

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page i

http://www.syngress.com/solutions
http://www.syngress.com/solutions

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Giulio Ferrari
Andy Gombos
Søren Hilmer
Jürgen Stuber
Mick Porter
Jamie Waldinger
Dario Laverde Technical Editor

Programming

with

™

®

T h e U LTI MATE To o l

fo r M i n d s t o r m s

M a n i a c s !

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack
Proofing™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.
KEY SERIAL NUMBER
001 99K6GTTBE8
002 2WYH4RUJAZ
003 2QMJF6TVXD
004 3JHGF56YZP
005 S45TG2SP9U
006 5VGBBHWE44
007 6Y6Q4V9NFR
008 7MFGM99EFV
009 W3YHVDKPZ4
010 8GFHR5TNU8

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
Programming LEGO® MINDSTORMS™ with Java

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-55-5
Technical Editor: Dario Laverde Cover Designer: Michael Kavish
Technical Reviewer: Simon Ritter Page Layout and Art by: Shannon Tozier
Acquisitions Editor: Catherine B. Nolan Copy Editor: Jesse Corbeil, Michael McGee
Developmental Editor: Kate Glennon Indexer: J. Edmund Rush
CD Production: Michael Donovan

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, Frida Yara, Bill Getz, Jon Mayes, John Mesjak, Peg
O’Donnell, Sandra Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia
Kelly,Andrea Tetrick, Jennifer Pascal, Doug Reil, and David Dahl of Publishers
Group West for sharing their incredible marketing experience and expertise.

Jacquie Shanahan,AnnHelen Lindeholm, David Burton, Febea Marinetti, and Rosie
Moss of Elsevier Science for making certain that our vision remains worldwide in
scope.

Annabel Dent and Paul Barry of Elsevier Science/Harcourt Australia for all their help.

David Buckland,Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan,
and Joseph Chan of Transquest Publishers for the enthusiasm with which they receive
our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Jackie Gross, Gayle Voycey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene
Morrow, Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell and the rest of the great folks at
Jaguar Book Group for their help with distribution of Syngress books in Canada.

Thank you to our hard-working colleagues at New England Fulfilmment &
Distribution who manage to get all our books sent pretty much everywhere in the
world.Thank you to Debbie “DJ” Ricardo, Sally Greene, Janet Honaker, and Peter
Finch.

A special thanks to Matt Gerber at Brickswest for his help and support for our
books.

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page v

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page vi

vii

Contributors

Søren Hilmer (SCJP, SCJD, SCWCD) is Research and Development
Manager at IT+, a company in the TietoEnator group. He currently
works on security related projects involving Single Sign On. Søren holds
a master’s degree in computer science and a bachelor’s degree in physics
from the University of Århus. Søren has been giving talks on program-
ming the RCX with Java, most notably at the JAOO conference in 2000
(www.jaoo.org). He has been programming in Java since 1996, at that
time using Java for coding industrial control systems. Søren would like to
dedicate his part of the book to his wonderful wife Joan and his children,
Rebecca and Sebastian.

Giulio Ferrari works as a Software Developer at EDIS, a leader in pub-
lishing and finishing solution and promotional packaging. He studied
engineering and economics at the University of Modena and Reggio
Emilia, and in the past has developed applications, entertainment software,
and Web sites for several companies. He is fond of physical and mathe-
matical sciences, as well as of puzzles and games in general (he has a col-
lection of 1500 dice of every kind and shape). Giulio co-authored the
best-selling Building Robots with LEGO Mindstorms (Syngress Publishing,
ISBN: 1-928994-67-9) with his brother, Mario and Ralph Hempel (tech-
nical editor), a book that has quickly become a fundamental reference and
source of ideas for many LEGO robotics fans. He has been playing with
LEGO bricks since he was very young, and his passion for robotics started
in 1998, with the arrival of the MINDSTORMS series. From that
moment on, he held an important place in the creation of the Italian
LEGO community, ItLUG, now one of the largest and most important
LEGO users group worldwide. He works in Modena, Italy, where he lives
with his girlfriend, Marina.

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page vii

viii

Jamie Waldinger (SCJP) is a developer at Viant Corporation in Boston,
where he develops Web-enabled systems for a global client base. He has
coded in Java for three years, and holds a bachelor’s degree in business
from the University of Massachusetts. Jamie wishes to dedicate his portion
of this book to his beautiful fiancée, Rory, and also both her and his
loving parents for their endless support.

Jürgen Stuber is one of the administrators of the leJOS project and one
of the few people who have worked on the internals of leJOS. Jürgen has
made important contributions to the leJOS virtual machine, in particular
fixes that made rotation sensors usable and that improved the speed of the
main instruction loop. Jürgen holds a doctorate from the University of
Saarbrücken, Germany. He is currently working as an INRIA postdoc-
toral fellow at the LORIA Research Institute for Computer Science in
Nancy, France. His main research interests are theorem proving and term
rewriting.

Mick Porter (SSJCP, MCP) is a Senior Technical Architect for Logica, a
global systems integrator. Mick specializes in the design and implementa-
tion of wireless and mobile commerce systems.With 15 years of experi-
ence in the IT industry, Mick has worked on an enormous variety of
systems and projects, and over the last few years, he has delivered a
number of major e-commerce systems. Mick holds a bachelor’s degree in
computer science, and became a Sun Certified Java Programmer five years
ago, as well as having passed eight Microsoft Certified Professional exams.
Mick lives in Sydney,Australia, with his wife,Andrea and children, Holly
and Anthony. Mick is glad that his children give him an excuse to play
with LEGO again.

Andy Gombos is a sophomore at John Hardin High School. He has
been programming in Java for four years, and started programming the
RCX with TinyVM almost two years ago. He is the author of the leJOS
Visual Interface and Simlink, two tools for leJOS.Andy wishes to thank
his parents for their support, and Kevin Sheppard for providing him with
software used.

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page viii

ix

Dario Laverde is a freelance Java Software Architect.As the Vice
President of System Architecture at PlayLink, Inc., a Java online games
development company, he created the initial framework of the client/
server architecture and graphical user interfaces. Prior to that he was a
Senior Applications Developer at UGO, an online entertainment portal
and InterWorld, an e-commerce software company where he developed
online community software. He has programmed with Java for six years,
and C++ for 10 years. Dario holds a bachelor’s degree in electrical engi-
neering from Manhattan College. He is the current Chair of C++ and
Java SIG (Special Interest Group) of the NYPC Users Group.

Technical Editor

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page ix

x

Simon Ritter (CNA, Certified Java Programmer) is a Technology
Evangelist with Sun Microsystems, Inc. He currently assists developers in
understanding the latest Java technologies being created by Sun
Microsystems, both through presentations and publishing on the Web. His
specialties include most areas of Java, from the Micro Edition through to
the Enterprise Edition. Simon’s background includes positions as a Senior
Consultant at AT&T, UNIX System Labs, and Novell. He has worked for
Sun since 1996 in roles covering Java development and consultancy.
Simon has created and delivered presentations and demonstrations using
Java and the LEGO MINDSTORMS system around the world.

Technical Reviewer

177_LEGO_Java_FM.qxd 4/3/02 1:09 PM Page x

Contents

xi

Foreword xix

Chapter 1 Introducing LEGO MINDSTORMS 1
Introduction 2
The LEGO MINDSTORMS RIS Kit 2

A Brief History of the LEGO
MINDSTORMS RIS 3

What’s Included with the Robot Kit 4
RCX:The Robot’s Brain 7

How It Works 7
The Physical Structure 7
The Logical Structure 9

Expanding the RCX Brain 11
Replacing the RIS Software 11
Replacing the RCX Firmware 14

The RIS Software Environment 16
Installing the Firmware into the RCX 16
A Visual Programming Interface: RCX Code 18

RCX Bytecodes 20
The LEGO Assembly Code for the RCX 20

LEGO Expansion Kits 21
Alternative Processing Units 22
Add-on Building Elements 24

Summary 26
Solutions Fast Track 26
Frequently Asked Questions 28

RCX: The Robot’s Brain

■ The RCX is a
microcomputer than
interfaces with input
and output devices.
Programs can be
written on a PC and
then downloaded to
the unit through the IR
tower.

■ The RCX uses two types
of memory: read-only
memory (ROM) and
modifiable random
access memory (RAM).

■ The RCX can be
expanded in two ways:
using a different
programming software
like NQC or the Java
APIs, or replacing the
default firmware with a
new one.

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xi

xii Contents

Chapter 2 The Java Communications API 31
Introduction 32
Overview of the Java Communications

Extension API (JCE API) 32
Understanding the JCE Framework 34

Port Discovery and Enumeration 34
Port Ownership Management 37
Asynchronous event-based I/O 42
Encapsulation of Underlying

Native Ports 43
Java Communication API’s Event Based
Architecture 43

Installing and Configuring the
Java Communications API 46

Installing the Native Library 46
Installing the Java comm.jar Library 47

The javax.comm.properties
Configuration File 47

Configuring your Development
Environment 48

Reading and Writing to Serial Ports 50
Simple Read Example 50
Simple Write Example 54

Debugging with Serial Ports:
The “Black Box” Example 57

Selected Code 62
Extending the Java Communications API 64

Using More than Serial or Parallel Ports 65
USB Port Access 68

Summary 76
Solutions Fast Track 77
Frequently Asked Questions 78

Chapter 3 Communicating with
the RCXPort API 81

Introduction 82
Overview of the RCXPort Java API 82

Serial Port Control and
Status Signals

Abbreviation Definition

RTS Request To
Send

CTS Clear To
Send

DTR Data
Terminal
Ready

DSR Data Set
Ready

RI Ring
Indicate

CD Carrier
Detect

OE Overrun
Error

FE Framing
Error

PE Parity Error

BI Break
Indicator

DA Data
Available

BE Output
Buffer
Empty

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xii

Contents xiii

How RCXPort Works 82
Formatting RCX Commands 82
RCXPort Object Model 84

Limitations of RCXPort 85
Compiling Java into Machine Code 85
Restrictions of Using Direct Mode 85
Reliance on Java Communications API 86

Programming the RCX Using RCXPort 86
Downloading Programs with RCXPort 91
Interfacing External Software with RCXPort 93
An Advanced Example Using RCXPort 97
Summary 106
Solutions Fast Track 106
Frequently Asked Questions 108

Chapter 4 Communicating with
the RCXJava API 111

Introduction 112
Designing an RCX Java Communications
Architecture 112

The Basic Components of an RCX API 122
Port Configuration and Error Handling 122
Protocol Management and

Message Parsing 122
Tower Communications 123
RCX Communications 123

Reusability: Protocols and Ports 123
Supporting Similar Protocols 123
Using Java Interfaces to Support

Ports Other than Serial Ports 124
Overview of the RCXJava API 124

The RCX Package 125
Classes 125
Interfaces 126
Exceptions 127

Troubleshooting
Problems with
RCXPort

There are several things
that could potentially go
wrong when trying to run
RCXPort. The more
common mistakes are
listed below:

■ Make sure your RCX is
turned on and within
range of the IR tower.

■ Make sure the IR tower
is properly connected
to the correct serial
port.

■ Make sure that another
program (possibly
running in the
background) isn’t using
the serial port.

■ Make sure you have
named the correct
serial port (COM1, for
instance) in the
command line.

■ If you are downloading
byte code from a file,
make sure that file is in
the same directory as
RCXPort.

■ Make sure you have
downloaded the Java
Communications API,
and that it is correctly
installed.

■ Make sure that your
classpath references
both rcxport.jar and
comm.jar.

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xiii

xiv Contents

Using the RCXLoader Application 129
The User Interface 131

Handling and Parsing Response
and Error Messages 131

Beyond Serial Port Communications:
The RCXApplet Example 131

Communicating over the Network 132
Using Sockets 135

Building and Extending the Simple Applet 139
Direct Control Programming

for the RCX Using Java 147
Basic Remote Control Application 147
Creating a Direct Control

Framework for Java Programs 150
Direct Control Using AI 151

Summary 164
Solutions Fast Track 165
Frequently Asked Questions 167

Chapter 5 The leJOS System 169
Introduction 170
Basic leJOS Usage Guidelines 170

Using the lejosc Compiler 172
The LEGO Java Operating System 173

The TinyVM 176
Overview of the leJOS Architecture 177

Exploring the josx.platform.rcx Package 178
Using the Button and ButtonListener

Classes 179
Using the MinLCD, LCD, Segment,

LCDConstants, and TextLCD Classes 180
Using leJOS:A Simple Example 195

Controlling Motors 195
Reading Sensors 196

Summary 200
Solutions Fast Track 200
Frequently Asked Questions 202

RCXLoader

Create Custom
Components

Q: What happens if more
than ten programs are
downloaded to the
RCX at once?

A: The 11th (and further)
programs will appear
in the program list,
represented using
blanks.

Q: What if I have a LEGO
tower connected to
the USB port?

A: Set the RCXTTY
environment variable
to the value USB,
instead of to a serial
port value.

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xiv

Contents xv

Chapter 6 Programming for the leJOS
Environment 203

Introduction 204
Designing Java Programs to Run in leJOS 204

Using Memory Wisely 205
Using the Right Java Classes

(and Using Them Correctly) 206
An Advanced Programming

Example Using leJOS 210
Controlling the Steering 222

Restricted Steering 223
Getting Back to the Line 225

Debugging leJOS Programs 236
Using Sounds and the LCD 236
Exception Handling with leJOS 237

Testing leJOS Programs 238
Using the leJOS Simulator 238

Summary 241
Solutions Fast Track 241
Frequently Asked Questions 243

Chapter 7 leJOS Tools 245
Introduction 246
Programming Environments for leJOS 246

The Command-Line Tools
that Interact with the RCX 247

Using the lejosc Compiler 247
Using the lejos Linker 248
Using the lejosfirmdl Downloader 250

The Command-line leJOS Emulator 251
Using the emu-lejos Emulator 251
Using the emu-lejosrun Linker 251

Using Exisiting IDEs 251
Configuring Forte 252

Using the leJOS Visual Interface 253

Debugging leJOS
Programs

■ The best way to debug
a leJOS program is to
use the Sound and LCD
classes in unison to
provide you with
feedback of the robot's
state.

■ Normal Java exception
handling applies to
leJOS, allowing you to
separate code for
normal operation and
code for error
situations.

Dialog to Create a
New Simulator Run

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xv

xvi Contents

The leJOS Visual Interface 253
Installing lVI 254
Setting Up lVI 255
Basic Usage 257

Using a leJOS Simulator: Simlink 258
Getting Started with Simlink 258

Installing and Configuring Simlink 260
Running Your First Simulation 261

Designing a Floor Plan for Simlink 262
Non-visual Declarations 264
Visual Declarations 264
Navigational Declarations 268

Creating a New Simlink Robot Body 269
Creating a Body: Passive Components 270
Active Body Classes: Sensors

and Wheels 272
Creating a Simple Robot Design 277
Future Tools for Designing Robots 280

Additional Tips and Tools for leJOS 281
RCXDownLoad 282
RCXDirectMode 283

Summary 285
Solutions Fast Track 285
Frequently Asked Questions 287

Chapter 8 leJOS Internals 289
Introduction 290
Advanced Usage of leJOS 290

Multiprogram Downloading 291
Storing Persistent Data 292

Examining leJOS Internals 297
From Source Code to Execution 297
Inside the leJOS Linker 299

The C Wrapper 299
The Java Main Program 300
Building the Binary 302
The leJOS Binary Format 303

Encoding of Java
Types in Signatures

Java Type Encoding

void V

boolean Z

char C

byte B

short S

int I

long J

float F

double D

package..... Lpackage/
package.Class .../package/

Class;

array [(type of
elements
follows)

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xvi

Contents xvii

Inside the leJOS Firmware 304
The Structure of the leJOS Virtual

Machine 305
Real-Time Behavior 306
RCX Memory Layout 308
The Emulator 310

The leJOS Source Code 311
Extending leJOS with Native Methods 314

Native Methods in leJOS 314
Adding a Native Method 315

Additional Tips and Tricks with leJOS 323
Changing Stack Sizes 324
Determining the Amount of Free Memory 324
Measuring Latency 324

Summary 327
Solutions Fast Track 328
Frequently Asked Questions 330

Chapter 9 Programming LEGO
MINDSTORMS with Jini 333

Introduction 334
Overview of the Jini Architecture 334

Jini as a Network Protocol 336
A Simple Jini Service Example 337

What’s Required for Installing and
Running Services 337

A Simple Service and Client 341
Proxies and Service Architectures 355

Selecting the Right Architecture 356
Using Proxies 356

A RCX Jini Proxy Service 356
Why a Proxy? 356
Interfacing with the RCX Java API 358

Using the RCX Jini Service:
Example Server and Client 358

A RCX Jini Server 359
A RCX Jini Client 378

Overview of Jini

■ Jini is a Java tech-
nology built on top of
RMI, enabling clients
and services to interact
in a network with little
administrative over-
head.

■ One feature of Jini is
that it is vary appli-
cable to embedded
devices, including
devices like the RCX.

■ The Jini Technology
Starter Kit (TSK)
includes all of the
required jar files as well
as some service imple-
mentations such as
reggie, an implementa-
tion of a lookup
service.

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xvii

xviii Contents

Summary 394
Solutions Fast Track 394
Frequently Asked Questions 396

Appendix A Resources 399

Appendix B Programming
LEGO MINDSTORMS with Java Fast Track 407

Index 421

177_LEGO_Java_TOC.qxd 4/3/02 2:03 PM Page xviii

I purchased my first LEGO MINDSTORMS Robotics kit in 1998. I felt like a child
on Christmas morning as I opened up the box and found the hundreds of LEGO
pieces and the RCX—the small programmable brick that was the foundation of
MINDSTORMS.As I began to build my first robots and experiment with the
included software, my excitement turned to disappointment; I quickly realized that
the software included for programming the RCX was geared to a younger or novice
audience. It only required the use of a simple drag-and-drop visual interface, and I
wondered if I could program the RCX’s “brain” without having to use the included
software.Well, as it turns out, a number of programming enthusiasts had already
begun to tackle that same issue, notably Kekoa Proudfoot, who in fact had become a
leader in the endeavor by documenting the protocol and RCX internals. Kekoa and
a few other individuals had begun to write programs. At first these programs were
written in C, and then in David Baum’s new, aptly-named language, NQC (Not
Quite C).

As I have been an active Java programmer since 1995, it seemed natural to me to
use Java to program the RCX rather than to use C or to invent a new language for
my MINDSTORMS hobby. Of course, there’s nothing wrong with NQC (which is
quite popular for programming LEGO MINDSTORMS), but Java has outlived its
initial hype and has grown steadily to become a standard object-oriented program-
ming language.The logic that led to my decision to use Java was this:The infrared
tower that communicates with the RCX robot was connected to my PC via a serial
port, and the Java Communications API that supports serial ports had also been
updated in 1998. My mind jumped at the possibilities and I felt compelled to create
an RCX Java API in order to program my MINDSTORMS robots with Java.

xix

Foreword

177_LEGO_Java_fore.qxd 4/2/02 5:01 PM Page xix

xx Foreword

Programming LEGO MINDSTORMS with Java is as much about robotics pro-
gramming as it is about Java programming.This book is for all levels of MIND-
STORMS users, from hobbyists to the serious MINDSTORMS aficionados.This
book is also appropriate for a variety of programming levels; both those with only a
modicum of Java knowledge and more advanced programmers will learn much
within these pages.We cover all the basics of programming the RCX, beginning
with the introduction of the Java APIs available for communicating remotely with
the RCX using its default firmware, all the way through more advanced topics like
embedded programming using a custom Java Virtual Machine (JVM)—Jose Solorzano’s
Lego Java Operating System (leJOS)—which allows us to run Java inside the RCX.

Most of the software packages and APIs we cover and use in Programming LEGO
MINDSTORMS with Java are open source projects.The source code from each
chapter is included on the companion CD-ROM, ready for use in your own cre-
ations.These projects are mostly a labor of love by those who initially designed and
contributed to them, and are always open to new contributors.We’ll even delve into
the internals of a few. For example, we’ll show how to add new native calls to leJOS,
and how to add USB support to Java, because the latest LEGO MINDSTORMS
release uses USB instead of the serial port.

In Chapter 1,“Introducing LEGO MINDSTORMS,” Giulio Ferrari offers a
thorough introduction and examination of what is included in LEGO MIND-
STORMS and its related kits, and what the specifications of the RCX are.There is
also an overview of all the software languages available for the RCX.

In Chapter 2,“The Java Communications API,” I go into a detailed definition of
the Java Communications API and how it is used to access serial and parallel ports. I
begin to dig more deeply into how the Java Communications API works and how to
extend the API to include support for USB ports, providing an alternate solution
until a Java standard is available.

In Chapters 3 and 4 we cover two Java APIs used to program the RCX using the
firmware that comes with the kit. In Chapter 3,“Communicating with the
RCXPort API,” Jamie Waldinger examines Scott Lewis’s RCXPort API.Topics in this
chapter include downloading tasks into the RCX and an advanced example using a
robot to sort candy. In Chapter 4,“Communicating with the RCXJava API,” I dis-
cuss the design of my RCXJava API and provide examples of how to create an applet
for remote controlling a robot, as well as an introduction to simulating Artificial
Intelligence with the RCX.

www.syngress.com

177_LEGO_Java_fore.qxd 4/2/02 5:01 PM Page xx

www.syngress.com

Søren Hilmer introduces us to leJOS in Chapter 5,“The leJOS System,” and
offers tips on design and debugging before presenting some advanced programming
examples in Chapter 6,“Programming for the leJOS Environment.” Chapter 5 covers
the architecture and APIs that are currently available, and demonstrates a few of the
available tools (such as the lejosc compiler) with simple examples. Chapter 6 covers
using memory wisely, and provides an example of programming a line-following
robot. Chapter 6 also offers an introduction to the subsumption architecture, excep-
tion handling, and using the emu-lejos and emu-lejosrun emulators.

In Chapter 7,“leJOS Tools,”Andy Gombos covers some of the more popular
available leJOS tools, including command-line tools and visual integrated develop-
ment environments (both existing and custom visual IDEs) for developing leJOS
programs.Andy also covers his Simlink LEGO MINDSTORMS simulator, which is
a linking set of classes and interfaces for the Rossum Project and leJOS.The Rossum
Project (known as Rossum’s Playhouse) is a two-dimensional robotics simulator.

Chapter 8,“leJOS Internals,” provides a detailed look into the internals of leJOS.
Jürgen Stuber, who is currently one of the leading contributors to leJOS develop-
ment project, gives us the details into how the leJOS internals operate and also
how to extend leJOS using native code. He demonstrates this with his latest leJOS
additions.

Chapter 9,“Programming LEGO MINDSTORMS with Jini,” is an overview of
the Jini distributed computing framework technology, with an example using the
RCX. Mick Porter shows us how to use Jini service proxies with several robots. In
his example, he has two dancing robots imitate each other’s movements by commu-
nicating via Jini.

Other notable contributors to this project are Ron Gonzalez, who offered his
technical editing skills to Chapters 2 and 4, and Simon Rittner, a Java technology
evangelist with an avid interest in LEGO MINDSTORMS, who performed the
technical review for this work.

It has been a very rewarding experience to be a part of the team that gathered all
of this useful information together with the purpose of sharing it with the LEGO
MINDSTORMS community. I feel confident that the material presented here, in
conjunction with the companion volume, Building Robots with LEGO MIND-
STORMS (ISBN: 1-928994-67-9) by Mario and Giulio Ferrari, will provide enthu-
siasts with material for many exciting hours exploring the potential of programming
their own LEGO MINDSTORMS robots.

Foreword xxi

177_LEGO_Java_fore.qxd 4/2/02 5:01 PM Page xxi

Foreword xxii

As of the current printing, this book and accompanying CD-ROM include the
most up-to-date versions of the software, but be aware that, programmers being who
they are, continued updates of both are guaranteed! You can find updates to this
book, as well as new versions of the included software, posted by the Publisher as
they become available at www.syngress.com/solutions.

Finally, I’d like to thank Catherine Nolan and Kate Glennon at Syngress for their
editorial guidance, and Andrew Williams for approaching me with the idea for this
book. Now go have fun!

—Dario Laverde,Technical Editor

www.syngress.com

177_LEGO_Java_fore.qxd 4/2/02 5:01 PM Page xxii

Introducing LEGO
MINDSTORMS

Solutions in this chapter:

■ The LEGO MINDSTORMS RIS Kit

■ RCX: The Robot’s Brain

■ The RIS Software Environment

■ RCX Bytecodes

■ LEGO Expansion Kits

Chapter 1

1

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 1

2 Chapter 1 • Introducing LEGO MINDSTORMS

Introduction
Soon after its release, the LEGO MINDSTORMS Robotics Invention System
(RIS) quickly became popular not only with its initial intended audience of chil-
dren aged 11 and up, but also within a community of adult LEGO robotics
enthusiasts that developed and spread worldwide with significant help from the
Internet. Before long, hackers had deciphered the communication protocol and
command set, and published the operational codes (opcodes) of the RCX’s inter-
pretive operating system on the Internet for easy access by all software developers.
This was a very good thing for LEGO fans and programmers, for it allowed them
to create many new tools and software applications for the RIS.These applications
are under continuous development, and many are based on open source or free-
ware programs. In the meantime, LEGO has released new versions since the first
RIS, with minor updates always maintaining backward compatibility.

Not only has the RIS become very popular, but it has also renewed interest
in robotics; LEGO continues to offer many additional robotics kits.This chapter
will introduce the novice to these robots and explain exactly how, and perhaps
why, they work the way they do. Overviews of how they function physically and
how they are programmed both at high and low levels are presented, as well as
their limitations and expansion possibilities.

The LEGO MINDSTORMS RIS Kit
The LEGO MINDSTORMS system is a complete series of products for the
development of robots and automation applications in general.The central set of
the LEGO robotics line is the RIS, a set of tools that offers you computing
power, great ease of use, and versatility.With this kit, you can design your own
robot, build it using ready-to-use pieces, program it with a specific programming
language, and finally test it to see if it matches your expectations—and most
important, to rebuild and reprogram it as you wish.The brain of the system is the
RCX microcomputer, initially developed in collaboration with the Massachusetts
Institute of Technology (MIT) Media Lab; the kit also contains many other fun-
damental pieces, including input and output devices (sensors and motors). From
this very powerful combination you can make countless completely independent
robots, which is a great way to enhance your creativity and imagination; and best
of all, it’s hours of great fun.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 2

www.syngress.com

A Brief History of the LEGO MINDSTORMS RIS
The commercial version of the LEGO MINDSTORMS RIS was released in late
1998, but its origins date back many years.The product is actually the result of
two separate research and innovation processes.

The first process is represented by the LEGO Company’s continuous devel-
opment of new products since the first appearance of a reusable brick in 1949
(the “Automatic Binding Brick”), that led also to the creation of the TECHNIC
series in 1977.The TECHNIC sets opened up new ways for children and adults
to create working models of increasing complexity.The second process stems
from research conducted at the Epistemology and Learning Group at the MIT
Media Laboratory, led by Fred Martin, Brian Silverman and Randy Sargent under
the guidance of Professors Seymour Papert and Mitchel Resnick and support
from the LEGO Company.This work, started in 1986, lead to the development
of the so-called “Programmable Brick,” a small unit capable of connecting to the
external world through a variety of sensors and actuators, designed for the cre-
ation of robots and other applications in which a computer might interact with
everyday objects.

The sum of these two efforts brought life to the RCX, a microcomputer by
the LEGO Company partly based on the technology developed at Media Lab for
the MIT Programmable Brick.The RCX was completed with sensors and other
special parts, existing pieces taken from the LEGO TECHNIC series, and specifi-
cally designed software capable of interfacing with a standard PC.This set of tools
became the MINDSTORMS Robotics Invention System 1.0.

The RIS became an instant hit and its use spread widely among robotics and
LEGO enthusiasts all over the world. In the years following the initial success,
two updates to the original set and many other MINDSTORMS kits were cre-
ated, reaching an increasing number of people. CyberMaster, another pro-
grammable unit that shares some concepts with the RCX, had appeared shortly
before the RIS, while in 1999 the Robotics Discovery Set and the Droid
Development Kit were equipped with less powerful versions of the RCX, which
displayed limited programming capabilities but improved ease-of-use.Additional
sets and pieces are continually introduced to expand the possibilities of the orig-
inal system.We will discuss these kits in detail later in the chapter.

Introducing LEGO MINDSTORMS • Chapter 1 3

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 3

4 Chapter 1 • Introducing LEGO MINDSTORMS

What’s Included with the Robot Kit
If you were to open a brand new RIS 2.0 box and analyze the contents of the kit
in detail, you would find more than 700 pieces, most of which are standard
TECHNIC parts, such as beams, plates, gears, axles, pulleys, wheels, cables, and
connectors. However, there are also specific items included that are aimed at
robotics development, and represent the heart of the system.They are:

■ The RCX Programmable Microcomputer,Version 2.0

■ 2 Motors (9V)

■ 2 touch sensors

■ 1 light sensor

■ A USB infrared (IR) transmitter tower

■ A fiber-optic cable

■ A printed Constructopedia manual

■ Software on CD-ROM

The RCX can be thought of as the kernel of the entire set. It can read
external events through sensors and control movements through motors; and it
can be easily programmed with the RCX Code, which is a specific programming
language provided on the software CD-ROM (it can also be programmed with
the help of third-party tools, which we will explore later on).As you can see, the
kit contains both input devices; active (light) and passive (touch) sensors, and
output devices (the two motors).These components are fundamental to robotics,
as they provide a way for them to interact with the world.Touch and light sen-
sors can give your robot information on its movements, positioning, and general
behavior. Motors are the starting point for every movement and activity; they can
control gears, wheels, axles, and other moving parts.

The black and gray tower you find in the set is the component through
which your LEGO robots communicate with your PC. It is in fact an infrared
(IR) transmitter that sends code and information from your computer to the pro-
grammable unit.Also, the fiber-optic cable has a very specific function: if con-
nected to the IR tower it allows you to program the Micro Scout (the smallest
member of the MINDSTORMS family) through a communication protocol
called Visible Light Link (VLL).We will describe VLL at the end of this chapter.

The Constructopedia manual offers building tips and tricks, and serves as a
kind of idea book, suggesting some challenges to improve one’s skill.The

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 4

Introducing LEGO MINDSTORMS • Chapter 1 5

Constructopedia can also be used in conjunction with the CD-ROM, which
contains multimedia versions of the same challenges, as well a complete visual
programming environment and other tools for the RCX.

NOTE

For more ideas, check out the Syngress book Building Robots with LEGO
MINDSTORMS, written by Mario and Giulio Ferrari, and edited by Ralph
Hempel. The book contains detailed descriptions on how to get the most
out of your robots at every level of difficulty, ranging from fundamental
tools and building strategies up to the design and construction of the
most complex creations. Visit the Syngress Web site for more informa-
tion (www.syngress.com).

The MINDSTORMS RIS has evolved from its initial release in 1998.We
already mentioned that three different RIS versions (1.0, 1.5 and 2.0) have been
released since then. Basically, there is very good compatibility between them, but
each set has its own peculiarities.At this point in time,The LEGO Company
produces and sells only version 2.0, which contains a number of significant
improvements and innovations, especially regarding the software, but it is not too
difficult to find a used (or even unused) RIS.Table 1.1 summarizes the differ-
ences among the three releases.

Table 1.1 RIS Version Comparison

RIS 1.0 RIS 1.5 RIS 2.0

Release date 1998 1999 2001
Pieces 727 727 717
RCX version 1.0 1.0 2.0
Firmware version 0309 0309 0328
DC/AC power adapter Yes In a few earlier sets only No
IR tower Serial Serial USB
Fiber-optic link cable No No Yes

In terms of hardware, we can see that there haven’t been any major changes
in the most common pieces (specifically the TECHNIC series pieces), even if the
contents have been slightly modified with every version.The RCX has changed

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 5

6 Chapter 1 • Introducing LEGO MINDSTORMS

slightly from version 1.0 to 1.5, because the DC/AC jack adapter has been
removed from all but the first version 1.5 units produced (maybe for an increased
security or to reduce production costs), and some electronics have changed.
Recent units instead work only with six 1.5V batteries, although it’s still possible
for one who is familiar with electronics to connect the RCX with an external
power source. For those who find the DC/AC adapter to be an important factor,
RCXs with a DC/AC power adapter are still available from LEGO Dacta, which
is the LEGO Company’s educational branch (www.pldstore.com). No major
changes have affected the hardware; so for the purposes of a wide range of pro-
jects, RCX 1.0 is nearly identical to RCX 2.0.

On the software side, however, version 2.0 saw the introduction of new
firmware in conjunction with an improved RCX Code interface, which brought
to the latest Kit many new advantages that were soon also available in non-
LEGO development tools, such as NQC.The best news is that the new firmware
can be easily installed on any RCX version, and that the USB tower has main-
tained a full backwards compatibility.

In the case that you have the possibility of choosing which release to buy, you
may wonder which one is the best option.The AC adapter can be of some
advantage in a few projects, so the best component combination is probably a
RCX 1.0, a USB tower, and the RIS 2.0 programming environment.

www.syngress.com

Choosing between the Two Towers
There are two kinds of IR towers: serial and USB. The version you have
depends on the RIS version you bought. The serial version came in RIS
1.0 and 1.5; the USB tower is currently sold with RCX 2.0. This was a
technical choice, as the USB system offers some advantages in terms of
ease of use and configuration. Let’s look at the major drawbacks and
advantages of each version.

The serial port tower…

■ Requires external power (9V battery).
■ Can change the baud rate to increase the speed.
■ Is supported on most operating systems.

Bricks & Chips…

Continued

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 6

Introducing LEGO MINDSTORMS • Chapter 1 7

RCX: The Robot’s Brain
The Robotics Command Explorer (RCX) is the brain of any MINDSTORMS
robot. It is often called the “programmable brick,” or “smart brick,” because it
resembles a standard LEGO piece in many of its characteristics, though a great
power hides within it. The RCX is actually a small computer based on the
Hitachi H8 series microprocessor and fully equipped with memory, timers, and
input and output devices.When you write a program on your personal com-
puter, download it to the RCX, and execute it, the result is a completely self-suf-
ficient entity that can behave autonomously, which is the difference between a
true “intelligent” robot and an automated machine.

How It Works
Let’s see how the RCX works in detail by examining the physical and logical
structures.A complete analysis of the two models leads to better knowledge and
the discovery of some elements that are usually hidden from the end user.

The Physical Structure
Suppose you remove the screws from your RCX and disassemble it (be careful,
this could damage to the unit). On the inside, you find a main board on which are
mounted and soldered many components (see Figure 1.1).The top view shows a
large LCD display surrounded by four contacts for the rubber buttons and twelve
clamps that connect to the six input and output ports. On one side there are two
infrared (IR) LEDs and an IR receiver These provide two-way communication
with the PC tower, a remote control, or another RCX.A speaker, two big

www.syngress.com

The USB tower…

■ Does not require batteries.
■ Uses more recent technology, and is easy to configure.
■ Is not yet supported under all operating systems.

There is no problem in using the latest RCX Code (the software) ver-
sion with either the USB or serial port transmitter, but there is a com-
patibility issue when using the new tower and the old software, because
the old software wasn’t designed to support the USB technology. Be
sure to install the most recent software and firmware before attempting
to use the USB tower.

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 7

8 Chapter 1 • Introducing LEGO MINDSTORMS

capacitors and many other small elements complete this part of the board. In the
bottom view, you can see that a large square chip, the microcontroller, also hides a
built-in memory.As in most computers, the memory is made of two types:

■ Read Only Memory (ROM) This type of memory is permanently
written on the chip and cannot be altered in any way;

■ Random Access Memory (RAM) This type of memory can be easily
modified or accessed at any point.This kind of device needs to be con-
stantly supplied with power to avoid erasing the content.

www.syngress.com

Figure 1.1 The RCX Board
Key Contacts LCD Display Speaker

Capacitors

Clamps

IR LEDs

IR Receiver

Microcontroller

Digital Logic (NANDs)

Motor Controllers
Digital Logic (flip-flops)RAM

BOTTOM

TOP

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 8

Introducing LEGO MINDSTORMS • Chapter 1 9

In the RCX, there are 16 Kb of ROM embedded in the microcontroller, and
32 Kb of RAM placed on an external chip. Memory provides a way to store data
and the user’s programs; otherwise the processor would be completely useless.
Finally, you can see three controllers for the 9V motors on the right, and two
chips for digital logic processing in the middle of the board.

Table 1.2 describes hardware specifications for all versions of RCX.The three
versions are very similar, the only notable difference being the lack of the
external power supply in units produced after 1999.

Table 1.2 RCX Hardware Specifications

Processor 8-bit Hitachi H8/3292, 16 MHz

ROM 16 Kb
SRAM, on chip 512 bytes
SRAM, external 32 Kb
Outputs 3 motor ports, 9V 500 mA
Inputs 3 sensor ports
Display 1 LCD
Sound 1 sound unit
Timers 4 system timers (8-bit)
Batteries 6x 1.5V
Power adapter (only in RIS 1.0) 9–12V, DC/AC
Communications IR port (transmitter + receiver)

The Logical Structure
Let’s outline a logical working model to better understand how the RCX hard-
ware works. Imagine a structure made of multiple layers (see Figure 1.2).At the
very bottom there is the processor, which is an Hitachi H8300 series.This pro-
cessor executes the machine code instructions.Additional components have the
task of converting input signals from the three sensor ports into digital data.

The next layer in the system is the ROM code.A new RCX comes with a
set of instructions that provides all the basic functionalities to the unit, like port
control, display, and IR communications. If you’re familiar with its architecture,
you can compare the ROM to the BIOS of a personal computer that boots and
communicates with its peripherals.Without this low-level behavior you couldn’t
do anything with the RCX, because you wouldn’t be able to interface it to the
external world.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 9

10 Chapter 1 • Introducing LEGO MINDSTORMS

Just above the ROM code in our schematic structure is the firmware.This is a
sort of operating system for our RCX unit, providing functionality to the entire
system.The word “firmware” identifies a particular kind of software that is usually
not alterable by the final user, though in this case there’s an important exception,
as we will see.The firmware’s duty is to interpret the bytecode and convert it
into machine code instructions, calling the ROM code routines to perform stan-
dard system operations. It is stored in the RAM, meaning that it is downloaded at
your first installation of the MINDSTORMS system; yet it needs to be down-
loaded again through the IR tower every time you power down the RCX for
more than a few seconds , namely by removing the batteries.

On top of the firmware there is your own code and the stored data.The RIS
software on your PC converts the RCX Code into a format that is more compact
and readable by the RCX processor (that is, bytecode).The RAM is logically
divided into different sections: 16 Kb for the firmware, 6 Kb for storing user pro-
grams, and the rest used for interpreting the bytecode and handling data for the
program’s execution. Even if they are all in the same physical area, following our
layer-based logical structure, we can consider the programs to be in a higher level.

Note that when you turn your RCX off, the RAM remains connected to
the power supply so that it can retain its contents (both the firmware and the
program data), so it will slowly consume the batteries even when switched off.
To avoid this, you can remove the batteries if you plan not to use the unit for a
long time, but remember that you’ll have to redownload the firmware (and any
program you had already stored in RAM) before attempting to use it again.

The process of programming the RCX is very simple: you prepare your code
on the PC, download it to the RCX unit, and run it from there.A few steps are

www.syngress.com

Figure 1.2 The Logical Structure

Processor

Programs

Firmware

ROM Code

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 10

Introducing LEGO MINDSTORMS • Chapter 1 11

actually hidden from the user, so it’s useful to summarize the process in a top-to-
bottom scheme:

■ Using RCX Code (or other software), you write a program on
your PC;

■ Your program’s instructions are transformed into low-level instructions
(bytecodes);

■ You download the program (in bytecode form) to the RCX’s RAM
using the IR transmitter tower;

■ The firmware interprets the bytecode and converts it into machine code
instructions using ROM routines;

■ The processor executes the machine code.

As you can see, the programming process follows the layered logical model
we described, going from user-written information to low-level hardware, like
ROM or the processor.

Expanding the RCX Brain
The RCX, though powerful and versatile, has its own limitations. Some of them
are mechanical restrictions, and cannot be overcome in any way: as with any
computer product, the RCX has specific hardware characteristics, like the speed
of the processor, the memory, or the number of ports. For example, you would
never be able to store more than 32K of data in the RCX’s RAM area. Other
limits relate to the software side, either to the firmware or to the programming
language that you use. In this case, you can sometimes work out solutions that let
you push the RCX beyond its original limits.

There are basically two approaches to expanding the RCX: the first being the
use of an alternative programming environment to gather better performances
and more flexibility; the second, more radical approach, is the replacement of the
entire original firmware with a new one, taking advantage of the fact that it is
stored in an area (the RAM) that can be accessed and modified.

Replacing the RIS Software
The RCX code, even though it has been deeply restructured since the first
release and now enjoys much greater degrees of power and control, is a some-
what limited tool. It is quite surprising to see that the LEGO MINDSTORMS

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 11

12 Chapter 1 • Introducing LEGO MINDSTORMS

solid and powerful firmware cannot unleash its full power due to the limitations
of the LEGO programming language.

A huge effort has been put into this area from the international community
of LEGO robotics enthusiasts. Soon after the release of the first RIS in 1998,
Kekoa Proudfoot presented the results of the reverse engineering work he did on
the programmable brick with the help of other hackers, revealing many details of
the RCX hardware and publishing a list of bytecodes for the interpreter. His Web
site,“RCX Internals” (http://graphics.stanford.edu/~kekoa/rcx) has been one of
the most important landmarks in the process of expanding the possibilities of the
RCX.

From this fundamental starting point, new programming languages began to
appear.Though each of these new languages has interesting features, they all share
some common features:

■ Their approach consists of making a new interface able to generate
bytecodes;

■ They work with text programming rather than graphical (visual)
developing;

■ Their development method is based on the syntax of a widespread pro-
gramming language like C or Java.

■ They often share the freeware concept at the heart of their philosophy;
most programming tools for the RCX are free and usually under public
licenses.The wide availability of these open source projects is often a
key point to their success, and helps to ensure the tools’ continuing
development.

Not Quite C
Created by Dave Baum, Not Quite C (NQC) is definitely the most widespread
third-party development tool for the RCX. NQC is a multi-platform program (it
runs on PC, Mac and UNIX-like systems) that works on the standard firmware
and takes advantage of its stability and reliability, while at the same time giving
the user a lot more computational power.

A key to NQC’s success is that it is based on a simplified version of the C
language, which is very well known by programmers around the world. Many
resources, including online documents and tutorials, offer new users the possi-
bility to learn the language quickly and easily.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 12

Introducing LEGO MINDSTORMS • Chapter 1 13

NQC is a very well supported and constantly improved development lan-
guage. Baum is always adding new features and working on new releases as new
important technical developments appear, such as a new programmable unit or a
new firmware version (NQC currently supports RCX, Scout, CyberMaster and
the latest 2.0 firmware).

NQC is a command-line executable file; not only is installation quick and
easy, but you only need a text editor (like Windows’ Notepad) to write the code
and you’re done.There are also interesting integrated development environments
(IDEs) like BricxCC or Visual NQC that encapsulate the compiler inside a com-
plete system of editors, tools, direct control and diagnostic utilities.

Java APIs
In a search for more flexibility, others have created tools based on the Java lan-
guage, like the RCXJava API by Dario Laverde and RCXPort API by Scott
Lewis. Both take advantage of the cross-platform features of Java systems and rely
on a Java Virtual Machine (JVM).

The Java Application Programming Interfaces (APIs) are basically sets of com-
mand libraries that allow a user with a JVM-equipped computer to communicate
with an RCX that is using the original firmware.You can send out requests and
commands through a serial IR port and interact with your robots. Chapters 3
and 4 will cover programming with these tools in more depth.

www.syngress.com

An Interesting Alternative: ROBOLAB
The RCX Code is not the only software available from LEGO. The com-
pany also markets the interesting tool ROBOLAB, or “MINDSTORMS for
school,” which is a programming environment made especially for edu-
cational and research purposes. ROBOLAB is usually sold in conjunction
with LEGO Dacta products (but is also available separately). It shares a
lot with the RIS software, as it also uses a graphical environment, but
ROBOLAB incorporates a lot of noteworthy embedded elements and can
probably be considered the best “official” release.

In addition to all the RIS features, ROBOLAB version 2.5 includes:

■ Data analysis, comparison, and graphing

Designing & Planning…

Continued

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 13

14 Chapter 1 • Introducing LEGO MINDSTORMS

Replacing the RCX Firmware
The key to surpassing the RCX code is due to the LEGO Company’s decision
to store the firmware in RAM, so that it can be accessed and modified. Some
languages replace the RCX’s entire firmware instead of only creating bytecodes
for the interpreter.There are many advantages in this approach, for example the
possibility to overcome the original system’s 6 Kb memory limit for user pro-
grams, and increased speed.

Remember that replacing the firmware is not a one-way street: you can
always go back to the original firmware (or decide to try a different one!) simply
by erasing the RCX memory and downloading it anew, with no actual risk to
the hardware of your unit.

legOS
The legOS project was the first attempt to write a replacement firmware for the
RCX; it was started in 1999 by Markus Noga, and has since been transformed
into an open source project, which is currently managed by Paolo Masetti and
Luis Villa.The main goal of legOS is to bypass all the limitations of the original
RCX interpreter by running code directly on the Hitachi processor.You link a
series of system routines to your C or C++ program, and legOS compiles and
loads it in place of the firmware.The benefit of using this method is that you can
unleash the full power of the hardware, taking advantage of a strong language like
C, and controlling every device at a very low level to run your programs at an
outstanding speed.

The main drawback of this method is that you need to be skilled enough in
programming to use the software; with legOS, you have to deal with a standard
C language, as opposed to the simplified version in NQC.The legOS installation

www.syngress.com

■ Internet communication with the included “ROBOLAB Server”
■ Presentation modes, like project data, can be transformed

into HTML pages
■ Video camera (not only LEGO’s Vision Command) compati-

bility, with visual recognition system
■ Use and calibration of non-LEGO DCP sensors (to measure

pressure, voltage, sound level, etc.)
■ Full compatibility with Mac systems

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 14

Introducing LEGO MINDSTORMS • Chapter 1 15

is also a bit awkward, and you often have to deal with cross-compilers or UNIX
emulators.

pbForth
FORTH is a language with a strong tradition in robotics and automated applica-
tions in general. Conceived in the sixties, it is a complete interactive environment
for embedded systems rather than a simple language. Ralph Hempel’s version of
this tool, called programmable brick Forth (pbForth), lets you download a kernel to
the RCX and interface with it using a command-line terminal.

pbForth has a slightly steeper learning curve than the other APIs, and you
may find it a bit challenging at first; you have to start thinking of your programs
in terms of a structured set of layers. Further, pbForth uses reverse Polish notation
(RPN), which requires you to write the operator after the operands This is
unusual for a developing tool. However, the result is efficient code that is very
powerful and remarkable in terms of its portability.

LEGO Java Operating System
Jose Solorzano started the TinyVM Project a few years ago.Tiny VM is essentially
a small JVM featuring an API with native methods that provide access to the
RCX hardware resources. It supports a subset of the typical Java APIs, so it lacks
many of the most complex features of a complete Java system.This comes as no
surprise, as Tiny VM is designed to be as compact as possible (about 10 Kb on
the RCX).

Tiny VM was the starting point for a more complex project called LEGO
Java Operating System (leJOS), that features a fully functional implementation of
the Java language, including pre-emptive threads, multi-dimensional arrays, recur-
sion, floating point operations, trigonometry functions and string constants, just
to name a few of the features.The main leJOS goal differs a bit from its predeces-
sors’, because it aims to be as complete and efficient as possible rather than very
small (the current footprint on the RCX is 17 Kb).

LeJOS is an open source project currently available on UNIX-like and
Win32 systems, and is under continuous development by a small team of devel-
opers, now managed by Paul Andrews and Jürgen Stuber;TinyVM remains only
as a low-footprint alternative for the RCX.

Even though leJOS is the youngest third-party solution on the MIND-
STORMS programming scene, it is certainly one of the most valuable tools, as
it offers the user a complete, state-of-the-art language that is fast, efficient and
extremely portable.The availability and continuous development of graphical

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 15

16 Chapter 1 • Introducing LEGO MINDSTORMS

interfaces like leJOS Visual Interface and RCXDownload/RCXDirectMode make this
system even more attractive to first-time users.

In Chapter 5, we will cover leJOS programming in depth and analyze the
development process with this amazing little tool.

The RIS Software Environment
The graphical programming environment that is included on the LEGO MIND-
STORMS CD-ROM is targeted mainly at kids and non-programmers. Even
after major updates and improvements it still lacks in power if compared to the
third-party languages; however, it is worth analyzing because it certainly has some
benefits, especially in terms of ease-of-use. In addition, exploring the entire RIS
software environment help you to understand and appreciate other languages and
firmware alternatives.

Installing the Firmware into the RCX
When you unpack your RCX for the first time, it only has the code that is
stored in its ROM area; there isn’t even an active firmware on-board.Why
doesn’t the firmware come pre-loaded on the unit? Well, as we mentioned earlier,
it has to be stored in the RAM, and this type of memory doesn’t work without
power.As a consequence, firmware can be loaded in the RCX only if there are
batteries correctly installed and charged.

When you install and set up the RCX Software on your computer, it launches
the user interface, configures the basic connection system (namely the IR tower),
and immediately asks you to bring your RCX close to it (the unit needs to be
close to the IR transmitter) and turn it on to start the firmware download.This
process takes a few moments; once the firmware is successfully downloaded, the
RCX emits a tone to confirm that it’s now alive. If, for some reason, you have to
download the firmware from the CD-ROM again, simply repeat the process.

If your turn on the RCX without installing a firmware on it, the RCX display
will be quite empty, showing only the selected program slot (which can be changed
with the Prgm button) and the outline of a figure standing still. Once the
firmware has been installed, the screen shows a four-digit clock starting from zero.

With firmware only, the RCX is still totally powerless because there are no
programs stored in its memory. If you press the Run or the View buttons (nor-
mally used to display sensor readings), nothing will happen. However, once the
RCX is working and ready to be programmed, it is able to perform motor con-
trol, sensor readings, IR port use, and so on.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 16

Introducing LEGO MINDSTORMS • Chapter 1 17

www.syngress.com

RCX 2.0 Firmware
The latest firmware release (specifically the one coded “firm0328.lgo”),
introduces a bunch of interesting new features to the old functions. A
lot of these characteristics improve the efficiency of the user-written pro-
grams; pushing the RCX limits a bit further, and giving the programmer
more space to invent and create powerful new robots. The main char-
acteristics, starting from most important, are:

■ Arrays
■ Events monitoring
■ Access control mechanism
■ Global motor and sound control
■ 32 local and 16 global variables
■ Variables display on the LCD panel
■ Direct IR output control
■ High resolution timers
■ Counters
■ Re-seedable random numbers
■ Possibility to start a program from another
■ Sound mute and un-mute, clearing
■ Battery level check
■ Firmware revision number check

This firmware can be found in the latest MINDSTORMS products:
the RIS 2.0 kit; the RIS 2.0 upgrade CD; the Visual Command camera;
and the MINDSTORMS Software Development Kit (SDK) 2.0 package.

The MINDSTORMS SDK 2.0 is a set of free tools designed to pro-
gram the RCX with low-level instructions. It also comes with a lot of
information and help files that are very useful in understanding the
unit’s behavior. You can download the file from the LEGO Web site at
http://mindstorms.lego.com/sdk2.

Note that RCX Code versions 1.0 and 1.5 work with any firmware
release, but they lack the capability to use the new features just
described, while the version 2.0 needs instead to be used in combina-
tion with the most recent release. NQC supports either.

Designing & Planning…

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 17

18 Chapter 1 • Introducing LEGO MINDSTORMS

A Visual Programming Interface: RCX Code
We have mentioned that the LEGO Company supplies a programming tool to
program RCX robots, called RCX Code. Everything in the RCX Code has
been designed for ease of use: it is a fully graphical, event-driven programming
environment, loosely based on Logo-type languages (Logo is a programming lan-
guage that was developed as a tool for educational purposes in the 60s at MIT).
In RCX Code, you don’t actually have to write any code at all, instead using the
visual programming interface to set the behavior of your robots.This means that
you drag, drop and stack commands, which are shown as code blocks, to connect
them and then set variables and parameters. It’s a bit like building a program with
LEGO bricks, using different code blocks for various functions (motor actions,
sensors, delays, and sounds), and to control instructions to direct the flow of your
code according to the state of sensors, timers, and counters.You can also use big
blocks (sets of multiple commands) like subroutines that can be reused to write
more functional software.

This no-code approach is a clear advantage for inexperienced users, but has
major drawbacks: its set of instructions is very limited and doesn’t take advantage
of all the RCX’s power, nor is it suitable for writing large programs. For example,
if you have hundreds of instructions, your program may slow down and suffer
from a lack of readability. For these reasons, if you want to develop robots with
any complexity, you’ll soon discover that RCX Code is an obstacle rather than a
useful tool.

Figure 1.3 shows a simple program written in the RCX Code environment.
The code refers to the steering line follower described in the companion
Syngress book Building Robots with LEGO MINDSTORMS (ISBN 1-928994-
67-9), a robot built basically to go along a black line located on a white floor
(specifically, it follows the black-white border of the line, turning rapidly to cor-
rect its direction).

The main task calls a calibration procedure that makes a 3-second light
reading and calculates the black/white threshold, powers motor B (which will be
running continuously), and starts a repeat statement that changes the front
motor’s direction according to the light reading in order to set its direction.As
you can see, a very simple program like this requires a lot of effort compared to
other programming methods.

With a few mouse clicks you can download the program to the robot and
run it to see if it meets your expectations. In Figure 1.4 you see the robot in
action, following a line on the RIS Test Pad.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 18

Introducing LEGO MINDSTORMS • Chapter 1 19

www.syngress.com

Figure 1.3 An Example of RCX Code

Figure 1.4 The Programmed Robot on the Test Pad

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 19

20 Chapter 1 • Introducing LEGO MINDSTORMS

RCX Bytecodes
When you push the Run button on your RCX, it starts interpreting instructions.
To interpret means that the unit’s processor reads and executes every single com-
mand, statement by statement.As a result, you have to provide the RCX with
low-level instructions (or bytecodes) that are usually generated by the graphical
programming environment.

The LEGO Assembly Code for the RCX
The working model of the RCX is a virtual machine (see Figure 1.5, modeled out
of Kekoa Proudfoot’s original scheme). Note that the byte code interpreter exe-
cutes commands from two different sources, namely the programs and the PC
link system.The main feature of these instructions (or opcodes) is that they can
be used both as a part of the serial protocol to communicate with an IR emitting
device (a PC, another RCX or a remote control), and internally to run any user-
created programs that are stored in memory.To interpret the bytecodes and cor-
rectly run the programs, the processor needs to store its data in a structured
memory location called the register file.This is a hidden part of the system that is
not accessible by the end-user.Your RCX can contain up to five programs in five
slots, each with a maximum of 10 tasks and 8 subroutines, with their locations
kept in a memory map so the interpreter can access them quickly.This method
allows you to rely on multitasking and subroutines to increase the efficiency of
your programs.

www.syngress.com

Figure 1.5 The RCX Virtual Machine

Sensors
Motors

Register File

Bytecode Interpreter

IR Link Programs

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 20

Introducing LEGO MINDSTORMS • Chapter 1 21

The RCX opcodes handle a number of different functions: commanding
motors, sensors, arithmetic operations, flow control, downloading and uploading,
registers, data logging, sound and timers.They can basically be divided into three
groups, as described below (note that the opcodes given are only some small
examples to explain their structure and functionalities; the complete reference is
included in the MINDSTORMS SDK 2.0 documentation).

Direct control commands These provide interactive behaviors to a
unit that is connected to the PC tower or another IR-emitting device,
and cannot be used to program the RCX in a user-written program. For
example, the UploadRam command uploads raw data from the RCX,
with a maximum length of 150 bytes (because of an automatic shut-
down of the IR tower):

0x63 | RAM address (LO) | RAM address (HI) | Byte count

Program commands These commands can be used only inside a
piece of software code: Wait, for example, stops the current execution of
a task for an amount of hundredths of seconds as specified by the
parameters:

0x43 | WaitSource | WaitValue (LO) | WaitValue (HI)

Multifunctional commands These can be used in either fashion, but
they sometimes behave differently depending on whether they’re exe-
cuted from the RCX or a remote unit. SelectProgram stops all tasks in the
current program, then sets the current slot with the given parameter.
Note that if it is executed from a downloaded software, SelectProgram also
starts task 0 in the new program:

0x91 | Program Number (0-4)

LEGO Expansion Kits
Aside from the RIS, there are other robotics kits that belong to the LEGO
robotic family, based on different types of central units instead of the RCX.These
expansion kits share some common characteristics, but they generally only offer a
subset of the RIS’ functionalities.

If you want to get more from your RCX-based robots, there are many kits or
spare parts available that can help. Sometimes, a few additional components allow

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 21

22 Chapter 1 • Introducing LEGO MINDSTORMS

you to push the system’s limit a bit further, giving you the possibility to build and
program robots with more complex structures or behaviors.

Alternative Processing Units
The MINDSTORMS series offers three kinds of processing units: RCX, Scout,
and Micro Scout; in addition to these, there are a couple of LEGO sets that don’t
belong to the family: CyberMaster is a less powerful RIS-like system, and there is
also an unusual programmable robot called the Code Pilot.They have different
features and target different user categories.We’ve already described the RIS set
in detail, now let’s take a look at the others:

■ CyberMaster CyberMaster appeared shortly before the RIS.The main
unit incorporates two motors with embedded rotation sensors, three
inputs (only for passive sensors) and one output port. It can be pro-
grammed from a PC, but in this case the communication is based on
radio frequency instead of infrared light. CyberMaster has limited func-
tionality, because its main unit lacks the power and flexibility of an
RCX computer. Moreover, at 412 bytes of RAM, CyberMaster has
much less memory than does the RCX so it cannot host more than a
very short program. Nor can the system be upgraded , as the firmware is
stored in ROM instead of RAM.

■ Scout Younger brother of the RCX, the Scout is included in the
Robotics Discovery Set (RDS), which is a kit targeted mostly at chil-
dren or adults with little to no programming experience. It can be pro-
grammed through the same RIS infrared tower (not included),thought
the usual method is through the included large display and a set of but-
tons that allow you to choose from among predefined behaviors.
Basically, you can set up a default action and responses to external
events, that sensed through two passive input ports and an embedded
light sensor. Like in CyberMaster, Scout’s firmware is stored in ROM.
LEGO recently discontinued the RDS, although some sets can still be
found, mainly in online shops.This kit is no longer supported.

■ Micro Scout This is an even simpler microcomputer, with many limi-
tations; the Micro Scout comes with seven pre-programmed behaviors.
You can select the current program slot with the help of a very small
single-digit display; an embedded light sensor and a built-in motor com-
plete the unit’s offerings; a PC is not required.The Micro Scout has

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 22

Introducing LEGO MINDSTORMS • Chapter 1 23

been included in two different sets: 9748 Droid Development Kit
(DDK) and 9754 Dark Side Developer Kit (DSDK).The eighth program
slot, the “P” mode, can be used to control the Micro Scout with the VLL
communication protocol, through the Scout’s built-in LED or the RIS
2.0 USB tower link.

■ Code Pilot For the sake of completeness we’ll also mention the first
robotics kit set to appear on the scene, the 8479 Barcode Multi-set. It is
based on an atypical programming method that uses bar codes and a spe-
cial light reading unit (the Code Pilot) to set the model’s behavior.
Software to create barcodes is available online (http://eaton.dhs.org/lego),
and the unit also supports the VLL protocol. It’s not a very interesting
robotics application in comparison to that of even the Micro Scout.

Table 1.3 summarizes the differences between the RIS and the alternatives
just described; the comparison is based mainly on embedded components,
number and types of sensors, output ports, and programming methods.

Table 1.3 LEGO Robotics Kits

DSD/
RDS DSDK CM Barcode RIS

Unit Scout Micro CyberMaster Code Pilot RCX
Scout

PC required No No Yes No Yes
Programming Direct / PC 7 built-in PC Bar codes PC

+P
Input ports 2, passive - 2, passive 1, passive 3,

active/
passive

Embedded sensors 1 light 1 light 2 rotation - -
Output ports 2 - 1 1 3
Embedded motors - 1 motor 2 motors - -
Updateable No No No No Yes
firmware
Communications IR, VLL VLL Radio VLL IR

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 23

24 Chapter 1 • Introducing LEGO MINDSTORMS

Add-on Building Elements
If you discover that you like robotics, you’ll soon feel the need to try out more
complex projects.This will probably create a need for more resources, be it on
the software or the hardware side. Regarding the former, this means you will
need to use an alternative software development environment, while the latter
signifies that you basically need more parts. Luckily, LEGO provides a lot of ways
to do either. On the hardware side, the simplest option is to buy sets from the
TECHNIC series;you can get bulk pieces that are perfectly compatible with the
MINDSTORMS components, just remember to carefully choose which set you
will take parts—you can search for motors, gears,TECHNIC beams, or focus on
pneumatics.

This covers the low-level building elements, but if you want to make the most
out of your RCX, you have to look for more complex components, like sensors.
These components can be bought directly from the LEGO Company, as well as
through many other channels.A few additional sensors can really change your
(LEGO) life, especially if they’re not included in the RIS kit. For example, with a
rotation sensor you can give your robots the capability to control their movements
and position with increased accuracy. Moreover, third-party sensors can be bought
online or even be home-made if you’re skilled enough in electronics. They can be
designed to reproduce a standard behavior or add new functionalities to your cre-
ations. For example, a IR proximity detector can locate objects and walls without
having to touch them.You can check out Michael Gasperi’s site for a lot of useful
information on this subject (see www.plazaearth.com/usr/gasperi/lego.htm).

Furthermore, the LEGO Company produces special add-on kits that include
pieces and special parts. Getting one of those kits is often more convenient than
searching for spare parts:

■ Ultimate Accessory Set This kit contains a remote control, a touch
sensor, a rotation sensor, and a small LEGO lamp.This kit makes a good
first-time expansion to a RIS set, mostly because you get a number of
very useful tools, many of which are not included in the basic assort-
ment.

■ Ultimate Builders Set This is the latest of the expansion kits; it con-
tains a 9V TECHNIC motor, transparent parts from the pneumatics
series, a CD-ROM with new projects, and some special elements (gears,
wheels, a turntable).This is a good choice if you want to start using
pneumatics and if you need additional motors.Three motors are essential
if you want your robots to do complex tasks.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 24

Introducing LEGO MINDSTORMS • Chapter 1 25

■ Visual Command This is a fully functioning PC video camera based
on the Logitech QuickCam. It can record up to 30 frames per second
and comes with a built-in microphone. It can be used as a standard
stand-alone camera, or to work in conjunction with your RCX and
take advantage of the Command Center vision recognition software. It
can detect changes in light, motion, or color. It is available only in USB
version, so unfortunately your robot must always be connected to the
PC via a 5 meter cable, soyou can’t build a fully autonomous and inde-
pendent robot if you decide to use the camera.

There are also some other, older kits in the MINDSTORMS line, including
Exploration Mars, RoboSport, and Extreme Creatures.These are assortments of
pieces for particular tasks,which are usually quite expensive for the real value of the
contents, so get them only if you are looking for specific parts that you know are
included. For example, Exploration Mars has two very long electric cables,
RoboSport one 9V motor, and Extreme Creatures has a fiber-optic system (FOS).

Finally, you can always expand your RIS with another RIS. It might sound a
bit strange, but the second RIS brings with it a lot of pieces, sensors, motors, and
a second RCX unit, all of which can be very useful for building bigger and more
complex robots.The large number of pieces and second RCX unit can make the
high cost of a second RIS a worthwhile purchase.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 25

26 Chapter 1 • Introducing LEGO MINDSTORMS

Summary
The Robotic Invention System (RIS) is the central set of the LEGO MIND-
STORMS series, a robotics line designed both for kids and adults.The system is
based on the RCX, a microcomputer that controls devices, reads sensors, runs
motors, and communicates with other computers via an IR protocol.The unit is
programmed from the end-user’s PC.

RCX Code is the standard development environment provided by LEGO.
RCX Code is limited in functionality, but many third-party tools have been cre-
ated to overcome its limitations. NQC is an alternative text-based language that
is easy and powerful; JavaAPIs are cross-platform programming interfaces; legOS,
pbForth and leJOS are firmware replacements that allow the user to go even
further.

Other kits and spare parts are available to extend the building options for
your robots.Additionally, most TECHNIC pieces are fully compatible with
LEGO MINDSTORMS kits.There are also other members of the LEGO
robotics family, which are easier to use than the RCX-based RIS but more lim-
ited in building and programming possibilities.

Solutions Fast Track

The LEGO MINDSTORMS RIS Kit

� The MINDSTORMS series comes from a collaboration between the
LEGO Company and the Massachusetts Institute of Technology (MIT)
Media Lab that led to the creation of a “programmable brick.”

� The Robotic Invention System (RIS) is the basic kit, and the starting
point for every MINDSTORMS robot of more than basic complexity.

� The RIS includes everything you need to build and program robots: the
RCX unit, three sensors, two motors, an infrared (IR) tower, manuals,
more than 700 TECHNIC pieces and a software CD-ROM.

RCX:The Robot’s Brain

� The RCX is a microcomputer than interfaces with input and output
devices. Programs can be written on a PC and then downloaded to the
unit through the IR tower.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 26

Introducing LEGO MINDSTORMS • Chapter 1 27

� The RCX uses two types of memory: read-only memory (ROM) and
modifiable random access memory (RAM).The latter stores both user-
written programs and the system firmware, which is the RCX’s
operating system.

� The RCX can be expanded in two ways: using a different programming
software like NQC or the Java APIs, or replacing the default firmware
with a new one (legOS, pbForth, and leJOS solutions).

The RIS Software Environment

� The RIS kit contains RCX Code, which is the standard programming
language from LEGO. It contains tools for downloading firmware and a
visual programming interface that makes writing code a very easy task.

� RCX Code is targeted at kids and beginners; its capabilities are too
limited for the development of more complex robots.

RCX Bytecodes

� The RCX architecture uses an interpreter-based virtual machine to
execute commands statement by statement.

� Opcodes, the assembly commands, are used both by the RCX’s stored
programs and the IR emitting devices, like a PC with an IR tower or a
remote control.

LEGO Expansion Kits

� There are other robotics kits besides the RCX-based system:
CyberMaster, Scout, Micro Scout, and Code Pilot. Each of these kits
features only a subset of the full RIS’ capabilities.

� Standard LEGO TECHNIC pieces can be used to expand building possi-
bilities, as can sensors and other spare pieces that are available separately.

� MINDSTORMS can be expanded with kits that contain sensors,
motors, and special pieces. Further,Vision Command (VC) is a LEGO
video camera with an advanced visual recognition system that can be
used to add more functionalities to your LEGO MINDSTORMS
robots.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 27

28 Chapter 1 • Introducing LEGO MINDSTORMS

Q: How much memory do I have available for my programs?

A: With the default firmware you can store about 6 Kb of data.

Q: Can I get more memory?

A: Yes, but only if you install a new firmware, like legOS, pbForth, or leJOS.

Q: How can I use the new firmware features (version 0328)?

A: Use the RIS Software 2.0 or a recent version of NQC. Remember that the
same features, and a lot more, can be found on alternative systems (like legOS
and leJOS).

Q: I have an RIS 1.0 and want to use the new firmware. Is that possible?

A: You need only to get the file called “firm0328.lgo” and install it on your
RCX.The easiest way is to get the MINDSTORMS SDK from the LEGO
Web site, which also provides a utility to download the new firmware to your
unit.

Q: Can I use a USB tower with an RIS 1.0?

A: The RCX has no problem with that, but be sure to upgrade to RIS software
2.0, as older versions don’t support the new tower.

Q: I want to use MINDSTORMS on my Mac.Which of the two towers is the
most compatible with different operating systems?

A: At the moment, the serial tower is very well supported under most OSs,
including Mac and UNIX-based computer systems, because it was the first to
appear on the robotics scene. LEGO and third-party software are slowly
updating their applications to add the USB support, but it’s still not available
for every tool.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 28

Introducing LEGO MINDSTORMS • Chapter 1 29

Q: I just bought an RIS as my first MINDSTORMS set.What’s the best expan-
sion for it?

A: The first parts you need are a third motor and a rotation sensor.You can get
them individually, or included in add-on sets, the best of which are probably
the Ultimate Accessory Set and the Ultimate Builders Set.

www.syngress.com

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 29

177_LEGO_Java_01.qxd 4/2/02 11:58 AM Page 30

The Java
Communications
API

Solutions in this chapter:

■ Overview of the Java Communications
Extension API (JCE API)

■ Installing and Configuring the Java
Communications API

■ Reading and Writing to Serial Ports

■ Debugging with Serial Ports: The “Black
Box” Example

■ Extending the Java Communications API

Chapter 2

31

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 31

32 Chapter 2 • The Java Communications API

Introduction
The Java Communications API is a standard Java Extension API that provides
communications capabilities to serial and parallel ports.These capabilities are not
present in the core Java runtime environment, but can be added to various ver-
sions of the environment as a Java extension API.This provides applications with
these capabilities by redistributing the extension API along with the deliverable
application.This chapter will provide an introduction to the use of the Java
Communications API as well as an overview of its design and architecture. Simple
and advanced example applications are presented with source code to illustrate
the use of the Java Communications API and how to extend its functionality—
specifically in relation to communicating with the LEGO MINDSTORMS
RCX.This will also be examined in detail in later chapters.

Overview of the Java Communications
Extension API (JCE API)
The Java Communications API 2.0 was released in 1998 as the standard commu-
nication mechanism for serial (RS232/434) and parallel (IEEE 1284) ports using
pure Java.That is, standard Java code will run across all compliant platforms, using
the official interface.

The current implementations are found in the following locations:

■ Windows and Solaris http://java.sun.com/products/javacomm

■ Linux www.vorlesungen.uni-osnabrueck.de/informatik/robot00/ftp/
javacomm.html

■ Mac OS http://homepage.mac.com/pcbeard/javax.comm.MRJ

For the most part, communication is performed through standard input and
output streams in Java.These streams are provided from the underlying ports
through a common interface.All the ports extend a common abstract class (called
CommPort) that provides the basic representation of a given port.This allows for
standard mechanisms to open, read/write, and close ports.This is one of the two
primary functions provided by the Java Communications Extension (JCE) API.
The other is port management and ownership, which is described below.

Similar to other Java APIs, the JCE API makes use of the observer pattern;
event notifications are triggered upon a change of port ownership, as are specific
data notifications (as with the case of serial ports).

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 32

www.syngress.com

The Java Communications Extension library primarily consists of one
package: javax.comm.*. This library contains the classes, interfaces and exceptions
listed in Table 2.1.

Table 2.1 Components of the javax.comm Package

Classes Interfaces Exceptions

CommPort CommDriver NoSuchPortException
CommPortIdentifier CommPortOwnershipListener PortInUseException
ParallelPort ParallelPortEventListner UnsupportedComm

OperationException
ParallelPortEvent SerialPortEventListner
SerialPort
SerialPortEvent

We will go into the architecture of the Java Communications API in greater
detail later; but what stands out from the list at first glance are the event classes
and event listener classes.This allows the framework to handle asynchronous noti-
fications of not just specific serial port and parallel port events, but also of port
ownership changes and updates. Hence one would know when a specific port is
available, or one could wait until it is available or closed.The classes of note above
(other than the encapsulation of serial and parallel objects of course) are the
CommPort and CommPortIdentifier classes.

The CommPort is an abstract class that serves as the base class for all ports,
enabling you to manage and handle all the ports in the same way. It contains the
minimal and basic common methods that one would expect from all communi-
cation ports, except for one: open() is handled by the CommPortIdentifier.The
CommPort’s notable methods are getOutputStream(), getInputStream(), and close().

This leads us to the CommPortIdentifier class through which we will create,
manage and identify all ports.Think of this class as a port factory that allows you
to discover and enumerate all the ports in the system and handle the ownership
of those ports.

The CommDriver Java interface gives the developers of new communication
port drivers the ability to add to the Java Communications API in a consistent
manner.We will also examine how one would use this to add a new custom port.

