t cover, but with what we’ve seen so far we can move
forward into some working examples using real hardware.

Figure 11-15. Rapidly changing averaged data

Summary | 435

Suggested Reading
In terms of books, USB is probably the most popular topic. With a little digging, you
might be able to turn up a book or two dealing with RS-232 or RS-485. There really
isn’t a whole lot available in the way of contemporary books about GPIB (or IEEE-488),
but there are a lot of useful sources of information available via the Internet. Entering
either “GPIB” or “IEEE-488” into Google will return numerous documents, some better
than others.

Most of the books on Python that have already been referenced contain information
concerning writing extensions in C or C++, and reviewing the API documentation for
a particular piece of hardware is essential in order to use it effectively.

As a starting point, here are a few references you might find useful:

Real Time Programming: Neglected Topics, 4th ed. Caxton C. Foster, Addison-Wesley,
1982.

Contains a brief but useful overview chapter on GPIB interfaces and the hardware
handshaking GPIB employs. This book has long been out of print, but it is still
possible to find used copies (also referenced in Chapter 9).

USB Complete: The Developer’s Guide, 4th ed. Jan Axelson, Lakeview Research, 2009.
If you want to learn more about USB, you might want to consider this book. Ax-
elson does a good job of explaining the low-level details of USB interfaces, with a
particular focus on Human Interface Device (HID) class implementation. If you
want to implement your own USB interface or just learn more about USB in general,
this is a good place to start.

http://www.ivifoundation.org/docs/SCPI-99.PDF
This link points to a PDF document that contains the complete SCPI specification.
It is available free of charge through the IVI Foundation.

http://www.ivifoundation.org/specifications/default.aspx
The IVI Foundation also has the VPP-4.3 VISA library reference available at no
charge. If you’re going to use a VISA-compliant interface, you should have a copy
of the documentation at hand.

http://joule.ni.com/nidu/cds/view/p/id/852/lang/en
The NI-VISA 4.2 driver suite is available as an ISO file, ready to burn to CD. You
can download it via this link.

The following semiconductor companies offer free application notes that cover a wide
variety of topics of interest to instrumentation system implementers:

• Analog Devices, Inc. (http://www.analog.com)

• Maxim/Dallas Semiconductor (http://www.maxim-ic.com/appnotes10.cfm)

• National Semiconductor (http://www.national.com/apnotes/)

• Texas Instruments (http://www.ti.com)

436 | Chapter 11: Instrumentation Data I/O

http://www.ivifoundation.org/docs/SCPI-99.PDF
http://www.ivifoundation.org/specifications/default.aspx
http://joule.ni.com/nidu/cds/view/p/id/852/lang/en
http://www.analog.com
http://www.maxim-ic.com/appnotes10.cfm
http://www.national.com/apnotes/
http://www.ti.com

CHAPTER 12

Reading and Writing Data Files

Two people were examining the output of the new
computer in their department. After an hour or so of
analyzing the data, one of them remarked: “Do you

realize it would take 400 people at least 250 years to
make a mistake this big?”

—Anonymous

Being able to acquire data is good, but being able to save it in a file so it can be analyzed
and archived is even better. Simple applications, such as an electronic thermostat, might
not have an obvious need to save data, but data acquired and saved by even the simplest
applications may provide valuable insight into long-term trends. In Chapter 10 we saw
how to use a simulator that could save the results of a simulation into an ASCII file for
later review and analysis. In this chapter we’ll take a closer look at how that can be
accomplished, and we’ll also look at some other ways to save data.

For example, consider what you might be able to learn if the thermostat in your home
could record the outside ambient temperature, the inside temperature, the set-points,
the activity of the heater and air conditioner units, and the control settings. With this
data you would be able to see how well your heater or air conditioner is handling
temperature control, what kind of duty cycle it has, and if someone is overriding the
fan on a regular basis. What it could tell you might just surprise you, especially if you
could collect the data continuously for a year or two.

Data can exist in many different forms. In some cases it’s just a series of numbers in
the form of ASCII (character) strings. Other types of data might have information such
as the time and date associated with a measurement, and some data might consist of
multiple measurements and associated parameters in a structured binary format. But
regardless of the format used, the whole point of saving data is to be able to readily
recall it later, and hopefully do something useful with it.

“Useful” is a broad term, but for our purposes I’m going to apply the notion of useful-
ness to data that can be easily accessed in a variety of contexts—in other words, data

437

that has a consistent and logical structure and contains enough auxiliary information
to allow it to be associated with a particular source and time, and perhaps a location
as well. ASCII data, with its text-based representation of numeric values, fits these
requirements quite nicely.

Python works well with ASCII data, and that will be a primary focus in this chapter. In
general, systems that don’t need to deal with things like images, large numeric arrays,
or complex compound data objects can use ASCII files and do just fine. But not all data
can be efficiently handled as ASCII. This is particularly true if you need the ability to
exchange binary data with other applications or transfer it over a network connection.
The second main focus of this chapter will be on creating, saving, and reading binary
data objects using only Python.

In this chapter we’ll be seeing a lot of code, including several complete utility functions.
By the end of this chapter we will have created a collection of reusable functions and
classes that we can integrate with the simulators we saw in Chapter 10 and use later,
when creating instrumentation and control software.

ASCII Data Files
Data that has been encoded to represent the characters of a natural alphabet is the
lingua franca of computers, and has been for over 40 years. Commonly referred to as
text data, or as text files, this is data that can be sent directly to a printer; displayed on
a terminal; and edited, sorted, and searched with just the native capabilities of the host
computer system. In order to achieve this level of cross-platform compatibility, the
ASCII standard was developed and later incorporated into the UTF family of standards.

The ASCII character encoding standard is now almost 50 years old. The acronym ASCII
stands for American Standard Code for Information Interchange, and it originally en-
coded 33 nonprintable control characters and 95 printable characters, for a total of 128
character codes. As you might surmise from this, it was also a 7-bit encoding scheme
(27 = 128). When ASCII was originally defined the use of 8-bit characters was consid-
ered, but it was ultimately rejected due to data transmission costs and parity-bit con-
siderations. Another factor was that the devices that needed to use it, such as teletype
machines and paper tape reader/punch units, typically only worked with 7-bit data.
For a historical perspective on the relationship of ASCII to early network communica-
tions, you might want to take a look at “RFC20—ASCII format for network
interchange,” written by Vint Cerf in 1969 (see the section “Suggested Read-
ing” on page 485).

Today, the most common character encoding is UTF-8. This is an encoding scheme
that preserves the original 128 ASCII characters and adds room for 128 more, plus
additional bytes of data (depending on the encoding extension employed). The addi-
tional data bits and bytes are used to encode special symbolic characters, and character
sets other than the English alphabet that require two or more bytes for encoding. We’ll

438 | Chapter 12: Reading and Writing Data Files

be dealing with the original 7-bit ASCII part of UTF-8, although the full UTF-8 speci-
fication is an interesting topic for exploration in its own right.

The Original ASCII Character Set
Since ASCII was originally intended for devices and applications that no longer exist
today, it contains some oddities that, for the most part, you can safely ignore, such as
most of the control characters. Figure 12-1 lists the nonprintable ASCII control char-
acters. The codes for BEL, BS, LF, CR, and FF are still in common use. The rest of the
codes are seldom used nowadays, but there’s nothing that says you can’t use them if
you really want to.

Most of the control characters might seem like anachronisms, but they can have a role
to play in some situations. If you are using older instruments for a project, you might
find that the ACK, NAK, and perhaps EOT and ETB characters are used to synchronize
communications between the instrument and whatever it is connected to. If you are
designing your own system, you might also have a use for these characters. But, a word
of warning: if you use nonprintable characters other than CR and LF, your interface
may no longer be easily usable by a human operator using a terminal emulator (e.g.,
the Tera Term communications application and terminal emulator we saw in Chap-
ter 10).

You should also bear in mind that there are differences between how lines of text are
terminated in different operating systems. MS-DOS and Windows use a pair of char-
acters, CR and LF, as the EOL (end-of-line) terminator. Unix, Linux, AIX, and other
Unix-like systems use a single LF character. Older Apple products used a single CR
(the BSD-based OS X uses an LF character).

The printable characters define symbols for punctuation, numerals, and both lower-
and uppercase characters from the American English alphabet. Figure 12-2 lists the
printable ASCII characters.

Python’s ASCII Character-Handling Methods
You may have noticed that the upper- and lowercase alphabetic characters in Fig-
ure 12-2 differ from one another by a value of 32 (or 0x20 in hexadecimal). So, if you
want to do a lower- to uppercase conversion, you need only check to see if a character’s
ASCII value is greater than or equal to 0x61 and less than or equal to 0x7A, then subtract
0x20.

Although this technique, or some variation of it, is sometimes seen in C code and is
very common in assembly language programming, it isn’t really necessary with Python.
Built-in functions are included to do things like character to ordinal value (integer)
conversion and integer to character conversion, and Python provides various string
methods to handle common operations like case conversion.

ASCII Data Files | 439

For dealing with the value of ASCII characters, the chr() and ord() functions are avail-
able. Here is what the Python documentation has to say about these functions (from
the Python Standard Library document, Section 2, “Built-In Functions”):

chr(i)

Return a string of one character whose ASCII code is the integer i. For example,
chr(97) returns the string 'a'. This is the inverse of ord(). The argument must be in the
range [0..255], inclusive; ValueError will be raised if i is outside that range. See also
unichr().

ord(c)

Figure 12-1. ASCII control characters

440 | Chapter 12: Reading and Writing Data Files

Given a string of length one, return an integer representing the Unicode code point of
the character when the argument is a unicode object, or the value of the byte when the
argument is an 8-bit string. For example, ord('a') returns the integer 97,
ord(u'\u2020') returns 8224. This is the inverse of chr() for 8-bit strings and of
unichr() for unicode objects. If a unicode argument is given and Python was built with
UCS2 Unicode, then the character’s code point must be in the range [0..65535] inclusive;
otherwise the string length is two, and a TypeError will be raised.

Figure 12-2. ASCII printable characters

In essence, these are byte-to-integer conversions. Since, unlike C, Python has no char
type, you can’t just pluck out a character from a string and expect to get a sensible 8-
bit value. For example:

>>> foo = "ABCD"
>>> foo[0]
'A'
>>> int(foo[0])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'A'

ASCII Data Files | 441

That didn’t work out too well, but if we use the ord() function we will get the integer
value of the ASCII character ‘A’:

>>> ord(foo[0])
65

If we want to go in the other direction, the chr() function is what we need to use:

>>> chr(65)
'A'

Or, in hex notation:

>>> chr(0x41)
'A'

chr() returns a single character string object.

Once we have a string, there are other operations available in the form of string meth-
ods. We first saw these in Chapter 3, and in this chapter we’ll take a closer look at how
they can be put to use for operations such as case conversion, alignment, and parsing.

Reading and Writing ASCII Flat Files
An ASCII flat file is defined as a file that is composed of one or more lines of ASCII text
called records. Each record may consist of one or more data elements, or fields, each
separated by one or more spaces, commas, slashes, or whatever character makes the
most sense for the application. Each record is a complete data entity unto itself. The
term “flat” refers to the fact that the data resides in a single file, the records represent
rows and columns in a two-dimensional table, and there are no relationships between
the records other than the fact that they all reside in the same file. Flat-file databases
are as old as computers themselves, and they still serve an important role in a variety
of applications.

Records

A record is a single line of characters, terminated by an EOL (end-of-line) character (or
characters, in the case of Windows systems). Each record is organized into fields, with
separators of some type between each field. In some cases the separators can be dis-
pensed with if the fields will always be the same size, but I don’t recommend this, as it
makes the data difficult to read and use by a human being. Also, the use of separator
characters allows the data fields to be variable-width, so long as the number of fields
in a record matches the expectations of whatever is reading the data. Fixed-width fields
are fine, but I believe that separators are also a very good idea.

Here is an example of a record that might be used for data acquisition:

0021 080728 101829 02 4.99

442 | Chapter 12: Reading and Writing Data Files

This is a columnar record that contains five fixed-width fields in each record with space
characters used as separators. The fields (from left to right) are used for a sequence
number, the date in YYMMDD format, the 24-hour time in HHMMSS format, the
input port number, and the voltage read from the port. Although space characters are
used as separators in this case, any other characters that will never, ever appear in the
data fields could also be used (commas, colons, vertical bars, equals signs, and even
dollar signs have all been spotted in ASCII data files). The “extra” space in front of the
voltage value is reserved for a negative sign, should it be needed.

Writing dates in YYMMDD formats allows the values to be easily sorted and extracted.
Using the more common DDMMYY format (or even the DD MMM YY style, where
MMM is a three-letter abbreviation of the month) may be a little easier to read, but it
can be awkward to sort and may require extra code to process.

Microsoft’s Excel spreadsheet can handle flat ASCII data files using either fixed-width
fields or user-specified separators (it knows how to deal with a CSV file, which we’ll
look at shortly, without any need for the user to intervene). Here’s a subset of data
collected from a hypothetical instrumentation system:

0000 080728 101808 02 4.78
0001 080728 101809 02 4.82
0002 080728 101810 02 4.80
0003 080728 101811 02 4.84
0004 080728 101812 02 4.86
0005 080728 101813 02 4.83
0006 080728 101814 02 4.86
0007 080728 101815 02 4.87
0008 080728 101816 02 4.85
0009 080728 101817 02 4.88
0010 080728 101818 02 4.89
0011 080728 101819 02 4.90
0012 080728 101820 02 4.91
0013 080728 101821 02 4.90
0014 080728 101822 02 4.91
0015 080728 101823 02 4.92
0016 080728 101824 02 4.94
0017 080728 101825 02 4.95
0018 080728 101826 02 4.97
0019 080728 101827 02 4.96
0020 080728 101828 02 4.98
0021 080728 101829 02 4.99
0022 080728 101830 02 4.98
0023 080728 101831 02 5.00
0024 080728 101832 02 5.01
0025 080728 101833 02 5.03
0026 080728 101834 02 5.04
0027 080728 101835 02 5.02
0028 080728 101836 02 5.05
0029 080728 101837 02 5.06
0030 080728 101838 02 5.08

ASCII Data Files | 443

We can see that the input activity started at 10:18:08 a.m. on the 28th of July, 2008,
and the data covers a 30-minute time period. Figure 12-3 shows the graph generated
by the input voltage data. The graph was created by using Excel to import the data and
then plot it as a simple line graph.

Figure 12-3. Sample input data plot

Writing ASCII data files

Saving ASCII data in Python is simply a matter of formatting the data into a string and
then writing it to the file. First, we open a file to receive the data:

fout = open("datafile.txt", "a")

A couple of observations about this are in order. First, the filename is hardcoded here,
which is probably not something you will always want to do. It would be better if it
was a string variable defined elsewhere, as was done in the I/O device simulator in
Chapter 10. Secondly, there’s no way to tell if the open call succeeded.

We can add these missing features and get the following:

dataname = "datafile.txt"
datamode = "a"

try:
 fout = open(dataname, datamode)
except Exception, e:
 print "Output file open error: %s" % str(e)

444 | Chapter 12: Reading and Writing Data Files

There are, of course, other ways to do this, but this is fine for our present purposes.

Once the file is open, we can write data to it. I’ll assume that Python’s time and
datetime library modules have already been imported so we can generate the timestamp
data:

get current date and time from the system
t = datetime.datetime.now()
currdatetime = t.timetuple()
currutime = time.mktime(t.timetuple())
yr = str(currdatetime[0])
curr_date = "%02d"%int(yr[2:]) + "%02d"%currdatetime[1] + "%02d"%currdatetime[2]
curr_time = "%02d:"%currdatetime[3] + "%02d:"%currdatetime[4] + "%02d"%currdatetime[5]
tstamp = curr_date + " " + curr_time

tstamp is a string that contains the year in YYMMDD format and the current time in
HHMMSS format, with a space character in between. Lastly, we format the data to
look like the sample data we just saw and then write the line to the output file:

outstr = "%d %s %d %4.2f" % (seq_num, tstamp, port_num, dataval)
fout.write(outstr+"\n")

In this example the variables seq_num, port_num, and dataval would be supplied from
elsewhere.

Note that the write() method of a file object does not automatically append an EOL,
so it must be explicitly added with a \n escape character.

There’s another way to write the data (there’s almost always another way with Python)
that uses the print statement and doesn’t require the EOL character (print supplies it
for us, in this case):

print outstr >> fout

You would most likely want to put the timestamp and output code into a function or
method that could then be called whenever your application needs to write data to the
output file.

Reading ASCII data files

Reading data from an ASCII file is about as straightforward as writing it. Python pro-
vides some very useful methods for dealing with strings, including the ability to parse
a string into its component parts based on a specific delimiter character.

Let’s assume that we want to read the contents of an ASCII data file that look like this:

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000
1.000 1.085 1.000 1.250
1.000 0.839 −0.085 −0.106
1.000 0.908 0.161 0.201
1.000 0.900 0.092 0.116

ASCII Data Files | 445

1.000 0.909 0.100 0.125
1.000 0.914 0.091 0.113
1.000 0.919 0.086 0.108
1.000 0.923 0.081 0.101
1.000 0.927 0.077 0.096
1.000 0.930 0.073 0.091
1.000 0.934 0.070 0.087
1.000 0.936 0.066 0.083
1.000 0.939 0.064 0.079
1.000 0.941 0.061 0.076
1.000 0.944 0.059 0.073
1.000 0.946 0.056 0.070
1.000 0.948 0.054 0.068
1.000 0.950 0.052 0.065

We can use something like the following code snippet to read each line from a
columnar-format ASCII data file and print each field. Granted, it’s not particularly
useful as it stands, but it does help to illustrate some key points:

fin = open('testdata.dat', 'r')
for line in fin:
 lineparts = line.split()
 for i in range(0, len(lineparts)-1):
 print lineparts[i],
 print " ",
 print lineparts[i + 1]

There are a couple of things to notice about this little bit of code. First, it doesn’t matter
how many columns the file has, just so long as there are one or more whitespace char-
acters between each field. Second, the data is printed out as lines organized into col-
umns by using a comma at the end of the print statement in the for loop to suppress
the newline character, except for the last print, which does generate a newline character.
That’s why the for loop stops one field short of the last field in a line. Here’s what the
output looks like:

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000
1.000 1.085 1.000 1.250
1.000 0.839 −0.085 −0.106
1.000 0.908 0.161 0.201
1.000 0.900 0.092 0.116
1.000 0.909 0.100 0.125
1.000 0.914 0.091 0.113
1.000 0.919 0.086 0.108
1.000 0.923 0.081 0.101
1.000 0.927 0.077 0.096
1.000 0.930 0.073 0.091
1.000 0.934 0.070 0.087
1.000 0.936 0.066 0.083
1.000 0.939 0.064 0.079
1.000 0.941 0.061 0.076
1.000 0.944 0.059 0.073

446 | Chapter 12: Reading and Writing Data Files

1.000 0.946 0.056 0.070
1.000 0.948 0.054 0.068
1.000 0.950 0.052 0.065

Based on what we’ve already seen, we can make a general-purpose ASCII columnar
data file reader to extract specific columns of data values. With a tool like this, we could
easily pipe its output to another tool (perhaps to plot it), or save it in a temporary file
for use later. On a Linux system you may need to change the first line to point to where
your Python interpreter resides if it’s not in /usr/bin:

#! /usr/bin/python
#==
readascii
#
A simple utility to extract data from an ASCII file containing
columnar data.
#
Includes the ability to extract a specific column or range of
columns. Can also skip over an arbitary number of non-columnar
header lines. Output is printed to stdout.
#==
import sys
import getopt

startcol = 0 # default start is column zero (first)
colspan = −1 # default span is all columns
hdrskip = 0 # default header line skip is zero (no header lines)
fname = '' # Empty string as default input file name

def usage():
 print "Usage: readascii [options] file_name"
 print " Options:"
 print " -c Start column (default is zero)"
 print " -s Column span (default is all columns"
 print " -h # of header lines to skip (default is zero)"
 sys.exit(1)

get command-line arguments
if len(sys.argv) > 1:
 try:
 clopts, clargs = getopt.getopt(sys.argv[1:], ':c:s:h:')
 except getopt.GetoptError, err:
 print str(err)
 sys.exit(2)
 #endtry

 for opt, arg in clopts:
 if opt == "-c":
 startcol = int(arg)
 elif opt == "-s":
 colspan = int(arg)
 elif opt == "-h":
 hdrskip = int(arg)
 else:
 print "Unrecognized option"

ASCII Data Files | 447

 usage()
 if len(clargs) > 0:
 fname = clargs[0]
else:
 usage()

attempt to open input file
try:
 fin = open(fname, 'r')
except Exception, err:
 print "Error: %s" % str(err)
 sys.exit(2)

see if header needs to be skipped
if hdrskip > 0:
 for i in range(0, hdrskip):
 fin.readline()

read, parse, and output the designated fields from the input file
for line in fin:
 lineparts = line.split()
 if colspan == −1:
 colspan = len(lineparts)
 for i in range(startcol, (startcol + colspan)):
 print lineparts[i],
 print " ",
 print ""

To use this utility under Windows, simply invoke it from the shell command line like so:

python readascii.py datafile.dat -c1 -s1 -h3

Under Linux, just type the script name (the script file needs to be marked as executable).
Either method will launch Python, which then loads and executes readascii.py using
the input file datafile.dat. The options specify that the tool should extract just the sec-
ond column (the column numbering starts at zero, by the way) and skip over three
header lines at the top of the input data file.

CSV files

A CSV (comma-separated values) file is a type of flat file that has become more or less
a standard way to exchange data between various application programs. CSV has been
around for a long time, even before the advent of personal computers. Most spreadsheet
applications support CSV, and Python even has a set of methods in its standard library
for handling CSV data provided by the csv library module.

Unfortunately, there is no “standard” for CSV files. Instead, there are multiple varia-
tions on the CSV theme, referred to as “dialects.” Microsoft’s Excel is one example of
a particular dialect of CSV. RFC 4810, “Common Format and MIME Type for Comma-
Separated Values (CSV) Files” (see the section “Suggested Reading” on page 485),
defines a recommended standard for CSV files. PEP 305 defines the API for Python’s

448 | Chapter 12: Reading and Writing Data Files

standard CSV module, which has the ability to support various dialects of CSV. Addi-
tional information on the CSV format can be found on Wikipedia.

If you only need a simple CSV to export data into something like Excel, and you’re not
concerned about headers, field names, and such, you can easily create a data file using
the string formatting techniques we’ve already examined in this chapter. However, if
you need something fancier, you should take a look at Python’s CSV capabilities.

Python’s csv library comes with two preregistered dialects: excel-tab and excel. You
can define and register a new dialect by using the csv.register_dialect() method. The
csv module supports things like quoted strings and empty columns, and its main benefit
is that it takes care of a lot of little details for you. If you don’t need this level of control,
though, there’s nothing wrong with just doing it yourself.

Configuration Data
Configuration data files are a common and convenient way to collect application con-
trol parameters into one place. On the Windows platform they are usually called “INI”
files and are still in use by various applications, although Microsoft has been actively
encouraging developers to abandon them in favor of the Windows Registry scheme.
The configuration data files on a Windows system usually have a .ini extension (hence
the name “INI”). On Unix-type systems configuration data files are often referred to
as “config” files and can have any extension, although the most commonly encountered
are *.conf and *.rc. I’ll use the term “config file” from here on out to mean both types.

A config file is an ASCII flat-file database with only two fields per record, in what is
called a key/value pair (KVP) organization. The separator on Windows systems is usu-
ally the equals sign (=). On Linux systems the configuration files for various applications
might use a colon instead.

Although often treated as an afterthought, or created ad hoc as the code is hacked into
existence, an application’s configuration parameters play a big role in how well it can
be tested, tuned, and maintained. Overly large config files can make life difficult when
it doesn’t need to be, and can lead to crashes or strange behavior. Take a moment and
plan how your config files will be utilized up front: set some initial guidelines for size,
context, and content type, and then stick to them. You’ll be glad you did.

Basic configuration file organization

Simply put, a config file contains one or more key/value pairs, one pair per line record,
usually separated with an equals sign or perhaps a colon. Here’s an example from an
INI file in my C:\Windows directory:

[Window]
Xpos=0
Xright=640
Ypos=0
Ybottom=1024

ASCII Data Files | 449

[Font]
Height=10
Weight=400
Italic=0
CharSet=0
Pitch=49
Name=Times New Roman

and here are a few lines from one of the *.conf files on my Linux machine that utilizes
colons as separators:

wordlist_extend: true
minimum_word_length: 1
maximum_word_length: 25
wordlist_cache_size: 10485760
wordlist_page_size: 32768
wordlist_compress: 0
wordlist_wordrecord_description: NONE

Config files can contain other features as well, such as section headers, comments, and
so on. Note that not all platforms and library packages support all of the possible
variations. To find out more about how Python supports config files, check out this
section of the Python documentation: http://docs.python.org/library/configparser
.html. Wikipedia also has a nice write-up on the subject, which can be found at http://
en.wikipedia.org/wiki/INI_file.

Using configuration files

Over time, I’ve learned that there are some good ways to use config files, and some bad
ways. Here is a collection of guidelines that I employ in my work and that you might
find useful as well. They are rather Python-centric (since that’s what I’m using a lot
these days), but they also apply to other languages:

1. Multiple small config files are better than one big file.

Small files are easier to manage from within the code. Changing the behavior of a
particular subsystem requires only that its (hopefully small) config be changed, not
an entire monster config file.

Small files are also easier to document and easier to comprehend, which makes it
easier for the user to edit them manually if necessary.

Small files are less risky to modify from within the code. Small files isolate potential
configuration file errors and prevent catastrophic errors from spreading across a
large number of parameters. Case in point: when modifying a value in a config file
corrupts everything past the point where the value was modified because there was
a system glitch while the file was open for writing.

2. Avoid the Windows Registry (if you can).

Try not to use the Windows Registry to store configuration data if you think there’s
even the slimmest chance that the code will ever get ported to a different platform
someday, or if a user may need to be able to easily inspect or modify the data

450 | Chapter 12: Reading and Writing Data Files

http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html
http://en.wikipedia.org/wiki/INI_file
http://en.wikipedia.org/wiki/INI_file

manually. If there’s even a shred of doubt, use text-based INI-type files instead.
This will help to ensure easier portability across multiple platforms, and an easier
time for the user.

3. Use simple strings for keys and values.

If a value cannot be represented easily as a simple string, it probably doesn’t belong
in a config file. In other words, if the code can’t figure out if the value part of the
KVP is supposed to be a single integer; a float; a long; a string; or, in Python, a
tuple, list, or dictionary object, it should probably be in a custom format data file.
Python provides the pickling mechanism for serializing objects, and there are other
options for binary data available, which we will look at later in this chapter.

4. Pair related data elements.

When a parameter requires additional information, such as a unit of measurement,
use a Python tuple or store the unit value as a separate parameter in the config file.
For example, as a Python tuple:

output_lambda: (687, nm)

or as separate parameters:

output_lambda: 687
output_lambda_units: nm

Do not store the value as:

output_lambda: 687 nm

A Python utility such as an autoconvertor (discussed in the next section) can easily
handle all of the standard Python types, but it won’t handle a value like “687 nm”.
For that you’ll need to write your own custom parser, and personally I’d rather
spend my time doing something else. Using separate parameters for values and
units can make things easier to process in any language.

5. Don’t overload the config file.

Store data that is more properly represented in binary in a binary file. In other
words, it’s not a good idea to convert a 2D image (even a really small one) into a
2D array of values in ASCII just so it can be stored in a config file. Don’t snicker,
I’ve seen this done.

Module AutoConvert.py—Automatic String Conversion
The following utility function will take a string representation of a valid Python data
type and attempt to convert it to an actual data object. It was originally created to handle
value strings (the V in KVP) from a config file, but it will also process just about anything
you might care to throw at it (with a few exceptions—see the comments in the code).
If the input is already a nonstring type, it will simply be passed through as is.

ASCII Data Files | 451

Here is the source code for AutoConvert.py:

def AutoConvert(input):
 """ Attempts to identify and convert any type of input to a standard
 Python type.

 Useful for dealing with values stored in a configuration data
 file (i.e., an 'ini' file) where the values read from the KV pairs
 are always in string format.

 Returns the converted value (or just the input value, if no
 conversion took place) along with the data type as a 2-tuple.
 Always returns valid data, even if it's just a copy of the
 original input. Never returns None.

 Note that Boolean value characters ('t', 'T', 'TRUE', etc.) are
 converted to 0 or 1. They are not returned as Boolean values using
 Python's True or False values. This can be changed easily enough
 if you really want Boolean values as the output.
 """
 if type(input) == str:
 if input.isalpha():
 # convert T and F characters to 1 and 0
 if len(input) == 1 and input.upper() == 'T':
 ret_val = 1
 elif len(input) == 1 and input.upper() == 'F':
 ret_val = 0
 else:
 if input.upper() == "TRUE":
 ret_val = 1
 elif input.upper() == "FALSE":
 ret_val = 0
 else:
 ret_val = input
 #endif
 #endif
 elif input.isdigit():
 # integer in string form, convert it
 ret_val = int(input)
 elif input.isalnum():
 # mixed character string, just pass it on
 ret_val = input
 else:
 # see if string is a float value, or something else
 try:
 ret_val = float(input)
 except:
 # No, so see if it's a tuple, list or dictionary. The code
 # below will exclude most attempts to invoke internal
 # functions or built-in methods masquerading as parameter
 # values.
 try:
 ret_val = eval(input, {"__builtins__":{}}, {})
 except:
 # eval choked, so just pass it on
 ret_val = input

452 | Chapter 12: Reading and Writing Data Files

 #endif
 else:
 # We'll assume that input is a valid type not captured in a string.
 # This might be problematic, since a value from a conventional
 # *.ini file should be a string.
 ret_val = input
 #endif

 ret_type = type(ret_val)

 return ret_val, ret_type

if __name__ == "__main__":
 print "%s %s" % AutoConvert("T")
 print "%s %s" % AutoConvert("F")
 print "%s %s" % AutoConvert("t")
 print "%s %s" % AutoConvert("f")
 print "%s %s" % AutoConvert("[0, 4, 1, 8]")
 print "%s %s" % AutoConvert("5.5")
 print "%s %s" % AutoConvert("-2")
 print "%s %s" % AutoConvert("42")
 print "%s %s" % AutoConvert("Spam, spam, spam")
 print "%s %s" % AutoConvert("(1, 2, 3)")
 print "%s %s" % AutoConvert("{1: 'fee', 2: 'fie', 3: 'foe'}")
 print "%s %s" % AutoConvert(1)
 print "%s %s" % AutoConvert(99.98)
 print "%s %s" % AutoConvert([1, 2,])
 print "%s %s" % AutoConvert((9, 8, 7))

When you run AutoConvert.py like so:

python AutoConvert.py

you should get the following output:

1 <type 'int'>
0 <type 'int'>
1 <type 'int'>
0 <type 'int'>
[0, 4, 1, 8] <type 'list'>
5.5 <type 'float'>
-2.0 <type 'float'>
42 <type 'int'>
Spam, spam, spam <type 'str'>
(1, 2, 3) <type 'tuple'>
{1: 'fee', 2: 'fie', 3: 'foe'} <type 'dict'>
1 <type 'int'>
99.98 <type 'float'>
[1, 2] <type 'list'>
(9, 8, 8) <type 'tuple'>

For the most part, AutoConvert.py does a pretty good job of figuring out what the input
is supposed to be and then doing the right thing with it.

ASCII Data Files | 453

One thing I’d like to point out is the use of the eval() method, which in Auto
Convert.py is coded like this:

ret_val = eval(input, {"__builtins__":{}}, {})

Normally eval() isn’t something to take lightly. It is considered a security risk, because
it will execute any valid Python statement. In order to deal with this I’ve written it such
that it will not execute built-in functions or methods, and it will not be able to access
local names. eval() is a powerful feature, but be careful with it.

Module FileUtils.py—ASCII Data File I/O Utilities
Next we’ll look at a utility module for reading and writing ASCII data files using fixed
format definitions. The library module FileUtils.py defines two classes for reading
and writing ASCII data records using text files: ASCIIDataWrite and ASCIIDataRead. In
FileUtils.py, we can see working examples of the topics we have been discussing. It
can also serve as a framework for you to build upon by adding your own functionality.

I chose to implement these utilities as classes instead of functions primarily because an
object maintains its own internal variables (also called attributes), and each instance
object of the class is associated with a particular file. In essence, the objects wrap the
file in a set of functions that handle formatting, error checking, and, of course, reading
and writing. This allows for multiple self-contained instances of each class to be created
for different purposes without worrying about conflicts over shared global variables or
file access issues.

Each class provides methods for opening, closing, and either reading data from or
writing data to an ASCII file:

class ASCIIDataWrite()
 openOutput(self, path, file_name, reset_file=False)
 closeOutput(self)
 writeData(self, dataval, use_sn=False, use_ts=False)

class ASCIIDataRead()
 openInput(self, path, file_name)
 closeInput(self)
 readDataRecord(self)
 readDataFields(self)

The module also contains a shared function to handle closing a file object:

closeFile(file_id)

The data is in the form of single-line records with one of four specific formats, as shown
in Table 12-1.

Table 12-1. ASCIIData formats

Number of fields Format

4 [sequence number] [date] [time] [data]

454 | Chapter 12: Reading and Writing Data Files

Number of fields Format

3 [date] [time] [data]

2 [sequence number] [data]

1 [data]

With this scheme it is possible to know what fields a record contains simply by counting
the number of fields in the record. The order will always be as shown in Table 12-1.
(Note that the timestamp is actually two fields: [date] and [time].) For example, re-
cords with either two or four fields will contain a sequence number. Records with only
three fields will contain the timestamp fields, but no sequence number. All record for-
mats contain the [data] field, and it is always written to a file as the string representation
of a floating-point value. In other words, integers will be written with the fractional
part set to zero.

The ASCIIDataRead class methods are described in Table 12-2, and Table 12-3 shows
the ASCIIDataWrite class methods.

Table 12-2. ASCIIDataRead class methods

Method Description

closeInput
(self)

Closes an already opened input file. If file is not already open, an error is returned. Calls the module
function closeFile() to do the actual file close.

openInput(self
, path,
file_name)

Opens a file for ASCII data input. If path is not specified (an empty string is given as the path), the
function will attempt to open the named file in the current execution directory.

readDataFields
(self)

Reads fields from a record in an ASCII data file, one record at a time, and returns each record as a list
object with one list element per field. An EOF returns an empty list. The data for each field is converted
from strings to the appropriate data type based on the number of fields in the record. Returns a 2-tuple
consisting of a return code and the field’s list object.

readDataRecord
(self)

Reads a complete record string one record at a time and returns the entire record string as-is from the
file. An EOF returns an empty record string. Returns a 2-tuple consisting of a return code and the record
string.