Lastly, as listed in Table 2.1, there are custom Java exceptions in this API that
allows for notification of errors specific to this framework that might occur: if a
given port is already in use, if a requested port does not exist, and if a specific

The Java Communications API • Chapter 2 33

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 33

34 Chapter 2 • The Java Communications API

operation on a given port is not supported. One would think that all of
CommPort’s abstract methods should be implemented by all ports, as they are a
general list.This exception allows for any future type of port to be added easily, as
the CommPort contract is not too rigid. For example, a future port XYZ, might
not be expected to implement the abstract enableReceiveTimeout() method in the
CommPort class if the underlying hardware cannot support this kind of behavior.
Basically one would first test to see if a function is supported before trying to use
it. If the unsupported exception is thrown, it can then be caught and handled
gracefully.

Understanding the JCE Framework
As stated, the Java Communications API provides a clean and simple framework
for allowing access to both serial and parallel ports from 100 percent Java code.
This permits you to write applications ranging from modem software to custom
printer drivers, or provide access from Java to a multitude of devices that interface
with serial and parallel ports.These include devices ranging from mp3 players or
video capture devices to home automation devices (such as X10 devices).Table
2.2 shows some of the features and limitations of the Java Communications API
that will be addressed in the following sections.

Table 2.2 Features and Limitations of the Java Communications API

Features Limitations

Port Discovery and Enumeration Limited to serial and parallel ports.
Port Ownership Management Difficult for third party implementations of

new device protocols to be added to the
core API.

Asynchronous event based I/O Initial configuration could be made easier.
Clean encapsulation of underlying
native ports for several platforms
including Windows, Solaris,
Linux and Macintosh

Port Discovery and Enumeration
In this section we will illustrate how to enumerate all ports available on a system.
This is the first step with all applications that use the Java Communications API.
The following classes and methods highlight the enumeration process:

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 34

The Java Communications API • Chapter 2 35

■ CommPort Provides input and output streams to the ports and is the
base class to SerialPort and ParallelPort.

■ SerialPort Extends CommPort to represent a RS232 serial port

■ CommPortIdentifier Provides control of ports in a system. Serves as both a
port identifier object and a port ID. Note this distinction which at first
glance can be confusing.A port identifier object is not a port object but
identifies and interfaces with an associated port object.

■ public static Enumeration getPortIdentifiers() This static method will provide
a complete identifier list of all ports (serial and parallel) on a system.

■ public String getName() The name of this port identifier

■ public int getPortType() The type of port this port identifier represents,
namely one of the following:

■ CommPortIdentifier.PORT_SERIAL

■ CommPortIdentifier.PORT_PARALLEL

The code shown in Figure 2.1 illustrates how the API is used to list all the
available serial ports for the entire system (computer).This code can be found on
the companion CD with this book.

Figure 2.1 TestEnumeration.java

import javax.comm.CommPortIdentifier;

import javax.comm.SerialPort;

import javax.comm.PortInUseException;

import java.util.Enumeration;

import java.util.Vector;

public class TestEnumeration {

public static void main(String args[]) {

Vector portslist = TestEnumeration.getAvailableSerialPorts();

System.out.println("found "+portslist.size()+" open ports");

}

public static Vector getAvailableSerialPorts() {

CommPortIdentifier pId=null;

SerialPort sPort=null;

Enumeration pList=null;

www.syngress.com
Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 35

36 Chapter 2 • The Java Communications API

boolean foundport=false;

pList = CommPortIdentifier.getPortIdentifiers();

String port=null;

Vector ports=new Vector();

if(!pList.hasMoreElements()) {

System.err.print("warning: no ports found - ");

System.err.println("make sure javax.comm.properties file is found");

return ports;

}

while (pList.hasMoreElements()) {

pId = (CommPortIdentifier) pList.nextElement();

if (pId.getPortType() == CommPortIdentifier.PORT_SERIAL) {

foundport=true;

try {

sPort = (SerialPort)pId.open("serialport", 1000);

} catch (PortInUseException e) {

foundport=false;

System.out.println(pId.getName()+ " is closed");

} finally {

if(sPort!=null) {

try { sPort.close(); } catch(Exception e) {}

}

if(foundport) {

ports.add(pId.getName());

System.out.println(pId.getName()+ " is open");

}

}

}

}

return ports;

}

}

www.syngress.com

Figure 2.1 Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 36

The Java Communications API • Chapter 2 37

Sample output:

>java TestEnumeration

COM1 is open

COM2 is open

COM3 is closed

COM4 is closed

found 2 open ports

Starting with main(), the call to the getAvailableSerialPorts() method will return
a vector of strings of the available serial ports’ names. In this simple example, we
get the vector and print its length, telling us how many serial ports there are.

As we step into the getAvailableSerialPorts() method, we find the usual first step
for enumerating all the ports: CommPortIdentifier.getPortIdentifiers() is called.

If no ports are found, a warning message is displayed; this is unusual and usu-
ally indicates a configuration problem, namely that the javax.comm.properties file
is in the wrong place.

We then loop through the enumeration, checking the port type with each
iteration. If it’s a serial port type, we open the port to see if it is available.

Now, why does CommPortIdentifier use the open() method in one step instead
of first retrieving the port and then having CommPort invoke the open() method?
This clarifies the concept that port discovery and control (ownership) must be
done in only one central point: the CommPortIdentifier. Perhaps CommPortIdentifier
should have been renamed to “CommPortManager” or “CommPortFactory,” but
then it would require breaking out the ID portion to a separate class; or perhaps
the factory could have implemented it as an interface.A factory implementing an
interface? Well okay, perhaps not, but nonetheless this chapter will mention
CommPortIdentifier more than any other class, due to its many responsibilities.

Port Ownership Management
Port ownership allows one to wait for an available port while respecting requests
from other applications that seek access to the port. Ownership contention usu-
ally occurs after enumeration.The following classes and interfaces are used for
port ownership contention:

■ CommPort Provides input and output streams to the ports, and is the
base class of SerialPort and ParallelPort.

■ SerialPort Extends CommPort to represent a RS232 serial port.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 37

38 Chapter 2 • The Java Communications API

■ CommPortIdentifier Provides control of ports in a system. Serves as
both a port identifier object and a port ID.

■ public String getCurrentOwner() This method obtains the owner of the
underlying port to which the port identifier wants to connect, or already
owns.This is not the owner of the identifier itself but rather of the
actual port at that specific time.

■ public boolean isCurrentlyOwned() This method tells you if the port is
currently owned.Again there is no ownership of the identifiers.

■ public void addPortOwnershipListener(CommPortOwnershipListener
listener) This method allows you to add a callback listener to the fol-
lowing ownership events:

CommPortOwnershipListener.PORT_OWNED

CommPortOwnershipListener.PORT_UNOWNED

CommPortOwnershipListener.PORT_OWNERSHIP_REQUESTED

■ CommPortOwnershipListener This interface has only one method, the
public void ownershipChange(int event) callback, which indicates a change in
ownership for any of the above events.The integer parameter is one of
the ownership events listed above, and is usually processed with a switch
statement.

Figure 2.2 (also provided on the CD that accompanies this book) illustrates
the monitoring of port ownership as well as port contention.

Figure 2.2 TestOwnership.java

import javax.comm.CommPortIdentifier;

import javax.comm.CommPortOwnershipListener;

import javax.comm.SerialPort;

import javax.comm.NoSuchPortException;

import javax.comm.PortInUseException;

import java.io.IOException;

public class TestOwnership implements CommPortOwnershipListener {

public static void main(String args[]) {

TestOwnership test = new TestOwnership(args[0]);

test.loop();

www.syngress.com
Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 38

The Java Communications API • Chapter 2 39

}

private CommPortIdentifier portID1,portID2;

private SerialPort sPort1,sPort2;

public TestOwnership(String port) {

try {

portID1 = CommPortIdentifier.getPortIdentifier(port);

portID2 = CommPortIdentifier.getPortIdentifier(port);

} catch (NoSuchPortException e) {

System.err.println(e);

return;

}

portID1.addPortOwnershipListener(this);

}

public void ownershipChange(int type) {

switch (type) {

case CommPortOwnershipListener.PORT_UNOWNED:

System.out.println(portID1.getCurrentOwner()+": PORT_UNOWNED");

break;

case CommPortOwnershipListener.PORT_OWNED:

System.out.println(portID1.getCurrentOwner() + ": PORT_OWNED");

break;

case CommPortOwnershipListener.PORT_OWNERSHIP_REQUESTED:

System.out.println(portID1.getCurrentOwner()

+ ": PORT_OWNERSHIP_REQUESTED");

}

}

public void loop() {

while(true) {

switch((int)(Math.random()*5)+1) {

case 1:

try {

www.syngress.com

Figure 2.2 Continued

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 39

40 Chapter 2 • The Java Communications API

sPort1=(SerialPort)portID1.open("portID1",1000);

} catch(PortInUseException e) {

System.err.println(portID1.getCurrentOwner()

+" failed to open "+portID1.getName()

+" because it’s owned by "+e.currentOwner);

}

break;

case 2:

try {

sPort2=(SerialPort)portID2.open("portID2",1000);

} catch(PortInUseException e) {

System.err.println(portID1.getCurrentOwner()

+" failed to open "+portID1.getName()

+" because it’s owned by "+e.currentOwner);

}

break;

case 3:

try {

if(portID1.isCurrentlyOwned())

sPort1.close();

} catch(Exception e) { }

break;

case 4:

try {

if(portID2.isCurrentlyOwned())

sPort2.close();

} catch(Exception e) { }

}

try {Thread.sleep(1500);}catch(Exception e) { }

}

}

}

Sample output:

>java TestOwnership COM1

portID1: PORT_OWNED

www.syngress.com

Figure 2.2 Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 40

The Java Communications API • Chapter 2 41

portID1: PORT_OWNERSHIP_REQUESTED

portID1 failed to open COM1 because it's owned by portID1

Port currently not owned: PORT_UNOWNED

portID1: PORT_OWNED

portID1: PORT_OWNERSHIP_REQUESTED

portID1 failed to open COM1 because it's owned by portID1

Port currently not owned: PORT_UNOWNED

portID2: PORT_OWNED

portID2: PORT_OWNERSHIP_REQUESTED

portID2 failed to open COM1 because it's owned by portID2

Port currently not owned: PORT_UNOWNED

portID1: PORT_OWNED

portID1: PORT_OWNERSHIP_REQUESTED

portID1 failed to open COM1 because it's owned by portID1

In this example, we pass a parameter from the command line to indicate the
port with which we want to test ownership. For simplicity’s sake, there’s no param-
eter checking so you have to supply a parameter.We then enter a continuous loop.
As the result output shows, we will see a random request to open or close the port
from two different identifiers with errors displaying the current owner of the port.
As a variation of this example, one could try passing in more than one port. I used
only one in this example because that way it’s more likely that ownership con-
tention will occur when two identifiers try to own the same port.

In the constructor, we will see the creation of two port identifiers for the
same port that we passed in.We also see that the first port identifier registers itself
as a listener to ownership events using the addPortOwnershipListener(this) method.
We will implement the CommPortOwnershipListener interface and also the
ownershipChange(int type) method to receive the events.

We cannot add more than one listener. If we do, the TooManyListenersException
error will be thrown.This could be considered a limitation of the Java Communi-
cations API, but normally one doesn’t add more than one listener to a specific port
anyway; one would add a listener for each port. In this case we only need one of
each to show us all the events for the port in question.

If we get an error when we try to open a port, we can use the
PortInUseException to tell us what caused it (who the current owner of the
port is, for example). In this example, when we try to close the port, we first
check to see if it’s already owned by someone else, using the isCurrentlyOwned()
method.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 41

42 Chapter 2 • The Java Communications API

It is important to realize that if one tries to open or close a port, the callback
ownershipChange(int type) will not generate a new event.This is to prevent the
deadlock that would ensue if new events were created every time these actions
were executed.

The most interesting aspect of ownership contention (and perhaps of the
entire Java Communications API) is the fact that you can run the above example
in two different Java virtual machines and still be able to send and receive owner-
ship events across the VMs.This can seem a bit startling at first, but it turns out to
be very useful for testing and debugging purposes.The owner names will also be
propagated, with external native applications that own a given port being labeled
“Unknown Windows Application.”

Asynchronous event-based I/O
Event based I/O is usually the most efficient means of communication, allowing
for near real-time responsiveness.This is demonstrated quite well when adjusting
reception parameters, a concept that applies to all types of ports.

The five properties shared by all ports, as defined by the abstract CommPort
class, are as follows:

■ Receive Timeout This is the number of milliseconds before the read
method returns.

■ Receive Threshold This is the number of bytes present before the read
method returns.

■ Input Buffersize This is the number of bytes the port’s input buffer
will hold before the read method returns.

Table 2.3 summarizes the effect these first three properties have on blocking the
input stream.

Table 2.3 Input Stream Blocking Parameters

ReceiveThreshold ReceiveTimeout InputBuffer Behavior

Disabled Disabled n bytes Block until any data
is available

Enabled, m bytes Disabled n bytes Block until min(m,n)
bytes received

Disabled Enabled, x ms n bytes Block for x ms or
until any data is
available

www.syngress.com
Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 42

The Java Communications API • Chapter 2 43

Enabled, m bytes Enabled, x ms n bytes Block for x ms or
until min(m,n) bytes
received

■ Receive Framing This forces the read method to return immediately,
overriding all other values.

■ Output Buffersize This must be large enough to prevent a buffer
overrun in the event that the software runs faster than the hardware
can handle.

Not all five methods need to be implemented by all subclasses of CommPort.
Enabling timeout, framing and threshold all have the option of throwing the
UnsupportedCommOperationException. One should check for this exception to
determine if these properties are supported.

Encapsulation of Underlying Native Ports
Access to the native ports on different platforms (specifically Windows and
Solaris) are currently provided by the Java Communication API.The
CommPortIdentifier hides the process of selecting the native driver and provides
the instance of CommPort (the abstract base class for serial and parallel ports).We
will see this process in more detail in a later section.

Java Communication API’s
Event Based Architecture
As we’ve examined so far, there is an event-based mechanism for handling port
ownership. Similarly, there are data events for the serial and parallel ports that are
used for efficient communications. Both of these are major parts of the Java
Communications API, and rely on an event-based architecture.The classes and
interfaces are defined to support this.

Figure 2.3 shows the UML diagram for the Java Communications API.
There are a few non-public helper classes for CommPortIdentifier that help it

manage the list of port owners that aren’t shown; these classes simply provide ID
owner list management.The relationships in Figure 2.3 are pretty straightforward,
and we’ve already covered some of the relationships (for example, CommPort is

www.syngress.com

Table 2.3 Continued

ReceiveThreshold ReceiveTimeout InputBuffer Behavior

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 43

44 Chapter 2 • The Java Communications API

the base abstract class for all ports).The relationship that CommPortIdentifier has
with CommDriver will be covered later in the section called “Extending the Java
Communications API.”What you should notice in Figure 2.3 is that both serial
and parallel ports have associated event and listener classes, such as SerialPortEvent
and SerialPortEventListener. Just as we saw with the CommPortOwnershipListener,
the callback mechanism works by having the listener register with the port in
order to receive events in its callback method; SerialEvent(SerialPortEvent evt).This
differs from the ownership event notification in that we can choose which events
will notify the listener by calling the appropriate notifyOn[name of event]() method
on the port itself.

We will look specifically at the SerialPort class and the event signals that are
available for all serial port implementations.

Table 2.4 shows the serial port’s control and status event signals.

Table 2.4 Serial Port Control and Status Signals

Abbreviation Definition

RTS Request To Send
CTS Clear To Send
DTR Data Terminal Ready
DSR Data Set Ready
RI Ring Indicate

www.syngress.com

Figure 2.3 The javax.comm Package

<<interface>>
CommDriver

Driver
CommPortIdentifier

<<interface>>
CommPortOwershipListenerPort

CommPort

SerialPortParallelPort

ParallelPortEvent <<interface>>
ParallelPortEventListener

SerialPortEvent <<interface>>
SerialPortEventListener

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 44

The Java Communications API • Chapter 2 45

CD Carrier Detect
OE Overrun Error
FE Framing Error
PE Parity Error
BI Break Indicator
DA Data Available
BE Output Buffer Empty

An example of a method for requesting notification is notifyOnDataAvailable
(boolean enable).

The signals shown in Table 2.4 are mainly for the physical control lines of the
serial port and some error notifications.There are also two other serial port prop-
erties that one can set but that are not event driven.The first is serial port data con-
trol functions:

■ Baud Rate The rate of change of the data state (not necessarily bits
per second).

■ Data Bits The number of bits in each communication packet.

■ Parity Even, Odd or none.An extra bit per packet set for data integrity.

■ Stop Bits Also for data integrity and error checking; the number of
extra bits added to signal the end of a packet.

The second is serial port flow control functions:

■ RTS/CTL Hardware shaking using control lines.

■ XON/XOFF Software based control using special characters.

These properties are generic to all serial ports.They have corresponding
abstract methods in the SerialPort class that are implemented by the native classes.
In turn, the native classes extend the abstract methods for each platform such as
Win32SerialPort.for the Windows platform.

www.syngress.com

Table 2.4 Continued

Abbreviation Definition

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 45

46 Chapter 2 • The Java Communications API

Installing and Configuring the
Java Communications API
The Java Communications API download includes installation documentation, as
well as the documentation for the packages and many sample programs that use
the API. However, many of the installations still have configuration problems that
arise from a failure to understand exactly how the CommPortIdentifier finds and
loads the native shared libraries.There are also general Java classpath issues that
arise when installing the comm.jar file; we’ll look at two options.

One option, as noted in the API documentation, is to add the comm.jar file
to your classpath and drop the native shared library somewhere in your runtime
path, then add the properties file to your Java SDK (or JRE) library folder.What
the documentation fails to say is that, as of Java 2, there’s no need to have a class-
path environment variable.A Java 2 variation of this option is to put .jar files
(especially since comm.jar is a standard extension) in the /lib/ext folder (located
under the jre folder for either the SDK or JRE installations).The safest bet for the
properties file, javax.comm.properties is the /lib folder, where all the system proper-
ties are kept anyway.

However, if you do drop the comm.jar file into the extensions folder, be
aware of whether you are adding it to the JRE or the JDK installation, since they
could reside in different folders altogether. In fact, in some releases, the java.exe
executable for the JRE installation is placed in the system path. Place it in the
folder that corresponds to your Java executables.

The second, easier option (though not necessarily the most convenient) is to
place all the files into your application’s current runtime folder (assuming you
include the current folder in your classpath—this isn’t necessarily always the case).

Installing the Native Library
On Windows, the native library is the win32com.dll file. On Solaris, it’s
libSolarisSerialParallel.so. For other applications check the redistributables for the
shared library.

On all platforms the library must reside where your application can find it.
Whether it is included in the runtime path or in the current path from which
the application is run.

For example, on Solaris you would have to specify the following (where pwd
is your present working directory):

setenv LD_LIBRARY_PATH `pwd`:$LD_LIBRARY_PATH

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 46

The Java Communications API • Chapter 2 47

Alternatively, you can add it to your /usr/lib path (assuming you have
privileges).

Likewise on Windows platforms you can add it to your path, as follows:

set PATH=%PATH;\pwd

or copy it to your \windows directory (assuming you have the appropriate privi-
leges).

Installing the Java comm.jar Library
As mentioned earlier, you can add this to your classpath by moving it to the
extension folder or keeping it in the current working folder. Make sure that the
current working folder is part of the classpath.You could also set the system vari-
able CLASSPATH to explicitly include both the current working folder and the
path to comm.jar.

When running an application like RCXTest.java, for example, you would
generally do the following:

java RCXTest

which won’t work if the application needs the comm.jar (unless it is specified in
the CLASSPATH variable).You can add the jar file as follows:

java –cp comm.jar RCXTest

You would also need to add the current path (unless the current path is
already in the classpath or you are not using the -cp flag)

java –cp .;comm.jar RCXTest

It’s generally a good idea to place the current directory first in your classpath
to give it precedence.

The javax.comm.properties Configuration File
This file is what tells the Java Communications API where to find your native
library. It basically lists the Java files (strictly speaking, Java “classes” might be a
better term since only classes are actually loaded) that need to be loaded at run-
time to provide platform-specific interfaces.The entries on the Windows and
Solaris platforms respectively look like this:

Windows Serial Driver

Driver=com.sun.comm.Win32Driver

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 47

48 Chapter 2 • The Java Communications API

Solaris Serial Driver

Driver=com.sun.comm.SolarisDriver

Of course the two entries above are not in the same file, but you could have
multiple entries per file for a platform as follows:

Windows Serial Driver

Driver=com.sun.comm.Win32Driver

Windows USB Driver for Lego Mindstorms

Driver=rcx.comm.Win32USBDriver

I said you “could” because this isn’t a recommended practice unless you are
extending the Java Communications API itself (which we will attempt later in
this chapter).The current Driver entry is used by the CommPortIdentifier to select
which CommDriver implementation is to be used (Win32Driver above imple-
ments CommDriver).We’ll go into more detail when we discuss adding USB ports
to the Java Communications API.

Configuring your Development Environment
There are several different approaches to installing Java extension libraries or
packages. First there’s the approach that promotes ease-of-use for the developer.
The second approach makes the end user’s environment a staging/development
environment.

In the first scenario, we can follow the convention of placing the Java exten-
sion jar file where all the extensions should go:The extension folder in the Java
Runtime Environment’s library folder. In the case of a Java Development Kit
(JDK) on a Windows platform, this would mostly likely be found as follows:

c:\j2sdk1.4.0\jre\lib\ext

Notice that it is the \jre folder.This is where we should look, as opposed to
the root folder when looking for the ext folder.This may not seem intuitive since
there is also a c:\ j2sdk1.4.0\lib folder, but the Java executable will use the \jre
folder when looking for extension libraries and property files, such as the
javax.comm.properties file.

The following Java Communications threesome has caused great frustration for
thoseusing and installing JCE (Java Communications Extension):

■ comm.jar This should go in the ..\jre\lib\ext folder or added to the
global classpath (which is not recommended).

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 48

The Java Communications API • Chapter 2 49

■ javax.comm.properties This would go in the ..\jre\lib folder. It tells
JCE which native library to use.

■ win32comm.dll This is the Windows-native shared library for JCE.
This library should go somewhere in the global path (for example,
c:\windows).

The result is the convenience of compiling and testing as follows (the test
example uses JCE):

javac Test.java

java Test

No mention of jar files or fiddling with CLASSPATH environment variables.
One can even traverse all the sample folders that come with JCE without wor-
rying about what the current path is.

NOTE

When compiling with your own package you must use the -d option to
allow the creation of package folders. It’s safer to use javac –d . Test.java
when compiling, for instance. Otherwise you may run into the
NoClassDefFoundError exception.

Of course, the other scenario is to develop and test under release conditions.
Under release conditions, you will most likely not install your application by
installing all the necessary files in all these separate folders. In fact, since the JCE
is redistributable, you will find it more convenient for installation and deinstalla-
tion purposes to package all your files in the same folder. JCE will also look for
the properties file in the classpath where comm.jar resides if it fails to find it in
the lib folder of the current Java runtime environment:

java –cp .;comm.jar Test

This can be safely hidden in a run.bat file, or if you are ambitious you can
wrap an executable to hide the command line and provide extra features, such as
determining which Java Runtime is installed—and maybe even installing and
downloading one if there isn’t already one present. Keep in mind that on
Windows platforms, one can avoid the additional download of a Java runtime by
using Microsoft’s Java runtime. (jview).Yes, the Java Communications Extension
API will work with jview.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 49

50 Chapter 2 • The Java Communications API

Note above that the current directory is included in the added classpath entry
on the command line.Also residing in the current path would be the native dll
file, which does not need to be specified in the global path.

Keep in mind that using script files (bat files) is also convenient for the devel-
oper because it allows one to switch and test several versions of Java runtime
environments.

Since JCE has been tested and is available for most platforms (for example,
Linux, Mac OS, and Solaris), the same applies to those platforms with the excep-
tion of the native shared libraries names .

One more tip is to specify the output directory when using the command
line compiler:

javac -classpath .;comm.jar -d . Test.java

Note in the above line that the –d directive specifies the current directory as
your output directory. Normally this is the default, but with Java runtimes on
some platforms, if you have a package that creates output folders, it will fail to do
so unless you specify where to create them.

Reading and Writing to Serial Ports
The Java Communications API comes with several simple examples that illustrate
the usage of both parallel and serial ports. In this section we will walk through
examples that cover the previously discussed concepts.This will tie in both basic
port creation and access, as well as event notifications and, where necessary, the
use of threads.

Simple Read Example
In the following example we will illustrate the implementation of the Runnable
and SerialPortEventListener interfaces.This means that we will register to receive
serial port events using the SerialEvent() event handler callback as well as illus-
trating the use of a thread for continuous reading from the port.

public class SimpleRead implements Runnable, SerialPortEventListener

{

static CommPortIdentifier portId;

static Enumeration portList;

InputStream inputStream;

SerialPort serialPort;

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 50

The Java Communications API • Chapter 2 51

Thread readThread;

public static void main(String[] args)

{

boolean portFound = false;

String defaultPort = "COM"; "COM1";

if (args.length > 0) {

defaultPort = args[0];

}

portList = CommPortIdentifier.getPortIdentifiers();

while (portList.hasMoreElements()) {

portId = (CommPortIdentifier) portList.nextElement();

if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL) {

if (portId.getName().equals(defaultPort)) {

System.out.println("Found port: "+defaultPort);

portFound = true;

SimpleRead reader = new SimpleRead();

}

}

}

if (!portFound) {

System.out.println("port " + defaultPort + " not found.");

}

}

public SimpleRead() {

try {

serialPort = (SerialPort) portId.open("SimpleReadApp", 2000);

} catch (PortInUseException e) {}

try {

inputStream = serialPort.getInputStream();

} catch (IOException e) {}

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 51

52 Chapter 2 • The Java Communications API

try {

serialPort.addEventListener(this);

} catch (TooManyListenersException e) {}

serialPort.notifyOnDataAvailable(true);

try {

serialPort.setSerialPortParams(2400, SerialPort.DATABITS_8,

SerialPort.STOPBITS_1,

SerialPort.PARITY_NONE);

} catch (UnsupportedCommOperationException e) {}

readThread = new Thread(this);

readThread.start();

}

public void run() {

try {

Thread.sleep(20000);

} catch (InterruptedException e) {}

}

public void serialEvent(SerialPortEvent event) {

switch (event.getEventType()) {

case SerialPortEvent.BI:

case SerialPortEvent.OE:

case SerialPortEvent.FE:

case SerialPortEvent.PE:

case SerialPortEvent.CD:

case SerialPortEvent.CTS:

case SerialPortEvent.DSR:

case SerialPortEvent.RI:

case SerialPortEvent.OUTPUT_BUFFER_EMPTY:

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 52

The Java Communications API • Chapter 2 53

break;

case SerialPortEvent.DATA_AVAILABLE:

byte[] readBuffer = new byte[20];

try {

while (inputStream.available() > 0) {

int numBytes = inputStream.read(readBuffer);

}

System.out.print(new String(readBuffer));

} catch (IOException e) {}

break;

}

}

}

From main() we either specify a port on the command line, or if not, COM1
will be used by default.We then find the port using CommPortIdentifier as before
and create an instance of this SimpleRead class.We then proceed to open the port,
get an input stream, and register our SimpleRead instance as a serial port event lis-
tener.At this point, we tell the port what event (or events) we’re interested in and
in this case we call on notifyOnDataAvailable().Also, there are a slew of notify type
methods that you can read from the documentation for the other events of
which you might be interested in being notified.This could have been called
before registering as a listener but we don’t want to miss any events. Finally, we
create a new thread passing the SimpleRead instance as the runnable object to the
thread, and start that thread.

Upon receiving the event we proceed to read in a loop while there is data
available.This is a pretty standard reading technique that uses the input stream’s
available() method.

This thread will eventually end because in our run() method we simply decide
to sleep for 20 seconds.We could also have timed out the connection and closed
gracefully after a certain period of time from when the last DATA_AVAILABLE
event was sent.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 53

54 Chapter 2 • The Java Communications API

Simple Write Example
The following example illustrates the other half of the equation by writing to a
port.Additionally, we will use event handling to check for when the buffer is
empty.

public class SimpleWrite implements SerialPortEventListener

{

static Enumeration portList;

static CommPortIdentifier portId;

static String messageString = "Hello, world!";

static SerialPort serialPort;

static OutputStream outputStream;

static boolean outputBufferEmptyFlag = false;

public static void main(String[] args) {

boolean portFound = false;

String defaultPort = "COM1";

if (args.length > 0) {

defaultPort = args[0];

}

portList = CommPortIdentifier.getPortIdentifiers();

while (portList.hasMoreElements()) {

portId = (CommPortIdentifier) portList.nextElement();

if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL) {

if (portId.getName().equals(defaultPort)) {

System.out.println("Found port " + defaultPort);

portFound = true;

try {

serialPort = (SerialPort) portId.open("SimpleWrite", 2000);

} catch (PortInUseException e) {

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 54

The Java Communications API • Chapter 2 55

System.out.println("Port in use.");

continue;

}

try {

outputStream = serialPort.getOutputStream();

} catch (IOException e) {}

try {

serialPort.setSerialPortParams(2400,

SerialPort.DATABITS_8,

SerialPort.STOPBITS_1,

SerialPort.PARITY_ODD);

} catch (UnsupportedCommOperationException e) {}

try {

serialPort.notifyOnOutputEmpty(true);

} catch (Exception e) {

System.out.println("Error setting event notification");

System.out.println(e.toString());

System.exit(-1);

}

System.out.println("Writing \""+messageString+"\" to "

+serialPort.getName());

try {

outputStream.write(messageString.getBytes());

} catch (IOException e) {}

try {

Thread.sleep(2000);

} catch (Exception e) {}

serialPort.close();

System.exit(1);

}

}

}

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 55

56 Chapter 2 • The Java Communications API

if (!portFound) {

System.out.println("port " + defaultPort + " not found.");

}

}

public void serialEvent(SerialPortEvent event) {

switch (event.getEventType()) {

case SerialPortEvent.BI:

case SerialPortEvent.OE:

case SerialPortEvent.FE:

case SerialPortEvent.PE:

case SerialPortEvent.CD:

case SerialPortEvent.CTS:

case SerialPortEvent.DSR:

case SerialPortEvent.RI:

case SerialPortEvent.DATA_AVAILABLE:

break;

case SerialPortEvent.OUTPUT_BUFFER_EMPTY:

serialPort.close();

System.exit(0);

break;

}

}

}

Once again, the port identifier list is traversed until we find an available serial
port.This time, after we register the SimpleWrite instance as an event listener, and
tell the serial port that we are interested in the output buffer empty signal with
notifyOnOutputEmpty(), we don’t need to start any threads because we’re simply
going to send one message to the port, sleep for two seconds and then close
gracefully.We can also choose to close as soon as we know that we have success-
fully written out the message, thanks to the OUTPUT_BUFFER_EMPTY event.
We also output the appropriate error code upon exiting. If two seconds pass
before we get signaled, then it’s possible that the write may have failed.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 56

The Java Communications API • Chapter 2 57

Debugging with Serial Ports:
The “Black Box” Example
One of the sample programs included with the Java Communications API goes
beyond the call of duty.Written by Tom Corso for Sun Microsystems, it’s a fully
featured serial port analyzer.As one of its features, it provides line monitoring
where the application will use two serial ports, acting as a “black box” between
them.This is useful for monitoring and analyzing data and protocols, similar to
the methods by which the RCX opcodes were originally discovered and docu-
mented outside of the LEGO Company. See the “Reverse Engineering” sidebar
for a full explanation of the “black box” concept.

Here’s how it’s run:

java –cp BlackBox.jar BlackBox [-h] | [-f] [-l] [-m] [-n] [-s] [-d

receive_delay] [-p ports]

The command line options are:

-h help message

-f friendly mode - will relinquish control of the port to others

that request ownership.

-l run as a line monitor – connects to serial ports together

-m modem mode - converts newlines to \n\r.

-n do not use receiver threads – used to check flow control

-s silent mode. – doesn't display received data.

-d sleep for receive_delay milliseconds after each read - used to check

flow control.

-p open only the ports specified (separated by spaces). If not

specified, all ports will be opened. Note: This must be the last

argument given.

Figure 2.4 shows a frame window containing one panel that represents a
serial port. For each available serial port (only one is shown in the Figure)
another identical panel (a SerialPortDisplay) is displayed and added to the frame,
following a simple top-down layout.

One can toggle the port open and closed by clicking on the port name. Its
status is displayed with the following label colors:

■ Green Port is open.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 57

58 Chapter 2 • The Java Communications API

■ Yellow Port is in use.

■ Red Port is closed.

There are a set of controls whose values can be manipulated the values in real
time for:

■ Baud rate

■ Data bits

■ Stop bits

■ Parity

Also all the standard serial port indicators (some of which can be toggled by
clicking) are: RTS, CTS, DTR, DSR, RI, CD, OE, FE, PE, BI, DA, and EE.

There is also a set of checkboxes for setting flow control, either RTS/CTS or
XON/XOFF, and an Auto Transmit feature that sends a continuous test pat-
tern. Send Break sends a 1000-millisecond break signal.

There’s also a text area for sending data and a display of the buffer in use,
number of bytes sent and the actual calculated baud rate. By clicking on the
Bytes Transmitted/Received, Baud Rate and Buffer Size labels you can
reset the value.Text shown in the receive window will have nonprintable char-
acters converted.

Figure 2.5 shows all the classes, each of which has a corresponding Java
source file. Most of the objects are GUI components, starting with BlackBox
(which is the frame window).The class that does most of the work is
SerialPortDisplay. Following that would be the Transmitter and Receiver classes.

www.syngress.com

Figure 2.4 BlackBox Sample Program

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 58

The Java Communications API • Chapter 2 59

■ SerialPortDisplay manages all the aspects of a connection, signalling and
receiving input from all the other components.

■ Transmitter and Receiver handle the input and output streams using dedi-
cated threads and handle the display of the message traffic.

www.syngress.com

Figure 2.5 BlackBox UML Diagram

ReceivedThreshold

ReceiveFraming

ReceiveTimeout

ByteCounter

BufferSize

ReceiveOptions

ByteStatistics

Receiver

Transmitter

CtlSigDisplay

ToggleLabel ToggleMouseListener OneWayMouseListener

BlackBox

SerialPortDisplay

FlowCtlDisplay

StopBits

BaudRate

DataBits

Parity

threshold

framing

timeout

counter

buffer

options

counter

receiver

counter transmitter

owner
flowCtl

owner

owner

owner

parity

owner

ctlSigs

ownerowner

RTSLabel

Reverse Engineering
When the LEGO MINDSTORMS Kit was first released in 1998, the pro-
grammable RCX brick’s many possibilities were immediately evident to a
group of enthusiasts who quickly took it apart and began to reverse
engineer it to discover how it works—for example, what the communi-
cation protocol was and ultimately how to improve upon it. Since there
was initially no official documentation, a few individuals took it upon
themselves to document the RCX protocol online. Kekoa Proudfoot was
one of the first to do so.

Debugging…

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 59

60 Chapter 2 • The Java Communications API

www.syngress.com

How was it done? One basically interposes oneself in the middle of
the communications pipeline to see exactly what messages are being
sent between the computer and the device—in this case, the infrared
tower and the computer, via a serial cable. Imagine placing a “black
box” (so to speak) between the computer and the device, severing the
physical connection to place the “box” in between. One has the mes-
sages sent first from the computer to the black box, and then after the
box looks at the message traffic (perhaps processing and logging it), it
passes the message to the device as if nothing had happened. Each side
of the communication would not know any better. This is what’s known
as sniffing.

Sniffers are a standard tool used by hackers to reverse engineer
communications, although hacking may conjure up a negative image in
some minds (I won’t address that issue here). Suffice it to say that one
should be alert to any legal repercussions to reverse engineering in gen-
eral, as they may vary from state to state and depending on the software
license used. Technically, we aren’t reverse engineering software, but a
protocol. Also, LEGO had no problem with what the MINDSTORMS
enthusiasts were doing and have been quite supportive since.

An alternate name for sniffer is a serial proxy. Proxies are interme-
diaries that can allow (selectively or not) traffic to travel between two
end points as if they were connected together.

There was a need to understand the underlying protocol in order to
communicate with the RCX and that the only way was to use a tool like
the BlackBox example from the Java Communications API. The black box
setup is shown in Figure 2.6. First we connect the serial cable from the
computer that is running the LEGO MINDSTORMS software, to the
second computer’s first serial port. For the sake of the example, let’s say
we have two PCs and the first computer uses its COM1 serial port, which
is connected to the COM1 port of the second computer (the one that
will run the BlackBox or serial proxy).

Figure 2.6 Reverse Engineering Setup

PC running
BlackBox

PC running
LEGO Software

LEGO
Tower

COM1

COM1 COM2

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 60

The Java Communications API • Chapter 2 61

www.syngress.com

We then connect the MINDSTORMS infrared tower to the second
computer’s second serial port (COM2). The BlackBox program will run as
a software line monitor by forwarding all traffic back and forth between
the two serial ports.

First, we determine the proper serial port settings that we must use
to successfully connect. We can monitor the data in real time to deter-
mine which settings are correct, and experiment with buffer sizes. We
could also go by trial and error to determine the correct settings, trying
out the many permutations until we successfully communicate to the
tower using the original controlling software.

At this point we are able to communicate as if the serial cable were
directly connecting the first computer and the tower and we can mon-
itor the data traffic. We’ll try sending all the different commands to
determine patterns in the data. At this point we would see the following
bytes for example, going to the RCX:

55 ff 0 10 ef 10 ef 55 ff 0 51 ae 5 fa 56 a9 . . .

After going through the many sent messages, we can discern
repeated patterns such as this one from in the line above:

55 ff 0

As it turns out, this is the message header for every message that is
sent to the RCX (we’re just looking at messages sent—there is also a
reply to each message, sent back from the RCX).

It would be very tedious to retrace each step of the process to find
patterns and determine how the data differs on a message-by-message
basis. Let’s just jump ahead to what our reverse engineers discovered
these messages to be. From the line above, we have two messages:

55 ff 0 10 ef 10 ef

55 ff 0 51 ae 5 fa 56 a9

It was discovered that each byte sent has a corresponding byte that
is simply a bit-wise complement of the first command byte (this was
apparently designed as such so that ambient light doesn’t affect the
infrared messages as much). So pairing up the bytes and dropping the
headers, we have:

10ef 10ef

51ae 5fa 56a9

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 61

62 Chapter 2 • The Java Communications API

Selected Code
The following sample code snippet is from SerialPortDisplay.java of the BlackBox
sample application included with the Java Communications API. In this snippet
we will examine the code that interchanges the streams between two ports to
allow the monitoring of messages.

public void setLineMonitor(SerialPortDisplay other, boolean value)

{

www.syngress.com

As the reverse engineering progressed, it was discovered that there
was a checksum byte pair ending each message; dropping the checksum
and the second complimentary byte of each pair we have:

■ 10 A ping command
■ 51 5 A beep command with a parameter of value 5 which is

one of the several default beeps.

As it turns out the two sent commands were an “alive” message,
which is basically just a ping message used initially to establish commu-
nications (basically to get a reply; remember that all messages have cor-
responding replies) and the second message is a command to sound a
specific beep in the RCX. All messages have unique values known as
opcodes, and in this case one of the messages also has a parameter fol-
lowing the opcode. It’s a little more complicated in that each opcode
can be represented differently depending on whether the command was
sent twice in a row or not (a bit is toggled such that the command will
indeed be interpreted as an intentional request to send the command
again and not a retry).

The following chapters will address additional APIs that will
manage and hide the underlying raw protocol used by the RCX, such
that one would only need to know the opcodes and parameters to send.
These are all documented at the RCX Internals site, as well as in the SDK
available from the LEGO Company, which has finally documented all the
opcodes.

This reverse engineering approach is basically the same for tackling
new undocumented message protocols for the various devices that con-
nect to serial or parallel ports, such that one can use the Java
Communications API. In summary, the basic process is to use a serial
proxy, format the data to look for patterns and for correlation to other
messages, and to exercise the original software by sending each possible
command. Oh, and hope that it isn’t encrypted!

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 62

The Java Communications API • Chapter 2 63

/*

* To make a line monitor, we simply take two ports

* and interchange their output streams!

*/

this.lineMonitor = value;

other.lineMonitor = value;

if (this.lineMonitor)

{

this.setOutputStream(other.getOutputStream());

other.setOutputStream(this.outSave);

}

else

{

other.setOutputStream(this.getOutputStream());

this.setOutputStream(this.outSave);

}

}

www.syngress.com

Let’s Not Forget Parallel Ports
For the sake of completeness, here are the aspects of parallel ports,

specifically the ParallelPort class, that everyone should know:

■ Parallel Port Modes These are accessed with getMode() and
changed setMode(int mode). Among the modes are values
for specific type of printers such as
ParallelPort.LPT_MODE_ECP (enhanced capabilities port)

■ Parallel Port States These are states that include
isPrinterBusy(), isPaperOut(), and isPrinterError().

■ Parallel Port Events Just like with serial ports, we can
request specific events and register listeners that implement

Developing & Deploying…

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 63

64 Chapter 2 • The Java Communications API

Essentially what this does is swap the output streams such that whatever gets
received by one port gets sent to the other and vice versa.This function is called
when the –l command line parameter is set and the Boolean parameter value
simply marks the ports as line monitors.

The output streams will be swapped or swapped back depending on whether
you are setting or resetting the line monitoring feature.

You can reuse this for writing a simpler line command monitor, or embed
this diagnostic feature in your applications for diagnostics and debugging.This
concept isn’t limited to serial ports; it can be used by any I/O protocol.

Extending the Java Communications API
This section will discuss how to extend the use of the Java Communication API
by adding custom software (in both native and Java code) to support a new type
of port.We will go through the process of adding support for a customized USB
port to access version 2.0 of the LEGO MINDSTORMS infrared tower (pre-
vious to version 2.0 of the IR tower, connections were made via the serial port
rather than the USB port).

Since the installed user base for the 1.0 and 1.5 version is a considerable, the
need to support serial ports and add USB support to a framework API will be
necessary for some time.The ideal would be to continue to use the Java
Communications API and simply add USB to it.This sounds simple in theory,
but it doesn’t seem as if generic support for USB will be available any time
soon (see the sidebar titled “Why won’t USB be officially part of the Java
Communications API?”).

USB support can be developed by referring to the supporting documentation
from LEGO MINDSTORMS 2.0 SDK, which is available online. It documents
the new USB tower and makes references to how the USB driver for the tower
may be accessed and controlled.

Basically, it states that the USB Tower driver (on Windows only) has an inter-
face available for access by programmers. It mentions the specific Win32 APIs that

www.syngress.com

the ParallelPortEventListener. An example would be
notifyOnBuffer() which would send a ParallelPortEvent to
indicate when the output buffer is empty. The registered lis-
tener would then be notified through its parallelEvent()
method.

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 64

The Java Communications API • Chapter 2 65

are available for developers; and that the standard I/O Win32 calls, such as
CreateFile, ReadFile and WriteFile can be used on the USB driver to communicate
with the tower.This alleviates the task of not only writing native USB driver
code but, but also specific code to access and control the tower itself.These are
two different implementations that are being addressed by the LEGO developer
community for the Linux platform.As for the Macintosh platform, there isn’t a
specific implementation as of this printing but the Linux implementation should
be similar enough to be easily ported to Mac OS X.

Once I looked at a way to access the LEGO USB driver with a simple port
I/O interface, it became apparent that it would make a good candidate for a
wrapper “driver” interface similar to serial port native drivers.

The general drawbacks and limitations will be addressed in the following
section, as will extending the Java Communications API to include support for
USB ports.

Using More than Serial or Parallel Ports
The basic mechanism for providing alternate “driver” code for new ports is dis-
covered by looking at how the serial port was implemented for a specific plat-
form. Figure 2.7 shows a UML diagram of the com.sun.comm.* package and its
classes.

The process starts by parsing the properties file and dynamically loading the
CommDriver instance.This is followed by calling the initialize method (the only
method of the CommDriver Java interface) on the instance of the driver. On the

www.syngress.com

Figure 2.7 com.sun.comm UML Diagram

Win32SerialPort

port

Win32SerialOutputStream Win32SerialInputStream NotificationThread

Win32ParallelPort Win32Driver

portport

notification Thread

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 65

66 Chapter 2 • The Java Communications API

Windows platform,Win32Driver (as specified in the properties file) is the imple-
mentation of CommDriver.

We’ll follow the Java Comm engineers’ lead and create our own package.
Let’s call it rcx.comm.* to contain three Java classes that are equivalent to their
serial port counterparts, namely Win32USBPort.java,Win32USBOutputStream.java
and Win32USBInputStream.java.

The input and output stream classes simply extend the standard Java
InputStream and OutputStream classes as a convenience and to allow for method
synchronization.A reference from the port class is used to get the actual streams.

It is the Win32USBPort.java class that extends CommPort class and provides us
with the interface to the native code.This is accomplished using the standard Java
Native Interface (JNI). Basically, the process of writing JNI code is as follows:

1. Write the Java code that will call the native methods (the methods use
the native keyword).

2. Run the javah command line tool to create a native C header file, popu-
lated with the method prototypes using proper JNI-type nomenclature.
This file should not be edited.

3. Write the native code that will implement the methods in the generated
header file.

4. Create the shared runtime library. In this case it’ll be win32usb.dll and
should be placed alongside the one from the Java Comm API,
win32com.dll.

We will focus on the Java code that will allow us to use this native dll in the
same fashion in which win32com.dll supplies us with access to serial and parallel
ports on the Windows platform.

www.syngress.com

Why won’t USB be officially part
of the Java Communications API?
The Java Communications API was originally designed to be extensible
such that it would provide more than just support for serial and parallel
ports. In fact, the included FAQ refers to possible future inclusion of USB
and Bluetooth technologies.

Bricks & Chips…

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 66

The Java Communications API • Chapter 2 67

www.syngress.com

The necessary hooks into the Java Communications API are in place
(to a degree) for third party implementers to provide access to new com-
munications devices using native code. The idea was to provide a drop-
in mechanism to enable developers to expand the API without having to
change the core library. This would require access to the core library’s
source code, most of which was not made available.

What has happened since 1998 (the last major release of JCE)?
Where is the USB addition to the Java Communications API?

The answer is simple: the existing API worked well for serial and
parallel I/O devices but became cumbersome to adapt as a generic com-
munications API for all future I/O protocols. The USB and Bluetooth pro-
tocols, and their related technologies have themselves evolved to
become quite complex and accommodating them would require signif-
icant modifications to the core JCE API.

In fact, there has since been a new proposal for a standard USB-
specific Java API. The Java Specification Request (JSR) #80 introduced
the javax.usb extension API for USB devices. It is nearing completion and
there is even a reference implementation for Linux made available by
IBM, one of the committee members for that JSR.

USB differs from the serial and parallel interfaces in major areas.
USB not only provides more than 100 times faster I/O than serial ports,
but it allows for up to 127 devices to connect to a USB bus by using the
concept of USB hubs. Some of the issues that would not have been
addressed by JCE without changing the core include:

1. Dynamic plug-and-play attaching to and detaching from the
USB bus.

2. The ability for a USB device to serve as a USB hub to allow
additional devices to be connected to one port.

3. The definition of endpoints for devices. Each device can
define source and target endpoints as well as interfaces.

4. Several types of data transfer mechanisms, such as bulk,
interrupt and control data transfers; as well as what is called
isochronous data transfers, which allows for bandwidth
negotiation.

As you can see, as newer technologies and protocols become more
complex, they will require their own APIs. In fact there is already a JSR
(#82) for a Bluetooth Java API. This seems to leave the Java
Communications API limited to just serial and parallel I/O ports. Unless
significant changes are made to the Java Communications API to allow

Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 67

68 Chapter 2 • The Java Communications API

USB Port Access
Inside the Java Communications API samples folder is a folder called porting.The
Readme file claims this is what is needed to implement custom ports to new
platforms.There is no example of how this is done, though—in fact the only file
present is the source code to CommPortIdentifier (with selected portions omitted).
There is no documentation or examples to explain how the process works so that
we can add our own code.

However, having the source to CommPortIdentifier is a still helpful enough to
for us to understand how the Java Communications framework loads and uses the
native interfaces.

We do know from JavaDocs that there is an interface, called CommDriver,
used by the CommPortIdentifier to actually obtain access to the ports.

Looking at the process which starts with reading the javax.comm.properties
file, then loads each CommDriver class listed and obtains the port identifiers from
CommPortIdentifier. getPortIdentifiers(); we come up with the flowchart shown in
Figure 2.8.

The process starts with the parsing of the javax.comm.properties file where each
entry is dynamically loaded by CommPortIdentifiers upon creating its class instance.
It’s the loading and instantiating of the CommDriver instances that gives Java
Comm its native dependencies—at the cost of a configuration file.

www.syngress.com

it to be much more abstract and extensible, the API will have run its
course, as newer computers will move away from serial and parallel
ports towards better and faster technologies such as USB, Bluetooth,
and Firewire.

Figure 2.8 The Native Comm Port Loading Process

CommPortIdentifier

javax.comm
.properties

<<process>>
load

CommDriver

<<process>>
initialize CommDriver

and receive
port name(s)

<<process>>
call open on
CommDriver

and retrieve port

CommPort

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 68

The Java Communications API • Chapter 2 69

The next thing that happens is that CommDriver’s initialize() method is called.
This is where the driver adds its port names to CommPortIdentifier using the
following:

CommPortIdentifier.addPortName(String portName, int portType, CommDriver);

This is exactly where the reference to the class driver is passed back to
CommPortIdentifier such that when it goes through the port name list (or IDs list),
it knows which CommDriver to call when opening a port.The method that it
calls is getCommPort() which will create the port and open it, returning a
CommPort object (which is why the native ports, such as. Win32USBPort have to
be an instance of CommPort).

One should also note that the portType parameter is usually one of the
PORT_SERIAL or PORT_PARALLEL type, which are types 1 and 2 respec-
tively. New port types should start with 3 or above.

We return to our mirror implementation of the serial classes in the
sun.com.comm package.

The following code snippet shows how one would go about encapsulating
the Win32 USB port for use with the Java Communications API. It closely fol-
lows the serial port example.

package rcx.comm;

public class Win32USBPort extends CommPort

{

static boolean LibLoaded;

public long nativeHandle = -1;

boolean closed;

private InputStream ins;

private OutputStream outs;

int receiveTimeout= 0;

private native int _open(String port);

private native int _read();

private native int _read(byte[] byteArray, int offset, int len);

private native int _write(int b);

private native int _write(byte[] byteArray, int offset, int len);

private native int _close();

private native int _setReceiveTimeout(int timeout);

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 69

70 Chapter 2 • The Java Communications API

private native int _available();

public int open(String portname) throws IOException{

if(!(portname.startsWith("COM")||portname.startsWith("LPT")))

name = "\\\\.\\"+portname;

else

return -1;

if(_open(name)<0)

return -1;

closed=false;

outs = new Win32USBOutputStream(this);

ins = new Win32USBInputStream(this);

return 0;

}

public Win32USBPort() {

closed=true;

if(!LibLoaded) {

try {

System.loadLibrary("win32usb");

} catch (SecurityException se) {

System.err.println("Security Exception loading win32usb

.dll: " + se);

return;

} catch (UnsatisfiedLinkError ule) {

System.err.println("Error loading win32usb.dll: " + ule);

return;

} catch (Exception e) {

System.err.println("Exception with win32usb.dll: " + e);

return;

}

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 70

The Java Communications API • Chapter 2 71

LibLoaded=true;

}

}

protected void finalize() throws Throwable {

close();

}

. . .

}

Since it extends CommPort, all the abstract methods we’ve seen in SerialPort
before (such as setting timeouts etc.) are also implemented above, but not shown
for the sake of brevity. One note is that the close method should call super.close().

Let’s take a look at the section that gives us access to our native code.
The native methods declared include more than just the expected open, close,

read, and write; I added setReceiveTimeout() for setting the read timeout and avail-
able() for use with streams.

Let’s look at the constructor.This is where the native shared library is loaded
using System.loadLibrary().We avoid loading this more than once by using the class
static flag LibLoaded.

The open method in this class will actually open the port.The passed-in port
name is prepended with \\.\ because this is how Windows identifies its ports
(even serial ports).The reason I check whether this is a serial or printer port by
name is in case the port owner tries to open those ports using the wrong associ-
ated driver in the port ID. It should not open; otherwise access to the ports with
the wrong driver could occur.

The input and output streams are created and the port is now open. One
thing to watch for is if this object gets destroyed before close() is called.To prevent
this, we implement the finalize() method and have that call the close.

The CommDriver will create a specific CommPort instance, which is the inter-
face we implement with Win32USBDriver:

public class Win32USBDriver implements CommDriver

{

public void initialize() {

CommPortIdentifier.addPortName("LEGOTOWER1", 3, this);

CommPortIdentifier.addPortName("LEGOTOWER2", 3, this);

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 71

72 Chapter 2 • The Java Communications API

}

public CommPort getCommPort(String portName, int portType) {

Win32USBPort port = new Win32USBPort();

try {

if(port.open(portName)<0)

port=null;

} catch (java.io.IOException ioexception) {

port=null;

}

return port;

}

}

In initialize() above, one can populate the port list IDs. Its counterpart,
Win32Driver, added the lists for both serial and parallel ports to CommPortIdentifier.
Here I added the possibility of having two towers. It’s a meager attempt because we
don’t have access to a native method that will enumerate all the towers present.
Again this is not a full-fledged USB driver; we’re wrapping some access to the
LEGO Company’s native USB driver.The specific port names listed above were as
provided by LEGO’s SDK documentation.

In theory we have all the parts in place and we add an entry to the properties
file:

Windows Serial Driver

Driver=com.sun.comm.Win32Driver

Windows USB Driver for Lego Mindstorms

Driver=rcx.comm.Win32USBDriver

This should work, but it doesn’t. In fact, Win32USBPort won’t compile.Why?
It’s because CommPort’s initializer is package private: all of its subclasses must
reside inside the javax.comm package.This is a serious limitation because we can’t
just drop in a new type of port without breaking package rules.You can’t deliver
javax.comm.* classes outside of the comm.jar because the extension would then
cease to be standard.

What did com.sun.comm.Win32SerialPort do to get around this limitation?
Technically the way around it was to have an additional abstraction between it and

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 72

The Java Communications API • Chapter 2 73

CommPort. In that case it was able to extend javax.comm.SerialPort without a
problem.That’s because Java Comm supports serial and parallel ports out of the
box.We would still run into the problem of having to create a javax.comm.USBPort;
we weren’t intending to introduce generic USB port support, we just want to add
our customized USB port into the mix.Adding generic USB support would
require changing the core API to add new port types, and currently the only way
to extend it is to add new serial or parallel port implementations.The existing
implementation should be able to handle all standard generic devices over serial or
parallel ports.Any protocol differences could be handled by the application using
the Java Comm API without having to write additional native code, unless you
plan to improve on the existing native implementation.

The only alternative we have is to instantiate the Win32USBPort and not use
CommPortIdentifier to create the port.We can keep the same class and just not have
it extend CommPort.This of course eliminates the ability for CommPortIdentifier to
“discover” us. However, in all likelihood, the end application may find it more effi-
cient to just ask which version they are running (serial or USB).The discovery pro-
cess could be time consuming because the application would need to find, then
communicate on, each port. Even LEGO’s MINDSTORMS 2.0 software gives the
user the option to install for USB or serial port, and choose a target serial port or
whether to search for serial ports. Even when we use the Java Comm API to search
for the first available serial port there is a noticeable delay, compared to when we
specify a particular port.As long as the application can save this information on disk
so that it won’t have to keep asking, this shouldn’t be an insurmountable problem;
the application can search only once and save the information, only searching again
when it fails.

By using an interface similar to that of SerialPort, we can still share common
code between both types of ports.As it stands, reading and writing through the
streams are identical.The only difference lies in creating the port, and even this
can be accomplished by having both implement a common Java interface (which
is what CommPort should have been).The next chapter will introduce an RCX
library that allows us to exactly that.

Figure 2.9 presents sample code directly instantiating Win32USBPort.

Figure 2.9 TestUSB.java

import java.io.*;

import rcx.comm.*;

public class TestUSB {

www.syngress.com
Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 73

74 Chapter 2 • The Java Communications API

public static void main(String args[]) {

Win32USBPort usbPort = new Win32USBPort();

try {

if(usbPort.open("LEGOTOWER1")<0) {

System.err.println("Error opening USB port: is tower

plugged in?");

return;

}

OutputStream os = usbPort.getOutputStream();

InputStream is = usbPort.getInputStream();

os.write(testArray);

os.close();

} catch(IOException e) {

e.printStackTrace();

}

}

}

And that’s all there is to it. In fact, the tower’s infrared LED should light up
when you send it the byte “42.”

We should still provide a platform-independent solution for providing USB
ports, and this would require a factory design pattern.We can obtain the port
from USBPortFactory in a standard way by having all the platform encapsulations
implement a common interface (USBPort).We then get the package hierarchy as
shown in Figure 2.10.

The line that would change in the example shown in Figure 2.10 would be
as follows:

Win32USBPort usbPort = new Win32USBPort();

www.syngress.com

Figure 2.9 Continued

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 74

The Java Communications API • Chapter 2 75

changing to the more platform neutral:

USBPort usbPort = USBPortFactory.getUSBPort();

The rest remains the same and the same code should work across platforms.

NOTE

Please see the associated files on the CD to build the native code. The
source code for win32usb.dll is found in the win32usb folder. The lin-
uxusb and macusb folders contain the JNI header files and references to
information on how to develop and build the native shared libraries.

www.syngress.com

Figure 2.10 The Revised USB Support rcx.comm Package

USBPortFactory

<<interface>>
USBPort

USBInputStream

USBOutputStream

MacUSBPortLinuxUSBPortWin32USBPort

port

port

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 75

76 Chapter 2 • The Java Communications API

Summary
When the LEGO MINDSTORMS Robotics kit was introduced in 1998, Sun
had just released the Java Communications API 2.0. Since the RCX communi-
cated with the PC via a standard I/O port (the serial port), there was an opportu-
nity for many programmers to develop for the RCX.The Java Communications
API is a standard Java extension API, meaning that, though it’s not part of the core
Java runtime environment, it is a standard when redistributed with an application.
The multi-platform support is comprehensive and the API stable and widely-used.

The Java Communications API provides not just an encapsulation of serial
and parallel ports, but also a comprehensive port management system.Through
the CommPortIdentifier class we are able to discover and enumerate all the ports of
a system, whether or not they are available. Port ownership is also provided with
the ability to detect requests and receive ownership notifications across applica-
tions and even Java virtual machines.The I/O can be made synchronous or asyn-
chronous by following Java-style event notifications.A port can be enabled to
generate events and send them to listeners who register as event listeners. Serial
and parallel ports have specific events. For instance, the serial port can listen on
control lines.

Java Comm API configuration involves a properties file, a native shared library
that should be present in the execution path, and a jar file that should be acces-
sible from the Java classpath.This is the mechanism that allows the core classes to
be separate from the native implementation of the ports. Several examples of
reading and writing to ports were presented, as was an interesting serial port ana-
lyzer that allows one to monitor a line of communications using two ports.

We examined extending the API as it was designed to be extended, with an
eye towardsadding a custom USB implementation for communicating with RCX
2.0.The process for doing so was discovered by studying how the
CommPortIdentifier loaded the serial port driver for Windows. It seems that the
caveat for adding ports is that the port type must be either serial or parallel.
Nonetheless, we were able to encapsulate access to the USB port in a fashion
similar to the serial port by using JNI to access the native code that accesses the
port.Although the Java Communications Extension API may not be expanded in
the future, its architecture is robust and vital for accessing serial and parallel ports
from 100% Java code.The JCE API is freely distributable with Java applications
and is the foundation block from which we’ll communicate with the RCX 1.0
and 1.5 in the following chapters.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 76

The Java Communications API • Chapter 2 77

Solutions Fast Track

Overview of the Java Communications Extension API

� The Java Comm API provides the mechanism for port enumeration and
ownership as well as event driven notification of change of ownership.

� Asynchronous and synchronous I/O is possible due to the standard Java-
style event-driven architecture.

� The SerialPort and ParallelPort classes provide a clean encapsulation for
supporting the many platforms for which the JCE API is available.

Installing and Configuring
the Java Communications API

� There are three deliverables: a jar file, a properties file, and a native
shared runtime library.

� Several options are available depending on ease-of-use versus ease-of-
configuration.The simplest is to keep the three deliverable files together
in the same folder so long as it is the application’s working folder.

� There are possible version control caveats, but fortunately the API has
stabilized enough such that it’s not a big issue.

Reading and Writing to Serial Ports

� The Java Communications API comes with several simple examples that
illustrate the usage of both parallel and serial ports.

� Adding event-driven notifications is straightforward using EventListeners.

� Working with the parallel ports is similar to working with any port that
extends the CommPort abstract class.

Debugging with Serial Ports:The Black Box Example

� A close look at a specific advanced Java sample program that comes with
the JCE illustrates all functionality of the serial port by serving as a serial
port analyzer and line monitor.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 77

78 Chapter 2 • The Java Communications API

� The BlackBox sample program can be used as is as a serial proxy or
sniffer tool without modifications.

� The way that the output and input streams were used in the BlackBox
example can be used as the basis of custom applications that provide
similar functionality.

Extending the Java Communications API

� The mechanism for adding new functionality exists via the CommDriver,
CommPort and CommPortIdentifier classes.

� A step-by-step process of how a customized USB driver was
implemented for use with the RCX 2.0 USB tower.

� The limitations shown include the inability to add external packages as
the source for new port drivers.This would break the package naming
convention of not adding to or changing the classes in the javax.comm
hierarchy.

Q: What exactly is receive threshold and what does it do? I thought receive
timeout was all I needed.

A: Receive threshold is the minimum number of bytes that need to be present for a
call to read returns. Setting a timeout also determines when to return from
read. Usually both are used together with the first one to complete causing
the read to return. Using timeout is generally good enough for timing out
reads, but when used in conjunction with threshold you can be more precise
and more efficient. For instance, if you know the smallest size of the packet of
bytes you expect, you can use that value as a threshold.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 78

The Java Communications API • Chapter 2 79

Q: Does Sun have any plans to update the Java Communications API?

A: As of this printing the latest version is 2.0.2, which dates to 10/19/2000.This
comprises of only minor bug fixes available only to the Solaris platform,
with the other platforms supposedly forthcoming.

Q: Can the BlackBox serial port example program be used to analyze protocols
used by different devices such as my mp3 player?

A: Yes; if they interface through a serial port, you can set up a serial proxy on a
separate computer to analyze the protocol as indicated in the RCX reverse
engineering example.

Q: What is the future of the Java Communications API if there are wholly new
Java APIs for newer standards like USB and Bluetooth?

A: The Java Communications API has been available for over four years now and
has been used extensively by Java applications to interface with serial and par-
allel ports. It is a proven API that is available on a wide variety of platforms.
As long as there are still serial and parallel ports in use, the future looks good
for JCE.

www.syngress.com

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 79

177_LEGO_Java_02.qxd 4/2/02 12:01 PM Page 80

Communicating
with the RCXPort
API

Solutions in this chapter:

■ Overview of the RCXPort Java API

■ Programming the RCX Using RCXPort

■ Downloading Programs with RCXPort

■ Interfacing External Software with
RCXPort.

■ An Advanced Example Using RCXPort

Chapter 3

81

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 81

82 Chapter 3 • Communicating with the RCXPort API

Introduction
RCXPort is one of two pure-Java interfaces to the RCX that are currently avail-
able to the public.The RCXPort API was written by Scott Lewis in 1999, and
made available to RCX users over the Internet by an open source license.You
can find the source code at www.slewis.com/rcxport. He originally wrote the
RCXPort interface to allow another project of his (ROAPI) to interact with the
LEGO RCX. ROAPI is a replicated object system that allows you to build a
wide variety of collaborative applications, such as multiplayer games or distance
learning environments. More information can be found at Scott Lewis’Web site.

In this chapter we will introduce the RCXPort API and show you some
example code, along with a discussion of RCXPort’s limitations and future direc-
tions.You will learn how to use features such as downloading programs that are
written in the popular language Not Quite C (NQC). Finally, we will show you
an advanced example program written in Java using the RCXPort API.

Overview of the RCXPort Java API
Similar to the RCXJava API, which came out in 1998 and described in the next
chapter, RCXPort relies on the Java Communications package to send data to
the RCX via your computer’s serial port.The Java Communications package is
incompatible with USB ports, so users of the RIS 2.0 should refer to Chapter 2
for using Java with USB ports. I will discuss this limitation further in the section
entitled “Limitations of RCXPort.”

How RCXPort Works
In this section you will learn about the RCX object model, why it was built the
way it was, and how it communicates with the RCX.The RCX understands a
very basic set of commands called opcodes, which are simple machine-level
instructions made up of individual bytes. For more on the history of these com-
mands, refer to the sidebar later in this chapter called “Reverse Engineering the
RCX Opcodes.”

Formatting RCX Commands
As we’ve mentioned, programs and commands are sent to the RCX in opcodes,
which are organized into a simple set of commands that the RCX firmware can
understand.These commands comprise all of the most basic functions of the
RCX; playing tones, getting readings from input sensors, turning motors on and

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 82

www.syngress.com

off, and keeping time with its four internal timers.The commands can also
instruct the RCX to store a given program, shut itself down, or make a computa-
tion on one of its 32 internally-stored variables.

The RCXPort API provides a means of sending these commands to the
RCX independently of the LEGO MINDSTORMS software and RCX code.
By itself, RCXPort can download programs written in byte code to the RCX or
send individual commands one at a time, allowing a programmer to directly con-
trol the RCX from the Java Runtime Environment (JRE) on a personal com-
puter. Since the RCX is programmed to respond to these opcodes, all a Java
program needs to do in order to control the RCX is to transmit opcodes in a
format that the RCX recognizes.

Every command that goes to the RCX via the infrared tower is of a format
that ensures the correct transmission and reception of messages, and that no part
of any command is lost.The message format consists of three parts: the header,
the body, and a checksum byte.The header prepares the RCX for the command
it is about to receive; the body of the message contains the actual commands; and

Communicating with the RCXPort API • Chapter 3 83

Reverse Engineering the RCX Opcodes
When the first LEGO MINDSTORMS sets were released in 1998, they cre-
ated a lot of buzz in the academic computer programming and robotics
worlds. Many enthusiasts wanted the ability to do more with their RCX-
powered robots, as well as to better understand how they worked.
Kekoa Proudfoot, then a graduate student at Stanford University’s com-
puter graphics department, is widely credited with being the first to
publish a complete set of the opcodes that control the RCX’s every
move. He did this by a process known as packet sniffing, where a hard-
ware or software listening device is placed somewhere between the RCX
software on a PC and the RCX itself. By knowing what types of com-
mands are being sent to the RCX, and intercepting the byte codes trav-
eling to the RCX at that time, one can extrapolate patterns and
eventually come to identify the opcodes themselves and their use. This
list of commands can be found at: http://graphics.stanford.edu/~kekoa/
rcx/opcodes.html.

Bricks & Chips…

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 83

84 Chapter 3 • Communicating with the RCXPort API

the checksum byte tells the RCX how many total bytes of information are con-
tained in the message.This serves as a check to make sure that no part of the
message was lost.

One other failsafe technique is used in the message formatting: each byte in
the message body, as well as the checksum byte, is followed by its bitwise comple-
ment. Since the header is fixed and contains an equal number of ‘0’ and ‘1’ bits,
this guarantees that the entire message has an equal number of 0s and 1s.Thus
the RCX knows to expect a message that has an average value of .5 and can
make adjustments if the infrared signal is affected by ambient light.

RCXPort Object Model
The RCXPort API includes an RCXPacket object, which represents each indi-
vidual message that is sent to the RCX. It contains a getBytes() message, which
packages a set of RCX opcodes into a format that the RCX understands.
Because this class constructs every message that gets sent to the RCX, it is an
integral part of the RCXPort API.

The RCXPort object itself is the class that is responsible for opening and
maintaining a connection with the infrared tower.When running RCXPort, you
indicate in the command line the serial port on your computer to which the
tower is connected, and the RCXPort creates a connection to the tower through
the specified port.

Note that RCXPort relies on the Java Communications API to make this
connection, and that this API is not compatible with USB ports. If you are using
the USB infrared tower that comes with the Robotics Invention System 2.0, you
will need to refer to Chapter 2 for instructions on how to make this connection.

Whenever a command is sent to the RCX, it echoes the same command
back to the tower (except for the RCX 2.0 USB tower version) This value can
then be checked to ensure that the correct message was received.After echoing
the message, the RCX then sends a reply command, which may or may not con-
tain data as well.The reply command always begins with the bitwise complement
of the sent command. In such cases where data is needed from the RCX, it will
include this data in the reply message. For instance, if you wanted to get a reading
from the light sensor, the RCX would return the current value from the light
sensor in its reply message.These messages follow the same formatting rules as
messages that are sent to the RCX. Each reply returned by the RCX is repre-
sented by an RCXResult object.

The RCXCmd class stores constants for all the opcodes that are known to the
RCX.This is a convenient way of representing each command destined for the

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 84

Communicating with the RCXPort API • Chapter 3 85

RCX. In this way, you need not remember every opcode; you instead need only
refer to a command by name when building an RCX command.

The RCX is capable of storing and running five programs, each with 10 tasks
and eight subroutines, and it is around this framework that the rest of the RCXPort
object model is based.The remaining three classes, RCXProgram, RCXTask, and
RCXSub represent these programs, tasks, and subroutines, respectively.

Limitations of RCXPort
Any early release of software is bound to have limitations and shortcomings as it
grows and evolves.While the RCXJava and RCXPort APIs offer all sorts of new
opportunities for Java programmers who wish to write code for LEGO MIND-
STORMS, they are no exception to this rule. Part of their shortcomings are due
to the fact that the average Java programmer does not have the ability to code
control statements around their RCX commands in byte code that is understand-
able to the RCX firmware.Also, these packages are very reliant on the Java
Communications API, which has its own limitations that in turn limit the func-
tionality in RCXPort. In the following sections we discuss these drawbacks.

Compiling Java into Machine Code
RCXPort offers an excellent interface for communicating with the RCX. It
greatly simplifies the task of creating a message packet, sending it to the RCX,
and retrieving reply data. It allows you to easily download a program to the
RCX. However, since the standard RCX firmware does not understand Java
code, these programs must be sent to the RCX in a format that the firmware can
understand. It is no simple task to translate the structured language of a high-level
Java program into the low-level machine code that can run on an RCX. LeJOS
(introduced in Chapter 5) overcomes this problem by replacing the standard
RCX firmware with one that can run Java code. NQC, the popular language
written by Dave Baum, includes this functionality in its compiler; code that is
written in NQC’s high-level C-like syntax gets compiled into low-level code
that is understood by the RCX’s firmware. Scott Lewis, author of RCXPort, cre-
ated the API with the eventual goal of including a high-level compiler similar to
that of NQC, but this is not yet available.

Restrictions of Using Direct Mode
Earlier in the chapter we discussed the direct mode technique, in which controlling
the RCX is done via commands sent directly from a Java program.A program is

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 85

86 Chapter 3 • Communicating with the RCXPort API

run in the Java Runtime Environment on your personal computer, and sends
commands to the RCX via the infrared tower. In this way, a Java program can
have complete control of the RCX, taking full advantage of the Java language’s
advanced structure without downloading any programs to the RCX.This allows
you to write powerful programs in Java, although this technique is severely lim-
ited by the reliability of the infrared signal between the RCX and the IR tower.
Because the tower was designed primarily for downloading and uploading, it
does not lend itself well to communication with an RCX that is moving—it may
transmit a command that sends the RCX further away from the tower, and
ensuing commands may get lost, especially if the RCX goes beyond the tower’s
signal range. For this reason, it is best to use direct mode only when your RCX
will be stationary and within close range of the IR tower.Also, the amount of
time that it takes for a command to be sent and a reply returned via the tower
can slow down your program significantly.

Reliance on Java Communications API
We have already mentioned that RCXPort relies on the Java Communications
API to interface with your computer’s serial ports. Because the Java Comm API
is not compatible with USB ports, this prevents users of the RIS 2.0 from using
RCXPort as-is.This is a difficult problem, since the greatest advantage of Java is
its platform independence.This platform independence allows RCXPort to be
run on Windows, Linux or MacOS; However, USB port implementation in Java
code is highly platform-specific.There is currently no published API that allows
communication with a USB port on every platform, but Dario Laverde has
written some code that allows RCXPort to work with USB on Windows or
Linux operating systems.You can find his code in the Chapter 2 directory on the
CD included with this book.This is a re-architecture of the existing published
RCXPort code, and therefore comes with the caveat that it has not been thor-
oughly tested.We include it with the book as an example for advanced users who
wish to take advantage of USB’s faster communication speeds.

Programming the RCX Using RCXPort
We’ll start with a basic example that demonstrates how to write a Java program
using the RCXPort API. First, we’ll need to create a basic class, MyRCX and
import RCXPort and RCXCmd.We’ll need these to establish a connection to the
IR tower and to create each individual command that we send to the RCX.We

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 86

Communicating with the RCXPort API • Chapter 3 87

need not include RCXPacket; RCXPort will make the method calls to build our
packets for us.

NOTE

The blocks of code in this section belong to Figure 3.1, the MyRCX.java
file. Explanations are inserted in between the blocks of code. The entire
source file can be found on the CD that accompanies this book.

Figure 3.1 MyRCX.java

import rcxport.RCXPort;

import rcxport.RCXCmd;

public class MyRCX

{

We’ll declare an RCXPort object rcxp because our class will always need a
connection to the IR tower.Then we’ll add a constructor method so that instan-
tiating MyRCX will also instantiate our RCXPort object rcxp. The constructor
will take an argument, port, to indicate to which serial port the IR tower is con-
nected (COM1, for instance). Since instantiating a new RCXPort may throw an
I/O error exception, we’ll need to handle or throw an exception here also.We’ll
just throw one:

RCXPort rcxp;

public MyRCX (String port) throws Exception

{

rcxp = new RCXPort(port);

}

We should now have a connection to the IR tower, so we’re ready to give
the RCX some commands. Let’s start with some simple commands that will
make the RCX beep and do a little dance. In the beep() method, we’ll need to
choose what kind of sound we want the RCX to play.The RCX knows six dif-
ferent beeps, each represented by a number from 0 to 5.We’ll choose the double

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 87

88 Chapter 3 • Communicating with the RCXPort API

beep that the RCX makes when it’s turned on.The index for this sound is 1, so
we’ll pass the argument 1 to RCXPort’s playSound() method. Be sure to cast the
number into a byte first.

public void beep()

{

byte sound = (byte) 1;

rcxp.playSound(sound);

}

Next we’ll add a method to make the RCX wiggle back and forth. Our
example assumes that you have set up the RCX with four wheels and two
motors; one motor connected to output A and powering the left two wheels, and
the other connected to output B and powering the right set of wheels. For our
purposes we are going to use the Simple Steering Drive Robot created by Mario
and Giulio Ferrari. Figure 3.2 shows a picture of the Roverbot.

The RCXPort.sendData() method takes in a byte array argument containing
the commands to be sent.We will therefore need a byte array to hold each com-
mand or opcode before we send it to the RCX:

public void wiggle()

{

//a byte array to hold each command

byte [] commands;

www.syngress.com

Figure 3.2 A Simple Steering Drive Robot

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 88

Communicating with the RCXPort API • Chapter 3 89

We’ll create some constants in this method to represent the motors we wish
to control, and the directions we want them to move in. In the RCX opcodes,
output A is always represented by the 20 bit, which is “0x01” in hex. Output C is
represented by the 22 bit, or 0x04.To indicate that we want to instruct both out-
puts to do something, we combine the two bytes using the bitwise or operator:
0x01 | 0x04 = 0x05, where “|” represents the operator.

//bytes representing motors and on/off states

byte MOTOR_A = (byte) 0x01;

byte MOTOR_C = (byte) 0x04;

byte BOTH_MOTORS = (byte) MOTOR_A | MOTOR_C;

byte TURN_OFF = (byte) 0x40;

byte TURN_ON = (byte) 0x80;

byte FLIP_DIR = (byte) 0x40;

To make the RCX wiggle, we’ll instruct it to turn the left motor on, then
the right, then reverse the direction of both motors. Repeating this four times
will make the RCX wiggle back and forth.

The RCXCmd.set() method takes up to six bytes as arguments, and returns
these bytes in a byte array, which is just the format we need for the sendData()
method. By using the bitwise or operator to combine the MOTOR_A and
TURN_ON bytes, we create one byte that, when preceded by the
RCXCmd.OutputMode opcode, will instruct the RCX to turn on output A.

//repeat this four times

for (int i=0; i<4; i++)

{

//turn left motor on then off

commands = RCXCmd.set(RCXCmd.OutputMode,(byte) MOTOR_A |

TURN_ON);

rcxp.sendData(commands);

commands = RCXCmd.set(RCXCmd.OutputMode,(byte) MOTOR_A |

TURN_OFF);

rcxp.sendData(commands);

In this example, we immediately follow the turn on command with a turn off
command, without telling the program to wait for any period of time. Under
other circumstances, this might happen in the blink of an eye given the speed at
which our Java program can run. However, because we are limited by the slow

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 89

90 Chapter 3 • Communicating with the RCXPort API

connection between our computer, the IR tower, and the RCX, there is a slight
delay between commands.

//turn right motor on then off

commands = RCXCmd.set(RCXCmd.OutputMode,(byte) MOTOR_C |

TURN_ON);

rcxp.sendData(commands);

commands = RCXCmd.set(RCXCmd.OutputMode,(byte) MOTOR_C |

TURN_OFF);

rcxp.sendData(commands);

//reverse both motors

commands = RCXCmd.set(RCXCmd.OutputDir,(byte) BOTH_MOTORS |

FLIP_DIR);

rcxp.sendData(commands);

}

}

www.syngress.com

Abstracting the Byte Code Layer
Although the examples we’ve used thus far are simple, they give you an
idea of all that is possible with Java and the RCX. In the above example,
we did little more than automate the grouping of bytes and opcodes
into commands and deliver them to the RCX. By declaring constants to
represent opcodes, we are able to remove ourselves somewhat from
dealing with the lowest level of programming the RCX—the opcodes.
With more coding, we can abstract the opcodes even further so that we
are dealing only with the Java language and higher-level methods that
might be called getLightSensorReading() or reverseDirection(). Later sec-
tions in the chapter will demonstrate how to further abstract these byte
codes, bringing us towards Scott Lewis’ eventual goal: to abstract the
byte code layer so that programming can be done exclusively in Java.
leJOS (introduced in Chapter 5) accomplishes this abstraction via a dif-
ferent technique: replacing the standard RCX firmware with a small VM,
or virtual machine, that can run Java code.

Developing & Deploying…

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 90

Communicating with the RCXPort API • Chapter 3 91

Now we’ll need a static main() method to call these two functions and spring
our RCX into action.As you remember, our constructor method calls for a port
name, so we’ll provide it with the “COM1” port name.This is for our example,
you may be using a different port for your IR tower; or to make your code more
flexible, you could input the port name from the command line.

public static void main(String [] args)

{

MyRCX rcx = new MyRCX("COM1");

rcx.beep();

rcx.wiggle();

rcx.beep();

}

If you run this program with your RCX turned on, your RCX should beep
twice, wiggle back and forth, then beep twice again. Congratulations, you’ve just
written your first program using the RCXPort API!

Downloading Programs with RCXPort
The RCXPort class offers the downloadProgram() method, which stores a series of
commands in one of the RCX’s five stored program slots. RCXPort’s main
method offers an easy interface with which we can download these commands
from a file that is stored locally on our personal computer. For now, we’ll create
this file manually. Later we will demonstrate how to produce more complex byte
code programs that can be stored on your RCX, and finally, how to update your
RCX’s firmware using RCXPort.

Following are the byte codes that were sent to your RCX in the previous
section (in hex):

51,01, (play 'beep beep')

21,81, (turn on output A)

21,41, (turn off output A)

21,84, (turn on output C)

21,44, (turn off output C)

e1,45, (reverse outputs A and C)

(the preceding 5 lines are repeated three more times)

51,01 (play 'beep beep')

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 91

92 Chapter 3 • Communicating with the RCXPort API

Save these codes (without my remarks) in a text file on your PC, in the same
directory as your rcxport.jar file.We’ll call it “dance.lis,” since it is a list of com-
mands that will make the RCX dance. Notice how I have separated each byte
with a comma; this is because RCXPort recognizes three types of delimiters
when reading bytes from files: spaces, commas and tabs. I’ve chosen commas
because they are the easiest to see.

Now go to the directory where your rcxport.jar file is located and run
RCXPort as follows (try java rcxport.RCXPort –usage for an explanation of
command line options):

java rcxport.RCXPort –p COM1 –n 1 –f dance.lis

If you named your file “dance.lis” and are using the COM1 port, then your
standard output should show the following:

Opening port COM1...done.

Reading byte codes from file: dance.lis...Done.

Downloading program 1 to RCX...done.

You now have the program stored on the RCX as “program 1.” However,
when you press the Run button a curious thing happens—the RCX plays two
double beeps, but doesn’t move at all! This is because when we were running the
same commands in direct mode, we were relying on some delay time between
commands due to the slow speed of the data transfer when using the serial port
and infrared tower.This time, however, all the commands are stored internally to
the RCX, so there is no longer any delay.The commands come so quickly that
the RCX doesn’t even have time to respond.To correct that, insert this string of
bytes: 43,02,0a,00, in between the commands that turn the motors on and off.
Your file should now look like this:

51,01,

21,81,

43,02,0a,00,

21,41,

21,84,

43,02,0a,00,

21,44,

e1,45,

etc…

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 92

Communicating with the RCXPort API • Chapter 3 93

This will cause the RCX to wait for one-tenth of a second between turning
a motor on and turning it off again. If you return to the command line and
download the file again, you should see your RCX wiggle once again.

Now that we’ve seen at a very low-level how the RCX works, it may
become more apparent why it is not so simple to have your Java code run as-is
directly from the RCX;The RCX firmware doesn’t understand Java code. In
order to run more complex programs on the RCX, we must overcome this
problem in one of two ways: we can teach the RCX to understand Java, or we
can transform our code into a format that the RCX can understand. Chapter 5
will introduce you to leJOS, an implementation of Java that can run on the RCX
when its firmware is replaced by a small Java Virtual Machine (JVM). In the fol-
lowing section, I will demonstrate how to use a non-Java language to introduce
more complex control structures to your existing RCX’s original firmware.

Interfacing External
Software with RCXPort
Dave Baum’s Not Quite C (NQC) provides a simple way for one to compile a
higher-level programming language into the low-level byte code that the RCX
understands. NQC syntax is based on C, and is therefore quite similar to Java
syntax.The NQC language is very intricate; you can refer to
www.enteract.com/~dbaum/nqc for more detailed information. In this section I
will introduce a program written in NQC, then demonstrate how to run this
program on the RCX using the RCXPort interface. If you are familiar with
NQC, then the following program should be pretty straightforward. Since some
readers may be new to the language, I have done my best to indicate what is
going on with in-line comments.

To run this program, you should set up your Roverbot with a single front
bumper as shown in the Constructopedia and in Figure 3.2.The motors will be
attached to outputs A and C, and the bumper’s touch sensor should be attached
to sensor 1.This example also uses a light sensor, which is attached to sensor 3
and mounted anywhere on the Roverbot.

The following program, LightRover.nqc (Figure 3.3), will cause your RCX
to explore a room, reversing direction whenever the front bumper strikes an
object.This particular Roverbot is programmed to seek out darkness. It will con-
tinue to explore the room until it finds a location that is below a certain darkness
threshold, as defined in the program. Once it finds such a location, it will stop

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 93

94 Chapter 3 • Communicating with the RCXPort API

and rest until such time as increased light wakes it up again.You may find that
you need to adjust these light thresholds depending on the amount of ambient
light in the area where the RCX is running.

The program defines an event that will be fired when the light sensor reads a
value lower than a predefined threshold of 30. It will run a loop wherein the
RCX will continue to explore until such an event occurs. It will turn around
whenever it runs into another object.The following code can be found in the
Chapter 3 directory on the CD that accompanies this book.

Figure 3.3 Program your RCX To Be Afraid of Light (LightRover.nqc)

//predefined constants for use in the program

#define BUTTON SENSOR_1

#define LIGHT_SENSOR SENSOR_3

#define MOTOR_A OUT_A

#define MOTOR_C OUT_C

//predefined light thresholds

#define LOW_LIGHT_LEVEL 30

#define WAKE_UP_LEVEL 35

//this task will run when the program is started

task main()

{

// tell RCX what kind of sensors are used

SetSensor(BUTTON, SENSOR_TOUCH);

SetSensor(LIGHT_SENSOR, SENSOR_LIGHT);

//continue to loop as long as program is running

while(true)

{

//create an event that will be fired whenever the

//light falls below the threshold

SetEvent(1, LIGHT_SENSOR, EVENT_TYPE_LOW);

SetLowerLimit(1, LOW_LIGHT_LEVEL);

//loop until low light event is fired

monitor(EVENT_MASK(1))

{

www.syngress.com

Continued

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 94

Communicating with the RCXPort API • Chapter 3 95

//both motors on

OnFwd(MOTOR_A + MOTOR_C);

//Continue until touch sensor is pressed

until(BUTTON == 1);

turnAround();

}

//will run if low light event is fired

catch

{

PlaySound(SOUND_DOWN);

//rest until light value reaches WAKE_UP_LEVEL

Off(MOTOR_A + MOTOR_C);

until(SensorValue(2) > WAKE_UP_LEVEL);

PlaySound(SOUND_FAST_UP);

}

}

}

void turnAround()

{

//we have hit something so turn around

PlaySound(SOUND_DOUBLE_BEEP);

Off(MOTOR_A + MOTOR_C);

OnRev(MOTOR_A + MOTOR_C);

Wait(50);

Off(MOTOR_A + MOTOR_C);

Wait(10);

OnRev(MOTOR_A);

OnFwd(MOTOR_C);

Wait(200);

Off(MOTOR_A + MOTOR_C);

}

www.syngress.com

Figure 3.3 Continued

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 95

96 Chapter 3 • Communicating with the RCXPort API

To run this program, you must first download the NQC compiler, which is
available at: www.enteract.com/~dbaum/nqc.Then copy Figure 3.3, which can
be found on your CD as “LightRover.nqc,” to your NQC directory.To compile
the program, enter the following command while in your NQC directory:

nqc -TRCX2 LightRover.nqc

This will compile the NQC code into a byte code file with an .rcx extension
in the same directory.We will soon download this file (which contains all the
byte code for our program) to the RCX, but first we must format it correctly. In
the previous section we downloaded a byte code file to the RCX using
RCXPort.downloadProgram(). Now, we will do the same thing with LightRover.
First, we must save it as a text file and format it the way we did before—with
comma delimiters for clarity.

Once you have done this, copy the file to your rcxport directory and run the
following command:

java rcxport.RCXPort –p COM1 –n 2 –f LightRover.txt

This should successfully download the application to program slot number 2
on the RCX. If your RCX is set up as directed, you are now ready to run your
program.

The NQC compiler takes advantage of the more complex RCX opcodes to
translate NQC program structures into similar structures in byte code.This is
how the NQC compiler can create loops, events, functions and other more
advanced structures.

www.syngress.com

Troubleshooting Problems with RCXPort
There are several things that could potentially go wrong when trying to
run RCXPort. The more common mistakes are listed below. Run through
this list to rule out these more frequent problems.

■ Make sure your RCX is turned on and within range of the IR
tower.

■ Make sure the IR tower is properly connected to the correct
serial port.

Continued

Debugging…

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 96

Communicating with the RCXPort API • Chapter 3 97

An Advanced Example Using RCXPort
In this section we will be programming a candy sorting robot (as shown in
Figure 3.4). Refer to the Pro Challenges in your LEGO MINDSTORMS soft-
ware for detailed instructions on building this type of robot.The robot consists of
a base on which the RCX is mounted, a silo where the multi-colored candy is
stored, and a rotating platform with a conveyor belt that is used to detect the
candy’s color and to dispense the candy into bins.

When built and programmed properly, the candy sorter will first determine
the color of the candy in the chamber using the light sensor. Based on the result,
it will position itself over the appropriate bin, dispense the candy into the bin,
return to its starting point, and repeat.

The robot has four basic functions that we must program in our code: turning;
getting a reading from the light sensor; pushing the candy out of the chute; and
advancing the conveyor belt to drop off the candy.Three of these are functions of
the motor, but one, getting a light reading, is of course done with the light sensor.
The motor built into the base will be connected to output C, and it will rotate the
upper platform to the left and right.The upper motor will connect to output A,
powering two functions; the conveyor belt and the pushrod that will push the
candy out of the chamber.A differential combined with one-way gearing allows us
to accomplish these two tasks with one motor.The light sensor is attached to
sensor 1, and is aimed at the base of the candy chamber.When the time comes to
take a reading, our program will retrieve the value from the RCX and use that
value to determine the color of the candy.Then we will rotate the platform into
position in order to put the candy into the appropriate bin.

www.syngress.com

■ Make sure that another program (possibly running in the
background) isn’t using the serial port.

■ Make sure you have named the correct serial port (COM1, for
instance) in the command line.

■ If you are downloading byte code from a file, make sure that
file is in the same directory as RCXPort.

■ Make sure you have downloaded the Java Communications
API, and that it is correctly installed.

■ Make sure that your classpath references both rcxport.jar and
comm.jar.

177_LEGO_Java_03.qxd 4/2/02 12:02 PM Page 97

98 Chapter 3 • Communicating with the RCXPort API

A touch sensor tells when the pushrod has backed out of the chamber, indi-
cating that a new piece of candy has moved into position and that we are ready
for another light reading. Because of the limitations of the IR communication
speed that we discussed earlier in the chapter, we will deploy some of the code
directly on the RCX.This will prevent the timing of the pushrod from being too
far off, and also illustrate how direct mode can be combined with programs
stored on the RCX itself.To set this up, we will write a very simple NQC pro-
gram (Dispense.nqc) that will drive the pushrod to dispense a candy, stopping as
soon as the touch sensor has been toggled. Dispense.nqc (Figure 3.5) shows what
we will download to the RCX’s program slot number 1.You can also find this
code on the CD that accompanies this book.

www.syngress.com

Figure 3.4 The Candy Sorting Robot

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 98

Communicating with the RCXPort API • Chapter 3 99

Figure 3.5 A Short Candy-dispensing Task To Be Stored on the RCX
(Dispense.nqc)

task main()

{

SetSensor(SENSOR_3, SENSOR_TOUCH);

On(OUT_A);

until(SENSOR_3 == 1);

until(SENSOR_3 == 0);

Off(OUT_A);

}

This simple program will push the candy onto the conveyor belt and leave
the candy-pushing rod in position for the next iteration.This short task will then
be called by the Java program that we are about to write. If you wish to run this
without using NQC, here is the sequence of bytes that you should download
into program slot number 1:

52 43 58 49 02 01 01 00 01 00 00 00 00 00 20 00

13 07 02 07 E1 87 32 02 01 42 02 20 21 81 95 82

09 01 00 02 FA FF 95 82 09 00 00 02 FA FF 21 41

00 00 05 00 6D 61 69 6E 00

Our CandySorter.java class (whose source code can be seen in Figure 3.6 and
on the CD) will call this task using the program number and the appropriate
opcodes.The rest of the functions will be performed by the Java code, sending
opcodes to the RCX in individual commands as we did earlier in the chapter.
Our class will have a main method, which will instantiate our class and run it
through the process of sorting the candy.We will use some helper methods to
build the opcodes and use RCXPort.sendData() to send them to the RCX.The
rest of the class will consist of very basic methods that will perform the main
operations needed by the candy sorter. For rotating the upper platform, we have
turnLeft() and turnRight() methods; and for dropping off the candy, we have a
dropOffCandy() method.These methods take a howLong argument, which is then
used to determine how long to rotate left, right, or to advance the conveyor belt.
Due to the inaccuracies of running a program in direct mode, we suggest that
you allow for some larger drop zones for the candy to allow your candy sorter
room for error: perhaps a bowl instead of a cup.

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 99

100 Chapter 3 • Communicating with the RCXPort API

Figure 3.6 A Program To Bring Your Candy-sorting Robot to Action
(CandySorter.java)

package rcxport;

public class CandySorter

{

RCXPort rcxp;

//byte constants used for opcodes

public final byte OutputA = (byte) 0x01;

public final byte OutputB = (byte) 0x02;

public final byte OutputC = (byte) 0x04;

public final byte AllOutputs = (byte) 0x07;

public CandySorter(String port) throws Exception

{

rcxp = new RCXPort(port);

}

public static void main(String [] args) throws Exception

{

String portName = getPortName(args);

CandySorter rcx = new CandySorter(portName);

rcx.forwardMotors();

// 10 pieces of candy will be sorted

for(int i=0; i<10; i++)

{

int value = rcx.getLightReading();

//check if light reading is greater than 37%

if (value > 37)

{

rcx.turnLeft(100);

rcx.dispenseCandy();

rcx.dropOffCandy(500);

rcx.turnRight(100);

www.syngress.com

Continued

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 100

Communicating with the RCXPort API • Chapter 3 101

}

else

{

rcx.turnRight(100);

rcx.dispenseCandy();

rcx.dropOffCandy(500);

rcx.turnLeft(100);

}

}

}

private int getLightReading() throws Exception

{

RCXResult res = sendData

(RCXCmd.set(RCXCmd.Read,(byte)0x09,(byte)0x0));

int value = -1;

if (res != null)

{

byte [] codes = res.getResult();

value = codes[1];

}

return value;

}

private void dispenseCandy() throws Exception

{

//these opcodes will call program #1,

//which has been stored on the RCX ahead of time

sendData(RCXCmd.set((byte)0x91,(byte)0x0));

sendData(RCXCmd.set((byte)0x71,(byte)0x0));

//allow time for dispensing

Thread.sleep(500);

}

www.syngress.com

Figure 3.6 Continued

Continued

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 101

102 Chapter 3 • Communicating with the RCXPort API

private void dropOffCandy(int howLong) throws Exception

{

reverseMotor('a');

//advance conveyor belt

onMotor('a', howLong);

}

private void turnLeft(int howLong) throws Exception

{

reverseMotor('c');

onMotor('c',howLong);

}

private void turnRight(int howLong) throws Exception

{

forwardMotor('c');

onMotor('c',howLong);

}

//get correct byte code for motor – each output is

//represented by a different byte

public byte getCodeForMotor(char whichMotor)

{

byte code;

switch(whichMotor)

{

case 'a':

case 'A':

code = (byte)OutputA;

break;

case 'b':

case 'B':

code = (byte)OutputB;

www.syngress.com

Figure 3.6 Continued

Continued

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 102

Communicating with the RCXPort API • Chapter 3 103

break;

case 'c':

case 'C':

code = (byte)OutputC;

break;

//if other char is passed,

//return byte for all motors

default:

code = (byte)AllOutputs;

break;

}

return code;

}

public void forwardMotor(char whichMotor) throws Exception

{

byte code = getCodeForMotor(whichMotor);

RCXResult res = sendData(RCXCmd.set((byte)RCXCmd

.OutputDir,(byte)(code | (byte)0x80)));

}

public void forwardMotors() throws Exception

{

forwardMotor('z');

}

public void reverseMotor(char whichMotor) throws Exception

{

byte code = getCodeForMotor(whichMotor);

RCXResult res = sendData(RCXCmd.set((byte)RCXCmd

.OutputDir,(byte)(code | (byte)0x40)));

return;

}

www.syngress.com

Figure 3.6 Continued

Continued

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 103

104 Chapter 3 • Communicating with the RCXPort API

public RCXResult sendData(byte [] codes)

{

RCXResult res = null;

try

{

res = rcxp.sendData(codes);

}

catch (Exception e)

{

}

return res;

}

public void onMotor(char whichMotor, int forHowLong) throws

Exception

{

byte code = getCodeForMotor(whichMotor);

RCXResult res = sendData(RCXCmd.set((byte)RCXCmd

.OutputMode,(byte)(code | (byte)0x80)));

Thread.sleep(forHowLong);

res = sendData(RCXCmd.set((byte)RCXCmd.OutputMode,

(byte)(code | (byte)0x40)));

return;

}

private static String getPortName(String [] args)

{

String portName = "COM1";

if (args.length > 0)

{

portName = args[0];

www.syngress.com

Figure 3.6 Continued

Continued

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 104

Communicating with the RCXPort API • Chapter 3 105

}

return portName;

}

}

As you can see in Figure 3.6, we have hard-coded a value of “37” as the
threshold between two different colors of candy.Any candy generating a light
reading of greater than 37 will be dispensed to the left, all others will be dis-
pensed to the right.You may have to adjust this value for your specific candy, or
have your program set the value dynamically based on the first two candies to
pass through.

The getCodeForMotor() method is a means of abstracting the byte code from
our more conceptual methods.The three methods that directly control the
motors on the RCX are: forwardMotor(), reverseMotor(), and onMotor(). Each of
these methods uses getCodeForMotor() to determine what byte code should indi-
cate the method call’s target motor.Within the getCodeForMotor method we have
hard-coded bytes to represent each possible RCX output.The byte 0x01 repre-
sents output A, 0x02 indicates output B, and 0x04 indicates output C.These bytes
can be combined using the bit wise or operator to indicate that you want a com-
mand to affect more than one motor.

The sendData() method simply calls the same method of the RCXPort class.
We do this simply to allow the exceptions to be caught in one location, and also
so that each CandySorter method calling sendData() need not refer to the
RCXPort instance directly.

www.syngress.com

Figure 3.6 Continued

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 105

106 Chapter 3 • Communicating with the RCXPort API

Summary
The default RCX firmware understands a limited set of commands called
opcodes. Using the RCXPort API, you can send these commands to the RCX
from your Java Runtime Environment (JRE). RCXPort makes a connection with
your machine’s communications port using classes from the Java Communications
API. In direct mode, commands are sent one-by-one to the RCX, which then
executes the commands as they are received.The RCX responds with corre-
sponding reply bytecodes, which can be either interpreted or ignored by your
Java program.

Alternatively, you can use the RCXPort.downloadProgram() feature to store pro-
grams in the RCX’s memory.This frees you from having to operate the RCX in
constant communication with the infrared tower. Currently, programming the
RCX in this fashion requires writing the code in NQC or having a solid under-
standing of the RCX opcodes.

Hopefully you have found this introduction to RCXPort helpful. It is a tech-
nology in its infancy; it has great potential but is limited in its current implemen-
tation. Most likely you are intrigued by the potential of programming the RCX
with Java. Perhaps you feel limited by the functionality that’s available to you
with direct mode.You will be pleased to know that more options are out there;
in Chapter 5, you will learn about leJOS, a fully-functional adaptation of the Java
programming language that can be run on the RCX using a small JVM that
replaces the RCX firmware.

Solutions Fast Track

Overview of the RCXPort Java API

� The code in the RCXPort Java API establishes a connection with your
infrared (IR) tower through the appropriate serial port. It relies on the
Java Communications package to control the port. USB support is not
included.

� The RCXPacket class wraps commands into a format that the RCX can
understand before they are sent to the tower.

� RCXCmd includes all of the standard opcodes that are used to control the
RCX.These bytes are declared as static in the RCXCmd class so that they
may be called from other classes without instantiating an RCXCmd object.

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 106

Communicating with the RCXPort API • Chapter 3 107

� Existing RCXPort functionality does not allow for the running of Java
code directly on the RCX or for high-level Java code to be compiled
into byte code for downloading to the RCX.This functionality is
forthcoming.

Programming the RCX Using RCXPort

� By inserting RCX commands into a Java program that runs on your
PC, you can control the RCX in direct mode, provided your RCX
remains within range of the IR tower for the duration of the program’s
execution.

� When running programs in direct mode, there is a slight delay between
commands as the data is sent from the computer’s serial port to the IR
tower, then on to the RCX.

� Programming in direct mode allows for the increased power and
flexibility of the Java programming language, yet limits you to keeping
the RCX within range of the tower.

Downloading Programs with RCXPort

� RCXPort also provides functionality to download byte code files to the
RCX, where they are stored in random access memory (RAM) and can
be run by pressing the Run button.

� Storing programs on the RCX frees you from having to stay near the
tower when running a program.

� Programs can be written manually in byte code, or written in a high-level
language, such as ‘Not Quite C’ (NQC), then compiled into byte code.

Interfacing External Software with RCXPort

� NQC, a high-level language based on C syntax, can be compiled into
byte code that is understood by RCX’s firmware.This allows you to take
advantage of more advanced control structures such as loops, events and
functions.

� RCXPort is capable of downloading compiled NQC byte code to the
RCX.

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 107

108 Chapter 3 • Communicating with the RCXPort API

� These programs, once stored on the RCX, can be run by themselves or
called from an RCXPort-based program that is running on your
personal computer.

An Advanced Example Using RCXPort

� Our example uses a hard-coded value to represent the light threshold
between two colors.This value could vary widely due to different
amounts of light and different colored candies used in your experiment.
This simple branch in the code could also be used to sort the “darks”
and “lights” from a bag of multicolored candies.Alternatively, you could
assign ranges to your different colors and check for read values that are
within these ranges.

� Programs stored on the RCX can be called from Java code when
controlling the RCX in direct mode.This allows you to better control
the timing of RCX operations that would otherwise be thrown off by
variance in the infrared communications.

Q: Why can’t I create an RCXResult instance from my own code?

A: RCXResult is a protected class with a protected constructor.This was done so
that the object would only be instantiated from within the RCXPort class.
However, you can have an RCXResult object get returned from RCXPort’s
sendData() method, as I did in the Candy Sorter example.

Q: Can I run NQC code on the RCX without using RCXPort?

A: Certainly.We used RCXPort only to illustrate how to use the two together.
NQC comes with its own compiler that will perform the download as well.
The compiler is available at www.enteract.com/~dbaum.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 108

Communicating with the RCXPort API • Chapter 3 109

Q: Will RCXPort soon be upgraded with the ability to compile into byte code?

A: Not likely.The author is a very busy guy.

Q: What does forwardMotor(‘z’) do? There is no such output named ‘z’.

A: I wrote a switch statement in the getCodeForMotor method that, when it
receives an argument other than ‘a,’ ‘b,’ or ‘c,’ will automatically return the
byte representing all motors/outputs. I begin the program by calling
forwardMotors(), which sets the direction of both motors to “forward.”This was
just a habitual check in case a motor had been left in the wrong direction by
a previous program.

Q: Is there RCX functionality that was not covered in this chapter?

A: Yes.We have taken a look at many of the more common commands that the
RCX can perform.There are several more, and for more information you
should see the opcodes list at http://graphics.stanford.edu/~kekoa/rcx/
opcodes.html.

www.syngress.com

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 109

177_LEGO_Java_03.qxd 4/2/02 12:03 PM Page 110

Communicating
with the RCXJava
API

Solutions in this chapter:

■ Designing an RCX Java Communications
Architecture

■ Overview of the RCXJava API

■ Using the RCXLoader Application

■ Beyond Serial Port Communications:
The RCXApplet Example

■ Direct Control Programming for the RCX
Using Java

Chapter 4

111

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 111

112 Chapter 4 • Communicating with the RCXJava API

Introduction
Shortly after the initial information on the protocol and opcodes used for com-
municating with the RCX was made available, many developers began writing
software to interface with the LEGO MINDSTORMS robot. Since communica-
tion with the host PC occurred through the serial port, the use of the Java
Communication API was the logical choice for interfacing with the RCX. (As
you learned in Chapter 2, the Java Communications API is a standard Java
Extension library that allows you to interface to serial ports using 100 percent Java
code.You also learned from that chapter, however, that the API does not support
USB ports, so a custom interface using custom code is required.) Managing and
hiding the protocol and message details would be accomplished with a reusable
Java library, using a public RCX-to-Java interface to allow for direct control of the
RCX from Java applications running on a host PC. Using this library, it is possible
to send messages and program files to run inside the RCX itself.

Designing an RCX Java
Communications Architecture
In this section we will examine the design of an architecture that allows Java to
communicate with the RCX.This includes managing the RCX protocol, parsing
messages and encapsulating the physical port that connects the PC to the infrared
(IR) tower, which will in turn communicate with the RCX.A design that
includes a high-level API to control the RCX’s motors, sensors and sounds will
also increase the API’s ease-of-use.

First, let’s take a look at how we would communicate with the RCX (serial or
USB port) using the Java Communications API in its simplest form by using the
raw byte opcodes as documented by either the LEGO MINDSTORMS SDK or
Kekoa Proudfoot’s “RCX Internals” documentation (http://graphics.stanford.edu/
~kekoa/rcx/#Opcodes).The code example shown in Figure 4.1 (available on this
book’s companion CD as SimpleWriteRead.java) tests basic communication with
the RCX by sending a command to trigger one of the default sounds. It’s the
simplest form of communications with the RCX, consisting of writing two mes-
sages: the alive (or ping) message, and a sound request message. Reading a corre-
sponding message reply from the RCX follows each write.

Note that in Figure 4.1 the classpath was set to include both comm.jar and
rcx.jar. In addition, the javax.comm.properties and native shared libraries are in
the current path. For Windows platforms, the native libraries are win32com.dll

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 112

www.syngress.com

for Java Communications API and win32usb.dll for USB support (for other plat-
forms, please refer to the Java Communications API implementation for that plat-
form for serial port access). For USB, please see the accompanying CD for Linux
and Macintosh implementation details; the equivalent shared libraries would be
linuxusb.so and macusb.shlib, respectively.

Figure 4.1 Basic RCX Communication (SimpleWriteRead.java)

import java.io.*;

import java.util.*;

import javax.comm.*;

import rcx.comm.*;

/**

* Simple Java Communications API Test Program:

*

* This is a simple example of writing and reading from a comm port.

*

* Additionally it will illustrate the following:

* - Discovering all available serial ports and using the first one

* (unless one is specified on the command line)

* - How to use the USB port add-on to the Java Communications API

* using the rcx.comm package.

* (requires a specific port name on the command line e.g. LEGOTOWER1)

*/

public class SimpleWriteRead {

// statics to allow use in main() which is static

static Enumeration portList;

static CommPortIdentifier portId;

static boolean useUSB;

static SerialPort serialPort;

static USBPort usbPort;

static OutputStream outputStream;

static InputStream inputStream;

// alive msg

Communicating with the RCXJava API • Chapter 4 113

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 113

114 Chapter 4 • Communicating with the RCXJava API

static byte[] testArray1={(byte)0x55,(byte)0xff,(byte)0x0,

(byte)0x10,(byte)0xef,(byte)0x10,(byte)0xef};

// beep msg

static byte[] testArray2={(byte)0x55,(byte)0xff,(byte)0x00,

(byte)0x51,(byte)0xae,(byte)0x05,(byte)0xfa,(byte)0x56,(byte)0xa9};

public static void main(String[] args) {

useUSB = false;

String portName = "";

int numBytes;

int numread;

// first, are we using usb or serial?

if(args.length > 0) {

portName = args[0];

if(portName.startsWith("LEGO"))

useUSB = true;

}

if(!useUSB)

{

// FIND SERIAL PORT (unless specified):

if(portName.length()<1) {

// get all avail serial ports -see this method at bottom

Vector ports = getAvailableSerialPorts();

if(ports.size()==0) {

System.out.print("no available serial ports found - ");

System.out.println("check for conflict with another app");

return;

} else {

www.syngress.com

Figure 4.1 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 114

Communicating with the RCXJava API • Chapter 4 115

System.out.println("found "+ports.size()+ " avail serial ports");

}

portName = (String)ports.firstElement();

System.out.println("using first available port: "+portName);

}

try {

portId = CommPortIdentifier.getPortIdentifier(portName);

} catch (NoSuchPortException e) {

System.err.println("Error: no such port "+portName);

return;

}

// SETUP SERIAL PORT:

try {

serialPort =

(SerialPort) portId.open("SimpleWriteRead", 1000);

} catch (PortInUseException e) {

System.out.println("port already in use");

return;

}

try {

serialPort.setSerialPortParams(2400,

SerialPort.DATABITS_8,

SerialPort.STOPBITS_1,

SerialPort.PARITY_ODD);

serialPort.enableReceiveTimeout(30);

serialPort.enableReceiveThreshold(14);

} catch (UnsupportedCommOperationException e) {

e.printStackTrace();

}

try {

www.syngress.com

Figure 4.1 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 115

116 Chapter 4 • Communicating with the RCXJava API

outputStream = serialPort.getOutputStream();

inputStream = serialPort.getInputStream();

} catch (IOException e) {

e.printStackTrace();

}

}

else // SETUP USB PORT:

{

usbPort = USBPortFactory.getUSBPort();

try {

if(usbPort.open(portName)<0) {

System.err.println("USB port error: is tower plugged in?");

return;

}

outputStream = usbPort.getOutputStream();

inputStream = usbPort.getInputStream();

} catch(IOException e) {

e.printStackTrace();

}

}

// now write and read (same way for both types of ports)

try {

// write a message out:

System.out.println("sending 'alive' message... ("

+testArray1.length+" bytes) "

+ArrayToString(testArray1,testArray1.length));

www.syngress.com

Figure 4.1 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 116

Communicating with the RCXJava API • Chapter 4 117

outputStream.write(testArray1); //alive msg

byte[] readBuffer = new byte[30];

numBytes=1; numread=0;

// read a message in:

while (numBytes>0) {

numBytes = inputStream.read(readBuffer,0,30);

if(numBytes>0)

System.out.println("read response to 'alive' message... ("

+numBytes+" bytes)"

+ArrayToString(readBuffer,numBytes));

numread+=numBytes;

}

if(!useUSB) {

// note: serial port tower echoes commands

if(numread<14) {

System.err.println("Error: is the RCX on?");

return;

} else if(numread<1) {

System.err.println("serial port error: is tower plugged in?");

return;

}

} else {

if(numread<1) {

System.err.println("Error: is the RCX on?");

return;

}

}

System.out.println("sending 'beep' message... ("

+testArray2.length+" bytes) "

+ArrayToString(testArray2,testArray2.length));

www.syngress.com

Figure 4.1 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 117

118 Chapter 4 • Communicating with the RCXJava API

outputStream.write(testArray2); //beep msg

numBytes=1; numread=0;

while (numBytes>0) {

//msg response

numBytes = inputStream.read(readBuffer,0,30);

if(numBytes>0)

System.out.println("read response to 'beep' message... ("

+numBytes+" bytes) "

+ArrayToString(readBuffer,numBytes));

numread+=numBytes;

}

// the following could be one call using an interface

if(!useUSB)

serialPort.close();

else

usbPort.close();

} catch (Exception e) {

e.printStackTrace();

}

}

public static Vector getAvailableSerialPorts() {

CommPortIdentifier pId=null;

SerialPort sPort=null;

Enumeration pList=null;

boolean foundport=false;

pList = CommPortIdentifier.getPortIdentifiers();

String port=null;

Vector ports=new Vector();

if(!pList.hasMoreElements()) {

System.err.print("warning: no ports found - ");

www.syngress.com

Figure 4.1 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 118

Communicating with the RCXJava API • Chapter 4 119

System.err.println("make sure javax.comm.properties file is found");

return ports;

}

while (pList.hasMoreElements()) {

pId = (CommPortIdentifier) pList.nextElement();

if (pId.getPortType() == CommPortIdentifier.PORT_SERIAL) {

foundport=true;

try {

sPort = (SerialPort)pId.open("serialport", 1000);

} catch (PortInUseException e) {

foundport=false;

} finally {

if(sPort!=null) {

try { sPort.close(); } catch(Exception e) {}

}

if(foundport) {

ports.add(pId.getName());

}

}

}

}

return ports;

}

public static String ArrayToString(byte[] message, int length) {

StringBuffer strbuffer = new StringBuffer();

int abyte = 0;

for(int loop = 0; loop < length; loop++) {

abyte = (int) message[loop];

if (abyte < 0) abyte += 256;

strbuffer.append(Integer.toHexString(abyte) + " ");

}

return strbuffer.toString();

}

}

www.syngress.com

Figure 4.1 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 119

120 Chapter 4 • Communicating with the RCXJava API

The following is sample output for the SimpleWriteRead program. Please
note that the current path and the rcx.jar are specified on the command line.The
alternative is to add the .jar file to the global CLASSPATH environment variable
to avoid specifying it on the command line.

>java -cp .;rcx.jar SimpleWriteRead LEGOTOWER1

sending 'alive' message... (7 bytes) 55 ff 0 10 ef 10 ef

read response to 'alive' message... (7 bytes) 55 ff 0 ef 10 ef 10

sending 'beep' message... (9 bytes) 55 ff 0 51 ae 5 fa 56 a9

read response to 'beep' message... (7 bytes) 55 ff 0 ae 51 ae 51

>java –cp .;rcx.jar SimpleWriteRead COM1

sending 'alive' message... (7 bytes) 55 ff 0 10 ef 10 ef

read response to 'alive' message... (14 bytes) 55 ff 0 10 ef 10 ef 55

ff 0 ef 10 ef 10

sending 'beep' message... (9 bytes) 55 ff 0 51 ae 5 fa 56 a9

read response to 'beep' message... (16 bytes) 55 ff 0 51 ae 5 fa 56 a9

55 ff 0 ae 51 ae 51

Let’s start by looking at the imports package; rcx.comm.* contains the USB
port support (as presented in Chapter 2).This add-on does not actually work
within the Java Communications API but works alongside it.

We use the command line to optionally pass in the name of the port. If none
is specified, the Java Comm API finds the first available serial port .The list of
available serial ports is compiled using the method called getAvailableSerialPorts() as
shown in Figure 4.1 (Chapter 2 explains how this method works). If there is a
port name starting with “LEGO” on the command line, we can determine that it
is using the USB tower (RCX 2.0 set) On the Windows platform it will be
LEGOTOWER1 (for the first USB tower) as opposed to COM1, which would
specify a serial port.Also note under Windows, the USB port assumes you have
the USB driver installed as provided by the LEGO Company.

For the serial port, whether we specify a port name or use the first one avail-
able, we follow the Java Comm convention of obtaining a port identifier with
CommPortIdentifier.getPortIdentifier(portName), and we open the port identifier to

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 120

Communicating with the RCXJava API • Chapter 4 121

obtain the serial port.We then set the appropriate baud rate, stop bits, parity, receive
timeout, and receive threshold settings on the port that will communicate with the
tower, and obtain standard input and output streams from the serial port.

For the USB port, we use a USBPortFactory.getUSBPort() to provide us an
instance of a USB port where we then get the input and output streams.

www.syngress.com

RCX Internals
We’d like to present here a subset of the LEGO Opcodes as referenced in
this chapter, with details of the source arguments (for complete opcode
and usage information please refer to the LEGO MINDSTORMS SDK doc-
umentation or the aforementioned “RCX Internals” Web site by Kekoa
Proudfoot) http://graphics.stanford.edu/~kekoa/rcx/. As a quick
overview of the protocol, note the following important points:

■ Each message (to and from RCX) has a message header of
55 ff 00

■ Next is the opcode, followed by any parameters that are
needed by that opcode and ending with a checksum byte.
Each byte (including the opcode and checksum bytes) has a
complementary byte, creating byte pairs. Here’s an example
(omitting message headers):

51 ae 5 fa 56 a9

where 51 is the opcode, 5 is the parameter and 56 is the
checksum.

■ In addition, there is a bit that needs to be flipped when
sending the same command twice in a row (otherwise the
RCX will ignore it). To send the same message again, we use
the following (note how checksums are affected):

59 a6 5 fa 5e a1

Ignoring header, complements and checksum, the
response from the RCX will be ae (from the first message) or
a6 (from the message sent twice).

Developing & Deploying…

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 121

122 Chapter 4 • Communicating with the RCXJava API

We write and read from the I/O streams in the exact same way on either
port.We send hard-coded byte arrays that are already pre-formatted for the
“alive” and “play sound 5” (fast upward tones) messages, and read byte arrays back
after each write.The arrays are large enough to allow for possible message
lengths.We use the ArrayToString(byte[] array) method to convert the array for dis-
play purposes. For more information on the actual format of the message bytes,
see the “RCX Internals” sidebar in this section.

And finally, we close the port depending whether it’s the serial or USB port.
It would be nice to reference the port just once, and not continue to check to
see if it’s a serial or USB port.The best way would be to encapsulate the specific
port type inside a generic rcx port object.

This is where the RCXJava API comes in. Rather than worry about the actual
RCX protocol and physical port details, we encapsulate these details in a library.

The Basic Components of an RCX API
The RCXJava API holds a library consisting of a Java jar file (rcx.jar) that, in
conjunction with the Java Communications API, will provide serial port support
and a programming interface to the RCX.

There are also shared native libraries for physical access to the ports. For
example, on Windows platforms, the Java Communications API requires the
javax.comm.properties file and win32com.dll shared library in addition to the
comm.jar file. rcx.jar requires win32usb.dll (on Windows) for USB support.

The RCXJava API addresses serial port configuration, protocol management
and communications with the tower and the RCX.

Port Configuration and Error Handling
An RCX API must configure the port name and handle low level communica-
tion errors gracefully.As we’ll see, the RCXJava API handles this in a standard
manner, currently allowing one to specify either serial or USB port names (han-
dling the LEGO MINDSTORMS RCX 1.0, 1.5 and 2.0 sets) and using error
message callbacks for optional error notifications.

Protocol Management and Message Parsing
Constructing messages manually with the RCX protocol can be tedious.Tasks
handled by the RCX API include the managing of repeated messages (the
repeated message must differ every time to allow for infrared message retries), as
well as calculating checksums and parsing the multi-byte messages sent and
received.The construction of byte arrays should be considered as low-level details
that should be hidden inside the API library.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 122

Communicating with the RCXJava API • Chapter 4 123

Tower Communications
The way the tower handles messages is slightly different depending on whether
or not you are using the USB port.With the serial port, the tower echoes mes-
sages and their replies from the RCX back to the PC.This allows you to distin-
guish between errors received from the tower and from the RCX itself.The API
should also allow for this difference. Note the additional bytes in the serial port
(COM1) output compared to the USB port response in the sample output for
the SimpleWriteRead example.

RCX Communications
The RCX replies to every command message received, regardless of whether the
reply contains response values or not.Thus, with every write to the RCX a read
is required and the reply code should be checked to see if it corresponds to the
sent command opcode.Again, an RCX API should hide these error checks and
provide a mechanism for retries should they be necessary (for example, the robot
could be temporarily out of range).

Reusability: Protocols and Ports
The RCX API should allow for extensibility and customization for both different
protocols and port types. By encapsulating these details using well-known Java
design patterns, it should be possible to introduce new ports that implement the
same interface to the API at a lower level.As for protocols, there should be some
room to change or upgrade the implementation by providing the opcode lookup
table in its own class.

Supporting Similar Protocols
Although this book covers the LEGO MINDSTORMS RCX, there also exist
the related CyberMaster and Scout robot sets, which provide slightly different
functionality but essentially use the same protocol as the RCX.

The CyberMaster uses basically the same opcode set as the RCX. However,
the protocol differs in the following way:

■ The message header it uses is different: instead of 55 ff 0, it uses fe 00 00
ff as the message header for commands going out to the RCX.

■ Instead of using the same header for sending and receiving messages, it
uses ff as the message header for receiving messages from the RCX.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 123

124 Chapter 4 • Communicating with the RCXJava API

Using Java Interfaces to Support
Ports Other than Serial Ports
Java Comm takes care of serial and parallel ports. But what if we need support
for new types of ports? The best solution is to encapsulate the different port types
in their own classes within the RCX API and allow all of them to implement a
common interface so that we can refer to all the ports in one way.

USB
The USB port was designed to be almost identical to the serial port implementa-
tion as discussed in Chapter 2, however it does not work within the Java
Communications API, instead using its own factory pattern to create the appro-
priate USB port, depending on the platform.This may break the 100-percent
Java claim, but until the standard USB Java API is available, it’s the only way to
use Java for the RCX 2.0 (USB tower) sets.

TCP Sockets
To provide support for TCP Sockets as a different type of port, the RCXJava API
allows us to use the same Java interface (RCXCommPort) across a network or the
Internet, without changing the application when using the RCXJava API.The
type of port used is determined by the name of the port.

Overview of the RCXJava API
The RCXJava API grew out of the need for a reusable library to manage the
RCX protocol, parse messages, select, and encapsulate a physical port to commu-
nicate with the RCX via the tower. It was designed to be small and easy to use,
as well as extensible. It is licensed using the LGPL license and comes with com-
plete source code, sample code and documentation. Figure 4.2 displays the core
classes and interfaces that comprise the RCXJava API:

NOTE

The rcx.comm.* subpackage (covered in Chapter 2) deals exclusively with
providing USB support for not just this API, but any Java API that needs
to access the LEGO USB Driver.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 124

Communicating with the RCXJava API • Chapter 4 125

This UML diagram shows us the relationships of the different components of
the rcx.* package, which we will look at in detail in the next section.

The RCX Package
This package includes support for several ports. it also handles the core responsi-
bilities of message parsing and error handling; and provides a standard API for
sending and receiving messages, both in a raw form and at a higher level.There is
also an application tool included inside the rcx.* package that uses the core API
to implement a GUI interface for sending and receiving messages.

Classes
Table 4.1 shows the Java classes that are the core classes of the RCXJava API.
They handle the encapsulation of the physical port to which the tower connects
as well as providing high level encapsulation to motors and sensors.

www.syngress.com

Figure 4.2 rcx.* package UML Diagram

<<interface>>
RCXCommPort

Sensor
S1

B
Motor <<interface>>

RCXListner
rcxListener

RCXLoader

RCXOpcode
opcodes

<<interface>>
ErrorListener

errorListener

<<interface>>
AllMessagesListener

allmsgListener

port

RCXPort

RCXSerialPort

RCXTCPPort

RCXUSBPort

port
port

rcxPort

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 125

126 Chapter 4 • Communicating with the RCXJava API

Table 4.1 The RCXJava Library Classes

Class Description

RCXPort Encapsulates and creates a specific instance of the
RCXCommPort interface. Handles the RCX protocol and
message dispatching to the listeners: RCXListener,
ErrorListener and AllMessagesListener. Provides high-level
calls for handling sensors, motors, and sounds consistent
with leJOS nomenclature (Chapter 5).

RCXOpcode Encapsulates the opcode table and utilities for handling
and displaying byte messages.

RCXSerialPort Encapsulates the SerialPort class provided to us by Java
Comm API. This implements the RCXCommPort interface.

RCXServer A proxy server that will map a remote instance of
RCXSerialPort to the physical serial or USB port.

RCXUSBPort Encapsulates the USBPort class provided to us by
rcx.comm.USBPortFactory. This implements the
RCXCommPort interface.

RCXSocketPort Encapsulates a TCP socket as if it were another port for
communicating with a remote PC RCX controller. This
implements the RCXCommPort interface.

RCXLoader Sample application that serves as a tool for sending and
receiving messages via a GUI interface and for looking up
opcodes. This application resides in the rcx. * package.

Motor An encapsulation of a motor with methods for sending
motor commands to RCX.

Sensor An encapsulation of a motor with methods for sending
and receiving sensor messages to and from the RCX.

Interfaces
Table 4.2 shows the Java Interfaces that are used to provide a transparent imple-
mentation of different types of RCX ports and to allow event-driven messages to
be sent to listeners. Only one listener per port is allowed by the RCXJava API.

Table 4.2 The RCXJava Library Interfaces

Interface Description

RCXCommPort Provides a common interface for all ports, allowing
for a single way of referencing the ports.

www.syngress.com

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 126

Communicating with the RCXJava API • Chapter 4 127

RCXListener An interface used to register for all error and message
callbacks This interface is the equivalent of both
ErrorListener and AllMessagesListener combined.

ErrorListener Provides an interface for receiving errors through call-
backs. If not implemented, errors can still be seen on
the console. This interface is useful for displaying the
error messages in a GUI component or for handling
errors in a certain way, for example, closing the appli-
cation or prompting for a fix.

AllMessagesListener This allows for access to all the messages coming
from the RCX, including those handled in custom
methods within the RCXPort class. This allows for fur-
ther action on those messages, or the implementation
of the messages that aren’t handled at a higher level.

Exceptions
Error handling is done via the ErrorListener interface, as well as RCXListener,
which is a superset of ErrorListener. Standard Java exceptions still take place and
are thrown; when there are I/O exceptions, for example.At this time, however,
there aren’t any new custom exceptions introduced by the RCXJava API.

Figure 4.3 shows a simple use of the RCXJava API.The complete source
code for Figure 4.3 appears on the companion CD for this book.

Figure 4.3 Sending and Receiving RCX Opcodes (RCXSimpleTest.java)

import rcx.*;

public class RCXSimpleTest implements RCXListener {

public static void main(String[] args) {

String cmd = null;

if(args.length>0)

cmd = args[0];

new RCXSimpleTest(cmd);

}

www.syngress.com

Table 4.2 Continued

Interface Description

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 127

128 Chapter 4 • Communicating with the RCXJava API

public RCXSimpleTest(String cmd) {

RCXPort port = new RCXPort(cmd);

port.addRCXListener(this);

// set motor A direction (forwards)

port.send("e1 81");

// turn motor A on

port.send("21 81");

// play sound

port.send("51 05");

//delay for a sec

try { Thread.sleep(1000); } catch(Exception e) { }

// turn motor A off (float, 2141 is stop)

port.send("21 41");

}

public void receivedMessage(byte[] message) {

// simply convert to String and print the message

StringBuffer strbuffer = new StringBuffer();

for(int loop = 0; loop < message.length; loop++) {

int abyte = (int) message[loop];

if (abyte < 0) abyte += 256;

strbuffer.append(Integer.toHexString(abyte) + " ");

}

System.out.println("Response: " + strbuffer.toString());

}

public void receivedError(String error) {

System.err.println("Error: " + error);

}

}

www.syngress.com

Figure 4.3 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 128

Communicating with the RCXJava API • Chapter 4 129

The output from a sample run would look as follows:

>java –cp .;rcx.jar RCXSimpleTest LEGOTOWER1

Response: 16

Response: d6

Response: a6

Response: d6

The result is that a motor on A will run for about a second, with a sound
playing at the same time.As you can see from the sample output, each command
received a reply code that corresponds with the opcode sent to the RCX.All the
added checksum and corresponding complement bytes are stripped out from the
response because that’s a hidden protocol detail.

The differences with the example in Figure 4.1 show the advantages of having
an API to hide the details. Starting with the command line, we specify a port
name but we don’t need to code for the Java Communications API or worry
about having a USB port (as indicated by having “LEGO” in the port name).

After we create an RCXPort object we register ourselves as a RCXListener,
which allows us to get message responses and errors via the receivedMessage(byte[]
message) and the receivedError(String error) methods.

We then proceed to set the motor direction, turn the motor on, play a sound,
wait for one second and turn off the motor. Each of the messages are sent to the
RCX using RCXPort’s send(String msg) method, which will handle a string repre-
sentation of the message byte array (which allows for spaces between the bytes).
Each of the four sent messages consisted of an opcode command and a param-
eter. (see the sidebar “RCX Internals” for the interpretation of each message).

Using the RCXLoader Application
We now move on to the example utility program that resides in the core rcx.*
package, called RCX Loader.This program is primarily used to send and receive
messages from the RCX in real-time using the opcodes, which are available as a
lookup table from within the program.This example serves as a minimal interac-
tive example for communicating with the RCX. It consists of a window frame
with an input text field and an output text area component.A single button will
pop open another window containing an opcode lookup table.The RCX Loader
application also uses the parameters.txt configuration file, which contains one
entry, for example:

port=COM1

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 129

130 Chapter 4 • Communicating with the RCXJava API

In this specific example, the port to be opened upon start up will be the
COM1 serial port. One could also specify a USB port name. Otherwise, if no
ports are specified, the first available serial port will be used.

The screen shown in Figure 4.4 is what is displayed when one runs java -cp
rcx.jar rcx.RCXLoader.

The screenshot shows status messages, entered commands and the responses
from the RCX. By default, the instance of RCXPort will send an alive message to
wake up the RCX Tower (which is needed in the case of serial towers) and a
ready message will tell you that you can now enter commands.The first com-
mand entered in our example was a request to play sound 3 followed, by a
request to get a memory map.

Figure 4.5 shows us the RCXLoader and its associated classes.

www.syngress.com

Figure 4.4 RCXLoader

Figure 4.5 RCXLoader UML Diagram

Frame
<<interface>>
WindowListener <<interface>>

EventListener

<<interface>>
ActionListener

RCXLoader

RCXOpcode RCXPort

<<interface>>
RCXListener

<<interface>>
RCXCommPort

RCXSerialPort

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 130

Communicating with the RCXJava API • Chapter 4 131

The User Interface
RCXLoader is a frame window that listens to window and button events, RCX
reply messages, and error messages.The RCXOpcode class is used to display the
opcode table window frame, which is callable from any application that needs it.
This is a minimal test RCX communication program that allows you to send and
receive opcodes at a low level and serves as a template for more elaborate examples.

Handling and Parsing Response and Error Messages
Since it implements RCXListener, the RCX responses will be handled by the
receivedError(String error) method and receivedMessage(byte[] array).The message is
formatted for display in the text area and error messages are generated in the case
of bad user input or port failures.

Beyond Serial Port Communications:
The RCXApplet Example
The next progression of examples will have a full-fledged GUI to represent the
three physical motors and three sensor inputs. In the visual interface application
that we will develop in this section, we will basically have buttons to turn the
motors on and off, stopping without braking (also referred to as floating), selecting
motor direction, and displaying the sensor values as they change.

To make the program even easier to work with, why not build it as a
browser-based Java applet instead of running it as a command line based applica-
tion? Yes, this means controlling an RCX robot from a Web page! At first glance,
one would think that it’s not possible to do this with an applet because applets
require access to native code, which is impossible without going through the pro-
cess of signing applets (explicit security permissions).There are also implementa-
tion issues arising from signing with different browsers and Java virtual machines.
However, the fact is that one wouldn’t want to run the applet to directly access
the port, but rather to have it access the RCX remotely from any browser. In this
way it would not require access to native ports, instead accessing an application
that would work as proxy on your behalf and control the RCX.

We’ll design an applet that would allow us to remotely turn on motors and
retrieve sensor values over the Internet. Figure 4.6 displays the resulting web
browser page with an applet that can remotely control a RCX robot.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 131

132 Chapter 4 • Communicating with the RCXJava API

To run this applet you need to run the server as follows:

java -cp rcx.jar rcx.RCXServer LEGOTOWER1 (or COM1) 174

where the two parameters indicate the local port to which the tower is connected
and the server socket port number to which applet will connect (the default is
174). Please note that the port number is hard-coded in the applet tag and must
match the port number of the server.The server’s host name is also indicated in the
applet tag.This will be described in more detail in the following sections.

Communicating over the Network
The applet example not only demonstrates a more visually advanced example but
it also shows how we can represent the RCX port over a network connection.
The RCXCommPort interface allows us to create arbitrary ports, such as those
included in the RCXJava API. In addition to the serial and USB port, the
RCXSocketPort encapsulates access to a TCP socket port in much the same way,
since all the ports implement RCXCommPort. Figure 4.7 illustrates how one
would create a new type of port that implements RCXCommPort, which
RCXPort would then encapsulate as it does with the other ports. RCXSocketPort
is included in the rcx.* package.

www.syngress.com

Figure 4.6 RCXApplet

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 132

Communicating with the RCXJava API • Chapter 4 133

Figure 4.7 A Socket RCX Port (RCXSocketPort.java)

public class RCXSocketPort implements RCXCommPort

{

private Socket tcpPort;

public boolean open(String portName) {

if(portName==null)

return false;

try {

String host = getHostName(portName);

int portnum = getPort(portName);

tcpPort = new Socket(host,portnum);

tcpPort.setSoTimeout(0);

} catch(Exception e) {

System.err.println("Error opening socket: "+e);

return false;

}

return true;

}

public void close() {

if (tcpPort!= null) {

try {

tcpPort.close();

} catch(IOException ioe) {

}

}

}

public OutputStream getOutputStream() {

if(tcpPort!=null) {

try {

return tcpPort.getOutputStream();

www.syngress.com

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 133

134 Chapter 4 • Communicating with the RCXJava API

}

catch(Exception e) {

e.printStackTrace();

}

}

return null;

}

public InputStream getInputStream() {

if(tcpPort!=null) {

try {

return tcpPort.getInputStream();

}

catch(Exception e) {

e.printStackTrace();

}

}

return null;

}

private String getHostName(String portName) {

String host = "localhost";

if(portName.length()<7) return host;

int pos = portName.lastIndexOf(':');

if(pos<6) return portName.substring(6);

return portName.substring(6,pos);

}

private int getPort(String portName) {

int port = 174;

if(portName.length()<7) return port;

int pos = portName.lastIndexOf(':');

if(pos<6) return port;

try {

String portnum=portName.substring(pos);

www.syngress.com

Figure 4.7 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 134

Communicating with the RCXJava API • Chapter 4 135

port = Integer.parseInt(portnum);

} catch(Exception e) {

}

return port;

}

}

Notice that the necessary methods are those that implement the
RCXCommPort interface, namely open(), close(), getInputStream() and
getOutputStream(). For the RCXSocketPort, the TCP socket implements these
using the standard Java Socket class.

What this now allows us to do is share the code base on both the server and
client side. In fact, the code can be identical on both, except when referencing
the port name.The convention, as seen in the code, takes the form of a URL:

rcx://[hostname]:[port]

As an example (these are also the default values if none are entered):

rcx://localhost:174

The result is that we can use the identical code that specifies the use of serial
or USB ports by name (COM1, for example) as we can using the rcx “protocol”
name (as shown above) which allows us to clearly distinguish this socket-based
port from the other types of ports.

Using Sockets
The applet by itself won’t work unless you have a server-side proxy ready to
accept commands and dispatch them to the port that’s controlling the RCX
(Figure 4.8 illustrates this client-server communication). Fortunately, the
RCXJava API includes RCXServer.java, which will create a server-side socket
that will redirect its input and output streams to the input and output streams of
the RCXPort controlling the RCX. If there is a failure opening the port, or the
error listener on the server receives an error message, these exceptions are propa-
gated to the client.

The one other function for which the RCXServer is responsible is closing
the RCX port when the socket connection to the client is lost. RCXServer is
provided as part of the rcx.* package.

www.syngress.com

Figure 4.7 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 135

136 Chapter 4 • Communicating with the RCXJava API

As shown in Figure 4.9, in RCXServer.java, we loop around a standard accept()
call on a server socket to obtain a client connection. For obvious reasons, we
will only handle one client at a time.We then create buffered input and output
streams to interface with the RCXPort instance.The setStreams(InputStream tcpin,
OutputStream tcpout) method is used for handing off the streams and instructing the
port to map the input and output streams of the client socket to the output and
input streams of the RCX port.We will then wait before getting the next remote
client socket.This will occur when the current connection is broken.

Figure 4.9 A TCP to RCX Proxy Server (RCXServer.java)

public class RCXServer implements RCXErrorListener, Runnable

{

private ServerSocket listenSocket;

private Socket tcpPort;

private int portNumber;

private RCXPort rcxPort;

private String rcxPortName;

private boolean waitforRCX=true;

private boolean waitforClient=true;

public static void main(String[] args) {

int portnum = 174; //default

try {

if(args.length>1) {

portnum = Integer.parseInt(args[1]);

}

if(args.length>0) {

RCXServer rcxServer = new RCXServer(args[0],portnum);

rcxServer.run();

rcxServer.stop();

www.syngress.com

Figure 4.8 RCX Network Communication

Internet

PC running “RCXApplet”
in Web browser

RCXSocketPort Port 174

PC running
“rcx.RCXServer”

LEGO Tower

+RCXUSBPort

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 136

Communicating with the RCXJava API • Chapter 4 137

} else {

System.out.println("Usage: RCXServer rcxportname [port number]");

}

} catch(Exception e) {

}

}

public RCXServer(String rcxport,int portnum) {

rcxPortName = rcxport;

portNumber = portnum;

}

public void run() {

RCXPort.skipalive=true;

InputStream tcpin;

OutputStream tcpout;

boolean loop=true;

try {

listenSocket = new ServerSocket(portNumber);

} catch (IOException ioe) {

ioe.printStackTrace();

return;

}

System.out.println("creating rcx port on "+rcxPortName);

rcxPort = new RCXPort(rcxPortName);

rcxPort.addRCXErrorListener(this);

while(waitforClient) {

waitforRCX=true;

if(!rcxPort.isOpen()) return;

System.out.println("Listening on port "+portNumber);

try {

tcpPort = listenSocket.accept();

www.syngress.com

Figure 4.9 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 137

138 Chapter 4 • Communicating with the RCXJava API

try { System.out.println("accepted connection to "

+(tcpPort.getInetAddress()).getHostName());

} catch(Exception e) { }

tcpin=new BufferedInputStream(tcpPort.getInputStream());

tcpout=new BufferedOutputStream(tcpPort.getOutputStream());

rcxPort.setStreams(tcpin,tcpout);

while(waitforRCX) {

try { Thread.sleep(100); } catch(Exception e) { }

}

try {

System.out.println("disconnecting "

+(tcpPort.getInetAddress()).getHostName());

tcpPort.close();

} catch(Exception e) { }

} catch(IOException ioe) {

try {

System.out.println("Exception - disconnecting "

+(tcpPort.getInetAddress()).getHostName());

} catch(Exception e) { }

try {

tcpPort.close();

} catch(Exception ee) { }

}

} //while

}

public void stop() {

waitforClient=false;

waitforRCX=false;

if (tcpPort!= null) {

try {

tcpPort.close();

www.syngress.com

Figure 4.9 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 138

Communicating with the RCXJava API • Chapter 4 139

} catch(IOException ioe) {

}

}

if (listenSocket!= null) {

try {

listenSocket.close();

} catch(IOException ioe) {

}

}

}

public void receivedError(String error) {

System.err.println("Server got error: "+error);

waitforRCX=false;

if (tcpPort!= null) {

try {

tcpPort.close();

} catch(IOException ioe) {

}

}

}

}

One can now easily develop both applications and applets to access a remote
machine with the RCX over the Internet by specifying a URL as the port name.

Building and Extending the Simple Applet
The code listings we’ll see in this section show that we’re handling the commu-
nication with an RCXPort over the Internet identically as with a direct local con-
nection to the tower.We also demonstrate a higher level API, using the Motor and
Sensor classes, that encapsulate their functionality and access.This part of the
applet code is short and concise because most of the work is done in the
RCXControl class, shown in Figure 4.10.This class is an AWT panel that can be
easily reused in applications and not just applets (the application version,
RCXControlApp.java, is included on the CD).

www.syngress.com

Figure 4.9 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 139

140 Chapter 4 • Communicating with the RCXJava API

Figure 4.10 The RCX Remote Control Applet (RCXApplet.java)

import java.applet.*;

import java.awt.*;

public class RCXApplet extends Applet

{

private RCXControl controlPanel;

public void init() {

setBackground(Color.yellow);

String portName = getParameter("rcxport");

controlPanel = new RCXControl(portName);

add(controlPanel);

}

}

Note that the only thing passed into RCXControl is the port name.With an
application, the port name is passed in from the command line, but with an
applet we pass the port name in as a standard parameter within the applet tag as
follows:

<applet codebase="." code=RCXApplet.class archive=rcx.jar width=275

height=125>

<param name=rcxport value="rcx://localhost:174">

</applet>

For the parameter name we indicate a hostname and port number to which
the server will connect (This may have to change to correspond to the actual
hostname and port number).The next listing we have is shown in Figure 4.11. It
is a subclass of Java’s AWT Panel, which allows us to reuse it in both applets and
applications.

Figure 4.11 The Remote Control Panel (RCXControl.java, abridged)

import java.awt.*;

import java.awt.event.*;

import java.io.*;

www.syngress.com

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 140

Communicating with the RCXJava API • Chapter 4 141

import java.util.*;

import rcx.*;

public class RCXControl extends Panel implements ActionListener,

RCXErrorListener, Runnable

{

private String portName;

private RCXPort rcxPort;

private Thread thisThread;

private boolean isRunning;

private Panel topPanel,bottomPanel;

private TextField sensorField1,sensorField2,sensorField3;

private Panel motorPanel1,motorPanel2,motorPanel3;

private Button motor1fwd,motor1bwd,motor1stop,motor1float;

private Button motor2fwd,motor2bwd,motor2stop,motor2float;

private Button motor3fwd,motor3bwd,motor3stop,motor3float;

private int s1value,s1prevalue,s2value,s2prevalue,s3value,s3prevalue;

public RCXControl(String portname) {

portName = portname;

topPanel = new Panel();

topPanel.setLayout(new FlowLayout(FlowLayout.CENTER,4,4));

bottomPanel = new Panel();

bottomPanel.setLayout(new FlowLayout(FlowLayout.CENTER,5,5));

motorPanel1 = new Panel();

motorPanel1.setLayout(new BorderLayout(5,5));

sensorField1 = new TextField(9);

sensorField1.setEditable(false);

sensorField1.setEnabled(false);

motor1fwd = new Button("forward");

motor1fwd.addActionListener(this);

www.syngress.com

Figure 4.11 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 141

142 Chapter 4 • Communicating with the RCXJava API

topPanel.add(sensorField1);

motorPanel1.add(motor1fwd,"North");

bottomPanel.add(motorPanel1);

setLayout(new BorderLayout());

add(topPanel,"North");

add(bottomPanel,"South");

setBackground(Color.yellow);

thisThread = new Thread(this);

thisThread.start();

}

public void run() {

rcxPort = new RCXPort(portName);

rcxPort.addRCXErrorListener(this);

Sensor.S1.setTypeAndMode(SensorConstants.SENSOR_TYPE_LIGHT,

SensorConstants.SENSOR_MODE_PCT);

Sensor.S2.setTypeAndMode(SensorConstants.SENSOR_TYPE_LIGHT,

SensorConstants.SENSOR_MODE_PCT);

Sensor.S3.setTypeAndMode(SensorConstants.SENSOR_TYPE_LIGHT,

SensorConstants.SENSOR_MODE_PCT);

isRunning=true;

sensorField1.setText("0");

sensorField2.setText("0");

sensorField3.setText("0");

while(isRunning) {

// this delay can be adjusted or eliminated

try{Thread.sleep(1000);}catch(Exception e) { }

www.syngress.com

Figure 4.11 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 142

Communicating with the RCXJava API • Chapter 4 143

s1value=Sensor.S1.readValue();

if(s1value!=s1prevalue) {

s1prevalue=s1value;

sensorField1.setText(Integer.toString(s1value));

}

s2value=Sensor.S2.readValue();

if(s2value!=s2prevalue) {

s2prevalue=s2value;

sensorField2.setText(Integer.toString(s2value));

}

s3value=Sensor.S3.readValue();

if(s3value!=s3prevalue) {

s3prevalue=s3value;

sensorField3.setText(Integer.toString(s3value));

}

}

}

public void actionPerformed(ActionEvent e) {

Object obj = e.getSource();

if(obj==motor1fwd) {

Motor.A.forward();

}

else if(obj==motor1bwd) {

Motor.A.backward();

}

else if(obj==motor1stop) {

Motor.A.stop();

}

else if(obj==motor1float) {

Motor.A.flt();

}

}

public void receivedError(String error) {

www.syngress.com

Figure 4.11 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 143

144 Chapter 4 • Communicating with the RCXJava API

System.err.println("Error: "+error);

close();

}

public void close() {

isRunning=false;

if(rcxPort!=null)

rcxPort.close();

}

}

Most of the listing in Figure 4.11 deals with the visual interface (abridged as
to not show all the components, such as the numerous buttons). Here we intro-
duce the static instances of the motors and sensors in the Motor and Sensor classes.
Using a method signature similar to that of leJOS (which we’ll discuss in Chapter
5), we can control the motors via simple methods such as forward() and stop(). For
the sensors, we use the setTypeAndMode() method for setting up a sensor and
readValue() for reading the current value from the sensor (there are several read
methods, depending on the value type expected).

In this case we set the sensors as light sensors and read back a percentage
value.This will also work for touch sensors, displaying “0” or “100” instead of
“true” or “false”. In the main loop, where all we do is read sensor values (since
the motors are controlled from action events fired by pressing the buttons), we
have to introduce a hard-coded delay.This delay controls the polling frequency,
which does not need to be too frequent when reading over the Internet.
Improvements for this code would be to add controls to adjust motor power, as
well as pull-down lists to select the type of sensors to use.