Table 12-3. ASCIIDataWrite class methods

Method Description

closeOutput(self) Closes an already opened output file. If file is not open, an error is returned.

openOutput(self,
path, file_name,
reset_file=False)

Opens a file for ASCII data output. If path is not specified (an empty string is given as the path),
the file will be opened in the current execution directory. If the reset_file parameter is
False, the file will be opened in append mode. If True, the file will be opened in write mode
and any existing data will be deleted if the file already exists.

writeData(self,
dataval,
use_sn=False,
use_ts=False)

Generates a string containing a data value in ASCII. If use_sn is False, a sequence number
will not be inserted into the record string. Otherwise, the object will maintain a sequence count
and prepend this to the data record string. If use_ts is False, no timestamp is applied.
Otherwise, a timestamp will be obtained and applied to the output string.

ASCII Data Files | 455

Figure 12-4 shows how the objects defined by ASCIIDataRead and ASCIIDataWrite can
be used to access the contents of ASCII files. In this case the diagram illustrates a sit-
uation where an input file (file 1) contains data that is used to stimulate a system—say,
values that are converted into analog output voltages. The response data is captured
and stored in file 2 and file 3 by ASCIIDataWrite objects.

Figure 12-4. Accessing data files using ASCIIData classes

Here is the source code for FileUtils.py:

#! /usr/bin/python

""" ASCII Data File R/W Utility Classes.

Defines two classes for reading and writing ASCII data records
using text files.

The methods in this module support opening, closing, reading,
and writing ASCII data in the form of single-line records. The
class ASCIIDataWrite handles data record writing, and
ASCIIDataRead handles the reading chores. The instantiated
objects maintain their own file object references, and more
than one instance of either class may be active at any one
time.

There are four record formats available, as follows:

456 | Chapter 12: Reading and Writing Data Files

4 fields: [sequence number] [date] [time] [data]
3 fields: [date] [time] [data]
2 fields: [sequence number] [data]
1 field: [data]

Note that the timestamp is actually two fields: [data] and
[time]. Records with either 2 or 4 fields will contain a
sequence number. Records with only 3 fields will contain the
timestamp fields, but no sequence number. All record formats
contain the data field, and all fields are written as strings.

The [data] field is always written to a file as the string
representation of a floating-point value. In other words,
integers will be written with the fractional part set to zero.
"""

import os

import TimeUtils # time and data utilities
import RetCodes as RC # shared return code definitions

class ASCIIDataWrite:
 """ Methods for writing ASCII data records to a file.

 Defines an object for writing ASCII data records to a
 standard "text file". Each object is unique, and more than
 one object may be in use at any one time.
 """
 def __init__(self):
 self.seq_num = 0
 self.file_ref = None

 def openOutput(self, path, file_name, reset_file=False):
 """ Opens a file for ASCII data output.

 If path is not specified (an empty string is given as
 the path), the file will be opened in the current
 execution directory.

 If the reset_file parameter is False, file will be
 opened in append mode. If True, file will be opened
 in write mode and any existing data will be deleted if
 the file already exists.
 """
 rc = RC.NO_ERR

 if len(file_name) > 0:
 # create the fully qualified path name
 file_path = os.path.join(path, file_name)

 if reset_file:
 fmode = "w"
 else:

ASCII Data Files | 457

 fmode = "a"

 try:
 self.file_ref = open(file_path, fmode)
 except Exception, e:
 rc = RC.OPEN_ERR
 print "%s" % str(e)
 else:
 rc = RC.NO_NAME

 return rc

 def closeOutput(self):
 """ Closes an already opened output file.

 If file is not open, an error is returned.
 """
 rc = RC.NO_ERR

 if self.file_ref and self.file_ref != None:
 rc = closeFile(self.file_ref)
 else:
 rc = RC.NO_FILE

 return rc

 def writeData(self, dataval, use_sn=False, use_ts=False):
 """ Generates a string containing a data value in ASCII.

 If use_sn is False, a sequence number will not be
 inserted into the record string. Otherwise, the object
 will maintain a sequence count and prepend this to the
 data record string. If use_ts is False, no timestamp is
 applied. Otherwise, a timestamp will be obtained and
 applied to the output string.
 """
 rc = RC.NO_ERR

 if use_sn:
 # need to init the sequence number?
 if self.seq_num == 0:
 self.seq_num = 1
 sn = "%02d " % self.seq_num
 self.seq_num += 1
 else:
 sn = ""

 if use_ts:
 ts = TimeUtils.getTS() + " "
 else:
 ts = ""

 hdr = sn + ts

458 | Chapter 12: Reading and Writing Data Files

 # if self.file_ref is None then a file has not yet been
 # opened for this instance
 if self.file_ref == None:
 rc = RC.NO_FILE

 # do not proceed if errors encountered
 if rc == RC.NO_ERR:
 try:
 dstr = " %f" % float(dataval)
 except Exception, e:
 rc = RC.INV_DATA
 print "%s" % str(e)

 if rc == RC.NO_ERR:
 outstr = hdr + dstr + "\n"

 try:
 self.file_ref.write(outstr)
 except Exception, e:
 rc = RC.WRITE_ERR
 print "%s" % str(e)

 return rc

class ASCIIDataRead:
 """ Defines an object for reading ASCII data records from a
 standard text file. Each object is unique, and more than
 one object may be in use at any one time.
 """
 def __init__(self):
 self.file_ref = None

 def openInput(self, path, file_name):
 """ Opens a file for ASCII data input.

 If path is not specified (an empty string is given as
 the path), the function will attempt to open the
 named file in the current execution directory.
 """
 rc = RC.NO_ERR

 # create the fully qualified path name
 file_path = os.path.join(path, file_name)

 try:
 self.file_ref = open(file_path, "r")
 except Exception, e:
 rc = RC.OPEN_ERR
 self.file_ref = None

 return rc

ASCII Data Files | 459

 def closeInput(self):
 """ Closes an already opened input file.

 If file is not already open, an error is returned.

 Calls the module function closeFile() to do the actual
 close.
 """
 rc = RC.NO_ERR

 if self.file_ref and self.file_ref != None:
 rc = closeFile(self.file_ref)
 else:
 rc = RC.NO_FILE

 return rc

 def readDataRecord(self):
 """ Reads a complete record string and returns it as-is.

 Reads one record at a time and returns the entire record
 string as-is from the file. An EOF returns an empty
 record string.

 Returns a 2-tuple consisting of a return code and the
 record string.
 """
 rc = RC.NO_ERR

 # verify that there is a valid file to read from
 if self.file_ref != None:
 # fetch a line from the file
 try:
 record = self.file_ref.readline()
 except Exception, e:
 record = ""
 rc = RC.READ_ERR
 else:
 record = ""
 rc = RC.NO_FILE

 return rc, record

 def readDataFields(self):
 """ Reads fields from a record in an ASCII data file.

 Reads one record at a time, and returns each record
 as a list object with one list element per field. An
 EOF returns an empty list.

 The data for each field is converted from strings to
 the appropriate data type based on the number of fields

460 | Chapter 12: Reading and Writing Data Files

 in the record.

 Returns a 2-tuple consisting of a return code and the
 field's list object.
 """
 rc = RC.NO_ERR
 readflds = []
 retflds = []

 # fetch record string from file
 rc, recstr = self.readDataRecord()

 # split record into component elements
 if rc == RC.NO_ERR:
 if len(recstr) > 0:
 readflds = recstr.split()

 # Use a try-catch in case data is an invalid type
 # for given conversion to int or float.
 try:
 if len(readflds) == 4:
 retflds.append(int(readflds[0]))
 retflds.append(int(readflds[1]))
 retflds.append(readflds[2])
 retflds.append(float(readflds[3]))
 elif len(readflds) == 3:
 retflds.append(int(readflds[0]))
 retflds.append(readflds[1])
 retflds.append(float(readflds[2]))
 elif len(readflds) == 2:
 retflds.append(int(readflds[0]))
 retflds.append(float(readflds[1]))
 elif len(readflds) == 1:
 retflds.append(float(readflds[0]))
 else:
 rc = RC.INV_FORMAT
 except Exception, e:
 print str(e)
 retflds = []
 rc = RC.INV_DATA
 else:
 rc = RC.NO_DATA

 return rc, retflds

 def getData(self):
 """ Returns just the data portion of a record.

 Returns a 2-tuple consisting of the return code and the
 data value.

 A record should always have a data field. This method
 returns just the data field, and nothing else, as a
 floating point value. If the data field does not exist

ASCII Data Files | 461

 or if an error occurs retrieving a record, then it will
 return None.
 """
 retdata = None

 rc, infields = self.readDataFields()
 if rc == RC.NO_ERR:
 # assume that readDataFields() has done its job correctly
 # and we have a valid number of fields to work with.
 if len(infields) == 4:
 retdata = float(infields[3])
 elif len(infields) == 3:
 retdata = float(infields[2])
 elif len(infields) == 2:
 retdata = float(infields[1])
 elif len(infields) == 1:
 retdata = float(infields[0])
 return rc, retdata

Module functions

def closeFile(file_id):
 """ Close an already opened input or output file.

 file_id is a reference to a Python file object.
 """
 rc = RC.NO_ERR

 try:
 file_id.close()
 except Exception, e:
 rc = RC.INV_FILE
 print "%s" % str(e)

 return rc

if __name__ == "__main__":
 fout = ASCIIDataWrite()

 fin = ASCIIDataRead()

 fout.openOutput(".\\", "futest.dat")

 fout.writeData(2.5, use_ts=True)
 fout.writeData(2.6, use_ts=True)
 fout.writeData(2.7, use_ts=True)
 fout.writeData(2.8, use_ts=True)
 fout.writeData(2.9, use_ts=True)
 fout.writeData(3.0, use_ts=True)

 fout.closeOutput()

 fin.openInput(".\\","futest.dat")

462 | Chapter 12: Reading and Writing Data Files

 print "Read Records"
 print "%d %s" % fin.readDataRecord(),
 print "%d %s" % fin.readDataRecord(),
 print "%d %s" % fin.readDataRecord(),
 print "%d %s" % fin.readDataRecord(),
 print "%d %s" % fin.readDataRecord(),
 print "%d %s" % fin.readDataRecord(),

 fin.closeInput()

 fin.openInput(".\\","futest.dat")

 print "Read Fields"
 print "%d %s" % fin.readDataFields()
 print "%d %s" % fin.readDataFields()
 print "%d %s" % fin.readDataFields()
 print "%d %s" % fin.readDataFields()
 print "%d %s" % fin.readDataFields()
 print "%d %s" % fin.readDataFields()

 fin.closeInput()

When FileUtils.py is executed from the shell command line, you will see the following
output:

$ python FileUtils.py
Read Records
0 100906 17:06:21 2.500000
0 100906 17:06:21 2.600000
0 100906 17:06:21 2.700000
0 100906 17:06:21 2.800000
0 100906 17:06:21 2.900000
0 100906 17:06:21 3.000000
Read Fields
0 [100906, '17:06:21', 2.5]
0 [100906, '17:06:21', 2.6000000000000001]
0 [100906, '17:06:21', 2.7000000000000002]
0 [100906, '17:06:21', 2.7999999999999998]
0 [100906, '17:06:21', 2.8999999999999999]
0 [100906, '17:06:21', 3.0]

Some functionality that would be nice to have (but not absolutely essential) would be
the ability to “rewind” an input file instead of closing and then reopening it in order to
access the first record at the start of the file. It might also be handy to be able to pull
out a particular record, perhaps by position (the nth record), by sequence number, or
by time or date range. Well, there’s something interesting to do if you feel so inclined.

Binary Data Files
A binary file is typically much more compact than an ASCII file for raw data storage.
The reason is simply that an unsigned 16-bit value in ASCII might look like 48373, which
takes up five characters, but in binary it requires only two bytes of storage, which in

Binary Data Files | 463

hexadecimal would be written as BC F5. A file with 16K (214 entries) worth of unique
data values in ASCII could end up being 81,920 (82K) bytes in size (assuming each
value is five characters), but in binary form it will always be 32K (two bytes per value).

The downside to binary files is that they really must be read via software intended for
that purpose. A binary file can be opened in a binary file editor, but editing one is both
tedious and error-prone. It’s much better to read it with software that inherently
“knows” the structure of the file and can efficiently extract the data from it.

Binary data files are the preferred format for things like image data, large numeric arrays,
and structured data that might contain either pure binary values or a mix of binary and
ASCII. A compressed data file is an example of a binary file that is composed of struc-
tured binary data.

Flat Binary Data Files
Just like a flat ASCII file, a flat binary file consists of one or more records. Each record
may be fixed-length, or, with a little extra work, they can be variable-length.

For example, what if you wanted to pass data to another program using a binary file,
and that program expects records with an internal structure in the file that will map
directly to a C or C++ structure data type? In order to get this into a transportable
binary form you will need to take the values from a Python program, load them into
one or more structures, and then write the structures out to a file.

Here’s a simple C structure:

typedef struct {
 int seq_num;
 int chan;
 int mode;
 double data_val;
 char stat_codes[3];
 } input_data;

In a C application the most intuitive way to store data in binary format would be to
write out structures like this directly to a file, with each structure a unique record.
Typically one would also want some kind of header data in the file that, at the very
least, contains the total number of structures present. Figure 12-5 shows how the data
might be organized in a file that uses the structure we’ve just defined.

Don’t worry too much about what the header fields in Figure 12-5 mean; the important
thing to take away here is that there is a header section (or block, as it is sometimes
called), and it contains a count of the number of data structures we can expect to find
in the file. Each subsequent block following the header contains a complete data struc-
ture in binary form.

464 | Chapter 12: Reading and Writing Data Files

Figure 12-5. Example binary data file structure

This brings us to the subject of padding. Computers have a preferred memory data size,
which is based on the size of the internal registers and how the memory addressing is
handled. For example, a 32-bit CPU will most likely have a preferred memory data size
of 32 bits, which means that moving data to and from memory in 32-bit chunks is the
most efficient way to get data into and out of the CPU. Many 32-bit CPUs can also
handle 16-bit words without much extra effort, but if the data is 8 bits, the CPU will
need to do some extra work to accommodate it. In the interests of efficiency, it is a
good idea to pad out a structure so that things line up evenly on 32- or 16-bit
boundaries.

In Figure 12-6 we can see how the structure shown in Figure 12-5 maps into memory
space. Notice that two pads (the shaded areas) are employed; the first pads out the last
of the three of the 16-bit integer variables to produce an even 32-bit space. Although
this probably isn’t necessary, it does prevent the 8-byte double-precision value that
follows from hanging across 32-bit boundaries, which is not a particularly good thing.

Figure 12-6. Structure padding

Binary Data Files | 465

Also notice in Figure 12-6 that the three bytes that make up the stat_codes array (which
is actually a three-character string in Python) have an extra byte of padding to fill out
a 32-bit word. Fortunately, most compilers are capable of applying the necessary pad-
ding automatically. The Python methods that deal with binary data can also handle
padding issues internally.

Lastly, you should bear in mind that a binary data file that uses structured records may
not be very flexible. In other words, what data types are stored in it and how the data
is organized is determined in advance by the structure definitions used for the records.
This is especially true when dealing with applications compiled from C or C++ source
code. With an ASCII data file, on the other hand, so long as whatever is reading the
data is clever enough to work out what is in the file, you can store just about anything
that can be represented in ASCII (this is an advantage of using CSV for data exchange).

Handling Binary Data in Python
The Python library includes a few handy modules for dealing with binary data in the
form of C structures. One of these is ctypes, and another is the struct module. First
we’ll take a look at what ctypes can do, and then we’ll focus on the struct library
module.

Using the ctypes module to handle structured binary data

As we saw in Chapter 5, the ctypes library module is typically used to access functions
in foreign library modules without the need to resort to writing an extension module
in C or using something like SWIG (in Chapter 14, we’ll see a real-life example in the
Python interface for the LabJack data acquisition device). However, it can also be used
to create and manipulate binary data objects from within a Python program.

Here is an example, called ctypes_struct.py, that shows how to use the various types
defined in the ctypes module to create a binary structure object and assign values to it:

ctypes_struct.py

import ctypes

class DataRecord(ctypes.Structure):
 fields = [('seq_num', ctypes.c_short),
 ('chan', ctypes.c_short),
 ('mode', ctypes.c_short),
 ('data_val', ctypes.c_double),
 ('err_msg', ctypes.c_char * 3)]

drec = DataRecord()

drec.seq_num = 1
drec.chan = 4
drec.mode = 0
drec.data_val = 2.355
drec.err_msg = '030'

466 | Chapter 12: Reading and Writing Data Files

print "seq_num : %d" % drec.seq_num
print "chan : %d" % drec.chan
print "mode : %d" % drec.mode
print "data_val: %f" % drec.data_val
print "err_msg : %s" % drec.err_msg

DataRecord inherits the ctypes class Structure. Objects of type Structure (and Union,
too) must define an attribute called _fields, which is a list of 2-tuples, each containing
a field name and a field type. For the err_msg field I used the “* 3” notation to indicate
three contiguous instances of the character type to hold the string (we’ll see why this
matters shortly). Also notice that I opted to instantiate the drec object without initial-
izing it, which is OK. The values for the fields were assigned later using explicit field
names. You could, however, do it all in one swoop where drec is instantiated by passing
the data values to the constructor method, like this:

ctypes_struct2.py

import ctypes

class DataRecord(ctypes.Structure):
 fields = [('seq_num', ctypes.c_short),
 ('chan', ctypes.c_short),
 ('mode', ctypes.c_short),
 ('data_val', ctypes.c_double),
 ('err_msg', ctypes.c_char * 3)]

drec = DataRecord(1, 4, 0, 2.355, '030')

print "seq_num : %d" % drec.seq_num
print "chan : %d" % drec.chan
print "mode : %d" % drec.mode
print "data_val: %f" % drec.data_val
print "err_msg : %s" % drec.err_msg

The output will be exactly the same for both versions. I prefer the explicit version
myself, because it allows for less chance of erroneously assigning the wrong value to a
structure element, and to me it’s more readable. If you elect to use the constructor
initialization approach, just be careful to ensure that the data values appear in the same
order as the fields where they are supposed to be assigned.

Now, let’s see how it works. You can execute ctypes_struct.py or ctypes_struct2.py
by typing:

python ctypes_struct.py

or:

python ctypes_struct2.py

You should see the following response from Python:

seq_num : 1
chan : 4
mode : 0

Binary Data Files | 467

data_val: 2.355000
err_msg : 000

But wait, there’s more. As you may recall, Python has no native structure type. That’s
true, with “native” being the operative term here. With the ctypes Structure class, you
can create and manipulate structure objects in Python just as you would in C or C++.
Why would you want to do this? Well, if you’re using Python as a prototyping language,
with the eventual goal being conversion to production C or C++ code, then working
with structure-like objects from the outset can help make the transition a little easier.
Also, if you are creating code that needs to be very robust, then avoiding the use of
dictionary objects (which can be modified on the fly within the software) in favor of
structure objects (which are fixed once defined) might be worth considering. Lastly,
we can create a structure object and write it to a binary file for some other application
to read. We could also send the structure object via a network socket connection. By
the same token, we can read structure objects from a binary file or network socket and
extract their internal data elements.

The example script ctypes_struct_file.py, shown next, will write the contents of a
binary structure to a file and read it back to prove that it worked:

ctypes_struct_file.py

import ctypes

class DataRecord(ctypes.Structure):
 fields = [('seq_num', ctypes.c_short),
 ('chan', ctypes.c_short),
 ('mode', ctypes.c_short),
 ('data_val', ctypes.c_double),
 ('err_msg', ctypes.c_char * 3)]

drec = DataRecord()

drec.seq_num = 1
drec.chan = 4
drec.mode = 0
drec.data_val = 2.355
drec.err_msg = '000'

print "Written to structure:"
print "seq_num : %d" % drec.seq_num
print "chan : %d" % drec.chan
print "mode : %d" % drec.mode
print "data_val: %f" % drec.data_val
print "err_msg : %s" % drec.err_msg
print "\n"

write out binary data
fout = open('bindata.dat', 'wb')
fout.write(drec)
fout.close()

now read it back into a new instance of DataRecord

468 | Chapter 12: Reading and Writing Data Files

fin = open('bindata.dat', 'rb')

drec2 = DataRecord()
fin.readinto(drec2)
fin.close()

print "Read from structure:"
print "seq_num : %d" % drec2.seq_num
print "chan : %d" % drec2.chan
print "mode : %d" % drec2.mode
print "data_val: %f" % drec2.data_val
print "err_msg : %s" % drec2.err_msg

Note the way in which the three-character string, err_msg, is defined in
these examples. ctypes has both a character (byte) type and a string
pointer type (ctypes.c_char_p). If you use the pointer type there is an
implicit use of a buffer to hold the string data, and the resulting structure
will contain an address, not a series of character byte values. It is not
portable between program execution sessions when stored in a file.

ctypes_struct_file.py uses a method that has been a source of some controversy in
the Python community in the past, namely, the readinto() file object method. If you
query Python for help on it, you’ll get this back (with Python version 2.6.5):

>>> help(file.readinto)
Help on method_descriptor:

readinto(...)
 readinto() -> Undocumented. Don't use this; it may go away.

However, in the documentation for version 2.7 you will find the following:

readinto(b)

 Read up to len(b) bytes into bytearray b and return the number of bytes read.

 Like read(), multiple reads may be issued to the underlying raw stream, unless
 the latter is 'interactive'.

 A BlockingIOError is raised if the underlying raw stream is in non blocking-
 mode, and has no data available at the moment.

(from the Python Standard Library document, I/O Base Classes)

This same description also appears in the documentation for Python version 3.x, so
I’m going to assume that it’s finally been accepted and won’t go away any time soon.
In any case, if the version of Python you’re using works fine for what you’re trying to
accomplish, then there may not be a good reason to upgrade just because the revision
level changes. Depending on what changed, there is also the risk of things suddenly not
working like they once did. Like the old adage states: “If it ain’t broke, don’t fix it.”

Now let’s look at how we can write a series of structures to a file and read them back
again as an array. The example script ctypes_struct_file2.py shows one way to do this:

Binary Data Files | 469

ctypes_struct_file2.py

import ctypes

class DataRecord(ctypes.Structure):
 fields = [('seq_num', ctypes.c_short),
 ('chan', ctypes.c_short),
 ('mode', ctypes.c_short),
 ('data_val', ctypes.c_double),
 ('err_msg', ctypes.c_char * 3)]

drec = DataRecord()

fout = open('bindata.dat', 'wb')

write 10 instances of the drec structure object to a file
increment structure member values to show it's working
for i in range(0, 10):
 drec.seq_num = i
 drec.chan = (i + 2)
 drec.mode = 0
 drec.data_val = (2.0 + (i/10.0))
 drec.err_msg = '000'

 # write out binary data
 fout.write(drec)

fout.close()

print "Read from file:"

create an array of structures
q is a dummy counter variable
drec2 = [DataRecord() for q in range(0,10)]

now read it back into a new instance of DataRecord
fin = open('bindata.dat', 'rb')

for i in range(0, 10):
 try:
 rc = fin.readinto(drec2[i])
 except:
 pass
 else:
 if rc > 0:
 print "rec num : %d" % i
 print "rec size: %d" % rc
 print "seq_num : %d" % drec2[i].seq_num
 print "chan : %d" % drec2[i].chan
 print "mode : %d" % drec2[i].mode
 print "data_val: %f" % drec2[i].data_val
 print "err_msg : %s" % drec2[i].err_msg

fin.close()

470 | Chapter 12: Reading and Writing Data Files

The first part of the script generates ten instances of the structure object drec and writes
them to a file. It then closes the file and reopens it for reading. A loop pulls out each
structure instance using the readinto() method, and loads the data into an array of
structure objects. The read loop terminates when the loop count reaches the limit, an
exception occurs, or the return value (rc) is zero. An exception is handled silently,
although the readinto() method does have some associated exception methods (if
you’re curious, refer to the Python library documentation for details).

Using struct to handle structured binary data

This being Python we’re discussing, then we should expect that there is another way
to do what we just saw with ctypes. There is, of course, and it’s the struct module.

Like ctypes, struct is handy for dealing with binary data structures without resorting
to creating a custom extension for the job. You can find the detailed description in
section 7 of the Python Standard Library document (String Services). Unlike ctypes,
struct works by dealing with binary data as strings of binary values (which is probably
why its description resides in the String Services part of the library documentation).

The struct module provides five functions, listed in Table 12-4.

Table 12-4. struct functions

Function Description

pack(fmt, v1, v2, ...) Returns a string of binary values packed according to the specified format (the fmt
parameter).

pack_into(fmt, buffer,
offset, v1, v2, ...)

Packs the data values according to the specified format and then writes the data into a
buffer starting at a specific offset.

unpack(fmt, string) Unpacks the data values from a packed string according to the specified format and
returns an n-tuple containing the data values.

unpack_from(fmt,
buffer[, offset=0])

Unpacks the contents of a buffer according to the specified format beginning at a given
offset into the buffer.

calcsize(fmt) Returns the size of the structure (i.e., the packed binary string) according to the specified
format. In other words, calcsize() translates the format specification into the ex-
pected structure size.

In addition to the functions listed in Table 12-4, there is also a Struct class, which
provides a set of methods identical to the functions, and also includes two additional
object attributes: format and size. The Struct class methods do not take a format pa-
rameter. Instead, the structure format is set when the class object is instantiated. All of
the methods will use this initial format definition for a particular instantiation of a
Struct object. The size attribute contains the size of the packed data according to the
format specification, which is contained in the format attribute. Requesting help on the
Struct object from the Python prompt results in the following output (I’ve reformatted
the text slightly to fit in the page margins):

Binary Data Files | 471

class Struct(object)
 | Compiled struct object
 |
 | Methods defined here:
 |
 | __delattr__(...)
 | x.__delattr__('name') <==> del x.name
 |
 | __getattribute__(...)
 | x.__getattribute__('name') <==> x.name
 |
 | __init__(...)
 | x.__init__(...) initializes x; see x.__class__.__doc__
 | for signature
 |
 | __setattr__(...)
 | x.__setattr__('name', value) <==> x.name = value
 |
 | pack(...)
 | S.pack(v1, v2, ...) -> string
 |
 | Return a string containing values v1, v2, ... packed according
 | to this Struct's format. See struct.__doc__ for more on format
 | strings.
 |
 | pack_into(...)
 | S.pack_into(buffer, offset, v1, v2, ...)
 |
 | Pack the values v1, v2, ... according to this Struct's format,
 | write the packed bytes into the writable buffer buf starting
 | at offset. Note that the offset is not an optional argument.
 | See struct.__doc__ for more on format strings.
 |
 | unpack(...)
 | S.unpack(str) -> (v1, v2, ...)
 |
 | Return tuple containing values unpacked according to this
 | Struct's format. Requires len(str) == self.size. See
 | struct.__doc__ for more on format strings.
 |
 | unpack_from(...)
 | S.unpack_from(buffer[, offset]) -> (v1, v2, ...)
 |
 | Return tuple containing values unpacked according to this
 | Struct's format. Unlike unpack, unpack_from can unpack values
 | from any object supporting the buffer API, not just str.
 | Requires len(buffer[offset:]) >= self.size. See struct.__doc__
 | for more on format strings.
 |
 | --
 | Data descriptors defined here:
 |
 | format
 | struct format string
 |

472 | Chapter 12: Reading and Writing Data Files

 | size
 | struct size in bytes
 |
 | --
 | Data and other attributes defined here:
 |
 | __new__ = <built-in method __new__ of type object>
 | T.__new__(S, ...) -> a new object with type S, a subtype of T

Whereas the ctypes module defined data object types, the struct module uses format
codes. These are listed in Table 12-5.

Table 12-5. struct data type format codes

Format code C type Python type Packed size

x pad byte no value 1

c char string of length 1 1

b signed char integer 1

B unsigned char integer 1

? _Bool bool 1

h short integer 2

H unsigned short integer 2

i int integer 4

I unsigned int integer 4

l long integer 4

L unsigned long integer 4

q long long integer 8

Q unsigned long long integer 8

f float float 4

d double float 8

s char[] string Variable

p char[] string Variable

P void * integer OS dependent

For a detailed discussion of the format codes refer to the Python Standard Library
document.

Now, let’s create a packed binary string using the same structure definition we saw
earlier in the ctypes example:

pack_struct.py

import struct
import binascii
import ctypes

Binary Data Files | 473

original ctypes structure definition
fields = [('seq_num', ctypes.c_short),
('chan', ctypes.c_short),
('mode', ctypes.c_short),
('data_val', ctypes.c_double),
('err_msg', ctypes.c_char * 3)]
#
Equivalent struct format string:
'hhhd3s'

seq_num = 1
chan = 4
mode = 0
data_val = 2.355
err_msg = '030'

srec = struct.pack('hhhd3s', seq_num, chan, mode, data_val, err_msg)

use binascii.hexlify so we can see what's in the binary string
print binascii.hexlify(srec)

When pack_struct.py is run, you should see the following output:

python pack_struct.py

0100040000000000d7a3703d0ad70240303330

Most of the struct format codes will accept a numeric count or size prefix. In
pack_struct.py the 3s in the format string indicates that a three-element string is ex-
pected. In the case of a nonstring format code specifying something like 3h is the same
as using ‘hhh’. The format string could have been written as '3hd3s' instead of
'hhhd3s', but with complex format strings it might be clever to do so, but it may not
be easily readable.

If you prefer to use the Struct class then note that the Struct constructor takes the
format string as its only parameter when the object is instantiated. The format string
is subsequently available in the format attribute. The script pack_struct_obj.py uses
the Struct class to achieve the same result as pack_struct.py:

pack_struct_obj.py

import struct
import binascii

original ctypes structure definition
fields = [('seq_num', ctypes.c_short),
('chan', ctypes.c_short),
('mode', ctypes.c_short),
('data_val', ctypes.c_double),
('err_msg', ctypes.c_char * 3)]
#
Equivalent struct format string:
'hhhd3s'

474 | Chapter 12: Reading and Writing Data Files

seq_num = 1
chan = 4
mode = 0
data_val = 2.355
err_msg = '030'

datavals = (seq_num, chan, mode, data_val, err_msg)
sobj = struct.Struct('hhhd3s')
srec = sobj.pack(*datavals)

print binascii.hexlify(srec)

For our last example before we move on, let’s verify that struct and ctypes can play
nicely with one another using the example script in pack_struct_file.py:

pack_struct_file.py

import struct
import binascii
import ctypes

original ctypes structure definition
fields = [('seq_num', ctypes.c_short),
('chan', ctypes.c_short),
('mode', ctypes.c_short),
('data_val', ctypes.c_double),
('err_msg', ctypes.c_char * 3)]
#
Equivalent struct format string:
'hhhd3s'

seq_num = 1
chan = 4
mode = 0
data_val = 2.355
err_msg = '030'

srec = struct.pack('hhhd3s', seq_num, chan, mode, data_val, err_msg)

print binascii.hexlify(srec)

fout = open('bindata.dat','wb')
fout.write(srec)
fout.close()

now read it back into a new instance of DataRecord
class DataRecord(ctypes.Structure):
 fields = [('seq_num', ctypes.c_short),
 ('chan', ctypes.c_short),
 ('mode', ctypes.c_short),
 ('data_val', ctypes.c_double),
 ('err_msg', ctypes.c_char * 3)]

fin = open('bindata.dat', 'rb')

drec = DataRecord()

Binary Data Files | 475

fin.readinto(drec)
fin.close()

print "Read from structure:"
print "seq_num : %d" % drec.seq_num
print "chan : %d" % drec.chan
print "mode : %d" % drec.mode
print "data_val: %f" % drec.data_val
print "err_msg : %s" % drec.err_msg

In the first part of the example I’ve used struct’s pack function to create a packed binary
string and then write it to a file. The second part reopens the file and reads the data
into a ctypes structure definition. When you run pack_struct_file.py you should see
the following:

python pack_struct_file.py
0100040000000000d7a3703d0ad70240303330
Read from structure:
seq_num : 1
chan : 4
mode : 0
data_val: 2.355000
err_msg : 030

Well, that was fun, and you now have two new binary data tools for your Python
toolbox. Which technique you use depends on what you’re trying to do and, to some
extent, on your own sense of programming aesthetics.

Image Data
I would now like to examine another commonly encountered form of binary data:
images. A 2D array consisting of data representing the amount of light energy across
something like a CCD (charge-coupled device) sensor (as found in a common CCD
camera) is sometimes called (correctly) a “luminance map.” You may also encounter
the term “intensity map,” and while it could be used to refer to image data, it’s a more
generic term that refers to an array of data representing the intensity of something across
the array space. Intensity maps are found in many data representation applications,
such as a plot of smog density across a city, or temperatures across a grid of points on
a printed circuit board, or the intensity levels from the detector array in an X-ray ma-
chine at the hospital. None of these are “images” in the conventional sense, but once
the intensities are converted into a grayscale image format (or even color, depending
on the application and the type of data) they can be viewed and interpreted by a human
being.

Then there is what is called the “geometry” of an image. An image is a 2D array with
width and height defined in terms of pixels, with a total size, in pixels, that is the product
of the width and height. There is also a third dimension, so to speak, which is the size
of data, in bits, used to represent the luminance (or intensity) at each x, y pixel position
in the array. Some grayscale images utilize 8-bit data, and some use 16 bits per pixel.

476 | Chapter 12: Reading and Writing Data Files

You will sometimes see the pixel data size expressed as “8bpp” or “16bpp.” These are
just shorthand ways to say n bits per pixel, where n can be 8, 16 or whatever (some
color image formats use 24 or 32bpp to hold the color data for each pixel). Together
the width, height, and pixel size parameters define the basic geometry of an image.

In instrumentation and control systems there usually isn’t a lot of need for image data,
but when data is treated as an intensity map things can get interesting. For instance, if
the application involves monitoring the internal temperatures of a stack of beehives,
say five wide by five high, then the data could be mapped into an intensity map in real
time to show the hottest and coolest hive boxes in the array and perhaps provide some
indication of heat flow through the stack. Bees generate heat, and on a warm day you
can see some of them sitting just outside the entrance to the hive beating their wings
to move cool air inside—a living air conditioning system. Each hive box might be rep-
resented by a square block of pixels 50 wide by 50 high, and assigned a luminance
intensity proportional to the data value for each location. The result would be an “im-
age” 250 by 250 pixels in size, as shown in Figure 12-7.

Figure 12-7. Data displayed as an image

If the application generates a series of these images, perhaps 24 a day, then they can be
accumulated into a movie of sorts to show patterns of change in the temperatures that
would otherwise be difficult to see just by looking at static data or tables of numbers.