Another improvement would be to extend the applet as an advanced remote
control that includes visual feedback, since near real-time control would be diffi-
cult without actually seeing the robot. If you use the Java Media Frameworks
with your applet, you can stream a video feed from a web cam that is pointed at
your robot.The alternative is to have any one of many web cam-enabling soft-
ware packages to run on the same HTML page as your RCX applet. In addition,
the possibilities of using a RCX remote control for your robot to assist in home
automation are endless, from feeding the cat to turning on your air conditioning.

www.syngress.com

Figure 4.11 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 144

Communicating with the RCXJava API • Chapter 4 145

www.syngress.com

Emulation
The RCXJava API allows one to add a level of debugging statements by
calling the setDebug(boolean debug) method on RCXPort.java; this
shows you any byte arrays that are sent out (you use the listener inter-
faces to view all byte arrays that are received), as well as additional mis-
cellaneous debugging information that was used while developing the
RCXJava API.

In addition to this, there is also an emulation mode that is useful
for situations when developing with an RCX Tower attached is inconve-
nient or impossible.

The emulation mode is initiated by simply setting “EMULATION” as
the port type. In emulation mode, there are no error messages gener-
ated by not successfully writing or reading to the port or tower because
what gets emulated are the higher level API calls, which are the Motor
and Sensor classes. Of course, the emulation mode is not useful when
sending opcode byte arrays or expecting to receive the responses via the
message listener.

How one would use the emulation is to have a test program create
a separate thread to randomly (or not so randomly) generate input
events for the sensors as demonstrated in Figure 4.12.

This allows for controlled unit tests of code you already have or are
currently developing and debugging.

Figure 4.12 Emulating Sensors (RCXSensorEmulation.java)

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import rcx.Sensor;

public class RCXSensorEmulation implements Runnable

{

private Thread thisThread;

private boolean isRunning;

Debugging…

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 145

146 Chapter 4 • Communicating with the RCXJava API

www.syngress.com

Figure 4.12 Continued

public RCXSensorEmulation() {

thisThread = new Thread(this);

thisThread.start();

}

public void run() {

isRunning=true;

while(isRunning) {

try {Thread.sleep(1000);} catch(Exception e) { }

switch((int)(Math.random()*5)+1) {

case 1: Sensor.S1.setPreviousValue((int)

(Math.random()*1024)+1);

break;

case 2: Sensor.S2.setPreviousValue((int)

(Math.random()*1024)+1);

break;

case 3: Sensor.S3.setPreviousValue((int)

(Math.random()*1024)+1);

break;

case 4: try {Thread.sleep(3000);}

catch(Exception e) { }

break;

}

}

}

public void stop() {

isRunning=false;

}

}

This code will simply generate sensor values in a pseudo-random
fashion. This isn’t a core RCX class; it is simply provided as a template
for creating custom unit tests.

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 146

Communicating with the RCXJava API • Chapter 4 147

Direct Control Programming
for the RCX Using Java
As we’ve just seen with the RCXApplet example, we can program for the RCX
using abstractions such as Motor and Sensor on the PC to directly control the
RCX. By using these abstractions we can control the RCX directly without
having to download tasks into it.We can have the tasks run on the PC in near
real time (albeit with a noticeable time lag), and these applications could handle
entire tasks on the PC in a similar fashion to tasks running inside the RCX. In
fact, the method signatures are similar to the leJOS methods (leJOS will allow us
to run Java tasks inside the RCX, as we’ll see in Chapter 5).With direct control
programming, we are using the RCX’s “brain” only to pass commands from a
proxy “brain” residing on a PC.

Basic Remote Control Application
In the command-line-driven application shown in Figure 4.13, we again monitor
the sensors, but we also have the application decide when to change the motor
activity.This program uses the command line only to change the inputs and
outputs.

Figure 4.13 Basic Remote Control of an RCX (RCXTest.java)

import rcx.*;

public class RCXTest implements RCXErrorListener {

private static RCXPort port;

private static int motor;

private static int direction;

www.syngress.com

To use the above sensor emulation, simply stick the following line in your
code (also shown in Figure 4.13):

if(portName.equals("EMULATION")) new RCXSensorEmulation();

Controlled unit tests are more reliable and efficient than using a con-
nected RCX for testing, especially when testing a suite or framework of
classes.

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 147

148 Chapter 4 • Communicating with the RCXJava API

private static int power;

public static void main(String[] args) {

String portName = null;

if(args.length>0)

portName = args[0];

else if(args.length==0) {

System.out.println("Usage: RCXTest portname");

return;

}

new RCXTest(portName);

}

public RCXTest(String portName) {

port = new RCXPort(portName);

port.addRCXErrorListener(this);

if(portName.equals("EMULATION")) new RCXSensorEmulation();

System.out.println("battery power left: "

+port.getBatteryPower()+" volts");

Motor.A.forward();

try { Thread.sleep(500); } catch(Exception e) { }

Motor.A.backward();

try { Thread.sleep(500); } catch(Exception e) { }

Motor.A.stop();

port.beep();

www.syngress.com

Figure 4.13 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 148

Communicating with the RCXJava API • Chapter 4 149

Sensor.S1.setTypeAndMode(SensorConstants.SENSOR_TYPE_TOUCH,

SensorConstants.SENSOR_MODE_BOOL);

Sensor.S2.setTypeAndMode(SensorConstants.SENSOR_TYPE_LIGHT,

SensorConstants.SENSOR_MODE_PCT);

Sensor.S3.setTypeAndMode(SensorConstants.SENSOR_TYPE_TOUCH,

SensorConstants.SENSOR_MODE_BOOL);

int s2light,s2prevlight=0;

boolean s1touch,s3touch,s1prevtouch=true,s3prevtouch=true;

while(true) {

s1touch=Sensor.S1.readBooleanValue();

if(s1touch!=s1prevtouch) {

s1prevtouch=s1touch;

System.out.println("reading sensor 1: "+s1touch);

}

s2light=Sensor.S2.readValue();

if(s2light!=s2prevlight) {

s2prevlight=s2light;

System.out.println("reading sensor 2: "+s2light);

}

s3touch=Sensor.S3.readBooleanValue();

if(s3touch!=s3prevtouch) {

s3prevtouch=s3touch;

System.out.println("reading sensor 3: "+s3touch);

}

}

}

public void receivedError(String error) {

System.exit(1);

}

}

www.syngress.com

Figure 4.13 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 149

150 Chapter 4 • Communicating with the RCXJava API

In this example we see a call to getBatteryPower(), which returns the RCX’s
remaining battery power, in volts.This is another example of a higher-level
encapsulation of RCX opcode messages.We then proceed to run motor A for-
ward and backward for a about a half-second each before stopping, making a
sound, and entering a loop that will simply monitor the sensors. In this case we
set up two touch sensors and one light sensor.We simply display the values on
the console indefinitely though we could have taken a specific action upon any
given input event. Notice that, like the applet, we only display the values if they
have indeed changed.

To improve upon the program, we could create custom applications as
external tasks and even pass in settings and directions for our sensors and motors
from the command line.We could design crude one-line script commands that
could add the desired responses to the inputs in addition to configuring simple
actions; what this would do is create mini “tasks” that we could piece together in
batch files appropriate for the batch-style programming of the RCX.

Creating a Direct Control
Framework for Java Programs
One could potentially make a complete clone of the LEGO MINDSTORMS
visual programming interface in Java using the RCXJava API. Such a framework
would give you the ability to create and store your creations or programs onto disk.
Although the capability to download tasks is not available with this API, one could
build that capability into a framework, as well as allow for the translation of dif-
ferent data formats (such as NQC files). Or one could come up with a new data
format that would consist of custom Java class files.This could also be addressed by
replacing the firmware altogether so as to run Java programs inside the RCX (as
we’ll see in Chapter 5 with leJOS). But if one were to keep the existing firmware, a
framework could be built to translate leJOS Java programs into an intermediary
format to download and run in the RCX with the current firmware.

Direct Control Using AI
Another possible framework would be the ability to add artificial intelligence
(AI) to our RCX robots.That’s the other advantage that direct control gives us,
along with capabilities that far exceed the RCX brain itself. Using a PC allows us
to program very large and complex AI programs.What type of AI could we use?
Well, the first that comes to mind is the type that would be useful for program-
ming something along the lines of a chess robot, one that determines moves

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 150

Communicating with the RCXJava API • Chapter 4 151

using min-max searches. But a more interesting branch of AI, especially with
regards to robotics, is neural network programming.

The following example demonstrates the use of neural networks to have our
RCX “learn” the right response to stimuli all on its own.This code is based on
the original Visual Basic version of the program developed by Bert Van Dam and
available from his site,“Artificial Intelligence and Machine Learning”
(http://home.zonnet.nl/bvandam), which uses the CyberMaster robot.

The user interface simply consists of Start and Stop buttons that will start
the learning process by basically starting the RCX robot to move.There is also a
Reset button to reset the learning process.A screen shot of the RCXNeuralTest
program is shown in Figure 4.15.The ideal robot for this example would be a
simple explorer such as the one from Chapter 14 in Syngress Publishing’s Building
Robots with LEGO MINDSTORMS book by Mario and Giulio Ferrari (shown
in Figure 4.14).This example uses two touch sensors and two motors, which will
be the inputs and outputs to the neural network.As the robot “learns,” it will
record the successful results based on its inputs and outputs.The neural network
matrix or “brain” that represents the robot’s current knowledge of solutions, based
on the inputs and outputs, is displayed as a four-by-four matrix.

The matrix displayed in the frame window’s text area component (Figure 4.15)
is a solutions matrix consisting of all possible input and output states.The current

www.syngress.com

Figure 4.14 The Room Explorer Robot

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 151

152 Chapter 4 • Communicating with the RCXJava API

state is checked against the matrix by multiplying the current state vector with
the matrix (the neural brain contents). Such a vector is described as follows:

+1 Input sensor 1

+1 Input sensor 3

? Output motor A

? Output motor C

where ‘+1’ and ‘–1’ indicate on and off respectively and ‘?’ is the answer we are
looking for. In this specific case we want to know what to do with the motors
when both touch sensors are on. If the above vector [+1,+1,?,?] (ignoring ques-
tion marks) when multiplied with the matrix yields [+1,+1,-1,-1] then we have
the motors stop.This would be a solution that was found because the inputs
match. If not, we haven’t learned that scenario yet and have to add it to the
brain—if it is the correct solution.

The reset button will clear the matrix to its default state and start the
learning process from scratch again.There is also a text display at the bottom of
the frame window, which indicates the application’s current status.The following
listing in Figure 4.16 is the AI test application, RCXNeuralTest.This application
refers to the RCXNeuralBrain class, which encapsulates the matrix and its related
functions.The two methods of RCXNeuralBrain shown in Figure 4.17, search()
and learn() are the crux of the class as the remaining methods and supporting
classes, namely matrix and vector, support mathematical operations.

Figure 4.16 Sample AI Test Program (RCXNeuralTest.java)

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import rcx.RCXPort;

www.syngress.com

Figure 4.15 A Simple RCX AI Application

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 152

Communicating with the RCXJava API • Chapter 4 153

import rcx.RCXErrorListener;

import rcx.Motor;

import rcx.Sensor;

import rcx.SensorConstants;

/*

* Sample neural network test program for the RCX

* based on the visual basic code by Bert Van Dam:

* http://home.zonnet.nl/bvandam

*/

public class RCXNeuralTest extends Panel implements ActionListener,

Runnable, WindowListener, RCXErrorListener {

private RCXNeuralBrain brain;

private String portName;

private RCXPort rcxPort;

private boolean isRunning;

private Panel buttonPanel;

private Button startButton, stopButton, resetButton;

private Button emulateSensor1, emulateSensor3;

private int sensor1val,sensor3val;

private Label textLabel;

private boolean motorA,motorC;

private boolean s1touch,s3touch;

private boolean s1prevtouch=false, s3prevtouch=false;

public RCXNeuralTest(String portname) {

portName = portname;

buttonPanel = new Panel();

buttonPanel.setLayout(new FlowLayout(FlowLayout.CENTER,4,4));

brain = new RCXNeuralBrain();

startButton = new Button("start");

startButton.addActionListener(this);

stopButton = new Button("stop");

stopButton.addActionListener(this);

www.syngress.com

Figure 4.16 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 153

154 Chapter 4 • Communicating with the RCXJava API

resetButton = new Button("reset");

resetButton.addActionListener(this);

textLabel = new Label("Status: waiting");

buttonPanel.add(startButton);

buttonPanel.add(stopButton);

buttonPanel.add(resetButton);

setLayout(new BorderLayout());

add(buttonPanel,"West");

add(brain,"East");

add(textLabel,"South");

setBackground(Color.white);

if(portName.equals("EMULATION")) {

emulateSensor1 = new Button("S1");

emulateSensor1.addActionListener(this);

emulateSensor3 = new Button("S3");

emulateSensor3.addActionListener(this);

buttonPanel.add(emulateSensor1);

buttonPanel.add(emulateSensor3);

}

}

public static void main(String[] args) {

RCXNeuralTest neuraltest;

Frame appFrame = new Frame("RCX Neural Network Test");

String portName = null;

if(args.length>0)

portName = args[0];

else if(args.length==0) {

System.out.println("Usage: RCXNeuralTest portname");

return;

}

neuraltest = new RCXNeuralTest(portName);

appFrame.add(neuraltest);

www.syngress.com

Figure 4.16 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 154

Communicating with the RCXJava API • Chapter 4 155

appFrame.addWindowListener(neuraltest);

Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();

appFrame.setBounds(screen.width/5,screen.height/5,325,140);

appFrame.setVisible(true);

Thread thread = new Thread(neuraltest);

thread.start();

}

public void run() {

long startTime=0L;

isRunning = true;

boolean solutionfound=false;

rcxPort = new RCXPort(portName);

rcxPort.addRCXErrorListener(this);

Sensor.S1.setTypeAndMode(SensorConstants.SENSOR_TYPE_TOUCH,

SensorConstants.SENSOR_MODE_BOOL);

Sensor.S3.setTypeAndMode(SensorConstants.SENSOR_TYPE_TOUCH,

SensorConstants.SENSOR_MODE_BOOL);

if(portName.equals("EMULATION")) {

Sensor.S1.setPreviousValue(0);

Sensor.S3.setPreviousValue(0);

}

while(isRunning) {

if(checkSensors()) { // if inputs changed

if(brain.search(s1touch,s3touch)) { // if solution found

setStatus("Solution Found.");

setMotors(brain.getOutputs());

} else {

www.syngress.com

Figure 4.16 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 155

156 Chapter 4 • Communicating with the RCXJava API

boolean saveS1sensor = s1touch;

boolean saveS3sensor = s3touch;

solutionfound=false;

setStatus("Solution Not Found - finding new solution");

while(!solutionfound) {

// pick a solution

setMotors(brain.getRandomOutputs());

startTime=System.currentTimeMillis();

while(isRunning) { // wait 2 sec for a solution

if(checkSensors()) {

solutionfound = true; // new solution found

setStatus("New Solution Found.");

brain.learn(saveS1sensor,saveS3sensor,motorA,motorC);

break;

} else {

if((System.currentTimeMillis() - startTime)>2000L) {

setStatus("Solution Not Found - picking another");

break;

} // if time ran out waiting for sensor change

} //else no change with sensors

} //while waiting for new solution to check out

} //while picking random solution

} // else no solution found in brain - find new one

www.syngress.com

Figure 4.16 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 156

Communicating with the RCXJava API • Chapter 4 157

} // if inputs changed at all

} // main while

} // run()

public void actionPerformed(ActionEvent e) {

Object obj = e.getSource();

if(obj==startButton) {

setStatus("starting robot");

boolean[] motors = {true,true};

setMotors(motors);

}

else if(obj==stopButton) {

setStatus("stopping robot");

Motor.A.stop();

Motor.C.stop();

}

else if(obj==resetButton) {

setStatus("brain state reset");

brain.reset();

}

else if(obj==emulateSensor1) {

sensor1val = (sensor1val==0) ? 100 : 0;

Sensor.S1.setPreviousValue(sensor1val);

}

else if(obj==emulateSensor3) {

sensor3val = (sensor3val==0) ? 100 : 0;

Sensor.S3.setPreviousValue(sensor3val);

}

}

public boolean checkSensors() {

boolean check = false;

www.syngress.com

Figure 4.16 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 157

158 Chapter 4 • Communicating with the RCXJava API

if(portName.equals("EMULATION")) {

try { Thread.sleep(200); } catch(Exception e) {}

}

s1touch=Sensor.S1.readBooleanValue();

if(s1touch!=s1prevtouch) {

s1prevtouch=s1touch;

check=true;

}

if(portName.equals("EMULATION")) {

try { Thread.sleep(600); } catch(Exception e) {}

}

s3touch=Sensor.S3.readBooleanValue();

if(s3touch!=s3prevtouch) {

s3prevtouch=s3touch;

check=true;

}

if(check)

System.out.println("\ncheckSensors(): sensor1 = "

+s1touch+" sensor3 = "+s3touch);

return check;

}

public void setMotors(boolean[] outputs) {

if(outputs[0]) {

Motor.A.forward();

motorA=true;

} else {

Motor.A.stop();

motorA=false;

}

if(outputs[1]) {

Motor.C.forward();

motorC=true;

} else {

Motor.C.stop();

www.syngress.com

Figure 4.16 Continued

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 158

Communicating with the RCXJava API • Chapter 4 159

motorC=false;

}

}

public void setStatus(String stat) {

textLabel.setText("Status: "+stat);

textLabel.repaint();

System.out.println("Status: "+stat);

}

public void close() {

setStatus("shutting down");

isRunning=false;

if(rcxPort!=null)

rcxPort.close();

}

public void receivedError(String error) {

System.err.println("Error: "+error);

close();

}

public void windowActivated(WindowEvent e) { }

public void windowClosed(WindowEvent e) { }

public void windowDeactivated(WindowEvent e) { }

public void windowDeiconified(WindowEvent e) { }

public void windowIconified(WindowEvent e) { }

public void windowOpened(WindowEvent e) { }

public void windowClosing(WindowEvent e) {

close();

System.exit(0);

}

}

www.syngress.com

Figure 4.16 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 159

160 Chapter 4 • Communicating with the RCXJava API

Figure 4.17 Code snippet from RCXNeuralBrain.java

public boolean search(boolean input1, boolean input2) {

// create inputs vector

vector inputs = new vector(input1,input2);

// create a question with inputs and uknown outputs

vector question = new vector(inputs, new

vector(UNKNOWN,UNKNOWN));

System.out.println("\nsearch(): search quesiton :\n"+question);

// find the answer

vector answer = brain.multiply(question);

answer.normalize();

// get inputs portion for verification (first part of vector)

vector answer_inputs = answer.sub(0,2);

boolean solutionFound = answer_inputs.equals(inputs);

if(solutionFound) {

System.out.println("\nsearch(): answer found :\n"+answer);

//get outputs part of input/output answer pair vector

outputs = answer.sub(2,2);

} else {

System.out.println("\nsearch(): answer not found\n");

}

return solutionFound;

}

public void learn(boolean input1, boolean input2,

boolean output1, boolean output2) {

System.out.println("\nlearn(): current brain :\n"+brain);

www.syngress.com

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 160

Communicating with the RCXJava API • Chapter 4 161

// create an input and output vector

vector newinputs = new vector(input1,input2);

vector newoutputs = new vector(output1,output2);

vector newsolution = new vector(newinputs,newoutputs);

// create a new solution matrix from combined vectors

matrix solution = new matrix(newsolution);

System.out.println("learn(): new solution vector :\n"+newsolution);

System.out.println("learn(): new solution matrix :\n"+solution);

// and add it to the brain matrix (learn)

brain = brain.add(solution);

System.out.println(

"learn(): current brain + new solution = new brain

:\n"+brain);

//and show it

display();

}

The test begins by hitting the Start button.The only pre-learned state that
the neural network or brain has is to move forward (both motors) when no input
is occurring.This makes sense because it needs to do something by default.We
could have an empty brain (a zeroed matrix), but at some point we have to pro-
vide rules to determine a correct solution.As shown in Figure 4.16, we are con-
stantly checking the sensors for a change in status.We then check to see if we
have a solution to the new “question,” or rather the new state of the sensors. If
not found in the matrix, a correct solution would be one that successfully
changes our current state within two seconds, otherwise we try again. Once we
find that solution, we enter it into our knowledge base and continue until we
bump into another problem. Over time, we should approach an ideal solution
that will provide an answer to any question without having to guess at a new
solution. RCXNeuralTest calls on the RCXNeuralBrain to perform all operations

www.syngress.com

Figure 4.17 Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 161

162 Chapter 4 • Communicating with the RCXJava API

on the matrix, including displaying the current state in the supplied text area.
Both files are available in the source code folder for this chapter on the CD. For
more information on the mathematics, again refer to the AI and Machine
Learning web site: http://home.zonnet.nl/bvandam. One way to improve this
program is to add the ability to save and load the matrix to disk; and to add more
visual elements to the application interface, such as current status of the sensors
and motors. One should also note that this example demonstrates the ability to
test in emulation mode, where additional buttons are used to emulate the sensors.

Obviously this is a very simplistic problem domain.We could have just passed
in the actual solution matrix as the default set of rules for this specific exploring
robot.This example, however, demonstrates how you could build more elaborate
robots and have them learn the new rules on their own as they encounter a more
complex environment or as you add more inputs and outputs and other interac-
tion with additional RCXs.

www.syngress.com

Using More than One RCX
One of the many interesting robots available in the Building Robots with
LEGO MINDSTORMS book is a mechanical arm that can play chess (from
Chapter 20 of that book, shown here in Figure 4.18).

This is one example of using more than one RCX and tower. You can
obtain another RCX and tower, if you’re lucky enough, by finding an
older, less expensive kit (1.0 or 1.5) or if you have the older kit, by
upgrading to 2.0 so that you’ll have two towers, one serial and one USB.
Of course, you could also use two USB towers, but make sure you name
the second port “LEGOTOWER2” to avoid USB port conflicts.

With more than one port object, you would have the Motor and
Sensor classes refer to one port or the other by calling the
setPort(RCXPort port) static method and switch its static instances to
refer to a new port. This of course assumes you only use the Motor.A-C
and Sensor.S1-S3 instances. but of course you can create your own
instance of Motor and Sensor instead of using these global static
objects. When creating the objects, one simply passes into the con-
structor the ID of the object (A to C for motors and 0 to 2 for sensors)
and the port with which it will be associated.

Bricks & Chips…

Continued

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 162

Communicating with the RCXJava API • Chapter 4 163

www.syngress.com

RCXPort port1 = new RCXPort("COM1");

RCXPort port2 = new RCXPort("LEGOTOWER1");

Motor port1_motorA = new Motor('A',port1);

Sensor port2_sensor1 = new Sensor(0,port2);

port1_motorA.forward();

int p2s1value = port2_sensor1.readValue();

We simply access different RCX ports by creating our own instances
of the Motor and Sensor instead of using the default motors and sen-
sors (remember that the global static instances refer only to the last cre-
ated RCX port). We accomplish this by specifying the port name and the
specific RCXPort to inform the new Motor or Sensor instance of which
port we were referring. We can then refer to each of them uniquely by
calling on its methods. Remember that if you listen to callbacks from the
ports, then each port would need a single, separate listener.

Figure 4.18 The Broad Blue Chess Robot

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 163

164 Chapter 4 • Communicating with the RCXJava API

Summary
This chapter introduced you to the RCXJava API, which allows you to control
the RCX (1.0-2.0) using 100 percent Java code, except for using native shared
library code to access the USB Port.The RCXJava API hides all the unnecessary
details to focus on sending and receiving commands from the RCX. It encapsu-
lates the RCX protocol itself, as well as the port type. It is an extensible API that
allows for future expansion by both adding high-level abstractions to additional
commands, and new types of ports.

First considering code listings that had raw byte arrays being sent without an
API, we examined how the RCXJava API’s would enable us to explicitly specify
the serial or USB ports to reduce the size and complexity of the code.The API
allows a simple callback mechanism when dealing with responses and errors, and
introduces higher level methods that wrap the message creation for cleaner code
that doesn’t contain opcode commands. By including a basic window-based
example in the core library, we have a template upon which to build, and a built-
in utility for sending and receiving messages as opcode byte arrays with a conve-
nient opcode lookup table.

We introduced abstractions to the sensors, motors and sound in a manner
consistent with other Java APIs, specifically leJOS.This means that the code can
be essentially reused inside and outside the RCX. Using these abstractions and
the capability of remote computer access via the socket port type (also available
with RCXJava API), we demonstrated an applet that can run in browsers,
enabling true remote control of an RCX robot over the Internet.This effectively
demonstrates the concept of directly programming the robot by using the PC as
the robot’s brain.Although there are serious penalties in terms of responsiveness
and lag, the PC gives one much more computing power, extensibility, and remote
access capabilities than does the RCX alone. Consequently, extensive computa-
tion, such as neural network programming (an example of an AI method that one
can use with RCX), is feasible using the RCXJava API.

The RCXJava API lays a good groundwork for the many possibilities that
exist in terms of building complex programs and systems to control RCX robots.
Frameworks can be built to handle the design and programming of RCX (with
both visually complex interfaces and AI frameworks), and the control of several
robots, including access to multiple towers.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 164

Communicating with the RCXJava API • Chapter 4 165

Solutions Fast Track

Designing an RCXJava Communications Architecture

� The use of the Java Communications API facilitates the automatic search
for an available serial port, and use of the rcx.comm package gives us
USB capability in a platform-neutral manner.Allowing the configuration
of the port to be based on the port name improves ease-of-use.

� Management and encapsulation of RCX protocol details is hidden from
the application user.

� The use of standard Java design patterns and Java interfaces enables us to
use new and different types of ports without changing a line of code.

Overview or the RCXJava API

� The RCXJava API is an open source and extensible API.

� It supports serial, USB and new ports such as sockets.

� It lays the groundwork for a full-fledged programming environment for
the RCX by using high level methods that follow the same method
signature naming convention of other Java efforts like leJOS.

Using the RCXLoader Application

� The RCXLoader is an out-of-the-box utility and test tool for
interfacing with the RCX.

� It provides a convenient lookup table of all the opcodes and their
arguments.

� It provides the starting point or template for creating more advanced
examples.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 165

166 Chapter 4 • Communicating with the RCXJava API

Beyond Serial Port Communications:
The RCXApplet Example

� Control of an RCX can not only be enabled from a stand-alone applica-
tion but also over the Internet using a Java-enabled Web browser, pro-
viding the same GUI as one would get with the stand-alone application.

� Using RCXSocketPort, one could control a number of RCXs over a
network and the network via a proxy server.

� Use of the direct control API methods gives you the capability of
creating complex frameworks similar to the visual-programming
interface that comes with the LEGO MINDSTORMS kit.

Direct Control Programming for the RCX Using Java

� With direct control programming, we are using the RCX’s “brain” to
pass commands from a proxy “brain” residing on a PC.There are
significant advantages to programming tasks to run on the PC’s resources
rather than running tasks inside the RCX.

� Tasks can run on the PC in near real time (there is a noticeable time lag).

� We can add Artificial Intelligence (AI) capabilities when programming
our RCX robots. Neural network programming allows an RCX to
“learn” the right response to stimuli all on its own.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 166

Communicating with the RCXJava API • Chapter 4 167

Q: What versions of the Java Runtime Environment does the RCXJava API
support? Specifically, is Microsoft’s JVM supported?

A: All versions of Java 1.1 through 1.4 are supported. Microsoft’s Java VM is also
supported, as long as one doesn’t use Java Swing for the GUI.You may also
want to make sure you’re using the latest version that supports Sun’s JNI
interface.

Q: How can I add to RCXPort’s higher level methods for handling messages that
it doesn’t already handle? For example, as with the motor and sensor classes, I
want to add methods for handling the RCX’s display.

A: You can either submit the proposed changes for a later release or you can
add a helper class that handles messages outside of RCXPort. Having your
class implement either the AllMessagesListener or the RCXListener interfaces
does this.

Q: Can I trigger tasks to run inside the RCX and receive messages from other
tasks running inside the RCX?

A: Yes, you can send the opcodes that run specific tasks inside the RCX at any
given time, as well as monitoring sensors and values inside the RCX by
sending the appropriate opcodes and requesting the values.

Q: What’s the difference between RCXJava API (described in this chapter) and
the RCXPort API (described in Chapter 3)? I noticed they both have an
RCXPort class.

A: Both are Java APIs designed for accessing the RCX through Java.The
RCXJava API was the first Java API to address RCX communication using
the Java Communications API. It originally had the RCXPort class as one

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 167

168 Chapter 4 • Communicating with the RCXJava API

of its core classes.The RCXPort API followed afterwards and addressed the
limitations of the RCXJava API, namely the ability to download tasks into
the RCX. However, this can also be implemented by an application that uses
the RCXJava API, and may be added to the core classes in the future.

www.syngress.com

177_LEGO_Java_04.qxd 4/2/02 1:12 PM Page 168

The leJOS System

Solutions in this chapter:

■ Basic leJOS Usage Guidelines

■ The LEGO Java Operating System

■ Overview of the leJOS Architecture

■ Using leJOS: A Simple Example

Chapter 5

169

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 169

170 Chapter 5 • The leJOS System

Introduction
The LEGO Java Operating System (leJOS) allows you to run Java code inside the
RCX, letting you program in a familiar language as opposed to using the default
LEGO interpreter. It includes an API that gives you direct access to the inputs
and outputs from Java itself, as well as a subset of the standard Java API. Since this
is not a fully-featured Java OS, an alternate compiler is provided for compiling
and generating classes for the leJOS; if you happen to be familiar with JavaCard
or Java 2 Micro Edition (J2ME) this is the same approach used in those environ-
ments.The Java programs and standard Java API are a subset of standard Java so
they can easily evolve to a fully-featured OS in the future, given that RCX
memory constraints allow that.

LeJOS was originally developed solely by Jose Solorzano, but is now main-
tained by Paul Andrews and Jürgen Stuber. Great effort has been taken in making
a Java environment for the RCX, given the inherent constraints of the RCX. So,
knowing about Java will give you a head start in creating programs for your
RCX.The fact that leJOS is a new firmware for the RCX, and thus does not
leverage the LEGO firmware, will allow you to make programs which are more
advanced than what is possible using either the LEGO programming environ-
ment or NQC (Not Quite C).

Since the RCX has a lot of features you would want to use—motors, sensors,
buttons and so on—a very comprehensive Java package for accessing these fea-
tures is provided with leJOS: the josx.platform.rcx package.The various classes
contained in this package will be explained in detail in this chapter. Information
on how to set up your environment for use with leJOS, so you can start making
your own Java programs for the RCX will also be provided.

This chapter also explains the necessary environmental setup for compiling
your Java programs and transmitting them to the RCX for execution.

Basic leJOS Usage Guidelines
The very first thing to do is to get a copy of leJOS. It comes in a version for
Windows and one for Linux; you can download them from http://lejos.source-
forge.net (select Download, then under Download Area at Sourceforge, select
Download area).The Linux version is a .tar.gz file and the Windows is a .zip—
the ones used for this book are the 1.0.4alpha for Linux and the 1.0.4alpha2 for
Windows. Do not forget to download the documentation files, as you will not
have the JavaDoc for the base classes, which is a must when programming for

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 170

www.syngress.com

leJOS (of course you can build the JavaDoc yourself, but you might find that a bit
irritating).After the download, unpack the files.

NOTE

After unpacking the downloaded lejos_1_4_0.tar.gz file for Linux, you
need to issue a make command from within the LEJOS_HOME directory.

To use the leJOS system, you must have a standard Java compiler installed on
your system. Here, the Java SDK 1.3.1 from Sun Microsystems has been used, but
all JDK from 1.1 to 1.3.1 should work. For 1.4, you must add the option -target
1.1 for the lejosc command.

Add the bin directory of your Java installation to your path.You should also
set the LEJOS_HOME environment variable to point to where you installed
leJOS, and add the bin directory under that to your path. Finally, the environ-
ment variable RCXTTY must be set to the port where your LEGO IR tower is
connected.

NOTE

The setup examples, of course, have to be modified to reflect the specific
installation directories for both leJOS and JDK.

■ Setting the Environment for Windows This .bat file was used in
Windows for setting the leJOS environment:

set JAVA_HOME=c:\jdk1.3.0_01

set LEJOS_HOME=c:\lejos_1_0_4alpha\lejos

set PATH=%PATH%;%JAVA_HOME%\bin;%LEJOS_HOME%\bin

set RCXTTY=COM2

set CLASSPATH=.

■ Setting the Environment for Linux Source this script file on Linux
for setting your leJOS environment (bash shell):

#! /bin/bash

JAVA_HOME=/usr/local/java/jdk1.3.1

The leJOS System • Chapter 5 171

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 171

172 Chapter 5 • The leJOS System

LEJOS_HOME=~/lejos_1_0_4alpha/lejos

PATH=$JAVA_HOME/bin:$LEJOS_HOME/bin:$PATH

RCXTTY=/dev/ttyS1

CLASSPATH=.

export JAVA_HOME LEJOS_HOME PATH RCXTTY CLASSPATH

The CLASSPATH is used to define where you place your own Java programs
and classes.As you can see, we have just set it to point to the current directory.
Change this as necessary to meet your needs.

The next thing to do is transmit the leJOS firmware to the RCX. If your
RCX has some other firmware installed like the standard LEGO one, it does not
matter—it will be erased and leJOS will be downloaded instead.You just execute
the command lejosfirmdl -f, which will transmit the firmware to the RCX.The
-f option means fast and transmits the firmware four times faster. I have had lim-
ited success with the fast option, so I usually omit it, but try your luck.

After firmware download termination (signaled by a double beep), you are
ready to start programming.

Using the lejosc Compiler
After setting up the environment, you are ready to begin programming. Just use
your favorite text editor to write your leJOS Java program, save it, and execute
lejosc <yourprogramname>.java.This should produce a file named <your-
programname>.class.You then execute lejos <yourprogramname> which will
convert your program and any necessary leJOS base classes, as well as any utility
classes of your own, into one binary package and transmit that to the RCX for
execution.

NOTE

The lejosc command is just a wrapper setting the -bootclasspath com-
mand line option of the javac command to point to the location of the
leJOS base classes when you have a JAVA2 environment (JDK 1.2 through
JDK 1.4). For a Java 1.1 environment it will include those leJOS base
classes at the beginning of the classpath.

You can specify the option -o <file> to the lejos command.This will dump
the binary program package to <file>.You can then subsequently transmit it to

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 172

The leJOS System • Chapter 5 173

the RCX using lejosrun <file>, which can be very convenient if you often experi-
ence download problems to the RCX, since it saves time in creating the binary
package between subsequent download attempts.

WARNING

On a particularly sunny day, you may need to put a cardboard box over
the tower and RCX to shield them from the sunlight, otherwise every
single download attempt may fail.

The LEGO Java Operating System
One of the greatest benefits of LeJOS is that it allows you to expand the capabil-
ities of your LEGO robots, without the steep learning curve that comes with
other replacement operating systems.You could say leJOS fits in between systems,
pushing the limits of the standard LEGO firmware, like NQC, as well as systems
which push the limits of LEGO hardware (legOS, for instance).Where NQC and
the like have to move within the boundaries of both the LEGO ROM code and
the LEGO firmware code, leJOS only leverages the ROM code.And, of course,
legOS throws all LEGO code away to gain maximum power.

So why not just use legOS? Well, because you would like to do all the pro-
gramming in Java, right? There are a few other good reasons as well.As men-
tioned earlier, the learning curve can be a lot steeper with legOS.Also, as legOS
does not leverage the ROM code, you, as a programmer, are not protected by
that code—that is, in some cases the code in the ROM actually protects you

www.syngress.com

Transmitting More Programs to the RCX
You can transmit multiple programs to the RCX at one time, just comma
separate the names of the programs when supplying them to the lejos
command, like this: lejos <yourprogram1>,<yourprogram2>. After
transmission, you can select which program to run with the RCX Prgm
button.

Developing & Deploying…

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 173

174 Chapter 5 • The leJOS System

from accidentally destroying your RCX (for instance, leaving the IR-diode on in
the long range mode for extended amounts of time can result in the burnout of
that diode).

The limitations of using leJOS thus comes in two categories: limitations
inherent in the ROM code, and limitations put there by the developers of leJOS.

Because leJOS was originally forged from the TinyVM Project, a lot of the
present limitations date back to design decisions made in TinyVM.We are not
saying that those decisions were wrong; when implementing a Java virtual
machine for running in such a memory constrained device as the RCX, some
tradeoffs are inevitable.

So here is a summary of the current limitations in leJOS as imposed by
leJOS, not by the ROM:

■ No garbage collection This is the main inconvenience if you are
familiar with standard Java.

■ No switch statement These can, of course, be simulated using if else
constructs.

■ No arithmetic on the long variable type However, casting is
allowed on the long type from the integer type.

■ Maximum array length The maximum array length is 511.

■ instanceof This operator always returns true for interfaces.This is not so
nice if you are used to designing your programs using interfaces, and base
some functionality on certain classes implementing specific interfaces.

Performing an instanceof on arrays (for example, b instanceof int[]) is
not allowed by the linker.

■ java.lang.Class This has no instances created, meaning the .class con-
struct does not work, and that you cannot synchronize on static
methods.

■ Class.forname This always throws a ClassNotFoundException, as dynamic
class loading is not supported.

■ J2SE API This isn’t always implemented, but when it is, it often behaves
a little differently. Luckily, this doesn’t occur in very dramatic ways.

Current drawbacks of this system are few. leJOS leaves about 12k for your
own programs, but as RCX programs tend to be fairly small, this is usually not a
problem.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 174

The leJOS System • Chapter 5 175

I am really missing the switch statement. It generates way more compact Java
bytecode than those nested, if-then-else constructs you need to make in its
absence.

I am not too fond of the 511 bytes range limit on arrays either. I would like
to be able to create one array spanning all the available memory, though I must
admit I have never needed to do this.

From a Java language view, the fact that no object of java.lang.Class exists, and
the consequence of that is that synchronization on static methods is not possible,
which can be a little frustrating and confusing at times. But having those class
objects created would use memory for something which you can easily work
around.

One major thing to get used to with leJOS is that since it comes from stan-
dard Java, there is no garbage collection.When I mention this, most Java pro-
grammers ask “then how do you deallocate your objects?”The answer is: you
don’t.You just have to get used to writing your programs in a way where the
number of objects are bounded, period. It’s really not as hard as it sounds. It isn’t
even a unique feature of the leJOS environment.The same holds true for the Sun
JavaCard specifications.

Many programmers consider this a bad thing and a future release of leJOS
will probably contain a small (1KB or so) garbage collector. Personally, I don’t
mind the lack of garbage collection.As long as you know this going in, it isn’t
difficult to achieve a programming style which does not trash objects unneces-
sarily (this style can also help you improve performance of your “normal” Java
programs, as object allocation and subsequent garbage collection are often perfor-
mance eaters in those programs). So, my hope is that if a garbage collector even-
tually emerges for leJOS, it will be optional at the time of firmware download,
letting you decide whether to sacrifice the extra memory needed for it.

Given the mentioned limitations, is leJOS in conflict with Sun Microsystems’s
view of Java as a platform on which you can run programs unaltered? Yes and no.
In the beginning Sun seemed to have the “one Java size fits all” vision but later
realized this wasn’t possible. Now they have moved to different Java sizes for
devices with different capabilities.To fit leJOS into the Sun picture, here’s a quick
rundown on the current state of affairs when it comes to different sizes of Sun
virtual machines (VMs). (Note that these sizes refer to the VM size only, not the
API size; you can think about the API size as following the VM size closely—the
larger the VM, the larger the standard API.) From the top—Java for big iron
machines—we have the Java 2 Enterprise Edition (J2EE), and then the Java 2
Standard Edition (J2SE).When it comes to the VM, J2EE is not different from

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 175

176 Chapter 5 • The leJOS System

the J2SE—the difference is which APIs are standard to the edition.The J2SE’s
current VM is the HotSpot VM; if you look at the file size of this, it is roughly
650KB (the older classic VM, which is also distributed with the J2SE, is roughly
280KB). Note that these are just the file sizes, which is a static picture of the VM.
The default memory amount allocated by these VMs (when launching a Java pro-
gram) is 1MB.

Then we have the J2ME.The J2ME was designed with memory-constrained
devices, like mobile phones, pagers, and video phones in mind. Sun has parti-
tioned different device types into what they call configurations.They currently
have two: the Connected Device Configuration (CDC) and the Connected
Limited Device Configuration (CLDC). For each configuration, they additionally
define what they call profiles, which identify extra APIs for a more specific
device.The most well-known profile is the MIDP (Mobile Information Device
Profile), used in mobile phones and PDAs.These two configurations are based on
two different VMs: the first, the KVM, is 65 to 80KB.The other, the CVM, is
larger.As the RCX only has 32KB free, all of these VMs are way too large. But
Sun also has a specification for something even smaller, called JavaCard. IBM has
a VM implementation for JavaCard which is only 4KB, but JavaCard is even more
restricted than leJOS (no threads, no floating point, no int, no String, only one-
dimensional arrays).The leJOS VM is around 16KB (if you need something
smaller but less feature-rich, the original TinyVM for the RCX is still available
and takes up only 10KB).To complete the picture, Sun has also defined what
they call Personal Java.This is an older attempt to divide Java into different sizes
for different devices. It is still in existence though, and uses the standard J2SE
VM. Sun, however, is transitioning Personal Java to become a Personal profile on
top of CDC.

The TinyVM
The TinyVM was the first Java implementation for the RCX, and was solely
developed by Jose Solorzano. It is a very small VM (only around 10KB), but still
contains advanced Java features like preemptive threads, synchronization, and
exceptions.

As briefly mentioned earlier, leJOS was culled from the TinyVM Project
(which is still available).The reason for this was that Solorzano wanted a more fea-
ture-rich VM, yet still provide a VM that makes the best use of available memory.
Because of this, for memory-intensive programs,TinyVM is a good choice.

The following lists most additions to the TinyVM in leJOS:

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 176

The leJOS System • Chapter 5 177

■ A Windows version You can use TinyVM on Windows if you have
CygWin installed.The Windows version for leJOS doesn’t require it.

■ Floating point types and operations on these These are nice, but
remember: operations on floats are considerably slower than on ints. Use
them only if you need to.

■ String constants The benefit of this is you can now construct nicer
user dialogs.

■ Casting between long and int This makes it possible to more closely
match the standard Java API, as it sometimes returns longs, for example,
for the current time.

■ Download of multiple programs This is a really nice feature, which
you’re probably familiar with from the standard LEGO programming
environment.You can simply download a set of programs and select
which to run by using the Prgm button on the RCX.

■ Implementation of java.lang.Math This is not a complete imple-
mentation of java.lang.Math but it does contain methods for calculating
sine, cosine, square roots, and so on. It is a must when programming
advanced navigational robots.

■ Implementation of notify, notifyAll, and wait on java.lang.Object
This is a very important addition.Without it, it is nearly impossible to
make different threads cooperate (at least in a predictable manner).

■ Marks object references in the call stack This is not really some-
thing that will benefit you here and now, but it will make it possible for
the leJOS developers to add a garbage collector in the future.

Jose Solorzano is no longer actively developing TinyVM or leJOS.The latter
is now lead by Jürgen Stuber and Paul Andrews.While the former unfortunately
is no longer maintained, it does work as is.

Overview of the leJOS Architecture
As you can see from Figure 5.1, leJOS leverages the RCX ROM code.The
leJOS firmware lies directly above the ROM as seen from an architectural view-
point. It implements the Java virtual machine, and is transmitted to the RCX
using the lejosfirmdl command. But interesting ROM functionality, like motor
control and sensor reading, is actually accessed from the leJOS base classes,
defined in the josx.platform.rcx package.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 177

178 Chapter 5 • The leJOS System

The neat thing is that those base classes are not part of the leJOS firmware, so
only the actual classes needed by a particular program are transmitted to the
RCX.As a result, unneeded classes do not take up precious memory.This func-
tionality (implemented by the lejos command) also applies to your own programs
as well. Only classes, which are directly and indirectly referenced from your main
program class, will be packaged and transmitted to the RCX.Technically, the lejos
command makes the transitive closure of all the classes used by your main pro-
gram, and packs them into a leJOS-specific binary format, which is then trans-
mitted to the RCX.The transitive closure is a graph theoretical term which
means that, starting at a particular node in a directed graph, it will give you all
nodes reachable from that node, once and only once.Applied to a Java programs
class graph, this means that all classes used by the main class, as well as those used
by those classes and so on, will be in the transitive closure exactly once.This is
also what a linker normally does, but standard Java has a feature called dynamic
class loading, which enables a programmer to dynamically load a class at runtime
(perhaps the class name is even received as some user input).This feature makes it
generally impossible to perform a transitive closure for a Java program. In leJOS,
this particular feature (implemented by the java.class.forName method) is not
implemented, and thus allows this transitive closure.

Exploring the josx.platform.rcx Package
In this section, we will go through the classes and interfaces in the package
josx.platform.rcx.This package contains Java classes for interfacing to the main
RCX features, including: motors, sensors, display, sound, buttons, and IR.

www.syngress.com

Figure 5.1 The leJOS Architecture

Hardware

ROM

leJOS

Firmware

Your Program

leJOS Base Classes

Downloaded by leJOS

Downloaded by the
Firmware Downloader

RCX

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 178

The leJOS System • Chapter 5 179

We will not go through every method of every class—only the most useful
classes.The complete picture can be seen in the JavaDoc, or, if you are more of
an adventurer, in the source code.

Using the Button and ButtonListener Classes
The Button class encapsulates the three RCX buttons View, Prgm and Run so
you can utilize them in your own programs.The class contains three static instances
of Button, one for each button; these are called (following the Java conventions)
VIEW, PRGM, and RUN respectively.Also a static array called BUTTONS is
declared which holds references to these methods in the order just listed:

■ public void addButtonListener (ButtonListener listener) Adds a
ButtonListener to this Button. (See the ButtonListener explanation later in
this section.) You can add a maximum of four ButtonListeners per Button.

■ public final boolean isPressed() Returns true if the button is pressed,
false otherwise

■ public final void waitForPressAndRelease () throws InterruptedException
The calling thread execution is suspended until this button has been
pressed and subsequently released.

The ButtonListener interface contains two methods, buttonPressed and
buttonReleased; both get called with the actual Button as a parameter.You can
implement this interface in your own class, which you then add to the button
you wish to receive press/release events from.This way, the code you write in the
method buttonPressed automatically gets executed when the button you add the
listener to is pressed.This is actually basic event listener stuff, as you probably
know from the standard Java Abstract Windowing Toolkit (AWT) event model. In
this API, however, there are no event objects passed to the listener, the relevant
parameters are passed directly to the method instead. Here is an example:

public class ButtonPressHandler implements ButtonListener {

public void buttonReleased (Button b) {}

public void buttonPressed (Button b) {

//do something interesting

}

public static void main (Sting[] args) {

Button.VIEW.addButtonListener (new ButtonPressHandler());

}

}

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 179

180 Chapter 5 • The leJOS System

Using the MinLCD, LCD, Segment,
LCDConstants, and TextLCD Classes
The five classes/interfaces MinLCD, LCD, Segment, LCDConstants, and TextLCD
are for controlling output to the LCD of the RCX.

MinLCD is minimal and low-level. It’s handy if you have a larger program
and need the extra memory LCD takes up. It only has two methods:

■ public static void setNumber (int aCode, int aValue, int aPoint) Outputs
number aValue to the display with decimal point aPoint, and at the place
given by aCode. Both aCode and aPoint take their value range from the
LCDConstants interface. For aCode, the constants are UNSIGNED,
SIGNED, and PROGRAM.The first two mean that the number to
output is signed or unsigned.The last says to output the number in the
one digit segment at the far right of the RCX display.The aPoint value
range is LCD_DECIMAL_0, LCD_DECIMAL_1, LCD_DECIMAL_2,
LCD_DECIMAL_3 and indicates in which position to place the dec-
imal point: LCD_DECIMAL_0 meaning no decimal point, LCD_
DECIMAL_1 meaning one figure after the decimal point, and so forth.

■ public static void refresh() You need to call this to ensure the display is
refreshed.

In addition to the methods defined by MinLCD, the LCD class describes the
following:

■ public static void showNumber (int value) Shows a number on the dis-
play [0-9999]; refresh() does not need to be called.

■ public static void showProgramNumber (int value) Shows a number in
the Program number part of the display [0-9]; refresh() does not need to
be called.

■ public static void setSegment (int code) Sets an LCD segment to on—that
is, it displays the segment; refresh() is needed for the effect to take place.
The code parameter identifies the segment and can be one of the con-
stants defined in the Segment section in the JavaDoc.

■ public static void clearSegment (int code) Clears an LCD segment so it
does not show; refresh() needs to be called.The code parameter identifies
the segment and is defined in Segment in the JavaDoc.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 180

The leJOS System • Chapter 5 181

■ public static void clear () Clears the display; again, you must call refresh()
before it takes effect.

Segment defines constants used by LCD to set or clear the various segments in
the RCX display. See the Segment section in the JavaDoc documentation for the
complete listing: WALKING, STANDING, SENSOR_1_ACTIVE, BATTERY.

NOTE

If you downloaded the JavaDoc documentation, and unpacked it in your
LEJOS_HOME directory, it will be found in the apidocs directory there.
Start viewing the index.html as usual.

The fourth class, LCDConstants, extends the Segment class to define constants
for the number part of the display.

The fifth LCD control class, TextLCD, is the most complex and fascinating. It
utilizes the display (originally designed to show numbers only) to show text mes-
sages.This occurs at the expense of greater memory—to be exact, TextLCD takes
up 1560 bytes more than MinLCD! Also, remember that letters are approximated.
The LCD on the RCX was not designed with letter output in mind, so the
developer of this class had to make some compromises.There is only so much
you can do with a display, of course, but the result seems a success:

■ public static final void print (String text) Prints the string text on the
LCD. Only the first five characters are displayed.

■ public static final void print (char[] text) Prints the first five characters
of the text array on the RCX display.

■ public static final void print (char c, int pos) Prints the character c at
position pos [1-4] counting from the right of the RCX display.You must
call LCD.Refresh() for this to take effect in the display.

Using the Sound and MinSound Classes
The Sound and MinSound classes can be used for creating audible indications that
a certain point has been reached in your program. If you are musically gifted, you
may be able to make finer use of these classes.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 181

182 Chapter 5 • The leJOS System

The MinSound class, like the other classes with a “Min” prefix, is a small and
low-level interface with RCX sound capabilities. It only contains one method,
which is actually deprecated, so the use of this class is entirely discouraged.

The Sound class, on the other hand, is very useful. It contains six static methods:

■ public static void playTone (int aFrequency, int aDuration) This is the
most versatile method. It will play a tone in the range 1-20000Hz given
by aFrequency.The tone is played for aDuration: the unit is1/100 of a
second, so to play for 1 second, use the value 100.Also, it is truncated at
256, meaning that 2.56 seconds is the maximum duration possible with
one call to the method.

■ public static void systemSound (boolean aQueued, int aCode) This plays
one of the predefined RCX system sounds.The aQueued parameter
determines whether the sound is queued, meaning your program will
continue running whether the sound is produced or not, or that your
program will wait for the termination of the sound before continuing;
true means queued.The sound is identified by the aCode parameter.The
possibilities can be seen in Table 5.1.

Table 5.1 Available System Sounds

aCode Resulting Sound

0 Short beep
1 Double beep
2 Descending arpeggio
3 Ascending arpeggio
4 Long low beep; error sound
5 Quick ascending arpeggio

■ public static void beep () Plays one beep; same as system sound 0, queued.

■ public static void twoBeeps () Plays two beeps; same as system sound 1,
queued.

■ public static void beepSequence () Plays a sequence of beeps; same as
system sound 2, queued.

■ public static void buzz () Plays a buzzing tone; same as system sound 4,
queued.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 182

The leJOS System • Chapter 5 183

Using the Sensor, SensorListener, and SensorConstants Interfaces
Sensors are configured using type and mode constants. Not all modes apply to all
types of sensors. It does not, for instance, make sense to configure a rotation
sensor in any other way than using the SENSOR_TYPE_ROT. In some situa-
tions, it is possible (and sometimes desirable) to configure a real sensor with a
value normally used for another. Using, for instance, SENSOR_TYPE_TOUCH
for a light sensor can make sense.Try it out!

The configuration constants are defined in the SensorConstants interface and
are shown in Table 5.2.The possible sensor types can be seen in Table 5.3.

Table 5.2 Sensor Types

SensorConstants Constant Applies to LEGO Sensor

SENSOR_TYPE_LIGHT The light sensor
SENSOR_TYPE_TOUCH The touch sensor
SENSOR_TYPE_TEMP The temperature sensor
SENSOR_TYPE_ROT The rotation sensor
SENSOR_TYPE_RAW All

Table 5.3 Sensor Modes

SensorConstants Constant Function

SENSOR_MODE_ANGLE Angle measurement only applies to rotation
sensors

SENSOR_MODE_BOOL Boolean reading true/false
SENSOR_MODE_DEGC Temperature in Celsius; (785-raw)/8, within the

range [-20…70]
SENSOR_MODE_DEGF Temperature in Fahrenheit; value of DEGC *

9/5 + 32
SENSOR_MODE_EDGE Edge counting. 1 is added for each Boolean

transition, from true to false, and from false
to true.

SENSOR_MODE_PCT Percentage. Calculated using 146-raw/7.
SENSOR_MODE_PULSE Pulse counting. 1 is added for each Boolean

transition from false to true.
SENSOR_TYPE_RAW Raw value 0-1023

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 183

184 Chapter 5 • The leJOS System

The different modes actually convert the raw values (0-1023) read into the
appropriate format. For some modes, the conversion is simple: a cutoff, with a
hysteresis value to prevent bouncing transitions from true to false around the
cutoff for the Boolean mode, or the calculation of 146-raw/7 for the percentage
mode. For other modes, the conversion made is much more complex—the Angle
mode being the most complex of all, and beyond explanation here. Modes like
edge, pulse, and angle also maintain an internal counter for representing the con-
verted value.

To complete the mode configuration complexity, a mode value can be binary
OR’ed with a slope value [0...31] but it only applies to SENSOR_MODE_
BOOL.The value 0 corresponds to the normal Boolean mode (raw values less
than 450 are true, and above 565 are false).A slope value between 1 and 31
changes that. Instead of having fixed values as a cutoff for true and false, the
Boolean value change is instead based on how rapid the raw value changes. For
instance, a slope value of 10 means that the raw value must decrease by 1023/10
= 102 between two subsequent sensor readings to make the Boolean value
change from false to true, and in a similar way, increase by the same amount to
switch the value back to false again. It no longer matters what the absolute value
is; only the rate of change is a concern.Take a look at www.plazaearth.com/usr/
gasperi/lego.htm for details on sensor modes and types, and information on how
to build your own sensors.You can also find an explanation on how raw value
conversions are made in the angle mode.

Even after configuring the sensor in your program according to the preceding
values, you can still choose to read the sensor’s raw-value, its Boolean value equiva-
lent, as well as its converted value.The SensorConstants interface contains constants
you can use for this in connection with the static method readSensorValue(...) in the
Sensor class.These are rarely used, however, since the Sensor class has convenience
methods defined for these purposes.

The final configuration you need to make if you are using a powered sensor
is to call activate(). Some sensors (light and rotation) are powered, meaning that
the RCX delivers power to them, and reads their measurements. For some appli-
cations, it might be desirable not to activate a light sensor.This will greatly reduce
sensitivity of the sensor though, and there may, in truth, be no real use for this.
Not activating a rotation sensor makes the sensor useless. Calling the opposite
passivate() method for unpowered sensors is not necessary since it’s the default
sensor state.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 184

The leJOS System • Chapter 5 185

NOTE

The reason one would keep the light sensor in the passive state is to
avoid lighting the bright red LED, which shines light into the photo tran-
sistor, polluting its light measurements. A photo transistor needs power
to work, however, so doing this defeats the purpose: Putting the sensor
into passive state only supplies it a minimal power (power is designated
to it even in the passive state, and is a consequence of the design of the
electrical circuit of the RCX), thus greatly reducing the sensitivity. A far
better approach to this is to block out the LED using undeveloped photo-
graphic film or other plastic material. See www.hempeldesigngroup
.com/lego/lightsensor/index.html or http://philohome.free.fr/sensors/
ir_sensitivity.htm for more details on this.

The Sensor class contains three static variables (S1, S2, S3) of type Sensor, cor-
responding to the three sensor input ports on the RCX, and an array SENSORS
containing the same objects at index 0 through 2.

The Sensor class has these methods defined:

■ public final void activate() This method must be called to activate a
sensor (powered sensors only).

■ public final void passivate() Passivates a sensor; this is the default state.

■ public final void setTypeAndMode (int type, int mode) Sets the sensor’s
type and mode to values defined in SensorConstants (if you wish to use
the slope feature, OR it to the mode value).

■ public final void setPreviousValue (int value) This is used to set the
sensor’s value to something predefined.This can be very useful for rota-
tion sensors (or touch sensors in pulse or edge mode), as you will con-
tinue the counting from the value given to this method.

■ public final int readRawValue () Reads the raw value of the sensor
[0…1023].

■ public final int readValue() Reads the converted value of the sensor.

■ public final int readBooleanValue() Reads the Boolean value of the
sensor.

■ public final inf getId () Returns the ID of this sensor [0...2].

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 185

186 Chapter 5 • The leJOS System

■ public static int readSensorValue (int sensorID, int valuetype)
This is a static low-level routine for reading the sensor value.You must
supply the sensor identifier [0…2] and the type of value you wish to
read (raw = SensorConstants.RAW_VALUE, boolean =
SensorConstants.BOOLEAN_VALUE, converted =
SensorConstants.CANONICAL_VALUE).

■ public void addSensorListener (SensorListener listener) Adds a
SensorListener to this sensor.A SensorListener is an interface you can
implement, and by adding that implementation to a sensor your code
can be executed whenever a sensor’s reading changes.A maximum of
eight SensorListeners can be added to one Sensor.You have to be careful,
however, not to use synchronization inside your implementation of the
SensorListener as this can lead to deadlocks.

The SensorListener interface is useful for getting notifications about changes in
sensor readings.You can implement this interface (one method only) and add it
to the Sensor you wish to monitor.This way your code is called on each sensor
value change.

The only method you must implement is:

■ public void stateChanged(Sensor source, int oldValue, int newValue) Your
implementation of this method gets called each time the sensor value
changes.You get the following information: source is the Sensor value that
changed, oldValue is the previous value, and newValue is the new value.
For touch sensors in Boolean mode, the values supplied are 0 for false
and 1 for true.

WARNING

You must be careful when implementing the stateChanged() method for
your SensorListener implementation. Not only can synchronization within
the implementation result in deadlocks, but also the method will have to
terminate fast, as it will otherwise tie up the sensor reading thread, pos-
sibly resulting in lost sensor readings.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 186

The leJOS System • Chapter 5 187

Using the ProximitySensor Class
This class utilizes a combination of sending short messages out of the RCX serial
(IR) port and monitoring the value of a light sensor placed directly above or
below the IR port.The LEGO light sensor happens to be very sensitive to
infrared light, and thus will react to the reflection of the IR message when it
bounces off some nearby object.You can then avoid the object even before hit-
ting it, or grab the object with a robotic hand.

To use this class, just construct a ProximitySensor object using one of the two
supplied constructors:

■ ProximitySensor (Sensor sensor, int threshold) Creates a new
ProximitySensor instance; the supplied Sensor object is the one you must
attach your light sensor to.This constructor will configure the Sensor and
start sending messages out the IR port.The threshold determines how
close to get to an obstacle before detecting it; larger values get you
closer.

■ ProximitySensor (Sensor sensor) Same as the preceding, with a default
threshold of 15.

The class only supplies two methods, of which only this one should be used
by an application programmer:

■ public void waitTillNear (long timeout) Halts the calling thread until an
object is near, or the supplied timeout is reached (0 means wait forever).

The other method you should not call directly is ProximitySensor‘s own imple-
mentation of the SensorListener interface method stateChanged (ProximitySensor
implements SensorListener).This implementation checks whether the new value is
greater than the old value by the threshold (supplied in the constructor of
ProximitySensor), and then notifies any threads waiting in the waitTillNear method.

Here is a demo of this class. It will spin the RCX in place until it notices a
near object (try waving something in front of the robot), then it will move
towards the object for one second, stop, and sound the buzzer. Use a simple dif-
ferential drive platform as shown in Figure 5.2, and connect the motors to port A
and C.Then attach the light sensor to sensor port 1 and place the RCX above
the sensor with the IR port facing the same way as the sensor.The demo is
shown in Figure 5.3, which is provided on the CD accompanying this book.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 187

188 Chapter 5 • The leJOS System

Figure 5.3 Proximity Detection (proximity/Proximity.java)

import josx.platform.rcx.Motor;

import josx.platform.rcx.Sensor;

import josx.platform.rcx.ProximitySensor;

import josx.platform.rcx.Sound;

public class Proximity {

public static void main (String[] args) throws InterruptedException

{

ProximitySensor ps = new ProximitySensor (Sensor.S2, 30);

Motor.A.setPower (4);

Motor.C.setPower (4);

Motor.A.forward ();

Motor.C.forward ();

ps.waitTillNear (0);

Sound.twoBeeps ();

Motor.C.backward ();

Thread.currentThread ().sleep (1000);

Motor.A.stop ();

Motor.C.stop ();

Sound.buzz ();

www.syngress.com

Figure 5.2 A Simple Differential Drive with Light Sensor

Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 188

The leJOS System • Chapter 5 189

Thread.currentThread ().sleep (1000);

}

}

Using the Motor Class
The Motor class is used to control the RCX output ports, which you normally
connect motors or LEGO lamps to.

The class contains three static Motor instances—A, B, and C—which represent
the corresponding three output ports on the RCX.The class contains the fol-
lowing methods for controlling the motor:

■ public final void setPower(int power) Sets the current power level of the
motor [0...7].This will not cause the connected motor to start moving
unless it is already doing that.

■ public final int getPower() Returns the current power level of the motor.

■ public final void backward() Moves the motor backwards.

■ public final void forward() Moves the motor forwards.

■ public final void flt() Makes the motor float; similar to neutral in a car
with automatic transmission.

■ public final void stop() Brakes the motor.

■ public final void reverseDirection() No matter which way the motor is
turning, it makes it turn the other way.

■ public final boolean isMoving() Returns true if the motor is moving.

■ public final boolean isStopped() Returns true if the motor is stopped.

■ public final boolean isForward() Returns true if the motor is going
forward.

■ public final boolean isBackward() Returns true if the motor is going
backward.

■ public final boolean isFloating() Returns true if the motor is floating.

■ public final char getId() Returns the motor ID as A, B, or C.

www.syngress.com

Figure 5.3 Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 189

190 Chapter 5 • The leJOS System

NOTE

The direction a motor is turning is dependant on the wiring to the
motor. So, if your program has set it to move forwards and your robot is
actually moving backwards, you can turn the wire connection 90 degrees
and make it go the other way. This can often save considerable program
download time.

Using the Servo Class
The Servo class implements a servo (step-motor) by combining a rotation sensor
with a motor.The amount of gearing in the mechanical connection between the
motor and the rotation sensor (and between whatever the motor is driving) of
course greatly influences the effect of this class when put to use.

You simply construct an object of the class using one of the constructors:

■ Servo (Sensor sensor, Motor motor, int slack) Creates a servo using a
rotation sensor connected to the port represented by the supplied Sensor
object, and a motor connected to the port represented by the supplied
Motor object.The slack parameter is the precision tolerance you will
accept when positioning the servo; 0 means no tolerance.

■ Servo (Sensor sensor, Motor motor) Just calls: this (sensor, motor, 0).

The Servo is then very simple to use. Simply call this method to make it
rotate to the desired position:

■ public boolean rotateTo (int pos) Rotates the motor to the supplied
position. Returns true if the motor is already at that position; false if
otherwise.

The class implements SensorListener, and its implementation of the
stateChanged method will keep turning the motor until the position requested by
the call to rotateTo is reached.At that point, it will stop the motor and notify any
threads waiting on the Servo object instance. Figure 5.4, which is also provided on
the CD, shows a small example that, when you connect a rotation sensor directly
to a motor’s shaft (without any gearing in between), will rotate the shaft by 360
degrees, and then sound the buzzer.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 190

The leJOS System • Chapter 5 191

Figure 5.4 Demonstration of Servo (servo/ServoDemo.java)

import josx.platform.rcx.Motor;

import josx.platform.rcx.Sensor;

import josx.platform.rcx.Servo;

import josx.platform.rcx.Sound;

public class ServoDemo {

public static void main (String[] args) throws InterruptedException

{

Servo s = new Servo (Sensor.S3, Motor.B, 0);

boolean isthere = s.rotateTo (14);

if (! isthere) {

synchronized (s) {

s.wait();

}

}

Sound.buzz ();

Thread.currentThread ().sleep (1000);

}

}

Be careful expanding this code since it actually contains a race condition
between the sensor reading thread, and the main thread. It is possible that, if the
rotateTo value is small enough, this value has been reached between the call to
rotateTo and the call to wait, which may cause the program to deadlock. I have not
been able to provoke this situation with the direct connection of the rotation
sensor and the motor, but can easily do so by putting extra code between the two
previously mentioned statements.

Using the Serial, Opcode, and SerialListener Classes
We will not cover these classes and this interface in depth here since they are
covered elsewhere in the book. Instead, here’s a quick rundown.

Opcode defines the original LEGO firmware opcode constants.This is very
useful as these opcodes and their associated parameters are what is transmitted
from the IR tower to the RCX, or from the LEGO remote control unit.You use
these opcode constants when trying to parse packets received over the IR port.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 191

192 Chapter 5 • The leJOS System

Serial is a class used to communicate with the serial IR port of the RCX. It can
transmit and receive data packets as defined by the original LEGO firmware. Have
a look at Kekoa Proudfoot’s opcode reference at http://graphics.stanford.edu/
~kekoa/rcx/index.html if you are going to use this class.

SerialListener is an interface you can implement; it will be notified when a
complete data package has been received over the IR port.

Using the Poll Class
This class is used to “poll” for state changes in RCX sensors, buttons, and the
serial IR port.You set up a bit mask of events you wish to react to. Next, you call
the poll method with this mask.Your calling thread will then be blocked until
one of the resources specified in the bit mask has changed state.This class is used
internally to notify listeners attached to Button, Sensor, and Serial objects. It only
has a constructor, taking no arguments, and two methods:

■ public final int poll (int mask, int millis) This polls for changes specified
by the mask. It will block the calling thread for at most millis millisec-
onds (0 means forever). On termination, it returns a mask representing
the changed resources.You must then check this returned mask to deter-
mine which of your monitored resources did, in fact, change.

■ public final void setThrottle (int throttle) The throttle determines how
many sensor reads must pass between each poll; 0 means poll as often as
possible, while the default is 1. Remember that sensors are read in 3ms
intervals.

The class also defines bit masks, which you can OR together to create your
final mask.An excerpt is given here: SENSOR1_MASK,ALL_BUTTONS,
ALL_SENSORS, RUN_MASK, SERIAL_MASK. See the JavaDoc section on
Poll for the rest.

Figure 5.5 (also provided on the CD) shows a small example which will poll
the Run, View, and Prgm buttons, and play a different system sound to match
each.The Run button will additionally terminate the program.

Figure 5.5 Polling for Events Using Poll and Bit Masks (poll/PollDemo.java)

import josx.platform.rcx.Poll;

import josx.platform.rcx.Sound;

public class PollDemo {

www.syngress.com

Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 192

The leJOS System • Chapter 5 193

public static void main (String[] args) throws InterruptedException

{

Poll p = new Poll ();

int org_mask = Poll.RUN_MASK | Poll.VIEW_MASK | Poll.PRGM_MASK;

while (true) {

int mask = p.poll (org_mask, 0);

if ((mask & Poll.PRGM_MASK) != 0) {

Sound.beep();

}

if ((mask & Poll.VIEW_MASK) != 0) {

Sound.twoBeeps();

}

if ((mask & Poll.RUN_MASK) != 0) {

Sound.buzz();

Thread.currentThread ().sleep (1000);

break;

}

}

}

}

Using the PersistentMemoryArea Class
The PersistentMemoryArea class provides you with a way to store data which will
be preserved between subsequent runs of your program. Only removing the bat-
teries from the RCX will erase the data you put here.At the moment, only indi-
vidual bytes can be stored in this persistent area.The available methods are:

■ static PersistentMemoryArea get (int magic, int size) This method
returns a new PersistentMemoryArea identified by the supplied magic
value.This value makes it possible to have more than one
PersistentMemoryArea identified by different magic values.At the
moment, only one PersistentMemoryArea exists and it will be reinitialized

www.syngress.com

Figure 5.5 Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 193

194 Chapter 5 • The leJOS System

if a different magic number is supplied.That may change in the future
though.The size parameter specifies how many bytes you wish to allo-
cate room for—the current maximum is 2037 bytes. Note that these
bytes are allocated in a memory area within the RCX, which is not oth-
erwise used by your leJOS programs, so the memory allocated here does
not affect the available memory for your programs.

■ public byte readByte (int i) This returns the value of the byte stored at
index i in the PersistentMemoryArea. This method will throw an
ArrayOutOf BoundsException if i exceeds the amount of bytes allocated
for this PersistentMemoryArea.

■ public void writeByte (int i, byte b) This writes the byte b at the index
given by i in this PersistentMemoryArea. Again, an ArrayOutOf
BoundsException can be thrown if i exceeds the amount of allocated
memory.

Using the Memory, ROM, Battery, and MinuteTimer Classes
The Memory class is supposed to only be used internally. It provides an internal syn-
chronization object for synchronizing access to memory from native code, and con-
tains some methods for reading and writing absolute memory locations as well as
getting the address occupied by an object.This class is useful only if you plan to do
low-level things like modifying the leJOS base classes yourself. Its use can seriously
jeopardize the stability of the leJOS and RCX runtime environment.

The ROM class contains methods for calling into the RCX ROM code
directly, so use this class only if you are familiar with the RCX ROM.You can
familiarize yourself with the ROM at Kekoa Proudfoot’s RCX Internals page at:
http://graphics.stanford.edu/~kekoa/rcx.

The Battery class provides three methods for returning the remaining voltage
of the batteries.They are:

■ public static int getVoltageInternal() This returns the RCX internal
voltage representation.This representation is equal to the voltage in mil-
livolts * 1560 / 43988.

■ public static int getVoltageMilliVolt() This returns the battery voltage in
millivolts.

■ public static float getVoltage() This returns the voltage measure as a float;
note that this is measured in volts, not in millivolts.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 194

The leJOS System • Chapter 5 195

The MinuteTimer class can be used for one thing only: resetting the RCX’s
internal two-byte minute timer. It contains just one static method for this pur-
pose: reset().

Using leJOS: A Simple Example
Now, let’s try to make a few simple RCX programs with leJOS.The first pro-
gram will demonstrate a technique for finer motor control.The second example
(actually two examples) will show you two different ways of reading sensor input.
Knowing both ways will give you a choice when programming your own robots;
sometimes it’s useful to mix both reading methods in the same program.

The examples are very simple. Of the classes from the josx.platform.rcx
package, you will only be using the Motor class in the first example.The last two
examples will use the classes Sensor, SensorListener, and SensorConstants to read the
sensor, and the Sound class to indicate a successful sensor read, before terminating
the program.

Controlling Motors
A motor has only eight power levels, 0 thru 7, for you to exploit.This is actually
a limitation in the ROM code, but for most applications it is fine.The thing to
remember when you try to refine motor control is that the LEGO motor has an
internal flywheel, which is good for preserving speed (at least with light loads).
Now, the trick to slowing a motor down is to simply hit the brakes before low-
ering the power.The following simple program shown in Figure 5.6 (you can
find this on the CD that accompanies this book) will demonstrate this technique
by making the RCX perform a never-ending psychedelic dance.You can use the
differential drive platform, as shown previously in Figure 5.2 located under the
ProximitySensor heading, and again connect the motors to port A and C.