PGM

There are numerous image formats in use, some of which we use every day when we
browse the Web (PNG, JPEG, and GIF images are an integral part of web pages). Other
formats may not be quite as common, but they are useful for specific applications. One
of these is the Netpbm family of image formats.

Binary Data Files | 477

One of the formats in the Netpbm suite is PGM (or, Portable Grayscale Map). PGM is
one of the simplest image data formats around. The documentation for the PGM format
states: “The PGM format is a lowest common denominator grayscale file format. It is
designed to be extremely easy to learn and write programs for. (It’s so simple that most
people will simply reverse engineer it because it’s easier than reading this specifica-
tion).” You can find the PGM format specification here: http://netpbm.sourceforge.net/
doc/pgm.html.

One of the main attractions of PGM is the utility afforded by its simplicity. It can, of
course, be used to store grayscale (luminance map) image data, but it can also be used
to store just about any other kind of 8- or 16-bit data as well. The data doesn’t even
have to be a 2D array. Also, as the format specification points out, it can be used to
create “synthetic images” from data that was not originally intended to be an image.
The Netpbm tools can then convert that data into something readily viewable, such as a
JPEG image. There are some interesting data visualization tricks lurking there, such as
the beehive example presented earlier.

Although originally intended for use with 8-bit data, the most recent version of PGM
supports a maximum data size parameter of 65,535, allowing for up to 16 bits per data
element or pixel. For most imaging applications this is more than adequate, but for
arbitrary data storage it might be a limitation.

PGM file structure

The PGM format is extremely simple. It’s very easy to create PGM files and just as easy
to read them. A PGM file consists of a header section with optional comments, followed
by a data section. Figure 12-8 shows the internal sections in a PGM file.

Figure 12-8. PGM file structure

478 | Chapter 12: Reading and Writing Data Files

http://netpbm.sourceforge.net/doc/pgm.html
http://netpbm.sourceforge.net/doc/pgm.html

One of the things I like about the PGM format is that everything in the header section
is in printable ASCII. On one of my past projects, PGM was used to capture raw image
data from remote imaging instruments. When the data was written to a file (one image
per file) the comments were autogenerated and used to hold things like a timestamp
value, the full image name, the name of the instrument, and the values of various set-
tings (exposure time, filters used, and the camera’s X and Y pointing orientation, to
name just a few). This allowed us to scan through a directory of images and pull out
all the lines beginning with the # comment marker. A simple script was then used to
create a nicely formatted catalog of images.

pgmtest.py is an example of a simple script that will create a 256 × 256-pixel PGM image
containing random data:

pgmtst.py
generates an 8bpp "image" of random pixel values

import random as rnd

print ID string (P5)
print comments (if any)
print width
print height
print size
print data

#rnd = random
rnd.seed()

width = 256
height = 256
pxsize = 255

create the PGM header
hdrstr = "P5\n%d\n%d\n%d\n" % (width, height, pxsize)

pixels = []
for i in range(0,width):
 for j in range(0,height):
 # generate random values
 pixval = int(255 * rnd.random())
 # some values will be 256, so fix them
 if pixval > pxsize:
 pixval = pxsize
 #endif
 pixels.append(pixval)
 #endfor
#endfor

convert array to character values
outpix = "".join(map(chr, pixels))

append the "image" to the header
outstr = hdrstr + outpix

Binary Data Files | 479

and write it out to the disk
fimg = open("pgmtest.pgm","w")
fimg.write(outstr)
fimg.close()

When this script is executed, the result will be the file pgmtest.pgm. You can use a tool
such as ImageJ (available from http://rsbweb.nih.gov/ij/) to view it. When you open the
file you should see an image like the one in Figure 12-9.

Figure 12-9. Example 8bpp PGM image

Well, I must admit, Figure 12-9 isn’t very exciting (unless you happen to like watching
the “snow” on an old-fashioned analog TV set). But with some modification to the
code, it can become a lot more interesting. This is why I like the PGM format for quick-
and-dirty visualization chores—it’s trivial to create a PGM image file.

The nested for loops in pgmtest.py are where the actual image generation occurs. Once
the 2D matrix is built, it is appended to the image data list object using Python’s
join() and map() methods:

outpix = "".join(map(chr,pixels))

480 | Chapter 12: Reading and Writing Data Files

http://rsbweb.nih.gov/ij/

This statement iterates through the array pixels, mapping each integer value to a char-
acter (byte) value and then joining the resulting one-character string to the list
outpix. The Python documentation describes the built-in map() method like this (from
the Python Standard Library document, Section 2, “Built-In Functions”):

map(function, iterable, ...)

Apply function to every item of iterable and return a list of the results. If additional
iterable arguments are passed, function must take that many arguments and is applied
to the items from all iterables in parallel. If one iterable is shorter than another it is
assumed to be extended with None items. If function is None, the identity function is
assumed; if there are multiple arguments, map() returns a list consisting of tuples con-
taining the corresponding items from all iterables (a kind of transpose operation). The
iterable arguments may be a sequence or any iterable object; the result is always a list.

You might notice that there is a limitation with this approach. Since the result of
map(chr, pixels) is a one-character string, it can only deal with 8-bit values in the range
of 0 to 255. So how do we work with 16-bit data?

The solution is to use struct to build the 16-bit data. The next example is a complete
PGM image output utility function. It takes a list of data elements in either 8- or 16-bit
form and creates a simple PGM image:

PGMWrite image generator utility function
import struct

def PGMWrite(imgsrc, imgname, filename, width, height, bitdepth=8):
 """ Generates an 8bpp or 16bpp PGM image from arbitrary data.

 Parameters:

 imgsrc: source of image data (a list of integer values)
 imgname: image name string written into image file header
 filename: output file name for image data
 width: width of image
 height: height of image
 """

 # verify source data type (must be a list)
 if type(imgsrc) != list:
 print "Input data must be a list of integer values"
 return

 # verify pixel bit depth
 sizemult = 0
 if bitdepth == 8:
 sizemult = 1
 img_depth = 255
 elif bitdepth >= 9:
 sizemult = 2
 img_depth = 65535
 else:
 print "Invalid pixel depth"
 return

Binary Data Files | 481

 # generate image parameters
 img_height = height
 img_width = width
 img_size = img_height * img_width
 data_size = img_size * sizemult

 # initalize the image output array
 pixels = []

 # generate the image array from input data
 i = 0 # input index
 # load data into the image array
 for y in range(0, img_height):
 for x in range(0, img_width):
 inval = imgsrc[i]

 if (bitdepth == 8) and (inval > 255):
 pixval = 255
 elif inval > 65535:
 pixval = 65535
 else:
 pixval = inval

 i += 1
 pixels.append(pixval)

 if bitdepth == 8:
 pix_data = "".join(map(chr,pixels))
 else:
 pix_data = pixels

 # load the header data variables and get string lengths
 img_type_str = "P5\n"
 img_name_str = "#%s\n" % imgname # comment in image header
 img_width_str = "%d\n" % img_height
 img_height_str = "%d\n" % img_width
 img_depth_str = "%d\n" % img_depth

 img_name_len = len(img_name_str)
 img_width_len = len(img_width_str)
 img_height_len = len(img_height_str)
 img_depth_len = len(img_depth_str)

 # create the image header structure
 hdrvals = (img_type_str, img_name_str, img_width_str,
 img_height_str, img_depth_str)

 hdrobj = struct.Struct('3s %ds %ds %ds %ds'% (img_name_len,
 img_width_len,
 img_height_len,
 img_depth_len))
 # create the pixel data
 if sizemult == 1:
 pixobj = struct.Struct('%dc'% (img_size))

482 | Chapter 12: Reading and Writing Data Files

 else:
 pixobj = struct.Struct('%dH'% (img_size))

 # pack the data into the structures
 img_hdr_data = hdrobj.pack(*hdrvals)
 img_pix_data = pixobj.pack(*pix_data)
 img_data = img_hdr_data + img_pix_data

 # now write it all out to the file
 fimg = open(filename,"wb")
 fimg.write(img_data)
 fimg.close()

if __name__ == "__main__":
 # generate 8bpp image
 datavals = []
 for i in range(0, 65536):
 datavals.append(i/256)

 PGMWrite(datavals,
 "incshade8",
 "incshade8.pgm",
 256, 256,
 bitdepth=8)

 # generate 16bpp image
 datavals = []
 for i in range(0, 65536):
 datavals.append(i/256)

 PGMWrite(datavals,
 "incshade16",
 "incshade16.pgm",
 256, 256,
 bitdepth=16)

Figure 12-10 shows what the 16bpp output looks like with an input divisor of 256 (we’ll
talk about this shortly).

There are many things about this function that deserve some discussion. I’ll start with
the code at the bottom of the module that calls PGMWrite() when invoked as a standalone
script.

Two images are generated, one with 8-bit pixel size and the second with 16-bit pixel
size. In both cases an array (list) is built with a series of incrementing values. Notice
that the values obtained from the for loop index are divided by 256 before they are
written into the array. This “scales” the data into the image geometry. You should try
changing the value to something like, say, 128 or 16 and see what happens. It might
not be what you expect, and it would be worthwhile to take some time and try to
understand the behavior. You could also use other types of array data as the input to
generate a grid pattern, imaging targets, compression performance grids, the variation
in temperature or humidity in a room over the course of a year, and so on.

Binary Data Files | 483

Figure 12-10. 16bpp example image

Now let’s look at PGMWrite() itself. The function starts off by checking the input array
for the correct type and verifying that the bit size parameter is either 8 or some value
greater than 8. In a production application this function might be used to handle zero-
padded 10- or 12-bit data from a camera or other image data source, so it’s just more
convenient to assume that anything with a bit size greater than 8 will be treated as 16-
bit data.

Next up are the image parameters that will be used to read the data from the input array
and write it into the output array. The output array itself is created using a pair of nested
for loops. This isn’t strictly necessary, but it leaves the door open if you want to modify
the loops to support things like subsampling or contrast scaling.

Within the innermost loop (the x-axis) there is a check to ensure that pixel values don’t
exceed the allowable range for the selected image type. Any value that exceeds this
range is simply set to the allowable maximum. What this means is that if you feed this
function an input array containing values greater than the allowable maximum, those
pixels will simply show up as white when the image is viewed. Basically, it’s a defensive
programming technique.

484 | Chapter 12: Reading and Writing Data Files

After the image data array is generated, the function creates the strings for the image
header and computes the length for each one. When the format string for the header
data struct object is created, these values will be used to tailor the size of the fields.

Next up is the image data itself, which is pure binary. There is only one struct definition
for the header, but two for the image: one for an 8bpp image and one for a 16bpp image.

The header data structure string is then concatenated with the image data string. This
works because these are packed strings, so Python will happily concatenate them into
a single string object.

Finally, PGMWrite() opens the specified file and writes out the structure. The result is a
complete PGM image file with the same internal layout that we saw in Figure 12-8.

Although you may never have a need to work with images, this function contains a
good selection of many of the topics we’ve discussed up to this point. Remember that
the PGM format can be used to store binary data for things other than images, and
there’s no reason why you need to stick with the x, y image array loading scheme; you
could just as easily use a 1D array.

I will leave it as an exercise for the reader to write a function to read the data from a
PGM file, but I will say that it’s actually rather easy. We’ve already seen how to deal
with header data and extract a packed structure. That’s really about all there is to it.
Your read function only needs to treat a PGM as a file with a set of leading strings
followed by binary data. Hint: remember that if you’re reading PGM files where the
amount of header data is unknown, you’ll need to read each line and examine it to
determine if it’s an embedded comment or parametric data, and remember that in the
PGM header there are exactly three parameter fields (width, height, and bit depth)
before the start of the binary data array.

Summary
In this chapter we’ve looked at ASCII and binary data, along with some applications
for dealing with each type. We’ve also seen how Python’s built-in and library methods
are used when we need to convert from one form to another, and how to mix both in
the same script to create complex data objects such as images. Finally, we examined a
working example of a binary image data generator function and saw how many of the
topics introduced earlier come into play to create the function.

Suggested Reading
The following articles and books are a good place to start if you’re looking for more
information on reading and writing data files:

RFC20, “ASCII Format for Network Interchange.” Vint Cerf, 1969.
This early RFC document is available online at http://www.faqs.org/rfcs/rfc20.html.

Suggested Reading | 485

http://www.faqs.org/rfcs/rfc20.html

RFC 4810, “Common Format and MIME Type for Comma-Separated Values (CSV)
Files.” Y. Shafranovich, Network Working Group, The Internet Society, 2005.

RFC 4810 defines the format used for the “text/csv” MIME type for CSV files. It
is available at http://tools.ietf.org/html/rfc4180.

PEP 305, “CSV File API.” K. Altis et al., python.org, 2008.
PEP 305 defines the API for Python’s standard CSV module. It is a helpful supple-
ment to the documentation for the Python standard library. PEP 305 is available
at http://www.python.org/dev/peps/pep-0305/.

Beautiful Data: The Stories Behind Elegant Data Solutions. T. Segaran and J. Hammer-
bacher (eds.), O’Reilly Media, 2009.

A fascinating collection of essays and technical papers covering a wide range of
topics in data acquisition, processing, and visualization. A great book to browse
for ideas when you need to find a way to present data sets in a comprehensible form.

Python Essential Reference, 4th ed. David M. Beazley, Addison-Wesley, 2009.
Although not a book I’d recommend to someone just starting out with Python, this
is an excellent reference work that covers the core Python language and libraries,
including Python’s advanced features, such as generators, coroutines, closures,
metaclasses, and decorators. Includes descriptions of low-level methods and op-
tions not fully covered in the standard Python documentation.

Lastly, Wikipedia has an informative write-up on configuration files (including some
interesting historical trivia) at http://en.wikipedia.org/wiki/Configuration_file. There is
also more information available at http://en.wikipedia.org/wiki/INI_file.

.

486 | Chapter 12: Reading and Writing Data Files

http://tools.ietf.org/html/rfc4180
http://www.python.org/dev/peps/pep-0305/
http://oreilly.com/catalog/9780596157128/
http://en.wikipedia.org/wiki/Configuration_file
http://en.wikipedia.org/wiki/INI_file

CHAPTER 13

User Interfaces

The Principle of Least Astonishment: Make a user
interface as consistent and as predictable as possible.

—Anonymous

Unless an application is deeply embedded, or specifically designed to run as a back-
ground process, it will probably need some type of user interface. In this chapter we
will explore different ways to communicate with a user. We’ll start by examining what
you can do with just the command line. Next we’ll look at how to use an ANSI-capable
terminal emulator program to display data and accept input, and then the curses screen
control package for Python. After this we’ll move to the realm of bright colors, fancy
graphs, images, and dialogs, with a look at the TkInter GUI toolkit provided with
the standard Python distribution. We’ll also take a quick tour of the wxPython GUI
package.

Text-Based Interfaces
Text-based interfaces are the foundation of all display-based computer user interfaces.
I say display-based because technically, the first interfaces were panels full of lights and
switches. Printing terminals came next, but it wasn’t until the advent of CRT terminals
that human-machine interface (HMI) devices began to come into their own.

The Console
The most straightforward way to interact with any program, Python or otherwise, is
through the console interface. Under Windows this is the so-called “DOS box,” or the
“cmd prompt” as it’s currently known (the Windows shell application is called
cmd.exe). On a Unix or Linux system it is the shell prompt for sh, bash, ksh, tsch, or
whatever else you may happen to be using for a shell interface. If no window manager
is active, the whole screen is the console, but it behaves just like the windowed form.

487

Sending data to the shell, in the form of strings, is easy—that’s what the print statement
does. Getting input back from a user is not as intuitively obvious, mainly because Py-
thon does not have cross-platform equivalents of getch() or getche() (get character
and get character with echo, respectively). It does, however, have the raw_input() built-
in method, which can handle most of the common user input chores, and it works on
all the platforms that Python supports. Shortly I’ll show you how to use ctypes and the
C runtime library for both Linux and Windows, but first let’s see how much we can do
with just the console interface.

Example console display

While you could always just use occasional print statements to output data to the
console, it might be difficult for a user to tell what’s happening as the data scrolls by
on the screen. Establishing a template for the data display and using a fixed format
makes the data easier to read and greatly reduces user frustration (and that user might
be you).

If you want to use a fixed format for data output to the console, you’ll need at least two
things: some way to clear the screen, and a template to contain your data. We’ll look
at the template first.

Unless we resort to ANSI terminal control strings (discussed in the next section), a
program doesn’t have any way to position the cursor in the console window. Each line
in the display needs to take care of its own positioning and data display formatting.
The listing for console1.py shows how this is done:

#! /usr/bin/python
console1.py
#
Demonstrates console output using the built-in print method.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import time

ainstat = ['OFF','OFF','OFF','OFF']
aindata = [0.0, 0.0, 0.0, 0.0]
discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
discin = [0,0,0,0,0,0,0,0]

print '\n' * 50
print ""
print "System Status"
print ""
print "Analog Input 0 : %10s %f" % (ainstat[0], aindata[0])
print "Analog Input 1 : %10s %f" % (ainstat[1], aindata[1])
print "Analog Input 2 : %10s %f" % (ainstat[2], aindata[2])
print "Analog Input 3 : %10s %f" % (ainstat[3], aindata[3])
print ""
print "Discrete Input 0: %3s %d" % (discstate[0], discin[0])

488 | Chapter 13: User Interfaces

print "Discrete Input 1: %3s %d" % (discstate[1], discin[1])
print "Discrete Input 2: %3s %d" % (discstate[2], discin[2])
print "Discrete Input 3: %3s %d" % (discstate[3], discin[3])
print "Discrete Input 4: %3s %d" % (discstate[4], discin[4])
print "Discrete Input 5: %3s %d" % (discstate[5], discin[5])
print "Discrete Input 6: %3s %d" % (discstate[6], discin[6])
print "Discrete Input 7: %3s %d" % (discstate[7], discin[7])
print ""

time.sleep(2)

Vertical positioning is based on the order in which the lines are printed out to the
console, and horizontal positioning is determined by how each line is formatted. The
line of code immediately following the four variable initialization lines, print "\n" *
50, simulates a “clear screen” by generating 50 blank lines. I used 50 because I have
large command-line windows, but generating more blank lines than the window sup-
ports does not hurt anything. The result looks like this:

System Status

Analog Input 0 : ACTIVE 0.000000
Analog Input 1 : OFF 0.000000
Analog Input 2 : ACTIVE 0.000000
Analog Input 3 : OFF 0.000000

Discrete Input 0: OFF 0
Discrete Input 1: OFF 1
Discrete Input 2: OFF 0
Discrete Input 3: OFF 0
Discrete Input 4: OFF 0
Discrete Input 5: OFF 0
Discrete Input 6: OFF 0
Discrete Input 7: OFF 0

Since the raw console I/O doesn’t have a generic clear screen function, a series of print
statements with empty strings can be used to scroll off anything currently on the display
in order to make room for new data. Note that if the window is larger than the number
of lines in the template, the template text will end up at the bottom of the window (the
last line printed will be just above the prompt).

However, there is another way. We can find out what type of OS the code is running
under and then use the appropriate method to issue a screen clear command, like this:

def clrDisp(numlines=50):
 if os.name == "posix":
 os.system('clear')
 elif os.name in ("nt", "dos", "ce"):
 os.system('CLS')
 else:
 print '\n' * numlines

Here is an example of this technique:

#! /usr/bin/python
console2.py

Text-Based Interfaces | 489

#
Demonstrates console output using the built-in print method and
an OS-specific screen clear technique.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import time
import os

ainstat = ['OFF','OFF','OFF','OFF']
aindata = [0.0, 0.0, 0.0, 0.0]
discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
discin = [0,0,0,0,0,0,0,0]

def clrDisp(numlines=50):
 if os.name == "posix":
 os.system('clear')
 elif os.name in ("nt", "dos", "ce"):
 os.system('CLS')
 else:
 print '\n' * numlines

def drawData():
 print ""
 print "System Status"
 print ""
 print "Analog Input 0 : %10s %f" % (ainstat[0], aindata[0])
 print "Analog Input 1 : %10s %f" % (ainstat[1], aindata[1])
 print "Analog Input 2 : %10s %f" % (ainstat[2], aindata[2])
 print "Analog Input 3 : %10s %f" % (ainstat[3], aindata[3])
 print ""
 print "Discrete Input 0: %3s %d" % (discstate[0], discin[0])
 print "Discrete Input 1: %3s %d" % (discstate[1], discin[1])
 print "Discrete Input 2: %3s %d" % (discstate[2], discin[2])
 print "Discrete Input 3: %3s %d" % (discstate[3], discin[3])
 print "Discrete Input 4: %3s %d" % (discstate[4], discin[4])
 print "Discrete Input 5: %3s %d" % (discstate[5], discin[5])
 print "Discrete Input 6: %3s %d" % (discstate[6], discin[6])
 print "Discrete Input 7: %3s %d" % (discstate[7], discin[7])
 print ""

ainstat[1] = "ACTIVE"
ainstat[3] = "ACTIVE"
aindata[1] = 5.2
aindata[3] = 8.9
discstate[0] = "ON"
discin[0] = 1
clrDisp()
drawData()
time.sleep(1.0)

ainstat[1] = "OFF"
ainstat[3] = "OFF"
aindata[1] = 0.0

490 | Chapter 13: User Interfaces

aindata[3] = 0.0
ainstat[0] = "ACTIVE"
ainstat[2] = "ACTIVE"
aindata[0] = 5.2
aindata[2] = 8.9
discstate[0] = "OFF"
discin[0] = 0
discstate[1] = "ON"
discin[1] = 1
clrDisp()
drawData()
time.sleep(1.0)

Now we have the foundation for a usable text-based display. To update the display,
the screen is first cleared using the appropriate command, and then the lines from the
template are written using the print method. This results in quicker screen regeneration
than the multiple-lines method, and it looks nicer, too. If the OS cannot be determined,
the function defaults to the blank-line method to clear the display. Figure 13-1 shows
the flow chart for a text-based console data display based on what we’ve seen so far.

Reading user input

Now we have a means to display data, but there’s still one thing missing: user input.
Fortunately, Python does have a one-size-fits-all input method to read input from the
console. The raw_input() method reads a line of input from the console and returns it
as a string. A line, in this case, is defined as zero or more characters terminated with an
EOL. The EOL will not be appended to the string returned by raw_input().

The raw_input() method can also display a prompt string, and if the readline module
is installed it will use that to support input line editing and provide input history. Here
is the third iteration of the console example with raw_input() incorporated into the
code:

#! /usr/bin/python
console3.py
#
Demonstrates console output using the built-in print method and the
raw_input() method.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import time
import os

ainstat = ['OFF','OFF','OFF','OFF']
aindata = [0.0, 0.0, 0.0, 0.0]
discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
discin = [0,0,0,0,0,0,0,0]
x = 0

def initData():

Text-Based Interfaces | 491

 global ainstat, aindata, discstate, discin

 ainstat = ['OFF','OFF','OFF','OFF']
 aindata = [0.0, 0.0, 0.0, 0.0]
 discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
 discin = [0,0,0,0,0,0,0,0]

def readData():
 global ainstat, aindata, discstate, discin, x

 initData()
 discstate[x] = 'ON'
 discin[x] = 1
 x += 1
 if x > (len(discin) - 1):
 x = 0

def clrDisp(numlines=50):
 if os.name == "posix":
 os.system('clear')
 elif os.name in ("nt", "dos", "ce"):
 os.system('CLS')
 else:
 print '\n' * numlines

def drawData():
 print ""
 print "System Status"
 print ""
 print "Analog Input 0 : %10s %f" % (ainstat[0], aindata[0])
 print "Analog Input 1 : %10s %f" % (ainstat[1], aindata[1])
 print "Analog Input 2 : %10s %f" % (ainstat[2], aindata[2])
 print "Analog Input 3 : %10s %f" % (ainstat[3], aindata[3])
 print ""
 print "Discrete Input 0: %3s %d" % (discstate[0], discin[0])
 print "Discrete Input 1: %3s %d" % (discstate[1], discin[1])
 print "Discrete Input 2: %3s %d" % (discstate[2], discin[2])
 print "Discrete Input 3: %3s %d" % (discstate[3], discin[3])
 print "Discrete Input 4: %3s %d" % (discstate[4], discin[4])
 print "Discrete Input 5: %3s %d" % (discstate[5], discin[5])
 print "Discrete Input 6: %3s %d" % (discstate[6], discin[6])
 print "Discrete Input 7: %3s %d" % (discstate[7], discin[7])
 print ""

while True:
 readData()
 clrDisp()
 drawData()
 instr = raw_input("Command: ")
 if instr.upper() == 'X':
 break

console3.py will step through the discrete input lines one at a time each time the Enter
key is pressed. If an x (or X) character is entered, it will terminate.

492 | Chapter 13: User Interfaces

Figure 13-1. Textual data display

There is a downside here, however. The raw_input() method only works in a blocking
mode. In other words, it will block until the user enters something. This means that
the display cannot automatically update itself based on a timer so long as the
raw_input() is in the main display loop. It won’t fetch new data and update the display
until the user presses any key other than X.

It turns out that there is a solution, though: this is a perfect place for a thread. We can
let a thread fetch the input from the user, and a flag can be used to notify the main loop
that it’s time to terminate. The code for this is shown here as console4.py:

#! /usr/bin/python
console4.py
#
Demonstrates console output using the built-in print method and the
raw_input() method in a separate thread.
#

Text-Based Interfaces | 493

Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import time
import os
import threading

ainstat = ['OFF','OFF','OFF','OFF']
aindata = [0.0, 0.0, 0.0, 0.0]
discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
discin = [0,0,0,0,0,0,0,0]

running = True
x = 0

def initData():
 global ainstat, aindata, discstate, discin

 ainstat = ['OFF','OFF','OFF','OFF']
 aindata = [0.0, 0.0, 0.0, 0.0]
 discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
 discin = [0,0,0,0,0,0,0,0]

def readData():
 global ainstat, aindata, discstate, discin, x

 initData()
 discstate[x] = 'ON'
 discin[x] = 1
 x += 1
 if x > (len(discin) - 1):
 x = 0

def clrDisp(numlines=50):
 if os.name == "posix":
 os.system('clear')
 elif os.name in ("nt", "dos", "ce"):
 os.system('CLS')
 else:
 print '\n' * numlines

def drawData():
 print ""
 print "System Status"
 print ""
 print "Analog Input 0 : %10s %f" % (ainstat[0], aindata[0])
 print "Analog Input 1 : %10s %f" % (ainstat[1], aindata[1])
 print "Analog Input 2 : %10s %f" % (ainstat[2], aindata[2])
 print "Analog Input 3 : %10s %f" % (ainstat[3], aindata[3])
 print ""
 print "Discrete Input 0: %3s %d" % (discstate[0], discin[0])
 print "Discrete Input 1: %3s %d" % (discstate[1], discin[1])
 print "Discrete Input 2: %3s %d" % (discstate[2], discin[2])
 print "Discrete Input 3: %3s %d" % (discstate[3], discin[3])
 print "Discrete Input 4: %3s %d" % (discstate[4], discin[4])

494 | Chapter 13: User Interfaces

 print "Discrete Input 5: %3s %d" % (discstate[5], discin[5])
 print "Discrete Input 6: %3s %d" % (discstate[6], discin[6])
 print "Discrete Input 7: %3s %d" % (discstate[7], discin[7])
 print ""
 print "Enter X to terminate"

def getCommand():
 global running

 while True:
 instr = raw_input()
 if instr.upper() == 'X':
 running = False
 break

#---
launch the raw_input() handler thread
getinput = threading.Thread(target=getCommand)
getinput.start()

while running:
 readData()
 clrDisp()
 drawData()
 time.sleep(1.0)

Now we really do have a generic framework that can be used to create a console data
display that can also accept basic commands, and it does it all using nothing more than
the print and raw_input() built-in methods.

Just in case you might be thinking that a console-based text-only display isn’t partic-
ularly useful, Figure 13-2 shows a screenshot of a set of text display windows used to
test some of the instruments used for a space mission.

Each of the six windows uses only ASCII text. There’s no ANSI positioning or anything
else fancy going on here (we will get to ANSI display control shortly). The displays
show the command interface to the spacecraft’s CPU, the responses sent back via the
telemetry channels, and the status of the telemetry processing functions. There’s even
a window for command inputs, although this system was typically driven with another
tool (not shown) that sent sequences of commands in the format expected by the flight
software.

OS-specific console I/O

One of the advantages (perhaps the biggest advantage) of using text-based displays like
those we’ve just seen is that they are largely platform-independent. The print and
raw_input() methods are not platform-sensitive, and only the screen clear methods
require some knowledge of the underlying OS. There are limitations, however, to what
you can do with just print and raw_input(), and situations may arise where you need
to have more control over the display and the I/O with the user.

Text-Based Interfaces | 495

Both Linux and Windows provide a basic set of functions for dealing with low-level
console I/O. With Linux, console I/O utility functions such as getch() and ungetch()
are found in the curses library; they are not part of the standard I/O functions library.
Windows provides these and other functions as part of the msvcrt DLL module. Python
includes the library module msvcrt for accessing functions in the Microsoft msvcrt DLL,
and the curses library module for Unix/Linux environments. In the next section we’ll
see how to put these and other low-level console I/O functions to work to create struc-
tured text-based interfaces using the ANSI terminal control sequences and the curses
screen display package. But, before we delve into ANSI and curses, let’s look at how
these basic functions can be used with text-based displays.

Linux and Windows text display differences

We have now reached the point where Linux and Windows start to go their separate
ways. Once we leave the domain of simple print statements and raw_input(), we begin
to encounter some significant differences arising from the underlying philosophies of
these two operating systems.

The ability to control a display using ANSI control sequences has long been a part of
Unix, and later Linux. Unix evolved in a multitasking time-sharing environment based

Figure 13-2. Text-based test system data displays

496 | Chapter 13: User Interfaces

on minicomputers and mainframes, with terminals for user interfaces, and Linux has
inherited that paradigm. Windows, on the other hand, evolved from DOS, with no
multitasking support and a single screen for one user. It wasn’t until Microsoft released
the ANSI.sys driver module that PCs could interpret ANSI sequences to control cursor
positioning and directly manipulate a text-based display. Nowadays Windows support
for ANSI screen controls is almost nonexistent. With its emphasis on a GUI for user
interaction, Windows doesn’t appear to have much need for the old way of doing
things.

However, the lack of multitasking and threads (at least initially, with DOS) forced some
innovation, and as a result one useful function that appears in DOS and Windows
environments is kbhit(). It’s so useful, in fact, that it’s a standard part of the Microsoft
Visual C Run-Time library (the msvcrt DLL module), and has been for a long time.
There is no direct equivalent in Linux.

kbhit() is a nonblocking function that will return True if there is a character waiting in
the console input buffer. This allows a program running in a single-task, nonthreaded
environment to check for input in a main loop without blocking the loop (recall the
blocking behavior of the console3.py example from earlier). In the console4.py exam-
ple, a thread is used to achieve functionality something like that of kbhit(). There is,
of course, another way to do this under Linux that involves the use of the select()
function, but I won’t get into that here. I do, however, encourage you to explore it on
your own; it’s an interesting journey.

Under Windows the getche() function does essentially what Python’s raw_input()
method does when getting a single character from the user. To read a string of char-
acters, one approach is to put getche() inside a loop that executes until an EOF is
detected. This works, but it’s not very elegant. Python’s raw_input() method is con-
siderably more powerful, and it’s easier to use.

Using Python’s msvcrt library module

For Windows environments, Python includes a handy module that allows a program
to access some of the low-level functionality provided by the Microsoft runtime library
msvcrt. Note that this does not apply to Linux platforms. We will see what can be done
with Linux in the next section, when we look into curses and ANSI control sequences.
Table 13-1 lists the functions available through Python’s msvcrt library module.

Table 13-1. Python’s msvcrt module functions

msvcrt function Description

kbhit() Returns True if a keypress occurred and a character is waiting to be read from the input buffer.

getch() Blocking call; waits for a keypress and then returns the character in the input buffer. Does not echo the
input character to the console, and does not wait for an EOL before returning.

getwch() The “wide char” version of getch(); returns a Unicode value.

Text-Based Interfaces | 497

msvcrt function Description

getche() Identical to getch() except that the incoming character will be echoed to the console if it is a printable
character.

getwche() The “wide char” version of getche(); returns a Unicode value.

putch(char) Prints a character directly to the console without buffering.

putwch(
unicode_char)

The “wide char” version of putch() that accepts a Unicode character value for output.

ungetch(char) Performs a “push-back” of the given character into the console buffer so that it will be the next character
read by getch() or getche().

ungetwch(
unicode_char)

The “wide char” version of ungetch() that accepts a Unicode character value to push back.

The listing for example program console5.py, shown next, illustrates how kbhit() can
be used to replace the thread and raw_input() technique we saw in console4.py:

#! /usr/bin/python
console5.py
#
Demonstrates console output using the built-in print method and the
use of the kbhit() function from msvcrt.
#
Windows only! Will not work under Linux.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import time
import os
import msvcrt

ainstat = ['OFF','OFF','OFF','OFF']
aindata = [0.0, 0.0, 0.0, 0.0]
discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
discin = [0,0,0,0,0,0,0,0]

running = True
x = 0

def initData():
 global ainstat, aindata, discstate, discin

 ainstat = ['OFF','OFF','OFF','OFF']
 aindata = [0.0, 0.0, 0.0, 0.0]
 discstate = ['OFF','OFF','OFF','OFF','OFF','OFF','OFF','OFF']
 discin = [0,0,0,0,0,0,0,0]

def readData():
 global ainstat, aindata, discstate, discin, x

 initData()
 discstate[x] = 'ON'

498 | Chapter 13: User Interfaces

 discin[x] = 1
 x += 1
 if x > (len(discin) - 1):
 x = 0

def clrDisp(numlines=50):
 if os.name == "posix":
 os.system('clear')
 elif os.name in ("nt", "dos", "ce"):
 os.system('CLS')
 else:
 print '\n' * numlines

def drawData():
 print ""
 print "System Status"
 print ""
 print "Analog Input 0 : %10s %f" % (ainstat[0], aindata[0])
 print "Analog Input 1 : %10s %f" % (ainstat[1], aindata[1])
 print "Analog Input 2 : %10s %f" % (ainstat[2], aindata[2])
 print "Analog Input 3 : %10s %f" % (ainstat[3], aindata[3])
 print ""
 print "Discrete Input 0: %3s %d" % (discstate[0], discin[0])
 print "Discrete Input 1: %3s %d" % (discstate[1], discin[1])
 print "Discrete Input 2: %3s %d" % (discstate[2], discin[2])
 print "Discrete Input 3: %3s %d" % (discstate[3], discin[3])
 print "Discrete Input 4: %3s %d" % (discstate[4], discin[4])
 print "Discrete Input 5: %3s %d" % (discstate[5], discin[5])
 print "Discrete Input 6: %3s %d" % (discstate[6], discin[6])
 print "Discrete Input 7: %3s %d" % (discstate[7], discin[7])
 print ""
 print "Enter X to terminate"

def getCommand():
 global running

 if msvcrt.kbhit():
 inchar = msvcrt.getch()
 if inchar.upper() == 'X':
 running = False

#---
while running:
 readData()
 clrDisp()
 drawData()
 getCommand()
 if running == True:
 time.sleep(1.0)

One major difference between console4.py and console5.py is in how the function
getCommand() is implemented. In console5.py it’s no longer a thread, and raw_input()
has been replaced with kbhit(). Just entering an X is now sufficient, instead of X followed
by the Enter key as in console4.py. However, the primary difference between

Text-Based Interfaces | 499

console4.py and console5.py is that console5.py will not run under Linux, even though
the behavior of both is virtually identical. Using the msvcrt module has rendered
console5.py OS-specific and confined it to the Windows environment.

ANSI Display Control Techniques
The mid-1970s saw the advent of the Video Display Terminal (VDT) as a successor to
the keypunch and teletype machines that were prevalent at the time. The success of the
VDT was due partly to how it was interfaced with the computer system, and partly to
its ability to support flexible and dynamic displays. A simple serial interface (typically
RS-232) was all that was needed to connect a terminal to the mainframe and, with the
appropriate time-sharing OS, the system could now support multiple users at the same
time. This was possible because the chores of screen management and keyboard input
were offloaded onto the terminal, so all the mainframe had to do was send data and
commands to the terminal, and get the input from the user when it became available.
In a sense, it was an early application of distributed processing.

Things evolved quite rapidly, and it soon became apparent that it would be nice to have
the ability to position the cursor anywhere on the screen to support data entry into
preformatted display templates, or forms. The ability to control the cursor position was
also necessary to implement full-screen text editors such as vi (Unix) and edt (used on
DEC’s VMS OS). Incidentally, people also discovered that screen control was useful
for games, and if you’ve ever played with Rogue, Nethack, or Empire you’ve seen the
direct descendants of those early games. Some of them were quite impressive, given
that they used only the ASCII character set.

Initially, terminal manufacturers went about devising their own unique schemes for
doing the screen control, as manufacturers are wont to do. This quickly became a
problem, because if you wanted to add more terminals to a system, there was a risk
that the new terminals wouldn’t work with the existing software. In most schemes the
idea is to send a nonprintable character (or set of characters) to alert the logic in the
terminal to receive a sequence of characters for display control, or to alter the behavior
of the terminal itself. So long as terminal brand X recognizes the same sequences as
terminal brand Y, all is well. But that wasn’t always the case. Unix systems dealt with
this by implementing “termcap,” the terminal capabilities translation scheme, which
could select the appropriate control sequence for a given function based on the terminal
model. On Linux systems you can still find the termcap database file in the /etc directory,
although it has since been superseded by terminfo.

An initial standard for ANSI escape sequences came into existence in 1976 as
ECMA-48. It later evolved into ISO/IEC 6429. The ANSI identification was adopted
around 1981, when it was formalized as ANSI X3.64, and this is still the most common
way to refer to the standardized terminal control sequences. Throughout the rest of
this chapter, when I use “ANSI” you can assume that I’m referring to ECMA-48/ANSI
X3.64.

500 | Chapter 13: User Interfaces

Even though VDTs are now largely extinct, the ANSI control sequences live on, and
probably will for as long as there are textual displays of one sort or another. For ex-
ample, the Xterm utility on Linux (and Unix) systems supports the DEC VT100 VDT
set of control sequences, which is arguably the most common implementation of the
ANSI standard. Xterm can also support color, and even has a Tektronix 4014 emulation
mode for (simulated) vector graphics. See the URL in “Suggested Read-
ing” on page 544 for more information about Xterm’s ANSI capabilities.

ANSI and Windows

Windows itself does not directly support ANSI console screen control, and I do not
recommend the use of the 16-bit ANSI.sys driver. An open source replacement for
ANSI.sys is Jason Hood’s ansicon package, which contains ANSI drivers for both 32-
bit and 64-bit Windows. After installation of either ANSI32.dll or ANSI64.dll, the
cmd.exe window will be able to handle a useful subset of the ANSI control sequences,
but it won’t work with the full set of ANSI sequences. You will need to be judicious
about what you throw at it. The source code is also included. You can download it
from http://adoxa.110mb.com/ansicon/index.html.

There are some ANSI-aware console shell replacements and terminal emulators avail-
able for Windows. Some are better than others; some are free, and some cost money.
We have already seen the Tera Term terminal emulator and looked at the com0com
virtual serial port utility and some of its uses in Chapters 7 and 10. Here’s another use
for this handy little software gadget. With com0com you can write your Python appli-
cation such that its I/O is routed through a serial port, connect to one of com0com’s
virtual ports, and then use Tera Term with its VT100 terminal emulation to connect
to the other port, and all on the same machine.

Basic ANSI control sequences

Let’s see what the ANSI control sequences look like. Table 13-2 is a partial listing of
the ANSI control sequences set, consisting of what I consider the most immediately
useful sequences for our purposes, namely, the cursor positioning and some display
management sequences. I’ve left out things like the display attributes controls (bright,
dim, color, and so on), because at this point they only add complexity to a subject I’d
like to keep simple. However, if you really need bright blue blinking characters on an
orange field, by all means feel free to use them.

Note that <ESC> represents the ASCII “escape” character, which can be written as a
Python string in the form \x1b. Variable names in italics represent modifiable decimal
parameters; e.g., row would be replaced by a row number. For some of the sequences,
two command forms are shown. The second form is the default form, where you can
omit the numeric parameters if the default behavior is acceptable. Finally, some of the
sequences have just an <ESC> character at the start, while others use a two-character
sequence consisting of <ESC>[(that’s an escape character, \x1b, followed by a left-
bracket, [).

Text-Based Interfaces | 501

http://adoxa.110mb.com/ansicon/index.html

Table 13-2. Basic ANSI control sequences

Sequence Function Description

<ESC>[row ; col H

<ESC>[H

Cursor Move or Home Sets the cursor position where subsequent text will begin. If no row/column
parameters are provided (i.e., <ESC>[H), the cursor will move to the home
position at the upper-left corner of the screen.

<ESC>[count A

<ESC>[A

Cursor Up Moves the cursor up by count rows; the default count is 1.

<ESC>[count B

<ESC>[B

Cursor Down Moves the cursor down by count rows; the default count is 1.

<ESC>[count C

<ESC>[C

Cursor Forward Moves the cursor forward by count columns; the default count is 1.

<ESC>[count D

<ESC>[D

Cursor Backward Moves the cursor backward by count columns; the default count is 1.

<ESC>E Next Line Moves to start of next line.

<ESC>[s Save Cursor Saves current cursor position.

<ESC>[u Unsave Cursor Restores cursor position after a Save Cursor.

<ESC>D Move Down (Index) Moves the cursor down one line in the same column.

<ESC>M Move Up (Rev Index) Moves the cursor up one line in the same column.

<ESC>[0K Erase to End of Line Erases from the current cursor position to the end of the current line.

<ESC>[2K Erase Line Erases the entire current line.

<ESC>[2J Erase Screen Erases the screen with the background color and moves the cursor to home.

The next example, bgansi.py, is an example of a bar-graph–type display using the con-
trol sequences from Table 13-2:

#!/usr/bin/python
bgansi.py
#
Demonstrates basic ANSI screen control. Also demonstrates how to use
stdout from the sys library module.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import random
import time
from sys import stdout

MAXEXT = 30
ROWSTRT = 7 # first row at 8th screen row
COLSTRT = 9 # column start offset
VALPOS = 45 # column for value

ran = random.random

502 | Chapter 13: User Interfaces

output = stdout.write
outflush = stdout.flush

def generateBars():
 # clear the screen
 output("\x1b[2J")

 # put eight ID strings and markers on the screen in the leftmost
 # column starting at the 8th row from the top (row 7)
 i = 1
 for row in range(ROWSTRT,15):
 # set cursor position
 output("\x1b[%d;%dH" % (row, 0))
 # write marker character
 output("Chan %d |" % i)
 i += 1

bars are numbered 0 through 7
def updateBar(barnum, extent):
 # adjust to match actual position of bar
 row = barnum + ROWSTRT

 # limit extent to keep from hitting right edge of display
 if extent > MAXEXT:
 extent = MAXEXT
 # make sure something always gets printed
 if extent < 1:
 extent = 1

 # clear the line first (lets graph line shrink)
 output("\x1b[%d;%dH" % (row, COLSTRT))
 # erase to end of line
 output("\x1b[0K")

 # walk through all positions up to extent
 for col in range(0, extent):
 # set position
 output("\x1b[%d;%dH" % (row, COLSTRT+col))
 # use an equals sign to fill the bar
 output("=")
 # write the actual value used
 output("\x1b[%d;%dH" % (row, VALPOS))
 output("%d" % extent)
 outflush()

def runTest():
 generateBars()

 for x in range(0, 100):
 for barnum in range(0, 8):
 # the random number function returns a float value
 # between 0 and 1 use it to scale MAXEXT
 val = int(ran() * MAXEXT)

Text-Based Interfaces | 503

 updateBar(barnum, val)
 # sleep briefly
 time.sleep(0.1)

 output("\x1b[%d;%dH" % (20, 0))
 outflush()
 print ""

if __name__ == '__main__':
 runTest()

The output of bgansi.py is shown in Figure 13-3. This is just a single snapshot of the
screen; when running, it is rather active.

Figure 13-3. ANSI bar graph example output

There are a few things going on in bgansi.py that are worth looking at more closely.
For starters, notice that I’m not using Python’s built-in print function. In this example
we just want the output to go directly to stdout without any interpretation or modifi-
cation, so the example directly invokes the write() method of the stdout object. Also,
since stdout is buffered internally, the flush() method is used to make sure all the output
really does make it out when intended.

One significant thing to notice in bgansi.py is that the \x1b[sequence keeps showing
up, and that the ANSI control strings that use it are not very intuitive. Writing code
that uses the ANSI control codes in this fashion definitely qualifies as doing things the
hard way. One could hide a lot of this by using pseudo-macro assignments, like this:

CSI = "\x1b["
CLR = "2J"

504 | Chapter 13: User Interfaces

But that’s not really the best solution. A better solution is a library of methods that do
more than just sweep the details under the rug. In the next section we’ll see such a
library, which not only eliminates the need to look up the sequences but also handles
I/O redirection. After that we will examine Python’s interface to the curses library.

The SimpleANSI library

Not all applications need all the capabilities of the complete ANSI control sequence
set. Sometimes just being able to move the cursor around and accept user input from
specific locations is sufficient. But, truth be told, the sequences do tend to be somewhat
clumsy to work with and cryptic to read, so having a nice, clean wrapper API of some
type can help quite a bit.

Let’s assume that we have a screen layout that looks like Figure 13-4.

Figure 13-4. ANSI data display

Now let’s take look at SimpleANSI, a library module that provides basic screen control
functions via the ANSITerm class, and see how it can be used with Figure 13-4. The
ANSITerm class supports the control sequences listed in Table 13-2 and includes a couple
of modifications to allow for optional control of the initial cursor position for the Erase
to End of Line and Erase Line sequences (the ANSITerm methods clrEOL() and clrLine(),
respectively).

The ANSITerm class provides 17 public methods for ANSI screen control, listed in Ta-
ble 13-3. It also handles socket, serial, and console I/O modes.

Text-Based Interfaces | 505

Table 13-3. ANSITerm class methods

Method Description

clrEOL(row, col) Clears line from position at row, col to EOL.

clrLine(row) Clears entire line (row) in display.

clrScreen() Clears entire screen.

indexDown() Moves/scrolls down one line.

indexUp() Moves/scrolls up one line.

moveBack(count) Moves cursor left count columns.

moveDown(count) Moves cursor down count rows.

moveForward(count) Moves cursor right count columns.

moveHome() Moves cursor to upper-left corner.

moveNextline() Moves to start of next line.

movePos(row, col) Moves cursor to screen location row, col.

moveUp(count) Moves cursor up count rows.

readInput(reset=False) Gets user input and echoes it to the display. reset=True causes the cursor to return to
the initial starting position when input is complete.

resetDev() Resets terminal to initial state.

restorePos() Restores cursor to last saved position.

savePos() Saves current cursor position.

writeOutput(outstr) Writes the specified string at the current cursor position.

The source listing for the SimpleANSI module is shown below. Notice that the I/O is
mapped to a pair of objects based on the type of I/O selected. The default is to use the
console, but the class initializer will also accept a valid socket or serial I/O object:

#! /usr/bin/python
SimpleANSI.py
#
A minimal set of functions for ANSI screen control.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

""" Simple VT100/Xterm ANSI terminal functions for Python.

 This module is based on C code originally written for use with
 VxWorks running on embedded controllers. It is used to control
 the display of an ANSI-capable terminal or terminal emulator.
 It will work with Xterm on Unix and Linux systems, CygWin under
 Windows, and also with Tera Term under Windows.

 The ANSITerm class supports I/O via an ANSI-capable console,
 a serial connection, or a network socket.

506 | Chapter 13: User Interfaces

 This is not a replacement for curses, and was never intended
 to be. It is a quick and simple way to put formatted data on
 a display; nothing more. It is useful for diagnostics, status
 displays, and simple command interfaces.

 The pseudo-macro CSI is the ANSI "Command Sequence Introducer."

 NOTE: This code has not been tested in all possible environments
 for all possible (or feasible) use cases. It may contain errors,
 omissions, or other unpleasant things.
"""

from sys import stdout
import time

ESC = "\x1b"
CSI = ESC+"["

CON = 0
SKT = 1
SIO = 2

class ANSITerm:
 """ Simple ANSI terminal control.

 Supports I/O using the console, a network socket, or a serial
 port.

 When communicating via a network socket, it is assumed that
 the physical port is a socket with send and receive methods,
 and that it has already been opened elsewhere.

 When using a serial port, the port must already be open. In
 this case ioport must reference a valid pySerial object.

 The default I/O mode is to use the console, which must support
 ANSI control sequences (otherwise the ANSI sequences will just
 be printed, not interpreted). Also note that all user input
 via the console requires that the Enter key be pressed when
 input is complete. This is an artifact of Python's raw_input()
 function, since it has no native getch()-type function.

 Screen coordinates are specified as (row, col), or in other
 words, as (y, x). This is the same as how curses does it.
 """
 def __init__(self, ioport=None, porttype=CON):
 """ Initialize the ANSITerm object.

 If porttype is anything other than CON, ioport must
 reference a valid I/O port object.

 If porttype is CON, self.port is assigned the value of
 None.

 The defualt I/O method is the console.

Text-Based Interfaces | 507

 """
 self.pktsize = 1024 # just a default value for SKT mode
 self.port = ioport # SKT and SIO port object
 self.portOK = False # valid port indicator

 # map to the appropriate I/O handlers
 if porttype == SKT:
 if self.port:
 self.portOK = True
 self.outfunc = self.__sktOutput
 self.inpfunc = self.__sktInput
 elif porttype == SIO:
 if self.port:
 self.portOK = True
 self.outfunc = self.__sioOutput
 self.inpfunc = self.__sioInput
 else:
 self.port = None
 self.portOK = True
 self.outfunc = self.__conOutput
 self.outflush = self.__conFlush
 self.inpfunc = self.__conInput

 #---
 # I/O handlers
 #---
 # Although this could have been done without the use of a set of
 # one-line methods, this approach leaves the door open to easily
 # expand this scheme in the future: the inclusion of some type of
 # error handling, for example, or perhaps the ability to capture
 # and log data I/O.
 #
 # Note that the socket and serial I/O methods assume that a
 # standard Python socket object or a pySerial port object will
 # be used. Another type of I/O object may require different
 # methods for reading and writing.
 #---
 def __sktOutput(self, outstr):
 self.port.send(outstr)

 def __sioOutput(self, outstr):
 self.port.write(outstr)

 def __conOutput(self, outstr):
 stdout.write(outstr)

 def __conFlush(self):
 stdout.flush()

 def __sktInput(self):
 return self.port.recv(self.pktsize)

 def __sioInput(self):
 return self.port.readline()

508 | Chapter 13: User Interfaces

 def __conInput(self):
 return raw_input() # no prompt is specified for raw_input

 #---
 # Cursor positioning
 #---
 def moveHome(self):
 """ Move cursor to upper-left corner.
 """
 if self.portOK:
 self.outfunc("%sH" % CSI)

 def moveNextline(self):
 """ Move to start of next line.
 """
 if self.portOK:
 self.outfunc("%sE" % ESC)

 def movePos(self, row, col):
 """ Move cursor to screen location row, col.
 """
 if self.portOK:
 self.outfunc("%s%d;%dH" % (CSI, row, col))

 def moveUp(self, count):
 """ Move cursor up count rows.
 """
 if self.portOK:
 self.outfunc("%s%dA" % (CSI, count))

 def moveDown(self, count):
 """ Move cursor down count rows.
 """
 if self.portOK:
 self.outfunc("%s%dB" % (CSI, count))

 def moveFoward(self, count):
 """ Move cursor right count columns.
 """
 if self.portOK:
 self.outfunc("%s%dC" % (CSI, count))

 def moveBack(self, count):
 """ Move cursor left count columns.
 """
 if self.portOK:
 self.outfunc("%s%dD" % (CSI, count))

 def indexUp(self):
 """ Move/scroll up one line.
 """
 if self.portOK:
 self.outfunc("%D" % ESC)

 def indexDown(self):

Text-Based Interfaces | 509

 """Move/scroll down one line.
 """
 if self.portOK:
 self.outfunc("%M" % ESC)

 def savePos(self):
 """ Save current cursor position.
 """
 if self.portOK:
 self.outfunc("%ss" % CSI);

 def restorePos(self):
 """ Restore cursor to last saved position.
 """
 if self.portOK:
 self.outfunc("%su" % CSI);

 #---
 # Display control
 #---
 def clrScreen(self):
 if self.portOK:
 self.outfunc("%s2J" % CSI);

 def clrEOL(self, row=None, col=None):
 """ Clear line from given or current position.

 If row and col are None, the current position is used.
 """
 if self.portOK:
 if row and col:
 self.movePos(row,col);
 self.outfunc("%s0K" % CSI)

 def clrLine(self, row=None):
 """ Clear entire line (row) in display.

 If row is None, the current position is used.
 """
 if self.portOK:
 if row:
 self.movePos(row, 1)
 self.outfunc("%s2K" % CSI)

 def resetDev(self):
 """ Reset terminal to initial state.
 """
 if self.portOK:
 self.outfunc("%sc" % ESC)

 #---
 # Input
 #---
 def readInput(self, reset=False):
 """ Get user input and echo it to the display.

510 | Chapter 13: User Interfaces

 If a prompt is required it must be generated at the
 appropriate location before this method is called.

 If reset is True, when the input handler returns the
 cursor will be repositioned to the starting location prior
 to user input. This capability is provided mainly to
 compensate for the use of Python's raw_input() function
 when interacting with a console, as the user will need to
 press the Enter key to complete an input.
 """
 instr = ""
 if self.portOK:
 if reset: self.savePos()
 instr = self.inpfunc()
 if reset: self.restorePos()
 return instr

 #---
 # Output
 #---
 def writeOutput(self, outstr):
 """ Writes an arbitrary string at the current cursor position.
 """
 if self.portOK:
 self.outfunc(outstr)
 self.outflush()

self-test
if __name__ == "__main__":
 term = ANSITerm(None, 0)

 term.clrScreen()

 # number the rows on the display from 1 to 24
 for i in range(1,21):
 term.movePos(i,0)
 term.writeOutput("%0d" % i)

 # write some text to the display
 term.movePos(14,4)
 term.writeOutput("* This is line 14, column 4")
 time.sleep(1)
 term.movePos(15,4)
 term.writeOutput("* This is line 15, column 4")
 time.sleep(1)

 # create a diagonal series of characters
 for i in range(2,12):
 term.movePos(i,i+4)
 term.writeOutput("X")
 time.sleep(0.1)

 for i in range(2,12):

Text-Based Interfaces | 511

 term.movePos(i,i+4)
 term.writeOutput(" ")
 time.sleep(0.1)

 for i in range(2,12):
 term.movePos(i,i+4)
 term.writeOutput("X")
 time.sleep(0.1)

 # do some blinking the hard way
 for i in range(0,10):
 term.movePos(17,10)
 term.writeOutput("blick blink")
 time.sleep(0.5)
 term.clrEOL(17,10)
 time.sleep(0.5)

 term.movePos(18,4)
 term.writeOutput("Did it blink? (y/n): ")
 instr = term.readInput()
 term.movePos(19,4)
 term.writeOutput("You answered %s, thank you for playing." % instr)

 term.movePos(22,1)
 # and that's it

Using SimpleANSI

Referring back to Figure 13-4, the first thing to notice is that it is a fixed-format display.
One way to create this type of display is to use a predefined template to generate the
base screen display and continually redraw it with new data. This is how the
console4.py example did it. This works, but it’s much more efficient if you can just
draw the static portions of the display once and only change the data fields as necessary.
console6.py incorporates the ANSITerm class to handle variable data display and accept
user input. It only generates the main display screen once, and all subsequent changes
occur at specific locations in the main display area. Here is the source listing for
console6.py:

#!/usr/bin/python
console6.py
#
Demonstrates the use of the SimpleANSI module.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import random
import time
import datetime
import threading
import SimpleANSI

data_vals = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

512 | Chapter 13: User Interfaces

currdate = ""
currtime = ""
updt_cnt1 = 0
updt_cnt2 = 0

ran = random.random

def getDate():
 global currdate

 t = datetime.datetime.now()
 currdatetime = t.timetuple()

 yr = str(currdatetime[0])
 currdate = "%02d"%int(yr[2:]) + "%02d"%currdatetime[1] +\
 "%02d"%currdatetime[2]

def getTime():
 global currtime

 t = datetime.datetime.now()
 currdatetime = t.timetuple()

 currtime = "%02d:"%currdatetime[3] + "%02d:"%currdatetime[4] +\
 "%02d"%currdatetime[5]

write data and time to display
def writeDateTime():
 getDate()
 getTime()

 term.clrEOL(2,15)
 term.movePos(2,15)
 term.writeOutput("%s" % currdate)
 term.clrEOL(3,15)
 term.movePos(3,15)
 term.writeOutput("%s" % currtime)

get simulated data input values
def getDataVals():
 global data_vals, updt_cnt1, updt_cnt2

 data_vals[0] = ran() * 10.0
 data_vals[1] = ran() * 10.0

 if updt_cnt1 >= 4:
 for i in range(2,5):
 data_vals[i] = ran() * 10.0
 updt_cnt1 = 0
 else:
 updt_cnt1 += 1

 if updt_cnt2 >= 10:
 for i in range(4,8):
 data_vals[i] = ran() * 10.0

Text-Based Interfaces | 513

 updt_cnt2 = 0
 else:
 updt_cnt2 += 1

write channel data values
def writeDataVals():
 idx = 0
 for i in range(6,14):
 term.movePos(i,10)
 term.writeOutput("%6.2f" % data_vals[idx])
 idx += 1
 # put cursor below display text when update is done
 term.movePos(16,1)

generate the main display
def mainScreen():
 term.clrScreen()

 term.movePos(1,1)
 term.writeOutput("Input Data Monitor")

 term.movePos(2,1)
 term.writeOutput("Current Date:")
 term.movePos(3,1)
 term.writeOutput("Current Time:")
 writeDateTime()

 term.movePos(5,1)
 term.writeOutput("Chan Last Value")

 rownum = 1
 for row in range(6,14):
 term.movePos(row,1)
 term.writeOutput(" %d" % rownum)
 rownum += 1

 writeDataVals()

 term.movePos(15,1)
 term.writeOutput("Enter X to exit.")

raw_input() handler thread
def getCommand():
 global exit_loop

 while True:
 instr = raw_input()
 if instr.upper() == 'X':
 exit_loop = True
 break
 time.sleep(0.1)

#---
Main loop
#---

514 | Chapter 13: User Interfaces

term = SimpleANSI.ANSITerm(None, 0)

exit_loop = False

launch the raw_input() handler thread
getinput = threading.Thread(target=getCommand)
getinput.start()

mainScreen()

while exit_loop == False:
 writeDateTime()
 getDataVals()
 writeDataVals()
 time.sleep(0.2)

console6.py is actually a slightly more realistic version of the console4.py example. I’ve
reused the thread trick to prevent Python’s raw_input() method from suspending the
main loop while waiting for user input. Python’s date and time methods are also put
to use. The primary objective here is to show how ANSI control sequences, via the
SimpleANSI module, can be used to generate a dynamic ASCII display based on a static
template.

Python and curses

This discussion of curses and Python’s curses implementation is inten-
ded mainly for Python on Unix/Linux systems. Python will not import
the curses library module on a Windows system (the Windows version
of Python does not have the curses module). Although there are some
possible workarounds, Windows applications should probably just use
something like the SimpleANSI module with the ANSI32.dll driver.

This section isn’t about programming frustration, although I have no doubt that soft-
ware development has led to some very creative cursing. No, this section is about the
curses library for manipulating characters on a terminal display using ANSI control
sequences.

We’ve just seen some of what you can do using only a handful of simple ANSI control
sequences, and if you’ve ever used the vi, Emacs, or edt editors, you’ve seen examples
of what can be done with the full set of ANSI sequences. Although the subset of the
ANSI control sequences we’ve used so far will take us a long way, realizing the full
capabilities of the ANSI sequences would require some significant programming. For-
tunately, it’s already been done for us with the curses library.

The curses library can be used to do things like manipulate specific areas of a display
while leaving other areas undisturbed (i.e., curses does windows), change text styles
and colors, scroll text, and other neat tricks. You can also create drop-down menus,
checkboxes, and other useful user-input aids.

Text-Based Interfaces | 515

curses background

curses originated on BSD Unix systems in the early 1980s and was later adopted and
extended for ATT’s System V Release 4.0 (SVr4). On Linux systems ANSI screen con-
trol is provided by the ncurses library (ncurses stands for “new curses,” an open source
replacement for the SVr4 curses library). From now on, when I refer to curses you
should take it as meaning ncurses.

It is important to note that curses is a Unix/Linux thing, and there is no native port of
the curses library available for Windows. Attempting to import curses into a Python
program running under Windows will result in an error, because the curses library
module isn’t supplied with the Windows version of Python. While there have been
some attempts at creating curses-compatible displays for Windows, I’ve not tried any
of them and I can’t comment on them.

Python’s curses library module

Python’s curses library module is simply a wrapper around some of the standard
ncurses library functions. It is not a complete wrapper, but it does implement a fairly
large number of the most commonly used functions. I won’t try to cover all of the
Python curses library module here; I recommend that you take a look at the Python
documentation to get more details. We will look at the basic concepts behind curses,
and see how it can be used to manage an ASCII screen display in an Xterm window.

Any Python program that uses curses must first initialize the curses library and in-
stantiate a curses window object to manage the entire display area. To end a curses
session and release control of the display screen, the endwin() function is called. This
is shown in the following example, which does nothing but start up curses and then
shut it down again:

import curses
stdscr = curses.initscr()

curses statements go here

curses.endwin()

In curses the primary logical object is the window, and the various windows in a display
are arranged as a hierarchy, with the first window (stdscr, the entire display area) as
the parent. Figure 13-5 is a pseudo-3D illustration of this arrangement.

Writing a curses-based application is basically a matter of defining the windows to be
used, implementing whatever dynamic control they may need (drop-down menus need
to appear at the appropriate places, the cursor may need to respond to the Tab key,
and so on), and then populating them with the necessary text and data input fields.
Internally, curses keeps track of where things are relative to each window, such as
cursor position. Sounds simple enough, so let’s try it out.

516 | Chapter 13: User Interfaces

A simple data display using curses

First off, let’s translate the console6.py example into curses. This will allow us to see
how the basic ANSI control sequences we’ve already used fit into the curses scheme
of things. Note that although the output will look the same, it will no longer work with
MS Windows, for the reasons already stated.

curses functions and methods come in two forms: module-level functions that pertain
to the behavior of the entire curses module, and window-specific methods that operate
on a window object. We don’t need all of the functionality from curses for this project,
only a subset. Table 13-4 lists the definitions for the curses library functions we’ll be
using initially, and Table 13-5 defines the window object methods we’ll need. Square
brackets indicate optional parameters.

Table 13-4. Selected curses library functions

Function Description

cbreak() Enables cbreak mode. In this mode normal line buffering is disabled, and input characters may
be read one by one from the input. Special key characters, such as Control-C, will still have the
expected effect.

nocbreak() Exits from cbreak mode and returns to the normal buffered input mode of operation.

echo() Enables echo mode, wherein each character input is echoed to the display as the user enters it.

noecho() Disables echo mode, so characters entered by the user are not echoed to the display.

initscr() Initializes the curses module. The object returned (a WindowObject) represents the whole
display screen. This is the top-level window.

endwin() Shuts down curses and returns the terminal to its normal state.

curs_set(visibility) Controls the visibility of the cursor. The visibility parameter can be one of 0, 1, or 2, with
the effect being invisible, noticeable, or very visible, respectively. Exactly what “very visible”
means depends on the terminal (or terminal emulator) in use.

ungetch(ch) Pushes ch back into the input stream so that the next call to getch() will return it.

Figure 13-5. curses window hierarchy

Text-Based Interfaces | 517

Table 13-5. Selected curses window methods

Method Description

win.addstr([y, x],
str[, attr])

Writes str at [y, x], if specified, or at the current cursor location if not. Uses display
attributes attr, if given. Any existing characters on the screen are overwritten.

win.clrtoeol() Erases all characters from the current cursor location to the end of the line.

win.erase() Clears the entire window.

win.getch([y, x]) Gets a character from the terminal with the cursor positioned at [y, x], if specified. The
return value does not have to be a valid ASCII character, but could be some value > 255 for
function keys and such. In no-delay mode (nonblocking, set by the nodelay() method),
a value of −1 is returned if there is no input available; otherwise getch() will block and
wait until a key is pressed. Suspect the return of being an integer until proven otherwise.

win.getstr([y, x]) Reads and returns a string from the user with the cursor initially positioned at [y, x], if
specified. Provides limited line-editing capability.

win.move(new_y, new_x) Moves the cursor to position (new_y, new_x) in the window.

win.nodelay(yes) Controls the blocking behavior of getch(). If yes is 1, getch() will be a nonblocking call.

win.subwin([nlines,
ncols], begin_y,
begin_x)

Returns a subwindow object. The upper-left corner is defined by (begin_y, begin_x),
and the width and height are defined by ncols and nlines, respectively. If ncols and
nlines are omitted, the new window will extend to the lower-right corner of the display
area.

It’s interesting to observe that ANSITerm actually provides more low-level functionality
than curses. In other words, the curses library encapsulates many of the low-level ANSI
control sequences in its methods, whereas ANSITerm exposes them. This shouldn’t be
too surprising, since ANSITerm is really nothing more than a fancy wrapper around the
ANSI sequences and does not provide any support for window management or other
high-level functions.

The first example, curses1.py, doesn’t do anything fancy. It just creates a continuously
updated display like the one that console6.py generates:

#!/usr/bin/python
curses1.py
#
Demonstrates the use of Python's curses module.
#
Translated from the console6.py example.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import random
import time
import datetime
import curses
import traceback

data_vals = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

518 | Chapter 13: User Interfaces

currdate = ""
currtime = ""
updt_cnt1 = 0
updt_cnt2 = 0

ran = random.random

def getDate():
 global currdate

 t = datetime.datetime.now()
 currdatetime = t.timetuple()
 yr = str(currdatetime[0])
 currdate = "%02d"%int(yr[2:]) + "%02d"%currdatetime[1] +\
 "%02d"%currdatetime[2]

def getTime():
 global currtime

 t = datetime.datetime.now()
 currdatetime = t.timetuple()
 currtime = "%02d:"%currdatetime[3] + "%02d:"%currdatetime[4] +\
 "%02d"%currdatetime[5]

write data and time to display
def writeDateTime(win):
 getDate()
 getTime()

 win.move(2,15)
 win.clrtoeol()
 win.addstr("%s" % currdate)
 win.move(3,15)
 win.clrtoeol()
 win.addstr("%s" % currtime)
 win.refresh()

get simulated data input values
def getDataVals():
 global data_vals, updt_cnt1, updt_cnt2

 data_vals[0] = ran() * 10.0
 data_vals[1] = ran() * 10.0

 if updt_cnt1 >= 4:
 for i in range(2,5):
 data_vals[i] = ran() * 10.0
 updt_cnt1 = 0
 else:
 updt_cnt1 += 1

 if updt_cnt2 >= 10:
 for i in range(4,8):
 data_vals[i] = ran() * 10.0
 updt_cnt2 = 0

Text-Based Interfaces | 519

 else:
 updt_cnt2 += 1

write channel data values
def writeDataVals(win):
 idx = 0
 for i in range(6,14):
 win.move(i,10)
 win.clrtoeol()
 win.addstr("%6.2f" % data_vals[idx])
 idx += 1

 win.refresh()
 # put cursor below display text when update is done
 win.move(16,1)

generate the main display
def mainScreen(win):
 win.erase()

 win.move(1,1)
 win.addstr("Input Data Monitor")
 win.refresh()

 win.move(2,1)
 win.addstr("Current Date:")
 win.move(3,1)
 win.addstr("Current Time:")
 win.refresh()

 writeDateTime(win)

 win.move(5,1)
 win.addstr("Chan Last Value")
 win.refresh()

 rownum = 1
 for row in range(6,14):
 win.move(row, 1)
 win.addstr(" %d" % rownum)
 rownum += 1
 win.refresh()

 writeDataVals(win)

 win.move(15,1)
 win.addstr("Enter X to exit.")
 win.refresh()

def mainloop(win):
 win.nodelay(1) # disable getch() blocking
 # draw the main display template
 mainScreen(win)

 # run until the user wants to quit

520 | Chapter 13: User Interfaces

 while 1:
 # check for keyboard input
 inch = win.getch()
 # getch() will return −1 if no character is available
 if inch != −1:
 # see if inch is really the exit character
 instr = hr(inch)
 if instr.upper() == 'X':
 break
 writeDateTime(win)
 getDataVals()
 writeDataVals(win)
 time.sleep(0.2)

def startup():
 # Borrowed the idea of using a try-except wrapper around the
 # initialization from David Mertz
 try:
 # Initialize curses
 stdscr = curses.initscr()

 # Turn off echoing of keys and enter cbreak mode,
 # where no buffering is performed on keyboard input
 curses.noecho()
 curses.cbreak()

 mainloop(stdscr) # Enter the main loop

 # Set everything back to normal
 curses.echo()
 curses.nocbreak()

 curses.endwin() # Terminate curses
 except:
 # In event of error, restore terminal to sane state
 curses.echo()
 curses.nocbreak()
 curses.endwin()
 traceback.print_exc() # Print the exception

if __name__=='__main__':
 startup()

In curses the screen coordinates are specified in (y, x) order—i.e., (row, column)—
which is also how the ANSITerm class does it. After the main window object (stdscr) is
created, the calls to the curses functions noecho() and cbreak() disable local echo and
input buffering. Finally, notice that mainloop() is called with stdscr as its sole param-
eter. All subsequent window methods used are methods of this object.