Figure 5.6 The Psychedelic Dance (dance/Dance.java)

import josx.platform.rcx.Motor;

import java.util.Random;

import java.lang.Math;

public class Dance {

public static void doStep (Motor motor, int direction) {

motor.stop();

www.syngress.com

Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 195

196 Chapter 5 • The leJOS System

if (direction < 0) {

direction = Math.abs (direction);

motor.setPower (direction);

motor.backward();

} else {

motor.setPower (direction);

motor.forward();

}

}

public static void main (String[] args) throws InterruptedException

{

Random rnd = new Random (42);

while (true) {

int a_power = rnd.nextInt () % 7;

int c_power = rnd.nextInt () % 7;

doStep (Motor.A, a_power);

doStep (Motor.C, c_power);

Thread.currentThread ().sleep ((rnd.nextInt() % 400) + 100);

}

}

}

Reading Sensors
You can design your program to use sensors in two ways.The first will periodi-
cally read the sensor value using the Sensor API directly; the other (and smarter)
way is to have the sensor reading thread call an object of yours (a listener) when-
ever the observed sensor’s value changes.The reason this is better is because you
do not tie up an additional thread for the sole purpose of reading sensor values.
In fact, with this second method, you don’t even have to think about threads.
Instead, you can concentrate on how you wish the RCX to act when a sensor is
triggered.Also, using listeners will make your programs more readable and main-
tainable, as they better separate the sensor reading code from the code handling

www.syngress.com

Figure 5.6 Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 196

The leJOS System • Chapter 5 197

the read values.Again, what is designed here is basic event listener stuff, known
from the J2SE AWT event model.

Here are two small programs demonstrating the two techniques. Both pro-
grams achieve the same end.They wait until a touch sensor attached to input
port 1 is pressed, after which a buzz is heard for 1/10 of a second before the pro-
gram terminates.

The first program, with sensor polling, is shown in Figure 5.7 (and can be
found on the CD):

Figure 5.7 Reading Sensors Directly (sensorread/SensorPoll.java)

import josx.platform.rcx.Sensor;

import josx.platform.rcx.SensorConstants;

import josx.platform.rcx.Sound;

public class SensorPoll {

public static void main (String[] args) throws InterruptedException

{

Sensor.S1.setTypeAndMode (SensorConstants.SENSOR_TYPE_TOUCH,

SensorConstants.SENSOR_MODE_BOOL);

boolean auch = false;

while (! auch) {

auch = Sensor.S1.readBooleanValue();

//sensors are polled every 3 millisecs by the ROM,

//so reading more often is a waste of time.

Thread.currentThread ().sleep(3);

}

Sound.buzz();

Thread.currentThread ().sleep(100);

}

}

And then using the listener technique, which we show in Figure 5.8 and on
the CD that accompanies the book. Unfortunately, in this small example this
technique seems rather awkward, as an infinite loop has to be made to prevent
the main thread from falling out of the main method and thereby terminating

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 197

198 Chapter 5 • The leJOS System

the program. If you’re pulling your hair out because a program of yours termi-
nates immediately, this is probably the cause. Many techniques exist, however, to
prevent this.A common one is to wait for the Run button to be pressed using
Button.RUN.waitForPressAndRelease(), but this does tie up your main thread,
which could be doing something useful instead.Therefore, it’s common to do
this: create a lot of threads for doing the jobs your robot needs to get accom-
plished, and then stash each thread so it’s out of the way, doing nothing but
waiting for the exit signal.Try to use that main thread for something useful,
which will at the same time prevent it from terminating the program, and also
use a ButtonListener for checking the Run button as a signal of program termina-
tion (you can, for instance, call System.exit (0) from within the ButtonListener
.buttonPressed() method). Okay, enough rambling. Here’s the code:

NOTE

Occasionally, you may wish to actually do something when the sensor
reading does not change. In such cases, it is not possible to use the lis-
tener approach since your code is only executed when the sensor read-
ings change.

Figure 5.8 Reading Sensors Using a SensorListener (sensorread/
SensorListen.java)

import josx.platform.rcx.Sensor;

import josx.platform.rcx.SensorConstants;

import josx.platform.rcx.SensorListener;

import josx.platform.rcx.Sound;

public class SensorListen

{

static Thread mainThread = null;

static boolean quit = false;

public static class AuchHandler implements SensorListener {

public void stateChanged(Sensor aSource,

int aOldValue,

www.syngress.com

Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 198

The leJOS System • Chapter 5 199

int aNewValue)

{

boolean auch = aSource.readBooleanValue();

if (auch) {

Sound.buzz();

try {

Thread.currentThread ().sleep(100);

} catch (InterruptedException ie) {

//do nothing

}

quit = true;

mainThread.interrupt();

}

}

}

public static void main (String[] args) throws InterruptedException

{

Sensor.S1.setTypeAndMode (SensorConstants.SENSOR_TYPE_TOUCH,

SensorConstants.SENSOR_MODE_BOOL);

mainThread = Thread.currentThread();

Sensor.S1.addSensorListener (new AuchHandler());

while (!quit) {

try {

Thread.currentThread().sleep(10000);

} catch (InterruptedException ie) {

//do nothing

}

}

}

}

www.syngress.com

Figure 5.8 Continued

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 199

200 Chapter 5 • The leJOS System

Summary
This chapter covered the leJOS system.The leJOS system is a very small Java
runtime environment, much smaller than most of the known Java implementa-
tions from Sun. Only JavaCard for running Java on smartcards has a comparable
size; for example, the smallest VM (KVM) for Sun’s J2ME needs twice the
memory the RCX has available.

The workstation environmental setups necessary for starting programming
with leJOS were shown in this chapter for both the Linux and Windows plat-
forms, and it was also demonstrated how the leJOS runtime system is down-
loaded to the RCX.

The leJOS system contains some limitations compared to standard Java, the
lack of the garbage collector being the most prominent.A garbage collector
might be added in the future, but until that happens, you need to design your
programs in ways that bound the number of objects allocated.

To provide you with the information necessary to utilize RCX-specific fea-
tures from leJOS, this chapter presented all the classes in the josx.platform.rcx
package responsible for exposing those RCX features to Java programmers. It
provided a few small demonstration programs to show you how to use some of
these classes, like the ProximityDemo, which can detect objects using IR, and the
ServoDemo, which demonstrates a 360-degree turn of an axle. It also provided
programs demonstrating how to control the LEGO motors and reading sensors
using leJOS, which are probably the most often used RCX features of all.

You should now be in a position where you can really start programming the
RCX using leJOS, which is the topic of the next chapter.

Solutions Fast Track

Basic leJOS Usage Guidelines

� The leJOS environment (PATH, RCXTTY, LEJOS_HOME,
JAVA_HOME, CLASSPATH) must be set up in order to start
programming for leJOS.

� Compilation is done using lejosc, which is just a thin wrapper around javac.

� Conversion of Java class files to a leJOS binary format, and the
transmission of that format to the RCX, is done using the lejos
command line tool.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 200

The leJOS System • Chapter 5 201

The LEGO Java Operating System

� LeJOS leverages the LEGO-provided ROM code, and thus inherits
limitations imposed by the ROM—for instance, only eight power levels
for the motors, and no sampling of sensors faster than 3 milliseconds.

� LeJOS gives you a common programming language (Java) and
environment for the RCX.The learning curve is not as steep as other
firmware replacements like legOS.

� A comparison to other Java environments shows the formidable
achievement of cramming an entire Java VM into the RCX’s 32KB of
memory.

Overview of the leJOS Architecture

� Base classes are not part of the firmware.This is a great feature as it
makes the firmware footprint smaller.

� Only classes needed by your program are actually downloaded to the
RCX, since the lejos command line tool performs a transitive closure of
class graphs of the main class.

� There is no garbage collector in leJOS—for now you have to live with
that.The future might bring you one, and hopefully you will be able to
choose whether or not to include it in your program.

� A switch statement is also missing, but may be available in the future.

Using leJOS:A Simple Example

� You can read sensor values in two different ways: by polling the sensor,
and by listening for changes using an implementation of SensorListener.

� You should brake motors before changing power to ensure the power
change can be noticed.This is necessary as the LEGO motor has an
internal flywheel, which stores mechanical power.

www.syngress.com

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 201

202 Chapter 5 • The leJOS System

Q: What happens if more than ten programs are downloaded to the RCX at once?

A: The 11th (and further) programs will appear in the program list, represented
using blanks.

Q: What if a program does not bound the number of objects created?

A: The program will run out of memory, terminate with a buzz sound, and show
a 6 at the far right of the LCD, assuming that the class OutOfMemoryError is
number 6 (see Chapter 6 for details on this). Usually this happens to be the case.

Q: What if I have a LEGO tower connected to the USB port?

A: Set the RCXTTY environment variable to the value USB, instead of to a
serial port value.

Q: What happens if I execute lejosfirmdl with leJOS already loaded?

A: The leJOS firmware will download once again.Any program of yours in the
RCX memory at that time will have to be reloaded.

Q: I get a “Cannot unlock firmware failed” message when using lejosfirmdl.What
should I do?

A: This usually happens when a previous attempt to download the firmware has
failed.Turning the RCX off and then back on should remove the problem.

Q: I get an error message resembling:

Exception reading LCD

js.classfile.EClassFileFormat: Version not recognized: 46.0

from the lejos command.What is happening?

A: You are using JDK 1.4 and forgot to specify the option -target 1.1 when you
compiled your program with lejosc.

www.syngress.com

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_05.qxd 4/2/02 1:13 PM Page 202

Programming for
the leJOS
Environment

Solutions in this chapter:

■ Designing Java Programs to Run in leJOS

■ An Advanced Programming Example
Using leJOS

■ Debugging leJOS Programs

■ Testing leJOS Programs

Chapter 6

203

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 203

204 Chapter 6 • Programming for the leJOS Environment

Introduction
In the previous chapter, we laid the groundwork for programming the RCX
using Java and the leJOS environment.This chapter will contain a more advanced
programming example.We have chosen the classic line-following challenge
because it is well known in the LEGO MINDSTORMS community, it is good
for demonstrating program design, and it’s very easy to understand.The challenge
is to make a robot follow a black line drawn on white paper.The RIS comes
with such a paper test course, suited exactly for this challenge.

Some of the pitfalls to watch for include creating objects which go out of
scope, thereby trashing memory and tying up the event listener thread for too
long, causing missed sensor readings.These pitfalls are related to leJOS in general.
We’ll also address specific problems concerning the line following example, like
how to get the robot back to the line if it’s diverted, or how to prevent the robot
from leaving the line in the first place.We’ll also explore a design paradigm for
robotic control called subsumption architecture in an extension to the original line-
following code.This architecture was originally developed by R.A. Brooks in
1986, and is built upon layering and prioritizing different lower behaviors to
achieve a more complex higher order behavior. Further information can be
found at http://ai.eecs.umich.edu/cogarch0/subsump.

For the design of your software, it’s best to create a good object-oriented
(OO) design, using your preferred notation (UML happens to be mine) to achieve
the easiest maintainable and extendable code, once implemented.The subsumption
architecture will allow you to focus on perfecting individual behaviors of the
robot independently, thus allowing you to test a partly implemented system and
then expand it by adding additional behavioral code all in a modular fashion.

Designing Java
Programs to Run in leJOS
Since Java is an object-oriented programming platform, object-oriented design
techniques apply to programs for Java on the RCX as well. But I encourage you
to never forget while doing the program design that this is Java for a memory-lim-
ited embedded device. In my opinion, it is crucial, right from the design phase of the
program, to understand and take into consideration the conditions under which a
program will run.The old way of doing OO design taught people to “just do”
OO design. It did not matter how the finished system would be run, nor which
programming language should be used since these were implementation details.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 204

www.syngress.com

Well, I can tell you that it does matter since it is excruciatingly difficult to follow
an OO design using COBOL as your programming language.Also, some OO
design patterns do not take into account that when implemented, many objects
will need to be created.This, of course, is fine when your program is run on a
mainframe, but you really need to bend the design in unfavorable ways to cram it
into an RCX, for instance.

So, what is it we really need to take into account when designing a Java pro-
gram for the RCX? Memory, memory, and more memory!

Using Memory Wisely
How can we best use the available RCX memory for our programs? Well, we
have to remember two things. First, we do not have a lot of it to begin with, and
second, if we allocate some of it, we cannot return it to the leJOS system to use
it again.This basically boils down to a few guidelines (or warning signs) to look
for in the code:

■ Only allocate objects you really need.

■ Design your objects to be mutable; this allows you to reuse them.

■ Do not allocate objects inside loops (this is not always bad if they are
really needed).

■ Consider using bytes and shorts instead of ints.They take up less memory
and are usually quite adequate for holding sensor readings and so on.

■ Use the main thread. Do not just park it.

With that said, try not to compromise on writing nicely OO separated code.
It is possible to have a neat OO-designed Java program given the restrictions
imposed on you, but remember, you do not get extra points for having lots of
memory free, especially when your program terminates because of an unmain-
tainable and overly complex code. Of course, should you run into “memory
trouble,” you have to know what to look for, and how to improve the code.
Having your program do what it is supposed to, with a clean design that happens
to use up all the memory is far better than having sloppy code that has chunks of
free memory it doesn’t use.

If you are puzzled by the enormous amount of memory your program con-
sumes, try looking at the implementation of some of the base classes you use.The
code is not that hard to understand, as we’ll demonstrate in the next section with
StringBuffer.

Programming for the leJOS Environment • Chapter 6 205

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 205

206 Chapter 6 • Programming for the leJOS Environment

Using the Right Java Classes
(and Using Them Correctly)
A good way of demonstrating memory optimization for a number of allocated
objects is the optimization of allocating instances of java.lang.String. The reason
for this is that a String is immutable, which means that once a String is con-
structed, the characters it uses of can never be changed.Therefore, you have to
create a new String object if you wish to represent another string.The standard
Java solution for this is to use an instance of StringBuffer to build your dynamic
string content and then turn that into a String (using StringBuffers toString
method) for printing purposes and so on.This technique also applies to leJOS.
Consider the program shown in Figure 6.1 (this can be found on the CD that
accompanies this book, in the /string directory).

Figure 6.1 StringTest Shows the Usual Way of Manipulating String Objects
(StringTest.java)

import josx.platform.rcx.TextLCD;

import josx.platform.rcx.Button;

import josx.platform.rcx.LCD;

public class StringTest {

public static void main (String[] args) throws InterruptedException

{

String ha = "HA";

TextLCD.print (ha);

Button.VIEW.waitForPressAndRelease ();

ha = ha + ' ' + ha;

TextLCD.print (ha);

Button.VIEW.waitForPressAndRelease ();

LCD.showNumber ((int)Runtime.getRuntime().freeMemory());

Button.VIEW.waitForPressAndRelease ();

}

}

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 206

Programming for the leJOS Environment • Chapter 6 207

Well, it looks innocent enough, but actually there is no explicit use of the
new statement, so at first glance it doesn’t appear as if any objects are allocated. In
truth, though, a lot of objects are created. First, the initial assignment of ha creates
a String object, then in the line ha = ha + ‘ ‘ + ha; a StringBuffer is allocated using
its default constructor, and 3 append methods on it are called.That does not
sound frightening, but the leJOS version of the StringBuffers default constructor
allocates an internal char array of size 0, and upon each append call, this buffer is
replaced with a new one if it does not have room for the characters you are
about to append.To make matters worse, String (to preserve its immutability) allo-
cates another char array when told to return itself as one using the toCharArray()
method (which StringBuffer will call to append the String). StringBuffer also con-
verts an appended char to first a char[] of size one, then a String, and then calls
append with that String, which we just saw will make String create another char
array. Finally, a String is created using the StringBuffers toString method (whew!).

In total, that innocent-looking line allocates one StringBuffer, two String’s, and
9 char[], for a total of 12 new objects, of which only two can actually be
(re)used—the resulting String and the StringBuffer.As you can see, we finished the
program by outputting the amount of available memory.The number says 2348!

So, let’s check out the version shown in Figure 6.2 (also found on the CD),
which is the standard Java solution to this problem, using a StringBuffer directly.

Figure 6.2 StringBuffer Shows the Usual Java Optimization for StringTest
(StringBufferTest)

import josx.platform.rcx.TextLCD;

import josx.platform.rcx.Button;

import josx.platform.rcx.LCD;

public class StringBufferTest {

public static void main (String[] args) throws InterruptedException

{

String ha = "HA";

TextLCD.print (ha);

Button.VIEW.waitForPressAndRelease ();

StringBuffer bf = new StringBuffer (5);

bf.append (ha);

bf.append (' ');

www.syngress.com

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 207

208 Chapter 6 • Programming for the leJOS Environment

bf.append (ha);

TextLCD.print (bf.toString());

Button.VIEW.waitForPressAndRelease ();

LCD.showNumber ((int)Runtime.getRuntime().freeMemory());

Button.VIEW.waitForPressAndRelease ();

}

}

Not much has actually happened. we have specified a size for the StringBuffer,
which will eliminate the char[] allocated inside StringBuffer when it determines it
doesn’t have enough space allocated for the append operation to succeed, and
that’s all.The amount of memory available here hasn’t improved dramatically—it’s
only up to 2364.A fast fix is to notice that TextLCD will actually print a char[] as
well as a String, so changing the line TextLCD.print (bf.toString(); into
TextLCD.print (bf.getChars()); will eliminate one String creation (and that String’s
internal creation of a char[]) which will give you 2400 free bytes.

We still do not have a lot of free memory, and we are not really doing any-
thing spectacular.The next move is to realize that StringBuffer itself is a fairly large
class, so let us get rid of it entirely—Figure 6.3 (also found on the CD) shows a
version which does that using char[] directly.

Figure 6.3 CharTest Shows the Ultimate Optimization (CharTest.java)

import josx.platform.rcx.TextLCD;

import josx.platform.rcx.Button;

import josx.platform.rcx.LCD;

public class CharTest {

public static void main (String[] args) throws InterruptedException

{

char[] ha = "HA".toCharArray();

TextLCD.print (ha);

Button.VIEW.waitForPressAndRelease ();

char[] bf = new char[5];

byte curpos = 0;

www.syngress.com

Figure 6.2 Continued

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 208

Programming for the leJOS Environment • Chapter 6 209

for (byte i = 0; i < ha.length; i++) {

bf[curpos++] = ha[i];

}

bf[curpos++] = ' ';

for (byte i = 0; i < ha.length; i++) {

bf[curpos++] = ha[i];

}

TextLCD.print (bf);

Button.VIEW.waitForPressAndRelease ();

LCD.showNumber ((int)Runtime.getRuntime().freeMemory());

Button.VIEW.waitForPressAndRelease ();

}

}

How much did this version improve matters? Well, by getting rid of
StringBuffer we have boosted the amount of free memory to 5774 bytes—rather
good, don’t you think?

Could it be improved even further? Yes, but not much.You can get rid of the
initial “HA” string and place the individual characters in a char array directly.
Thus, the initialization of variable ha will look like:

char[] ha = new char[2];

ha[0] = 'H';

ha[1] = 'A';

This will save you an additional 14 bytes, so it is hardly worth the trouble,
unless you are really making large programs or collecting large amounts of data.

The lesson hopefully learned is that things are not always as they seem.The
first version is definitely the least complex to understand, but it burns memory
like crazy.And to understand fully what is going on, you have to look at the
implementation of the used base classes. In this case, knowing the internal
behavior of String and StringBuffer allows you to come up with a solution to the
problem. But keep in mind that using TextLCD itself, of course, has a cost (as
mentioned in the previous chapter), which amounts to around 1500 bytes. So,
unless you really need the text output (it can often improve the usability of pro-
grams) use LCD instead.

www.syngress.com

Figure 6.3 Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 209

210 Chapter 6 • Programming for the leJOS Environment

By the way, what we’ve looked at is not leJOS-specific since the previous
examples behave exactly the same in standard Java.The only difference is that in
leJOS the space allocated is never reclaimed.Therefore, you pay more dearly for
the unneeded memory allocations (and also the default size of a StringBuffer is 16
characters in standard Java, instead of 0 in leJOS).

An Advanced Programming
Example Using leJOS
As mentioned earlier, we will show you how to program the classic line-fol-
lowing robot in leJOS—see the robot shown in Figure 6.4.This robot has two
rear wheels powered by a single motor, and is steered by its one front wheel,
which is turned by another motor.The downward-looking light sensor is placed
in front of the steering wheel and turns with it. Because of the sensor’s position,
even small adjustments in steering will move the sensor a great deal.This will
make the sensor contact the line’s edge more quickly, and thus greatly reduce the
chance of the robot steering away from the line.The robot uses only this single
sensor and it can readily be built using a standard LEGO Robotic Invention
System kit.

www.syngress.com

Figure 6.4 The Line-following Robot

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 210

Programming for the leJOS Environment • Chapter 6 211

The prerequisite of the line-following challenge is to stick to the left side of the
line.At the edge, the light sensor will return a value between what is considered
black and what is considered white. Initially, the robot will be placed on white, to
calibrate the white value, and then placed on black for the same purpose.
Afterward, when you place it on the line’s edge, it will start following it. Path cor-
rection will involve turning right if the sensor returns a value considered “white,”
meaning we have strayed off the line to the left, and similarly turning left if the
sensor reports “black,” meaning the robot has now turned into the line.The driving
motors will be set to full power so the robot follows the line as quickly as possible.

Let’s start by making a nice OO design for it. From reading the preceding
description, you can see you need some code for calibration, some for reading
the light sensor, some for driving forward, and some for steering based on the
value read by the sensor.

We have chosen to use the TextLCD for giving directions to the user under
the initial calibration phase. Figure 6.5 is a UML class diagram showing the
classes needed.

As you can see, a heavily used class is the LineValueHolder, but actually only
one instance of it will be created. Objects aggregated from it will share the same
instance.

The LineValueHolder is an example of a mutable object. It is used to synchro-
nize access to the values supplied from the light-sensor (it is actually an implemen-
tation of a solution to the classical readers-writers problem). Here one class (the
LightReader) will act as the only writer; it will be called when the light-sensor has
changed its value, then it will update the current sensor reading held by the
LineValueHolder by calling setValue, which will wake up any waiting readers.

The reader (in this case an instance of Turner) will continuously call
LineValueHolder’s getValue().This call will block until later notified by the
LightReader’s call to setValue, signaling that a new value has become available.
Notice that this code does not hold any queue, so it is possible that readers might
miss some values, but for this application that probably does not matter as the
light sensor tends to change values often.The LineValueHolder also holds the pro-
gram’s interpretation of white and black; those values are placed into it once at
the start of the program using the Calibrator.

What about the user interaction? For simplicity’s sake, we have chosen the
not-so-pretty approach—that is, to place the user interface directly in the main
class LineFollower’s constructor; the prettiest OO design would probably be to
place the user interface and user interaction code into a separate UI class.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 211

212 Chapter 6 • Programming for the leJOS Environment

Finally, the two Thread subclasses, Turner and Cruiser, are responsible for move-
ment of the robot, and as the name implies, Turner turns the robot left or right
according to the current sensor reading, and Cruiser is responsible for driving for-
ward as fast as possible.

Configuration of Sensor.S1, which the light-sensor is attached to, is done in
the LineFollower’s constructor.

Now, let’s take a look at the implementation of those classes one by one. First,
the important LineValueHolder. (The code examples in Figures 6.6 through 6.11
are provided on the accompanying CD of this book in the /linefollower/orig-
inal/linefollower directory for Chapter 6.)

www.syngress.com

Figure 6.5 The UML Class Diagram for the Line-follower

int calibrate(Sensor)

Calibrator

int getThreshold (String);
void start();
static void main(String[])

LineValueHolder lvh
Cruiser cruise
Turner turner

LineFollower

uses

linefollower

int getValue ()
void setValue (int)
int getWhite()
void setWhite(int)

int white
int black
int current

LineValueHolder

void run()

Motor motor

Cruiser

void run()

LineValueHolder lvh
Motor motor

Turner

voud stateChanged (Sensor, int, int)

LineValueHolder lvh

LightReader

creates

java.lang.Thread

josx.platform.rcx.SensorListener

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 212

Programming for the leJOS Environment • Chapter 6 213

Figure 6.6 LineValueHolder Contains Main Synchronization Between Sensor
Reading Code and Steering Code (LineValueHolder.java)

package linefollower;

public class LineValueHolder {

public int white;

public int black;

public int current;

public LineValueHolder() {

}

public synchronized void setValue (int value) {

current = value;

this.notifyAll(); //notify all waiting readers

}

public synchronized int getValue () throws InterruptedException {

this.wait(); //wait until a new value is read

return current;

}

public void setWhite (int value) {

white = value;

}

public int getWhite () {

return white;

}

public void setBlack (int value) {

black = value;

}

public int getBlack () {

return black;

}

}

The most important and interesting methods are the two synchronized
methods, getValue and setValue.

The setValue method’s most important feature is that it is very short, and thus
executes very fast. It will be called by the LightReader within its stateChanged

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 213

214 Chapter 6 • Programming for the leJOS Environment

method, which in turn is called by the leJOS sensor reading thread. So, the longer
you tie up that sensor reading thread, the more sensor readings you will miss.

The two methods work in parallel, as calls to getValue will block until another
call has been made to setValue.The reason this will work is that, as mentioned
previously, sensor-readings will change! Let’s now take a look at our
SensorListener, which calls setValue (see Figure 6.7).

Figure 6.7 LightReader Is Responsible for Delivering Sensor Readings to the
LineValueHolder (LightReader.java)

package linefollower;

import josx.platform.rcx.SensorListener;

import josx.platform.rcx.Sensor;

public class LightReader implements SensorListener{

LineValueHolder lvh;

public LightReader(LineValueHolder lvh)

{

this.lvh = lvh;

}

public void stateChanged (Sensor sensor, int new_value, int old_value)

{

lvh.setValue (new_value);

}

}

As you can see, the stateChanged method is very short, so it does not tie up
the sensor reading thread as just mentioned. It simply calls the LineValueHolder’s
setValue method (which, as you saw previously, was very short as well).This call
transfers the new value as read by the Sensor.

Let’s move on to the Cruiser, shown in Figure 6.8.

Figure 6.8 Cruiser Is Doing the Driving (Cruiser.java)

package linefollower;

import josx.platform.rcx.Motor;

public class Cruiser extends Thread {

www.syngress.com

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 214

Programming for the leJOS Environment • Chapter 6 215

Motor motor;

public Cruiser(Motor motor) {

this.motor = motor;

motor.setPower (7);

}

public void run () {

motor.forward();

}

}

As you can see, it simply sets the power level to maximum and then when it
is started, sets the motor going forward.

The Turner thread (see Figure 6.9) is a bit more complicated, as it behaves
differently based upon the light sensed.

Figure 6.9 Turner Is Responsible for Steering the Robot According to the
Sensor Readings (Turner.java)

package linefollower;

import josx.platform.rcx.Motor;

import josx.platform.rcx.LCD;

public class Turner extends Thread {

static final int HYSTERESIS = 4;

Motor motor;

LineValueHolder lvh;

public Turner(Motor motor, LineValueHolder lvh) {

this.lvh = lvh;

this.motor = motor;

motor.setPower (7);

}

public void run () {

while (true) {

www.syngress.com

Figure 6.8 Continued

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 215

216 Chapter 6 • Programming for the leJOS Environment

try {

int light = lvh.getValue();

//show the current reading, great for debugging

LCD.showNumber (light);

if (light < lvh.getBlack() + HYSTERESIS) {

motor.forward();

} else if (light > lvh.getWhite() - HYSTERESIS) {

motor.backward();

} else {

motor.stop();

}

} catch (InterruptedException ie) {

//ignore

}

}

}

}

The logic in the run() method, which is implementing what is interesting, is
pretty simple. It compares the light reading with what is considered black—if it is
less, it spins the motor forward.With the right wiring, this will turn the wheel,
and thereby the robot, left. Similarly, if it is greater than what is considered to be
white, it spins the motor backward, which should turn the robot right.
Otherwise, we do not need to turn so we stop the motor.

NOTE

Hysteresis actually means “lag of effect,” a term that comes from
physics, where it means a delay in the observed effect when forces on a
body change. This term has crept into software lingo with the meaning
that you need to take this lag of effect in the physical world into account
when programming. This is often done (as in the example in Figure 6.9)
by adding/deducting a value in a comparison. This will also allow a pro-
gram to be more immune to noise in sensor readings.

www.syngress.com

Figure 6.9 Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 216

Programming for the leJOS Environment • Chapter 6 217

Can that ever work? Of course not. Remember, white is probably the highest
value we will see, and black the lowest. So we simply deduct/add a constant
called HYSTERESIS before the comparison, which will make an interval of
values considered too white or too black which we need to react to. Notice that
it is rather small (only four), but for our lighting conditions this value seems to
work. Plus, it’s a place where you can tune your behavior.

The last of the helper classes is the Calibrator. Its calibrate method simply takes
the average over 20 successive light-sensor readings, as shown in Figure 6.10.

Figure 6.10 Calibrator Is Used to Define the Interpretation of Black and
White (Calibrator.java)

package linefollower;

import josx.platform.rcx.Sensor;

public class Calibrator {

private static final int NUMBER_OF_SAMPLES = 20;

Sensor sensor;

public Calibrator(Sensor sensor) {

this.sensor = sensor;

}

public int calibrate () {

int sum = 0;

for (int i = 0; i < NUMBER_OF_SAMPLES; i++) {

sum += sensor.readValue ();

}

return sum / NUMBER_OF_SAMPLES;

}

}

Now, look to Figure 6.11 for the main class, LineFollower, whose purpose is to
set things up, drive the user interaction, and finally kickoff the controlling threads.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 217

218 Chapter 6 • Programming for the leJOS Environment

Figure 6.11 The Main Program Class Does Mainly Setup but also Drives the
User Interface (LineFollower.java)

package linefollower;

import josx.platform.rcx.LCD;

import josx.platform.rcx.TextLCD;

import josx.platform.rcx.Sound;

import josx.platform.rcx.Motor;

import josx.platform.rcx.Sensor;

import josx.platform.rcx.SensorConstants;

import josx.platform.rcx.Button;

public class LineFollower {

LineValueHolder lvh = new LineValueHolder();

Cruiser cruise;

Turner turner;

public LineFollower() throws InterruptedException {

Sensor.S1.setTypeAndMode (SensorConstants.SENSOR_TYPE_LIGHT,

SensorConstants.SENSOR_MODE_PCT);

Sensor.S1.activate();

waitForUser ("white");

lvh.setWhite (getThreshold());

waitForUser (null);

waitForUser ("black");

lvh.setBlack (getThreshold());

waitForUser (null);

Sensor.S1.addSensorListener(new LightReader(lvh));

cruise = new Cruiser (Motor.B);

turner = new Turner (Motor.A, lvh);

}

www.syngress.com
Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 218

Programming for the leJOS Environment • Chapter 6 219

public void waitForUser (String message) throws InterruptedException

{

if (message != null) {

TextLCD.print (message);

}

Sound.twoBeeps ();

Button.VIEW.waitForPressAndRelease();

}

public int getThreshold () {

Calibrator calib = new Calibrator (Sensor.S1);

int value = calib.calibrate ();

//show calibration value, good for tuning the HYSTERESIS constant

//in the Turner class

LCD.showNumber(value);

return value;

}

public void start ()

{

//start threads

cruise.start();

turner.run();

}

public static void main(String[] args) throws InterruptedException {

LineFollower lineFollower = new LineFollower();

lineFollower.start ();

}

}

The code for LineFollower is fairly simple.A LineFollower object is created in
the main method.Within the constructor, the Sensor.S1 is then configured for
light readings.Then the user is prompted with the text “white” which should
serve as an instruction to place the robot’s light-sensor over the white surface.
When done, the user must press the View button for white calibration to begin,

www.syngress.com

Figure 6.11 Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 219

220 Chapter 6 • Programming for the leJOS Environment

the calibration value is then displayed, and the user is again expected to press the
View button to continue.This process resumes, but this time with the text
“black” as prompt.When the user presses the View button at the end, the pro-
gram continues its execution, so the user must place the robot near the left edge
of the line, before doing the final View button press. Notice that we have also
used a double beep to attract the user’s attention, indicating something is needed
from her.The rest of the program consists of only two things—first, attaching the
LightReader as a listener to Sensor.S1, and the construction and start of the Turner
and Cruiser threads. If all goes well, your robot will start following the black line.

Now, it was promised that some “mistakes” would be purposely included in the
program to make it use more memory than actually needed.We will continue to
refrain from correcting them (as long as we don’t run out of memory), because
they increase the readability and usability of the program.The memory optimized
version can also be found on the accompanying CD in the /linefollower/optimized
directory.

We will now go over the “mistakes” and at the same time explain how to
remove them and thereby optimize the program.

■ Notice in Figure 6.11 that the method, getThreshold, is called twice in
the LineFollower’s constructor, and that within it a Calibrator is instanti-
ated.That means two Calibrator instances and one Calibrator that does
pure calculations. In fact, its sole method is actually thread-safe since it
only works on method local variables, so a fast optimization is to simply
make it into a static method and not allocate any Calibrator objects at all.
If the calibrate method had not been thread-safe, we could still have done
that because in our case, the calls to calibrate occur from only one thread,
the main thread of the program.

■ In the LineValueHolder (Figure 6.6) ints are the used type for the instance
variables holding the sensor readings. But as light-sensor readings are
percentages their values lies between 0 and 100, and a Java byte which
has the range [-128:127] is quite adequate for holding those readings. So
memory can be saved by using bytes instead of ints.

■ It is really not so nice that three references to the LineValueHolder
instance need to be kept at various places.The one in the LineFollower is
easy to get rid of. Just move the construction inside the constructor and
lose that instance variable. But to get rid of all three of them, we will
instead apply the Singleton pattern, as identified in the book Design

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 220

Programming for the leJOS Environment • Chapter 6 221

Patterns by the Gang Of Four (Gamma, Helm, Johnson, and Vlissides). So,
the changes to the LineValueHolder construction will look like:

...

private static LineValueHolder instance = null;

public static LineValueHolder getInstance () {

if (instance == null) {

instance = new LineValueHolder ();

}

return instance;

}

private LineValueHolder() {

}

...

■ Now, take a look at the Cruiser thread (Figure 6.8).Actually the run
method just starts the motor running and then terminates, thereby ter-
minating the Thread. So it will be okay to just call the method directly
from the LineFollower’s start method (using the main thread).To improve
things further, you can even remove the Thread extension, thereby
making the constructed object smaller.

■ Possible removal of a Thread extension also holds for the Turner thread
because we used the already available main thread to call its run method
directly, instead of indirectly through a Thread.start() call.

■ Cruiser does not actually need to be instantiated at all, and can thus have
its methods made static.We have not made that change, as it will make
the use of Cruiser vastly different from that of the Turner.

■ Finally, take another look at the LineFollower in Figure 6.11.All the
methods are executed by the main thread, so no synchronization is
needed.Thus, we do not really need to create any LineFollower objects.
We can do that by turning LineFollower’s instance methods into static
equivalents.The constructor we will change into a static init method,
which gets called by the main method.

We ran a slightly modified version of the original program with the one
change that instead of continuously outputting the light reading, it outputted the
amount of free memory.Then we did the same with the modifications just listed.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 221

222 Chapter 6 • Programming for the leJOS Environment

The result was that for the original, 3684 bytes were free, and for the modified
version, 3814 bytes were free. Even though not much memory was saved, we
haven’t sacrificed any readability, usability, or maintainability of the program.
Notice that in the optimized version on the CD we have chosen to keep the use
of TextLCD, as opposed to using LCD, since it improves usability of the program.

Here is a list of other improvements you can try and implement yourself.

■ As it is now, the program is stopped by pressing the On-Off button,
which turns off the RCX completely.A nice feature would be a way to
stop the program, perhaps by pressing the Run button; try adding a
ButtonListener to do that. Its action could probably be to call interrupt on
the main thread, to force it to break out of the endless loop in Turner’s
run method. Notice that this demands a change in Turner as well, as it
actually catches InterruptedException, ignores it, and continues with its
business.And, of course, you need to keep a reference to the main thread
somewhere (get that reference using the Thread.currentThread() method).

■ The calibration routine could be improved to take the average of light
readings made at different places along the course.This change would
need some directions to the user to move the RCX between subsequent
readings.

Controlling the Steering
If the robot, going too fast, passes entirely over the line to the right side of the
black track, it will likely go into a never-ending spin around itself.This section
will try to come up with two solutions for that.

www.syngress.com

Synchronization on Static Methods
Remember that no instances of java.lang.Class exist in leJOS, so you
cannot synchronize on static methods. This is the reason you need to
analyze your multithreaded programs. Make sure that when using static
methods, no two threads will execute them simultaneously, or make
sure the methods are thread-safe.

Designing & Planning…

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 222

Programming for the leJOS Environment • Chapter 6 223

The first solution will try to solve the problem by restricting the amount of
turning allowed by the steering wheel, making it less likely that the robot will
pass over the line.

The second solution is to try to find a way back to the left side of the line.
This is achieved by determining that the line has been passed, and then over-
ruling the robot’s standard line-following behavior with a higher prioritized
behavior which will hopefully bring the robot back on track; this solution intro-
duces the subsumption architecture.

Before you attempt to control the steering, you will need to acquire some
feedback of where the steering front wheel is positioned at any given time.To do
this, we need to add a longer steering axle to the original design of the robot.
This change allows us to put a rotation sensor on top of it, which is then con-
nected to input 2 on the RCX.As a result, this rotation sensor gives us a way to
measure the position of the wheel.

Restricted Steering
The first thing we’ll do is make a programming change that controls how far to
one side the wheel is allowed to turn.This, of course, will prevent the robot from
making very sharp turns, but at least for the LEGO test pad we’ll use here, no really
sharp turns exist.The idea behind this is that, if the RCX doesn’t do any sharp
turns, it will not pass entirely over the line, and the spin-forever effect will go away.

In the program, we’ll simply change Turner into a version utilizing not only a
Motor but also a Sensor, or more specifically, a Sensor configured for rotational
readings.To ease the programming, let’s use the Servo class, which is precisely
suited for this kind of control.The Servo combines a Motor and a Sensor so you
can tell the Motor to turn to a certain axis point. It is important to notice that, as
the servo keeps a number representing the absolute position of the Motor, you
will need to start the robot with the steering wheel in a neutral position so it is
going straight.The change is then to have a maximum turn of two to either side,
a value determined from previous experiments.A lot of gearing exists between
the rotation sensor and the motor, so that is the easiest way to find it.This solu-
tion actually solves the problem in a very simple manner.At least on this test
course (in my experiences), the spinning behavior did not occur after the change
was made. Prior to that, it was very frequent. In fact, usually two consecutive laps
of the course could not be made before the spinning occurred.

Figure 6.12 shows the modified Turner code (for simplicity, we have chosen to
refrain from my traditional approach where the Motors and Sensors used are deter-
mined in the main class and distributed to the objects using them, as parameters;

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 223

224 Chapter 6 • Programming for the leJOS Environment

instead, this Turner version explicitly uses Sensor.S2). (You can locate a complete
version of the line follower with this modification on the CD, in the /linefollower/
steering1/linefollower directory.)

Figure 6.12 A Limited Turn Turner (Turner.java)

package linefollower;

import josx.platform.rcx.Motor;

import josx.platform.rcx.LCD;

import josx.platform.rcx.Servo;

import josx.platform.rcx.Sensor;

public class Turner extends Thread {

static final int HYSTERESIS = 4;

Servo servo;

public Turner(Motor motor) {

this.servo = new Servo (Sensor.S2, motor);

}

public void run () {

LineValueHolder lvh = LineValueHolder.getInstance();

while (true) {

try {

int light = lvh.getValue();

LCD.showNumber (light);

if (light < lvh.getBlack() + HYSTERESIS) {

servo.rotateTo (-2);

} else if (light > lvh.getWhite() - HYSTERESIS) {

servo.rotateTo (2);

} else {

servo.rotateTo(0);

}

} catch (InterruptedException ie) {

//ignore

www.syngress.com

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 224

Programming for the leJOS Environment • Chapter 6 225

}

}

}

}

Getting Back to the Line
The second solution to the same “never-ending turn” problem is a much more
advanced approach, involving the control concept called subsumption architecture.
Also, the solutions tactic is a different one. It does not try to get the robot to
avoid passing the line. Instead, it tries to determine when it has done so, and then
runs some code in hopes of returning the robot to the left side of the line.

The idea of subsumption architecture is to first divide our program into subtasks
or behaviors. Each subtask is responsible for controlling one specific behavior of
our robot.This behavior can be simple, like backing up when a touch sensor is
hit, or it can be complex, like our entire follow-the-line behavior.The next thing
we need to do is prioritize the behaviors.The implementation is then made in a
way so that only the highest prioritized behavior is actually running, this makes it
possible to have multiple behaviors competing for the same resources (motors,
sensors, display, and so on) to coexist. It is, of course, crucial that the individual
behaviors release their control when they do not need it, to allow lower priori-
tized behaviors a chance to run.

www.syngress.com

Figure 6.12 Continued

Line-following Software Design for
a Differential Drive-based Robot
Had the robot been built using a differential drive as used in the pre-
vious chapter, the steering and driving straight behaviors would have
been competing for the control of the motors, since this drive platform
uses the same set of wheels for driving and steering. So, in this case, it
would make perfect sense to use a subsumption-based architecture for
programming the line following in the first place.

Designing & Planning…

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 225

226 Chapter 6 • Programming for the leJOS Environment

If our line-following program had been made using this architecture, the
turning behavior would be a higher priority behavior than the drive forward
behavior. However, these two behaviors in our example are totally independent of
each other, and can therefore coexist without competing for the control of motors.

This example illustrates just one possible situation where this architecture
shows its strength. Every time we have multiple behaviors, triggered by different
situations (like sensor reading) but in need of the same actuators to perform the
needed action, this architecture is a good way to modularize our code and keep it
maintainable. Subsumption architectures are usually designed using diagrams like
the one shown in Figure 6.13, which indicates that the sensors (Wheel position in
the diagram) triggers certain behaviors together.The diagram also shows the pri-
ority of the different behaviors in that higher priority behaviors are drawn above
lower priority ones.The round shape with the S, for subsume, shows that the
higher priority behavior can take the control of a resource (here Motors) away
from a lower priority one.This kind of diagram does not say anything about how
each individual behavior is to be designed.They can then be made using standard
OO techniques.The subsumption architecture can be viewed as a way to make
objects cooperate. If you are familiar with design patterns, think of this architec-
tural concept as a pattern.

As explained earlier, the diagram is read from top to bottom and left to right,
so the highest priority behavior is the new TurnResolve, and is somehow triggered
by a wheel position.The lowest priority behavior is our existing line-following
behavior, which is not triggered by anything but just runs continuously when not
subsumed by any higher priority behavior.

To incorporate this into our program, let’s use a class that resides in the
josx.robotics package, named Arbitrator.What it does is perform arbitration of pri-
oritized behaviors (just what we need). Let’s take a look at the Arbitrator and its
related Behavior interface.

www.syngress.com

Figure 6.13 Subsumption Architecture for Our Solution to the Spin Effect
Problem

Wheel position TurnResolve

SFollowLine Motors

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 226

Programming for the leJOS Environment • Chapter 6 227

NOTE

In addition to the Arbitrator class and Behavior interface used in our
example of subsumption architecture in use, the josx.robotics package
contains other classes useful for programming navigating robots. These
classes come in two types. The first bases navigation on timing constraints
(it takes n seconds to turn 90 degrees) and the other bases navigation on
readings from rotation sensors. They are provided with a common inter-
face, so you can easily switch between the two implementations.

Arbitrator
The Arbitrator class defines only one method, called start, which takes no argu-
ments, so starting the arbitration is very easy. Before calling it, you need to con-
struct an Arbitrator object, and its constructor takes an array of objects
implementing the Behavior interface.These objects must be preordered in an array
in such a way that the Behavior at index 0 corresponds to the desired behavior
with the lowest priority, and so forth. Note that the start method does not start a
separate thread, and thus never returns.

NOTE

In some designs, some behaviors actually have equal priority, which is
not a problem as long as they are not competing for the same resources.
This situation cannot be handled by the Arbitrator class, because its
implementation enforces a strict hierarchy of priorities.

Behavior
The Behavior interface must be implemented by classes being arbitrated by the
Arbitrator class.These implementations, in turn, are responsible for implementing the
desired behavior for a given priority.The methods you must implement include:

■ public void action () This method must implement the task that is to
be performed when this Behavior is in control. Notice that the method
must not go into a never-ending loop, which will cause the arbitration
process to no longer work.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 227

228 Chapter 6 • Programming for the leJOS Environment

■ public boolean takeControl () The implementation must return true
if this Behavior wishes to take control.Whether it will actually take the
control, of course, depends on its position in the priority hierarchy.

■ public void suppress () Your implementation of this method will stop
the current running action (stopping motors and so on).The method
should not return until the running action has terminated (but it must
return eventually for the arbitration process to work).

Resolving the Never-ending Turn
We will use the same mechanical design as in the previous solution (see the
“Restricted Steering” section), a rotation sensor attached to the top of a longer
steering wheel axle.

The strategy will be as follows: whenever we, during the line-following pro-
cess, end up having turned all the way to the right, that must mean we have
crossed the line and engaged in that devious death spin.This situation is indicated
by the rotation sensor having a value of 5 (experimentally determined).The
behavior we will be implementing to escape from the spin is realized in the
TurnResolve class. It will subsume the line-following behavior when the rotation
sensor shows 5, and then do something clever to get it back on the line.

First, we need to turn our existing line-following code into something imple-
menting the Behavior interface, so we can add it to an Arbitrator object.The change
simply wraps the Turner and Cruiser instances in a class LineFollowBehavior (see
Figure 6.14) implementing Behavior.This is an application of the standard wrapper
pattern, known from the GOF book.Additionally, the Cruiser and Turner have
themselves been turned into separate Behavior implementations.This way they can
perhaps be reused as stand-alone behaviors in another setting.To complete the
picture, they can be studied in Figure 6.15 and 6.16 respectively. (The code for
Figures 6.14 through 6.16 can be found on the CD in the /linefollower/
steering2/linefollower directory.)

Figure 6.14 Making the Line-following Behavior Implementation
(LineFollowBehavior.java)

package linefollower;

import josx.robotics.Behavior;

public class LineFollowBehavior implements Behavior

www.syngress.com
Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 228

Programming for the leJOS Environment • Chapter 6 229

{

Cruiser cruise;

Turner turner;

public LineFollowBehavior(Cruiser cruise, Turner turner) {

this.cruise = cruise;

this.turner = turner;

turner.start();

}

public void action () {

cruise.action ();

turner.action ();

}

public boolean takeControl () {

return true;

}

public void suppress () {

cruise.suppress();

turner.suppress();

}

}

Figure 6.15 Cruiser as a Behavior Class (Cruiser.java)

package linefollower;

import josx.platform.rcx.Motor;

import josx.robotics.Behavior;

public class Cruiser implements Behavior{

Motor motor;

public Cruiser(Motor motor) {

www.syngress.com

Figure 6.14 Continued

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 229

230 Chapter 6 • Programming for the leJOS Environment

this.motor = motor;

}

public void action () {

motor.setPower (7);

motor.forward();

}

public boolean takeControl () {

return true;

}

public void suppress () {

motor.stop();

}

}

As the main thread is now used to run the Arbitration process, the
LineFollowBehavior will start the Turner instance as a separate thread (see Figure
6.16).This, in turn, will make the takeControl and suppress methods in Turner a
little complicated.The idea is that a variable (halted) is used to signal if the
steering is active. If it isn’t, the thread is parked in a wait call.The Arbitrator’s call
to action will then wake up this thread again by calling notifyAll. Notice that both
the Turner and Cruiser in their implementation of takeControl always return true,
signaling they are always willing to run.

Figure 6.16 Turner as a Behavior Class (Turner.java)

package linefollower;

import josx.platform.rcx.Motor;

import josx.platform.rcx.LCD;

import josx.robotics.Behavior;

public class Turner extends Thread implements Behavior

{

static final int HYSTERESIS = 4;

Motor motor;

www.syngress.com

Figure 6.15 Continued

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 230

Programming for the leJOS Environment • Chapter 6 231

boolean halted = false;

public Turner(Motor motor) {

this.motor = motor;

}

public synchronized void action () {

motor.setPower (7);

halted = false;

notifyAll();

}

public boolean takeControl () {

return true;

}

public synchronized void suppress () {

motor.stop ();

halted = true;

notifyAll();

}

public void run () {

LineValueHolder lvh = LineValueHolder.getInstance();

while (true) {

try {

if (!halted) {

int light = lvh.getValue();

LCD.showNumber (light);

if (!halted) {

if (light < lvh.getBlack() + HYSTERESIS) {

motor.forward();

} else if (light > lvh.getWhite() - HYSTERESIS) {

motor.backward();

} else {

www.syngress.com

Figure 6.16 Continued

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 231

232 Chapter 6 • Programming for the leJOS Environment

motor.stop();

}

}

} else {

synchronized (this) {

wait (); //block until notified

}

}

} catch (InterruptedException ie) {

//ignore

}

}

}

}

Second, we must implement our high priority TurnResolve behavior. Note
that because the behavior is defined by a Sensor that does not change value as
opposed to one that does change value, we cannot implement this using a
SensorListener but must explicitly read the Sensor value at some interval.

The “clever” thing to do to get back on the line is really not that clever:We
first slow down, and straighten up the drive wheel (it’s best to actually keep it a
little turned, so we curve back towards the line).Then because the line is rela-
tively thin compared to our robot, we should assume that the robot will be spin-
ning on the white surface, and also be on the white surface right after it has
straightened out its steering wheel. So we keep driving until we hit a black sur-
face.This should be the right edge of the line (as the robot follows the left edge,
it must have passed the line and now be on the right-hand side of the line).We
then keep going until we hit white again.At this point, the robot is probably at
an angle somewhat perpendicular to the line, so we must turn the steering wheel,
and try to curve back until we once again hit black.This should then hopefully
be on the desired left side of the line.You can see the implementation of
TurnResolve realizing this strategy in Figure 6.17 (also found on the CD in the
/linefollower/steering2/linefollower directory).

www.syngress.com

Figure 6.16 Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 232

Programming for the leJOS Environment • Chapter 6 233

Figure 6.17 Strategy for Finding the Way Back to the Line (TurnResolve.java)

package linefollower;

import josx.robotics.Behavior;

import josx.platform.rcx.Motor;

import josx.platform.rcx.Sensor;

import josx.platform.rcx.Sound;

import josx.platform.rcx.Servo;

public class TurnResolve implements Behavior

{

static final int HYSTERESIS = 4;

Motor drive;

Motor turn;

Sensor rot;

Servo servo;

boolean running = false;

boolean first = true;

public TurnResolve(Motor drive, Motor turn, Sensor rot)

{

this.drive = drive;

this.turn = turn;

this.rot = rot;

servo = new Servo (rot, turn);

}

public synchronized void action ()

{

if (running) {

return;

}

Sound.beepSequence(); //indicates we have now started finding back

running = true;

www.syngress.com

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 233

234 Chapter 6 • Programming for the leJOS Environment

//curve back towards the line

try {

turn.setPower (7);

servo.rotateTo (1); //we will curve slightly towards the line

synchronized (servo) {

servo.wait();

}

drive.setPower(1);

drive.forward();

LineValueHolder lvh = LineValueHolder.getInstance();

int light = -1;

//assume we are spinning on white so go "straight" as

//long as we are still on white

do {

light = lvh.getValue();

} while (light > lvh.getWhite() - HYSTERESIS);

//we should now be on black. Keep going until we reach white

//again, and assume we crossed the line from the left side.

do {

light = lvh.getValue();

} while (light < lvh.getBlack() + HYSTERESIS);

//we should now be back on the left side of the line, so turn to

//get onto the edge of the line again

servo.rotateTo (2);

drive.setPower(3);

do {

light = lvh.getValue();

} while (light > lvh.getWhite() - HYSTERESIS);

//we now hit the line from the left, so stop driving and

//go straight

www.syngress.com

Figure 6.17 Continued

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 234

Programming for the leJOS Environment • Chapter 6 235

} catch (InterruptedException ie) {

} finally {

servo.rotateTo (0);

try {

synchronized (servo) {

servo.wait();

}

} catch (InterruptedException ie) {}

drive.stop();

running = false;

notifyAll();

}

}

/**

* Control will be taken when the rotation sensor is showing 5.

**/

public boolean takeControl () {

if (first) {

first = false;

return false;

}

if (running) {

return true;

} else {

int current = rot.readValue();

if (current >= 5) {

return true;

}

return false;

}

}

/**

www.syngress.com

Figure 6.17 Continued

Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 235

236 Chapter 6 • Programming for the leJOS Environment

* Called if higher priority behavior wishes to take control.

**/

public synchronized void suppress () {

while (running) {

try {

wait (200);

} catch (InterruptedException ie) {

//ignore

}

}

Sound.systemSound(true, 3);

}

}

As mentioned earlier, this is not particularly clever, and to be honest, it only
works to some degree (the first solution, with limited turning, works much
better). But maybe you can come up with something far superior.The main
point of this example has been to introduce you to the subsumption architecture,
which is a good way to separate your behavioral logic.

Debugging leJOS Programs
Debugging your RCX programs is not an easy task compared to debugging pro-
grams on a workstation. Basically, you have to rely on the visual feedback pro-
vided by the LCD, as well as audio feedback from the sound capabilities.

Using Sounds and the LCD
One of my favorite ways to debug leJOS programs is to use the RCX sound
capabilities.You can play different sounds when turning right and left, or when
some sensor reading is above a particular value.This is really useful, especially in
combination with the LCD. By using different sounds before displaying a value
on the LCD, you can easily know what the displayed value represents—a low
tone might signify a light-sensor reading, or a high tone might alert you to a
temperature reading. Just remember that you often need to halt the program

www.syngress.com

Figure 6.17 Continued

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 236

Programming for the leJOS Environment • Chapter 6 237

momentarily, using, for instance, Button.VIEW.waitForPressAndRelease(); otherwise,
it will just be a mess of beeping and numbers flashing by in the display.

Exception Handling with leJOS
As you know from normal Java, exception handling is a great way to deal with
errors in your programs.The throwing of exceptions in Java for signaling
abnormal situations makes it possible to separate the functional logic of the code
from the exception handling logic.This is the real benefit: separation of code into
code for normal operation and code for error situations.

Normal Java exception handling applies to leJOS. For example, you can do
constructs like the following:

try {

...

} catch (SomeException e) {

...

} finally {

}

And throws declarations can be put on method signatures, signaling to the
method caller that it needs to handle the exceptions listed.Also, as in standard
Java, only checked exceptions need to be handled with try-catch blocks, or
declared in the throws clauses.

Of course, you can throw exceptions yourself, too, with constructs like:

throw new InterruptedException();

That allocated an object you cannot reclaim. If this code is executed often,
you will eventually run out of memory. In these situations, you should allocate
the Exception in a constructor and throw the same Exception instance when
needed, like this:

public class SomeClass {

InterruptedException ie = new InterruptedException();

public void someMethod () throws InterruptedException

{

throw ie;

}

}

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 237

238 Chapter 6 • Programming for the leJOS Environment

On my wish-list is a construct like the one in JavaCard, where some excep-
tions have a static throwIt(int code) method declared.This method, when called,
will throw a system-owned instance of that exception, which will eliminate pit-
falls like the preceding one.

I must add though that in leJOS code, I usually do not throw many excep-
tions myself.

What about exceptions that are not caught inside your program, and travel all
the way up to the leJOS runtime system? They will, of course, terminate your
program—and while doing so, they will cause the buzzer to sound and show an
exception number in the rightmost figure of the LCD, together with a method
signature number in the main part of the display. See the “Using the leJOS
Simulator” section for an explanation of how these numbers are to be interpreted.

Testing leJOS Programs
I find that testing leJOS programs can be quite entertaining.You think you have
really come up with the perfect design and a really clever implementation and yet
the outcome when run in the RCX is that your robot just circles in place, or a
grabber opens the wrong way.The techniques using the RCX sound capabilities,
mentioned previously are really helpful to determine what is going on. Remember,
also, that turning a LEGO motor wire connection 90 degrees will reverse its opera-
tion.This often saves you from additional time-consuming downloads.

Before getting angry because the stupid thing misbehaves, remember that it
only does as you instruct it! The RCX is a toy. It is supposed to be funny, cre-
ative, and, well, great to play with, and I really find that to be the case 100 per-
cent of the time. So, relax and work those bugs out of your program.

Using the leJOS Simulator
Sometimes it is desirable to emulate the leJOS environment on your workstation.
This often allows you to trace bugs more easily.The leJOS environment comes
with two emulators, emu-lejos and emu-lejosrun, so do this:

emu-lejos -o <program-name>.bin <program-name>

emu-lejosrun -v <program-name>.bin

The -v option makes the emu-lejosrun output a bit more readable. For
example, instead of outputting something like: ROM call 1: 0x1946 (4096), it may
instead resemble this: set_sensor_active 0. If exceptions are thrown, you will receive
an output something akin to the following:

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 238

Programming for the leJOS Environment • Chapter 6 239

*** UNCAUGHT EXCEPTION/ERROR:

-- Exception class : 14

-- Thread : 1

-- Method signature : 0

-- Root method sig. : 0

-- Bytecode offset : 8

Now, to really understand what is going on here you actually need to know
which exception is represented as number 14, but this can easily be found if you
put a -verbose option on the emu-lejos command (not the emu-lejosrun com-
mand); this will produce an output where (among other things) you can read:

...

Class 14: java/lang/InterruptedException

...

So, what was thrown upon you was an InterruptedException error. Now, if this
was run on the RCX, the rightmost figure on the LCD would show 4, which is
not the correct number (only one figure is used to display the number), illus-
trating the superior usability of the emulator.

More information is available, like which method threw the exception. Here
the root method signature listing indicates the number 0, so you would again
consult the verbose output, where you would see the signature numbers after the
class numbers:

...

Signature 0: main([Ljava/lang/String;)V

...

So it was thrown from main, and the root method is also main.The root
method refers to the method calling the guilty one. Finally, if you look at the
bytecode, perhaps using the standard javap command, the bytecode offset will be
8, and you can thus exactly pinpoint the guilty statement.

If you use constructs like Button.VIEW.waitForPressAndRelease() in your pro-
gram, you of course need to press the View button on your workstation.
Unfortunately, such a button does not exist. Even worse, the present emulator
does not define another button for the job. So, you need to eliminate such state-
ments when running the emulator.

Note that the emulator uses a text-based interface, and it takes time to get the
hang of it.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 239

240 Chapter 6 • Programming for the leJOS Environment

NOTE

On big endian machines like Sparc, you must use lejos instead of emu-
lejos for creation of the binary package:

lejos -o <program-name>.bin <program-name>

emu-lejosrun -v <program-name>.bin

I actually prefer running my code in the RCX using the low-end debugging
features described in Chapter 5, but that process might be bettered in the future.
Andy Gombos’ simulator, Simlink, for instance, contains (among other features) a
graphical user interface (it’s discussed in Chapter 7).

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 240

Programming for the leJOS Environment • Chapter 4 241

Summary
We covered a lot of ground in this chapter.The most important message to
impose on you is to do good design first and then optimize as needed, although
some design decisions have such a huge impact on the final implementation that
you should keep in mind the constraints of the destination target while doing the
design.

Strings take up a lot of space, and manipulating them takes even more.This was
explained in detail, and hopefully the benefits of creating your own classes in a
mutable manner has since activated that little light bulb in your head, considering
that most of the problems with Strings revolve about them being immutable.

We programmed a robot to follow the left edge of a black line, and tried dif-
ferent ways of making the robot either stay on that left side or find its way back
to it should it happen to cross the line.This program was deliberately made in a
way that could be optimized and the different optimizations explained.

You have also witnessed the useful robotic design technique named subsump-
tion architecture. It was used to get the line-following robot back to the left side
of the line in situations where the robot had crossed it.This architecture is not an
alternative but rather a supplement to standard OO design. Its strength is that it
allows you to separate your code into different robotic behaviors which can be
individually programmed.The OO design on the other hand is more influenced
with the internal design of those behaviors.

You have seen that debugging with leJOS on the RCX is tough work.The
tools for debugging and testing are limited. Using sound and the LCD are prob-
ably the best ways at the moment, but better tools are on the horizon. How to
use the leJOS emulator has also been explained, and even though its use is lim-
ited, it can sometimes save the day.

So, happy programming with leJOS, and play well.

Solutions Fast Track

Designing Java Programs to Run in leJOS

� When designing Java programs for leJOS, use the best OO design
principles you know. It will make the final program much more
maintainable.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 241

242 Chapter 6 • Programming for the leJOS Environment

� Pay attention to memory constraints even during the design phase. It is
quite easy to do a beautiful OO design, which, when implemented, will
use unnecessarily large amounts of memory.

An Advanced Programming Example Using leJOS

� The line-following type of robot can often become mired in a never-
ending spin.Two techniques for avoiding that were presented.

� The subsumption architecture can be thought of as a design pattern for
robotics programs.

Debugging leJOS Programs

� The best way to debug a leJOS program is to use the Sound and LCD
classes in unison to provide you with feedback of the robot’s state.

� Normal Java exception handling applies to leJOS, allowing you to
separate code for normal operation and code for error situations.

Testing leJOS Programs

� When working out bugs, use emu-lejos and emu-lejosrun to emulate
the leJOS environment on your PC.They use a text-based interface.

� When exceptions are output by the emulator, the output can be
interpreted much more accurately than when displayed on the real
RCX display.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 242

Programming for the leJOS Environment • Chapter 4 243

Q: I get an OutOfMemoryException (indicated by a number 6 displayed on the
RCX), but I do not believe I have allocated any memory.What might have
caused this?

A: Remember, only the last exception class digit is displayed on the RCX, so it
might be exception 16 or 26 that bit you.Another possibility is that even
though you do not allocate memory explicitly, you might be doing it implic-
itly by using String arithmetic for instance.

Q: I keep getting IllegalMonitorStateException.What is the reason for this?

A: This is standard Java behavior.When you call wait, notify, or notifyAll on an
object, you must own that object’s monitor (for example, have synchronized
access to it).

Q: The Arbitrator doesn’t seem to function properly.Why is this happening?

A: This is probably a case of either your suppress or your action method not ter-
minating.They must terminate. If you need continuous running behavior,
create your own thread in the action method. Remember that you must be
able to suspend that thread when the suppress method is called by the
Arbitrator. See Figure 6.16 for an example of this.

Q: I have synchronized a method but it does not seem to work—I get some
strange values for the static variables it updates. How can this be?

A: Your method is probably static. leJOS does not allow you to synchronize on
static methods, as no instances of java.lang.Class are created.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 243

244 Chapter 6 • Programming for the leJOS Environment

Q: I have a thread instance which has terminated, and am trying to restart it.
Why do I get an exception?

A: The exception you get is an IllegalStateException. It is defined in Java that
threads cannot be restarted. It is thus not a leJOS-specific feature you are
observing.

www.syngress.com

177_LEGO_Java_06.qxd 4/3/02 12:54 PM Page 244

leJOS Tools

Solutions in this chapter:

■ Programming Environments for leJOS

■ Using the leJOS Visual Interface

■ Using a leJOS Simulator: Simlink

■ Additional Tips and Tools for leJOS

Chapter 7

245

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 245

246 Chapter 7 • leJOS Tools

Introduction
In this chapter we’ll explain how to correctly configure and use various leJOS
development environments, such as command-line (text) and GUI-based tools.
We’ll also take a look at the use and configuration of tools for effective leJOS
development, such as RCXTools and Simlink.

While your choice of operating system may be different, many examples in
this chapter were created with Windows in mind.All tools are either written in
Java or provide ports to different platforms, allowing them to run anywhere you
would like.

We’ll show you some special development tips and tricks to ease you into
leJOS development.This chapter serves as a guide for leJOS tools; other chapters
cover the actual programs. Custom open-source software makes development
easier; and you can create your own projects to help perform a specific task, such
as a creating a script to compile and download a supplied robot program.

Programming Environments for leJOS
There are two different types of programming environments for leJOS—com-
mand-line-based and GUI-based. Each type has its own advantages and disadvan-
tages in terms of ease-of-use and configurability.A command-line environment
enjoys the greatest degree of configurability, as you can access any options that
are available in the program, which is not always true of GUI-based environ-
ments.With this control, however, comes an ease-of-use penalty. Scripts can sim-
plify the use of tools in a command-line environment, and are discussed at the
end of the chapter.

GUI-based tools have the main advantage of being easy to use. However,
depending on the interface used, control options can be sacrificed. For example,
when integrating leJOS and lejosc (the command-line compiler) into an inte-
grated development environment (IDE), you can lose some control over options
such as output file type.

An IDE is typically designed to speed productivity and be easier to use than a
command-line interface.Therefore, some time must be spent correctly configuring
the IDE. Most command-line switches can be used, but the window disappears
before you can gain any useful information.Again, to use options that are only
easily available from the command line, it is better to use the command line.
Dumping the verbose lejos output into a file for deciphering the displayed excep-
tions is easier than forcing an IDE to pipe in all of the program’s output.This limi-
tation can seem like a penalty for using a GUI-based tool over the command line.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 246

www.syngress.com

In the following sections we’ll take a close look at both types of environments.
After reading about the characteristics of each, and the options they provide, you
will be better able to make a decision on which style is more suited to you.

The next section will describe how to effectively use the command line in a
leJOS environment.The sections “Existing IDEs” and “Using a Visual IDE for
leJOS” describe how to set up and use a GUI-based tool with leJOS. In those
sections, you will be able to more clearly see how a IDE limits advanced usage.

The Command-Line Tools
that Interact with the RCX
The command-line tools that come with leJOS are the core of all GUI-based
tools used to download and control LEGO MINDSTORMS robots.These com-
mand-line tools, along with Kekoa Proudfoot’s send.c tool, can be used to down-
load firmware, programs, and data to the RCX. Integrated into a development
environment, programs can be compiled, tested, and downloaded with just a few
mouse clicks.

Several tools are included in the leJOS package.These utilities, ranging from a
compiler (lejosc), to a text debugger (emu-lejos), provide all the functionality you
should need.These tools are:

■ lejosc

■ lejos

■ lejosrun

■ lejosfirmdl

■ emu-lejos

■ emu-lejosrun

We’ll go over how to use each tool’s options, and how to handle any possible
problems you may encounter.

Using the lejosc Compiler
Lejosc is the command-line compiler for leJOS. It automates setting the correct
classpath to compile the specified program.You should always use lejosc instead of
javac to compile leJOS programs, letting lejosc configure the environment.This
way, you are assured of compiling your leJOS programs so they run on the RCX.
The lejosc command-line listing shown in Figure 7.1 shows the correct usage.

leJOS Tools • Chapter 7 247

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 247

248 Chapter 7 • leJOS Tools

Figure 7.1 lejosc Usage

lejosc [Java file to be compiled]

Using javac, shown in Figure 7.2, bypassing lejosc, can also make compiling
statements much longer.

Some of the necessary environment variables (such as LEJOSHOME) are
determined automatically by lejosc for you. Others, like CLASSPATH, must be set
by hand in order for javac to find the correct leJOS classes.There is no current
way for lejosc to detect where the utility classes such as Sensor and Motor are
located.

Figure 7.2 Compiling a leJOS Program Using javac on Windows

cd C:\lejos\examples\hworld

javac -classpath C:\lejos\classes\;. HelloWorld.java

As you can see, using javac is longer and more error-prone than using the
supplied lejosc executable.A slight typo in the command can cause the compila-
tion to fail.Also, the class file would be compiled in the incorrect endian byte
order: the RCX’s microprocessor uses big-endian order, while x86 architectures
use little-endian order.These classes would not work on the RCX, assuming you
even got them to download correctly.

Using the lejos Linker
lejos is the linker for leJOS that takes a compiled leJOS program using lejosc and
translates it into a format that the underlying leJOS firmware can interpret. lejos
can also download a program automatically into the RCX after it has been prop-
erly linked.The command-line listing for lejos is shown in Figure 7.3.

Figure 7.3 lejos Usage

lejos [options] class1, [class2 ...] [arg1, arg2 ...]

There are two options that can be specified with lejos. One is the -o <path>
option, the other is the -verbose option.The -o <path> option is used to output a
linked file into the specified path.This linked class file can then be downloaded
with lejosrun (described in the next section). Using the -o option will not down-
load the class to the RCX.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 248

leJOS Tools • Chapter 7 249

The -verbose option can be used to print out the method signatures used. It is
a record of all native methods and JVM calls that are made in the produced
linked file.

All lejosrun options are available under lejos, but are not listed in the usage
listing.This listing is shown by typing lejos at the command line.

Using the lejosrun Linker
lejosrun can also be used to download the linked files generated by lejos. lejosrun
provides the same downloading functions as lejos does, but it does not complete
the linking step.The lejosrun usage listing is shown in Figure 7.4.

Figure 7.4 lejosrun Usage

lejosrun [options] filename

where options are:

--debug Print out the raw bytes sent to the tower

-f, fast Use faster 4x downloading speed

-s, slow Use slower 1x downloading speed (default setting)

--tty=TTY TTY Tower connected to port TTY, e.g. COM1 or

/dev/ttyS1

--tty=usb Tower is connected to a USB port – used with

the new 2.0 towers

-h, help Display command line usage and options, then exit

The --debug option is not extremely useful unless you are trying to debug a
connection error, such as a bad echo from the tower. Even then, these messages
are usually printed out in text by lejosrun itself.

The -fast and --fast options can download programs at four times the normal
rate. However, these modes are much more sensitive to light and other distur-
bances in the environment, which can make them problematic to use.

The -s and --slow options are the default settings, and download programs at
the normal speed.This setting is much easier to setup correctly, and is much
more flexible and insensitive to environmental conditions like light and the dis-
tance between the tower and the RCX.

To use a serial port with lejosrun, you must specify it either as an environment
variable (RCXTTY), or on the command line using --tty=TTY, where TTY is
the communications port to which you have connected the tower.These can be
Windows-style ports such as COM1 or COM2, or UNIX-style designations such
as /dev/ttyS0 or /dev/ttyS1.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 249

250 Chapter 7 • leJOS Tools

The latest leJOS release has added Windows USB support, making it possible
to use the new Robotics Invention System (RIS) version 2.0 USB tower.To
enable USB support, use the --tty=usb option. RCXTTY can also be set to
“USB,” which will enable USB support. If you enable USB support, you will not
have to set the serial port.This option is not yet available on Linux, though a
Linux Lego USB driver is currently under development (see
http://legousb.sourceforge.net).

The -h and --help options display the command-line arguments that lejosrun
accepts.These arguments are the same as the ones we have listed here, but the
explanations are less detailed in the command-line output.

Using the lejosfirmdl Downloader
lejosfirmdl is the customized firmware downloader for leJOS. It is based on Kekoa
Proudfoot’s firmdl.c tool, but modified to accept the longer line lengths contained
by the leJOS firmware file. Lejosfirmdl has the same options as lejosrun, with one
exception: the -n and —nodl options allow you to not download the firmware
image, but rather check to see if the firmware file is found and the serial or USB
port is configured correctly.

Figure 7.5 shows a complete development cycle from the command line.
First, the PATH is set to point to the leJOS bin directory where the command
line programs are stored, then RCXTTY is set to the correct communications
port, which in this case is COM1.The directory is changed to an example direc-
tory supplied with the leJOS distribution. Before a program is downloaded, the
firmware must be downloaded with lejosfirmdl, here using no special options.The
example file (HelloWorld.java) is compiled with lejosc, then downloaded to the
RCX, again using the default options.

Figure 7.5 An Example Session of leJOS Command Line Downloads on
Windows

set PATH=C:\lejos\bin\;%PATH%

set RCXTTY=COM1

cd C:\lejos\examples\hworld

lejosfirmdl

lejosc HelloWorld.java

lejos HelloWorld

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 250

leJOS Tools • Chapter 7 251

The Command-line leJOS Emulator
The provided lejos emulator, emu-lejos, is non-graphical and limited in its useful-
ness. One of its main advantages, however, is the ability to receive more detailed
exception and trace information than that which is available on the RCX itself.
Instead of deciphering a numeric exception code on the RCX’s LCD screen,
you get a text message that describes the exception that was thrown.

In addition to providing exception information, using the --verbose option
tells you what commands were called, translating the ROM’s hex calls into text.

Using the emu-lejos Emulator
Emu-lejos is the emulation equivalent of lejos. It accepts the same command-line
options, but must be used with the -o option to emulate. Using lejos -o will result
in a linked file that emu-lejosrun will not accept. Using emu-lejos changes the
magic number of the linked file, identifying it as an emulation link, and allows
hex ROM codes to be translated into text. It also links the file into little endian
byte order instead of the big endian order used by the RCX.

If you are running leJOS on a SparcStation or another big endian byte order
architecture, you will need to use lejos instead of emu-lejos to link, since emu-lejos
orders for a little endian byte order.

Using the emu-lejosrun Linker
Emu-lejosrun is the emulation version of lejosrun. However, it does not accept all of
lejosrun’s options, supporting only the --v option to translate the hex commands.
Emu-lejosrun only accepts emu-lejos-linked files.

Using Exisiting IDEs
To use an existing IDE with leJOS, you need to know how to set it up.Although
commercial IDEs are available, we’ll explain how to set up the free Forte IDE
for Java.