Because of the way that curses manages window objects internally, it won’t automat-
ically send output to the screen; you have to tell it when to update the display. Part of
the reason for this lies in how a complex curses-driven display might be used. Rather
than have individual lines flickering on the screen as data is updated, the refresh()

Text-Based Interfaces | 521

method can be used to update the display so that changes occur over a set of display
items, or individual windows, and all at once. The other part of the reason for using
refresh() (and the other related methods) is that when a method like addstr() is called
it changes the data in the internal representation of the display for a particular window,
but it doesn’t automatically pass that change to the display. You have to tell it when to
do so.

Adding a subwindow

Let’s assume that you want to have a subwindow that pops up in response to some user
input. The first step is to define the window. In curses2.py I’ve encapsulated the sub-
window object in its own function, openSubWindow(), which resides in the code just
prior to mainloop():

def openSubWindow(win):
 # create a subwindow and keep it open until user presses the X
 # key
 subwin = win.subwin(10, 30, 10, 10)
 subwin.nodelay(1) # disable getch() blocking
 subwin.erase()
 subwin.bkgdset(' ')
 subwin.refresh()
 subwin.addstr(3, 0, "Enter X to exit subwindow")
 subwin.refresh()
 while 1:
 inch = subwin.getch()
 if inch != −1:
 instr = chr(inch)
 if instr.upper() == 'X':
 break
 time.sleep(0.2)

This new function is called from within the mainloop() function by adding a W command
to the input command set, like so:

def mainloop(win):
 win.nodelay(1) # disable getch() blocking
 # draw the main display template
 mainScreen(win)

 # run until the user wants to quit
 while 1:
 # check for keyboard input
 inch = win.getch()
 # getch() will return −1 if no character is available
 if inch != −1:
 # see if inch is really the exit character
 instr = chr(inch)
 if instr.upper() == 'X':
 break
 if instr.upper() == 'W':
 openSubWindow(win)
 # simple way to restore underlying main screen

522 | Chapter 13: User Interfaces

 mainScreen(win)
 writeDateTime(win)
 getDataVals()
 writeDataVals(win)
 time.sleep(0.2)

When the user presses the w (or W) key, he will see a clear 10×30-character region of the
display appear with the single line “Enter X to exit subwindow.” When the subwindow
function exits, the mainloop() function redraws the display to cover up the hole left by
the subwindow.

There are, of course, more elegant ways to handle creating and deleting subwindows,
but I chose this approach to keep things simple. The curses2.py example also does not
do things like draw a border around the subwindow or fill in the background with a
solid shade or color. How these features and others in the curses library will behave is
largely dependent on how the display handles ANSI command sequences, which in
turn depends on the system’s terminfo definitions. If you plan to use curses for your
applications, I would encourage you to spend some time with Python’s curses module
and the terminfo manpage. Also, be sure to check out the section “Suggested Read-
ing” on page 544.

To Curse or Not to Curse, Is That the Question?
If you don’t need the advanced functionality found in curses, and you want your ap-
plication to be portable without resorting to a full-on GUI, you may want to consider
just using something like SimpleANSI and be done with it. Most instrumentation appli-
cations don’t really need a lot of fancy screen controls anyway, and we’ve already seen
how to create data display screens with real-time update capabilities.

However, that being said, curses offers some capabilities that one would be hard-
pressed to duplicate with a simple ANSI control library, at least not without some
serious coding. Since curses is already written, and very mature, it makes more sense
to use that if you need subwindows, menus, mouse control, and dialogs in your appli-
cation, and you don’t need it to run on Windows.

While curses is not a cross-platform solution, it is a cross-display interface. Any system
with the ability to display ASCII characters and interpret ANSI control sequences can
probably handle a curses-driven display. This includes terminal emulators running
under Windows with VT100 emulation capability, Xterm windows on Linux systems,
and yes, even a dumb terminal like a VT100 (if you happen to have one handy, that is).
In an instrumentation system, using an ANSI/ASCII terminal or terminal emulator
connected to a remote host system via a serial port or network connection is not as daft
as it might sound at first. Servers in large installations often use curses for system status
display and control interfaces, allowing the operator access to the OS even when no
main console (and hence, no GUI) is available.

Text-Based Interfaces | 523

In an instrumentation system you may want to be able to monitor or control a remote
system using a simple communications protocol over a thin cable, rather than trying
to snake a hefty cable bundle between the controller PC and the various sensors and
actuators. Or it just might not be feasible to be co-located with the host machine, for
whatever reasons (explosion hazard, noise, radiation, heat, and cryogenic conditions
are a few that spring to mind). The ANSI control sequences offer a quick and relatively
easy way to get a readable, and perhaps even elegant, control and data display up and
running quickly.

(My apologies to W. Shakespeare.)

Graphical User Interfaces
All modern general-purpose operating systems incorporate some type of graphical user
interface (GUI) into their design. Only those operating systems intended for deeply
embedded applications don’t come with some kind of GUI, since they don’t need one
anyway (they usually don’t have any kind of user interface display, actually).

The GUI is a layer of functionality on top of the core operating system, and in some
cases it may even be optional. In a Unix or Linux system, the GUI is started after the
operating system loads as a discrete step in the boot sequence, and a Linux system will
run just fine without the GUI. In other cases, such as with Windows, the GUI is tightly
integrated into the OS, and while still technically a layer of functionality, it is not de-
signed to be easily disabled.

In this section we’ll see how to use a GUI with Python. I won’t go into detailed code
examples, mainly because anything beyond a simple “Hello World” GUI can get rather
involved. What we will do is look at where the whole GUI concept originated, and why
you might want to use one, rather than simple command-line or ANSI solutions like
the ones we’re already seen in this chapter. We will wrap up with a look at some simple
data display GUIs to give you a sense of what is involved in creating a GUI.

Some GUI Background and Concepts
Before undertaking a quick survey of a couple of GUI toolkits for Python, I’d like to
take a look at the history of the GUI as we know it today. Many people still believe that
Apple invented the GUI, but this is not true. The first really usable GUI was invented
at Xerox’s Palo Alto Research Center (PARC) in the early 1970s and ran on Xerox’s
Alto computer system. Steve Jobs saw it during a tour of the PARC facility in 1979 and
the Apple Lisa, and later the Mac, came into existence shortly thereafter. When Mi-
crosoft got wind of what Apple was up to, the decision was made to embark on the
development of Windows, which would eventually render the DOS command line
obsolete. The X Window System, found initially on Unix systems and later on Linux,
was another response to the push to create a graphical interface experience for the user.

524 | Chapter 13: User Interfaces

Xerox itself was unable to get an affordable system to market in time to capitalize on
its own invention.

There are multiple levels of abstraction in a modern computer system’s graphical in-
terface. The GUI is responsible for managing the placement of application-driven win-
dows on the primary display device, keeping track of the so-called z-order (how the
windows overlap and stack on top of one another), and making sure that windows get
update notices when they need to redraw portions of their display area. Each applica-
tion window has its own mechanisms for handling user input, data output, and redraw
or refresh activities. In some types of window displays, such as the multiple document
interface (MDI), the application’s window is a “parent” window that may contain one
or more “child” windows, each of which might have a menu bar, buttons, dialogs,
image displays, and other components (known as widgets). Each level has its own set
of display-management functions and can communicate with other windows within
the context of the parent window, or the overall top-level system GUI.

A graphical user interface is not only prettier than a command-line or text-based in-
terface, it can also be more intuitive and easier to comprehend. However, as you may
have gathered from the previous paragraph, this ease of use does not come without a
price.

A GUI is much more complicated than a functionally equivalent text-based interface.
A GUI is also more than just an added bit of functionality for an application—in most
cases it is the application. In other words, if you want to add an ASCII text–type in-
terface to a program, it’s basically just a matter of using ANSI terminal control sequen-
ces to manipulate a display using conventional I/O calls. There’s nothing really special
about it. In a GUI, the window manager not only handles the management of the
graphical components in the display, but also encapsulates the functionality of the
application within its framework. If you want to have “outboard” functionality with a
GUI, you will need to start thinking about external processes, named pipes, sockets,
and other forms of interprocess communication (IPC) to implement your scheme. Life
with a GUI can get very complicated very fast.

So, why would you want to use a GUI? The two main reasons are fidelity and func-
tionality. With a GUI, you can display data much more accurately than you can with
an ASCII display. Graphs are a good example of this. A GUI is also capable of displaying
images and allowing the user to interact with the images as control inputs. Many high-
end industrial control systems use interfaces like this, where a diagram of a plant’s
process components are displayed with real-time data and the user can select a com-
ponent and change its operating parameters by clicking on its image in the diagram.

With a GUI you can also present a 3D graph, or even a solid model that the user can
rotate to view it from different angles, pan around, and zoom in or out, with the display
continuously updated. Some laser interferometer systems use displays like this to show
the minute features on an optical surface while continuously acquiring new
measurements.

Graphical User Interfaces | 525

While these are all very impressive features, I’m going to stick to GUI displays that are
easy to implement. If you have the desire to learn more, see the section“Suggested
Reading” on page 544. You can also get the source code for some of the GUI appli-
cations you like (if they’re open source, that is) and see how they are implemented.

Using a GUI with Python
In this section I will present two common GUI toolkits for Python: TkInter and
wxPython. Although the end result of both is essentially the same, the basic differences
between how the toolkits are used and what can be done with them are things you
should be aware of when deciding on which one to use. We’ll also look at some of the
tools available to help with display design and layout.

Before moving on, we need some terminology. But first, I’d like to point out that many
of these terms are used interchangeably, sometimes incorrectly so. I will try to be con-
sistent in this chapter and hopefully reduce the potential for confusion.

There are basically two types of objects in a GUI: containers and controls. A container
is used to group other containers and controls and to maintain the functional relation-
ships between the GUI objects within it. Containers include windows, frames, dialogs,
and modal windows. A distinguishing characteristic of a window-like object is that it
can exist on its own as the top-level object in a hierarchy of display objects.

Controls are those GUI objects that provide an interaction point for a user. They are
also known as “widgets,” which is how we’ll refer to them. A widget might be a button,
a scroll bar, or a canvas for drawing. The term can also refer to a text entry field or a
complex, composite object composed of other, simpler widgets. In some toolkits there
are also special container widgets that aren’t really windows, but can be used to logically
group a set of functionally related widgets. The panel widget is one such object. Mem-
bers of the set of objects called controls exist in the context of a window object.

Naturally, there are exceptions and special cases, and things aren’t always so neatly
and clearly delineated. For example, some window objects, such as frames, can be both
a top-level object and a subordinate to another window. In other cases, a widget might
be able to act as a container, even though it cannot stand alone without a parent win-
dow. It might help to keep in mind that GUI components in Python are objects in the
true sense of the word, and it is possible, and quite common, to create new objects by
inheriting from existing class definitions. Once you get a sense of how a GUI works
and what goes into making one, the gray areas will tend to become less bothersome.

In the meantime, you can generally assume that a window object is where widgets and
other windows are located, and that windows don’t have control inputs unless they
also have widgets.

There are basically three ways to look at a GUI: as OO-based software with child classes
derived from parent class definitions, as a structure of hierarchically organized objects
sharing a display space but not necessarily related to one another in an OO inheritance

526 | Chapter 13: User Interfaces

sense, and functionally as an event-driven software application. We’ll start with the
OO view.

GUI objects

In toolkits that employ an object-oriented approach, each window or widget is defined
as a class, and each class provides a set of methods and attributes. wxPython is one of
these, and the underlying wxWidgets is very much an OO design. Initially the Tk toolkit
wasn’t a true OO implementation (tcl isn’t an OO language), but with TkInter it too
has acquired the trappings of classes, objects, and methods. Taking an OO approach
also means that you can create a new widget class by inheriting from an existing one,
and perhaps override existing methods or add some new ones.

In most cases a widget will be subclassed from a window or widget that itself is derived
from a parent class. Thus, a frame object could be subclassed from a window object,
and a button widget object might be subclassed from a control object (see Figure 13-6).

Figure 13-6. GUI object inheritances

Not all GUI implementations follow this particular scheme, which in this case is based
on wxPython, but the main distinctions between a window object and a control object
will generally apply to both of the toolkits we will be using in this section.

Basic GUI display structure

Structurally, a GUI is typically organized as a hierarchy of graphical components. There
is a parent, or base object, which is typically a frame of some type (see Figure 13-6).
This object is used as the anchor or parent for subsequent GUI objects, which them-
selves may be parents, and so on, as shown in Figure 13-7. This is not an inheritance
situation, but rather a hierarchy of functional relationships.

Graphical User Interfaces | 527

In the tree diagram shown in Figure 13-7, each child has one parent and some number
of children (possibly zero) itself. When widgets are bound to a window object like a
frame, they can be managed as a group by the parent object.

GUI functionality

Functionally, a GUI is based on a stimulus and response paradigm. A stimulus is re-
ferred to as an event, and events may come from a user, from an internal process, or
from the world outside of the software. When a user inputs a command, perhaps using
a mouse to click on a button or pressing a key, an event is generated and the GUI
responds in some fashion. While waiting for a command a GUI might be receiving
external events and updating data displays, or even generating internal events via timers
or other methods. This is what is known as event-driven programming, and it is the
prevailing model used in modern GUIs.

Events are processed by event handlers assigned to event sources. This assignment is
called binding, and an event handler is said to be bound to a particular event. An event
handler may be self-contained, or it may call other functions or methods to perform

Figure 13-7. GUI object hierarchy

528 | Chapter 13: User Interfaces

some specific processing. Some event handlers are built into the GUI framework. These
include notifications of changes to the display, such as when the user moves one win-
dow on top of another, or when all open windows are closed at once.

But for the most part, the events that we will be concerned with are those that are
generated by the various widgets in a Python GUI. Each button, text field, slider bar,
and so on, must have an event handler associated with it. In TkInter these are often
referred to as “callbacks” and in wxPython they are known as “event handlers,” but
the net effect is the same.

Because a GUI is event-driven, the display may suspend until an event of some sort is
received. Consider a situation where we might want a GUI to display data from an
instrument every second or so. Unless there is some way to generate an event that will
call the function to query the instrument for new data and then update the display, the
display will sit idle until the user clicks on an “Update” button to specifically request
new data. This may sound obvious, but many neophyte GUI programmers have been
seen sitting and staring at their pretty creations, wondering how to avoid having to
repeatedly click a button to see things change. The solution is to use some kind of
internal timer that can generate an event to obtain new data from an external source
such as an instrument.

wxPython includes timer functions as part of its design, and these are relatively straight-
forward to use. TkInter uses a different approach wherein a widget itself generates an
event and invokes a callback after some amount of time has elapsed. This isn’t quite as
intuitive, but it works fine when used appropriately.

The GUI main loop

In a GUI the execution is driven by a main loop, as shown in Figure 13-8, which is
similar to what we saw in the ANSI text-based interfaces earlier. The main loop is
responsible for starting the interface, handling events and messages, and then shutting
it all down when it’s time to leave, among other things.

The mainloop() method is a fundamental and necessary part of both TkInter and
wxPython GUI applications. How these two toolkits implement the main loop differs
in the details, but the net effect is the same. Once the main loop starts it will not return
until the GUI shuts down and exits.

TkInter
Python comes with the TkInter GUI toolkit as part of the standard distribution. TkInter
refers to the Tk part of the tcl/Tk language (tcl and Tk are usually referred to as one
thing). The Tk widget set is relatively easy to use, and it’s very mature, having been
around now for the better part of 20 years.

Graphical User Interfaces | 529

Planning your GUI

Before embarking on a GUI project, one of the first steps is to decide what the interface
will look like. Implementing a GUI involves making decisions about things such as
what widgets to use, how the positioning of the widgets will be managed, the required
functionality (what will happen when the user interacts with a widget), and the use of
internal event generators, if necessary. Any GUI with even a modest amount of com-
plexity isn’t something one can just throw together and expect to work right off the
bat. It pays to take the time to think it through before starting.

When planning a GUI layout, I like to create a drawing of what I think the GUI will
look like and then use that as a template to work from. You may have a different tech-
nique, but at the very least just jotting down your GUI layout ideas on a piece of paper
can be invaluable when you start to actually define the widgets and write the code.

Geometry management

TkInter provides three forms of widget placement control, also known as geometry
management. These are the pack, grid, and place techniques. Of these, the pack method
is the simplest and probably the most commonly used. With pack, widgets are added
from the outside edges of the window toward the center, in effect packing them as close
toward the center of the window space as possible.

When a widget is packed, it will be positioned on the screen so that it is packed next
to either a window border or another widget, with additional widgets set next to it, and
so on. The pack geometry manager will attempt to arrange the widgets so as to occupy
the smallest amount of space in a window. The biggest drawback with pack is that it
doesn’t give you a lot of direct control over where the widgets will end up, although

Figure 13-8. GUI main loop

530 | Chapter 13: User Interfaces

you can push them around by inserting “padding widgets” (i.e., empty panels and
such). If the top-level frame is resized, things can sometimes get scrambled.

The place geometry manager uses absolute x and y pixel coordinates to place widgets
in a window. With place you can create some very attractive GUIs, but you really need
a layout tool to help with the placement unless your window is small and simple.

The placement method I prefer for a TkInter GUI is the grid method. The grid geometry
manager organizes the base window by overlaying a placement grid. The width and
height of each column and row are determined by the sizes of the widgets themselves.

Simple TkInter example

The following is the source code for a simple TkInter GUI, tkdemo1.py. It uses the grid
geometry manager to place six widgets in two columns:

#!/usr/bin/python
tkdemo1.py
#
Demonstration of TkInter and the grid placement method.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

from Tkinter import *

class demoGUI(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.grid(sticky=W)
 self.createWidgets()

 def createWidgets(self):
 # get top-level frame reference
 top=self.winfo_toplevel()
 # set the start location in the window manager
 top.wm_geometry('+50+100')

 # set the window title
 self.master.title("Demo 1")

 # configure the global grid behavior
 self.master.rowconfigure(0, weight = 1)
 self.master.columnconfigure(0, weight = 1)
 self.grid(sticky = W+E+N+S)

 # create string objects for use with label widgets
 self.var1 = StringVar()
 self.var1.set("")
 self.var2 = StringVar()
 self.var2.set("")

 # output state toggle flags
 self.toggle1 = 0

Graphical User Interfaces | 531

 self.toggle2 = 0

 # create three buttons and three label widgets, one of which
 # is a dummy placeholder (for now)

 # bind buttons 1 and 2 to event handlers

 # the two active label widgets will display green text on a
 # black background

 self.button1 = Button(self, text="Button 1", width=10)
 self.button1.grid(row=0, column=0)
 self.button1.bind("<Button-1>", self.button1_Click)

 self.text1 = Label(self, text="", width=10, relief=SUNKEN,
 bg="black", fg="green",
 textvariable=self.var1)
 self.text1.grid(row=0, column=10)

 self.button2 = Button(self, text="Button 2", width=10)
 self.button2.grid(row=1, column=0)
 self.button2.bind("<Button-1>", self.button2_Click)

 self.text2 = Label(self, text="", width=10, relief=SUNKEN,
 bg="black", fg="green",
 textvariable=self.var2)
 self.text2.grid(row=1, column=10)

 self.button3 = Button(self, text="Quit", width=10,
 command=self.quit)
 self.button3.grid(row=2, column=0)

 # dummy space filler
 # you could modify this to display something
 self.text3 = Label(self, text="", width=10)
 self.text3.grid(row=2, column=10)

 def button1_Click(self, event):
 if self.toggle1 == 0:
 self.var1.set("0000")
 self.toggle1 = 1
 else:
 self.var1.set("1111")
 self.toggle1 = 0

 print "Button 1"

 def button2_Click(self, event):
 if self.toggle2 == 0:
 self.var2.set("0000")
 self.toggle2 = 1
 else:
 self.var2.set("1111")
 self.toggle2 = 0

532 | Chapter 13: User Interfaces

 print "Button 2"

app = demoGUI()
app.mainloop()

On a Windows system the tkdemo1.py example will create a simple dialog like the one
shown in Figure 13-9. It looks much the same on a Linux machine, except for the
stylistic differences between the window managers.

Figure 13-9. TkInter GUI example

In the following example, tkdemo2.py, I elected to use the label widgets for text output
once again, mainly because it’s easy. To be honest, Tk’s Text widget is something of a
pain to use, so I tend to avoid it. Here’s the source code for tkdemo2.py:

#!/usr/bin/python
tkdemo2.py
#
2nd Demonstration of TkInter and the grid placement method.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.
from Tkinter import *
import time

class demoGUI(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.createWidgets()

 def createWidgets(self):
 # get top-level frame reference
 top=self.winfo_toplevel()
 # set the start location in the window manager
 top.wm_geometry('+50+100')

 # set the window title
 self.master.title("Demo 2")

 # create string objects for use with label widgets
 self.var1 = StringVar()
 self.var1.set("")
 self.var2 = StringVar()
 self.var2.set("")

 self.master.rowconfigure(0, weight = 1)

Graphical User Interfaces | 533

 self.master.columnconfigure(0, weight = 1)
 self.grid(sticky = W+E+N+S)

 self.text1 = Label(self, text="", width = 15, height = 4,
 relief=RAISED, bg="white", fg="black",
 textvariable=self.var1)
 self.text1.grid(rowspan = 2, sticky = W+E+N+S)

 self.button1 = Button(self, text = "RUN", width = 10, height = 2)
 self.button1.grid(row = 0, column = 1, sticky = W+E+N+S)
 self.button1.bind("<Button-1>", self.button1_Click)

 self.button2 = Button(self, text = "STOP", width = 10, height = 2)
 self.button2.grid(row = 0, column = 2, sticky = W+E+N+S)
 self.button2.bind("<Button-1>", self.button2_Click)

 self.button3 = Button(self, text = "Test", width = 10, height = 2)
 self.button3.grid(row = 1, column = 1,sticky = W+E+N+S)
 self.button3.bind("<Button-1>", self.button3_Click)

 self.button4 = Button(self, text = "Reset", width = 10, height = 2)
 self.button4.grid(row = 1, column = 2, sticky = W+E+N+S)
 self.button4.bind("<Button-1>", self.button4_Click)

 self.entry = Entry(self, relief=RAISED)
 self.entry.grid(row = 2, columnspan = 2, sticky = W+E+N+S)
 self.entry.insert(INSERT, "Command")

 self.text2 = Label(self, text="Stopped", width = 2, height = 2,
 relief=RAISED, bg="white", fg="black",
 textvariable=self.var2)
 self.text2.grid(row = 2, column = 2, sticky = W+E+N+S)

 self.rowconfigure(1, weight = 1)
 self.columnconfigure(1, weight = 1)

 def button1_Click(self, event):
 self.var1.set("")
 self.var2.set("Running")

 def button2_Click(self, event):
 self.var1.set("")
 self.var2.set("Stopped")

 def button3_Click(self, event):
 time.sleep(1)
 self.var1.set("Test OK")
 self.var2.set("Stopped")

 def button4_Click(self, event):
 time.sleep(1)
 self.var1.set("Reset OK")
 self.var2.set("Stopped")

534 | Chapter 13: User Interfaces

app = demoGUI()
app.mainloop()

The output of tkdemo2.py is shown in Figure 13-10.

Figure 13-10. tkdemo2 example GUI

There are a few things to note in tkdemo2.py. The first is how the grid geometry manager
is used to organize widgets of different sizes. The second is how the buttons have an
effect on more than just one label widget. Finally, you might have noticed that when
either the Test or the Reset button is clicked, the GUI freezes briefly. This is due to the
time.sleep(1) call in the event handlers for these buttons. It also shows why a GUI
should only spend as much time servicing an input event as necessary, and no more.

Tools and resources for TkInter

There are several good layout tools available for TkInter. Google is, of course, one place
to start looking. SourceForge (http://www.sourceforge.net) is another. Since I tend to
build TkInter GUIs by hand, I don’t currently have a personal favorite. Nevertheless,
here are some links to a couple of TkInter GUI construction tools that you may find
useful:

PAGE (http://page.sourceforge.net)
The PAGE tool is intended to be used to create single windows; it is not a full
application construction tool. It’s a solid tool that can help alleviate a lot of the
tedium of creating complex windows with multiple widgets. Be sure to read the
introductory documentation so that you fully understand the intent and limitations
of PAGE.

SpecTcl (http://spectcl.sourceforge.net)
This hasn’t been updated in a while, and it may have a few quirks, but the last time
I worked with it I liked it. If you’re feeling brave, it may be worth a look.

For learning and reference resources for TkInter, be sure to check the section “Sugges-
ted Reading” on page 544.

wxPython
wxPython is the new kid on the Python GUI block, but its underlying library has been
around for a while. It is actually a wrapper around the wxWidgets toolkit, which is

Graphical User Interfaces | 535

http://www.sourceforge.net
http://page.sourceforge.net
http://spectcl.sourceforge.net

written in C++. One of the primary objectives of wxWidgets is achieving portability
while maintaining the look and feel of the host operating system.

Whereas with TkInter I tend to just build a simple GUI by hand using the grid geometry
manager, with wxPython I prefer to use a tool and specify exact widget locations using
pixel coordinates. For this I use the Boa Constructor wxPython GUI builder, which
also incorporates a decent debugger and a serviceable text editor. You can download
Boa from http://boa-constructor.sourceforge.net.

wxPython has some very useful capabilities, such as timed event generators, the ability
to subclass GUI objects and create complex functionality, thread-safe operation, and
the ability to easily integrate with other libraries, such as NumPy and PIL (the Python
Imaging Library). Granted, TkInter can do many of these things as well, and it has the
excellent canvas widget, so I’m not advocating one over the other. But, as with anything
else, some things may be easier to accomplish in one venue than in another. It all comes
down to picking the right tool for the job at hand.

Designing a wxPython GUI

As I stated earlier for TkInter, it’s a good idea to have a plan for your GUI. Although a
visual tool like Boa makes it easy to try out different widget arrangements, it’s also easy
to get lost in the details. Keep it simple.

Once you’ve decided on the general appearance of your GUI, the next step is to start
up Boa (assuming that you have already installed it, of course). After it initializes you’ll
see three windows, as shown in Figure 13-11.

Building a simple wxPython GUI

Boa has the ability to assist with the creation of the entire GUI, from a top-level
wx.app object through to the various frames and dialogs it might need. However, it’s
still up to you to assemble it all into a working application. What we’ll look at here is
a simple single-frame dialog-type GUI similar to what we’ve already built using TkInter.

This GUI will have some data display fields, some buttons, and some bitmap status
indicators. It’s actually a GUI variation on what we saw earlier in this chapter with the
ANSI data displays.

With Boa running and ready, the first step is to create a new design. In the top window,
select the “New” tab (it should already be selected). Then select the sixth button,
wx.frame. The main window should now contain some Python code. This is the skeleton
on which we’ll build our application.

Now comes the fun part. Select the icon with the blue arrow in a box in the toolbar just
above the code editor display. You should now see a new window that looks like the
one shown in Figure 13-12.

536 | Chapter 13: User Interfaces

http://boa-constructor.sourceforge.net

Figure 13-11. Boa Constructor user interface

Figure 13-12. Boa’s widget layout window

Graphical User Interfaces | 537

I’m going to fast-forward things here, because I want to show you what you can do
with Boa, but I don’t want to go through a step-by-step tutorial (that would require a
book of its own!). Instead, what I’ve done is select various widgets from the toolbar in
the uppermost window, and then dropped them onto the layout area. I’ve also edited
various data items using the panels in the leftmost window. These allow you to do
things like set the frame title, change fonts and colors, define sizes, and set the various
static text strings used for buttons and static text widgets.

Figure 13-13 shows the end result after a few minutes’ worth of work.

Figure 13-13. Finished layout

To create this frame I first lightened the background color, and then placed the various
widgets. I then assigned appropriate names and generated the event handler skeletons
for the six buttons. In case you’re curious, the four buttons with the diagonal lines are
bitmap buttons. In other words, a bitmap can be applied to them dynamically, which
I will do in the next step. When I click on the blue checkmark at the top of the editor
window Boa converts the design into code, which is shown here:

#Boa:Frame:Frame1

import wx
import wx.lib.buttons

def create(parent):
 return Frame1(parent)

[wxID_FRAME1, wxID_FRAME1BITMAPBUTTON1, wxID_FRAME1BITMAPBUTTON2,
 wxID_FRAME1BITMAPBUTTON3, wxID_FRAME1BITMAPBUTTON4, wxID_FRAME1EXITBUTTON,
 wxID_FRAME1STATICTEXT1, wxID_FRAME1STATICTEXT2, wxID_FRAME1STATICTEXT3,
 wxID_FRAME1STATICTEXT4, wxID_FRAME1STATICTEXT5, wxID_FRAME1TEXTCTRL1,
 wxID_FRAME1TEXTCTRL2, wxID_FRAME1TEXTCTRL3, wxID_FRAME1TEXTCTRL4,
 wxID_FRAME1UPDTBUTTON,
] = [wx.NewId() for _init_ctrls in range(16)]

538 | Chapter 13: User Interfaces

class Frame1(wx.Frame):
 def _init_ctrls(self, prnt):
 # generated method, don't edit
 wx.Frame.__init__(self, id=wxID_FRAME1, name='', parent=prnt,
 pos=wx.Point(331, 258), size=wx.Size(400, 250),
 style=wx.DEFAULT_FRAME_STYLE, title='wxPython Demo')
 self.SetClientSize(wx.Size(392, 223))
 self.SetBackgroundColour(wx.Colour(187, 187, 187))
 self.SetToolTipString('')

 self.staticText1 = wx.StaticText(id=wxID_FRAME1STATICTEXT1,
 label='Channel 1', name='staticText1', parent=self,
 pos=wx.Point(24, 64), size=wx.Size(61, 14), style=0)
 self.staticText1.SetFont(wx.Font(9, wx.SWISS, wx.NORMAL, wx.BOLD, False,
 'Tahoma'))

 self.staticText2 = wx.StaticText(id=wxID_FRAME1STATICTEXT2,
 label='Channel 2', name='staticText2', parent=self,
 pos=wx.Point(24, 96), size=wx.Size(61, 14), style=0)
 self.staticText2.SetFont(wx.Font(9, wx.SWISS, wx.NORMAL, wx.BOLD, False,
 'Tahoma'))

 self.staticText3 = wx.StaticText(id=wxID_FRAME1STATICTEXT3,
 label='Channel 3', name='staticText3', parent=self,
 pos=wx.Point(24, 128), size=wx.Size(61, 14), style=0)
 self.staticText3.SetFont(wx.Font(9, wx.SWISS, wx.NORMAL, wx.BOLD, False,
 'Tahoma'))

 self.staticText4 = wx.StaticText(id=wxID_FRAME1STATICTEXT4,
 label='Channel 4', name='staticText4', parent=self,
 pos=wx.Point(24, 160), size=wx.Size(61, 14), style=0)
 self.staticText4.SetFont(wx.Font(9, wx.SWISS, wx.NORMAL, wx.BOLD, False,
 'Tahoma'))

 self.textCtrl1 = wx.TextCtrl(id=wxID_FRAME1TEXTCTRL1, name='textCtrl1',
 parent=self, pos=wx.Point(104, 56), size=wx.Size(100, 21),
 style=0, value='')
 self.textCtrl1.SetEditable(False)
 self.textCtrl1.SetToolTipString('')

 self.textCtrl2 = wx.TextCtrl(id=wxID_FRAME1TEXTCTRL2, name='textCtrl2',
 parent=self, pos=wx.Point(104, 88), size=wx.Size(100, 21),
 style=0, value='')
 self.textCtrl2.SetEditable(False)
 self.textCtrl2.SetToolTipString('')

 self.textCtrl3 = wx.TextCtrl(id=wxID_FRAME1TEXTCTRL3, name='textCtrl3',
 parent=self, pos=wx.Point(104, 120), size=wx.Size(100, 21),
 style=0, value='')
 self.textCtrl3.SetEditable(False)
 self.textCtrl3.SetToolTipString('')

 self.textCtrl4 = wx.TextCtrl(id=wxID_FRAME1TEXTCTRL4, name='textCtrl4',
 parent=self, pos=wx.Point(104, 152), size=wx.Size(100, 21),
 style=0, value='')

Graphical User Interfaces | 539

 self.textCtrl4.SetEditable(False)
 self.textCtrl4.SetToolTipString('')

 self.bitmapButton1 = wx.BitmapButton(bitmap=wx.NullBitmap,
 id=wxID_FRAME1BITMAPBUTTON1, name='bitmapButton1', parent=self,
 pos=wx.Point(224, 56), size=wx.Size(24, 24),
 style=wx.BU_AUTODRAW)
 self.bitmapButton1.SetToolTipString('')
 self.bitmapButton1.Bind(wx.EVT_BUTTON, self.OnBitmapButton1Button,
 id=wxID_FRAME1BITMAPBUTTON1)

 self.bitmapButton2 = wx.BitmapButton(bitmap=wx.NullBitmap,
 id=wxID_FRAME1BITMAPBUTTON2, name='bitmapButton2', parent=self,
 pos=wx.Point(224, 88), size=wx.Size(24, 24),
 style=wx.BU_AUTODRAW)
 self.bitmapButton2.SetToolTipString('')
 self.bitmapButton2.Bind(wx.EVT_BUTTON, self.OnBitmapButton2Button,
 id=wxID_FRAME1BITMAPBUTTON2)

 self.bitmapButton3 = wx.BitmapButton(bitmap=wx.NullBitmap,
 id=wxID_FRAME1BITMAPBUTTON3, name='bitmapButton3', parent=self,
 pos=wx.Point(224, 120), size=wx.Size(24, 24),
 style=wx.BU_AUTODRAW)
 self.bitmapButton3.SetToolTipString('')
 self.bitmapButton3.Bind(wx.EVT_BUTTON, self.OnBitmapButton3Button,
 id=wxID_FRAME1BITMAPBUTTON3)

 self.bitmapButton4 = wx.BitmapButton(bitmap=wx.NullBitmap,
 id=wxID_FRAME1BITMAPBUTTON4, name='bitmapButton4', parent=self,
 pos=wx.Point(224, 152), size=wx.Size(24, 24),
 style=wx.BU_AUTODRAW)
 self.bitmapButton4.SetToolTipString('')
 self.bitmapButton4.Bind(wx.EVT_BUTTON, self.OnBitmapButton4Button,
 id=wxID_FRAME1BITMAPBUTTON4)

 self.updtButton = wx.lib.buttons.GenButton(id=wxID_FRAME1UPDTBUTTON,
 label='Update', name='updtButton', parent=self, pos=wx.Point(304,
 56), size=wx.Size(76, 65), style=0)
 self.updtButton.SetToolTipString('Fetch fresh data')
 self.updtButton.Bind(wx.EVT_BUTTON, self.OnUpdtButtonButton,
 id=wxID_FRAME1UPDTBUTTON)

 self.exitButton = wx.lib.buttons.GenButton(id=wxID_FRAME1EXITBUTTON,
 label='Exit', name='exitButton', parent=self, pos=wx.Point(304,
 192), size=wx.Size(76, 25), style=0)
 self.exitButton.Bind(wx.EVT_BUTTON, self.OnExitButtonButton,
 id=wxID_FRAME1EXITBUTTON)

 self.staticText5 = wx.StaticText(id=wxID_FRAME1STATICTEXT5,
 label='Enable/Disable', name='staticText5', parent=self,
 pos=wx.Point(200, 32), size=wx.Size(70, 13), style=0)

 def __init__(self, parent):
 self._init_ctrls(parent)

540 | Chapter 13: User Interfaces

 def OnBitmapButton1Button(self, event):
 event.Skip()

 def OnBitmapButton2Button(self, event):
 event.Skip()

 def OnBitmapButton3Button(self, event):
 event.Skip()

 def OnBitmapButton4Button(self, event):
 event.Skip()

 def OnUpdtButtonButton(self, event):
 event.Skip()

 def OnExitButtonButton(self, event):
 event.Skip()

Even as just a skeleton, there is still of lot of code there. Fortunately, we won’t really
have to worry about anything above the __init__() method. What we’re interested in
now are the six button event handlers.