Other free Java IDEs, such as Borland’s JBuilder Personal Edition and IBM’s
Eclipse do not provide the ability to change every aspect of the Java
Development Kit (JDK) configuration.Therefore, they cannot easily be used with
a non-standard JDK such as leJOS, and especially one with an incomplete set of
classes. Due to these apparent limitations of the other free IDEs, this section will
only discuss the Forte IDE.

Forte for Java (available at www.sun.com/forte/ffj), is an IDE written com-
pletely in Java.While this may cause the interface to be slightly less responsive

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 251

252 Chapter 7 • leJOS Tools

than a native interface, only a slight lag should be noticeable. Like JBuilder, Forte
provides a visual GUI creator, a debugger, and compilation functions—all the
expected parts of an IDE. Forte also has the seemingly unique ability to con-
figure the compiler and Java runtime you use. Neither JBuilder nor Eclipse pro-
vide this ability.

This section assumes that you have a basic knowledge of your IDE and can
already perform tasks such as creating a new project or editing a new file. It
only covers how to change the paths so lejosc is started for javac, and lejos is started
for java.

Configuring Forte
This section is written using the interface from Forte for Java Community
Edition, version 3.0. However, the basic process should be the same on any ver-
sion since 1.0, although the menu item names may have changed.

Unfortunately, compiler settings cannot be set across the entire IDE.They
must be set for each individual project. Create a new project, then go into the
project settings through Project | Settings.This dialog (shown in Figure 7.6)
has a tree node named Compiler Types. Click on it, and you will see a tree leaf
called External Compilation. In Figure 7.6, this leaf is highlighted.

www.syngress.com

Figure 7.6 Forte Options Dialog

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 252

leJOS Tools • Chapter 7 253

The field External Compiler is where the compiler setting is changed. Change
this field to leJOS_Home\bin\lejosc, where leJOS_Home is your home directory for
leJOS. Change the arguments setting simply to {files}, so the current project’s files
will be compiled with lejosc.

Now that the compiler type is set up, we can work on setting lejos as java.To
do this, click on the Execution Types node in the tree.As before, edit the External
Execution field, setting the path containing lejos. Because any automatically-gener-
ated path would include the incorrect base classes, you must specify the exact
leJOS classpath. In the Arguments text field, you must add -cp
leJOS_Home/classes {classname}.This will ensure that only leJOS classes are
found when linking occurs.

Compile and run (download) a program to the RCX and see if it works. If
not, verify all that all of your paths are correct.

Using the leJOS Visual Interface
There are many Java IDEs that can be set up for use with leJOS. Some, such as
the free professional IDEs described above, can be setup to automatically compile
and run leJOS programs. Others, which are classified as powerful text editors like
Jtext and jEdit, can be configured to work with leJOS without the large over-
head and startup times of most IDEs.This section is not a thorough description
of the available IDEs, but more of a brief overview.

Custom IDEs and IDE components, such as the leJOS Visual Interface and
RCXDownload, can be used in place of a more complicated and powerful IDE.
These programs provide functions that are specifically tailored to leJOS and are a
great substitute for any other tool.

The leJOS Visual Interface
The leJOS Visual Interface (lVI) is a custom IDE that is specially authored and
configured by Andy Gombos for use with leJOS.The options in the Tools menu
allow you to automatically compile, link, and download programs; as well as
download firmware.After setting the necessary environment variables and set-
tings, you can create, edit, compile, and link a file in a few simple steps. In the
words of Jonathan Knudsen,“Essentially, it’s a pint-sized editor for leJOS.”

The main window (See Figure 7.7) contains the menu bar and an internal
window that holds the current code.The instances of this coding window sup-
port automatic indention and syntax colorization, but the current implementa-
tion has some problems, which are discussed on the CD.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 253

254 Chapter 7 • leJOS Tools

The menu bar provides access to standard functions such as saving and
loading, as well as the leJOS-specific commands and configuration commands.

Installing lVI
Installation of lVI can be slightly tricky.To create the preferences directory that
lVI uses for storage, and to copy over the default options for their first use, run
java install from the command line.As of release 1.2.0, the install class outputs the
directory that was created and used for the options directory.You can then just
copy the outputted directory to transfer your settings to another computer with
lVI installed.

Due to the installation procedure, some problems can arise when installing
lVI. It seems that if lVI is installed once, attempting to install it again overwrites
the old directory and preferences and gives the error message “Error creating .lvi
directory”.As of release 1.2.0, use the java install -d option.This deletes the current
preferences, then copies over the new files.As long as there are no changes listed
in the preferences format, simply starting a new lVI version should work fine.

www.syngress.com

Figure 7.7 The Main leJOS Visual Interface Window

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 254

leJOS Tools • Chapter 7 255

Setting Up lVI
Setting up lVI is as simple as setting the preferences.The Interface Preferences dialog
(See Figure 7.8) has multiple tabs that divide the preferences into categories, each
of which deals with a particular setting.

The dialog allows you to set all the required paths and settings to enable all of
lVI’s built-in functions.The dialog also allows you to set syntax colorization pref-
erences, automatic completion sequences, and global editor settings.

On the first tab, General Preferences (shown in Figure 7.8), you must set
the directory into which leJOS is installed. If this path is incorrect, lVI will be
unable to locate the command-line programs used by leJOS to compile, link and
download (such as lejosc).The emulation settings box is left disabled for now, but
it may be enabled at a later date.

In the Look and Feel tab, you can select the Java Look and Feel (L&F) you
want to use.The Java L&F is the default, cross-platform look and feel.The Motif
L&F is a UNIX-style Look and Feel, and is the default for the native window
manager under that platform. Due to licensing issues, the Windows L&F is only
available on Windows platforms.

The Communications tab allows you to set the serial port used by the
tower or enable USB support. USB support is only as good as the current leJOS
release, since lVI uses the leJOS tools.

By accessing the General Colors tab, you can change the background color
of the lVI window, the text area background color, the default non-colorized text

www.syngress.com

Figure 7.8 The First Tab of the Interface Preferences Dialog

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 255

256 Chapter 7 • leJOS Tools

color, and several other colors.The only color change that works reliably is the
background text area change, due to the fact that Sun Microsystems’s JavaKit col-
orization package changes the text area and default text colors.

The Syntax Coloring Options tab will allow you to change the colors that
the JavaKit package uses to colorize the code. Currently, most colors do not affect
anything when changed.The Readme file on the CD describes this in more detail.

From the Auto-typer editor tab (See Figure 7.9), you can set what words
or phrases will signify a longer section of code, such as main signifying public static
void main (String args []) { }.

To add a new command, click the Add Command button.This button
opens up the Add an Abbreviation editor window, where you can define the
new abbreviation. (See Figure 7.10)

The Command Abbreviation text field is where the shortened version of
the new command goes.The current window is set up for the main example
above.As soon as main is typed in, then the full replacement is inserted in the
Full Command area.

To delete a command that has been entered incorrectly or entered twice, you
can use the Delete Command button. Unfortunately, there is currently no Edit
button. If you enter an abbreviation a second time without deleting the old
sequence, then the oldest (first) abbreviation to appear in the manager window’s
list will be the one executed, not the last one as you might expect.

www.syngress.com

Figure 7.9 The Auto-typer Managing Window

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 256

leJOS Tools • Chapter 7 257

Basic Usage
To test out lVI’s functions, it is best to start with a good example. Go to your
leJOS directory and load the HelloWorld example (leJOS_Home/examples/
hworld/HelloWorld.java).To compile this example, make sure the text area con-
taining the HelloWorld example is selected, and click Tools | Compile. If you
get a dialog box that looks like Figure 7.11, check the red highlighted area. If this
area is incorrect, then that means you have wrongly entered your leJOS home
path in the preferences. For example, in this example, I put my home directory as
C:\lejos\bin.This causes lVI to look for lejosc in C:\lejos\bin\bin, which obvi-
ously is not the correct path.

If there are errors when you compile your program, then you can look in the
javac dialog box to see what errors occurred. In a future release (possibly 1.3), the
output will be piped into a dialog so you can scroll through the errors.

The next step is to download the firmware, if you haven’t already done this.
This can be done via Tools|Download Firmware.Again, if there are any
errors, they will show up in the dialog box in which the process is running.

www.syngress.com

Figure 7.10 Adding a New Abbreviation

Figure 7.11 A Path Generated Error

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 257

258 Chapter 7 • leJOS Tools

The last step is to download the compiled class to the RCX.The lVI inter-
face combines the linking and downloading steps together, so there is no need to
do an extra step. If there are errors related to the download itself, then you will
need to troubleshoot your connection, discussed later.

If you have successfully done these steps, then you are ready to see if it cor-
rectly runs on the RCX. Hit the Run button. If “Hello World” scrolls across the
LCD, it is working correctly. If not, try compiling and linking again, making sure
the firmware is correctly installed.

From the last page, you can see that all lVI does is create the correct paths
and environment settings, then call the default leJOS tools; lejosc, lejos, and lejos-
firmdl.This just shows that for each new tool created for use with leJOS, the
command-line portions are the base of the functionality for that tool.

Using a leJOS Simulator: Simlink
The Simlink leJOS simulator, also authored by Andy Gombos, is a linking set of
classes and interfaces for the Rossum Project and leJOS. Rossum’s Playhouse (the
release name of The Rossum Project’s efforts) is a two-dimensional robotic simu-
lator generalized for use to all roboticists, whether they construct with LEGO
bricks or carbon fiber beams. LeJOS is specifically targeted to the LEGO MIND-
STORMS RCX using the H8/3297 chip from Hitachi.There obviously needs to
be an interface of some sort between Rossum’s Playhouse and the low-level APIs
leJOS provides, and that is exactly what Simlink is designed to do.

At the most basic level, Simlink is just an abstraction layer between the two
APIs, facilitating communications between them.To create the layer, some leJOS
classes were completely changed to provide the correct interface while still
offering the same public methods.This means very little modification will be
required for your robot code, while major modification will have to be done to
the leJOS classes when a new class release comes out.

Getting Started with Simlink
The main Simlink window (see Figure 7.12) consists of a managing pane on the
left side and a visual RCX model on the right.The managing pane displays
which robot is currently being simulated, all exceptions that have been caught,
and whether or not the simulation is being saved for later playback.The excep-
tion list shows all non-fatal exceptions that have been thrown.The exceptions
will be listed, but the simulation will end.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 258

leJOS Tools • Chapter 7 259

www.syngress.com

Figure 7.12 The Main Simlink Window

Using Simlink to Debug Programs
Using Simlink to debug programs can be tricky, since there is no indica-
tion to tell which line of code is currently executing. In future versions,
a Java Platform Debugger Architecture (JPDA) interface will be imple-
mented, allowing a trace of lines to be output. In its current form, how-
ever, Simlink is mainly useful for altering robot motions, checking line
following or other algorithms, and navigation techniques.

Programs can also be debugged in the normal manner by dis-
playing a value on the LCD that coincides with a snippet of code. This
method is useful, since a message that is sent to the LCD also triggers a
log message. Evaluation of the log can reveal many details about the
program’s execution, including motor activation, sensor readings, and IR
communications requests.

You can also log events on the real robot, then compare that log to
the Simlink log, to gauge simulation accuracy for example. Simlink’s log-
ging and, later, debugging features make it a valuable tool for debug-
ging the embedded RCX system.

Debugging…

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 259

260 Chapter 7 • leJOS Tools

The right side of the window is a rendered diagram of the RCX.The sensor
and motor ports change from gray and black to red when they are read or acti-
vated, respectively.This shows if sensors are being read when they are supposed to
be, or when a motor is being turned on; to aid in debugging.The model also
contains Tim Rinken’s TextLCD class, which acts as a virtual LCD to print mes-
sages and numbers when specified.The four buttons on the rendered image cor-
respond to the actual buttons on the RCX.These buttons are attached to any
listeners that a robot program may create, and send an event when pressed.This
allows the simulation to be controlled just as in real life.When serial IR commu-
nications are implemented, the IR window above the sensor pads will also
change to red when active to show communications between the RCX and the
IR tower.

In this section, we will work through installation, configuration, and running
your first simulation. Each step will be described in detail, aiding in the simula-
tion process.

Installing and Configuring Simlink
Installing Simlink is much less complex than installing lVI.A graphical installer will
guide you through installation, and set up the simulation environment.The Rossum
Playhouse (which is available at http://rossum.sourceforge.net), must be downloaded
and uncompressed to a temporary directory.The installer will ask you for this
directory later, so as to copy over the needed files. LeJOS must also be uncom-
pressed to a temporary directory, but the standard installation will work fine.

To set up the simulator for the first time, start the setup with java install.The
installer will request your current leJOS and Rossum directories, and where you
would like the new, modified directories to be placed.The default leJOS package
will be copied into the correct directory, then the modified classes will be copied
over the old versions.This ensures that no class is left out by the current release
of Simlink, nor will any extra helper classes be incorrectly copied. Now you are
ready to configure Simlink.

1. Start Simlink with java simInterface.Main in the directory to which you
told the installer to install Simlink.The installer program will automati-
cally set the correct leJOS, Rossum, and Simlink paths for you.

2. However, you will still get a dialog box saying you have not yet config-
ured Simlink due to the fact that default preferences have not been set
yet. Click OK.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 260

leJOS Tools • Chapter 7 261

3. Enter the Configure Global Options dialog in the Tools menu (See
Figure 7.13). In this dialog, the paths for your Rossum and leJOS classes
can be changed, as well as aspects such as simulation speed and logging
preferences.

4. By default, the simulation speed is 1x (real time), and logging is turned
off.The custom simulation speed takes a floating point number, such as
3.0, 4.6, or 0.25, and uses that as the speed at which to run.Think of it
as a scaling factor—2.0 would cause the simulation to run twice as fast
as normal, while 0.5 would cause it to run half as fast. Logging will start
out with a few things logged such as sensor state changes and motor
activation, but should get more complete over time.

Running Your First Simulation
Now you are set to run your first simulation. Complete the following steps.

1. To set up a robot simulation run, go to the File | Configure New
Run menu item (see Figure 7.14). In this dialog, you can set the path
where your robot’s classes are saved, as well as a specific run’s logging
options and simulation speed.You must also set the body layout class for
the robot and the floor plan to be used.These will both be discussed in
detail later on. If the logging and speed arguments are not supplied, then
the defaults from the Global Options dialog will be used.The robot class
path must be specified, since it will be changed for each new simulation.
Along with the path for the classes, the main class itself must be input so
that Simlink knows the class with which to begin the simulation control.

www.syngress.com

Figure 7.13 Simlink Options Dialog

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 261

262 Chapter 7 • leJOS Tools

2. As an example, suppose the HelloWorld.java example from the leJOS
distribution has been compiled with lejosc and placed in the directory
C:\simlink\robots\. In this directory, the ClientZero.java file from the
Rossum distribution has also been compiled and placed in the directory.
The floor plan,WhiteRoom.txt, also from the Rossum distribution, can
be copied.

3. To run this simulation, set the classpath to C:\simlink\robots, the robot
class to HelloWorld.class, and leave the simulation speed and logging at
the defaults you set earlier. If this is an early release, they may not be
enabled yet anyway.Then set the body plan to the class copied earlier
(ClientZero.class), and the floor plan to WhiteRoom.txt.

4. Now you are ready to begin the simulation. Go to the Tools menu and
select Run simulation.All this example will do is print “Hello World”
to the model RCX’s LCD screen.

5. If this works, then you have correctly set up and configured the simu-
lator. If not, run through the steps again, making sure you are inputting
the correct values for each step.

Designing a Floor Plan for Simlink
Rossum floor plans have a special syntax and format all their own, essentially
making them a “floor plan scripting language.”This language is automatically
parsed by the Rossum simulator, and has a few simple keywords, or declarations.

www.syngress.com

Figure 7.14 Dialog to Create a New Simulator Run

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 262

leJOS Tools • Chapter 7 263

Note that a specification is defined in the Rossum User’s Guide to be a one-line
statement, while a declaration is more than one line, enclosed in braces.We are
going to follow this style here, to better interface with the User’s Guide.

NOTE

The version of Rossum available for download at the time of this writing
is version .49. This section describes the features found in Rossum ver-
sion .50, which at the time of this writing was still a pre-release version.
Obstacles, for example, are an addition found in version .50.

Declarations and specifications in the floor plan format:

■ units

■ caption

■ wall

■ obstacle

■ target

■ placement

■ paint

■ node

■ link

When we describe the format of the different declarations, we will use several
common terms that can be used to specify different options.These terms are:

■ fillColor If a filled polygon is used as the shape, this specifies the inside
color.

■ lineColor This is the color of the line surrounding the declaration’s
geometry.

■ color This is a combination of the fillColor and lineColor specifications;
it sets the same color for both.

■ label This labels the current declaration that will be shown on the sim-
ulator GUI, as an identifying mark.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 263

264 Chapter 7 • leJOS Tools

These terms can be used simply by adding them into the declaration before
the closing brace.This will all make sense for each of the keywords.

Non-visual Declarations
The units specification indicates the unit you want Rossum to use when inter-
preting your floor plan (see Figure 7.15). Obviously, if you wanted a wall 13 feet
long, but the unit was in centimeters, you would end up with an unexpected result..

Figure 7.15 Specification of Units

units: meters, centimeters, feet, or inches;

Depending on what unit you want to use to specify measurements, you can
select meters, centimeters, feet, or inches.You can have as many units specifica-
tions as you want, so it’s possible to declare the walls in meters, then the target
radius in centimeters.

The declaration caption sets the title of the window Rossum opens as the
GUI for the floor plan (See Figure 7.16).This caption can describe the loaded
floor plan or any other data you wish to be placed in the title area.

Figure 7.16 Specification of Caption

caption: "Title bar text";

Visual Declarations
The first visual declaration is wall, or a solid barrier that causes sensor events to
be fired and prevents target “light” from passing through (see Figure 7.17). It is
just like a wall of your house: solid and immovable.

Figure 7.17 Declaration of Wall

wall a {

geometry: x1, y1, x2, y2, thickness;

[fillColor: color];

[lineColor: color];

[color: color];

[label: text];

}

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 264

leJOS Tools • Chapter 7 265

Let’s go through this one a section at a time.

wall a {

This statement says that a new wall, called “a”, will be specified here.

geometry: x1, y1, x2, y2, thickness;

Here we say that the wall will start at the coordinates (x1, y1) and end at the
coordinates (x2, y2). It will also be a filled box with a width of a certain number
of units.The default Rossum unit is the meter, but can be changed with the units
specification as discussed earlier. Using the default meter, a statement of:

geometry: 0, 0, 0, 2, .01;

will create a wall two meters long with a thickness of one hundredth of a meter,
or a centimeter. Because walls are specified with four coordinates and a thickness,
they must form straight lines.

[fillColor: color];

[lineColor: color];

[color: color];

[label: text];

The parts of the declaration that are enclosed in square brackets are optional.
As discussed above, these options set the color of the specific parts, blue or green,
for example.The label argument is simply the text you want displayed, enclosed in
double quotation marks (“ “).

Each visual declaration must have a set of opening and closing braces before
and after the arguments, just as in a Java method or class.

The next declaration, obstacle, is new to Rossum version .50 (See Figure 7.18).
It defines a wall that can accept more geometry arguments (to create a octagonal
object for example). It is essentially a wall with more geometry coordinates
allowed, as it blocks target influence and causes sensor events.There is one
restriction with the geometry arguments: Every shape created must be a polygon that
does not intersect itself.

Figure 7.18 Declaration of Obstacle

obstacle box {

geometry: x1, y1, x2, y2, xn, yn;

[offset: x1, y1;]

[orientation: degrees;]

}

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 265

266 Chapter 7 • leJOS Tools

Instead of using the geometry statement, Rossum provides a polygon state-
ment that creates a round; n-sided shape for you, with the specified number of
sides and radius.

polygon: numberOfSides, radius;

Besides walls, any shape created with a geometry or polygon statement can be
supplied an offset and a rotation. If a polygon was created with 4 sides and a
radius of 1.0, then an offset of (1.0, 1.0) would put the polygon at (1.0, 1.0), and
it would be drawn from that point.An orientation statement allows you to rotate
the shape a specified number of degrees, to make a flat square into a rhombus, or
a turn a chair model so it faces the room instead of the wall.The offset and ori-
entation statements handle rotation and translation for you, so you can create an
object at (0,0), then move it to the correct spot more easily.

Targets are 2 dimensional point sources of “light,” modeling objects like
candle flames and flashlights (See Figure 7.19).A flashlight can be modeled by
placing two walls at angles to the target, creating an area that, while it cannot be
passed through, can block the target’s influence, creating a virtual cone of light.

Figure 7.19 Declaration of Target

target Goal {

geometry: x1, y1, radius;

[fillColor: color;]

[lineColor: color;]

[color: color;]

[label: text;]

}

The (x1, y1) geometry argument is the center of the target, and the radius cre-
ates a circle around the target for human reference only.The actual detection
range is controlled by RsBodyTargetSensor, which is discussed later.

Placements are declarations where Rossum places the robot at the beginning
of the simulation (See Figure 7.20). In the current Simlink version, this cannot be
specified, and is called “home” by default. Later versions will take advantage of a
new .50 feature, random placements.This method, when enabled, will cause the
Rossum simulator to place the robot at a random defined location. Every random
spot must still have a placement, but any placement available can be chosen.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 266

leJOS Tools • Chapter 7 267

Figure 7.20 Declaration of Placement

placement Home {

geometry: x1, x2, robotOrientation, radius;

[fillColor: color;]

[lineColor: color;]

[color: color;]

[label: text;]

}

The geometry coordinate (x1, y1) is the position of the robot’s center (pivot
point) when placed at that placement.The robotOrientation is the number of
degrees the robot is to be turned from 0°, which is a straight line to the right.
The radius is the approximate radius used when Rossum draws the “home plate”
icon, signifying a placement position.

To use a line-following robot, you must use the floor paint feature or line
elements (See Figure 7.21).These lines have selectable colors and regions, which
allow them to be differentiated between by humans and the robot, respectively.
These lines must be detected by a RsBodyPaintSensor, as it is the only sensor that
looks down.

Figure 7.21 Declaration of Floor Paint

paint blackLine {

geometry: x1, y1, x2, y2, xn, yn;

color: color;

region: region;

}

Floor paint geometry is described with a set of coordinates much like the
ones used in specifying obstacles.A given geometry statement can span multiple
lines, by putting each coordinate pair on a separate line, ending with a comma.
The last line will instead have a semicolon, like this.

paint longLine {

geometry: 0, 0,

1, 1,

2, 2;

}

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 267

268 Chapter 7 • leJOS Tools

See how the geometry line has been extended over multiple lines, each with
their own comma, and ending with a final semicolon? You can do this for any
geometry statement, whether to make it more readable, organized, or any other
reason you see fit.

Navigational Declarations
The two navigational declarations, node and link, provide a way to create a virtual
system of roadways that a robot can use to navigate—useful for maze robots, path
finding robots, or any other problem that requires a preset path to work.You
might want to spend some time optimizing the path-finding algorithm rather
than facing errors from the path detection section.This will also help improve the
theoretical performance, while further acting as permanent “floor paint.”

The node declaration specifies a point in the floor plan that will form an end-
point of a segment or segments that define the navigational network (See Figure
7.22).These nodes can form endpoints, corners, loops, and other paths possible
with floor paint.

Figure 7.22 Declaration of a Node

node start {

geometry: x1, y1;

[label: text;]

}

For nodes and links, the lineColor and fillColor statements have no effect,
although they are allowed in the code. Every node or link is drawn in a light
cyan color.The label is for human reference only, and can be used for node
identification.

Links are the actual roads between node markers (see Figure 7.23).These
links form the lines a robot can follow as it makes its way across a floor plan, just
as highways and intersections form real roadways.

Figure 7.23 Declaration of Link

link startLink {

nodes: node1, node2;

}

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 268

leJOS Tools • Chapter 7 269

Links can only connect to one node, but one node can connect to multiple
links. Links do not support lineColor or fillColor labels , but as with node, they do
not reject their inclusion.

While the system of nodes and links is not currently implemented in
Simlink, you could implement it in your custom robot code.There is no compa-
rable functionality for leJOS as the floor paint feature is designed for the purpose.
Since using this network could be classified as “cheating,” it will most likely
remain unimplemented. Use floor paint for a navigational gridwork or guide.

NOTE

Andy Gombos hopes to develop a floor plan generator to make this
design process easier. You will have selectable components, which you
can then use to draw a floor plan out graphically, with no measurement
required. Look for this and other tools in a future Simlink release.

Creating a New Simlink Robot Body
Robot bodies in Simlink are represented as Java classes, with Rossum classes
allowing you to create simple designs. Currently, only a differential system (where
a motor drives each wheel independently) is available.This system is also limited
to two wheels, so your mobility options are limited.Therefore, the main reason to
currently create a new robot body is for correct sensor positioning and correct
wheel modeling.There are several important classes used to create a new robot
model.

Physical RsBody derived classes include:

■ RsBodyArt

■ RsBodyShape

■ RsWheelSystem

Physical sensor representations include:

■ RsBodyContactSensor

■ RsBodyTargetSensor

■ RsBodyRangeSensor

■ RsBodyPaintSensor

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 269

270 Chapter 7 • leJOS Tools

These classes allow you to create a working, interactive, visual model to use in
simulations.The base class is RsBody. RsBody is a container class for all the other
body elements and serves as an easy way to represent a given design in the
Simlink and Rossum worlds.The only method in RsBody that is important in
creating a robot design is addPart(RsBodyPart part), which registers a new design
piece to be drawn.

Creating a body is much like creating the same body with LEGO bricks.
Each section, whether it be the chassis, a moveable arm, or a sensor, is created
from the same beams and plates as a truck or a city.The Rossum classes all derive
from RsBody, and those base classes—RsBodyArt, RsBodyShape, and
RsWheelSystem—form the beams and plates of the Rossum world.

Creating a Body: Passive Components
The first classes we will cover are the base classes, or the classes related to the
main body of the robot, listed previously as derived from RsBody in the table.

The RsBodyArt class provides a way to represent lines, numbers, letters, and
shapes as drawings on the robot body.These representations do not interact with
the environment, however; they are strictly for accurate identification or repre-
sentation, much like a sign or label.The constructor for RsBodyArt, shown in
Figure 7.24, requires a list of points, and the number of points in the list. In this
aspect, it is similar to a geometry statement for a floor plan.

Figure 7.24 RsBodyArt Constructor

RsBodyArt (double[] pointList, int nPointList)

The point list is specified as a series of (x,y) coordinates, listed in x1, y1, x2,
y2,... format, with one coordinate occupying one array element.The nPointList
argument is half the total length of the array, or the number of complete (x,y)
coordinates that can be created from the array data.You can easily reuse parts of
drawings, and then extend them by putting in, say, twenty coordinate pairs, then
specifying nPointsList as fifteen.Then, the last five coordinate pairs can be used by
passing the full twenty point value, and you will get whatever the last five coordi-
nates represented, such as another letter. Keep in mind that while you can limit
reading the end of the array, you cannot change the beginning.

RsBodyShape is the base class for all physical parts that interact with the
Rossum environment.The classes derived from RsBodyShape describe the chassis,
or body, of the robot, as well as active components such as sensors.To create a

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 270

leJOS Tools • Chapter 7 271

body that is a shape other than a circle, you must supply a set of coordinate pairs,
just as with floor plan declarations and RsBodyArt.As with RsBodyArt, the coordi-
nates are inserted into the array as x1, y1, x2, y2, See Figure 7.25 for
RsBodyShape’s constructor, which also shows that you must specify the number
of coordinates contained in the array.

Figure 7.25 RsBodyShape Constructor

RsBodyShape (double point[], int nPoint)

The coordinate system for RsBodyShape and RsBodyArt is different than that
of the floor plans.The robot design is centered around (0,0), with (1,0) being one
meter to the right of the robot.This can lead to some errors in the design, so
remember that you start in the center of the robot.Also, as with floor plan obsta-
cles, you cannot have an intersecting polygon. If your robot is in the shape of two
triangles with their points together, then each triangle is a separate body piece,
since to make it one would violate this rule.This will not be an issue with most
robots, especially since an intersecting LEGO MINDSTORMS design would be
fairly hard to do.

If you are creating a circular body shape, such as the demonstration
ClientZero body provided in the Rossum distribution, there is the RsBodyCircle
class to make it easier.This class functions much like a floor plan’s polygon state-
ment, where you specify the center point and the radius (See Figure 7.26).

Figure 7.26 RsBodyCircle Constructor

RsBodyCircle (double xCenter, double yCenter, double radius)

The (xCenter, yCenter) coordinate pair is the center of the circle.A center of
(0,0) is the center of the robot body, while centers of (1,0) and (-1,0) would pro-
duce an “OO” shape, assuming radii of one meter.The radius of the circle is
measured in meters, so a radius of one meter would equal a circle two meters
across. Since the default unit is the meter, any units for robot body design must
be in meters, as presently there is no way to define a unit for use.

The RsBodySensor derivative classes, RsBodyContactSensor, RsBodyTargetSensor,
RsBodyRangeSensor, and RsBodyPaintSensor, are the active parts of the robot design
(the chassis parts, or the passive parts, were discussed previously). For our pur-
poses,RsWheelSystem is considered active here due to its motion control proper-
ties, although it is discussed as a passive part in the Rossum User’s Guide.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 271

272 Chapter 7 • leJOS Tools

Active Body Classes: Sensors and Wheels
RsWheelSystem defines how a simulated robot moves—its speed, turning radius
and wheel base are all definable.To have the Motor class function correctly, some
explanation needs to be given about how it is written.

The Rossum simulator has no way to control individual motors, or even
motors themselves.The robot is simply propelled by calling an RsTransform on it,
telling the drawing methods to move the robot, with all of its parts in the RsBody
container class, to a new location.Therefore, there was a need for a way to hack
the simulator into allowing control of different motors.This is done by calcu-
lating how many wheel “clicks” it will take to get out of the floor plan from the
given location and speed, then using that as a base value. It modifies the values,
such as movement speed and the number of clicks to move each wheel, to pro-
vide the correct motor actions. Because of this, speed is set in several ways. In
later releases, there should be options to control how speed is regulated, but for
now, it is simply done by the wheel system setup.The speed is calculated by the
maximum wheel system speed, the number of clicks in a full rotation, and the
current power level.

The number of clicks in a rotation and the maximum wheel speed are both
set by the RsWheelSystem constructor, shown in Figure 7.27.These values are
used as the basis of motor movement, and determine the main physics at work.

Figure 7.27 RsWheelSystem Constructor

RsWheelSystem (double wheelBase, double radius, double thickness,

double nStepPerRevolution, double maxStepsPerSecond)

The wheelBase parameter is the distance between the wheels, measured in
meters.The radius is how tightly a robot can turn in a circle, just like a car or
other wheeled vehicle’s turning radius.The thickness parameter is how thick the
wheels are, measured in meters.The parameters nStepPerRevolution and
maxStepsPerSecond are the main basis for movement calculations. For purposes of
compatibility with a rotation sensor implementation in a later release, this should
be equal to the number of counts you get on a rotation sensor for every com-
plete turn of your robot’s wheel. It also affects the resolution of the movement,
but for LEGO MINDSTORMS-sized projects, the inaccuracies should be slim to
none.The maxStepsPerSecond parameter specifies the maximum speed of the
motor.This value should be used in conjunction with nStepPerRevolution to set
the speed of the motor and gear assembly—If a wheel has sixteen counts for

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 272

leJOS Tools • Chapter 7 273

every rotation, but can only rotate two times a second, then the maximum dis-
tance that can be traveled is thirty-two steps. Different gear trains can affect this
value, but it should be set at power level eight—changing the power level could
result in incorrect behavior.

The various sensor classes can be used to detect every kind of object in the
floor plan.Target sensors, contact sensors, ranging sensors and paint sensors com-
prise the Rossum sensor toolkit. In future releases, it is expected that a Simlink-
compatible light sensor and source will be developed.This sensor, along with a
rotation sensor, will provide a more accurate and useful environment in which
LEGO MINDSTORMS robots will be simulated.Although their expected
implementations are described later, they may change as they are implemented.

The first sensor that is actually implemented is the contact sensor. Due to
automatic sensor type detection algorithms, there are specific names that sensors
must have in order to be registered. For example, if a sensor is on port one, then
it is required to be named “Sensor1,” and a sensor on port three is required to be
named “Sensor3.”All of the necessary conversions and manipulations are per-
formed based on the detected sensor types, allowing existing leJOS code to go
unbroken.The sensor name must be set with the setName(String name) method—
the given name in the designing class will not matter.

The contact sensor is rather easy to set up.As with most sensors and other
body parts, you must supply an array of coordinate pairs and the number of sup-
plied coordinates, as shown in Figure 7.28.

Figure 7.28 RsBodyContactSensor Constructor

RsBodyContactSensor (double[] points, int nPoints)

The point array will generally be a square, to describe the square gray touch
sensor block. However, if your sensor is attached to a semi circular bumper on the
left side, this must be drawn and modeled as well in order to provide accurate
detection.As always, the units are meters. nPoints is the number of supplied coordi-
nates, but changing this value doesn’t really help, as it will be attached to the same
sensor space. Raw mode for contact sensors always returns 800 + a random
number in the range of zero to fifty, in order to simulate average contact sensor
values. Unfortunately, multiple sensors on a single port are not currently supported,
although a special flag may make it possible to differentiate between them.

Target sensors require some more explanation about how they are hacked to
be used as light sensors.The target, while a point source, is used as a temporary
light source.Therefore, the light sensor detects the targets, and some simple

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 273

274 Chapter 7 • leJOS Tools

algorithms are used to convert the values into the raw and percentage values.
Therefore, the bins (or divisions) of area and ranges should be set to reflect the
average light sensor, but modified for your conditions. For example, the “perfect”
light sensor would be configured with 1023 bins for distance to match up with
the 1023 values that a raw value can provide.This is necessary for correct raw
mode readings, and conversion to percentages. Since Simlink is not completed,
Andy cannot yet say if firing 1023 events in a short time will bog down the soft-
ware, but he suspects it will. In this case, a value lower than 1023 can be used,
with each bin scaled to meet the needed resolution.

A bin is a section of a sensor’s view, like a virtual grid laid over the area.The
values specified by the sensor detection area width and height are used to deter-
mine the size of each bin; 200 bins over a large detection area may be smaller
than 20 bins over a smaller area. Customize this value for your application to get
the most accurate readings.

You can also define the int getRangeBins(int nRangeBins) method to return the
number of bins used by the light sensor. If this method is not defined, then the
default 1023 value will be assumed; if it is smaller than 1023, then it will be
appropriately scaled.

The basic constructor of a target sensor, shown in Figure 7.29, is much more
complicated than any other constructor used thus far.The myriad of variables
you can use define the exact characteristics of the target sensor, many of which
must be guessed at for the real sensor model.

Figure 7.29 RsBodyTargetSensor Constructor

RsBodyTargetSensor(double[] point, int nPoint,double xDetector,

double yDetector,

double sightAngle, double width, double maxRange, int nWidthBin, int

nRangeBin)

The point array is comprised of the coordinate pairs describing the sensor.
Since the light sensor is a rectangle, your sensor should be as well; for accurate
depiction and detection of targets.The xDetector and yDetector values specify the
(x,y) coordinate for the detection point of the sensor. For the target sensor, this
area should be on the front and slightly left of center. Since Rossum is a two-
dimensional environment, there is no height setting, nor does the sensor detect
different height values.

The sightAngle parameter specifies the angle from 0° to which the sensor is ori-
ented. 0° is specified as the front of the robot, facing to the right at construction

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 274

leJOS Tools • Chapter 7 275

time. For example, the sensor is looking down from the top, with the sensing pho-
totransistor facing “up”.The 0° mark is a perpendicular line from the y axis, or the
positive x axis.

The width and maxRange describe the detection area for which the sensor can
be used. Since a light sensor can detect different amounts of light, these values must
be chosen for the specific application. If you add a one-hole beam to the front of
the sensor, the effective width value will be lower.This value is the angular mea-
surement in radians, which can be converted from degrees by the formula:

radians = degrees * PI / 180

The maxRange argument is the number of meters at which the sensor can
detect a target on the floor plan.This value can be very large, as you will get a
value proportional to distance. However, if you want to simulate a room in semi
darkness, this value should be set appropriately to model a less powerful light
source.

The nWidthBin and nRangeBin arguments are used to set the sensitivity of the
sensor.A sensor event will be fired for each change from one bin to another.As
mentioned before, it might be a good idea to limit the fired events in order to keep
the simulator from bogging down, so choose appropriate values. Higher values get
more precision, accuracy, and realism, while lower values result in fewer listener
events your robot program must handle.Also, in the future, a threshold value may
be specified in the run configuration for the number of bin changes to report.

A note on the target sensor—a light sensor is expected to be developed, along
with a light object, for the floor plan in later releases.This sensor will have more
natural parameters, but to make it more useful to developers, the parameters will
be similar to the target sensor values.

The range sensor can function as either an ultrasonic range sensor, such as
those constructed by John Barnes, or as a proximity sensor, such as the IRPD
sensors like those sold by Pete Sevcik.This sensor can also be used in place of the
IR radar that is used as proximity detection with the light sensor.This sensor is
set up much like the target sensor, as shown in Figure 7.30.

Figure 7.30 RsBodyRangeSensor Constructor

RsBodyRangeSensor(double[] point, int nPoint, double xDetector, double

yDetector,

double sightAngle, double maxRange, int nRangeBin)

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 275

276 Chapter 7 • leJOS Tools

The point and nPoint parameters are the same as other sensors.The xDetector
and yDetector values are the same as the target sensor—the virtual point where the
transceiver is placed on the sensor.The sightAngle is the angle from 0° that the
sensor is pointing at; a wall on this virtual axis will be registered as the distance.
The maxRange and nRangeBin values must be set to the sensor’s set specifications.
For example, John Barnes’ ultrasonic sensor must be set to a distance of ~1.82
meters and have 100 bins.This matches exactly with the values the sensor
returns, so your distance readings will be accurate. Other sensors will have dif-
ferent characteristics, and must be set accordingly.

Paint sensors are simply downward looking light sensors that can only detect
paint strips on the floor generated in the floor plan (See Figure 7.31).The paint
sensor operates on the premise of regions, when you create the strip, you specify
a region.The paint sensor is only sensitive to that region, and will change states
when entering or exiting the area.All lines are assumed to be black or another
dark color, so a state change to hot will cause the reported percentage value to
drop. In a later release, these colors should be configurable.

Figure 7.31 RsBodyPaintSensor Constructor

RsBodyPaintSensor(double[] point, int nPoint, double xDetector,

double yDetector)

All parameters are the same as a light sensor, with the xDetector and yDetector
doubles specifying the point that paint will be sampled for under the sensor.The
setRegionSensitivity(int region) method allows you to set the region, or color of
floor paint, to which the sensor is sensitive.

For any sensor, the setHotFillColor(java.awt.Color c) and setHotLineColor
(java.awt.Color c) methods can be used to specify the colors shown when a sensor
has a hot detection.The default color is a translucent orange color.The default,
or normal, colors can be set with the setFillColor(java.awt.Color c) and
setLineColor(java.awt.Color c). Setting this to null will cause the sensor to not be
rendered, but still be active for detections.The contact sensors in ClientZero.java
demonstrate this. Having a sensor not be rendered can be uesful in many cases
–in a robot where the body is the actual touch sensor, for example. In this case,
the area can be defined but you will not see an incorrect depiction of a sensor
which is not visible in real life.

One final note—when adding parts to the RsBody class, the parts added last
are rendered on top of the parts added earlier; that is, they overwrite the robot
body underneath.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 276

leJOS Tools • Chapter 7 277

Creating a Simple Robot Design
Designing a robot from these base classes can be challenging. Let’s build on an
example from Building Robots with LEGO MINDSTORMS by Mario and Giulio
Ferrari; see Figure 7.32 for the simple differential drive configuration.We will
add a light sensor, so the robot very simply consists of a six-inch (15.24 cm)
square body with some wheels and a light sensor on one end. However, it pro-
vides a good example of how to create a robot manually based on the Rossum
classes. Figure 7.33 shows how the rendered robot will appear on the Rossum
screen.The comments in the code explain why each value was passed due to a
certain parameter. One note however—the light sensor values were picked as rea-
sonable for a given environment, but other values are probably more suitable to
your situation.They were merely picked out of thin air, so I wouldn’t use them as
a base.

www.syngress.com

Figure 7.32 Simple Robot Design

Figure 7.33 Robot Rendered on the Rossum Screen

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 277

278 Chapter 7 • leJOS Tools

To start, make a list of the sensor and body classes needed in this example. By
adding a light sensor, we will need the following classes:

■ RsBodyShape

■ RsWheelSystem

■ RsBodyTargetSensor

The finished class is shown in Figure 7.34, and can be found on the CD that
accompanies this book.We’ll discuss the structure of the class, and how the spe-
cific classes are initialized, later in this section.

Figure 7.34 Listing of SimpleRobot.java

import rossum.*;

import java.awt.Color;

public class SimpleRobot{

public static RsBody build() {

RsBody body = new RsBody("SimpleRobot");

double[] bodyShape = {

-0.064, 0.064,

0.128, 0.064,

0.128, -0.064,

-0.064, -0.064};

RsBodyShape shape = new RsBodyShape(bodyShape, 4);

shape.setFillColor(Color.lightGray);

shape.setLineColor(Color.lightGray);

body.addPart(shape);

RsWheelSystem wheels = new RsWheelSystem(

.160, //Wheelbase of 16cm

.0248, //Radius of wheels - 49mm / 2

.028, //Wheel thickness - 28mm

16, //Steps per revolution, set for rotation

sensor

32); //Max steps per second, limits speed to 2

rotations per second

www.syngress.com
Continued

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 278

leJOS Tools • Chapter 7 279

wheels.setFillColor(Color.black);

wheels.setLineColor(Color.black);

body.addPart(wheels);

double[] lightC = {

0.112, 0.008,

0.144, 0.008,

0.144, -0.008,

0.112, -0.008};

RsBodyTargetSensor lightSensor = new RsBodyTargetSensor(

lightC, //Coordinates for sensor

4, //Number of coordinates

144, //X focal point coordinate

0, //Y focal point coordinate

45 * Math.PI / 180, //Angle sensor can see in radians

3, //Distance sensor sight area is wide

3, //Distance sensor can "see"

15, //Number of bins wide

1024); //Number of bins across 1023 for accurate

light sensor

lightSensor.setName("Sensor0");

lightSensor.setFillColor(Color.blue);

lightSensor.setLineColor(Color.blue);

body.addPart(lightSensor);

return body;

}

public int[] getDriveMotors() {

int[] motors = new int {0, 1}

return motors;

}

}

www.syngress.com

Figure 7.34 Continued

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 279

280 Chapter 7 • leJOS Tools

Note how the lightSensor object’s name is set with setName(String name).This is
very important: the sensors must be named Sensor0, Sensor1, and Sensor2 to be
detected and correctly set up by the Sensor class.Also, a new method was used.This
method int[] getDriveMotors() is required by Simlink. It defines which motor ports
are used as the driving wheels. 0 corresponds to Motor.A, and 1 corresponds to
Motor.B.Without this method, a MethodNotFoundException error will be thrown.

Future Tools for Designing Robots
In the future,Andy Gombos will be creating a body plan editor and floor plan
editor, with which you can pick the class to be used, then draw out the compo-
nent to be placed. Further, adding order will be adjustable, so that a sensor can be
rendered on top of the body.

When these tools are finished, they will be accessible from a toolbar on the
top of the Simlink screen, like a new simulator run.This improvement will be

www.syngress.com

Converting Bricks and Feet to Rossum Meters
When creating a Rossum robot, you may wonder how you convert
twenty-six studs to a meter value for use in the class initialization. The
simple answer is that one stud equals eight millimeters, or .008 meters.
Therefore, two studs equal sixteen millimeters, or .016 meters.

If you prefer to think of the dimensions in English units, one stud
equals .32 inches, or eight millimeters multiplied by .04 (8 * .04).

One stud is also equal to .02625 feet, so a robot that is thirty-eight
studs long is almost one foot.

The chart below lists the conversion factor to convert feet into
meters. To use the chart, multiply the feet by the number listed to get
the value.

English Unit Metric Conversion Factor

One inch 25.4 millimeters
One inch 2.54 centimeters
One foot 0.3048 meters
Three feet 0.9144 meters

Bricks & Chips…

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 280

leJOS Tools • Chapter 7 281

available in the first Simlink release, or one soon thereafter. More improvements
will be made as bugs are found, or new features are thought of. Simlink is his
main priority though, so don’t expect it for some time.

Additional Tips and Tools for leJOS
Many tricks and tips can be used to ease development of leJOS programs. Some
of these, such as creating a program to automatically compile, and (if no errors
are found) download, can be relatively simple. Others, like adding a module to
your IDE for compiling and downloading shortcuts can be harder, depending on
your IDE. Configuring your IDE was discussed earlier in this chapter under the
section “Using Existing IDEs,” so refer to that section for more information.

There are also tools available that are useful for checking your code for the
simple mistakes that are hard to debug on the RCX, including these two:

■ Jlint (http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm)

■ Jad (http://kpdus.tripod.com/jad.html)

Jlint is a Java version of the popular lint for C programs. Jlint can be useful,
since debugging programs on the RCX, especially ones that deal with a logic
errors (such as an incorrect loop structures), can be difficult. It can also detect other
“assumptions” you may have made, and tells you if they are incorrect. Jlint, along
with Simlink, can be used to debug programs more easily than on the RCX.

Jad allows you to retrieve a compiled class file for editing, even if you have
lost the source.This can be especially useful when an unwanted modification is
saved, causing the program not to function. If you have compiled the class before,
then a tool like Jad can help you use the class as a backup copy, though no com-
ments are preserved.

Jad can also be used to decompile other Java robot files that may have only
been distributed in class form. Decompiling a program you did not create can
help you learn programming styles, ways to implement complex functions, or just
how to better code for the RCX.As you gain further experience in the leJOS
API, the uses of these tools and scripts will become more apparent.

Another useful development tool is the RCXTools package by Tim Rinkens,
which includes RCXDownload and RCXDirectMode.These two programs,
which we’ll cover in the next two sections, allow you to interface with the RCX
from a PC.Also, the package allows you to download programs, read sensor values,
and play tones, all from your PC. However, the current release does not support
USB connectivity, which means it is incompatible with the RIS 2.0 system.This
functionality is planned for an upcoming release.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 281

282 Chapter 7 • leJOS Tools

RCXDownLoad
RCXDownload (part of the RCXTools package, as we just mentioned) is much
like lVI, but without the editing aspect.The main window, shown in Figure 7.35,
contains several buttons and a text area where errors and informative messages are
displayed.

The Buttons at the top (Open, Compile, Download, and Cancel
Download) are all related to the file shown in the drop down box, currently
shown as RCXReciever.java, which was chosen via the Open button.The other
buttons compile, then download the program to the RCX. If the download
needs to be canceled for some reason, the Cancel Download button can stop
the download.

The mail text area shows any informative messages from RCXDownload, as
well as any compilation errors, or communications errors when downloading.

The buttons on the bottom (Download Firmware, Reset, Preferences,
and Exit) deal with the configuration of the RCX and RCXDownload.

www.syngress.com

Figure 7.35 RCXDownload Main Window

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 282

leJOS Tools • Chapter 7 283

Download Firmware allows you to download the leJOS firmware easily. Reset
clears the text area and drop down file list box.The area to be cleared is
selectable, so a new compilation can start in an empty text area, and a new pro-
ject can have the file area cleared. Exit quits RCXDownload.

The Preferences dialog, shown in Figure 7.36, allows you to set the leJOS and
Java home directories, as well as which communications port to use.The colors can
also be set to Normal (green and yellow), Mauve (light purple and dark purple, the
default Swing colors), or System, which on Windows is gray and blue.

RCXDownload allows you to access the static functions of the RCX, or
those that do not require a program to be running on the RCX. It also serves as
a graphical build utility, which, in conjunction with your favorite IDE, can form
a full leJOS editing environment without a special IDE configuration .

RCXDirectMode
RCXDirectMode’s main window provides direct, instant control over a robot’s
motor functions, as well as return sensor readings. RCXDirectMode can also
create noises through the RCX’s internal speaker. It does all of this by down-
loading a control program to the RCX, which then allows RCXDirectMode to
poll sensors and control the motors.This main window, shown in Figure 7.37, has
buttons and sliders to control your robot.

The sliders and buttons under the labels for A, B, and C control the motors.
The sliders control motor power, while the buttons control direction and state
(on or off).The button Stop all stops all the motors currently running, as it’s
name implies.

The Sensors panel contains the controls for sensors 1, 2, and 3. Sensor types can
be set here, then the value polled by using the Value button.The received sensor
value is put into the white text field where –1, -2, or -3 is currently displayed.

www.syngress.com

Figure 7.36 RCXDownload Preferences Dialog

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 283

284 Chapter 7 • leJOS Tools

The Sound panel allows you to create tones and sequences of tones that are
played on the RCX’s internal speaker.While this functionality does not require
the downloaded program stub, it does require firmware to be loaded.

The bottom panel contains the Download Direct-RCX, Battery-Power,
Preferences, and Exit buttons.The Download Direct-RCX button allows
you to download a small leJOS program to the RCX to allow you to control the
motors and sensors.The Battery-Power button returns the battery voltage of
the batteries in the RCX, both in a raw value and in millivolts.

The Preferences button displays the dialog shown in Figure 7.36. Each
dialog not only modifies its own settings, but also those of the other programs, so
a change in RCXDirectMode affects RCXDownload.

The RCXTools package provides a simple, intuitive interface to RCX inter-
action. Its ability to download programs, directly control the RCX, and download
the firmware make RCXTools one of the most downloaded leJOS extensions
available. Combined with an IDE and leJOS distribution, the RCXTools package
can create a complete leJOS editing and development environment.

www.syngress.com

Figure 7.37 RCXDirectMode Main Window

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 284

leJOS Tools • Chapter 7 285

Summary
If you have successfully configured the various different editors and software
packages described in these preceding pages, then congratulations! Correctly set-
ting the environment variables and paths for each new program, especially when
one may cancel the other’s changes, can be very frustrating.

Using the command-line programs allows you, the developer, more control
than using an IDE. However, there’s tradeoff between convenience and control,
and the ease-of-use factor can make an IDE useful in many instances.
Configuring a standard IDE (like Forte) may be possible—you need to check and
see what options are provided.Tools like lVI and RCXTools come pre-config-
ured for use with leJOS, which makes setup and use a snap.

Debugging on the RCX can be difficult at times, and in some cases, down-
right impossible. Simlink provides a way to gather more exception information
than previously possible, leading to easier development cycles. Interpreting an
exception on the RCX’s LCD could result in the wrong error being tracked
down, as the least significant digit only of the exception is displayed.

Controlling a robot from afar can be very difficult when trying to use the
buttons on the RCX.A program like RCXDirectMode can help you turn off
motors without the use of the LEGO remote. IDEs like lVI or RCXDownload
can enable you to compile and download your new leJOS creations with just a
few mouse clicks. Configuring your favorite IDE for use with the leJOS com-
mand-line programs can allow you to use all of its features when creating a robot.

All of these tools and techniques can increase your enjoyment while using
leJOS, LEGO bricks, and LEGO MINDSTORMS. Each new third-party tool is
a new building block upon another, just like the bricks and beams of your robots.

Solutions Fast Track

Programming Environments for leJOS

� The command line tools provide ultimate control in terms of the
options you can use, but sacrifice ease-of-use.

� GUI-based tools can simplify the use of the command-line tools, but
sacrifice some elements of control.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 285

286 Chapter 4 • leJOS Tools

� Command-line tools included in the leJOS package include lejosc, lejos,
lejosrun, lejosfirmdl, emu-lejos, and emu-lejosrun.

� The free IDE called Forte provides a visual GUI creator, a debugger, and
compilation functions. Unlike JBuilder and Eclipse, it provides the seem-
ingly unique ability to configure the compiler and Java runtime you use.

Using the leJOS Visual Interface

� The leJOS Visual Interface (lVI) is a custom IDE especially configured
for use with leJOS.

� The options in the Tools menu allow you to automatically compile, link,
and download programs, as well as download firmware.

� After graphically setting the necessary environment variables and
settings, you can create, edit, compile, and link a file.

Using a leJOS Simulator

� Simlink is designed to be an interface between Rossum’s Playhouse and
the low level APIs provided by leJOS.

� The Rossum simulator has a syntax and format of its own; using its
navigational and other declarations and specifications, you can create
visual and non-visual elements of floor plans.

� Robot bodies in Simlink are represented as Java classes, with Rossum
classes allowing you to create simple designs.

� Note that sensors and motors under simulation do not work exactly as
in real life.

Additional Tips and Tools for leJOS

� Java tools like Jlint and Jad can be used on leJOS programs.

� The RCXTools package provides a clean interface to many RCX
functions, while also allowing you direct control.

� The LCDText class included with RCXDirectMode can be used to test
LCD words before they are downloaded to the RCX.

www.syngress.com

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 286

leJOS Tools • Chapter 7 287

Q: lVI seems to forget my preferences and other settings.What’s wrong?

A: This is a known problem with no known solution.The author of lVI says a
later release will fix this issue.

Q: Why will Simlink not render my robots correctly?

A: You may have an issue with out-of-order coordinates. Make sure they are in
the right order, and add a final ending coordinate to form a complete shape.

Q: Why is there no option for USB on lVI or RCXTools?

A: USB support will be added to RCXTools in a future release, the latest lVI
release includes USB support.

Q: I keep receiving the error “No response from RCX.”What’s going wrong?

A: Try downloading the firmware again.To remove the current firmware, take
out the RCX’s batteries, then reinsert them.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 287

177_LEGO_Java_07.qxd 4/3/02 10:11 AM Page 288

leJOS Internals

Solutions in this chapter:

■ Advanced Usage of leJOS

■ Examining leJOS Internals

■ Extending leJOS with Native Methods

■ Additional Tips and Tricks with leJOS

Chapter 8

289

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 289

290 Chapter 8 • leJOS Internals

Introduction
In this chapter we will look at the internals of leJOS and the RCX, and delve
into some topics that are a little more advanced than those we’ve covered in the
previous chapters.We’ll start with a section about some advanced features (such as
multiprogram downloading) that will let you load several unrelated programs at
the same time, which is useful for demos or competitions.

After that, we will take an in-depth look at the internal workings of leJOS, in
particular the linker and the virtual machine. Knowing about the internals will
give you a better understanding of what leJOS can do and why there are certain
limitations inherent to the program. By exposing the system we also hope to give
you a framework to help you find your way around the leJOS internals, should
you one day need to explore them yourself—For example, you may want to
know for sure how a certain function is implemented, or you may need to
implement a feature that is not present but is still very important to you. Since
leJOS is open source software, there is nothing to stop you from changing it,
once you know how.

In the next section we take a more hands-on approach and look at native
methods. Native methods are the standard tool for extending the system via
proper C routines, if you need to do some special things with the hardware or
have especially demanding timing constraints, for example.We explain in detail
the steps you have to take in order to successfully implement a native method.

We’ll also show you a few useful tricks, like changing the stack size or
accessing the memory with the already existing native methods.

Be aware that leJOS is still evolving (in fact, while writing this book, we dis-
covered that quantum-mechanical systems and computer systems have something
in common: both change before your very eyes!).While the system will stay
pretty much the same, by the time you are holding this book in hand some of
the details may have changed slightly.

Advanced Usage of leJOS
There are some features of leJOS that are rarely needed in everyday use, but are
still quite handy in special situations. In this section we explore two of them.
Multiprogram downloading can be useful for demos or competitions, where you
want to load several unrelated programs onto the RCX at the same time and be
able to easily change between them. Unrestricted access to the memory of the
RCX can be useful for exploring the internals of the RCX, and for accessing

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 290

www.syngress.com

objects in ways that are forbidden by the Java type system. It can also be used to
implement a persistent storage area in a previously unused space of memory.

Multiprogram Downloading
Like the original LEGO MINDSTORMS firmware, leJOS supports the simulta-
neous loading of several programs into the RCX.This is particularly useful if you
want to run several unrelated programs in your RCX. For example, in a competi-
tion you might want to load the programs of several competitors on one standard
robot in order to avoid unnecessary delays. Or you might want to demo several
of your programs on the same robot. Perhaps you want to quickly exchange the
RCX between different robots without reloading the program.Another applica-
tion where multiprogram downloading is not strictly needed is to give parame-
ters to your program; for example the different programs may just set their
network address and then use a common class for the main part of their work.

In short, being able to load several programs into the RCX at once gives you
more flexibility and avoids the delays associated with loading different programs,
and since common classes are shared, the memory overhead is minimal. However,
unlike with the LEGO MINDSTORMS firmware, it is not possible to load sev-
eral programs into the RCX incrementally; changing one program means that
you must reload all of them.

We will illustrate the creation of a multiprogram binary by a simple example
that contains two programs, Main1 and Main2. Each of these entry classes needs
to contain a program entry point method:

public static void main (String[] arg)

First, compile the classes as usual.The easiest way is to put them all into the
same directory and to execute the following command:

$ lejosc *.java

If you are running a competition you may also want to just accept the .class
files from your competitors directly, without doing the compilation yourself.

Now use the leJOS linker to link the entry classes.The linker will link them
into a single binary, together with any other classes that are used:

$ lejos Main1,Main2 -o Main.bin

Download this binary to the RCX:

$ lejosrun Main.bin

leJOS Internals • Chapter 8 291

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 291

292 Chapter 8 • leJOS Internals

On the RCX you can now select the program you want to run by using the
Program button, and running the desired program.

NOTE

LeJOS does not support starting a program by using the LEGO remote
control.

You can easily extend this method to more than two entry points, to give a
number of RCX unique addresses in a small network, for example.The max-
imum number of program entry points is limited to 255, which in practice is
more than enough. Note that for program entry points with a number greater
than nine, the program number display will be blank, but you can still select and
start them.

Storing Persistent Data
As an example of direct memory access we will implement a simple store for
persistent data that survives stopping and restarting the leJOS program, and even
reloading a corrected program, as long as the persistent data’s format remains the
same.This is very useful if you want to preserve valuable data from one run to
the next:

■ You might have set some parameters by pressing a lot of buttons, and
you don’t want to repeat that for every run.

■ You have calibrated your robot (for example, the light sensor, or the dis-
tance the robot travels in a certain amount of time).

■ Your robot may need to remember the last positions of its joints because
it has no sensors for finding out their absolute position.

■ You want your robot to create and remember a map of the surroundings.

Normal leJOS objects do not survive stopping and restarting a program,
because leJOS reinitializes its object memory when it starts a program.To pass
values from one program run to the next we will use a memory area between
the two ROM data areas near the top of the address space.This area is unused by
the ROM and the leJOS firmware up to version 1.0.4. Later versions of leJOS
use this space for the leJOS heap, but the beginning of this memory area is used

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 292

leJOS Internals • Chapter 8 293

last, so you can expect it to be free at the start of your program.The data will in
fact survive as long as the memory has power. Since it is so useful we have
already added the class josx.platform.rcx.PersistentMemoryArea to the leJOS library
(see Figure 8.1).

NOTE

The version of PersistentMemoryArea in Figure 8.1 is only useful as an
example. Newer versions of leJOS contain a suitable version in their
library. Versions 1.0.4 or earlier need to access memory via the Native
class instead of Memory. A version for leJOS 1.0.4 or earlier is available
on the CD that accompanies this book.

Figure 8.1 PersistentMemoryArea.java

package josx.platform.rcx;

/**

* A memory area for persistent storage.

* Only removing batteries will delete it.

*

* The magic number should be different for each application

* (use a random integer).

* At the moment there can be only one PersistentMemoryArea,

* that will be reinitialized if you change the magic number.

* This may change in the future, with more than one area and

* magic number used to distinguish them.

*/

public class PersistentMemoryArea

{

private static final int MAGIC_ADDRESS = 0xf001;

private static final int SIZE_ADDRESS = MAGIC_ADDRESS+2;

private static final int START_ADDRESS = MAGIC_ADDRESS+4;

private static final int END_ADDRESS = 0xfb80;

www.syngress.com

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 293

294 Chapter 8 • leJOS Internals

private static PersistentMemoryArea singleton = null;

private int size;

private PersistentMemoryArea ()

{

}

public static PersistentMemoryArea get (int magic, int size)

throws OutOfMemoryError

{

if (singleton == null) {

if (START_ADDRESS + size > END_ADDRESS) {

throw new OutOfMemoryError();

} else {

synchronized (Memory.MONITOR) {

if (Memory.readShort (MAGIC_ADDRESS) != magic

&& Memory.readShort (SIZE_ADDRESS) != size) {

// not what we are looking for, need to reinitialize

for (short i = 0; i < size; i++) {

Memory.writeByte (START_ADDRESS+i, (byte)0);

}

Memory.writeShort (MAGIC_ADDRESS, (short)magic);

Memory.writeShort (SIZE_ADDRESS, (short)size);

}

}

}

singleton = new PersistentMemoryArea ();

singleton.size = size;

}

return singleton;

}

public byte readByte (int i)

throws ArrayIndexOutOfBoundsException

www.syngress.com

Figure 8.1 Continued

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 294

leJOS Internals • Chapter 8 295

{

if (i >= 0 && i < size) {

return Memory.readByte (START_ADDRESS+i);

} else {

throw new ArrayIndexOutOfBoundsException();

}

}

public void writeByte (int i, byte b)

throws ArrayIndexOutOfBoundsException

{

if (i >= 0 && i < size) {

Memory.writeByte (START_ADDRESS+i, (byte)b);

} else {

throw new ArrayIndexOutOfBoundsException();

}

}

}

In Figure 8.1 you can see the use of all the methods in josx.platform.rcx
.Memory: that is, readByte, readShort, writeByte and writeShort (read and write bytes
and shorts, respectively).You also see the use of Memory.MONITOR, which locks
the memory so that two concurrent threads will not interfere with each other.
You should also use Memory.MONITOR if you call native methods that modify
memory.As an example, you can look at Button.readButtons, which also uses the
auxiliary memory area defined in the Memory class.

Accessing memory directly is dangerous; you can easily crash your RCX by
writing into the wrong places. In our example we check that the access stays
within the allocated memory area and raise an exception if this is not the case.

To test it you can use the test program PersistentMemoryAreaTest in Figure 8.2,
which is also available on the CD that accompanies this book.

Figure 8.2 PersistentMemoryAreaTest.java

import josx.platform.rcx.*;

/**

www.syngress.com

Figure 8.1 Continued

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 295

296 Chapter 8 • leJOS Internals

* This program tests PersistentMemoryArea

* */

public class PersistentMemoryAreaTest implements LCDConstants

{

private static PersistentMemoryArea pmem;

private static int index;

public static void main (String[] arg)

{

pmem = PersistentMemoryArea.get (6125417, 10);

index = 0;

while (Button.RUN.isPressed());

display();

while (!Button.RUN.isPressed()) {

if (Button.VIEW.isPressed()) {

index++;

display();

while (Button.VIEW.isPressed());

}

if (Button.PRGM.isPressed()) {

pmem.writeByte (index, (byte)(pmem.readByte(index)+1));

display();

while (Button.PRGM.isPressed());

}

}

while (Button.RUN.isPressed());

}

private static void display ()

{

LCD.setNumber (LCD_SIGNED, pmem.readByte(index), LCD_DECIMAL_0);

LCD.showProgramNumber (index);

}

}

www.syngress.com

Figure 8.2 Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 296

leJOS Internals • Chapter 8 297

This program allocates 10 bytes of persistent memory and lets you view and
change it with the buttons.The View button increments the bytes for viewing,
which is indicated by the variable index, and the Prgm button increments the
currently viewed byte.When you go past the 10 bytes, readByte throws the
ArrayIndexOutOfBoundsException .This is intentional; we’re testing the bounds-
checking.The magic number should be different for each application so that the
data doesn’t get mixed up.

Examining leJOS Internals
In this section we will examine the internal structure of leJOS from several dif-
ferent points of view.The high-level view we’ll take on the data flow will show
you how the leJOS tools work together to transform Java source code into an
executable program on the RCX.After this global view, we’ll take a closer look
at the linker, which is the most important tool in this chain. Next, we’ll look at
the RCX, starting with the running Java code and its communication with the
external world.We will also take a closer look at both the logical structure and
the memory layout of the software in the RCX, from the Java executable down
to the ROM. Finally, we will show you how the source code of the various
leJOS components is organized.

From Source Code to Execution
Figure 8.3 shows the data flow from the Java source code through compiler,
linker and loader to the executable program in the RCX.

1. The compiler lejosc takes several Java source files and produces several
class files containing Java byte code.This is essentially a standard Java
compiler inside a thin wrapper that sets the class path and some other
parameters appropriately.

2. The linker lejos takes the class files from the first step plus any class files
that are needed from the library, and builds a single executable binary in
an internal leJOS format.

3. The loader lejosrun takes this binary, either directly from lejos or via an
intermediate .bin file, and downloads it into the RCX via infrared (IR)
communications.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 297

298 Chapter 8 • leJOS Internals

4. A loader routine inside the RCX receives the binary and copies it into
memory verbatim.The loader uses the underlying ROM routines for the
actual IR transfer.

5. When you run the program, the virtual machine reads the program and
constant data in the code section, works on the data in the section, and
communicates with the outside via the ROM routines.

www.syngress.com

Figure 8.3 Data Flow in leJOS

.java

Java source code

Compiler

lejosc

leJOS Library

Java class files

Linker

lejos

.bin

leJOS binary

Loader

lejosrun.class

.class

RCX

IR
Java program Java data

Loader Virtual machine

ROM
I/O

Sensors
Motors
LCD
Sound
IR

PC

Versions of the RCX Brick
As of this writing there exist three versions of the RCX:

■ RCX 1.0 with power adapter (in RIS 1.0, #9719)
■ RCX 1.0 without power adapter (in RIS 1.5, #9747)
■ RCX 2.0 (in RIS 2.0, #3804)

From a programmer’s viewpoint, there is no difference among the
versions of the RCX; they have the same micro controller and ROM code,

Bricks & Chips…

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 298

leJOS Internals • Chapter 8 299

The most important leJOS-specific components in this chain are the linker
and the virtual machine, which we will discuss in detail in the following sections.

Inside the leJOS Linker
The leJOS linker is a program written in Java inside a small wrapper written in C
that calls the Java Virtual Machine and supplies it with the necessary command
line arguments.

The C Wrapper
The source code for the C wrapper is called “javaexec.c,” and can be found in the
tools subdirectory. It is used both for lejos (the linker for the RCX) and emu-lejos
(the linker for the emulator).To be specific, it executes a command line consisting
of the following parts:

■ The JVM executable Either the contents of the environment variable
JAVA, or java by default if JAVA is not set.Thus you can select a dif-
ferent Java virtual machine by setting JAVA.

www.syngress.com

and all work equally well with leJOS. Other bricks in the LEGO MIND-
STORMS range (the Scout, the CyberMaster and the MicroScout) cannot
be programmed in leJOS, as they lack a sufficient amount of RAM and
have a fixed firmware inside their ROM.

The most important chip in the RCX is the 8-bit H8/3292micro con-
troller from Hitachi. It runs at 16MHz, has 16KB internal ROM and 512B
internal RAM, which is extended by 32K external RAM. It also supports
the RCX’s I/O devices, with analogue inputs to read the sensors, a serial
interface that is used for IR communication, and digital I/O lines for but-
tons, the LCD display and the motors. Hitachi provides a data sheet for
the H8/3297 (Hitachi Single-Chip Microcomputer H8/3297 Series
Hardware Manual at http://semiconductor.hitachi.com/products/pdf/
h33th014d2.pdf). The motors are not controlled directly by the RCX, but
rather via three motor controller chips, which can put the motor output
into four states: forward full voltage, backward full voltage, outputs dis-
connected (float) and outputs short circuited (brake or stop). Motor
power is controlled in software by rapidly switching between float and
one of the three other states. The motor controllers use the full battery
voltage, while the power supply for the micro controller part is regu-
lated to 5V.

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 299

300 Chapter 8 • leJOS Internals

■ -Dtinyvm.write.order=WRITE_ORDER Sets the tinyvm.write.order Java
system property to determine the byte order used by the Java main pro-
gram of the linker for the leJOS binary. WRITE_ORDER is set in the
Makefile when javaexec.c is compiled to either BE for big-endian in
lejos or LE for little-endian in emu-lejos.

■ -Dtinyvm.loader=LOADER_TOOL Sets the loader tool for the Java
main program. LOADER_TOOL is set in the Makefile at compile time
to either lejosrun or emu-lejosrun.

■ -Dtinyvm.home=tinyvm_home Sets the leJOS home directory for the
Java main program.Tinyvm_home is determined at runtime as the
parent directory of the directory where the linker executable resides.

■ js.tinyvm.TinyVM The Java class that contains the program entry point
for the linker.

■ -classpath $LIBPATH:$CLASSPATH Defines the Java class path to
search for the Java classes that are to be linked. LIBPATH is currently
tinyvm_home/lib/classes.jar and $CLASSPATH may be set in the envi-
ronment, if you want to add your own libraries, for example. Note that
for Windows the path separator is a semicolon instead of a colon.

Any other arguments given on the command line follow.
The wrapper also sets the CLASSPATH environment variable to

tinyvm_home/lib/jtools.jar, so that the Java virtual machine can find the Java
main program for the linker.

NOTE

The use of the name “tinyvm” in some of the names has historical rea-
sons, as tinyvm was leJOS’ predecessor.

The Java Main Program
The program entry point of the leJOS linker is the js.tinyvm.TinyVM class in the
file jtools/js/tinyvm/TinyVM.java. It accepts the following command-line
options and arguments:

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 300

leJOS Internals • Chapter 8 301

■ -classpath pathname Sets the class path for linking.This is set by the C
wrapper.

■ -verbose[=level] Sets the verbosity level to 1 by default. On level 1 the
linker prints the class and signature indices.

■ -o filename Specifies the output filename.

■ -gb Sets the output format to the format needed by the Nintendo
Game Boy (we’ll explain this shortly).

■ entry_classes A single non-option argument that contains the entry
classes, separated by commas.

The main program reads the following Java system properties:

■ tinyvm.home Contains the leJOS home directory.

■ tinyvm.loader Contains the name of the loader (lejosrun or emu-lejosrun).
The loader executable must be in the bin subdirectory of the leJOS
home directory.

■ tinyvm.temp.dir Contains a directory for temporary files. However, this
is only used for the Game Boy.The linker uses the file
__tinyvm_temp.tvm__ in the current directory to pass the leJOS binary
to the loader.

■ tinyvm.class.path An alternative way to pass the class path, but it is not
used by the wrapper.

■ tinyvm.write.order Contains the desired write order as either BE (big-
endian) or LE (little-endian).

After parsing the command line, the linker builds a binary, starting with the
entry classes and recursively including all of the classes that are used.This binary
is dumped in little-endian or big-endian order according to the Java property
tinyvm.write.order, with some extra processing for the Game Boy.

Using it directly, you have access to the Nintendo Game Boy option, which is
not available through the standard C wrapper. However, as the current developers
don’t have a Game Boy, it will be necessary to adapt the Game Boy-specific code
to recent developments before it will work.We will not go into further details
about how the support for the Game Boy works in this chapter.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 301

302 Chapter 8 • leJOS Internals

Building the Binary
Building the binary proceeds in several stages, called successively from the
js.tinyvm.Binary.createFromClosureOf method:

■ Load classes First the special classes, then the entry classes and finally
all other classes that are referenced are loaded. For each class, the class
file is read by the js.classfile reader, resulting in a JClassFile object that
represents the class and contains all the information from the class file.

■ Extract information Retrieves the data needed by the leJOS binary
about constants, methods, fields, code, exceptions etc. from the JClassFile
objects and builds records for them.This is done by the various processX()
methods.

■ Store Organizes the various records for the binary into a sequence.
This is done in Binary.storeComponents().

■ Compute offsets Computes the offsets by which the records will refer
to each other in the binary, where the offsets are relative to the begin-
ning of the binary.

■ Post-process code Computes indices into tables, weakens some
opcodes with respect to type checking, and refuses opcodes that are not
implemented (namely the operations on values of type long, the opera-
tions lookupswitch and tableswitch that implement the switch statement,
and operations with wide operands that are not needed due to size limi-
tations in leJOS).The modifications are simple per-opcode changes, so
the structure of the code and the addresses of opcodes are not modified.
For details see CodeUtilities.processCode(byte[] aCode).

■ Report Generates the report of class and method indices for the
-verbose option.

■ Dump Writes the sequence of records to the binary file.

In the Java class file format classes, methods, fields, etc. are referred to by
indices into the constant pool. In the leJOS binary format these are removed
from the constant pool and the references are replaced by the offset for the refer-
enced record.As a consequence, choosing long identifiers does not increase the
size of the binary.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 302

leJOS Internals • Chapter 8 303

The leJOS Binary Format
The output format is suitable as a memory image of the Java program. It is
loaded verbatim into the Java data area on the RCX, and the virtual machine
operates directly with this format.You can peruse the various dump methods to
find out about the exact format, or you can look into the definition for the VM
in vmsrc/language.h, which contains most of the definitions. Here we will just
summarize the sizes of the various records, giving an indication how much it
costs to add a class or a method to a given program:

■ Master record one per binary, 16 bytes

■ Class record one per class, 10 bytes

■ Static state one per static field, uses the length needed for representing
the value. Strings are encoded as references. In the VM this is the storage
area for static fields; on startup it is initialized to all zeros, followed by
the static fields assignments.

■ Static field record one per static field, 2 bytes.This is the table that
points to static field values.

■ Constant record one per int, long, float, double or String constant in
the program, 4 bytes.Table that points to constant values.

■ Method record one per method, 11 bytes + 1 padding

■ Exception record one per exception handler, 7 bytes + 1 padding

■ Instance field record one per instance field, 1 byte. Encodes the type
of the field.

■ Code sequence one per method or initializer, of variable length.

■ Constant value one per int, long, float, double or String constant in
the program, uses the length needed for representing the value. Strings
are written out as UTF-8-encoded Unicode like in the Java class file.

■ Entry class index one per entry class, 1 byte

The format follows the Java class format relatively closely, but leaves out any
features that are not implemented by leJOS, such as flags for access control and
checking for correct use of interfaces.Also note that the data for all the classes are
pooled together.

The command emu-dump prints information about a class or constant con-
tained in a leJOS binary.The binary must be linked with emu-lejos for emu-dump

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 303

304 Chapter 8 • leJOS Internals

to work. For example, the following command dumps information about the
class with index 0 (java.lang.Object) in the leJOS binary View.emubin:

emu-dump View.emubin class 0

Another command that is useful for looking at internals is lejosp. It is a
wrapper around javap, the class file disassembler. It sets the classpath in the same
way as lejosc does for javac.

Inside the leJOS Firmware
We now come to the second big part of leJOS, the firmware. In Figure 8.3 you
can see how the data flow continues inside the RCX for loading and running a
leJOS program.The loader receives the binary via IR and allows you to select a
program entry point with the Prgm button and to start execution with the Run
button.This will cause the loader to create the boot thread and start the Java vir-
tual machine, which begins executing the loaded byte codes. Note that all com-
munication with the external world is handled by routines in the ROM. Most of

www.syngress.com

The ROM in the RCX
The RCX contains 16KB of read-only memory (ROM), which is used for
low-level interaction with the hardware. It contains routines for booting
and downloading the firmware, other infrared communications, reading
sensors and buttons, and controlling the motors and the LCD. To handle
these tasks in parallel, it contains several interrupt routines. The most
important for leJOS is the so-called OCIA interrupt routine, which is
called every millisecond. It counts time, switches motors on and off to
implement the power levels, plays sounds, and every 3ms it starts the
A/D conversion for the sensors.

Kekoa Proudfoot has extensive documentation on the ROM (RCX
Internals at http://graphics.stanford.edu/~kekoa). He also has a page
that describes how to download the contents of the ROM from the RCX
in srec format, which you can then disassemble using the objdump
utility. Looking at the disassembled ROM is sometimes useful to find out
exactly what the various ROM routines do.

Developing & Deploying…

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 304

leJOS Internals • Chapter 8 305

them are called via the generic ROM calls, but some (sensors, for example) have
their own native code interface.

The Structure of the leJOS Virtual Machine
Once the initialization is done, the main loop of the byte code interpreter in
vmsrc/interpreter.c is started, and executed once for every instruction.The
instructions themselves are very close to the instructions defined in the Java vir-
tual machine specification, with some modifications made to the operands that
replace references to the constant pool by offsets, as explained in the section on
the linker.The instructions are called from a large switch call.These instructions
are included from files with the .hc extension.

Everything that is done in the main loop directly influences performance,
because it is done for every executed byte code instruction.The main loop must
check whether it is necessary to interrupt the normal execution and call the
scheduler (if, for example, a hardware event happened or the time slice for the
current thread was used up).To minimize the overhead, the single flag
gMakeRequest is checked on every iteration. It is set either if some piece of code
requests a call to the scheduler, or at least every millisecond in the OCIA inter-
rupt. If the flag is set, the action to be taken is determined by looking at
gRequestCode. If it is just a timer tick, then the ticks are counted and the sched-
uler is called only when the time slice is used up; if thread switching is requested
it is called directly; and if there is an exit request, the interpreter terminates. Note
that the correct way to create a scheduler request is to use this:

schedule_request (REQUEST_SWITCH_THREAD);

instead of manipulating gMakeRequest and gRequestCode directly.
On a higher level, the execution is organized in threads. Each thread has its

own program counter and stack, and executes independently of the other threads.
The scheduler’s job is to switch between threads; this occurs in the switch_thread
function. Its source code resides in vmsrc/threads.c. It also handles most of the
life cycle of a thread.A thread is always in one of the following states:

■ NEW A newly created thread that has no thread id, no stack allocated
and is not queued.

■ STARTED A new thread with ID, the stack is allocated and queued,
but is not yet executing.

■ RUNNING A thread that is in the process of execution.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 305

306 Chapter 8 • leJOS Internals

■ SLEEPING A thread that is sleeping. It will awake at a certain time.

■ CONDVAR_WAITING A thread that is waiting for notification or
timeout.

■ MON_WAITING A thread that is waiting on a lock.

■ DEAD A thread that is dead.The scheduler will deallocate its stack and
remove it from the queue.

A thread is alive if it is neither NEW nor DEAD. Figure 8.4 shows the state
transitions that a thread can take. Note that an uncaught exception causes a
return from the main or run method and thus causes the death of the thread.

Real-Time Behavior
leJOS is intended for building systems that react in real time. It is therefore
important to know on which time scales leJOS’ different levels operate, and how
you can achieve faster reaction times if you really need to.

The highest level is that of a Java program. Here you can expect reaction
times on the order of ten milliseconds at best, even if you have a single thread

www.syngress.com

Figure 8.4 Execution States of a Thread

NEW

STARTED

RUNNING

DEAD

SLEEPING

CONDVAR_WAITING

MON_WAITING

start()

dispatch
main or run

return from
main or run

Thr
ead

.sle
ep

tim
e o

ver
 int

erru
pt

obj.wait()

enter locked monitor

lock is available

obj.notify()

unterrupt()

timed out

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 306

leJOS Internals • Chapter 8 307

that runs in a rather short loop. For larger programs with several threads, reaction
time is more likely to be on the order of 100ms.A thread that does not yield the
processor itself currently gets a time slice of 20ms, but this can be changed in
platform_config.h via the TICKS_PER_TIME_SLICE constant, where a tick
equals one millisecond.The ticks are generated by the OCIA interrupt that is
activated every millisecond, and which also controls motors,A/D conversion
for sensors, sounds, and the global millisecond timer that is read by System
.currentTimeMillis().As specified by the Java Language Specification, threads are
scheduled strictly according to their priority.As long as high-priority threads
want to run, all lower priority threads must wait.Threads of the same priority
are scheduled in a round-robin fashion.

To achieve faster reaction times than those possible in Java code, you can add
code to the virtual machine itself.This is facilitated by using one of the hooks
into the byte code interpreter provided by the virtual machine :

■ instruction_hook() Called before every instruction executed by the VM.
Beware that using it will slow down leJOS considerably.

■ tick_hook() Called at least every millisecond before the next instruction
is executed, but possibly more often if there is scheduling activity.This
has a relatively low impact on speed.

■ idle_hook() Called when no thread wants to run.

■ switch_thread_hook() Called after every call of the scheduler.

These hook into the main interpreter loop in vmsrc/interpreter.c, and
their platform-specific values are defined in rcx_impl/platform_hooks.h and
unix_impl/platform_hooks.h.The leJOS firmware currently uses only tick_hook()
for sensor reading.The sensor values need to be processed on each A/D-conver-
sion (which happens every 3ms), otherwise rotation sensors and pulse- and edge-
counting on touch sensors will not work properly.To avoid this, a single
transitional value leads to a miscount for the rotation sensor; as is the case for the
RCX firmware, we require a value to be preset during two consecutive measure-
ments before it can be counted.This reduces the maximal speed for the rotation
sensor to 625 rotations per minute, which is still well above the raw speed of the
gear motor in the Robotics Invention Set. It reliably eliminates the miscounts
except for very low rotation speeds, where miscounts can still occur when there
are two intermediate values in a row.The figure of 625 rpm is determined by the
following equation:

60s/(2*0.003*16) = 625

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 307

308 Chapter 8 • leJOS Internals

RCX Memory Layout
At the lowest level, the memory layout of the RCX is the layout of the H8/3292
micro controller:

■ 0x0000-0x3fff ROM

■ 0x4000-0x7fff Reserved

■ 0x8000-0xfb7f External RAM

■ 0xfb80-0xfd7f Reserved

■ 0xfd80-0xff7f Internal RAM

■ 0xff80-0xff87 External RAM

■ 0xff88-0xff8f Reserved

■ 0xff90-0xffff Hardware control registers

According to the H8 Hardware Manual, the reserved areas should not be
accessed.The first two arise because they are in the address spaces for the ROM
and the internal RAM, but the 3292, which is at the low end of the H8 controller
range of, doesn’t fill them completely with its internal ROM and RAM. In prin-
ciple it would be possible to enable the external RAM in the area 0xfb80-0xff80
also, but this is not done in the ROM boot code, and at later stages it becomes
difficult because the ROM data, interrupt vectors and stack are in this area.

The next higher level is that of the ROM. Since we want to reuse leJOS’
ROM routines, we have to respect the data areas used by the ROM.The layout
of the data areas in the RAM (from the point of view of the ROM) is as follows:

■ 0x8000-0xef31 leJOS firmware and data.The uppermost part is used
by the ROM main loop before the firmware is loaded. Since the only
way back to the ROM loop is a full reset, this data is no longer needed
when leJOS is running.

■ 0xef32-0xf000 ROM data area.

■ 0xef01-0xfb7f Free RAM, unused

■ 0xfb80-0xfd7f Reserved by hardware

■ 0xfd80-0xfd8f ROM data, used by init_timer

■ 0xfd90-0xfdbf RAM interrupt vectors

■ 0xfdc0-0xff7f Stack, starts with the stack pointer (SP) pointing at
0xff7e and grows downwards

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 308

leJOS Internals • Chapter 8 309

The file rcx_impl/rcx.lds describes the memory layout inside the RCX for
the GNU linker ld, which uses it to place code and data in the appropriate
regions of memory when linking the leJOS firmware. It is also used to define the
particular addresses needed to access ROM data and hardware control registers.

Now let’s look closer at how leJOS organizes the area 0x8000-0xef31 (the
first part is taken up by the firmware, after that comes the loaded Java, and at the
end comes the program data):

■ 0x8000-MEM_START Firmware code and data

■ MEM_START-mmStart Java binary

■ mmStart-MEM_END Java data

■ 0xef02-0xfb7f Java data (in leJOS versions later than 1.0.4).

The symbols MEM_START, MEM_END and mmStart are used in rcx_impl/
main.c. MEM_START and MEM_END are defined as _end and romdata1, respec-
tively, which in turn are defined in rcx_impl/rcx.lds. mmStart is the word-aligned
beginning of the free space after the firmware is loaded. In leJOS versions up to
1.0.4 only the word-aligned mmStart is passed to the virtual machine’s memory
manager by a call to init_memory. Later versions use a different scheme where
more than one memory region can be used for the heap.The initialization code
first calls memory_init and then memory_add_region, with the lower and upper
bound of each region without alignment.The memory manager does the neces-
sary aligning and adds the regions to a linked list, with pointers to the next
region and the end of the current region in the first four bytes of each region
(see vmsrc/memory.c).The region that is added last is allocated first, beginning at
its upper end.The layout of the firmware is done by the C linker according to
rcx_impl/rcx.lds.The layout of the leJOS binary is created by the leJOS linker
(explained above). Note that there is no relocation of offsets for obtaining the
final address in the VM; each time a VM operation needs to access something in
the leJOS binary, it computes the absolute address anew from the load address
and the offset.

Now let’s take a look at how the Java data are managed and how Java objects
are represented.The memory is organized in blocks that begin with a header
containing information about the type and size of the block.The format is
defined in vmsrc/classes.h.

The first two bytes specify whether the block is allocated or not. If it is allo-
cated, its length is specified; if the block is not allocated, it is specified whether it
is an object or array. For objects, the first two bytes also contain the class index,

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 309

310 Chapter 8 • leJOS Internals

which allows the memory manager to look up the size of the memory area for
the object in the class record. For arrays, the first two bytes specify element type
and size, which allows us to compute the size of the memory area used by the
array. For objects and arrays, the subsequent two bytes contain the monitor count
and possibly the thread that has obtained the lock associated with the object.
They are followed by the instance variables or array elements. Besides defining
objects, vmsrc/classes.h also defines the layout of the other special classes: Thread,
Runtime and String.

All these definitions must agree with the definition in the Java library or
leJOS will crash.Types are encoded in 4 bits as defined in vmsrc/constants.h,
which allows the memory manager to determine the memory required to store
one element of that type.There is a table with the sizes at the beginning of
vmsrc/memory.c. Objects inside arrays or other objects are always stored as
references, which makes them uniform in size. In addition to the Java-defined
types, there is a leJOS-specific type for stack frames (T_STACKFRAME), which
allows us to build an array of stack frames without using an indirection through
T_REFERENCE.

Each thread has its own stack, which consists of an array of integers providing
storage for the stack, and an array of stack frames storing the information to be
preserved on method invocation. Stack frames store the program counter, the
stack pointer and the base pointer for local variables, as well as information
related to locking.The definition of the type StackFrame is in vmsrc/threads.h.
Currently each thread is allocated a stack of 70 four-byte slots and an array of ten
stack frames, which together with the thread data take up approximately 400
bytes of memory.

The Emulator
The emulator uses the same virtual machine as the RCX firmware, but differs in
the loader in terms of the native code interface and its use of the VM hooks; also,
it emulates the OCIA interrupt in software. Contrary to the virtual machine on
the RCX, the emulator uses little-endian byte order. Loading the executable into
the emulator is trivial, it just loads the file into memory. Currently the emulator
always executes program number 0. For native code routines that call ROM rou-
tines there is no RCX equivalent, instead the memory address of the routine and
its parameters are printed to standard output.The emulator is still very useful for
regression testing and debugging.

In particular, there is a regression test suite in the main leJOS directory’s
regression subdirectory that you should run after making modifications to the

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 310

leJOS Internals • Chapter 8 311

virtual machine.To do this, change into the regression subdirectory and run the
run.sh shell script.This will compile a large number of examples, run them using
the emulator, and log the output in regression.log.At the end it will display the
differences between the output produced by your run and a reference output in
regression.gold. Often there will be minor differences, either due to your changes
or due to the nondeterminism inherent in the execution of threads. It is up to
you to judge whether the differences represent bugs or not. If you are satisfied
that everything is working correctly you can copy regression.log to
regression.gold to make it the new reference.

The leJOS Source Code
The leJOS source code is organized into several subdirectories within the main
leJOS directory. It is quite diverse, since there are parts written in both C and
Java, and there are two target architectures; the host computer and the RCX.

■ Main directory Contains some global files, like README and
RELEASENOTES. It also contains the file LICENSE, which contains
the legalese giving you the right to use, modify and redistribute leJOS, as
well as the obligation to make available the source code to any changed
version of leJOS that you redistribute. From a technical point of view,
the global Makefile is very interesting, it contains commands for the var-
ious steps needed in the compilation of leJOS.To compile the firmware
you need a Makefile.config with the options set according to your envi-
ronment, Makefile.config.renameme serves as a template for that.

■ bin Contains the executable files for the host computer and the
firmware in the file lejos.srec.

■ classes Contains the Java classes for the RCX, organized according to
the package hierarchy. classes/java/lang contains a subset of the standard
Java classes, whose functionality is restricted to that which is most
important for leJOS. classes/josx/platform/rcx contains all the RCX-
specific classes for interfacing to the hardware.

■ common Contains the files that are used to generate code for both the
linker and the virtual machine. Currently, it creates constant definitions
for special classes and signatures (mostly those of native methods), but
also some with a special meaning for the VM, like main, run or <init>.

■ docs Contains some documentation, mostly related to programming
the virtual machine.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 311

312 Chapter 8 • leJOS Internals

■ examples Contains some examples that show the use of leJOS, and can
be used for testing to verify whether everything is working correctly.

■ gameboy_impl Contains the platform-specific files for the Nintendo
Game Boy. Note that they are not up-to-date, they need to be adapted
to recent developments.

■ jtools Contains Java code for the host computer. jtools/js/tinyvm con-
tains the leJOS linker, which relies heavily upon the Java class file reader
in jtools/js/classfile.The directory jtools/js/tools contains the Java pro-
gram for generating the files with constant definitions for the linker and
the VM from common/*.db.

■ lib Contains the Java class libraries (.jar files) for both the RCX and the
host computer.

■ rcx_impl Contains the RCX-specific C code for the firmware; for
loading the binary and initializing it, plus some low-level code that deals
with sensors and timers.

■ regression Contains a regression test suite for leJOS.

■ tools Contains C code for the leJOS tools.

■ unix_impl Contains the C code that is specific for the emulator.

■ vmsrc Contains the C code for the virtual machine. It is mostly inde-
pendent of the architecture on which it runs, (with the architecture-
dependent parts in unix_impl and rcx_impl).

You can obtain the leJOS source code in several ways.The easiest is to down-
load a release from the leJOS website (currently at http://sourceforge.net/
project/showfiles.php?group_id=9339).There are two kinds of releases, lejos and
lejos-win32, which both contain the complete source code. Lejos-win32 addi-
tionally contains the executable programs for Windows, while lejos contains only
the source code and is intended for Linux and UNIX systems.

File releases are usually a few weeks or months old.You can get the most
recent version of the source code from the CVS server at sourceforge.net by
issuing the following command:

cvs -z3 -d:pserver:anonymous@cvs.lejos.sourceforge.net:/cvsroot/lejos co

lejos

This will create the lejos directory containing the source code. Both kinds of
releases and the CVS version contain the compiled firmware.You only need to

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 312

leJOS Internals • Chapter 8 313

install the h8300 cross-compiler if you want to make your own modifications to
the firmware.

www.syngress.com

Compiling the leJOS Firmware
The leJOS firmware is developed using the GNU tools. These are the stan-
dard tools under Linux, but they also exist as part of the Cygwin system
for Windows. To compile the leJOS firmware you need a special version of
the GNU tools that targets the h8300 architecture of the micro controller
in the RCX. Some Linux distributions (Debian, for example), already con-
tain a package with a h8300 cross-compiler, which only needs to be
installed. However, this is currently GCC version 2.95, which does not pro-
duce the most compact code. For the official releases of leJOS we use ver-
sion 3.0, which reduces code size by something on the order of one KB.
To obtain your own gcc-3.0 cross compiler, take a look at http://h8300-
hms.sourceforge.net. The compiler is available as an RPM package,
though you can also obtain the sources and compile it (and the associated
binary tools) yourself. This is less complicated than it sounds, and there is
a detailed description at the site that works very well.

The other thing that you need in order to compile the firmware is
Kekoa Proudfoot’s librcx library, available at http://graphics.stanford
.edu/~kekoa/rcx/librcx.tar.gz. It contains some basic definitions and
code for initialization, ROM calls and some arithmetic.

Now that you have everything together, you just need to tell the
Makefile where to find the cross compiler and the library. You do this by
adding suitable definitions in Makefile.config. For example, this is what
I have in mine:

BINDIR = /usr/local/src/hms-gcc/bin

BINPREFIX = h8300-hms-

LIBRCX_HOME = /home/juergen/Sonst/Lego/librcx-2000-12-16

export BINDIR

export BINPREFIX

export LIBRCX_HOME

Now make lejos_bin or make all can be used to compile the
firmware.

Developing & Deploying…

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 313

314 Chapter 8 • leJOS Internals

Extending leJOS with Native Methods
Normal methods in a Java program are written in Java, compiled to byte codes
and executed by the virtual machine’s byte code interpreter.They can only
manipulate data inside the virtual machine; they don’t have any access to the out-
side world. Native methods, on the other hand, are executed as native machine
code; they can access data both inside and outside the JVM. So native methods
are necessary for communicating with the outside world, and for doing anything
useful at all.

Execution of native methods is also faster than the execution of methods in
byte code. Further, native methods cannot be preempted by the scheduler.This
makes them useful for real-time programming, when especially rapid responses
are needed, for example; or when several operations must be tied together into
one that is atomically executed.

In this section we will explain step-by-step how to add a native method to
leJOS. But before we start writing our own native methods we will first look a
little at what native methods can do in leJOS, and which native methods are
already present in the package.

Native Methods in leJOS
Compared to the Java Native Interface (JNI), leJOS’ native methods are more
directly part of the virtual machine.They also are more limited. For example, it is
not possible to call Java from C, as Java byte code can not be executed while a
native method is running.You can however dispatch a method that will be called
after your native method has finished.With respect to the manipulation of data,
however, native code is not restricted in any way, it has full access to the virtual
machine’s internals.There is less support for accessing Java data than in JNI, but
you can work directly on the data structures using the C functions of the leJOS
virtual machine.A leJOS native method in one class can coexist with non-native
methods of the same name and signature in another class. However, since native
methods are identified only by their signature and not their class, there can be
only one native method for each signature.

The existing native methods in leJOS are used by the leJOS Java library to
interface with the RCX hardware and with certain internal aspects of the virtual
machine.

■ Hardware access is done via classes in josx.platform.rcx, in particular
josx.platform.rcx.ROM, which contains methods for calling ROM routines,

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 314

leJOS Internals • Chapter 8 315

and josx.platform.rcx.Memory, which contains methods for directly accessing
memory. Some other native methods occur in Serial, Sensor and Poller, but
most of the classes in josx.platform.rcx use ROM calls to access the hard-
ware. Note that in previous versions the methods now in ROM and
Memory were in Native, and were not publicly accessible. Memory also con-
tains a native method to get the memory address for any object, which
allows it to access the internal data structures of the virtual machine

■ Communication with the virtual machine is done via native methods in
special classes within the java.lang package.These classes, in particular
Object and Thread, interact with the virtual machine in special ways. For
example, Thread contains native methods to start a thread, sleep, set the
priority, etc. (in other words, actions that interact with the scheduler).
The Object class contains the native methods used for waiting and
waking up a waiting process, which can be used to make locking more
efficient.The internal structure of instances for these classes are defined
both in Java and in the C code of the virtual machine.Their respective
definitions must match or leJOS will crash.

Adding a Native Method
To add a native method to leJOS, we first need to write a declaration in some
Java class.The declaration is like that of an ordinary method, except that the
modifier native is added and there is no method body.

All other modifiers except abstract and strictfp are allowed, and by convention
the native modifier should come last.As an example we will implement native
methods for determining the stack usage in a thread.

We first add a class VMStatistics to josx.platform.rcx (shown in Figure 8.5 and
available on the CD).

Figure 8.5 VMStatistics.java

package josx.platform.rcx;

/**

* Provides statistics about execution in the virtual machine

*/

public class VMStatistics

{

www.syngress.com

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 315

316 Chapter 8 • leJOS Internals

public static native int getStackSize (Thread t);

public static native int getStackMaxUsed (Thread t);

public static int getStackMinFree (Thread t)

{

return getStackSize (t) - getStackMaxUsed (t);

}

}

Next we have to declare the signatures of the new native methods.We
append the lines in Figure 8.6 to common/signatures.db.

Figure 8.6 Lines Appended to File common/signatures.db

josx.platform.rcx.VMStatistics

getStackSize(Ljava/lang/Thread;)I

getStackMaxUsed(Ljava/lang/Thread;)I

The line format in common/signatures.db is as follows:

methodName(argumentTypes)resultType

This is the name of the method followed by a method descriptor as specified
in Section 4.3.3 of the Java Virtual Machine Specification.Types are encoded by
field descriptors, which are summarized in Table 8.1.

Table 8.1 Encoding of Java Types in Signatures

Java Type Encoding

void V
boolean Z
char C
byte B
short S
int I
long J
float F

www.syngress.com

Figure 8.5 Continued

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 316

leJOS Internals • Chapter 8 317

double D
package.....package.Class Lpackage/.../package/Class;
array [(type of elements follows)

The important thing about this encoding is that it completely specifies signa-
ture and return type, so that no two distinct methods can be confused. But note
that this format does not distinguish class and instance methods, and that it is in
general not necessary to add a class that contains a native method to the special
classes in common/classes.db.

From the signatures we generate include files for the linker and the virtual
machine by executing the following command in the main lejos directory (nor-
mally this is done automatically by make all):

% make generated_files

This creates the two files vmsrc/specialsignatures.h and jtools/js/tinyvm/
SpecialSignatureConstants.java.These associate a number to each native method
in a consistent way.The linker will map names of native methods in the class files
to numbers in the leJOS binary using a table constructed from this file, and the
virtual machine will then use the numbers to select the native code it executes.
For this to work, the numbers must be the same for the linker and the virtual
machine, or leJOS will call the wrong code and crash. Essentially this is a change
to the leJOS binary format.To ensure that the binary created by the linker and
the firmware are compatible, the linker puts a magic number inside the binary,
which is checked when the binary is loaded on the RCX. If they mismatch you
will get this error message:

Magic number is not right. Linker used was for emulation only?

You should change this magic number whenever you add a native method.
The magic number for the virtual machine is defined in vmsrc/magic.h; we
increase it by one:

#define MAGIC 0xCAF3

For the linker it is defined in jtools/js/tinyvm/Constants.java; we change it to
the same value:

public static final int MAGIC_MASK = 0xCAF3;

www.syngress.com

Table 8.1 Continued

Java Type Encoding

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 317

318 Chapter 8 • leJOS Internals

Next we take a look into vmsrc/specialsignatures.h and find definitions for
our new native methods:

#define getStackSize_4Ljava_3lang_3Thread_2_5I 43

#define getStackMaxUsed_4Ljava_3lang_3Thread_2_5I 44

As you see, there has been some name mangling done to make the signatures
acceptable as identifiers. Now it remains to do the implementation of the native
methods in the VM.We add the code in Figure 8.7 to the end of the switch
statements in rcx_impl/native.c and unix_impl/nativeemul.c.

Figure 8.7 Code Added to Files rcx_impl/native.c and unix_impl/nativeemul.c

case getStackSize_4Ljava_3lang_3Thread_2_5I:

push_word (get_stack_size ((Thread *) word2ptr(paramBase[0])));

return;

case getStackMaxUsed_4Ljava_3lang_3Thread_2_5I:

push_word (get_stack_max_used ((Thread *) word2ptr(paramBase[0])));

return;

Note that leJOS may be ported to more platforms in the future, and that you
may need to extend the corresponding files there as well. It is however not
strictly necessary to provide an implementation for the functioning of the system;
not providing one will not cause leJOS to crash. If a native method is not imple-
mented, an exception is raised whenever it is called, but otherwise the system
functions normally.

Arguments to a native method are accessed via the pointer paramBase.The
layout follows the standard Java VM convention:

■ When an instance method is called, paramBase[0] contains a reference to
the instance and paramBase[1] to paramBase[n] contain the arguments that
are passed to the method.

■ When a class method is called, paramBase[0] to paramBase[n] contain the
arguments that are passed to the method.

Note that each long or double parameter takes up two slots. Since they are
used so often, the function dispatch_native in rcx_impl/native.c contains abbrevia-
tions paramBase1 for paramBase+1 and paramBase2 for paramBase+2, which
avoids doing the index computation over and over again (it exists only for those
two, as no index computation is needed for paramBase[0]; and paramBase[3] and

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 318

leJOS Internals • Chapter 8 319

higher are not used often). By defining paramBase2 and using it instead of
paramBase[2], which occurs 9 times, a total of 18 bytes were saved.This may not
seem like much, but on such a small machine every byte counts, and here we can
get them almost for free.

In our example we are implementing a class method so the thread argument
is passed in paramBase[0]. It is represented by a four-byte integer, which the func-
tion word2ptr converts to a C pointer. Our two C functions return a 16-bit value,
which is pushed on the stack as a 32-bit Java int.

Our native methods call the C functions get_stack_size and
get_stack_max_used.To implement their functionality we will put a mark just
beyond every newly created stack frame, like a high water mark.Then we just
have to search for the highest mark to get the maximal stack usage.The stack is
initialized with zeros when it is allocated, so we will only need to search for the
highest non-zero slot to find our mark.

In vmsrc/threads.c we allocate one more integer, so that STACK_SIZE has
enough space for the mark:

// Allocate actual stack storage (STACK_SIZE * 4 bytes)

thread->stackArray = ptr2word (new_primitive_array

(T_INT, STACK_SIZE+1));

In vmsrc/stack.h we let the function is_stack_overflow (which checks for stack
overflow) put in the mark and add the functions for stack size and maximal usage
(see Figure 8.8).

Figure 8.8 Modification of vmsrc/stack.h

static inline boolean is_stack_overflow (MethodRecord *methodRecord)

{

STACKWORD *newStackTop = stackTop + methodRecord->maxOperands;

STACKWORD *stackEnd = stack_array() + STACK_SIZE;

boolean is_overflow = newStackTop >= stackEnd;

if (!is_overflow) {

*newStackTop = 1;

}

return is_overflow;

}

www.syngress.com

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 319

320 Chapter 8 • leJOS Internals

static inline int get_stack_size (Thread *t)

{

return STACK_SIZE;

}

static inline int get_stack_max_used (Thread *t)

{

STACKWORD *t_stack_array

= (STACKWORD *) ((byte *) word2ptr(t->stackArray) + HEADER_SIZE);

STACKWORD *p = t_stack_array + STACK_SIZE;

while (*p == 0) p--;

return p – t_stack_array;

}

Note that we used inline for these functions as they are used only once. By
making the C compiler inline them in the switch, we avoid the overhead for
calling the function and passing arguments.

Now that everything is in place you can recompile leJOS by executing the
following command:

make all

This will recompile the library and compile the leJOS firmware and the
emulator.You can load your new firmware onto the RCX with lejosfirmdl, as
usual.At this point, however, we still need to test the native method.The fol-
lowing class will do an increasingly deep recursion and display the stack usage at
each iteration.The computations inside recurse serve only to consume some space
on the stack (see Figure 8.9—this is also available on the CD).

Figure 8.9 StackTest.java

import java.lang.System;

import josx.platform.rcx.*;

public class StackTest

{

private static int sum = 0;

www.syngress.com

Figure 8.8 Continued

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 320

leJOS Internals • Chapter 8 321

private static void recurse (int depth)

{

int a = sum + depth;

int b = sum + a;

if (depth <= 0) {

return;

} else {

recurse (depth-1);

}

sum = a + b;

}

public static void main (String[] arg)

throws InterruptedException

{

Thread t = Thread.currentThread();

LCD.showProgramNumber (0);

LCD.showNumber (VMStatistics.getStackSize (t));

Thread.sleep (500);

for (int i = 1; i < 10; i++) {

recurse (i);

LCD.showProgramNumber (i);

LCD.showNumber (VMStatistics.getStackMaxUsed (t));

Thread.sleep (500);

}

LCD.showProgramNumber (10); // invisible

LCD.showNumber (sum);

}

}

After working on the virtual machine, it is a good idea to not only test
whether it is still working (the View example in examples/view is suitable for
that), but whether the performance has suffered, using the PerformanceTest

www.syngress.com

Figure 8.9 Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 321

322 Chapter 8 • leJOS Internals

example in examples/performance_test. Doing this shows that, with the new
methods, we have about 150 bytes less free memory in the VM. Since memory is
tight and these methods are only rarely useful, it is probably not a good idea to
add them to a release version of leJOS.

If you try to optimize for memory, check that the optimized version is indeed
smaller. Often it is not, as storing and retrieving the value causes some overhead,
especially if this exhausts the available registers. From two versions with the same
footprint, choose the clearer one. For example, if you are iterating over an array
item[LENGTH] and want to access the elements by a pointer item_ptr, there are
two possibilities for writing the for loop, this one:

for (i=0; i < LENGTH; i++) {

item_ptr = &item[i];

or the common C idiom:

for (i=0, item_ptr = item; i < len; i++, item_ptr++) {

C programmers usually prefer the second variant, which has the advantage of
replacing the multiplication in the index computation by an iterated addition,
which is likely to run somewhat faster. However, in leJOS, space is more impor-
tant than speed, and the second version often (though not always) uses more
space.Also, the first version is clearer, as it makes the meaning of item_ptr more
explicit, and if there are only a few occurrences of item[i] you may even use that
directly. So before you use the second version, check whether it is worthwhile.

www.syngress.com

Debugging the leJOS Firmware
Debugging programs for an embedded system like the RCX pose some
problems, as you cannot easily look inside the RCX as you can on a PC.
Here are some techniques you can use:

Debugging in the emulator The emulator is a standard C
program on your PC, so you can use your favorite C debug-
ging techniques with it. For example, you can insert print
statements that produce debug output, and you can run the
emulator inside the GNU debugger gdb. This is especially
useful for work on the VM.

Continued

Debugging…

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 322

leJOS Internals • Chapter 8 323

Additional Tips and Tricks with leJOS
We’ll end the chapter with a few useful tricks to help you get to know and
extend the capabilities of leJOS. First we’ll briefly mention how to increase the
size of the stack in case your program needs more stack space or deeper recursion
than is available by default.Another important issue is to know the amount of
free memory, as memory is usually the scarcest resource in leJOS; we’ll show you
how to determine the amount of free memory.The third issue is timing, which is
often critical for real-time systems.We’ll use an example with two communi-
cating threads to demonstrate how to measure latency, and how good program-
ming style can avoid having a thread wait for and unnecessarily long time.

www.syngress.com

Debugging on the RCX If your modifications to leJOS
involve the RCX hardware, you are less fortunate. However,
all is not lost. As with Java programs, you can use the I/O
facilities of the RCX to produce debug output. Most useful is
the LCD display, where you can display values that interest
you. A good technique is to use the four-digit part to display
the value and the program number to indicate the point in
the program at which you are. This is especially useful if
leJOS crashes, as the last value will stay visible on the LCD.
Another useful form of output is sound, especially for output
that is too fast to read on the LCD. A useful routine to pro-
duce both forms of output is the trace routine in
rcx_impl/main.c.

Using assertions Assertions are checks within a program
that state that a certain property must hold. They not only
serve to find bugs, but are also useful for documenting the
conditions inside the code. They are implemented by a macro
that only activates them when in debugging mode, otherwise
they act as comments. By default, assertions are active in the
emulator version of leJOS but not in the RCX version. The
assertion check may be any Boolean expression, which is
evaluated and, in the event that it is false, causes the pro-
gram to abort with an error message. See the main inter-
preter loop in vmsrc/language.c for examples.

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 323

324 Chapter 8 • leJOS Internals

Changing Stack Sizes
Now that you know how much of the stack your threads use (thanks to the
native method example), you might see that they actually use only a small frac-
tion of their generously allocated stack. If you have many threads and you are
having problems trying to fit your program into memory, you might be tempted
to decrease the stack size. In theory you may also run into problems with a stack
that is too small for your needs, though as far as I know this has not yet hap-
pened. Changing leJOS’ stack size is not difficult.There are two parameters: the
stack size, which limits the amount of memory used, and the number of stack
frames, which limits the recursion depth. Both values can be changed globally by
editing vmsrc/configure.h and recompiling the leJOS firmware.

Determining the Amount of Free Memory
Since memory is rather scarce in leJOS, it is often useful to find out how much
memory remains for you to use. For this you can use the method freeMemory() in
the class java.lang.Runtime.To use it, type:

(int)(Runtime.getRuntime().freeMemory())

The method returns a long, as required by the Java API Standard. Since most
of the operations on long are not implemented in leJOS, in order to save space,
you need to cast the long to an int (or if you like, to a short).There is also a sim-
ilar method, called totalMemory, that gives you the total amount of memory in the
system.

Measuring Latency
In programs where the reaction time is crucial, it is sometimes useful to measure
latencies.This is simple with the global millisecond timer, which can be used as a
stopwatch.The code in Figure 8.10, which is also provided on the CD, is a simple
example of how this works.

Figure 8.10 LatencyTest.java

import josx.platform.rcx.*;

public class LatencyTest

{

static int startTime;

static int maxLatency = 0;

www.syngress.com
Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 324

leJOS Internals • Chapter 8 325

static boolean flag = false;

public static void main(String[] arg)

throws InterruptedException

{

Thread t1 = new Thread () {

public void run()

{

while (true) {

while (flag)

Thread.yield();

startTime = (int)System.currentTimeMillis();

flag = true;

}

}

};

Thread t2 = new Thread () {

public void run()

{

while (true) {

while (!flag)

Thread.yield();

flag = false;

int stopTime = (int)System.currentTimeMillis();

if (stopTime - startTime > maxLatency)

maxLatency = stopTime – startTime;

}

}

};

while (Button.RUN.isPressed());

t1.start();

www.syngress.com

Figure 8.10 Continued

Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 325

326 Chapter 8 • leJOS Internals

t2.start();

while (!Button.RUN.isPressed()) {

LCD.showNumber (maxLatency);

Thread.sleep (100);

}

while (Button.RUN.isPressed());

System.exit (0);

}

}

Here we create two threads (t1 and t2), that communicate in a very simple
way via a Boolean flag.The first thread envoys the message by setting flag to true,
and the second thread waits for flag to become true, which means that the mes-
sage has arrived.To measure latency, the first thread records the time before it
sends the message, and the second thread computes the time duration that the
passing message took after receiving it. Since we are interested in the maximum
latency, the second thread keeps a running maximum of the duration in
maxLatency, which is displayed by the main program every 100 milliseconds.
Since the measurement starts before sending and stops after receiving, the latency
that is displayed is an upper bound of the actual latency.

The threads in this example are well behaved, as they yield when they are
waiting in a loop.This allows other threads to run; so here the second thread
reacts relatively quickly, as the maximum latency displayed is only two millisec-
onds. If you remove the Thread.yield() in the while loop of the sending thread, it
keeps running until it is preempted at the end of its full time slice.The second
thread can only then react, with a latency of as much as 20 milliseconds. It is
generally a good idea to put a Thread.yield() wherever a thread is waiting.
However, if the sending thread has a higher priority than the receiver, this is not
enough; you will have to either sleep or wait on a locked object to give up the
processor for the other thread.

www.syngress.com

Figure 8.10 Continued

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 326

leJOS Internals • Chapter 8 327

Summary
Advanced techniques such as multiprogram downloading and persistent storage of
data can help you to make your robots more useful and flexible.To load several
Java programs simultaneously onto the RCX you can link them together into a
single multi-program binary and load them onto the RCX together.This allows
you to easily switch among the different programs, for running a competition or
a demo, for example.To store data persistently on the RCX you can use the class
josx.platform.rcx.PersistentMemoryArea in the leJOS library. Persistent data is not
deleted on every run of a leJOS program as is the case with normal data, but
rather it survives as long as the RCX has battery power. PersistentMemoryArea also
serves as an example for the use of direct memory access using the class josx.plat-
form.rcx.Memory.

leJOS uses the standard Java compiler inside a wrapper that sets the classpath
appropriately.The leJOS linker transforms a Java program in the form of several
Java class files into a leJOS binary that can be loaded onto the RCX.The linker
starts with the entry point classes and recursively loads all classes that are refer-
enced, until the program is complete. It dumps the program into a special binary
format that can be loaded into the leJOS virtual machine and executed without
modification.

The leJOS firmware consists of the loader and the virtual machine.The
loader loads the binary via IR communications and allows the user to select the
entry point and start the program. It also initializes memory and creates the boot
thread.The virtual machine executes byte codes in its main loop. Periodically or
upon request, the scheduler preempts a thread and selects a new one to run. If
they are not running, threads may be sleeping or waiting on a lock.The scheduler
is also responsible for initializing new threads and removing dead threads.The
RCX’s RAM is used for the leJOS firmware, the program binary and for the
heap containing Java objects, in that order. Memory can be allocated as needed,
but there is currently no garbage collection. Java stacks are allocated on the heap,
they are freed after the thread dies.

Native methods are special methods that are implemented by native machine
code instead of Java byte code. Native code has no restrictions with respect to the
objects in memory it can access. It is also faster than Java code and can be used to
program atomic operations that cannot be interrupted by the scheduler. LeJOS
uses native methods for accessing the hardware, either by native methods for
ROM calls, or by special native methods, for accessing sensors, for example. It
also uses native methods to communicate with the virtual machine, for example

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 327

328 Chapter 8 • leJOS Internals

to implement the special methods in java.lang.Object and java.lang.Thread. Native
methods become part of the firmware.They are identified by their signature
index, which is known both to the linker and the firmware, in the form of spe-
cial constants. For each native method there are implementations for various plat-
forms, currently these are the RCX and the emulator.

Finally there are a few useful tricks, like changing the stack size in
vmsrc/configure.h or determining free memory by using
java.lang.Runtime.freeMemory().When you have several threads you should be
careful when selecting priorities.To reduce latency, threads should yield or sleep
whenever they are waiting in a loop, or they should wait on a lock instead.

Solutions Fast Track

Advanced Usage of leJOS

� You can link several programs into a single binary by calling the linker
with a comma-separated list of the entry classes containing the main
method.

� You can store data persistently by using thelibrary’s
josx.platform.rcx.PersistentMemoryArea class.

� You can inspect and modify the contents of the RCX’s memory by
using the methods in the library class josx.platform.rcx.Memory.

Examining leJOS Internals

� leJOS uses the standard Java compiler, but employs a leJOS-specific
linker on the host computer and a leJOS-specific virtual machine in the
firmware on the RCX.

� The linker reads the Java class files and produces a leJOS binary that can
be loaded into the firmware without any modification. Class, method
and field names are replaced by offsets into the binary.

� The firmware contains a loader that loads the binary and a virtual
machine that executes it.The virtual machine executes slightly modified
Java byte code instructions.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 328

leJOS Internals • Chapter 8 329

� Threads are scheduled strictly according to priority, and round-robin
within the same priority.They are preempted after a time-slice of 20
milliseconds.

� Each thread uses approximately 400 bytes of memory for its stack and
other data structures.

Extending leJOS with Native Methods

� Native methods are used to interface with the hardware and with the
virtual machine.

� To add a native method to the VM you need to add its signature to
common/signatures.db, and you need to provide an implementation for
the RCX in rcx_impl/native.c and for the emulator in unix_impl/
nativeemul.c.

� To optimize for memory you can use variables for common expressions.
Always test whether your optimization is better than the original.

Additional Tips and Tricks with leJOS

� You can determine the amount of free memory with the method
freeMemory in the class java.lang.Runtime.

� You can change the stack size by modifying the values in
vmsrc/configure.h and recompiling the leJOS firmware.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 329

330 Chapter 8 • leJOS Internals

Q: I’m using JDK version 1.4.Why do I get the following error message?

js.classfile.EClassFileFormat: Version not recognized: 46.0

A: Sun has changed the default class file format from 1.1 to 1.2 in the Java SDK
1.4. Give lejosc the additional option -target 1.1 to make the compiler create
the old format.

Q: Can we add a method to class java.lang.Object to free an object?

A: The classes in java.lang have a standard interface that is defined in the Java API
Specification. It is not a good idea to change that.This also applies to other
standard classes in java.lang and to other methods you might want to add.

Q: Why is the switch statement not implemented? Shouldn’t we add that to
leJOS?

A: The Java compiler translates a switch statement into a lookupswitch or tableswitch
virtual machine operation. Compared to other VM instructions they are
rather complicated, and implementing them would probably cost several hun-
dreds of bytes in the leJOS virtual machine.The same functionality can be
achieved by using conditional statements, so the cost of having switch would
probably outweigh the benefit. However, if you want to try it and come up
with some hard numbers that prove us wrong, you’re welcome to do it.

Q: Why isn’t garbage collection implemented?

A: Real time garbage collection is not easy, so nobody has done it yet.Also, the
code for garbage collection would eat up memory, and some people fear that
there would not be enough memory left, no matter how useful garbage col-
lection would be.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 330

leJOS Internals • Chapter 8 331

Q: What virtual machine does leJOS use? Is it related to the Java 2 Micro
Edition (J2ME) or to JavaCard?

A: leJOS contains its own virtual machine, which is neither an implementation
of J2ME nor of JavaCard. J2ME is intended for bigger machines with a
memory of at least 128KB. JavaCard has the right size but is aimed at a totally
different application area (smart cards).

Q: Does leJOS implement the Real-Time Specification for Java?

A: No.The Real-Time Specification for Java is too large for such a small
machine.

www.syngress.com

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 331

177_LEGO_Java_08.qxd 4/3/02 10:22 AM Page 332

Programming LEGO
MINDSTORMS
with Jini

Solutions in this chapter:

■ Overview of Jini

■ A Simple Jini Service Example

■ Proxies and Service Architectures

■ A RCX Jini Proxy Service

■ Using the RCX Jini Service: Example Server
and Client

Chapter 9

333

� Summary

� Solutions Fast Track

� Frequently Asked Questions

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 333

334 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Introduction
Jini, which is pronounced like “genie,” is the name of Sun’s Java technology that
is a framework for distributed computing.As such, its purpose is to allow com-
puters and electronic devices to not only communicate with each other but also
to be “plug and play” enabled, allowing devices to find one another on a net-
work.There is a large amount of information available to support the developer
who wants to work with Jini, ranging from the documentation distributed with
Sun’s Jini Technology Starter Kit (TSK) to a number of books and Web sites,
including an online Jini community at http://jini.org.

Since Jini allows devices to communicate with each other, and since robots
are devices, they are suitable for utilizing the Jini framework. However, there is a
limitation of running a Jini service inside of the robot itself. But by using a proxy
on a host PC, a Jini service can still be implemented for the RCX. In this
chapter, we will provide an overview of Jini, and cover all the requirements for
installing and running Jini services before exploring a simple example of an
actual Jini service and client.After this, we will focus on Jini’s potential applica-
tions with the RCX, and show a number of MINDSTORMS robots interacting
with one another using Jini technology.

Overview of the Jini Architecture
Jini is a form of middleware that aims to make networks much more dynamic in
that devices can be readily added or removed from the network with very little
administrative overhead.The devices form a “federation,” which is essentially a
collection of available services, and the clients that make use of those services.

Jini is not a client/server architecture. It is very much a device-to-device
architecture, where any device may make services available to the network, and
any device may be a client of those services.The only requirement is that there
be at least one lookup service on the network.The lookup service forms a kind of
central repository that providers of services can register their available services
with, and that clients can request the availability of services from.

Figure 9.1 demonstrates how this may appear in practice. In this example, the
telephone and fax machine devices may register services with the lookup ser-
vices.The workstation and the Personal Digital Assistant (PDA) (which may be
operating via a wireless link such as 802.11b) could then discover these services
through requests to the lookup service and then make use of the services.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 334

www.syngress.com

So, what kind of scenarios would be good candidates for using Jini? Really,
any network where a disparate set of devices may be added or removed at various
times and where maximum interoperability and minimum administrative over-
head is required.This probably describes just about any computing network any-
where, but a good illustration is the concept of a home appliance control system.

Imagine that you have a wall-mounted control unit in your living room, con-
nected via an IP-based network to a number of devices in your house (for
example, refrigerator, coffee machine, and microwave oven), and an early summer
arrives.You purchase a new Jini-enabled air conditioning unit, bring it home and
plug it into your home network. Immediately your control unit detects the pres-
ence of the air conditioner; in fact it not only detects its presence but is also able
to display the air conditioner’s user interface.You haven’t installed any drivers; it
just works!

What then does Jini have to do with LEGO? Well, as you will see as we
progress through this chapter, Jini is remarkably useful in networking embedded
devices that may require obscure communications protocols and allowing them
to appear as simple Java objects.And since the RCX is an embedded system that
does indeed require a fairly obscure protocol, Jini is the ideal technology for net-
work-enabling the RCX for all kinds of distributed LEGO scenarios; imagine

Programming LEGO MINDSTORMS with Jini • Chapter 9 335

Figure 9.1 A Federation of Devices Using a Jini Lookup Service

Network

Lookup Service

PDAWorkstation
Telephone Fax Machine

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 335

336 Chapter 9 • Programming LEGO MINDSTORMS with Jini

robots that can find each other in a network and communicate with their
brothers to work together as a team.They could take over the world…

Jini as a Network Protocol
Jini is not in itself a protocol, but it does serve to hide any underlying network
protocols.The remote objects must be written in Java (or at least in a language
that produces Java byte code), and the underlying transport must be Java Remote
Method Invocation (RMI)—or a very close imitation of RMI.What Jini does is
leverage technologies like RMI to provide a very high level of network abstrac-
tion.Taking the example from Figure 9.1, the workstation could obtain a tele-
phone object from the lookup service and make standard method calls against it
as if it was a regular local Java object.These method calls would actually be exe-
cuting on the telephone, and so a call such as phone.Dial(“Home”) replaces the
traditional process which would have gone something like this:

■ Determine a custom protocol for sending messages to a telephone
device, including defining such messages as DIAL, HANGUP, XFER,
and so on, as well as response messages.

■ Implement a socket server at the telephone end that will accept connec-
tions, and a socket client at the workstation end.

■ Establish a socket connection between the two devices, and manage the
formation and parsing of the various messages that must be sent between
the two devices.

Clearly, some kind of network protocol is being implemented, but it is hidden
from the developer by RMI and Jini.The developer does not need to know any-
thing at all about how the messages are being handled at a network protocol
level, which is quite handy if you don’t know too much about the inner work-
ings of your new refrigerator!

It’s also quite handy if you want to talk to some LEGO MINDSTORMS
devices that are scattered around your network. Instead of having to concoct a
complex protocol for talking to the machines that are connected to the RCXs
and manage all of the complexities of establishing connections, transmitting and
receiving messages, and handling network errors, it would be magnificent to be
able to talk to the MINDSTORMS devices as if they were local Java objects. In
the examples that follow, we will show how it’s possible to do just that, and by
the end of the chapter you will understand how these robots can communicate
with each other and influence one another’s actions.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 336

Programming LEGO MINDSTORMS with Jini • Chapter 9 337

A Simple Jini Service Example
To illustrate just how a simple Jini service is built, we will discuss a simple service
that can calculate a checksum on a character string. In order to test such a service
we will first investigate the various supporting services that must be installed and
configured.After covering this rather simplistic example, we will move on to a
more complex case that will demonstrate how multiple RCXs can interact with
one another in a network.

What’s Required for
Installing and Running Services
In order to install and run your own Jini services, you will need the Jini .jar files
installed on any machine that will be acting as a client or that will be providing a
service. Furthermore, you will require access to a Jini lookup service. Fortunately,
Sun’s Jini Technology Starter Kit includes the required .jar files, as well as a set of
sample service implementations that can be used for development and testing.
The included services are shown in Table 9.1.

Table 9.1 Jini Services Available in the TSK v1.2

Service Name Description

Reggie Reggie is a Jini Lookup Service, which will be used exten-
sively in the examples in this chapter.

Fiddler Fiddler is a Jini Lookup Discovery Service.
Mahalo Mahalo is a Jini Transaction Manager Service. Jini includes

rich transaction management functionality.
Norm Norm is a Jini Lease Renewal Service.
Outrigger Outrigger is a pair of JavaSpaces Services.
Mercury Mercury is a Jini Event Mailbox Service that can be used in

conjunction with Jini Lookup Services to store events on
another entity’s behalf.

The first step is to download and install the Jini TSK.At the time of writing,
this was at version 1.2, available from http://java.sun.com/jini. For the purposes
of the following examples, we will assume that Jini has been installed on a
Windows 2000 platform in c:\jini1_2. Obviously, you will have to adjust the
examples if you have installed the Jini TSK to a different location, or if you are
running on a different platform.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 337

338 Chapter 9 • Programming LEGO MINDSTORMS with Jini

The lookup service implementation that comes with the TSK is called reggie,
and it has a few dependencies.You will need to run the RMI Activation Daemon
(rmid), and you will also need an HTTP server.A simple HTTP server has also
been provided in Sun’s Jini starter kit, although you may choose to use another,
such as Microsoft IIS or Apache. Figure 9.2 shows the relationship between these
services.The shaded boxes in the figure represent the three programs we will set
up in this section, and which will be depended on by all of the examples in this
chapter.The boxes without shading represent client programs and services that
will be developed in the examples. Note that any of the five components in
Figure 9.2 can theoretically be run anywhere on the network (or at least on the
one subnet), but for initial development purposes it is possible to run them all on
one machine.

The first step is to run the HTTP server.The following batch file will start
the Jini TSK implementation on port 8081; you could use another port,
including the default HTTP port of 80.The important thing is that the server
can provide HTTP access to various archives of class files that will be down-
loaded by clients and services.The –verbose option helps in debugging; you can
see a trace of HTTP requests.The –trees option should also be specified; this
causes the HTTP server to examine each of the jar files in its root directory and
serve up any class files found within them.

In the example batch file that follows, the HTTP server will serve files from
the folder c:\httproot. Initially this folder will contain the file reggie-dl.jar, which

www.syngress.com

Figure 9.2 Basic Components of a Jini Federation

Download class files

HTTP
Server

RMI Activation
Daemon (rmid)

Lookup service
(reggie)

Client
program Service

Download class files

Activate on
demand

Register objects

Look up and
use service objects

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 338

Programming LEGO MINDSTORMS with Jini • Chapter 9 339

contains the client-side code for programs that will access the lookup service.
Make sure you copy this jar file from the lib directory of your Jini installation to
the directory from which your HTTP server will serve files, then start the HTTP
server:

rem

rem starthttp.bat

rem

rem Start up the Jini TSK HTTP server

rem

java -jar c:\jini1_2\lib\tools.jar -port 8081 -dir c:\httproot -trees

–verbose

If successfully started, the HTTP server should display a list of the archive files
that it will serve from its root directory; in our case, this should be reggie-dl.jar.

The second step is to start up the RMI Activation Daemon. It is not neces-
sary to specify a port, as the default one will be adequate. For a test scenario such
as this, we can essentially bypass security checking by using -J-Dsun.rmi.activation
.execPolicy=none; in a production environment, you would be sensible to specify
an appropriately-configured policy file.

rem

rem startrmid.bat

rem

rem start up the RMI Activation Daemon without enforcing any

rem security policy.

rem

rmid -J-Dsun.rmi.activation.execPolicy=none -log c:\temp\rmidlog

Finally, the lookup service itself can be started. One thing to note about this
is that it is not really run as a daemon. Instead, reggie registers itself with RMI,
and then exits. RMI will then activate reggie on demand. It is important to note
at this stage that the log directory for reggie must not exist when reggie is started;
otherwise, reggie will abort with an exception.

The reggie lookup service also requires some additional parameters for startup.
The URL of the reggie-dl.jar file is required as the first parameter; this file will be
served by the HTTP server that we previously started, in this case on port 8081;
just make sure you use a true hostname or IP address for this – do not use local-
host as this will not be accessible to remote machines.Additionally, a security
policy file is required; for our purposes, it will be adequate to use the sample pro-
vided in the Jini TSK.The final mandatory parameter is the log directory.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 339

340 Chapter 9 • Programming LEGO MINDSTORMS with Jini

rem

rem startreggie.bat

rem

java -jar c:\jini1_2\lib\reggie.jar http://myreggieserver:8081/reggie-dl

.jar c:\jini1_2\policy\policy.all c:\reggielog

You should observe that after a short delay this script will terminate due to
the fact that reggie registers itself with RMI and exits. From this point on, RMI
will invoke reggie as required.

www.syngress.com

Potential reggie Pitfalls
There are several things you should take note of when attempting to
start reggie, the lookup service implementation provided by Sun:

■ The first of these is that reggie relies on being activated by
rmid, the RMI activation daemon. This means that the first
time reggie is manually run, it registers itself with rmid and
exits. It should not be manually run again, as rmid will acti-
vate it as required. It “remembers” that it has been run previ-
ously through its log files: if the directory where its log files
are stored is not empty, it cannot be run. Likewise, rmid
remembers its previous state, including the fact that reggie is
registered with it through its log files – and these log files
will even span the machine being restarted. So, if you ever
have to re-register reggie (for example, the IP address of the
HTTP server has changed), or if you need to reset rmid for
any reason, you will have to stop the rmid process (using
rmid -stop), delete the log directories for both rmid and
reggie, restart rmid and then manually restart reggie so it
will be re-registered with rmid.

■ The second thing to remember is that any programs that
access reggie (rmid itself, as well as Jini clients and services)
will need to dynamically obtain reggie’s client-side code via a
URL, probably using HTTP. This is a similar process to the one
used by browsers when they download the code for applets.
This is why an HTTP server is required. Depending on the

Developing & Deploying…

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 340

Programming LEGO MINDSTORMS with Jini • Chapter 9 341

A Simple Service and Client
For our simple example, we will register a service that can examine a message in
the form of a byte array, and generate a calculated checksum.We will also con-
struct a client program that will be able to access this service and make use of it.
In order to build this example, we will need to create four Java source files and
compile them:

■ ChecksumCalc.java One requirement if Jini services and clients are to
operate together is to have one or more interfaces known to both client
and service.The ChecksumCalc.java file will define a public interface
that will be implemented by the service object and will allow the client
to know how to look up the service object and invoke the
calcChecksum() method.This file is located on the accompanying CD in
the /shared directory.

■ ChecksumCalcClass.java This is the class that will be instantiated as
the service object itself.The server obviously needs intimate knowledge
of this class (via having the compiled class file in its classpath) in order to
instantiate it prior to registering it.The client will also need this knowl-
edge but not at compile time (the interface is sufficient for that); the
client will actually access the class file via HTTP at runtime as described

www.syngress.com

operating system you are using, you may also find that the
machine will have to be connected to a network when this is
set up, even if you are running all the components on a
single machine.

■ The third thing to be aware of is that reggie requires a secu-
rity policy file. If you look at the sample policy files provided
with the Jini download, you can see that their implementa-
tion can be non-trivial. For this reason, the examples in this
chapter make use of the sample “policy.all” file. This file is
really not recommended for use in any kind of production
environment, but is certainly the easiest way to get an
example implementation running. RMI is a powerful mecha-
nism, but it can also open up a wide array of security holes.
Please remember that if you are going to implement a Jini
federation in a network that requires security, you really need
to become familiar with security policy files.

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 341

342 Chapter 9 • Programming LEGO MINDSTORMS with Jini

in more detail momentarily.This file is located on the accompanying
CD in the /checksum directory.

■ ChecksumService.java This top-level class will be run as the server
itself; it will be responsible for instantiating the service object (as an
instance of ChecksumCalcClass) and registering it with the lookup ser-
vice.This file is located on the accompanying CD in the /checksum
directory.

The first requirement is a well-known contract interface (this has to be
known to both service and client).We will define it in a package called shared
(see Figure 9.3).

Figure 9.3 ChecksumCalc.java

/**

* ChecksumCalc.java

*

*/

package shared;

import java.rmi.Remote;

public interface ChecksumCalc {

public byte calcChecksum(byte[] message);

}

The next two classes will reside in the checksum package.The first is called
ChecksumCalcClass, shown in Figure 9.4, which is the service’s actual implemen-
tation of the interface we defined in Figure 9.3.

Figure 9.4 ChecksumCalcClass.java

/**

* ChecksumCalcClass.java

*

*/

www.syngress.com

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 342

Programming LEGO MINDSTORMS with Jini • Chapter 9 343

package checksum;

import shared.ChecksumCalc;

import java.io.Serializable;

public class ChecksumCalcClass

implements ChecksumCalc, Serializable {

public byte calcChecksum(byte[] message) {

//

// Calculate checksum as XOR of all bytes

//

byte retVal = 0;

for (int ix=0; ix<message.length; ix++) {

retVal ^= message[ix];

}

return retVal;

}

}

The second class in this package is the one that will be responsible for service
registration and lease renewal (see Figure 9.5).

Figure 9.5 ChecksumService.java

/**

* ChecksumService.java

*

*/

package checksum;

www.syngress.com

Figure 9.4 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 343

344 Chapter 9 • Programming LEGO MINDSTORMS with Jini

import net.jini.core.discovery.LookupLocator;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseListener;

import java.io.Serializable;

import java.io.IOException;

import java.rmi.RMISecurityManager;

import java.rmi.RemoteException;

import java.net.MalformedURLException;

public class ChecksumService

implements Serializable, LeaseListener {

// The LeaseRenewalManager will ensure that the

// lease with the locator serivce is regulalry

// renewed.

protected LeaseRenewalManager leaseManager

= new LeaseRenewalManager();

static public void main(String args[]) {

new ChecksumService();

// Ensure service runs indefinitely so

// we can keep renewing the lease. If

// we don't keep running, the lease will

// expire and the service registration

// will lapse.

Object keepAlive = new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

www.syngress.com

Figure 9.5 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 344

Programming LEGO MINDSTORMS with Jini • Chapter 9 345

} catch(java.lang.InterruptedException e) {

// do nothing

}

}

}

public ChecksumService() {

// Lookup using Unicast (i.e., specify the address of

// a single lookup service), using the default port.

LookupLocator lookupLocator = null;

// Make sure to specify the correct

// address of the running lookup service.

try {

lookupLocator =

new LookupLocator("jini://192.168.100.3");

} catch (MalformedURLException e) {

System.err.println(e.toString());

System.exit(1);

}

// The Service Registrar is the proxy

// through which we communicate with

// the lookup service.

ServiceRegistrar serviceRegistrar = null;

try {

serviceRegistrar =

lookupLocator.getRegistrar();

} catch (IOException e) {

System.err.println(e.toString());

System.exit(1);

} catch (ClassNotFoundException e) {

System.err.println(e.toString());

www.syngress.com

Figure 9.5 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 345

346 Chapter 9 • Programming LEGO MINDSTORMS with Jini

System.exit(1);

}

// Register our implementation class

// as a service.

ChecksumCalcClass cCImplementation =

new ChecksumCalcClass();

ServiceItem serviceItem =

new ServiceItem(

null,

cCImplementation,

null);

// Request a 10 second lease duration. This

// means that the lease will require renewing

// at least once every 10 seconds.

ServiceRegistration serviceRegistration = null;

try {

serviceRegistration =

serviceRegistrar.register(

serviceItem,

10000L);

} catch (RemoteException e) {

System.err.println(e.toString());

System.exit(1);

}

// Configure the lease manager

// to keep on renewing our lease

// indefinitely.

leaseManager.renewUntil(

serviceRegistration.getLease(),

Lease.FOREVER,

Lease.ANY,

this);

www.syngress.com

Figure 9.5 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 346

Programming LEGO MINDSTORMS with Jini • Chapter 9 347

// If all has gone well, we have a service ID and

// clients can now invoke the service.

System.out.println(

"Successful Registration - Service ID: " +

serviceRegistrar.getServiceID());

}

public void notify(LeaseRenewalEvent evt) {

// Will receive events concerning abnormal

// lease behaviour. Ignored in this

// example.

}

}

We have already covered the concept of registration with a lookup service,
but what is lease renewal and why do we need it? The answer is probably best
explained by stating why we need it: in a distributed environment like this, it may
not always be beneficial to register a remote service as being available indefi-
nitely; if the implementation of the service is no longer available (for reasons
ranging from physical malfunction to intentional decommissioning), we may not
want the registration of that service to remain in force indefinitely.The answer is
the lease concept: a service provider asks to register its service and is in return
granted a lease which will expire after a certain time. It is then the responsibility
of the service provider to periodically request that the lease be renewed.
Obviously, if the service provider fails or is shut down, the lease will expire and
the service will no longer be registered.

Jini service providers can handle lease renewals in a number of ways, but in
the examples in this chapter we will use the simplest of all—the net.jini.lease
.LeaseRenewalManager, which will handle the job of lease renewal automatically.

Finally, we need some client code to make use of the service.This code will
contact the lookup service and request an object matching the interface we
defined previously. It can then make use of that object remotely without any
knowledge of the implementation or of the communication methods; the object

www.syngress.com

Figure 9.5 Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 347

348 Chapter 9 • Programming LEGO MINDSTORMS with Jini

appears as if it was local to the client.We will define this class in a package called
checksumClient (see Figure 9.6).

Figure 9.6 ChecksumClient/Client.java

/**

* Client.java

*

*/

package checksumClient;

import shared.ChecksumCalc;

import net.jini.core.discovery.LookupLocator;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import java.rmi.RMISecurityManager;

import java.rmi.RemoteException;

import java.net.MalformedURLException;

import java.io.IOException;

public class Client {

static public void main(String args[]) {

new Client();

}

public Client() {

// Lookup using Unicast (i.e., specify the

// address of a single lookup service),

// using default port.

LookupLocator lookupLocator = null;

// Make sure to specify the correct

// address of the running lookup service.

try {

www.syngress.com
Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 348

Programming LEGO MINDSTORMS with Jini • Chapter 9 349

lookupLocator =

new LookupLocator(

"jini://192.168.100.3");

} catch (MalformedURLException e) {

System.err.println(e.toString());

System.exit(1);

}

// The Service Registrar is the proxy

// through which we communicate with

// the lookup service.

ServiceRegistrar serviceRegistrar = null;

try {

serviceRegistrar =

lookupLocator.getRegistrar();

} catch(IOException e) {

System.err.println(e.toString());

System.exit(1);

} catch(ClassNotFoundException e) {

System.err.println(e.toString());

System.exit(1);

}

// Construct a template for looking up

// a service that matches the

// commonly-known ChecksumCalc interface.

Class [] classArr =

new Class[] {ChecksumCalc.class};

ServiceTemplate svcTemplate =

new ServiceTemplate(

null,

classArr,

null);

www.syngress.com

Figure 9.6 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 349

350 Chapter 9 • Programming LEGO MINDSTORMS with Jini

// Request a remote copy of the matching

// object from the lookup server.

ChecksumCalc checksumRemoteObj = null;

try {

checksumRemoteObj =

(ChecksumCalc)serviceRegistrar.lookup(

svcTemplate);

} catch(RemoteException e) {

System.err.println(e.toString());

System.exit(1);

}

if (null == checksumRemoteObj) {

System.err.println(

"No valid service object found");

System.exit(1);

} else {

// We now have a valid object

// which can be called locally.

// Get the checksum for a binary message.

// Define a message as an array of

// arbitrary values:

byte[] msg = new byte[] {

(byte)0x34, (byte)0xa1, (byte)0x22

};

int csum = 0;

csum = (int)

checksumRemoteObj.calcChecksum(

msg);

// Print out the checksum in hex,

www.syngress.com

Figure 9.6 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 350

Programming LEGO MINDSTORMS with Jini • Chapter 9 351

// remembering that the Java byte

// is a signed type.

System.out.println("Checksum is: " +

Integer.toHexString(

csum >= 0 ?

csum : csum+256));

}

}

}

To test this simple service, make sure you have the HTTP server, the RMI
Activation Daemon, and reggie all running as described previously (remembering
that you should only have to start up reggie once; subsequently, it should be
invoked automatically by rmid).Then register the service. In order to do this, you
may have to specify a security policy as shown.Also make sure your CLASSPATH
correctly includes jini-core.jar and jini-ext.jar:

java -Djava.security.policy=c:\jini1_2\policy\policy.all

-Djava.security.manager checksum.ChecksumService

If this registers successfully, it should receive a unique service identifier and
you should see something like the following output:

Successful Registration – Service ID: 546e76ab-2c47-4b29-bb29-

9638e920ee58

Because the client will need to execute ChecksumCalcClass code without
actually having ChecksumCalcClass.class in its CLASSPATH, it will need to obtain
this code via HTTP.To enable this, you will have to do two things:

1. Create an archive (jar) containing ChecksumCalcClass.class and place it in
the directory that the HTTP server is configured to serve files from (the
same directory you previously copied reggie-dl.jar into), and restart the
HTTP server.This time the HTTP server should output the names of
both reggie-dl.jar and the newly-created archive—for example,
checksum.jar. To create a jar file containing class files, you can run the jar
tool specifying –c (to create a new archive), -v (for verbose output), and
–f (to specify the archive filename).Also, the –C option can be used to

www.syngress.com

Figure 9.6 Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 351

352 Chapter 9 • Programming LEGO MINDSTORMS with Jini

change the directory, so that the following command line will produce
an archive named checksum.jar containing ChecksumCalcClass.class:

jar cvf checksum.jar -C checksum/ ChecksumCalcClass.class

2. Specify a CODEBASE property when you start the client so that it
knows to download the checksum.jar archive from the HTTP server
when required.

Starting the client will also require specifying a security policy, and the fol-
lowing command line demonstrates all of the required parameters (remembering
to replace myhttp with the actual machine name or IP address of your HTTP
server):

java -Djava.rmi.server.codebase=http://myhttp:8081/checksum.jar -Djava.

security.policy=c:\jini1_2\policy\policy.all -Djava.security.manager

checksumClient.Client

If all goes well, it should obtain the desired object and calculate the
checksum.The following shows the expected output after running the client:

Checksum is: b7

In order to really understand what has just taken place here, we need to con-
sider which Java Virtual Machines (JVMs) each component is running in. Each
JVM is an executable program, and whether or not our client and service run on
the same machine or different machines (in practice they would be on different
machines), they certainly run in different JVMs. So what happens to the object of
type ChecksumCalcClass as it progresses through its lifecycle?

1. Our service program instantiates an object of type ChecksumCalcClass
within its own JVM, just as one would create any normal object in Java.

2. The object is serialized (which is why it implements serializable), and reg-
istered with reggie.This means that the object’s state (in other words, a
snapshot of its data at the time it was serialized) is stored away until
required.

3. Our client program receives the serialized object from reggie and recon-
structs it as an object within its own JVM.

4. The client then starts making local method calls against the object, as if
it was a regular Java object that had been instantiated locally by the
client.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 352

Programming LEGO MINDSTORMS with Jini • Chapter 9 353

These four steps are shown in Figure 9.7.

So, what’s so simplistic about this scenario? Well, in the case where the
checksum object doesn’t interact with any other objects or systems, this works
just fine. However, what if that object created by the service had referenced
another object in the JVM of the service? This reference would be meaningless
when the client came to access it in its JVM, regardless of whether it was on the
same machine or not.And what if the object created by the service expected to
access a LEGO MINDSTORMS RCX via a serial port on that machine? It cer-
tainly won’t work if a client on a completely different computer uses it!

What we have achieved so far is to transport an object between two Java
Virtual Machines fairly painlessly, but obviously something more is required.We
clearly need a mechanism whereby we don’t transmit the object itself but rather
we implement a process like this:

1. The service creates an object within its JVM just as before.

2. Instead of the service object being registered with reggie, an identical-
looking stub object is registered with reggie.

3. The object that is reconstructed in the client’s JVM is actually the ser-
vice stub object.

4. The client makes method calls against the object just as before.

www.syngress.com

Figure 9.7 Flow of Execution in the Simple Example

Client JVM

Service JVM

reggie JVM

checksum
object

1. Object of type ChecksumCalcClass created
2. Object registered with reggie

checksum
object

checksum
object

(serialized)

3. Object reconstructed in client JVM4. Methods called against object locally

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 353

354 Chapter 9 • Programming LEGO MINDSTORMS with Jini

5. However, the stub object does not implement the code within those
method calls; it knows how to communicate back to the original service
object, which may well be running on another machine, and that orig-
inal object does all of the processing.

This flow is shown in Figure 9.8.

Now that would make sense; if the service object was expecting to commu-
nicate with an RCX via a serial port, then it still could because the object would
be invoked in the original JVM that created it.And if that object held references
to other objects, these references would still be valid for the same reasons.

The only problem is that we have to write an absolutely enormous amount
of code to achieve this complex interaction between objects across the network,
right? Wrong! Fortunately, Jini’s use of RMI means that this can be achieved with
essentially no coding whatsoever! There are several ways to implement this, but
the one we will use in the examples is by extending a class known as
java.rmi.server.UnicastRemoteObject. Basically, the steps required are as follows:

1. Make sure that the class of the object that is to be registered as a service
extends UnicastRemoteObject (and also ensure that it still implements
Serializable).