Since the Exit button doesn’t do anything yet, let’s add the code so it will actually exit:

 def OnExitButtonButton(self, event):
 self.Destroy()

If your application needs to do some housekeeping before shutting down, this is one
place to do it. In our code we’ll simply call the Destroy() method and drop it on the
floor.

Next up are the four Enable/Disable buttons. For these I’m going to use small bitmap
images to indicate the on/off status. The images are swapped out by the event handlers.

A new method, initButtons(), will be used to set the initial state of four tracking var-
iables and assign a red bitmap to each of the buttons:

 def initButtons(self):
 self.cnt = 1

 self.btn1State = Flase
 self.btn2State = Flase
 self.btn3State = Flase
 self.btn4State = Flase

 self.bitmapButton1.SetBitmapLabel(bitmap=
 wx.Bitmap(u'red24off.bmp',wx.BITMAP_TYPE_BMP))
 self.bitmapButton2.SetBitmapLabel(bitmap=
 wx.Bitmap(u'red24off.bmp',wx.BITMAP_TYPE_BMP))
 self.bitmapButton3.SetBitmapLabel(bitmap=
 wx.Bitmap(u'red24off.bmp',wx.BITMAP_TYPE_BMP))
 self.bitmapButton4.SetBitmapLabel(bitmap=
 wx.Bitmap(u'red24off.bmp',wx.BITMAP_TYPE_BMP))

Graphical User Interfaces | 541

The variable self.cnt is used by the Update button. initButtons() is called from within
__init__() after the controls have been initialized:

 def __init__(self, parent):
 self._init_ctrls(parent)
 self.initButtons()

Here is the event handler for the first button:

 def OnBitmapButton1Button(self, event):
 if self.btn1State == False:
 self.btn1State = True
 self.bitmapButton1.SetBitmapLabel(bitmap=
 wx.Bitmap(u'green24on.bmp', wx.BITMAP_TYPE_BMP))
 else:
 self.btn1State = False
 self.bitmapButton1.SetBitmapLabel(bitmap=
 wx.Bitmap(u'red24off.bmp', wx.BITMAP_TYPE_BMP))

Except for name changes, the other three are identical. Finally, the event handler for
the Update button will push a string into each of the four text widgets each time the
Update button is clicked:

 def OnUpdtButtonButton(self, event):
 self.textCtrl1.SetValue(str(self.cnt))
 self.textCtrl2.SetValue(str(self.cnt))
 self.textCtrl3.SetValue(str(self.cnt))
 self.textCtrl4.SetValue(str(self.cnt))
 self.cnt += 1

To get it going, all we need is this little bit of code at the end of the file:

if __name__ == '__main__':
 app = wx.PySimpleApp()
 frame = create(None)
 frame.Show(True)
 app.MainLoop()

This uses wxPython’s wx.PySimpleApp() class to create an app object to provide the
main loop. When wxexample.py is run, the resulting display looks like Figure 13-14.

There were a lot of details in the creation of wxexample.py that I didn’t go into. If you
want to know more about wxPython or Boa Constructor, I would encourage you to
attempt to duplicate this example for yourself. If you want to look at the settings for
the widgets, just load the source into Boa and examine the various settings panels.

Tools and resources for wxPython

We’ve already seen how a tool like Boa Constructor can be used to create a wxPython
application, but there are other tools available as well:

542 | Chapter 13: User Interfaces

wxGlade (http://wxglade.sourceforge.net)
Modeled on the Glade GUI designer tool for the GTK+/GNOME environment,
wxGlade is not a complete application tool like Boa, but it is a capable tool for
building individual windows and dialogs, much like the PAGE tool for TkInter.

PythonCard (http://pythoncard.sourceforge.net)
Intended as a tool for quickly creating simple GUI applications, PythonCard em-
ploys templates and a basic selection of widgets. With its focus on new program-
mers, it may be a good place to start. However, be forewarned that the code hasn’t
been updated since 2007, and both Python and wxPython have moved along since
then. Some features may no longer work.

There is a large amount of information available on the Web, and the section “Suggested
Reading” on page 544 lists some essential sources of information.

Figure 13-14. wxexample.py

Summary
In this chapter we’ve looked at both text-based and graphical interfaces. We’ve seen
that while a text-based interface is fine for a lot of applications, there are times when
characters alone simply won’t provide the level of display fidelity or the interface func-
tionality needed for an application.

One thing you may have noticed about the two styles of interface programming is that
they both employ a main loop of some form to handle input, output, and update func-
tions. This is probably one of the oldest patterns in computer programming, and it
makes a lot more sense than trying to scatter the screen control functionality around a
program and then keep track of it all (I’ve seen that done, actually, and as you might
guess, it wasn’t very robust or easy to maintain).

Summary | 543

Creating TkInter examples by hand and a wxPython example using a tool allowed me
to illustrate both approaches, as well as highlighting the differences in ease of use be-
tween TkInter and wxPython that are rooted in their design philosophies. In the case
of TkInter, many professional software developers don’t even bother with a tool, be-
cause they can quickly create functional and aesthetically pleasing interfaces using
TkInter’s native geometry management capabilities. While it is perfectly feasible to take
the same approach with wxPython, I chose to use the Boa Constructor tool to illustrate
the steps involved in the process. Most GUI tools for both TkInter and wxPython (and
other GUI libraries) will work in similar ways, so this example should be applicable
across a variety of tools and situations.

It is my hope that what you’ve seen here will give you some ideas for your own appli-
cations. As I stated several times in this chapter, if you’re going to do any serious work
with things like curses or a GUI, you owe it to yourself to check out the books and
links in the “Suggested Reading” section below.

Suggested Reading
Here are some books that I’ve found useful when working with curses and with the
wxPython and TkInter GUI toolkits. I’ve also included some links to interesting sources
of information that have a direct bearing on this chapter:

Programmer’s Guide to ncurses. Dan Gookin, John Wiley & Sons, 2007.
Dan Gookin’s book covers the ncurses Version 5.5 library and is relevant to Unix,
Linux, and Mac OS X. Although it only covers the C API, the tutorial material helps
to clarify what Python’s curses library is doing and why, and many of the examples
are easily translated into Python. The reference sections of the book are also very
useful and provide a quick and easy way to look up obscure or half-forgotten
functions.

wxPython in Action. Noel Rappin and Robin Dunn, Manning Publications, 2006.
Covers the Python API for the wxWidgets library. Includes numerous examples, but
there’s a lot to cover here, so some topics get a more in-depth treatment than others.
Just be prepared to either dig into the wxPython source or translate from the
C++ sources in the wxWidgets code if you have a need for some arcane knowledge
on a topic not fully covered in the book. In any case, if you want to work with
wxPython you need to have this book on your desk.

Cross-Platform GUI Programming with WxWidgets. Julian Smart, Kevin Hock, and Ste-
fan Csomer, Pearson Education/Prentice Hall, 2005.

The definitive reference for wxWidgets. This book is thick and full of details, and
when wxPython doesn’t make sense, this is where you can turn to find out what
should be going on. Be forewarned that you will need to be able to read and un-
derstand at least the basics of C++ to get the most out of this book.

544 | Chapter 13: User Interfaces

Python and Tkinter. John E. Grayson, Manning Publications, 2000.
Covers the TkInter GUI toolkit in detail, with numerous examples and descriptions
of the available widgets. It does tend to omit some details for the sake of brevity,
and the references to the Python Megawidgets (pmw) add-on library are now out of
date (which is not surprising, considering that the book is now 10 years old). The
BLT module used by pmw, in particular, seems to be woefully out of date, and last
time I checked it had issues with Python 2.6. But if you’d rather use TkInter and
don’t need the functionality in BLT, it shouldn’t be a problem.

http://arstechnica.com/old/content/2005/05/gui.ars/4
Jeremy Reimer’s article, “A History of the GUI,” is a concise walk-through of the
notable milestones in the timeline of the GUI, leading up to modern times. While
not technical, it does a good job of highlighting the key concepts that are now
fundamental and familiar parts of the computer systems we interact with every day.

http://articles.sitepoint.com/print/real-history-gui
Mike Tuck’s entertaining article, “The Real History of the GUI,” gives an overview
of the career paths of some of the main players in the development of the GUI as
we know it today, and also lists some links to interesting related articles.

http://invisible-island.net/xterm/ctlseqs/ctlseqs.html
“Xterm Control Sequences” is a list of the command sequences recognized by
Xterm. Originally compiled by Edward May of the University of California at Ber-
keley, it is terse, but chock-full of useful information. If you plan on working pri-
marily in a Linux environment with Xterm windows, you really should have this
document handy.

http://www.ecma-international.org/publications/standards/Ecma-048.htm
The ECMA-48 specification is available for download as a PDF file from ECMA
International at this URL. It addresses not only ANSI-type control sequences, but
also the ASCII character set. At over 100 pages it’s not a light read, but the detailed
glossary and references to other ECMA standards make it worth the download.

http://www.catb.org/~esr/writings/taouu/taouu.html
The entire text of Eric Raymond’s The Art of Unix Usability is available online at
this URL. Unfortunately, I couldn’t locate a PDF version, and I like to read from
paper rather than squinting at a screen. Mr. Raymond provides some deep insights
peppered with an occasional poke at various companies and operating systems,
and explores the history and reasoning behind user interfaces, from early keypunch
and teletype machines through to the present day. The section “Rules of Usability”
contains some real gems that too often seem to be missing in user interface design.
The quote at the start of this chapter is one of the rules, although I don’t know if
it originated with Mr. Raymond or not.

http://www.joelonsoftware.com/articles/Biculturalism.html
In his blog Joel on Software, Joel Spolsky offers an intelligent and insightful review
of Eric Raymond’s The Art of UNIX Programming (the predecessor to The Art of
Unix Usability). Although oriented toward working software developers, the

Suggested Reading | 545

http://arstechnica.com/old/content/2005/05/gui.ars/4
http://articles.sitepoint.com/print/real-history-gui
http://invisible-island.net/xterm/ctlseqs/ctlseqs.html
http://www.ecma-international.org/publications/standards/Ecma-048.htm
http://www.catb.org/~esr/writings/taouu/taouu.html
http://www.joelonsoftware.com/articles/Biculturalism.html

review provides some interesting insights into the cultural differences between the
worlds of Unix and Windows. Although Python has evolved into a language that
manages to straddle both of those worlds and smooth out a lot of the differences
in the user experience, it is worthwhile to take the time to understand why, from
a user’s perspective, Unix (and Linux) is like the cockpit of the space shuttle, and
Windows is a comfortable four-door sedan with electric windows, automatic
transmission, and more knobs and buttons on the stereo than on the dash. Even
if you don’t plan on making a career out of software development, you will come
away from this essay with a better understanding of why things are the way they
are when it comes to modern operating systems and their user interfaces.

http://www.pythonware.com/library/tkinter
A combination of tutorial introduction and reference, this web-based document
by Fredrik Lundh presents a solid introduction to TkInter. It also available as a
PDF document, although in an odd layout as a two-up landscape document. Un-
fortunately this renders it basically useless for printing and saving in a common
ring binder. But, formatting issues aside, the examples are generally well chosen
and easy to follow. If you have no other material on TkInter but this, the NMT
reference listed below, and the Python documentation, you should be able to create
usable TkInter GUIs without any major difficulties.

http://infohost.nmt.edu/tcc/help/pubs/tkinter/
The online document “Tkinter 8.4 Reference: A GUI for Python” is available from
New Mexico Technical University at the above URL. It is also available in PDF
format from the same location. Although not exhaustive, this is a substantial ref-
erence (120 pages in PDF format) that covers topics such as layout methods, at-
tributes, and the various common Tk widgets, including Tk’s rather unique canvas
widget.

546 | Chapter 13: User Interfaces

http://www.pythonware.com/library/tkinter
http://infohost.nmt.edu/tcc/help/pubs/tkinter/

CHAPTER 14

Real World Examples

Beware of computer programmers who
carry screwdrivers.

—Leonard Brandwein

This chapter is intended to be a summarization of some of what I’ve presented in this
book, so it’s not going to contain a lot of in-depth discussions. Rather than a step-by-
step analysis and guide, it’s intended to be an inspiration for your own problem solving.
You should be able to answer most questions that arise regarding the examples in this
chapter by referring to the material we’ve covered in the preceding chapters, and if you
need more details than can be found here you can look to the references and links
provided in the chapters and the appendixes.

As you have probably surmised by this point, there are basically two main classes of
instrumentation interfaces: those that require some type of add-on hardware that plugs
into a computer, and those that require only a cable of some type. In this chapter we
will wrap up our journey by examining examples of those devices that require only a
cable. Drawing from what we’ve seen so far, we will see how RS-232 serial and USB
interfaces can be used to acquire data and control devices in the real world.

We’ll start off with a data capture application for a DMM with a serial output (the same
one we discussed briefly in Chapter 11), and then look at some other types of serial
interface I/O devices that employ a more conventional command-response protocol.
Next up is a USB data acquisition and control device, the LabJack U3. We’ll spend
some time with the U3, mainly because it’s a complex device, but also because it’s
typical of many devices of this type.

Serial Interfaces
When serial interfaces are mentioned, most people will think of RS-232, or perhaps
RS-485. But in reality, a serial interface can take on a variety of forms. If, for example,
we use a device to convert from USB to GPIB and back via a virtual serial port, we’re

547

effectively using a serial interface, even though GPIB itself is a parallel data bus. The
adapter and its USB driver perform what is called “serialization” of the data stream, so
from the viewpoint of the software controlling or monitoring the device, it’s a conven-
tional vanilla serial interface.

Serial interfaces based on RS-232 have the inherent advantage of being easy to work
with, at least in terms of sending and receiving commands and data. Another aspect is
that almost all instruments or devices with a serial interface use a command-response
protocol. It is not that common to find instruments that will send data without being
commanded to do so, but they do exist. One such exception is the tpi model 183 DMM,
which we will look at next.

Simple DMM Data Capture
The tpi model 183 is an inexpensive DMM (around $130 from multiple distributors)
with a variety of functions and reasonably good accuracy. It also provides a serial port
in the form of a 3.5 mm jack and can continuously output a stream of ASCII data at
1,200 baud. If you connect the optional interface cable for the meter to a PC, you can
capture this data and display it or save it to a logfile. Figure 14-1 shows the 183. The
RS-232 interface is located on the righthand side of the case.

Figure 14-1. tpi model 183 DMM

548 | Chapter 14: Real World Examples

There is a version of the 183, known as the 183A, that uses a different
interface. This discussion is relevant to the original 183, not the 183A.

To start the RS-232 output, you hold down the “COMP” button while turning on the
meter by rotating the dial. When the serial output is active the meter’s automatic power-
off feature is disabled, so it can eat up a battery in short order. There is no provision
for an external power source, so it’s not a good candidate if you need to leave it running
for extended periods of time.

A serial interface kit is available for the 183 that includes some sample software and a
special RS-232 cable. The serial interface is optically isolated, so the cable brings in DC
power to the optical isolator in the meter by tapping one of the RS-232 control lines
on the PC’s serial port. The cable for the 183 includes some additional internal com-
ponents, so a conventional RS-232 cable won’t work. If you have a notebook or netbook
PC without a true RS-232 serial port you can use an RS-232–to–USB adapter and com-
municate via a virtual serial port, so long as the USB adapter is able to supply the
necessary RS-232 control line voltage.

The 183 uses the format shown in Figure 14-2 to encode the meter function, range
mode, range, and data value into an ASCII string.

Figure 14-2. tpi model 183 data output format

There are four distinct data items, or fields, and the function code field is actually
hexadecimal. There are 11 possible values with one unused code, for a total of 12, so
the numbering ranges from 0 to B.

Serial Interfaces | 549

Table 14-1 shows how to interpret the function code, and Table 14-2 shows the en-
coding used for the range codes.

Table 14-1. 183 DMM function codes

Code Function

0 AC volts

1 Ohms

2 DC volts

3 DC mV

4 AC amps

5 DC amps

6 Diode measurement

7 DC mA

8 Not assigned

9 AC mA

A Capacitance

B Frequency

Table 14-2. 183 DMM range codes

Function codes

Ranges

0 1 2 3 4 5

0, 2 4.00 V 40.00 V 400.0 V 1,000 V – –

7, 9 40.00 MA 400.0 MA – – – –

4, 5 4.000 A 10.00 A – – – –

1 400.0 4.000 k 40.00 k 400.0 k 4.000 M 40.00 M

B 200.00 Hz 2.0000 kHz 20.000 kHz 200.00 kHz – –

A 400.0n F 4.000 μF 40.00 μF – – –

3 400 mV – – – – –

6 4.000 V – – – – –

Now that we know what to expect, the following Python code snippet shows how easy
it is to pull out the four fields (where instr is the data from the DMM):

fcode = instr[0]
mcode = instr[1]
rcode = instr[2]
data = instr[4:len(instr)-1]

550 | Chapter 14: Real World Examples

The first three fields are always one character in length. The last field is taken to be
whatever lies between the space (at instr[3]) and the end of the string minus 1 (we
don’t care about the terminator character). The string itself must be longer than nine
characters. Any time we get a string from the meter with nine or fewer characters, it
should be tossed out.

There are several routes we might take when writing an application to capture data
from this meter, and two that come to mind immediately. One is to just wait in a loop
for the meter and handle things like writing to a logfile or updating a display in between
readings. The other is to employ a thread to get the incoming data and push it into a
queue that a main loop can then pull out and write into some type of display (or save
to a file). The first approach is the more straightforward to implement. While the second
is more flexible, it is also slightly more difficult to implement.

It’s important to account for the fact that the strings sent by the meter have no EOL
character. Shortly after one string is finished, another is transmitted. In this case the
safest way to get the data is to use pySerial’s read() method and fetch one character at
a time while looking for the terminator character. This is where the string length limit
I just mentioned comes into play: if the capture application happens to start reading
characters in the middle of a string, it could still see the terminator character and at-
tempt to extract data from an incomplete string. There’s no way to know what the
meter’s output will look like when your application starts listening to it, so it will need
to synchronize with the meter. Ensuring that at least 10 characters have been read and
the terminator is present greatly reduces the odds of getting invalid data.

The code for a simple script to read the data stream from a 183 DMM is shown here
as read183dmm.py:

#!/usr/bin/python
183 DMM data capture example
#
Simple demonstration of data acquistion from a DMM
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import serial

sport = serial.Serial()
sport.baudrate = 1200
sport.port = "com17"
sport.setTimeout(2) # give up after 5 seconds
sport.open()

instr = ""
fetch_data = True
short_count = 0
timeout_cnt = 0
maxtries = 5 # timeout = read timeout * maxtries

while fetch_data:

Serial Interfaces | 551

 getstr = True
 # input string read loop - get one character at a time from
 # the DMM to build up an input string

 while getstr:
 inchar = sport.read(1)
 if inchar == "":
 # reading nothing is a sign of a timeout
 print "%s timeout, count: %d" % (inchar, timeout_cnt)
 timeout_cnt += 1
 if timeout_cnt > maxtries:
 getstr = False
 else:
 # see if the terminator character was read, and if so
 # call this input string done
 if inchar == '&':
 getstr = False
 instr += inchar
 timeout_cnt = 0 # reset timeout counter

 # if timeout occurred, don't continue
 if timeout_cnt == 0:
 if len(instr) > 9:
 # chances of this being a valid string are good, so
 # pull out the data
 fcode = instr[0]
 mcode = instr[1]
 rcode = instr[2]
 data = instr[4:len(instr)-1]

 # actual display and/or logging code goes here
 # the print is just a placeholder for this example
 print "%1s %1s %1s -> %s" % (fcode, mcode, rcode, data)

 # reset the short read counter
 short_count = 0
 else:
 # if we get repeated consecutive short strings,
 # there's a problem
 short_count += 1
 # if it happens 5 times in a row, terminate the
 # loop and exit the script
 if short_count > 5:
 fetch_data = False
 # in any case, clear the input string
 instr = ""
 else:
 # we get to here if a timeout occurred in the input string
 # read loop, so kill the main loop
 fetch_data = False

print "Data acquistion terminated"

read183dmm.py has no provision for user input. It will terminate after a read timeout has
occurred five times consecutively, so to exit this all you need to do is either turn off the

552 | Chapter 14: Real World Examples

DMM or pull the interface cable out of the jack. It will also terminate if it receives five
consecutive short strings (len(instr) < 10), which indicates a communications
problem.

You would probably want to replace the print following the field extraction statements
with something a bit more useful, such as the ability to save the data to a file or get
command input from the user. The threaded technique we saw in Chapter 13 would
work well here for user input. Also, from what we’ve already seen in Chapter 13, it
would be a straightforward task to extend read183dmm.py with a nice display. I’d suggest
an ANSI display for this situation, although it wouldn’t be that difficult to build a GUI
for it if you really wanted to.

Serial Interface Discrete and Analog Data I/O Devices
Writing data capture and control applications for serial interface devices is usually
rather straightforward once you know the command-response protocol. The tpi 183
DMM is just one example, albeit an off-nominal one (it only sends data, and has no
commands). The D1000 series data transmitters from Omega Engineering are another,
more common, example. These devices are fairly typical of data acquisition modules
that utilize a conventional serial interface to receive commands from a host controller
PC and send back responses via a serial interface. I chose them for this section not
because I prefer them over any other device of this class, but rather because they have
a rich command set and a lot of functionality stuffed into a small package. They aren’t
the least expensive serial data acquisition modules available, but like most of Omega’s
products they are easy to use and ruggedly built, and I’ve yet to have one fail.

Figure 14-3 shows one member of the Omega D1000 series of digital data transmitters,
which in this case happens to be a D1112. The analog input members of the D1000
family return data values from a sensor of some sort, typically a temperature sensor.
They also have the ability to establish alarm set-points and scale the data, and some
models provide extended discrete digital I/O capabilities.

The D1000 devices utilize a device addressing scheme as part of the command protocol,
wherein the commands are prefixed with a device ID number, like so:

$1RD

The device will respond with something like this (depending on the input and the
scaling):

*+00097.40

The device ID prefix allows multiple D1000 units to share a single RS-232 or RS-485
interface in a “daisy-chain” fashion. This is similar to the scheme described in Chap-
ter 11 for RS-485 motor controllers. Figure 14-4 shows how several D1000-type devices
can be used to monitor and control temperatures in a thermal chamber.

Serial Interfaces | 553

Figure 14-3. Omega D1112 RS-485 data transmitter

The setup shown in Figure 14-4 uses four sensors: two for the test articles in the cham-
ber to prevent thermal damage, one for the chamber temperature, and one for the
external ambient temperature. These could be thermocouples, thermistors, or resistive
thermal device (RTD)–type sensors, so long as the input to the 1121 does not exceed
1 V (other models have different input voltage ranges). The devices labeled SENSOR
1 and SENSOR 2 are not used as control inputs to regulate chamber temperature, but
rather as shutdown inputs should a test article exceed some preset temperature limit.
SENSOR 3 would be the primary input to the temperature controller. The controller
might use a bang-bang control, or it could use a PID algorithm, depending on how
tightly the temperature needs to be regulated and the type of heating (and possibly
cooling) system used with the chamber. SENSOR 4 is just an ambient external tem-
perature sensor. Although it has no role to play in the operation of the chamber, data
collected from this sensor could be used to determine how well the chamber is able
maintain a specific temperature at different external ambient temperate levels. In other
words, if the chamber is not well insulated and it is heating, the heating unit will work
harder when the external temperature is low as it attempts to overcome heat loss from
the chamber. By comparing the data from the external sensor with the internal tem-
perature and the operation of the heating unit, we could work out an estimate of the
insulation efficiency of the chamber.

554 | Chapter 14: Real World Examples

Figure 14-4. D1121 thermal chamber application

For their small size, the D1000 modules pack in a considerable amount of functionality.
The devices may be commanded to respond with two different string formats, which
Omega calls short-form or long-form. Each module may also be assigned an identifi-
cation string. One module might be “HEATER,” another might be “COOLER,” and
so on.

Serial Interfaces | 555

All communication with a standard D1000 transmitter is of the command-response
form. Unlike the tpi 183, a standard D1000 device will never initiate a conversation on
its own (although it is possible to order them with this capability). A communications
transaction is not considered to be complete until the D1000 has sent a response back
to the host control system.

Figure 14-5 shows the layout of a D1000 command. The command prompt character
signals to the D1000 that a command is inbound. The D1000 modules recognize four
different prompt characters, as shown in Table 14-3. The dollar sign ($) is the most
common prompt, causing the D1000 to return a short-form response. The pound sign,
or hash (#), causes the D1000 to generate long-form responses. The [and] prompts
are used with the so-called Extended Addressing mode, which I won’t go into here.

Figure 14-5. D1000 command format

Table 14-3. D1000 command prompt characters

Prompt Definition

$ Device returns short-form response

Device returns long-form response

[Used with extended addressing

] Used with extended addressing

Following the prompt is a single device address character. D1000 devices are assigned
an address by the user. Any printable ASCII character is acceptable as an address char-
acter, but in the interests of keeping things sane it’s a good idea to stick with the range
0 to 9, or perhaps 0 to F. Using address characters that don’t translate easily from a
numeric sequence can make it awkward to use a loop to step through a set of daisy-
chained devices.

After the address character come the device command characters, of which there may
be two or three. Next is any parametric data the command might require. Some

556 | Chapter 14: Real World Examples

commands, such as query commands, do not require any additional data. Last, the
command may use an optional two-character checksum, which is described in the
D1000 user manual. Table 14-4 is a summary of the D1000 command set. For more
details, including a discussion of each command and its nominal response, refer to the
user manual.

Table 14-4. D1000 command set

Mnemonic Definition Short-form return

DI Read Alarms or Digital Inputs *<data>

DO Set Digital Outputs *

ND New Data *<float value>

RD Read Data *<float value>

RE Read Event Counter *<event counter value>

REA Read Extended Address *<ext address>

RH Read High Alarm Value *<high alarm value><mode char>

RID Read Identification *<ID string>

RL Read Low Alarm Value *<low alarm value><mode char>

RPT Read Pulse Transition *<transition chars>

RS Read Setup *<setup values>

RZ Read Zero *<float value>

WE Write Enable *

CA Clear Alarms *

CE Clear Events *

CZ Clear Zero *

DA Disable Alarms *

EA Enable Alarms *

EC Events Read & Clear *<event counter value>

HI Set High Alarm Limit *

ID Set Module Identification *

LO Set Low Alarm Limit *

PT Pulse Transition *

RR Remote Reset *

SU Setup Module *

SP Set Setpoint *

TS Trim Span *

TZ Trim Zero *

WEA Write Extended Address *

Serial Interfaces | 557

A D1000 response to a command begins with a prefix character, followed by data, an
error message, or nothing at all. There are two possible response string prefixes: an
asterisk (*) and a question mark (?). A third type of response scenario is when the D1000
returns nothing at all, and a timeout condition is declared. The asterisk indicates a no-
error return, and a question mark indicates an error condition. With error conditions,
the question mark is followed by the module ID, and then an error message. Here is a
possible error response to a command with an extra character:

$1RDX
?1 SYNTAX ERROR

Checking the response involves looking at the first character in the response string. If
it’s an asterisk, all is well; otherwise, an error has occurred and must be handled. Analog
data is returned as a nine-character string consisting of a sign character, five digits, a
decimal point, and two digits for the fractional part. For example, the RD command
will cause the device to respond with something like this:

*+00220.40

Conveniently, Python will accept the entire data value part of the string as-is and con-
vert it to a float value, with no extra steps required.

Some commands do not return a data string in short-form mode, but all nonerror re-
sponses will return at least an asterisk character. The response for each command type
is unique to that command (there’s no one-size-fits-all command response), so the
software will need to be aware of what to expect from the device.

When dealing with devices like the D1000, especially if you find yourself working with
them often, it might be worthwhile to create a class with a set of methods to handle the
various functions. This is a lot cleaner and easier than the alternative of sprinkling the
commands around in the code. It also allows for changes to be made in a single place
(the class definition) and to take effect anywhere the class is used.

The Omega D1000 series devices are just one example of the kinds of products available
for data I/O with a serial interface. There are many devices available for thermocouple
inputs, RTD sensors, discrete digital I/O, and a mix of both analog and digital I/O.
Entering the search strings “digital I/O RS-232” or “digital I/O RS-485” into Google
will return hits for numerous vendors selling everything from kits to high-end devices
for industrial applications. I would suggest that when shopping for serial interface I/O
devices you make sure you’re not ordering a device intended for use with a DIN rail in
an industrial setting. While there’s nothing wrong with these devices, the physical
mounting requirements may prove more troublesome than something with just some
plain mounting holes, and they tend to be more costly.

558 | Chapter 14: Real World Examples

Serial Interfaces and Speed Considerations
RS-232‒based serial interfaces are typically rather slow, as RS-232 is limited to about
20 kbps, and that value starts to drop as cable length increases. RS-485 is much faster,
with a maximum speed of 35 Mbps, and USB 2.0 can move data at a theoretical max-
imum of 480 Mbps. But the speed of the interface isn’t the whole story; there’s also the
issue of how fast the software controlling the interface can send and receive the data.

For the types of applications described in this book a cyclic acquisition time of 10 ms
(100 Hz) would be considered fast, and 100 Hz is well within the capability of Python
running on a modern PC. However, update rates of 20 Hz are usually more than suf-
ficient for many common data acquisition and control applications. Also remember
that as the acquisition speed increases, so does the cost of the hardware and the com-
plexity of the software.

The bottom line here is that there is absolutely nothing wrong with a device that uses
a slow RS-232 serial interface for data acquisition or control, so long as it’s fast enough
for the intended application. Here’s how we can do the math to see if a serial interface
is fast enough.

Let’s say that we have a device with a 9,600-baud RS-232 interface. Each command is
8 bytes in length, and responses are a maximum of 10 bytes. There is a maximum 1 ms
latency in the acquisition device between command and response (the latency is partly
determined by the conversion time of the internal ADC in the device, and partly by the
time required for any command or data processing between acquisition events).

At 9600 baud it will require about 8.3 ms to send a command from the host to the
device, about 10.4 ms for the response to come back, and some time for the Python
application to do something with it. If we add up all the times we might get about 21
ms for a complete command-convert-response-process transaction cycle. That works
out to about 48 Hz. From this we can see that the serial interface transfer time dominates
the acquisition rate of the device, which is typical for devices with slow serial interfaces.
As the interface speed goes up, the time required for the command-response transaction
becomes less of a limiting factor.

Although 48 Hz is usually more than fast enough for applications like thermal control,
environmental monitoring, or stellar photometry, it may not be fast enough to acquire
events such as pulses or other transient phenomena that might occur between the data
acquisition events. Since the total cycle time of the control system is mostly the time
involved in communicating with an external device or system, increasing the baud rate
or switching to RS-485 are two ways to increase the speed and shorten the overall cycle
time.

There is another way, however, and that is USB. In the next section we’ll see how to
use a USB data acquisition and control device, which offers higher speeds and multi-
function operation, albeit with slightly higher software complexity.

Serial Interfaces | 559

USB Example: The LabJack U3
Technological advancements in USB devices have continued to drive the cost of I/O
devices with a USB interface ever lower. Just five years ago devices with the capabilities
of this new breed of I/O modules would have cost many hundreds or even thousands
of dollars. Prices today range from around $100 and up, depending on factors such as
speed, conversion resolution, and the type and quantity of I/O channels.

One low-cost device is the LabJack U3, which is shown in Figure 14-6. This data ac-
quisition device provides discrete digital I/O, analog I/O, and counter/timer I/O. It uses
a USB interface for all command and data response transactions.

Figure 14-6. LabJack U3 USB DAQ device

The U3 is powered from the USB interface. There is no provision for an external power
supply, which is common for devices of this type. So even though there is +5 V DC
available at some of the terminal positions, care should be taken not to draw too much
current and cause the USB channel to go into shutdown.

LabJack Connections
Figure 14-7 shows a diagram of the U3’s connections. Many of the terminal points on
the U3 can be configured for different modes of operation, and the configuration can
be saved to ensure that the unit starts in the correct state at power-up. In addition to
the terminal block connections, there is also a DB-15 connector that brings out 12
additional signal lines.

You can connect more than one LabJack at a time to a PC by using USB hubs, but keep
in mind that the increase in data traffic can result in slower response times for all con-
nected devices.

560 | Chapter 14: Real World Examples

The LabJack U3 provides eight FIO (Flexible I/O) ports on the terminal blocks, and
eight EIO (Extended I/O) ports and four CIO (Control I/O) ports on the DB-15 con-
nector. In addition, there are two DAC outputs, six VS (+5 V DC) terminals, five com-
mon ground terminals, and two protected ground terminals. Notice that the terminals
labeled AIN0 through AIN3 are actually FIO ports FIO0 through FIO3. These are
configured as analog inputs by default, but you can change their function by modifying
the LabJack’s configuration. You can use the LJControlPanel tool for Windows (sup-
plied with each LabJack) for this purpose, or you can set the device configuration using
the interface driver commands.

With the exception of the U3-HV model, each FIO and EIO port may be configured as
a digital input, a digital output, or an analog input. On the HV version of the U3 the
lines FIO0 through FIO3 are set as analog inputs and cannot be reconfigured. The four
CIO lines on the DB-15 connector are dedicated digital lines.

The two DAC outputs operate in either 8-bit or 16-bit mode with a range of between
about 0.04 and 4.95 volts. Using the 8-bit mode may result in a more stable output
with less noise.

Figure 14-7. LabJack U3-HV connections

USB Example: The LabJack U3 | 561

The U3 contains two timers and two clocks. Whenever a timer or clock is enabled, it
will take over an FIO channel. In the U3-HV FIO4 is first, followed by FIO5, and so
on. The standard U3 starts the counter/timer assignment at FIO0.

Installing a LabJack Device
LabJack supplies drivers for both Windows and Linux, as well as a complete Python
interface wrapper. First we’ll take a brief look at what is involved in getting a LabJack
device installed and running on either a Windows or Linux machine—it’s very easy,
actually. In the next section we’ll dig into LabJack’s Python interface.

LabJack on Windows

To use a LabJack device with a Windows system, you need to install the UD driver
supplied on the CD that comes with the LabJack unit. Install the driver before you
connect the LabJack to your computer. Each LabJack DAQ device includes a single-
sheet set of quick-start instructions that help make the whole process quick and
painless.

LabJack on Linux

To use a LabJack device with a Linux system, you will need to first install the Exodriver
package from LabJack. The Exodriver is supplied in source form and the only depend-
ency requirement is the libUSB library. On most modern Linux systems this should
already be present, but if not it can be easily installed using a package manager. You
will, of course, also need a C compiler (since gcc comes with most Linux distributions,
this should not be an issue).

Building the driver should just be a matter of typing make and, if it’s successful, make
install. You’ll need to be root (or use sudo) to do the install step. The LabJack website
contains detailed directions at http://labjack.com/support/linux-and-mac-os-x-drivers.

LabJack and Python
The Python interface for LabJack devices, called LabJackPython, is a wrapper for the
UD and Exodriver low-level interfaces. It allows access to the driver functions, and it
supports both Modbus register-based commands and the low-level functions in the
LabJack drivers.

Installing and testing LabJackPython

Once you have a LabJack device installed and running, you can download the Python
wrapper and install it. You can get more information about the Python binding at http:
//labjack.com/support/labjackpython, including installation instructions.

562 | Chapter 14: Real World Examples

http://labjack.com/support/linux-and-mac-os-x-drivers
http://labjack.com/support/labjackpython
http://labjack.com/support/labjackpython

In summary, all that you really need to do is download the latest LabJack Python file
(in my case it was LabJackPython-7-20-2010.zip), unpack it, change into the src direc-
tory, and type in:

python setup.py install

That’s it. You should then be able to start Python and import the LabJack module, like
so (if you have a U6, import that instead):

>>> import u3

Next we need to create a new object of the U3 class, which will be used for subsequent
commands to the device:

>>> u3d = u3.U3()

Provided that your LabJack is plugged in and ready, you should see nothing returned
from this statement, and you’ll be ready to start entering commands and reading data.

LabJack driver structure

We’re now well out of the land of serial interface devices and deep into API territory,
which means we will need to understand how the LabJack driver API is structured in
order to use it effectively. Dealing with a device like the LabJack is very much like
working with a bus-based device and its low-level drivers. There is a lot of functionality
there, but it’s not quite as easy to get at as it is with something like the serial devices
we saw earlier.

Before getting too deep into things, you should take a moment to at least glance through
the LabJack user’s guide. You should also have the source files LabJackPython.py and
u3.py (or u6.py, as the case may be) close at hand, because you will need to refer to
them from time to time.

The driver API for LabJack is organized as a series of layers, starting with the Exodriver
or UD driver and eventually culminating in functionality tailored to a specific model
of LabJack device. This is illustrated in Figure 14-8, which also shows the u12 interface,
which is a standalone API that uses its own hardware driver, liblabjackusb.so, but
doesn’t use the LabJackPython interface module. The u12 is included in Figure 14-8 for
completeness only; in this section we will focus mainly on the u3.

Our primary areas of interest are the LabJackPython.py module and the u3.py module.
The u3 module contains the U3 class definition, which is a derived class based on the
Device class found in LabJackPython. Figure 14-9 shows the inheritance relationship
between the Device and U3 classes.

In addition to the Device and U3 classes, there are also functions in the LabJackPython
and u3 modules that are very useful, but you need to make sure that a particular function
isn’t OS-specific. For example, the ePut() and eGet() functions in LabJackPython.py
are Windows-specific. If you do elect to use these functions, bear in mind that your
program will no longer be portable.

USB Example: The LabJack U3 | 563

In addition to the U3 class, there are functions and classes available in the LabJack
Python modules that may be accessed without using the U3 class. For example, to get a
listing of U3-type devices connected to the system you can use the listAll() function,
like this:

>>> import u3
>>> u3.listAll(3)

The parameter value of 3 indicates that you want a list of U3 devices. For U6 devices
you would use a 6. In my case I get a dictionary object in response that shows a single
U3:

{320037071: {'devType': 3,
'serialNumber': 320037071,
'ipAddress': '0.0.0.0',
'localId': 1}}

If you have Epydoc installed (see Chapter 8), I would suggest using it to create a set of
HTML pages as online documentation for the various Python components. You’ll get
nicely formatted documentation that is a lot easier to read than using Python’s
help() command or reading through the source code. When used on the modules
LabJackPython.py, Modbus.py, and u3.py, the output of Epydoc looks like the screen
capture in Figure 14-10.

Figure 14-8. LabJack software interface components

564 | Chapter 14: Real World Examples

U3 configuration

It is important to manage the configuration of a U3 device so that the port definitions
will be as expected for a particular application when the device is powered on. The
U3 class provides the methods configIO(), configAnalog(), configDigital(), config
TimerClock(), and configU3() for this purpose. The sections “Python API Types and
Functions” on page 171, “The Method Table” on page 172, and “Method
Flags” on page 172 of the LabJack documentation describe the configuration manage-
ment methods. Here’s how to use configU3():

Figure 14-9. U3 interface class derivation

USB Example: The LabJack U3 | 565

>>> import u3
>>> u3d = u3.U3()
>>> print u3d.configU3()

This returns a dictionary object. In my case the output looked like the following:

{'TimerClockConfig': 2, 'TimerClockDivisor': 256, 'LocalID': 1,
'SerialNumber': 320037071, 'CIOState': 0, 'TimerCounterMask': 64,
'DAC1Enable': 1, 'EIODirection': 0, 'DeviceName': 'U3-HV',
'FIODirection': 48, 'FirmwareVersion': '1.24', 'CIODirection': 0,
'DAC0': 0, 'DAC1': 0, 'EIOAnalog': 0, 'CompatibilityOptions': 0,
'EIOState': 0, 'HardwareVersion': '1.30', 'FIOAnalog': 15,
'VersionInfo': 18, 'FIOState': 0, 'BootloaderVersion': '0.27',
'ProductID': 3}

If you have access to a Windows machine, or you’re planning to use a LabJack with
Windows, I would suggest using the LJControlPanel tool, at least until you get familiar
with the configuration management methods and functions in the interface modules.

Figure 14-10. Epydoc output for LabJackPython

Using the Python interface with the getFeedback() method

If you’ve taken a peek at the u3.py module, you may have noticed that there are a
number of little class definitions in addition to the U3 class, each of which is derived
from the FeedbackCommand() class. (If you haven’t done so yet, now would be a good
time to take a look at this module.) They are used to perform various operations in the
context of the getFeedback() method in the U3 class.

566 | Chapter 14: Real World Examples

Here is the definition for the getFeedback() method from the U3 class:

getFeedback(self, *commandlist)
The parameter commandlist is a list of FeedbackCommand-type objects. The method
getFeedback() forms the list into a packet and sends it to the U3.

Returns a list with zero or more entries, one entry per object in the input list.

Here’s a simple example for controlling the status LED on the side of the U3:

>>> import u3
>>> u3d = u3.U3()
>>> u3d.getFeedback(u3.LED(0))
[None]
>>> u3d.getFeedback(u3.LED(1))
[None]

To set the DAC output levels, you could do the following:

>>> u3d.getFeedback(u3.DAC16(Dac=0, Value = 0x7fff))
[None]
>>> u3d.getFeedback(u3.DAC16(Dac=1, Value = 0xffff))
[None]
>>> u3d.getFeedback(u3.DAC16(Dac=0, Value = 0x0))
[None]
>>> u3d.getFeedback(u3.DAC16(Dac=1, Value = 0x0))
[None]

After entering the first two DAC commands, you should be able to measure an output
level of around 2.5 volts on DAC0’s output terminal, and about 4.95 volts for DAC1
(0x7fff is half of 0xffff). The last two commands set the DAC outputs back to zero. The
getFeedback() method uses the u3.DAC16() function to send the value to the DAC.
Notice that the return value is None.

The following is a list of the FeedbackCommand derived class commands in the u3.py
module. For readability, I’ve listed each class with the parameters passed to its
__init__() method as if it was a function or method:

• AIN(PositiveChannel, NegativeChannel=31, LongSettling=False, QuickSample=False)

• WaitShort(Time)

• WaitLong(Time)

• LED(State)

• BitStateRead(IONumber)

• BitStateWrite(IONumber, State)

• BitDirRead(IONumber)

• BitDirWrite(IONumber, Direction)

• PortStateRead()

• PortStateWrite(State, WriteMask=[0xff, 0xff, 0xff])

• PortDirRead()

USB Example: The LabJack U3 | 567

• PortDirWrite(Direction, WriteMask=[0xff, 0xff, 0xff])

• DAC8(Dac, Value)

• DAC0_8(Value)

• DAC1_8(Value)

• DAC16(Dac, Value)

• DAC0_16(Value)

• DAC1_16(Value)

• Timer(timer, UpdateReset=False, Value=0, Mode=None)

• Timer0(UpdateReset=False, Value=0, Mode=None)

• Timer1(UpdateReset=False, Value=0, Mode=None)

• QuadratureInputTimer(UpdateReset=False, Value=0)

• TimerStopInput1(UpdateReset=False, Value=0)

• TimerConfig(timer, TimerMode, Value=0)

• Timer0Config(TimerMode, Value=0)

• Timer1Config(TimerMode, Value=0)

• Counter(counter, Reset=False)

• Counter0(Reset=False)

• Counter1(Reset=False)

Although these will look like functions when used in your code, they are actually class
definitions that instantiate objects. It is these objects that are invoked by the u3d.get
Feedback() method to perform a particular action or set of actions. Refer to the u3.py
source code for descriptions (or the Epydoc output, if you’ve already generated it). Also,
after importing the u3 module you can use Python’s built-in help() facility, like so:

>>> import u3
>>> help(u3.WaitLong)

Now that we’ve seen what the getFeedback() method can do, let’s put it to work.
u3ledblink.py is a simple script that will blink the status LED until the input voltage
at the AIN0 terminal exceeds some preset limit:

#!/usr/bin/python
LabJack demonstration
#
Blink the U3's status LED until the AIN0 input exceeds a limit value.
#
Source code from the book "Real World Instrumentation with Python"
By J. M. Hughes, published by O'Reilly.

import u3
import time

u3d = u3.U3()

568 | Chapter 14: Real World Examples

LEDoff = u3.LED(0)
LEDon = u3.LED(1)
AINcmd = u3.AIN(0, 31, False, False)

toggle = 0

while True:
 # blink the LED while looping
 if toggle == 0:
 u3d.getFeedback(LEDon)
 toggle = 1
 else:
 u3d.getFeedback(LEDoff)
 toggle = 0

 # getFeedback returns a list with a single element
 inval = u3d.getFeedback(AINcmd)[0]
 print inval
 if inval > 40000:
 break
 time.sleep(1)

u3d.getFeedback(LEDon)
print "Done."

Any voltage source with a range between 0 and 5 V DC will work as the input to AIN0.
Touching a jumper wire between the AIN0 terminal and any of the VS terminals will
also do the trick.

getFeedback() isn’t limited to just one command at a time. You can stack up multiple
commands. Here’s an example where FIO4 (which is configured as a digital output in
my setup) is rapidly toggled on and off. It’s fast, and you’ll need an oscilloscope if you
want to see this activity:

>>> biton = u3.BitStateWrite(4,1)
>>> bitoff = u3.BitStateWrite(4,0)
>>> u3d.getFeedback(bitoff, biton, bitoff, biton, bitoff)

When using getFeedback() you should bear in mind that some commands may take
too long to respond with the default timeout setting, and you’ll get an exception from
the driver. The WaitLong() class command may look appealing, but it’s safer to just use
Python’s sleep() method instead of embedding a delay in the middle of a command
object list. Just remember to keep things short and don’t pile too many command
objects into getFeedback().

You now have enough information to start doing useful things with a LabJack. We’ve
only skimmed the tops of the waves, however, as there is much more that the device
can do. The user’s guide and the LabJackPython source code contain the information
you will need to be able to use the more advanced features.

USB Example: The LabJack U3 | 569

Summary
The examples in this chapter are just a small sample of what is available in terms of
instrumentation hardware, and of what can be done with Python to acquire data and
control external devices. We didn’t discuss specific examples of GPIB or bus-based
I/O, although these types of devices are used extensively in instrumentation systems.
However, if you look back at Chapters 2, 7, and 11, these topics are covered there at
length.

The devices discussed in this chapter were selected specifically to illustrate some shared
concepts in the world of instrumentation hardware, such as the ubiquitous command-
response paradigm. From this perspective a serial data acquisition device is similar in
many ways to a GPIB device, and some lab instruments have the ability to communicate
via a serial port while still using the SCPI model. The LabJack data acquisition devices
employ a driver API and a Python interface layer that is very similar to what you might
expect to find with a multifunction I/O card for the PCI bus. Once you understand the
basic concepts behind the various interfaces, you’ll be well on your way to being able
to deal with just about any kind of instrumentation device.

With a modest outlay you can convert almost any PC into a data acquisition and control
system, and with Python you can program it to do what you want it to do and take
advantage of the powerful and extensible Python development environment. Your
programs can be as simple or as complex as you need them to be, and because it’s your
software, you can modify it when you need to in order to keep up with changes in the
requirements and the instrumentation environment.

If you’re comfortable with electronics you can even build your own I/O hardware, such
as the parallel port interface we discussed in Chapter 11. You can also extend the ca-
pabilities of your system by incorporating networking and distributed control.

We’ve only just scratched the surface of what is possible. As you work with instru-
mentation devices and systems, more possibilities will begin to become apparent.
Worthy candidates for some degree of automation are all around us in our labs and
workshops, out on the production floor, in our vehicles, and in our offices and homes.
With some practice, a little patience, and your creativity, you can apply the information
in this book to design and build robust and elegant data acquisition and control systems
to suit your specific needs.

Suggested Reading
The topics covered in this book are intended to provide you with the information you
need to use the devices presented in this chapter. The primary sources of information
for installing and programming devices such as data transmitters and DAQ units are,
of course, the manuals supplied by the manufacturers. You should carefully read the
documentation for a new device, as not all devices are intuitive or simple to use (very

570 | Chapter 14: Real World Examples

few are, actually). To that end, I’ve assembled a few links to online documents and
other sources of information for the devices covered in this chapter:

http://www.omega.com/DAS/pdf/D1000.pdf
An overview of the D1000 family of data transmitter products from Omega.

http://www.omega.com/Manuals/manualpdf/M0662.pdf
The Omega D1000 series user’s manual.

http://labjack.com
The source for the U3 and U6 LabJack devices, as well as the Python interface. The
website contains application notes, a blog, and many other items of interest to
LabJack users.

Suggested Reading | 571

http://www.omega.com/DAS/pdf/D1000.pdf
http://www.omega.com/Manuals/manualpdf/M0662.pdf
http://labjack.com

APPENDIX A

Free and Open Source Software
Resources

This appendix is a listing of the various tools and library add-on modules mentioned
in this book, but it is by no means an exhaustive listing. There are many excellent open
source software packages available for working with Python on both Linux and Win-
dows systems, and I would encourage you to explore websites like SourceForge and
Berlios for other alternatives. The main site for Python, python.org, also has links to
other Python-specific packages that may be of interest to you.

Python 2.6.5 sources

http://www.python.org
The official Python distribution website.

http://www.activestate.com
The website for ActiveState, a Windows-centric distribution of Python. In-
cludes some tools unique to ActiveState’s distribution.

Integrated development environments

Boa Constructor
A basic IDE for Python that also includes a full-featured GUI designer.

http://boa-constructor.sourceforge.net

Eclipse
A powerful Java-based IDE that uses a plug-in (PyDev) for Python support.

http://www.eclipse.org

Idle
A multiwindow IDE supplied with the Python distribution packages from
python.org.

573

http://www.python.org
http://www.activestate.com
http://boa-constructor.sourceforge.net
http://www.eclipse.org

PythonWin
A Windows-specific Python IDE supplied with the ActiveState distribution.
Also available as a separate package from SourceForge. Roughly equivalent to
Idle.

http://sourceforge.net/projects/pywin32/

Add-on libraries

pySerial
A cross-platform interface library with support for RS-232 standard serial in-
terfaces. pySerial provides a file-like API with methods such as read() and
write(), and provides binary data transmission (no EOL translation or byte
stripping).

http://pyserial.sourceforge.net

pyParallel
A parallel port interface library that supports access to a standard parallel port
on both Windows and Linux platforms.

http://pyserial.sourceforge.net/pyparallel.html

pyUSB
A Python library for accessing USB devices on either Linux or Windows via
low-level drivers and Python’s ctypes library.

http://sourceforge.net/apps/mediawiki/pyusb/index.php?title=Main_Page

PyVISA
A cross-platform Python API for the commercial visa32.dll and similar DLL
modules from various instrument vendors. VISA support for Linux is provided
by the libvisa.so.7 library object, available from National Instruments.

http://pyvisa.sourceforge.net

NumPy
The Numeric Python package, with support for n-dimensional array objects
and array masking, and functions for linear algebra, Fourier transforms, and
random number generation.

http://numpy.scipy.org

SciPy
An extensive library of tools that provides functions for mathematics, science,
and engineering.

http://www.scipy.org

PyUniversalLibrary
An interface wrapper for Measurement Computing’s Universal Library driver
and interface suite. Works only on Windows systems.

https://code.astraw.com/projects/PyUniversalLibrary/

574 | Appendix A: Free and Open Source Software Resources

http://sourceforge.net/projects/pywin32/
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net/pyparallel.html
http://sourceforge.net/apps/mediawiki/pyusb/index.php?title=Main_Page
http://pyvisa.sourceforge.net
http://numpy.scipy.org
http://www.scipy.org
https://code.astraw.com/projects/PyUniversalLibrary/

GUI libraries and development tools

Boa Constructor (wxPython)
A wxPython GUI designer that also includes an editor and a debugger.

http://boa-constructor.sourceforge.net

PAGE (Tkinter)
A drag-and-drop GUI builder written in tcl/Tk that generates a Python module
using the TkInter library.

http://page.sourceforge.net

PythonCard (wxPython)
A template-based GUI designer for wxPython.

http://pythoncard.sourceforge.net

pmw (Tkinter)
The Python megawidgets add-on for TkInter. Contains additional widgets and
functionality not found in the base distribution of TkInter.

http://pmw.sourceforge.net

SpecTcl (Tkinter)
Another TkInter GUI window design tool. Originally developed by Sun Mi-
crosystems, it is open source with a Sun license.

http://spectcl.sourceforge.net

wxGlade (wxPython)
A wxPython GUI designer modeled on the Glade designer tool.

http://wxglade.sourceforge.net

wxPython
The wxPython library package for Python, which is itself a wrapper for the
wxWidgets library. wxWidgets is not required to use wxPython.

http://wxpython.org

Plotting tools

gnuplot
A powerful plotting package for both Linux and Windows. Supports both 2D
and 3D plots and has an extensive collection of built-in math functions.

http://gnuplot.sourceforge.net

gnuplot.py
An interface layer and command translation helper for using gnuplot with
Python.

http://gnuplot-py.sourceforge.net

Free and Open Source Software Resources | 575

http://boa-constructor.sourceforge.net
http://page.sourceforge.net
http://pythoncard.sourceforge.net
http://pmw.sourceforge.net
http://spectcl.sourceforge.net
http://wxglade.sourceforge.net
http://wxpython.org
http://gnuplot.sourceforge.net
http://gnuplot-py.sourceforge.net

System tools and utilities

ansicon
A replacement for the Windows ANSI.dll driver that supports newer 32- and
64-bit versions of Windows.

http://adoxa.110mb.com/ansicon/index.html

com0com
A kernel-mode driver for creating pairs of null-modem-connected virtual serial
ports under Windows.

http://com0com.sourceforge.net

Cygwin and Xcygwin
Provides an emulation of a Linux environment under Windows. The Xcygwin
package includes an X server and various X applications (Xterm, Xclock, Xfig,
etc.).

http://www.cygwin.com

Tera Term
An old but still very useful terminal emulator with a well-done scripting
language.

http://hp.vector.co.jp/authors/VA002416/teraterm.html

tty0tty
This is the Linux equivalent to com0com that allows two tty devices to cross-
connect in null-modem fashion.

http://tty0tty.sourceforge.net

Image data tools and libraries

ImageJ
A flexible and highly configurable image viewer and image processing tool
from the National Institutes of Health.

http://rsbweb.nih.gov/ij/

Netpbm
The Netpbm library of image conversion and processing tools.

http://netpbm.sourceforge.net/doc/pgm.html

Data acquisition device driver packages for Linux

Comedi
A collection of low-level drivers to allow a Linux system to communicate with
various types of data acquisition and digital interface cards. Includes SWIG
scripts to create Python wrappers for the drivers.

http://www.comedi.org

576 | Appendix A: Free and Open Source Software Resources

http://adoxa.110mb.com/ansicon/index.html
http://com0com.sourceforge.net
http://www.cygwin.com
http://hp.vector.co.jp/authors/VA002416/teraterm.html
http://tty0tty.sourceforge.net
http://rsbweb.nih.gov/ij/
http://netpbm.sourceforge.net/doc/pgm.html
http://www.comedi.org

Measurement Computing Linux Drivers
Warren Jasper from NCSU has written a suite of Linux drivers for many of
Measurement Computing’s products. Note that these are just the Linux driv-
ers; no Python API is provided. You need to be prepared to create your own
Python wrappers.

ftp://lx10.tx.ncsu.edu/pub/Linux/drivers/

There can be no doubt that I have missed a package or two (or more) that might be
relevant to this book, but the oversight is not intentional. Some searching on Google
or SourceForge with phrases like “Python control systems” or “Python data acquisi-
tion” will most likely turn up some more interesting packages.

A list of Python packages is also available at http://pypi.python.org/pypi/. I can’t attest
to how current it is, but it is rather long. Also, if you’re using Linux, be sure to check
your package manager to see what might be available for Python; it’s a lot easier than
doing the installation manually (which includes resolving any package dependencies).

Lastly, I’d like to point out that you should be aware that if you’re using an open source
package it might not be as polished as a commercial product, and it may have some
bugs or be incomplete. But also bear in mind that it has cost you nothing, and that the
people who wrote it are working on their own time, mainly just for the love of software
development and a desire to share their work with others.

Free and Open Source Software Resources | 577

ftp://lx10.tx.ncsu.edu/pub/Linux/drivers/
http://pypi.python.org/pypi/

APPENDIX B

Instrument Sources

This appendix contains a listing of test equipment and data acquisition instrument
manufacturers and used equipment outlets. It is provided as a convenient reference for
you to use when looking for equipment; it is not an endorsement of any of them.

Bear in mind that capabilities and cost will vary considerably, and the two aren’t always
correlated. It pays to do some research before paying out hundreds (or even thousands)
of dollars for a piece of hardware, only to discover that it doesn’t quite do what you
need it to do.

Another reason for this appendix is to help you locate technical documentation for
older instruments. There are many older DMMs, controllers, switches, and data ac-
quisition units available that are still perfectly functional, provided you have the user
documentation to go with them. You may even have a few such items languishing on
a shelf in your lab, or tucked away in a storage closet.

Manufacturers
The following is a short list of instrument and test equipment manufacturers. The list
of product types for each manufacturer is only representative, and in some cases it’s a
small fraction of what they produce.

Agilent
Oscilloscopes, logic analyzers, digital meters, signal generators, spectrum ana-
lyzers, power supplies, data acquisition units, etc.

http://www.agilent.com

AMETEK
Power supplies and electronic loads

http://www.programmablepower.com

579

http://www.agilent.com
http://www.programmablepower.com

Anritsu
RF, microwave, optical, and data communications test equipment

http://www.us.anritsu.com

Bitscope
USB oscilloscopes, signal generators, and logic analyzers

http://www.bitscope.com

B&K Precision
Oscilloscopes, digital meters, signal generators, spectrum analyzers, power sup-
plies, etc.

http://www.bkprecision.com

Elan Digital Systems
Miniature USB oscilloscopes, function generators, pulse generators, and counters

http://www.elandigitalsystems.com/measurement/index.php

Fluke
Handheld and bench meters, signal sources, analyzers, and oscilloscopes

http://www.fluke.com

Keithley
Data acquisition systems, function generators, digital meters, and power supplies

http://www.keithley.com

LeCroy
Oscilloscopes, logic analyzers, and protocol analyzers

http://www.lecroy.com

Saleae
Low-cost USB logic analyzers

http://www.saleae.com

Stanford Research Systems
Scientific data acquisition and control instruments, plus test and measurement
equipment

http://www.thinksrs.com

Tektronix
Oscilloscopes, logic analyzers, digital meters, signal generators, spectrum ana-
lyzers, power supplies, data acquisition units, etc.

http://www.tek.com

580 | Appendix B: Instrument Sources

http://www.us.anritsu.com
http://www.bitscope.com
http://www.bkprecision.com
http://www.elandigitalsystems.com/measurement/index.php
http://www.fluke.com
http://www.keithley.com
http://www.lecroy.com
http://www.saleae.com
http://www.thinksrs.com
http://www.tek.com

Used Test Equipment Sources
The following is a small sample of companies offering used and refurbished test equip-
ment. Although it is possible to get some great deals on equipment from eBay or your
local surplus outlet, when you buy from a company that specializes in used test equip-
ment it is usually calibrated (or it can be, if you ask) and usually carries a 90-day war-
ranty against failure. Typically you will also get all the necessary probes, cables, and
leads, instead of dealing with the frustration of someone on eBay pulling them off
beforehand in the hopes of selling them separately. In some cases a user manual is also
included at no extra charge.

AccuSource Electronics
http://www.accusrc.com

Metric Test
http://www.metrictest.com

Test Equipment Depot
http://www.testequipmentdepot.com

Test Equity
http://www.testequity.com

Tucker Electronics
http://www.tucker.com

Manuals
Sometimes a manual for an older piece of equipment just can’t easily be found, either
because the manufacturer no longer exists or because it’s just not available for down-
load. If you find yourself in such a situation, you might want to check out the following
websites. In many cases they have the original manuals available, rather than just a PDF
file, but be prepared to pay between $20 and $50, and sometimes more if the manual
is large or rare. Sometimes the electronic document versions are free for download.

eServiceInfo
http://www.eserviceinfo.com

Manuals Plus
http://www.manualsplus.com

Technical Specialists
http://schematics4you.com

Your Manual Source
http://www.yourmanualsource.com

Manuals | 581

http://www.accusrc.com
http://www.metrictest.com
http://www.testequipmentdepot.com
http://www.testequity.com
http://www.tucker.com
http://www.eserviceinfo.com
http://www.manualsplus.com
http://schematics4you.com
http://www.yourmanualsource.com

Index

Symbols
16bpp image, 483
8bpp PGM image, 480
>> (chevron operator), 114
>>> (Python command-line prompt), 62
{ } (curly brackets), 127
(hash character)

preprocessor directives and, 128
Python, 85

+ (plus) operator (Python), 72
?: (ternary conditional), 130

A
AC (alternating current), 19, 30
AC circuits, 30–39
AC power controller simulator, 371–380

(see also SPC)
simulator block diagram, 373

activity diagrams, 267
ADCs (analog-to-digital converters), 4, 44, 45
aliased cyclic function readout, 371
ALL command (SPC), 375
Allen wrenches, 197
alternating current (AC), 19, 30
amperes (A or amp), 20
amplitude, 31
AN/ARC-220 mobile radio, 213
analog data, 2, 3
analog data sampling, 45
analog I/O, 44
analog-to-digital converters (ADCs) (see ADCs)
AND gate logic, 24
AND operator (C language), 139
ANSI bar graph example output, 504

ANSI escape sequence standards, 500
ANSI X3.64, 500
ansicon package, 501
ANSITerm class, 505
arithmetic operators (C language), 134
arithmetic operators (Python), 78
arrays (C language), 150
ASCII character encoding standard, 439
ASCII data files, 438–463

configuration files, 449–451
flat files, 442
I/O utilities for, 454–463
Microsoft Excel and, 443
Python handling of ASCII characters, 439
reading, 445
string conversion with AutoConvert.py,

451
writing, 444

ASCIIData formats, 454
ASCIIDataWrite and ASCIIDataRead classes

(Python), 454–463
assert statement (Python), 86
assertEqual() and assertNotEqual() methods,

291
assignment operators (C language), 136
assignment operators (Python), 81
assignment statement (Python), 86
asynchronous serial data communication, 52
AT bus, 397
atom organization, 16
attributes, 60
augmented assignment operators (C language),

137
augmented assignment statements (Python),

86

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

583

AutoConvert.py module, 451
automated instrumentation, xiii

B
backshell assemblies, 209
bang-bang controllers, 326–329

Python, implementation in, 341
barrier terminal block, 213
basic ANSI control sequences, 501
basic USB connector types, 211
basic use case elements, 260
Batchelder, Ned, 293
baud, 222
bench model digital multimeters, 193
bgansi.py, 502
binary data files, 463–466

flat files, 464
image data (see image data)
Python, handling with, 466

ctypes module, 466–471
struct module, 471–476

binary shift operators (Python), 81
binding, 528
bitwise operators (C language), 138
bitwise operators (Python), 80
block diagrams, 266, 310
blocking function calls, 421
Boa Constructor wxPython GUI builder, 536
Boa’s widget layout window, 536
break statement (C language), 149
break statement (Python), 87
“bubble” symbols, 24
bug tracking, 299
built-in scope (Python), 101
bus-based hardware I/O devices and Linux,

412
bus-based interfaces, 241

advantages and disadvantages, 242
DAQ cards, 244
GPIB cards, 244
PCI bus, 242

bytecode, 61

C
C programming language, 123

ANSI C standard library, 158
building C programs, 159–162
code blocks, 127

development tools, 163
installing, 123
libraries, 125
online resources, 164
operators, 134–140
Python extensions (see Python extensions)
return types of functions, 127
simple program example, 125
software development using, 124–163
standard data types, 132
user-defined types, 133

cable, 203
callable methods, 171
callbacks, 529
capacitors, 32
case conversion of ASCII characters, 439
cdll interface class, 184
checklists, 283
chipsets, 397
CHK command (SPC), 376
chr() function (Python), 440
circuit schematics, 20
circuit theory, 19
circular connectors, 212
class statement (Python), 103
classes, 60
ClearPortBit() function, 183
closed-loop control systems, 6, 305
closed-loop water tank level control, 319
cmd.exe, 487
code coverage analysis, 293
code examples, xx
coding, 279–300

code reviews, 282
checklists, 283–285

coding styles, 280
guidelines for Python, 117

connecting to hardware, 295
defect tracking, 299
documentation, 296
organizing of code, 281
unit testing, 286–295
user documentation, 300
version control, 299

com0com package, 236, 372, 501
com2tcp, 236
Comedi project and package, 412

Python, using with, 414
supported hardware, 413

584 | Index

command line (Python), 61
command-line options, 63

comments (C language), 127
comments (Python), 85, 116
common electronic schematic symbols, 20
common method flags (Python extensions),

172
comparison operators (C language), 137
comparison operators (Python), 79
compiled programs, 124
complex data type, 65
compound statements (Python), 87
config files, 449
connector backshells, 209
connectors, 208–218

connector failures, 218
crimp-type connectors, 216
crimp-type spade lugs, 214
proper wiring of, 217

console interface, 487–500
console1.py, 488
console6.py, 512
constructor methods (Python), 65
contact bounce or contact chatter, 42
containers, GUI, 526
continue statement (C language), 149
continue statement (Python), 87
contract-style requirements, 258
control error, 7
control output, 4
control systems, 304

bang-bang controllers, 326–329
closed-loop controls, 319–325
control system types, 318–340
examples, 9–13
hybrid control systems, 340
open-loop controls, 319
proportional, PI, and PID controllers, 332
Python, implementation in, 340–346

bang-bang controller, 341
linear proportional controller, 340
simple PID controller, 342–346

sequential control systems, 330–332
control systems theory, 304

block diagrams, 310
control signal, 311
control system diagram symbols, 310
control system notation, 305
controlled output, 311

controlled variable, 311
discrete-time control systems, 315
feedback, 312
input-output relationships, 311
linear control systems, 305
nonlinear control systems, 306
sequential control systems, 308
software flow, 317
software timing, 318
terminology, 309
time and control system behavior, 315
time and frequency, 313
transfer functions, 312

controls (GUIs), 526
counters, digital, 49
coverage package, 293
CPS (characters per second), 222
crossover cable, 224
CSV (comma-separated values) files, 448
csv library (Python), 449
ctypes library (Python), 167, 466

basic data types, 186
ctypes_struct.py, 466
foreign function library, 184–187

loading external DLLs, 184
using, 187

ctypes, C, and Python types, comparison of,
186

curly brackets ({ }), 127
current, 20
current flow, 17
current sink and current source, 27
curses library (Python on Unix/Linux), 515–

524
advantages and disadvantages, 523
curses history, 516
selected functions and windows methods,

517
simple data display using, 517–522

subwindows, adding, 522
curses window hierarchy, 516
curses1.py, 518
CVS, 299
cyclic functions, 371

D
D1000 series data transmitters, 553

D1000 commands, 556
D1121 thermal chamber application, 553

Index | 585

DACs (digital-to-analog converters), 4, 44, 48
DAQ (Data Acquisition) cards, 244

(see also bus-based interfaces)
data acquisition, 2
data acquisition and control systems, xiv
data displayed as an image, 477
data files

ASCII data files (see ASCII data files)
data I/O, 414–421

handling data I/O errors, 426–431
handling inconsistent data, 431–435

noise and averaging, 434
waiting for stability, 432

reading data, 415–416
writing data, 416–421

data I/O interface software, 395
data I/O methods, 423–426

acquiring data using threads, 424
on-demand data I/O, 423
polled data I/O, 423

data sink and data source, 224
data types (C language), 132
data types (Python), 65
DB-9 null-modem adapter, 225
DB-9 pin and socket numbering, 209
DB-type connectors, 208
DC (direct current), 19
DC blocking, 33
DC circuits, 24–30
DC motor control, 51
DC offset or bias, 33
DCE (Data Communications Equipment), 223
debuggers (C language), 163
debuggers (Python), 120
DEC VT100 VDT control sequences set, 501
def statement (Python), 101
defect tracking, 299
defects, testing for (Python), 115
deferred imports (Python), 115
#define macro directive, 129
delimiters, sequence objects (Python), 69
delta, 432
derived requirements, 258
destructor methods (Python), 65
development environments (Python), 117–120
DevSim

cyclic and file input threads, 359
cyclic functions, 371
DevSim API, 357–362

DevSim internal logic, 357
DevSim methods, 362–366
examples, 366–368
noise, 371
parameter accessor methods, 363
simulator control and I

O methods, 365
usage example, 368
user-defined functions, 368

dictionaries (Python), 75
risks of using as function parameters, 115

dictionary methods (Python), 75
digital data, 3
digital logic symbols, 23
digital multimeters (DMMs), 189, 192–195

usage tips, 194
digital oscilloscope display, 199
digital-to-analog converters (DACs) (see DACs)
digitizers, 403
direct current (DC), 19
discrete digital I/O, 40
discrete-time closed-loop control system, 316
discrete-time control systems, 315
DLL wrapper extension and support module,

184
DLLs (dynamically linked libraries), 167
DMM data capture, 548
DMM function and DMM range codes, 550
do-while loop (C language), 148
docstrings (Python), 104, 116, 296
drivers, 398
droop, 338
DTE (Data Terminal Equipment), 223
DTE/DCE MODEM communications, 223
dual-trace oscilloscopes, 198
duty cycles, 39

E
ECB command (SPC), 376
ECMA-48, 500
EIA-232 interface (see RS-232 interface)
EIA-485 interface, 225
electric charge, 17
electromagnetic tachometer, 37
Electronic Industries Alliance (EIA), 218
electronic tool sources, 192
electronics, 15–55

AC circuits, 30–39
circuit schematics, 20

586 | Index

circuit theory, 19
DC circuit characteristics, 24–30
electric current, 17
electrical charge, 15
interfaces, 39–55

electronics supplies, 203
electronics test instrumentation, 9
electrostatic cathode ray tubes (CRTs), 198
else block (Python), 89
endwin() function, 516
Epydoc tool, 297

output example, 298
error handling, testing, 277
event handlers and event sources, 528
event-driven programming, 528
exception trapping and handling (Python), 90
execution environment, 361
exiting the Python command line, 62
exponent operator (Python), 78
expressions (C language), 143
expressions (Python), 77
extended C data types, 132
extensions, 167

F
failure analysis, 273
failure responses, 273
farads (F), 32
faults, 352
feedback, 6, 304, 312
feedback control systems, 319–325
feedback controllers, 305
FeedbackCommand class commands, 567
FETCh command, 404
fields, 442
file I/O modes, 113
file methods, 114
FileUtils module, 356
FileUtils.py module, 454–463
find() method (Python), 73
flat binary files, 464
flat files, 442
floor division operator (Python), 78
flowcharts, 266
for loop (C language), 148
for statement (Python), 89
formal use case, 261
frames, 221
frequency, 19, 30

frequency domain, 313
frequency spectrum analyzer (FSA), 313
Frolov, Vyacheslav, 236
FSA (frequency spectrum analyzer), 313
full-duplex, 53, 219
function blocking, 421
function return values and tuples (Python),

115
functional requirements, 257
functional testing, 274

pass versus fail results over time, 279
regression testing, 278
test cases, 274
testing error handling, 277
tracking progress, 279

functions (C language), 156
functions, defining (Python), 101

G
garbage collection (Python), 65, 73
gating conditions, 332
gcc compiler, 123
generic digital oscilloscope, 198
generic test case template, 276
generic wrappers (Python extensions), 178
geometry management, 530
geometry of images, 476
get() method (Python), 76
GetData() function, 424
getFeedback() method, 566
global module variables, 171
global scope (Python), 99
global statement (Python), 87
global variables (Python), 115
gnuplot, 383–391

gnuplot.ini file, 387
Microsoft Windows, installation on, 384
simulator data, plotting with, 388–391
using, 385

via gnuplot.py package, 387
via popen() method (Python), 386

goto statement (C language), 149
GPIB (General Purpose Interface Bus), 10, 237

connections, 239
PCI GPIB cards, 244
signals, 238
via USB, 239

gptest.py, 386
grid method, 531

Index | 587

GUI object inheritance, 527
GUIs (Graphical User Interfaces), 524–529

display structure, 527
functionality, 528
history and concepts, 524
main loop, 529
object-oriented character, 527
Python-based GUIs, 526–529
TkInter implementation, 529–535

geometry management, 530
planning, 530
TkInter example, 531–535
tools and resources, 535

wxPython implementation, 535–543
building a GUI, 536
designing a GUI, 536
tools and resources, 542

H
half-duplex, 53, 219
hand tools, 190
handshaking, 55
header files (C language), 159
help() command (Python), 62
help() function (Python), 66
help(str) command (Python), 73
henries (H), 36
Hertz (Hz), 19
hex wrenches or keys, 197
hexadecimal notation, 66
Hood, Jason, 501
horizontal sweep, 199
hybrid control systems, 340
hysteresis, 327

I
I/O handler, 398
I/O transaction, 422
identity operators (Python), 82
IDEs (integrated development environments),

119
for Python, 117

IEEE-488 (see GPIB)
if statement (Python), 88
if-else statement (C language), 143
image data, 476–485

image formats, 477
ImageJ tool, 480

import statement (Python)
cyclic imports, 108
methods, 106
processing, 107

#include directive, 129, 171
#include statements, 127
indentation and Python program structure, 84
index() method (Python), 71
inductors, 36
INI files, 449
initialization, 171
INITiate command, 404
input-output relationships, 311
InputUtils.py, 288
InputUtils2.py, 297
instrument interface components, 398
instrumentation, 1
instrumentation systems, xv
integer (Python object type), 187
integration requirements, 258
intensity maps, 476
interface faults, 352
interface formats and protocols, 396–406

IVI standards, 398
SCPI standard, 401
unique protocols, 404

command and response formats, 405
VISA standard, 401

interface support packages (Python), 406–412
interfaces, 39–55
interpreted programming languages, 61
ISA bus, 397
items() method (Python), 76
IVI (interchangeable virtual instrument), 398

architecture overview, 400
IVI-compliant drivers, 400

J
Jacobson, Ivar, 260
join() thread object method, 425
joules (J), 20

K
Kapton tape, 203
key/value pair (KVP) organization, 449
keys() method (Python), 77
keywords (Python), 85

588 | Index

L
LabJack U3 device, 560

connections, 560
driver structure, 563
installing LabJackPython, 562
LabJackPython.py module, 563
Linux installation, 562
Python interface, usage with the

getFeedback() method, 566
U3 class (Python), 565
U3 configuration, 565
U3 interface class derivation, 563
u3.py module, 563
u3ledblink.py, 568
Windows installation, 562

laboratory instrumentation, 11
ladder diagrams, 332
Laplace transform, 312
Leyden jar, 32
libraries (C language), 125, 161
libvisa.so.7, 411
Liechti, Chris, 406
lightweight process, 361
LIM command (SPC), 377
line termination in different operating systems,

439
linear control systems, 305
linear proportional controller, Python

implementation, 340
lineman’s pliers, 197
lines, 40
linker (C language), 161
Linux

bus-based hardware I/O devices, using with,
412

comedi drivers, 412
console interfaces, 487

lists (Python), 68, 69
ljust() method (Python), 73
local scope (Python), 97
local variables (C language), 127
logic analyzers, 199
logical operators (C language), 137
logical operators (Python), 79
long (Python object type), 187
Loper, Edward, 297
luminance maps, 476

M
macros, 128
main() function (C language), 125
mainloop() method (Python), 529
make utility (C language), 162
map() method (Python), 481
mapped objects (Python), 75
mask, 183
MDI (multiple document interface), 525
MEASure command, 403
membership operators (Python), 82
memset() library function (C language), 127
message sequence charts (MSCs), 268
method flags (Python extensions), 172
method table (Python extensions), 171, 172
methods, 60
methods, defining (Python), 101
METH_KEYWORDS, 173
METH_NOARGS, 174
METH_VARARGS, 173
Microsoft Visual Studio, 123
Microsoft Windows

console interfaces, 487
curses library module, absence on, 515
electronics hardware and, 168
Tera Term, 380
VSPs (virtual serial ports), 235

MIL-type circular connector, 212
MIL-type crimp pin, 216
millihenries (mH), 36
MinGW (Minimalist GNU for Windows), 124
miniature socket sets, 197
minicom, 381
models, 350
module global variables (Python), 115
modules (Python), 60, 101

considered as objects, 116
creating, 96–105
importing, 106–108

MSCs (message sequence charts), 268
multidrop configuration, 227
multifunction DAQ cards, 244

N
namespaces (Python), 66

scope and, 96–101
NAND (Not-AND) gate logic, 24
Netpbm image format family, 477

Index | 589

NewID() function (Python), 116
noise (in simulations), 371
noisy data, 434
nonblocking function calls, 421
None (Python object type), 187
nonlinear control systems, 306
nonlinear pulse control, 307
nonprintable characters, risks of using, 439
null-modem cable, 224
numeric data objects (Python), 66
nut drivers, 197

O
object files (C language), 160
object types (Python), 64
object-oriented programming, 60
octal notation, 66
ohms, 20
Ohm’s law, 25
oledll interface class, 184
Omega D1112 RS-485 data transmitter, 553
Omega Engineering, 553
on-off controllers, 326
open() method, 113
open-collector output, 43
open-loop control systems, 5, 319
operators (C language), 134–140

operator precedence, 140–142
operators (Python), 78–83

operator precedence, 83
OR operator (C language), 139
orbital shells, 16
ord() function (Python), 440
oscilloscopes, 198

bandwidth, 199
overstuffed toolkit, 190

P
packages (Python), 101
pack_struct_file.py, 475
padding, 465
panel-mount connectors, 209
parallel interfaces, 54
pass statement (Python), 87
PC bus interface hardware, 241–244
PCB-mount terminal block, 214
PCBs (printed circuit boards), 208

PCI (Peripheral Component Interconnect) bus,
242

PCI DAQ (Data Acquisition) cards, 244
PCI Express bus, 242
PCI GPIB interface cards, 244
PDevAPI.c, 179
PEP-257, Docstring Conventions, 281
PEP-8 coding style, 117
PEP-8, Style Guide for Python Code, 281
performance requirements, 257
PGM (Portable Grayscale Map) image format,

478
file structure, 478

pgmtest.pgm, 480
pgmtest.py, 479
PGMWrite() function (Python), 484
physical interfaces, 207

older interfaces, 245
PID (proportional-integral-derivative)

controllers, 334–339
Python, implementation in, 342–346

PID control block diagram, 335
pins, 40
pipes, 383
pixel data size, 477
place geometry manager, 531
planning, 249

project objectives, 253
projects, defining, 250
requirements, 253–265

capturing requirements, 264
characteristics of well-formed

requirements, 256
requirement types, 257
software requirements in development

flow, 257
traceability, 261
use cases, 258

requirements-driven design, 251
statement of need, 252

plant, 2, 319
PLC (programmable logic controller), 332
plug-in circuit boards, 396
pointers (C language), 151–153
popen() method (Python), 386
ports, 40
POW command (SPC), 375
power, 20
preprocessor directives, 127, 128–132

590 | Index

print statement (Python), 87, 114, 445
procedural programming, 60
process, 361
process control, 13
programmable logic controller (PLC), 332
proportional control term, 337
proportional controller droop, 338
proportional term control response, 337
pseudocode, 270
pull-up and pull-down resistors, 43
pulse-width modulation (PWM), 50
PWM (pulse-width modulation), 50
PyArg_Parse() method, 174
PyArg_ParseTuple type codes, 174
PyArg_ParseTuple() method, 173, 174
PyArg_ParseTupleAndKeywords() method,

173, 174
PyArg_UnpackTuple() method, 174
PyArg_VaParse() method, 174
.pyd extension, 168
pyParallel package, 410
pySerial package, 406–409
PySims package, 357
Python extensions, 167

(see also C programming language)
C extension API, 169–184

API types and functions, 171
extension source module organization,

169
generic discrete I/O API, 175–177
generic wrapper example, 178–181
method flags, 172–174
method table, 172
passing data, 174

calling extensions, 181–184
error checking, 182

creating, 168
ctypes library (see ctypes library)
hierarchy, 168

Python manpage, 63
Python programming language, xv, 59

command line, 61
curses library (see curses library)
data types, 65

ctypes data types, compared to, 186
input and output, 110–114

command-line parameters, 112
console output using print, 114
files, 113

redirecting print output, 114
installing, 60
interface support packages, 406–412
loading and running programs, 108
objects, 64
Python extensions (see Python extensions)
simulators, creating in (see Python

simulators)
text editors and IDEs, 117
unittest facility, 289

Python simulators, 356–380
AC power controller simulator, 371–380
data I/O simulator, 357–371
packages and modules, 356

PythonCard, 543
PyUniversalLibrary, 412
PyVISA package, 411
Py_BuildValue() method, 174

Q
quantization and quantization error, 45
quoting of string literals (Python), 91

R
range() function (Python), 89
rapidly changing average data, 434
raw_input() function (Python), 110
RDD (requirements-driven design), 251
read-modify-write, 183
read183dmm.py, 551
readData() method, 368
readinto() file object method, 469
records, 442
reference input, 311
regression testing, 278
relay driver circuit, 43
replace() method (Python), 73
requirement and test case relationship, 274
requirements traceability matrix, 263
requirements-driven design (RDD), 251
reserved keywords in Python, 85
reset, 339
resistance, 20, 25
resistors, 27
resolution of data, 45
RetCodes module, 356
return statement (Python), 87
rjust() method (Python), 73

Index | 591

Roundup tool, 300
RS-232 and RS-485 interfaces, 218
RS-232 DB-9 pin definitions, 222
RS-232 interface, 53, 219

data formats, 220
signals, 222
versus RS-485, 229

RS-485, 405
RS-485 command-response sequence, 228
RS-485 half-duplex data flow and operation,

228
RS-485 interface, 225
RS-485 interface drivers in two-wire and four-

wire modes, 226
RS-485 signals, 226
RST command (SPC), 377

S
ScaledInput() test cases, 287
schematic wiring notation, 22
schematics, 20
Schleef, David, 412
scope (Python), 96–101
SCPI (Standard Commands for Programmable

Instruments), 401
SDD (software design description), 250, 265–

269
block diagrams, 266
failure analysis, 273
failure responses, 273
flowcharts, 266
functional testing (see functional testing)
graphics, usage in, 266
handling errors and faults, 272
message sequence charts, 268
organization, 270
pseudocode, 270
state diagrams, 268
unit testing, mapping to, 286

SDLC (software development life cycle), 251
SEM command (SPC), 376
SendTrigger() function, 424
SEQ command (SPC), 376
sequence objects (Python), 68
sequential control systems, 5, 9, 308, 330–332

control system states, 331
SFCs, 332

serial interfaces, 51, 207, 218, 547–553

discrete and analog data I/O devices, 553–
558

speed considerations, 559
tpi model 183 DMM, data capture from,

548–553
serial terminal emulators, 380–383

terminal emulator scripting, 381
series and parallel resistance, 29
set and check instrument output, 420
setDataFile() method, 368
setInputSrc() and setOutputSrc() methods,

367
SFCs (sequential function charts), 332
signal switchers, 403
SimLib package, 356
simple LED circuit, 26
Simple Power Controller (see SPC)
SimpleANSI library, 505–515

using, 512
SimpleANSI library module, 505
simulation, 349–350

fidelity, 351
Python simulators, creating (see Python

simulators)
simulating errors and faults, 352
versus the real world, 350

simulation package structure, 356
simulator cyclic data types, 363
simulator fault injection using object variables,

355
simulators, 349

creating, 391
evaluating needs, 392
scope of simulation, 392
time and effort, 393

data I/O simulator (see DevSim)
serial terminal emulators, 380
simulation data, displaying, 383–391

gnuplot, using (see gnuplot)
sine waves, 30
sine_print.c program, 126
sine_print2.c, 131
single-trace oscilloscopes, 198
size of digital data, 3
slope intercept equation, 305
software bang-bang controller, 328
software design description (SDD) (see SDD)
software design process, 265–273

software design description (see SDD)

592 | Index

software development
coding (see coding)

software development life cycle (SDLC), 251
solder cup connection, 215
soldering, 195, 215
soldering guns versus soldering irons, 197
solid-state components, 21
SOR command (SPC), 376
SOW (statement of work), 250
SPC (Simple Power Controller), 372

command set, 374–377
communication with, 374
configuring, 379
interacting with, 379
serial interface and virtual serial ports, 372
simulator internals, 377

SPC command-response MSC, 378
special-purpose interfaces, 219
sprinkler system sequential control, 308
square wave, 39
standard library (C language), 158
state diagrams, 268
statement of need, 250
statement of work (SOW), 250
statements (C language), 143–149
statements (Python), 84–91

blocks and indentation, 84
compound statements, 87
simple statements, 86

static global variables (C language), 124
stdin, 110
stdout, 114
step input, 337
STM command (SPC), 376
stranded versus single-conductor wire, 203
string (Python object type), 187
string indexing (Python), 72
string nulls (C language), 128
strings (Python), 68, 71, 91–96

commonly used string methods, 92
string escape sequences, 95
string format placeholder flags, 94
string formatting, 93
string methods, 91
string quotes, 91

Struct class (Python), 471
struct data type format codes, 473
struct functions, 471
struct module (Python)

16-bit image data, building with, 481
Structure class (ctypes), 467
structure padding, 465
structured programming, 60
structures (C language), 153–156
SubVersion, 299
summing junction or node, 7
summing node or summing junction, 312
supplies, 203
SWIG (Simplified Wrapper and Interface

Generator), 414
SWIG tool, 169

switch statement (C language), 145–147
symbols in circuit schematics, 20
synchronous serial data communication, 51
system faults, 352, 354
system time constant, 317
system-level fault injection, 354

T
tachometer continuity sense, 34
Telecommunications Industry Association

(TIA), 218
Tera Term, 380

TTL (Tera Term Language) scripting
language, 382

Teranashi, T., 380
termcap (Unix), 500
terminal blocks, 213
terminfo (Linux), 500
terms, 335
ternary conditional (?:), 130
test cases, 274
test procedures, 275
text data or text files, 438
text editors, 117
text-based interfaces, 487–524

ANSI display control techniques, 500
basic ANSI control sequences, 501
SimpleANSI library, 505–515
Windows and, 501

consoles, 487–500
curses, 515

textual data display, 491
thread, 361
time and frequency domain graphs, 313
time domain, 313
time-invariant and time-variant systems, 315
timers, 49

Index | 593

tkdemo1.py, 531
tkdemo2.py, 533
tokens, 127
tools, 189–202

assessing quality, 192
electronic tool sources, 192
logic analyzers, 199
new versus used tools, 204
proper use, 191
proper use of test equipment, 202
soldering tools, 195

tpi 183, 404
tpi model 183 data output format, 549
tpi model 183 DMM, 548
traceability, 261
transfer functions, 312
transistor-transistor logic (TTL) voltage, 42
try statement (Python), 90
tstamp, 445
tty0tty package, 373
tuples (Python), 68, 74

returning function values with, 115
typedef (C language), 133

U
UART (Universal Asynchronous Receive-

Transmitter) devices, 53
unary operators (C language), 134
unbounded loops, 148
UNC Python Tools package, 412
unit testing, 286–295

code coverage analysis, 293
definition, 286
implementing, 288–291
mapping to the SDD, 286
Python unittest facility, 289
Python unittest library

assert-type methods, 291
unittest library (Python), 289
upper() method (Python), 73
USB (Universal Serial Bus) interface, 218, 231–

234
LabJack U3, 560–569

installation, 562
LabJack connections, 560
LabJackPython interface, 562

USB connectors, 210
USB interface modules, 13
USB logic analyzer modules, 200

USB-to-GPIB interface, 239
USB-to-serial converters, 236
use cases, 258
user input (Python), 110
user interfaces, 487

text-based interfaces (see text-based
interfaces)

user level, 398
user-defined functions, 368
UTF-8 character encoding, 438
UUT (unit under test), 9

V
valence shell, 16
value tolerance checking, 419
values() method (Python), 77
variables (Python), 65
VDT (Video Display Terminal), 500
version control, 299
vintage Leeds and Northrup resistance bridge

test set, 195
virtual ports, 372
VISA (Virtual Instrument Software

Architecture), 401
visa32.dll, 401, 411
voltage and volts (V), 20
voltage dividers, 29
VSPs (virtual serial ports), 235

W
warmup convergence, 433
waterfall model of software life-cycle, 251
watt (W), 20
waveforms, 38

sine waves, 30
wgnuplot, limitations of, 386
while loop (C language), 148
while statement (Python), 88
widgets, 525, 526
windll interface class, 184
Windows VSPs (virtual serial ports), 235
wire, 203
wire cutters and strippers, 191
wiring, 215–218

correct technique, 217
wrappers, 167
write() method (Python), 113, 445
wxexample.py, 542

594 | Index

wxGlade, 543

X
XOR operator (C language), 139

Z
z-transforms, 316

Index | 595

About the Author
John M. Hughes is an embedded systems engineer with over 30 years of experience
in electronics, embedded systems and software, aerospace systems, and scientific ap-
plications programming. He was responsible for the surface imaging software on the
Phoenix Mars Lander, and has worked on digital engine control systems for commercial
and military aircraft, automated test systems, radio telescope data acquisition, and
realtime adaptive optics controls for astronomy. Hughes has been using Python for
many years in a variety of applications, including the software for a multiwavelength
laser interferometer system for verifying the alignment of telescope mirror segments on
the James Webb Space Telescope. He is currently using Python for imaging systems
simulation and analysis at the University of Arizona.

Colophon
The animal on the cover of Real World Instrumentation with Python is a hooded crow
(Corvus cornix). Known also as a Scotch crow, a Danish crow, a Grey crow, and a
Corbie, the bird enjoys a wide distribution across Europe and the Middle East. Because
the hooded crow is so similar to the common carrion crow, the two were previously
considered to be of the same species. As of 2002, however, Brân Lwyd (as it is known
in Welsh) has enjoyed full species status, and has four recognized subspecies.

The hooded crow’s plumage is mostly ash gray, though it sports glossy black feathers
on its wings, tail, and especially on its head and throat, giving the appearance of the
hood for which the animal is named. When full grown, the birds average a wingspan
of 98 cm, and can measure from 48 to 52 cm in length. Like the carrion crow with which
it is closely associated, the hooded crow is an omnivorous scavenger. It is known for
stealing eggs from the nests of other bird species, and in costal regions will drop mol-
lusks and crabs from a height in order to break them open.

The image of a hooded crow holds special significance in traditional Celtic folklore,
and it is associated with fairies in the Scottish highlands and in Ireland. During the 18th
century, Scottish shepherds were known to make offerings to the animals to prevent
them from attacking their sheep. Elsewhere, a maiden on the Faroe Islands of Denmark
would watch the flight of the hooded crow on the morning of Candlemas to determine
the provenance of her future husband.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	The Programming Languages
	Why Python?
	The Systems
	Methodology
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Instrumentation
	Data Acquisition
	Control Output
	Open-Loop Control
	Closed-Loop Control
	Sequential Control

	Applications Overview
	Electronics Test Instrumentation
	Laboratory Instrumentation
	Process Control

	Summary

	Chapter 2. Essential Electronics
	Electrical Charge
	Electric Current
	Basic Circuit Theory
	Circuit Schematics
	DC Circuit Characteristics
	Ohm’s Law
	Sinking and Sourcing
	More About Resistors

	AC Circuits
	Sine Waves
	Capacitors
	Inductors
	Other Waveforms: Square, Ramp, Triangle, Pulse

	Interfaces
	Discrete Digital I/O
	Analog I/O
	Acquiring analog data
	Generating analog data

	Counters and Timers
	PWM
	Serial I/O
	Parallel I/O

	Summary
	Suggested Reading

	Chapter 3. The Python Programming Language
	Installing Python
	The Python Programming Language
	The Python Command Line
	Command-Line Options and Environment
	Objects in Python
	Data Types in Python
	Numeric data as objects
	Sequence objects
	Lists
	Strings
	Tuples

	Mapped objects—dictionaries

	Expressions
	Operators
	Arithmetic operators
	Logical operators
	Comparison operators
	Bitwise operators
	Assignment operators
	Membership operators
	Identity operators
	Operator precedence

	Statements
	Indentation
	Comments
	Keywords
	Simple statements
	assert
	Assignment
	Augmented assignment

	Compound statements
	pass
	print
	return
	break
	continue
	global
	The if statement
	The while statement
	The for statement
	The try statement

	Strings
	String quotes
	String methods
	String formatting

	Program Organization
	Scope
	Local scope
	Global scope

	Modules and packages
	Functions, classes, and methods
	Built-in scope

	Docstrings

	Importing Modules
	Import methods
	Import processing
	Cyclic imports

	Loading and Running a Python Program
	Basic Input and Output
	User input
	Command-line parameters
	Files
	Console output using print
	Redirecting print

	Hints and Tips
	Module global variables
	Latent defects
	Deferred imports
	Dictionaries as function parameters
	Function return values
	Think of modules as objects
	Use docstrings and descriptive comments
	Coding style

	Python Development Tools
	Editors and IDEs
	Editors
	IDE tools

	Debuggers

	Summary
	Suggested Reading

	Chapter 4. The C Programming Language
	Installing C
	Developing Software in C
	A Simple C Program
	Preprocessor Directives
	#include
	#define

	Standard Data Types
	User-Defined Types
	Operators
	Arithmetic operators
	Unary operators
	Assignment and augmented assignment operators
	Comparison operators
	Logical operators
	Bitwise operators
	Operator precedence

	Expressions
	Statements
	if-else statement
	switch statement
	while loop
	do-while loop
	for loop
	break statement
	continue statement
	goto statement

	Arrays and Pointers
	Arrays
	Pointers

	Structures
	Functions
	Function syntax
	Function prototypes

	The Standard Library
	Building C Programs
	Header files
	Object files
	Libraries
	Linking
	make

	C Language Wrap-Up

	C Development Tools
	Summary
	Suggested Reading

	Chapter 5. Python Extensions
	Creating Python Extensions in C
	Python’s C Extension API
	Extension Source Module Organization
	Python API Types and Functions
	The Method Table
	Method Flags
	METH_VARARGS example
	METH_KEYWORDS example
	METH_NOARGS example

	Passing Data

	Using the Python C Extension API
	Generic Discrete I/O API
	Generic Wrapper Example
	Calling the Extension

	Python’s ctypes Foreign Function Library
	Loading External DLLs with ctypes
	Basic Data Types in ctypes
	Using ctypes

	Summary
	Suggested Reading

	Chapter 6. Hardware: Tools and Supplies
	The Essentials
	Hand Tools
	Be kind to your tools
	Where to purchase tools

	Digital Multimeter
	DMM resolution
	DMM usage tips

	Soldering Tools
	Nice-to-Have Tools

	Advanced Tools
	The Oscilloscope
	Logic Analyzers
	Test Equipment Caveats

	Supplies
	New Versus Used
	Summary
	Suggested Reading

	Chapter 7. Physical Interfaces
	Connectors
	DB-Type Connectors
	USB Connectors
	Circular Connectors
	Terminal Blocks
	Wiring
	Soldering
	Crimping
	Wiring caveats

	Connector Failures

	Serial Interfaces
	RS-232/EIA-232
	RS-232 data formats
	RS-232 signals
	DTE and DCE

	RS-485/EIA-485
	RS-485 signals
	Line drivers and receivers
	RS-485 multi-drop
	RS-232 versus RS-485

	USB
	USB classes
	USB data rates
	USB instrumentation

	Windows Virtual Serial Ports

	GPIB/IEEE-488
	GPIB/IEEE-488 Signals
	GPIB Connections
	GPIB via USB

	PC Bus Interface Hardware
	Pros and Cons of Bus-Based Interfaces
	Data Acquisition Cards
	GPIB Interface Cards

	Old Doesn’t Mean Bad
	Summary
	Suggested Reading

	Chapter 8. Getting Started
	Defining the Project
	Requirements-Driven Design
	Stating the Need
	Project Objectives

	Requirements
	Why Requirements Matter
	Well-Formed Requirements
	The Big Picture
	Requirement Types
	Use Cases
	Traceability
	Capturing Requirements

	Designing the Software
	The Software Design Description
	Graphics in the SDD
	Block diagrams
	Flowcharts
	State diagrams
	Message sequence charts

	Pseudocode
	Divide and Conquer
	Handling Errors and Faults
	Identifying potential failures
	Failure responses

	Functional Testing
	Testing to the Requirements
	Test Cases
	Testing Error Handling
	Regression Testing
	Tracking Progress

	Implementation
	Coding Styles
	Why coding style is important
	Adopting existing coding style guidelines

	Organizing Your Code
	Code Reviews
	Unit Testing
	Defining a unit test
	Implementing unit tests
	assert versus assertEqual() and friends
	Code coverage

	Connecting to the Hardware
	Documenting Your Software
	Version Control
	Defect Tracking

	User Documentation
	Summary
	Suggested Reading

	Chapter 9. Control System Concepts
	Basic Control Systems Theory
	Linear Control Systems
	Nonlinear Control Systems
	Sequential Control Systems
	Terminology and Symbols
	Control System Block Diagrams
	Input-output relationships
	Feedback

	Transfer Functions
	Time and Frequency
	Time and frequency domains
	Time and control systems behavior
	Discrete-time control systems

	Control System Types
	Open-Loop Control
	Closed-Loop Control
	Controlling position—Basic feedback
	Controlling velocity—Feed-forward and PWM controllers

	Nonlinear Control: Bang-Bang Controllers
	Sequential Control Systems
	Proportional, PI, and PID Controls
	Off-the-shelf controllers versus software implementation
	PID overview
	The proportional control term
	PI and PID controls

	Hybrid Control Systems

	Implementing Control Systems in Python
	Linear Proportional Controller
	Bang-Bang Controller
	Simple PID Controller

	Summary
	Suggested Reading

	Chapter 10. Building and Using Simulators
	What Is Simulation?
	Low Fidelity or High Fidelity
	Simulating Errors and Faults
	Interface faults
	System faults

	Using Python to Create a Simulator
	Package and Module Organization
	Data I/O Simulator
	DevSim internals
	DevSim methods
	Some simple examples
	User-defined functions
	Cyclic functions
	Noise

	AC Power Controller Simulator
	The SPC model
	The SPC serial interface and virtual serial ports
	Communicating with SPC
	The SPC command set
	Command descriptions
	SPC simulator internals
	Configuring the SPC
	Interacting with the SPC simulator

	Serial Terminal Emulators
	Using Terminal Emulator Scripts

	Displaying Simulation Data
	gnuplot
	Installing gnuplot on Windows

	Using gnuplot
	Method 1: Using Python’s popen() method
	Method 2: gnuplot.py
	Testing gnuplot.py
	Using gnuplot.py

	Plotting Simulator Data with gnuplot

	Creating Your Own Simulators
	Justifying a Simulator
	The Simulation Scope
	Time and Effort

	Summary
	Suggested Reading

	Chapter 11. Instrumentation Data I/O
	Data I/O Interface Software
	Interface Formats and Protocols
	IVI—Interchangeable Virtual Instrument
	IVI-compliant drivers

	VISA—Virtual Instrument Software Architecture
	SCPI—Standard Commands for Programmable Instruments
	Unique protocols

	Python Interface Support Packages
	pySerial
	pyParallel
	PyVISA

	Alternatives for Windows
	Using Bus-Based Hardware I/O Devices with Linux
	The Comedi project
	Comedi hardware support
	Using comedi with Python

	Data I/O: Acquiring and Writing Data
	Basic Data I/O
	Reading data
	Writing data

	Blocking Versus Nonblocking Calls
	Data I/O Methods
	On-demand data I/O
	Polled data I/O
	Acquiring data using a thread

	Handling Data I/O Errors
	Classes of errors
	Error retry and system termination
	Error/warning message single-shot logic

	Handling Inconsistent Data
	Waiting for stability
	Dealing with noise: Averaging

	Summary
	Suggested Reading

	Chapter 12. Reading and Writing Data Files
	ASCII Data Files
	The Original ASCII Character Set
	Python’s ASCII Character-Handling Methods
	Reading and Writing ASCII Flat Files
	Records
	Writing ASCII data files
	Reading ASCII data files
	CSV files

	Configuration Data
	Basic configuration file organization
	Using configuration files

	Module AutoConvert.py—Automatic String Conversion
	Module FileUtils.py—ASCII Data File I/O Utilities

	Binary Data Files
	Flat Binary Data Files
	Handling Binary Data in Python
	Using the ctypes module to handle structured binary data
	Using struct to handle structured binary data

	Image Data
	PGM
	PGM file structure

	Summary
	Suggested Reading

	Chapter 13. User Interfaces
	Text-Based Interfaces
	The Console
	Example console display
	Reading user input
	OS-specific console I/O
	Linux and Windows text display differences
	Using Python’s msvcrt library module

	ANSI Display Control Techniques
	ANSI and Windows
	Basic ANSI control sequences
	The SimpleANSI library
	Using SimpleANSI

	Python and curses
	curses background
	Python’s curses library module
	A simple data display using curses
	Adding a subwindow

	To Curse or Not to Curse, Is That the Question?

	Graphical User Interfaces
	Some GUI Background and Concepts
	Using a GUI with Python
	GUI objects
	Basic GUI display structure
	GUI functionality
	The GUI main loop

	TkInter
	Planning your GUI
	Geometry management
	Simple TkInter example
	Tools and resources for TkInter

	wxPython
	Designing a wxPython GUI
	Building a simple wxPython GUI
	Tools and resources for wxPython

	Summary
	Suggested Reading

	Chapter 14. Real World Examples
	Serial Interfaces
	Simple DMM Data Capture
	Serial Interface Discrete and Analog Data I/O Devices
	Serial Interfaces and Speed Considerations

	USB Example: The LabJack U3
	LabJack Connections
	Installing a LabJack Device
	LabJack on Windows
	LabJack on Linux

	LabJack and Python
	Installing and testing LabJackPython
	LabJack driver structure
	U3 configuration
	Using the Python interface with the getFeedback() method

	Summary
	Suggested Reading

	Appendix A. Free and Open Source Software Resources
	Appendix B. Instrument Sources
	Manufacturers
	Used Test Equipment Sources
	Manuals

	Index