2. When you compile your service’s class (for example, MyCoolService.class),
run the RMI compiler against it to produce a stub class.

www.syngress.com

Figure 9.8 The Use of RMI Stubs in a Jini Architecture

Client JVM

Service JVM

Lookup service JVM

Service
object

1. Service object created

2. Stub object registered with lookup service

Stub object

Stub
object

(serialized)

3. Stub object reconstructed in client JVM

5. Stub object communicates
back to service object

4. Methods called
against stub object locally

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 354

Programming LEGO MINDSTORMS with Jini • Chapter 9 355

3. Make sure that the stub class file is accessible to the client via the
HTTP server.

That’s it! That’s all you have to do; the RMI compiler will generate all of the
code required for the stub so that the stub and the original object know how to
communicate across JVMs and even across a network.You still specify the original
class name in your code; Jini knows to instantiate the stub and register that with
reggie instead of your local object.

Generating the stub class using the RMI compiler is no trouble at all.The
compiler executable is rmic, and the argument is the class file that the stub is
being produced for.The output is the class name followed by an underscore, fol-
lowed by Stub, followed by the .class extension. So, if the original class was called
MyCoolServiceClass.class, the generated stub would automatically be called
MyCoolServiceClass_Stub.class.

The most commonly used options for rmic in this context are:

■ -keep Suppresses the deletion of intermediate files.The RMI compiler
actually generates a .java source file on its way to generating the .class
file, and this option stops the source file from being deleted; handy if
you want to understand a little more about what’s going on behind the
scenes.

■ -v1.2 Under Java 1.1, the standard was to produce stub and skeleton
files, with “_stub” and “_skel” suffixes.The skeleton files are no longer
required, so this option suppresses their creation.

So, running the command:

rmic -v1.2 mindstorm.MindstormProxy

would create a single stub file called MindstormProxy_Stub.class in the mindstorm
directory.

Proxies and Service Architectures
Having now covered some of the basics of registering and using a Jini service, we
also need to consider how to decide on the correct architecture for a specific sit-
uation, and most appropriately in this context, how to select the right architec-
ture for a situation involving LEGO MINDSTORMS and Jini.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 355

356 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Selecting the Right Architecture
As with most things, there are good and bad ways to approach the architecture of
a Jini federation, but often no “right” or “wrong” way.The following sections will
serve as a guide to how your particular solutions may be designed.

Using Proxies
As we have already covered, Jini is often considered appropriate as a technology
for allowing the services of a wide range of devices to be readily discovered and
utilized in a distributed environment. If you think about it, it makes perfect sense
that a large device such as a household air conditioning unit may contain enough
computing power to run Java, (including RMI), a TCP/IP stack, and Jini, so that
it can register its own services.What then if the device contained a much less
powerful embedded system (perhaps an 8- or 16-bit microcontroller), with only a
primitive communications facility (perhaps RS-232) and limited RAM (measured
in Kbytes rather than Mbytes or Gbytes)? That’s when you would need a proxy.

A proxy in the Jini context is a service that runs on a more powerful com-
puting platform (such as a PC or perhaps a home control system) and which
stands between the client and something like an embedded device.The thing
about the proxy is that to the client, the proxy appears to actually be the service
itself. However, the reality is that the proxy is a layer of abstraction; it handles all
of the communication with the device that is physically performing the service
(over RS-232 in our previous example), and it handles such tasks as service regis-
tration and lease renewal. Figure 9.9 shows the basic architecture of a system
where a single object acts as a proxy, and the physical service is carried out by a
LEGO MINDSTORMS device.

A RCX Jini Proxy Service
In this section, we will delve into building an example Jini service and client that
will allow multiple LEGO MINDSTORMS to interact with each other.This
will follow a design similar to that shown in Figure 9.9, where a proxy architec-
ture is used.

Why a Proxy?
If you were thinking that our discussions about embedded devices with limited
computing powers and primitive communications abilities could apply to the

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 356

Programming LEGO MINDSTORMS with Jini • Chapter 9 357

RCX, you’re absolutely right. Despite the fact that people have been able to
implement a form of Java Virtual Machine within the RCX, it really doesn’t
come close to having the computing power required to run Jini.

That said, the Jini proxy architecture makes perfect sense in the case of the
RCX. Since the only way it has of connecting to a network is via an infrared
link connected to some form of more powerful computer, that computer is the
ideal candidate to act as proxy. So, a Jini federation of MINDSTORMS is a very
real possibility; one or many machines connected to infrared towers register proxy
services.To the client or clients, these proxy services appear as the services them-
selves—the client calls a method DoWhateverRobotsDo(), and the robot responds
by doing it.What has really taken place though is that the proxy has interpreted
the method call and executed it by sending and receiving a set of RCX opcodes
over the infrared connection.

www.syngress.com

Figure 9.9 The Use of Proxies for Embedded Devices

Client JVM

Service JVM

Lookup service JVM

Proxy
object

1. Proxy object created
2. Stub object registered with lookup service

Stub object

Stub
object

(serialized)

3. Stub object reconstructed in client JVM

5. Stub object communicates
back to proxy object

4. Methods called
against stub object locally

Embedded device
(e.g., LEGO

MINDSTORMS)

Proprietary protocol (e.g., RCX
opcodes over infrared link)

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 357

358 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Interfacing with the RCX Java API
There are multiple mechanisms by which the Jini proxy could interface with the
RCX—in our example, we shall use the RCX Java API.We will create a service
program that will instantiate a proxy object (and its corresponding stub), and reg-
ister this with the lookup service, and we will run more than one instance of this
program (using more than one RCX, each connected to its own machine).When
a client invokes methods against these proxy objects, the proxies will actually
make use of the RCX Java API to send and receive the RCX opcodes to com-
mand the RCX to behave a certain way and to receive feedback from the RCX.

Using the RCX Jini Service:
Example Server and Client
Now we will cover a more complex example scenario that involves one or more
LEGO MINDSTORMS. In this example, the MINDSTORMS will effectively
communicate with each other (via a central client program) to perform a kind of
synchronized dance.

The desired outcome is this: for a pair of MINDSTORMS, the first will per-
form a certain “dance step” (actually one of eight predefined movements); the
second will imitate the exact movement, wait several seconds, and then perform
its own randomly chosen movement.This will then be imitated by the first, and
so on until the program is terminated or the batteries run out!

If there is only one MINDSTORMS robot in the Jini Federation, it will just
have to be content with imitating its own movements. Likewise, if there are more
than two robots, they will form a “daisy chain,” with each one copying the moves
of the previous one in the chain before deciding on its own original step.

Figure 9.10 shows the basic scenario for this example, assuming two robots.
As you can see in this diagram, the PCs which are connected to the infrared
towers will act as proxies for RCX units themselves.Also, because some of the
components of this system are likely to reside on different machines (or at least in
different JVMs in the case where one machine may control multiple RCXs via
multiple serial ports), the proxy objects must be executed in the JVM of the ser-
vice that registers them.Therefore, it will actually be stub objects that will be reg-
istered with reggie and these stub objects will communicate via RMI with the
proxies.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 358

Programming LEGO MINDSTORMS with Jini • Chapter 9 359

A RCX Jini Server
The first step is to create an interface that can be known to both client and ser-
vice.Again, as in the simple Jini example shown previously, we will create this
interface in a package called shared (see Figure 9.11).The interface defines some
methods to allow certain attributes to be retrieved, as well as the method
imitateThis(), which is a command to a MINDSTORMS robot to imitate a cer-
tain dance step.

Figure 9.11 Mindstorm.java

/**

* Mindstorm.java

*

*/

www.syngress.com

Figure 9.10 Example Scenario for Jini and the RCX

Infrared

PC and Infrared Tower

MINDSTORMS
robot 2

Infrared

PC and Infrared Tower

MINDSTORMS
robot 1

Locator Service (reggie)

Client

Register service proxy Register service proxy

Lookup both
service proxies

Send
commands

Receive
messages

Send
commands

Receive
messages

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 359

360 Chapter 9 • Programming LEGO MINDSTORMS with Jini

package shared;

import java.rmi.Remote;

import java.rmi.RemoteException;

import net.jini.core.event.RemoteEventListener;

public interface Mindstorm

extends Remote {

// Define the two possible message types:

// EVENT_RCX_MSG is a message from a remote RCX.

// EVENT_DANCE_STEP is a notification that a Mindstorm

// has completed a dance step.

public final int EVENT_RCX_MSG = 1;

public final int EVENT_DANCE_STEP = 2;

// Method to retrieve the ID of a Mindstorm.

public String getRcxId() throws RemoteException;

// Tell a Mindstorm to imitate a dance step.

public void imitateThis(int danceStep) throws RemoteException;

// Retrieve the most recent RCX Message received. Should

// be called in response to receiving an EVENT_RCX_MSG.

public byte[] GetLastRCXMessage() throws RemoteException;

// Retrieve the most recent dance step performed

// by an RCX. Should be called in response to

// receiving an EVENT_DANCE_STEP.

public int GetLastStepPerformed() throws RemoteException;

// Allow the client to register a listener

// to receive events from the service.

public void RegisterRemoteListener(RemoteEventListener listener)

www.syngress.com

Figure 9.11 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 360

Programming LEGO MINDSTORMS with Jini • Chapter 9 361

throws RemoteException;

}

The proxy class will be called mindstorm.MindstormProxy. It will make extensive
use of the RCX Java classes, so make sure you are familiar with the RCX Java
mechanisms before you embark on this one.This proxy will also make use of mul-
tithreading; it will spawn a new thread of execution and return, before proceeding
through the cycle of imitating a dance step, pausing for 10 seconds, and then
deciding on another dance step to perform.This is so that the client program is
not held up for the entire 10-plus seconds, and it is a very common technique to
use for this kind of scenario in Java. In this case, the class that will process the
additional thread (ImitationThread) has been implemented as an inner class. It is a
class declared within another class, which has implicit access to the members of
the enclosing class and is not visible outside of that class. Just remember that when
MindstormProxy.java is compiled, two .class files will be produced—MindstormProxy
.class and MindstormProxy$ImitationThread.class—and that both these files must be
in the Java runtime’s CLASSPATH for the example to work.

The other thing to note about this class is that instances of it will be required
to execute on the machine that they were created on (because they will be com-
municating out a physical serial port to an RCX device), so we will be required
to register an instance of a proxy that will be capable of communicating back
with the equivalent object of this class from a remote client.As already discussed,
we are very fortunate that RMI can provide this functionality with very little
effort on our part.As can be seen from the following code, the proxy class will
extend UnicastRemoteObject.The only other thing you must remember to do is
run the RMI compiler against the compiled class file to produce a stub class.You
can invoke the compiler with a command such as:

rmic -v1.2 mindstorm.MindstormProxy

After running rmic, you should now have produced a file called
MindstormProxy_Stub.class in the /mindstorm subdirectory; this file is the
proxy code (see Figure 9.12).That certainly beats coding it by hand!

www.syngress.com

Figure 9.11 Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 361

362 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Figure 9.12 MindstormProxy.java

/**

* MindstormProxy.java

*

*/

package mindstorm;

import java.rmi.server.UnicastRemoteObject;

import net.jini.core.event.UnknownEventException;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import shared.Mindstorm;

import java.io.Serializable;

import java.rmi.RemoteException;

import rcx.RCXListener;

import rcx.RCXPort;

public class MindstormProxy

extends UnicastRemoteObject

implements Mindstorm, Serializable, RCXListener {

// Make sure to generate a stub class using the

// RMI compiler since this class extends

// UnicastRemoteObject.

protected static final byte FORWARDS = (byte)0x80;

protected static final byte BACKWARDS = (byte)0x00;

protected static final byte ON = (byte)0x80;

protected static final byte OFF = (byte)0x40;

protected static final byte MOTOR_A = (byte)0x01;

protected static final byte MOTOR_C = (byte)0x04;

protected static final byte MOTOR_DIR = (byte)0xe1;

protected static final byte MOTOR_ON_OFF = (byte)0x21;

// Store our unique ID so that the client

www.syngress.com

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 362

Programming LEGO MINDSTORMS with Jini • Chapter 9 363

// can differentiate between robots.

protected String rcxId = null;

protected RCXPort rcxPort = null;

protected RemoteEventListener remoteListener = null;

// Store any message received from the RCX

// as a raw byte array for retrieval by the client.

// Note that any subsequent message will overwrite

// the existing one and if messages are retireved

// in quick succession, data may be lost. A more

// robust implementation could be employed for a

// production system...

protected byte[] lastRCXEvent = null;

// Similarly for the most recent dance step performed...

protected int lastDanceStep = 0;

protected long seqNo = 0;

public MindstormProxy() throws RemoteException {

}

public String getRcxId() {

return rcxId;

}

protected void setRcxId(String id) {

rcxId = id;

}

protected void openRcxPort(String port) {

// Open a specific serial port

rcxPort = new RCXPort(port);

www.syngress.com

Figure 9.12 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 363

364 Chapter 9 • Programming LEGO MINDSTORMS with Jini

// Register as a listener with the RCX

rcxPort.addRCXListener(this);

}

protected void executeMovement(int movementId) {

// Execute one of our robot's 8

// spectacular dance steps.

System.out.println("Executing step: " + movementId);

switch(movementId) {

case 0:

// Directly forward

setMotorDir(FORWARDS,

(byte)(MOTOR_A | MOTOR_C));

motorOn((byte)(MOTOR_A | MOTOR_C));

break;

case 1:

// Directly back

setMotorDir(BACKWARDS,

(byte)(MOTOR_A | MOTOR_C));

motorOn((byte)(MOTOR_A | MOTOR_C));

break;

case 2:

// Rotate right

setMotorDir(FORWARDS, MOTOR_A);

setMotorDir(BACKWARDS, MOTOR_C);

motorOn((byte)(MOTOR_A | MOTOR_C));

break;

case 3:

// Rotate left

setMotorDir(BACKWARDS, MOTOR_A);

setMotorDir(FORWARDS, MOTOR_C);

motorOn((byte)(MOTOR_A | MOTOR_C));

break;

case 4:

// Forward right

www.syngress.com

Figure 9.12 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 364

Programming LEGO MINDSTORMS with Jini • Chapter 9 365

setMotorDir(FORWARDS, MOTOR_A);

motorOn(MOTOR_A);

break;

case 5:

// Forward left

setMotorDir(FORWARDS, MOTOR_C);

motorOn(MOTOR_C);

break;

case 6:

// Reverse right

setMotorDir(BACKWARDS, MOTOR_A);

motorOn(MOTOR_A);

break;

case 7:

// Reverse left

setMotorDir(BACKWARDS, MOTOR_C);

motorOn(MOTOR_C);

break;

}

// Each dance step is of a 0.3 second duration

try {

Thread.sleep(300);

} catch(InterruptedException e) {

//

}

motorsOff();

}

protected void motorOn(byte motors) {

// Turn one or both motors on

byte[] msg = new byte[] {};

sendToRcx(

new byte[] {

MOTOR_ON_OFF,

(byte)(ON | motors)});

www.syngress.com

Figure 9.12 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 365

366 Chapter 9 • Programming LEGO MINDSTORMS with Jini

}

protected void motorsOff() {

// Turn both motors off

sendToRcx(

new byte[] {

MOTOR_ON_OFF,

(byte)(OFF | MOTOR_A | MOTOR_C)});

}

protected void setMotorDir(byte dir, byte motors) {

// Set direction for one or both motors

sendToRcx(

new byte[] {

MOTOR_DIR,

(byte)(dir | motors)});

}

protected void sendToRcx(byte[] msg) {

System.out.println(

"Sending to port: " +

byteArrayToString(msg));

if (!rcxPort.write(msg)) {

System.err.println("Error writing to port");

}

}

public void imitateThis(int danceStep)

throws RemoteException {

// This should be the dance step that the other

// robot has just performed. We will attempt to

// imitate it. Handle this from a new thread.

new ImitationThread(danceStep, this).start();

www.syngress.com

Figure 9.12 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 366

Programming LEGO MINDSTORMS with Jini • Chapter 9 367

}

public void receivedMessage(byte[] msg) {

// Receive messages from the RCX

if (null != msg) {

System.out.println(

"RCX message: " +

byteArrayToString(msg));

if (null != remoteListener) {

// Store the event contents

// for retrieval by the listener

lastRCXEvent = msg;

// Notify the listener of the event.

// Listener will have to call back to

// obtain the details.

RemoteEvent evt =

new RemoteEvent(

this,

EVENT_RCX_MSG,

seqNo++,

null);

try {

remoteListener.notify(evt);

} catch(UnknownEventException e) {

System.err.println("Event exception");

} catch(java.rmi.RemoteException e) {

System.err.println("Remote exception");

}

}

}

}

www.syngress.com

Figure 9.12 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 367

368 Chapter 9 • Programming LEGO MINDSTORMS with Jini

protected String byteArrayToString(byte[] msg) {

// Convert an array of bytes to a human-readable

// string

StringBuffer sBuf = new StringBuffer();

for(int ix = 0; ix < msg.length; ix++) {

int dm =

msg[ix] >= 0 ?

(int)msg[ix] :

((int)msg[ix]) + 256;

sBuf.append(

Integer.toHexString(dm) + " ");

}

return sBuf.toString();

}

public void receivedError(String err) {

// Receive errors from the RCX

System.err.println("RCX error: " + err);

}

public byte[] GetLastRCXMessage() {

// This will be called by the client

// to retrieve details of the last message

// after we have sent a notification.

return lastRCXEvent;

}

public int GetLastStepPerformed() {

// This will be called by the client

// to retrieve details of the last step

// after we have sent a notification.

return lastDanceStep;

www.syngress.com

Figure 9.12 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 368

Programming LEGO MINDSTORMS with Jini • Chapter 9 369

}

public void RegisterRemoteListener(

RemoteEventListener listener) {

// Called by the client to register its

// listener object (which should also extend

// UnicastRemoteObject so that we can notify it

// remotely).

remoteListener = listener;

}

// Declare this thread class as an inner class

class ImitationThread extends Thread {

protected int step;

protected MindstormProxy proxy = null;

public ImitationThread(

int danceStep,

MindstormProxy proxy) {

// Store the reference to the

// object that created us as well

// as the dance step to execute.

this.proxy = proxy;

step = danceStep;

}

public void run() {

// Firstly execute the move in

// imitation of the other robot.

executeMovement(step);

// Then wait 10 seconds

try {

www.syngress.com

Figure 9.12 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 369

370 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Thread.sleep(10000);

} catch(InterruptedException e) {

// Do nothing

}

// Now randomly pick a new movement

// (between 0 and 7 inclusive).

int newMovement;

newMovement = (int)(8 * (Math.random()));

// Perform our randomly-selected movement.

executeMovement(newMovement);

// Now let the remote client

// know that we just performed it.

//

// The client will have to call back

// to get the details.

lastDanceStep = newMovement;

if (null != remoteListener) {

RemoteEvent evt =

new RemoteEvent(proxy,

EVENT_DANCE_STEP,

seqNo++, null);

try {

remoteListener.notify(evt);

} catch(UnknownEventException e) {

System.err.println("Event exception");

} catch(java.rmi.RemoteException e) {

System.err.println(e.toString());

}

}

}

}

}

www.syngress.com

Figure 9.12 Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 370

Programming LEGO MINDSTORMS with Jini • Chapter 9 371

Having now defined a proxy class, we will move on to examine a sample
server that will instantiate a proxy object, register its stub with any lookup ser-
vices on the network, and keep it alive and keep the lease renewed.

There are a number of differences between this service and the one we
looked at in the preceding simple example. One of these differences is that we
will be using multicast instead of unicast lookups to find instances of reggie (the
lookup service).Whereas, in the checksum example, we specified the IP address
of a specific lookup service instance, here we will use multicast to find any
number of lookup services that may exist on our network. Once we find them,
we will register the proxy object (actually its stub) with each of them.

Another difference between this and our simple example is that in this sce-
nario we are expecting multiple services on the network to register objects
implementing the same common interface.This is because this scenario involves
multiple MINDSTORMS robots, and we need some way to differentiate
between them. Because there is no distinguishing identifier inherent in the basic
RCX firmware, we will assign an identifying name to each proxy object instead.
This will be passed in as a command line parameter to the service as a string; it
can be any name at all as long as you use a different name for any other robots
you register.

Along with the robot’s identifier, we will expect another command line
parameter: the port identifier.This is the actual port name to be used by RCX
Java, such as “COM1” for a Windows machine.

It is important that this service keep itself alive after it has done the job of
registering the proxy with the lookup service.This is not just for the purpose of
lease renewal, but also because we are really only registering a stub for remote
use, and the proxy object itself will run in the JVM of this service and will
receive calls remotely from the client via RMI. If this JVM goes away, so does the
proxy, and the client will start to see all kinds of remote exceptions and no
responses from the robot.

The code for the service is as shown in Figure 9.13.

Figure 9.13 MindstormService.java

/**

* MindstormService.java

*

*/

package mindstorm;

www.syngress.com
Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 371

372 Chapter 9 • Programming LEGO MINDSTORMS with Jini

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseListener;

import java.io.Serializable;

import java.io.IOException;

import java.rmi.RMISecurityManager;

import java.rmi.RemoteException;

public class MindstormService

implements

Serializable, LeaseListener, DiscoveryListener

{

// This service will be responsible for creating

// an instance of the proxy and registering it

// with the Jini locator service.

protected MindstormProxy proxy = null;

// The LeaseRenewalManager will ensure that the

// lease with the locator service is regularly

// renewed.

protected LeaseRenewalManager leaseManager

= new LeaseRenewalManager();

// Store our own ID so we can be differentiated from

// any other MINDSTORMS in the federation.

static protected String rcxId = null;

www.syngress.com

Figure 9.13 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 372

Programming LEGO MINDSTORMS with Jini • Chapter 9 373

// The name of the serial port.

static protected String portId = null;

static public void main(String args[]) {

// Since reggie is running with a security policy,

// we will have to as well. This assumes that

// the policy file is located at

// c:\jini1_2\policy\policy.all

// Adjust this for specific installations.

System.setProperty(

"java.security.policy",

"c:\\jini1_2\\policy\\policy.all");

System.setSecurityManager(new SecurityManager());

// Check that the correct arguments were passed in

if (args.length < 2) {

System.err.println

("Usage: java MindstormService RcxId Port");

System.exit(1);

}

rcxId = args[0];

portId = args[1];

new MindstormService();

// Ensure service runs indefinitely so

// we can keep renewing the lease.

Object keepAlive = new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

} catch(java.lang.InterruptedException e) {

// do nothing

www.syngress.com

Figure 9.13 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 373

374 Chapter 9 • Programming LEGO MINDSTORMS with Jini

}

}

}

public MindstormService() {

try {

// Lookup using Multicast (i.e., look for any lookup

// services on the network). We will receive a

// callback to the discovered() method with a

// list of all lookup services found.

LookupDiscovery lookupDiscovery =

new LookupDiscovery(

LookupDiscovery.ALL_GROUPS);

lookupDiscovery.addDiscoveryListener(this);

} catch(IOException e) {

System.err.println(e.toString());

System.exit(1);

}

}

public void discarded(DiscoveryEvent event) {

// Must be implemented from the

// DiscoveryListener interface.

}

public void discovered(DiscoveryEvent event) {

//try {

// Must be implemented from the

// DiscoveryListener interface.

// This method will be called with a list

www.syngress.com

Figure 9.13 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 374

Programming LEGO MINDSTORMS with Jini • Chapter 9 375

// of all lookup services found

// (actually their registrar proxies).

ServiceRegistrar[] regArray = event.getRegistrars();

try {

proxy = new MindstormProxy();

} catch (RemoteException e) {

System.err.println(e.toString());

System.exit(1);

}

proxy.setRcxId(rcxId);

// Turn off security management while

// opening the comm port. This requires

// holding a reference to the existing

// security manager so it can be

// restored again.

SecurityManager sm =

System.getSecurityManager();

System.setSecurityManager(null);

// Request that the serial port

// be opened.

proxy.openRcxPort(portId);

// Turn security management back on again

System.setSecurityManager(sm);

// Iterate through the array of

// lookup services that were found

// on the network.

for (int ix = 0; ix < regArray.length; ix++) {

ServiceRegistrar svcRegistrar = regArray[ix];

www.syngress.com

Figure 9.13 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 375

376 Chapter 9 • Programming LEGO MINDSTORMS with Jini

// register ourselves as a service

ServiceItem serviceItem = new ServiceItem(

null, proxy, null);

// Request a 60 second lease duration. This

// means that the lease will require renewing

// at least once every 10 seconds.

ServiceRegistration serviceRegistration = null;

try {

serviceRegistration =

svcRegistrar.register(

serviceItem,

Lease.FOREVER);

} catch (RemoteException e) {

// If the service registration

// fails, we can still try with

// any other lookup services

// on the network.

System.err.println(e.toString());

continue;

}

// Request the Lease Renewal Manager

// to perform regular renewals of the

// lease indefinitely.

leaseManager.renewUntil(

serviceRegistration.getLease(),

Lease.FOREVER,

Lease.ANY,

this);

System.out.println(

"Successful - Service ID: "

+ svcRegistrar.getServiceID());

www.syngress.com

Figure 9.13 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 376

Programming LEGO MINDSTORMS with Jini • Chapter 9 377

}

}

public void notify(LeaseRenewalEvent evt) {

// Will receive events concerning abnormal

// lease behavior. Ignored in this

// example.

}

}

www.syngress.com

Figure 9.13 Continued

Troubleshooting the Jini Federation
Debugging Jini services and clients should be relatively straightforward,
provided you are well aware of which JVMs the various components are
running in. For example, in our simplistic initial example, where the ser-
vice object was actually run locally by the client, the debugger could be
run against the client program provided it had access to the Java source
code of the service. In the case of debugging our more advanced
example involving the RCXs, things are a little different but really no
more difficult. In this case, the proxy object would be debugged within
the server JVM itself; just be aware that a number of threads will be run-
ning and the methods in the object will actually be invoked as a result
of receiving network messages from the stub object in the remote JVM.

There are several additional tricks that may help in debugging your
Jini solutions:

■ To debug the calls into a stub object on the client, it may be
beneficial to have the source code for the stub class avail-
able. To achieve this, just remember to specify the –keep
option when you run the RMI compiler to generate the stub
class or classes.

Debugging…

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 377

378 Chapter 9 • Programming LEGO MINDSTORMS with Jini

A RCX Jini Client
Now that we have generated all of the files required to provide the service, we
can turn our attention to a client program that will make use of a number of
instances of these services (see Figure 9.14).As outlined previously, this client will
be capable of interacting with any number of such services, as long as they have a
unique identifier attached to them.

Just as with the preceding service code, the client will use the multicast
mechanism to find any available lookup services on the network.Then, for each
of these, it will examine any registered objects that implement the Mindstorm
interface defined previously. It will compare the string identifier that was given to
each of these and determine whether it has already come across an instance with
this identifier. If it is the first time it has seen such an object, it will add it to its
list.This list is being stored in a Java object called a Vector, which is a very handy
mechanism for storing a variable number of objects of different types.

Figure 9.14 MindstormClient/Client.java

/**

* Client.java

*

*/

package mindstormClient;

import shared.Mindstorm;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

www.syngress.com

■ Use plenty of System.out.println() calls in your client and ser-
vice code to provide ample information of what is taking
place at runtime.

■ When starting either the client or the server, there are two
additional options that can be set in the command line
to enable additional debugging information: -Dnet.jini
.discovery.debug=1 and -Djava.rmi.server.logCalls=true.

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 378

Programming LEGO MINDSTORMS with Jini • Chapter 9 379

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceMatches;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RMISecurityManager;

import java.util.*;

import java.io.Serializable;

import java.io.IOException;

public class Client

implements DiscoveryListener {

// This client will control multiple Mindstorms. Use

// the Vector object as a flexible container for

// holding a variable number of objects.

protected Vector mindstorms = new Vector();

static public void main(String args[]) {

// Since reggie is running with a security policy,

// we will have to as well. This assumes that

// the policy file is located at

// c:\jini1_2\policy\policy.all

// Adjust this for specific installations.

System.setProperty(

"java.security.policy",

"c:\\jini1_2\\policy\\policy.all");

System.setSecurityManager(new SecurityManager());

new Client();

// Ensure client runs indefinitely.

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 379

380 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Object keepAlive = new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

} catch(java.lang.InterruptedException e) {

// Do nothing

}

}

}

public Client() {

// Lookup using Multicast (i.e., look for any lookup

// services on the network).

LookupDiscovery lookupDiscovery = null;

try {

lookupDiscovery =

new LookupDiscovery(

LookupDiscovery.ALL_GROUPS);

} catch (IOException e) {

System.err.println(e.toString());

System.exit(1);

}

lookupDiscovery.addDiscoveryListener(this);

}

public void discarded(DiscoveryEvent event) {

// Must be implemented from the

// DiscoveryListener interface.

}

public void discovered(DiscoveryEvent event) {

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 380

Programming LEGO MINDSTORMS with Jini • Chapter 9 381

// Must be implemented from the

// DiscoveryListener interface.

// This method will be called with a list

// of all lookup services found

// (actually their registrar proxies).

ServiceRegistrar[] regArray = event.getRegistrars();

Class [] classes = new Class[] {Mindstorm.class};

ServiceTemplate svcTemplate =

new ServiceTemplate(null, classes, null);

for (int ix = 0; ix < regArray.length; ix++) {

ServiceRegistrar svcRegistrar = regArray[ix];

// For each lookup service, there could be

// 0 or many registered matching objects.

// Request a maximum of 10.

ServiceMatches matches;

try {

matches =

svcRegistrar.lookup(svcTemplate, 10);

} catch (RemoteException e) {

System.err.println(

"Remote exception in lookup");

continue;

}

for (int iy = 0;

iy < matches.totalMatches;

iy++) {

Mindstorm matched = (Mindstorm)

(matches.items[iy].service);

if (null != matched) {

// Call ProcessMatch() to either

// add it to the collection

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 381

382 Chapter 9 • Programming LEGO MINDSTORMS with Jini

// or ignore it.

try {

ProcessMatched(matched);

} catch (RemoteException e) {

// This will likely be old

// services that are no longer

// available.

continue;

}

}

}

}

System.out.println("Finished list");

if (mindstorms.isEmpty()) {

// Client cannot operate if no Mindstorm

// services have been found.

System.err.println(

"Could not find any Mindstorms");

System.exit(1);

} else {

// All OK; we have at least one Mindstorm

// service.

// Start it off by getting the first

// Mindstorm to perform the first dance step.

try {

((Mindstorm)mindstorms.

firstElement()).

imitateThis(0);

} catch (RemoteException e){

// If we can't invoke the first

// Mindstorm, then there's no point

// continuing.

System.err.println(e.toString());

System.exit(1);

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 382

Programming LEGO MINDSTORMS with Jini • Chapter 9 383

}

}

}

protected void ProcessMatched(Mindstorm matched)

throws RemoteException {

// matched represents a Mindstorm object

// that may or may not be a duplicate instance

// of one we already have.

String foundId =

matched.getRcxId();

// Only add the Mindstorm to the

// collection if we don't

// already have it.

if (IsUnique(foundId)) {

mindstorms.add(matched);

System.out.println("Found ID: " + foundId);

// Create a new listener

// object to receive events

// from this Mindstorm.

matched.RegisterRemoteListener(

new EventListener(matched, foundId));

} else {

System.out.println("Ignoring ID: " + foundId);

}

}

protected boolean IsUnique(String id) {

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 383

384 Chapter 9 • Programming LEGO MINDSTORMS with Jini

// Iterate through the list of Mindstorms and

// determine whether we already have this one.

for (Iterator iter = mindstorms.iterator();

iter.hasNext();) {

String existingId = null;

try {

existingId = ((Mindstorm)iter.next()).

getRcxId();

if (id.equals(existingId)) {

return false;

}

} catch(RemoteException e) {

System.err.println(

"Caught: " + e.toString());

}

}

return true;

}

protected void NotifyNextMindstorm(String id, int step) {

// One of the Mindstorms has notified us of a

// step performed; notify the next one.

// Firstly loop through the Vector of

// Mindstorms until we find the match

for (Iterator iter = mindstorms.iterator();

iter.hasNext();) {

String currId = null;

try {

currId = ((Mindstorm)iter.next()).getRcxId();

if (id.equals(currId)) {

// We have the match. Either get the

// next from the list or the first

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 384

Programming LEGO MINDSTORMS with Jini • Chapter 9 385

// in the list.

// If there's only one, it will just

// notify itself...

if (iter.hasNext()) {

((Mindstorm)iter.next()).

imitateThis(step);

} else {

((Mindstorm)mindstorms.

firstElement()).

imitateThis(step);

}

}

} catch(RemoteException e) {

System.err.println("Caught: " +

e.toString());

}

}

}

class EventListener extends UnicastRemoteObject

implements RemoteEventListener, Serializable {

// This class must extend UnicastRemoteObject

// because it needs to receive calls back

// from a remote JVM. Remember to generate a

// stub class for it using the RMI compiler!

protected String rcxId = null;

protected Mindstorm remoteMindstorm = null;

public EventListener(

Mindstorm mindstorm, String rcxId)

throws RemoteException {

// Call the default constructor for

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 385

386 Chapter 9 • Programming LEGO MINDSTORMS with Jini

// the parent class.

super();

// Keep a reference to the remote object that

// we're listening to.

this.remoteMindstorm = mindstorm;

// Keep a copy of the remote ID so we don't have

// to make round trips to look it up.

this.rcxId = rcxId;

}

public void notify(RemoteEvent evt)

throws UnknownEventException, RemoteException {

// Will receive notification messages from

// the service that it is associated with.

switch ((int)evt.getID()) {

case Mindstorm.EVENT_RCX_MSG:

// We have received some form

// of message from the remote RCX.

byte[] msg;

msg = remoteMindstorm.

GetLastRCXMessage();

// We could process the message here

// in some way.

break;

case Mindstorm.EVENT_DANCE_STEP:

// This is a notification from a remote

// Mindstorm that it has just completed

// a dance step. We must query the

// service to find out what the

www.syngress.com

Figure 9.14 Continued

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 386

Programming LEGO MINDSTORMS with Jini • Chapter 9 387

// step was.

int step;

step = remoteMindstorm.

GetLastStepPerformed();

System.out.println(

"Received step: "

+ step

+ " from: "

+ rcxId);

// Pass the dance step along

// the list of robots.

NotifyNextMindstorm(rcxId, step);

break;

}

}

}

}

Note that the mindstormClient.Client class also contains an inner class, named
EventListener, which extends UnicastRemoteObject.The EventListener class will be
instantiated locally, and a corresponding stub object passed across the network (or
at least across JVMs) to the service proxy.This then allows the service proxy to
communicate notifications back to the client by calling the stub locally, which
will in turn communicate back to the remote client.This complex combination
of local and remote objects is diagrammed in Figure 9.15.

Now we’re ready to start one or more instances of the service (depending on
how many RCXs and computers we have on hand), and then start the client.

So long as the HTTP server and the RMI activation daemon are still running
as described previously, and as long as our computer has a working installation of
RCX Java, we can now start up the service.You can see one other difference
from the preceding example; in the main() function, we are now setting the secu-
rity policy and security manager programmatically so these will not need to be
passed in as parameters in the command line. Notice also that the security man-
ager is momentarily removed (in the discovered() method) while the serial port is

www.syngress.com

Figure 9.14 Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 387

388 Chapter 9 • Programming LEGO MINDSTORMS with Jini

initialized; otherwise, an exception would result. Once the port has been opened,
we can write to it and read from it with the security manager in place.

We have described previously how to use the RMI compiler to generate the
stub class file for the proxy class. Before running this example, you will also need
to generate the stub class file for the EventListener inner class. Since EventListener
is an inner class of Client (within the mindstormClient package), the Java compiler
will have generated a file named Client$EventListener.class, so you can generate
the stub file by running:

rmic –v1.2 mindstormClient.Client$EventListener

After running this command, you should have a new class file named
Client$EventListener_stub.class in the mindstormClient directory.

The next step is to package each stub class file into an appropriate jar file so
that they can be served by the HTTP server. For the purposes of this example,
we will assume that they are in mindstorm.jar and mindstormClient.jar; we have
previously described the use of the jar tool, and the following command lines can
be used to generate the two jar archive files:

jar cvf mindstormClient.jar -C mindstormClient/ Client$EventListener

_stub.class

jar cvf mindstorm.jar -C mindstorm/ MindstormProxy_stub.class

www.syngress.com

Figure 9.15 The Complex Interactions Between Components in the Jini/RCX
Example

Client JVM

Service JVM

Proxy

Event
Listener

Event
Listener

Stub

Proxy
Stub

Lookup Service
(reggie) HTTP Server

Remote
Communication

Remote
Communication

Provide Event
Listener Stub code

(Client$EventListener_Stub.class)

Provide Proxy
Stub code

(MindstormProxy_Stub.class)

Register Proxy
(Stub) objectDiscover Event

Listener
(Stub) object

Register Event
Listener

(Stub) object

Discover Proxy
(Stub) object

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 388

Programming LEGO MINDSTORMS with Jini • Chapter 9 389

When all of the class files, including stubs, have been compiled and the jar
files produced, you will need to make the stub files accessible via HTTP. If you
are running the HTTP server that came with the Jini TSK, the jar archives will
need to be copied to the directory from where the HTTP server will serve files,
and the HTTP Server will have to be restarted.

At around this time, you may be thinking there has to be an easier way to
execute the steps of compiling the Java source files, generating RMI stubs, and
producing the jar archives. In fact, there is a tool available to assist in this,
although at the time of writing it is only an alpha release.The tool, appropriately
named BuildTool, is downloadable from http://developer.jini.org/exchange/pro-
jects/outofbox/buildtool/index.html (after creating a login account), and can per-
form the following three tasks:

■ Compile the Java source files.

■ Generate the RMI stub files.

■ Generate jar archive files.

The tool comes with enough documentation to get it up and running, and
includes a GUI interface that makes it very easy to use.A screenshot of the GUI
interface for BuildTool can be seen in Figure 9.16.

www.syngress.com

Figure 9.16 The BuildTool User Interface

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 389

390 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Starting up an instance of the server on a Windows machine with a serial
port named COM1 can then be done as follows, remembering that the server
will have to download the class file for the EventListener stub via HTTP:

rem

rem startmindstorm.bat

rem

rem replace 'myhttp' with your HTTP server's machine name

rem or IP address.

java -Djava.rmi.server.codebase=http://myhttp:8081/mindstormClient.jar

mindstorm.MindstormService Barney COM1

pause

This will assign the arbitrary name “Barney” to the proxy (in this case, to dis-
tinguish it from “Fred” and possibly “Wilma”).The output should initially look
something like that shown in Figure 9.17.

Once you have successfully started one or more server instances, starting the
client is similarly straightforward.The following script shows how to do this:

rem

rem startmindstormclient.bat

rem

rem replace 'myhttp' with your HTTP server's machine name

rem or IP address.

java -Djava.rmi.server.codebase=http://myhttp:8081/mindstorm.jar

www.syngress.com

Figure 9.17 Successful Registration of an RCX Service Proxy

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 390

Programming LEGO MINDSTORMS with Jini • Chapter 9 391

mindstormClient.Client

pause

When the client executes, you should see output similar to that in Figure 9.18.
In this instance, the client program has detected three valid service registrations on
the network.At the point in time that this screenshot was taken, the following had
just taken place:

■ The client program had discovered three service proxy objects with
unique IDs:Wilma, Barney, and Fred.

■ The client program had instructed Wilma to perform step 1 (it starts the
process by sending step 1 to the first RCX proxy in its list).

■ Wilma had completed step 1, and 10 seconds later randomly chose to
perform step 6, which was sent back to the client as a notification.

■ The client had instructed Barney to imitate step 6, and after the 10-
second pause, Barney chose to perform step 1 and notify the client.

■ The client then told Fred to imitate step 1. From Figure 9.18, you can
see that Fred executed step 1 and then chose to perform step 6 and
notify the client.

Figure 9.19 shows the output from one of the services.This screenshot was
captured as part of the same trial run as that in Figure 9.18.As you can see, this
service was run with an RCX ID of “Fred”.The snapshot shows that Fred has
executed step 1 in imitation of Barney, and has then chosen to perform step 6.

www.syngress.com

Figure 9.18 A Snapshot of the Client Program Output

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 391

392 Chapter 9 • Programming LEGO MINDSTORMS with Jini

You can also clearly see from this screenshot that the proxy object is in fact exe-
cuting in the same JVM that the service was run in; all of the trace output has
been generated by the proxy object which is both transmitting opcodes to the
RCX and receiving messages back from the RCX.

www.syngress.com

Figure 9.19 A Snapshot of the Output of One of the Services

Two Robots Are Better than One
This chapter demonstrates how Jini can be used to allow interaction with
and between multiple LEGO MINDSTORMS on a network. There are a few
practicalities that you should bear in mind if you are going to try this:

■ There is no simple way for the infrared tower to differentiate
between RCX units, and vice versa. This means that if two or
more RCXs are in range of the one tower, they will all
respond to the signals they receive, and they will all transmit
signals back to the tower. This may make the tower (or your
software) quite confused.

■ While this chapter has shown a way to differentiate between
RCXs by giving their proxy objects unique identifying names,
this identifier only applies to the proxy; if one RCX was to
move out of range of the proxy’s tower and another move
into its range, the newly-accessible RCX would continue to
respond as if it were the original one.

Bricks & Chips…

Continued

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 392

Programming LEGO MINDSTORMS with Jini • Chapter 9 393

As you can see from Figure 9.20, we found office desk partitioning to be a
very effective infrared screen, allowing us to test the interaction of a pair of
“Roverbot” robots at reasonably close range.The Jini solution works very effec-
tively; the client discovers the registered services, and away they go—a synchro-
nized LEGO dance! Because the services determine their own dance steps
randomly, the average number of forward and right movements should be
roughly equivalent to the average number of backward and left movements
respectively so the robots shouldn’t wander too far away, but it might be a good
idea not to let them dance too long unattended.

www.syngress.com

■ In order to give RCXs their own identifier within the
firmware, you would have to reprogram the firmware and
download a unique identifier into the MINDSTORMS device.
Then one infrared tower could control multiple RCXs inde-
pendently; they would have to be programmed to respond
only to commands addressed to their unique ID. You may like
to attempt this by combining what you have learned in this
chapter with the knowledge on leJOS gained from other
chapters in this book.

Figure 9.20 Two LEGO MINDSTORMS Interacting via Jini

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 393

394 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Summary
Jini is a Java technology that is built upon Java Remote Method Invocation
(RMI), and which enables devices to communicate in a network.At the heart of
a Jini network or “federation” is one or more lookup services. Jini services can
register themselves with these lookup services, and Jini clients can “discover” the
services through them. In this way there is very little administrative overhead.

Jini can not only be useful in networking very powerful devices such as com-
puters, but also embedded devices that could include the RCX. In the case of a
device like the RCX that is not powerful enough to run Jini, another device
such as a personal computer can function as a proxy Jini service and will then talk
to the embedded device over whatever mechanism is available.
In this chapter we looked at an example of a fairly simplistic Jini service and
client, and then moved on to cover a more substantial example involving multiple
RCXs; this illustrated how a proxy architecture can be used with the RCX so
that multiple RCXs can interact with one another.

Solutions Fast Track

Overview of Jini

� Jini is a Java technology built on top of RMI, enabling clients and
services to interact in a network with very little administrative overhead.

� One feature of Jini is that it is vary applicable to embedded devices,
including devices like the RCX.

� The Jini Technology Starter Kit (TSK) includes all of the required jar
files as well as some service implementations such as reggie, an
implementation of a lookup service.

A Simple Jini Service Example

� We covered an example of a simple Jini service to calculate checksums
and a client that made use of the service.

� The example showed how to register a service with a single known
lookup service, as well as how a client could discover the registered
service by querying the known lookup service.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 394

Programming LEGO MINDSTORMS with Jini • Chapter 9 395

� The service example was quite simplistic, especially in that the client
actually executed the service object within its own JVM.

Proxies and Service Architectures

� Solutions that make use of Jini can be implemented according to various
architectures.

� One such service architecture involves the use of a proxy object that is
registered as a service, but actually abstracts the real service and
communicates with it behind the scenes.

� The proxy architecture is especially suitable when providing services for
devices that are not capable of running Jini themselves.

A RCX Jini Proxy Service

� Since the RCX is not capable of running Jini itself, it is a very good
candidate for the proxy architecture, where a proxy object would run on
a machine, which would then communicate with the RCX via the
infrared tower.

� A single machine with a single infrared link could potentially control
multiple RCXs if the firmware were modified.This would require a
unique identifier to be stored in each of the RCXs’ firmware.

� Another architecture (as used in the example in this chapter) involves
one infrared tower per RCX, and the proxy objects themselves storing
the unique identifiers of the respective RCXs.

Using the RCX Jini Service:
Example Server and Client

� We covered a much less simplistic example that involved the networking
of a number of RCX units.

� This example showed how servers and clients could dynamically dis-
cover lookup services on a network by using multicast, and also showed
the use of RMI stub objects to make method calls across a network.

� The outcome was that RCXs could interact with one another,
performing a synchronized dance.

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 395

396 Chapter 9 • Programming LEGO MINDSTORMS with Jini

Q: Is the word “Jini” an acronym?

A: No,“Jini” doesn’t actually stand for anything. However, it has been said that it
could stand for “Jini Is Not Initials”—a variation on the “GNU’s Not Unix”
self-defining acronym.

Q: If a Java Virtual Machine can be run on the RCX, why can’t Jini run directly
on the RCX instead of having to deploy a proxy?

A: The basic guideline for a machine to run Jini is a 32-bit CPU with around
8MB of RAM and full networking capabilities. Since the RCX only has
32KB of RAM and simple point-to-point infrared communication ability, it
falls well short of these requirements.

Q: How is Jini different from RMI?

A: Jini makes extensive use of RMI, especially in RMI’s facilities for calling
methods on objects in remote JVMs and for enabling the downloading (for
example, via HTTP) of class files to remote users of objects as required. Jini is
somewhat different to RMI in a few areas, however: Jini objects can use other
protocols for remote communication and are not bound to using RMI stubs
(making Jini quite flexible for communicating with a wide variety of
devices), and Jini allows multicast discovery of the lookup service which
makes it a lot more flexible both for Jini clients to discover available services
on a network, and for Jini services to register themselves on a network that
they have very little specific knowledge of.

Q: Can a Jini service provide a user interface to be displayed by a client?

A: Yes, it is absolutely possible for a Jini service to export a graphical user inter-
face (GUI).There are a number of possible architectural approaches to doing
this; you can find out more about it at Web sites such as http://jini.org.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 396

Programming LEGO MINDSTORMS with Jini • Chapter 9 397

Q: Where can I dig up more information on Jini?

A: There are numerous sources of information.The following list is a
starting point:

■ There is extensive documentation included in the Jini TSK download,
covering both the service implementations and the API.

■ Sun’s Web site—http://java.sun.com/jini

■ The online Jini community—http://jini.org

■ The “Jiniology” articles at artima.com—www.artima.com/jini/jiniology

www.syngress.com

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 397

177_LEGO_Java_09.eps 4/3/02 1:11 PM Page 398

Resources

Appendix A

399

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 399

400 Appendix A • Resources

There’s quite a large amount of reference material to be found regarding MIND-
STORMS inventions, including some very good books, and hundreds of Internet
sites that cover specific topics and show interesting models.We apologize in
advance for the significant number of interesting sites that we surely (and unin-
tentionally) omitted from the list.

Every link of this appendix has been checked, but as you know, the Internet is a
dynamic animal and we cannot guarantee they will be still valid at the time you
read the book. If you find any broken links, use the descriptive information we
provided beside each site address to hunt for it using your favorite search engine.

A few of the links point to commercial sites, or to sites that, besides providing
information about the making of some custom part, also sell a kit or the finished
product.We have no direct or indirect interest, nor any connection with them;
we included the links simply as a help to the reader.

General Interest Sites

LEGO MINDSTORMS (http://mindstorms.lego.com)
The first site to mention is, of course, the LEGO MINDSTORMS offi-
cial site. It contains tons of stuff: technical tips, a gallery of inventions,
events, contests, answers to frequently asked questions (FAQ), and more.
The official LEGO MINDSTORMS FAQ site is: http://mindstorms
.lego.com/products/whatis/faq.asp.

LUGNET (www.lugnet.com)
The LEGO Users Group Network (LUGNET) is the most comprehen-
sive Internet resource for LEGO, and it’s difficult to describe in a few
words. It features a database containing all the LEGO sets ever released,
as well as a reference list citing all the single LEGO parts. But, more
important, its newsgroups are the meeting point of LEGO fans of any
age and from any part of the world, and it’s one of the friendliest places
on the Internet. Don’t miss the LUGNET newsgroups, where you can
ask any number of questions and be answered with completeness, com-
petence, and patience.

■ www.lugnet.com/robotics The general robotics LUGNET
newsgroup

■ www.lugnet.com/robotics/rcx/java The LUGNET newsgroup
specifically devoted to Java programming for the RCX

www.syngress.com

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 400

www.syngress.com

Fred Martin’s Unofficial Questions and Answers about MIT
Programmable Bricks and LEGO MINDSTORMS
(http://fredm.www.media.mit.edu/people/fredm/
mindstorms/index.html)
Fred Martin tells the story of the Programmable Brick and provides
some other useful information about the RCX.

LEGO MINDSTORMS Internals (www.crynwr.com/
lego-robotics)
Russell Nelson maintains a page that contains many technical details
about the MINDSTORMS system as well as many useful links.This site
also includes a directory of individuals who contributed to the reverse
engineering of the RCX.

Artificial Intelligence and Machine Learning
(www.home.zonnet.nl/bvandam)
Bert van Dam’s site is a mine of information about artificial intelligence
in general. If you find the subtle link to Miscellaneous | General
Information, you will discover a whole world of LEGO projects!

MINDSTORMS RCX
RCX Internals (http://graphics.stanford.edu/~kekoa/rcx)
Kekoa Proudfoot documents all the internals of the LEGO firmware
and ROM routines. He made the development of firmware like legOS
and pbForth possible.

Ole Caprani’s RCX Manual (www.daimi.au.dk/dArkOS/
Vaerktoejer.dir/RCX.vejledning.dir/Vejledning.html)
Ole Caprani from the University of Aarhus, Department of Computer
Science, has created a very informative manual about the internals of the
RCX. It includes information on how the I/O ports of the microcon-
troller are connected to the hardware.

MINDSTORMS RCX Sensor Input Page
(www.plazaearth.com/usr/gasperi/lego.htm)
Michael Gasperi’s site describes the various sensors that can be con-
structed; used in a leJOS environment, this is the starting point for any
investigation into using sensors.The site also contains Brian Stormont’s
suggestion to combine a touch sensor and a light sensor on the same

Resources • Appendix A 401

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 401

402 Appendix A • Resources

port, and Tom Schumm’s trick to connect touch sensors in the AND
configuration.

Gordon’s Brick Programmer (www.umbra.demon.co.uk/
gbp.html)
With its graphic-textual interface, Gordon’s Brick Programmer (GBP)
acts as a bridge between RCX Code and the pure textual programming
environments.

Languages, APIs, and Tools
legOS (http://legos.sourceforge.net)
The legOS homepage.The latest releases, downloads, and developer
notes for legOS can be found here.

LegoSim (www.informatik.hu-berlin.de/~mueller/legosim)
LegoSim is a UNIX-based simulator for legOS with an Applet-GUI,
written by Frank Mueller,Thomas Röblitz, and Oliver Bühn.

emulegOS (http://sourceforge.net/projects/emulegos)
This is the homepage for the legOS emulator, which lets you run and
debug your legOS programs on your Win/Linux PC. Started by Mario
Ferrari and Marco Berti, emulegOS is currently an open source project
managed by Mark Falco.

Java Communications API (http://java.sun.com/products/
javacomm/index.html)
The Java Communications API can be used to write platform-indepen-
dent communications applications for MINDSTORMS robots.

RCXPort—Java Interface to the LEGO MINDSTORMS RCX
(www.slewis.com/rcxport)
Scott Lewis’ RCXPort site for the Java interface he created for the pur-
pose of interacting with a LEGO MINDSTORM RCX from a Java
Virtual Machine.

RCXJava (www.escape.com/~dario/java/rcx)
A platform-independent Java library used to develop RCX applications,
developed by Dario Laverde.

Forte Tools—Forte for Java (www.sun.com/forte/ffj)
Forte is an IDE written completely in Java. Forte provides a visual GUI
creator, a debugger, and compilation functions—all the expected parts of

www.syngress.com

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 402

Resources • Appendix A 403

an IDE. Forte also has the seemingly unique ability to configure the
compiler and Java runtime you use.

Jini (www.javacommerce.com/tutorial/jini)
Jan Newmarch’s Jini Tutorial featuring a chapter on LEGO MIND-
STORMS

Jad (http://kpdus.tripod.com/jad.html)
Jad allows you to retrieve a compiled class file for editing, even if you
have lost the source.This can be especially useful when an unwanted
modification is saved, causing the program not to function. Decompiling
a program you did not create can help you learn programming styles,
ways to implement complex functions, or just how to better code for
the RCX.

Jlint (www.ispras.ru/~knizhnik/jlint/ReadMe.htm)
Jlint is a Java version of the popular lint for C programs. Jlint can be
useful, since debugging programs on the RCX, especially ones that deal
with logic errors (such as an incorrect loop structures), can be difficult.
It can also detect other “assumptions” you may have made, and tells you
if they are incorrect.

An Operating System in Java for the LEGO MINDSTORMS
RCX Microcontroller (www.usenix.org/publications/library/
proceedings/usenix2000/freenix/nikander/nikander.pdf)
A scientific paper by Pekka Nikander presented at the 2000 USENIX
Annual Technical Conference

NQC—Not Quite C (www.enteract.com/~dbaum/nqc/
index.html)
Dave Baum’s NQC site contains the compiler and the documentation.

Bricx Command Center (http://hometown.aol.com/
johnbinder/bricxcc.htm)
Formerly known as the RCX Command Center, and based on Mark
Overmars’ original source code (see LEGO Robot Pages), John Hansen’s
Bricx Command Center (BricxCC) supports all the LEGO
Programmable Bricks and introduces many new and interesting features.
If you use NQC on a PC platform, this is a “must have.”

www.syngress.com

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 403

404 Appendix A • Resources

LEGO Robot Pages (www.cs.uu.nl/people/markov/lego)
The site of the original RCX Command Center, a very good IDE for
NQC originally developed by Mark Overmars but not updated to the
current version (see Bricx Command Center).

Visual NQC (http://home.hetnet.nl/~myweb1/VisualNQC.htm)
Ronald Strijbosch’s Visual NQC has its roots in the RCX Command
Center, but is completely rewritten in Visual Basic.A very functional and
complete IDE to NQC.

NQCEdit (http://hem.passagen.se/mickee/nqcedit)
Another front-end IDE for NQC, written by Mikael Eriksson.
Currently less sophisticated than the RCX Command Center and
Visual NQC, it’s an effective and solid alternative.

NQC API Programmer’s Guide (www.cybercomm.net/
~rajcok/nqc)
Mark Rajcok’s guide to NQC API lists all NQC functions, their syntax,
their supported programmable bricks and a few examples.

General Paranoyaxc RCX Tools (www.rainer-keuchel.de/rcx/
rcx.html)
A package that contains a port of the NQC compiler, a simple editor,
and a remote control program to access your RCX from WinCE plat-
forms.

Hempel Design Group (www.hempeldesigngroup.com/lego/
index.html)
Ralph Hempel’s site contains a copious amount of tools and informa-
tion. Some of the highlights include

■ Information about Ralph’s maze solver, an application demonstrated
during the 1999 MindFest at MIT.

■ Extremely helpful information on how to improve the reading range
of the LEGO light sensor.

■ Information about Ralph Hempel’s programmable brick FORTH
(pbForth) for MINDSTORMS (www.hempeldesigngroup.com/
lego/pbFORTH/index.html).

■ Schematics and detailed instructions on how to interface R/C
Servos to the RCX.

www.syngress.com

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 404

Resources • Appendix A 405

■ Home page of Ralph Hempel’s famous double-acting compressor.
The same site also contains his Pressure Switch
(www.hempeldesigngroup.com/lego/pressureswitch/index.html).

Reactive Languages and LEGO MINDSTORMS (www.emn.fr/
richard/lego)
Martin Richard’s Web site about using synchronous languages (Esterel,
Lustre, Grafcet) to play with the LEGO MINDSTORMS kit.

ADA for MINDSTORMS (www.usafa.af.mil/dfcs/
adamindstorms.htm)
An ADA pre-processor to NQC.Also consult some of the documenta-
tion at www.faginfamily.net/barry/Papers/AdaLetters.htm.

Bot-Kit (www.object-arts.com/Bower/Bot-Kit/Bot-Kit.htm)
An interface to programming the RCX in Smalltalk (based upon
Dolphin Smalltalk).

Brick Command (www.geocities.com/Area51/Nebula/8488/
lego.html)
A simple textual programming language that incorporates a complete
IDE.

The PowerBook Source (www.pbsource.com/features/
LEGO_and_Macs.shtml)
Information on how to control LEGO MINDSTORMS from a
PowerBook with Common LISt Processing (LISP).

QC (http://digilander.iol.it/ferrarafrancesco/lego/qc/
index.html)
Francesco Ferrara’s QC, a mini OS (no multitasking) meant as an inter-
face between C code and the ROM routines of the RCX.

TCL—RCX (www.linux.org/docs/ldp/howto/mini/Lego/
tcl.html)
Laurent Demailly and Peter Pletcher’s TCL RCX can either compile a
TCL script into RCX bytecode, or it can remotely control the robot via
either a script or an interactive TCL shell.

WinVLL (www.research.co.jp/MindStorms/winvll/index-e.html)
A simple tool by Shigeru Makino to control and program the Micro
Scout from a PC.

www.syngress.com

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 405

406 Appendix A • Resources

For Inspiration
Ben’s LEGO Creations (http://unite.com.au/~u11235a/lego)
Ben Williamson has created some very cool robots!

BrickBots (www.brickbots.com)
BrickBots is Richard Sutherland’s repository of building contests and
best solutions.This is a nice site where you can attend “remote” chal-
lenges.Although the contests are no longer running on a regular basis,
the current repository of contest entries provides builders with great
ideas.

MindScope (http://baserv.uci.kun.nl/~smientki/Lego_Knex/
Lego_electronica/Mindscope.htm)
Stef Mientki’s graphing utility is able to continuously monitor the sen-
sors and produce a chart from the sampled values.

Programming the LEGO Micro Scout (http://eaton.dhs.org/
lego)
Doug Eaton explains how to program the Micro Scout through bar codes.

www.syngress.com

177_LEGO_Java_AppA.qxd 4/2/02 2:54 PM Page 406

Programming LEGO
MINDSTORMS with
Java Fast Track

This Appendix will provide you with a quick,
yet comprehensive, review of the most
important concepts covered in this book.

Appendix B

407

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 407

408 Appendix B • Programming LEGO MINDSTORMS with Java Fast Track

❖ Chapter 1: Introducing LEGO MINDSTORMS

The LEGO MINDSTORMS RIS Kit
� The MINDSTORMS series comes from a collaboration between the

LEGO Company and the Massachusetts Institute of Technology (MIT)
Media Lab that led to the creation of a “programmable brick.”

� The Robotic Invention System (RIS) is the basic kit, and the starting point
for every MINDSTORMS robot of more than basic complexity.

� The RIS includes everything you need to build and program robots: the
RCX unit, three sensors, two motors, an infrared (IR) tower, manuals, more
than 700 TECHNIC pieces and a software CD-ROM.

RCX:The Robot’s Brain
� The RCX is a microcomputer than interfaces with input and output

devices. Programs can be written on a PC and then downloaded to the unit
through the IR tower.

� The RCX uses two types of memory: read-only memory (ROM) and mod-
ifiable random access memory (RAM).The latter stores both user-written
programs and the system firmware, which is the RCX’s operating system.

� The RCX can be expanded in two ways: using a different programming
software like NQC or the Java APIs, or replacing the default firmware with
a new one (legOS, pbForth, and leJOS solutions).

The RIS Software Environment
� The RIS kit contains RCX Code, which is the standard programming

language from LEGO. It contains tools for downloading firmware and a
visual programming interface that makes writing code a very easy task.

� RCX Code is targeted at kids and beginners; its capabilities are too limited
for the development of more complex robots.

RCX Bytecodes
� The RCX architecture uses an interpreter-based virtual machine to execute

commands statement by statement.

www.syngress.com

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 408

Programming LEGO MINDSTORMS with Java Fast Track • Appendix B 409

� Opcodes, the assembly commands, are used both by the RCX’s stored
programs and the IR emitting devices, like a PC with an IR tower or a
remote control.

LEGO Expansion Kits
� There are other robotics kits besides the RCX-based system: CyberMaster,

Scout, Micro Scout, and Code Pilot. Each of these kits features only a subset
of the full RIS’ capabilities.

� Standard LEGO TECHNIC pieces can be used to expand building possibili-
ties, as can sensors and other spare pieces that are available separately.

� MINDSTORMS can be expanded with kits that contain sensors, motors,
and special pieces. Further,Vision Command (VC) is a LEGO video camera
with an advanced visual recognition system that can be used to add more
functionalities to your LEGO MINDSTORMS robots.

❖ Chapter 2: The Java Communications API

Overview of the Java Communications Extension API
� The Java Comm API provides the mechanism for port enumeration and

ownership as well as event driven notification of change of ownership.

� Asynchronous and synchronous I/O is possible due to the standard Java-
style event-driven architecture.

� The SerialPort and ParallelPort classes provide a clean encapsulation for
supporting the many platforms for which the JCE API is available.

Installing and Configuring
the Java Communications API
� There are three deliverables: a jar file, a properties file, and a native shared

runtime library.

� Several options are available depending on ease-of-use versus ease-of-
configuration.The simplest is to keep the three deliverable files together in
the same folder so long as it is the application’s working folder.

www.syngress.com

Chapter 1 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 409

410 Appendix B • Programming LEGO MINDSTORMS with Java Fast Track

� There are possible version control caveats, but fortunately the API has
stabilized enough such that it’s not a big issue.

Reading and Writing to Serial Ports
� The Java Communications API comes with several simple examples that

illustrate the usage of both parallel and serial ports.

� Adding event-driven notifications is straightforward using EventListeners.

� Working with the parallel ports is similar to working with any port that
extends the CommPort abstract class.

Debugging with Serial Ports:The Black Box Example
� A close look at a specific advanced Java sample program that comes with the

JCE illustrates all functionality of the serial port by serving as a serial port
analyzer and line monitor.

� The BlackBox sample program can be used as is as a serial proxy or sniffer
tool without modifications.

� The way that the output and input streams were used in the BlackBox
example can be used as the basis of custom applications that provide similar
functionality.

Extending the Java Communications API
� The mechanism for adding new functionality exists via the CommDriver,

CommPort and CommPortIdentifier classes.

� A step-by-step process of how a customized USB driver was implemented
for use with the RCX 2.0 USB tower.

� The limitations shown include the inability to add external packages as the
source for new port drivers.This would break the package naming conven-
tion of not adding to or changing the classes in the javax.comm hierarchy.

www.syngress.com

Chapter 2 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 410

Programming LEGO MINDSTORMS with Java Fast Track • Appendix B 411

❖ Chapter 3: Communicating
with the RCXPort API

Overview of the RCXPort Java API
� The code in the RCXPort Java API establishes a connection with your

infrared (IR) tower through the appropriate serial port. It relies on the Java
Communications package to control the port. USB support is not included.

� The RCXPacket class wraps commands into a format that the RCX can
understand before they are sent to the tower.

� RCXCmd includes all of the standard opcodes that are used to control the
RCX.These bytes are declared as static in the RCXCmd class so that they may
be called from other classes without instantiating an RCXCmd object.

� Existing RCXPort functionality does not allow for the running of Java code
directly on the RCX or for high-level Java code to be compiled into byte
code for downloading to the RCX.This functionality is forthcoming.

Programming the RCX Using RCXPort
� By inserting RCX commands into a Java program that runs on your PC,

you can control the RCX in direct mode, provided your RCX remains
within range of the IR tower for the duration of the program’s execution.

� When running programs in direct mode, there is a slight delay between
commands as the data is sent from the computer’s serial port to the IR
tower, then on to the RCX.

� Programming in direct mode allows for the increased power and flexibility
of the Java programming language, yet limits you to keeping the RCX
within range of the tower.

Downloading Programs with RCXPort
� RCXPort also provides functionality to download byte code files to the

RCX, where they are stored in random access memory (RAM) and can be
run by pressing the Run button.

� Storing programs on the RCX frees you from having to stay near the tower
when running a program.

www.syngress.com

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 411

412 Appendix B • Programming LEGO MINDSTORMS with Java Fast Track

� Programs can be written manually in byte code, or written in a high-level
language, such as ‘Not Quite C’ (NQC), then compiled into byte code.

Interfacing External Software with RCXPort
� NQC, a high-level language based on C syntax, can be compiled into byte

code that is understood by RCX’s firmware.This allows you to take
advantage of more advanced control structures such as loops, events and
functions.

� RCXPort is capable of downloading compiled NQC byte code to the RCX.

� These programs, once stored on the RCX, can be run by themselves or
called from an RCXPort-based program that is running on your personal
computer.

An Advanced Example Using RCXPort
� Our example uses a hard-coded value to represent the light threshold

between two colors.This value could vary widely due to different amounts
of light and different colored candies used in your experiment.This simple
branch in the code could also be used to sort the “darks” and “lights” from a
bag of multicolored candies.Alternatively, you could assign ranges to your
different colors and check for read values that are within these ranges.

� Programs stored on the RCX can be called from Java code when
controlling the RCX in direct mode.This allows you to better control the
timing of RCX operations that would otherwise be thrown off by variance
in the infrared communications.

❖ Chapter 4: Communicating
with the RCXJava API

Designing an RCXJava Communications Architecture
� The use of the Java Communications API facilitates the automatic search for

an available serial port, and use of the rcx.comm package gives us USB
capability in a platform-neutral manner.Allowing the configuration of the
port to be based on the port name improves ease-of-use.

www.syngress.com

Chapter 3 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 412

Programming LEGO MINDSTORMS with Java Fast Track • Appendix B 413

� Management and encapsulation of RCX protocol details is hidden from the
application user.

� The use of standard Java design patterns and Java interfaces enables us to use
new and different types of ports without changing a line of code.

Overview or the RCXJava API
� The RCXJava API is an open source and extensible API.

� It supports serial, USB and new ports such as sockets.

� It lays the groundwork for a full-fledged programming environment for the
RCX by using high level methods that follow the same method signature
naming convention of other Java efforts like leJOS.

Using the RCXLoader Application
� The RCXLoader is an out-of-the-box utility and test tool for interfacing

with the RCX.

� It provides a convenient lookup table of all the opcodes and their arguments.

� It provides the starting point or template for creating more advanced
examples.

Beyond Serial Port Communications:
The RCXApplet Example
� Control of an RCX can not only be enabled from a stand-alone application

but also over the Internet using a Java-enabled Web browser, providing the
same GUI as one would get with the stand-alone application.

� Using RCXSocketPort, one could control a number of RCXs over a network
and the network via a proxy server.

� Use of the direct control API methods gives you the capability of creating
complex frameworks similar to the visual-programming interface that comes
with the LEGO MINDSTORMS kit.

www.syngress.com

Chapter 4 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 413

414 Appendix B • Programming LEGO MINDSTORMS with Java Fast Track

Direct Control Programming for the RCX Using Java
� With direct control programming, we are using the RCX’s “brain” to pass

commands from a proxy “brain” residing on a PC.There are significant
advantages to programming tasks to run on the PC’s resources rather than
running tasks inside the RCX.

� Tasks can run on the PC in near real time (there is a noticeable time lag).

� We can add Artificial Intelligence (AI) capabilities when programming our
RCX robots. Neural network programming allows an RCX to “learn” the
right response to stimuli all on its own.

❖ Chapter 5: The leJOS System

Basic leJOS Usage Guidelines
� The leJOS environment (PATH, RCXTTY, LEJOS_HOME, JAVA_HOME,

CLASSPATH) must be set up in order to start programming for leJOS.

� Compilation is done using lejosc, which is just a thin wrapper around javac.

� Conversion of Java class files to a leJOS binary format, and the transmission
of that format to the RCX, is done using the lejos command line tool.

The LEGO Java Operating System
� LeJOS leverages the LEGO-provided ROM code, and thus inherits limita-

tions imposed by the ROM—for instance, only eight power levels for the
motors, and no sampling of sensors faster than 3 milliseconds.

� LeJOS gives you a common programming language (Java) and environment
for the RCX.The learning curve is not as steep as other firmware replace-
ments like legOS.

� A comparison to other Java environments shows the formidable achieve-
ment of cramming an entire Java VM into the RCX’s 32KB of memory.

www.syngress.com

Chapter 4 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 414

Programming LEGO MINDSTORMS with Java Fast Track • Appendix B 415

Overview of the leJOS Architecture
� Base classes are not part of the firmware.This is a great feature as it makes

the firmware footprint smaller.

� Only classes needed by your program are actually downloaded to the RCX,
since the lejos command line tool performs a transitive closure of class graphs
of the main class.

� There is no garbage collector in leJOS—for now you have to live with that.
The future might bring you one, and hopefully you will be able to choose
whether or not to include it in your program.

� A switch statement is also missing, but may be available in the future.

Using leJOS:A Simple Example
� You can read sensor values in two different ways: by polling the sensor, and

by listening for changes using an implementation of SensorListener.

� You should brake motors before changing power to ensure the power
change can be noticed.This is necessary as the LEGO motor has an internal
flywheel, which stores mechanical power.

❖ Chapter 6: Programming
for the leJOS Environment

Designing Java Programs to Run in leJOS
� When designing Java programs for leJOS, use the best OO design principles

you know. It will make the final program much more maintainable.

� Pay attention to memory constraints even during the design phase. It is
quite easy to do a beautiful OO design, which, when implemented, will use
unnecessarily large amounts of memory.

An Advanced Programming Example Using leJOS
� The line-following type of robot can often become mired in a never-ending

spin.Two techniques for avoiding that were presented.

www.syngress.com

Chapter 5 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 415

416 Appendix B • Programming LEGO MINDSTORMS with Java Fast Track

� The subsumption architecture can be thought of as a design pattern for
robotics programs.

Debugging leJOS Programs
� The best way to debug a leJOS program is to use the Sound and LCD

classes in unison to provide you with feedback of the robot’s state.

� Normal Java exception handling applies to leJOS, allowing you to separate
code for normal operation and code for error situations.

Testing leJOS Programs
� When working out bugs, use emu-lejos and emu-lejosrun to emulate the

leJOS environment on your PC.They use a text-based interface.

� When exceptions are output by the emulator, the output can be interpreted
much more accurately than when displayed on the real RCX display.

❖ Chapter 7: leJOS Tools

Programming Environments for leJOS
� The command line tools provide ultimate control in terms of the options

you can use, but sacrifice ease-of-use.

� GUI-based tools can simplify the use of the command-line tools, but
sacrifice some elements of control.

� Command-line tools included in the leJOS package include lejosc, lejos,
lejosrun, lejosfirmdl, emu-lejos, and emu-lejosrun.

� The free IDE called Forte provides a visual GUI creator, a debugger, and
compilation functions. Unlike JBuilder and Eclipse, it provides the seemingly
unique ability to configure the compiler and Java runtime you use.

Using the leJOS Visual Interface
� The leJOS Visual Interface (lVI) is a custom IDE especially configured for

use with leJOS.

www.syngress.com

Chapter 6 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 416

Programming LEGO MINDSTORMS with Java Fast Track • Appendix B 417

� The options in the Tools menu allow you to automatically compile, link, and
download programs, as well as download firmware.

� After graphically setting the necessary environment variables and settings,
you can create, edit, compile, and link a file.

Using a leJOS Simulator
� Simlink is designed to be an interface between Rossum’s Playhouse and the

low level APIs provided by leJOS.

� The Rossum simulator has a syntax and format of its own; using its
navigational and other declarations and specifications, you can create visual
and non-visual elements of floor plans.

� Robot bodies in Simlink are represented as Java classes, with Rossum classes
allowing you to create simple designs.

� Note that sensors and motors under simulation do not work exactly as in
real life.

Additional Tips and Tools for leJOS
� Java tools like Jlint and Jad can be used on leJOS programs.

� The RCXTools package provides a clean interface to many RCX functions,
while also allowing you direct control.

� The LCDText class included with RCXDirectMode can be used to test
LCD words before they are downloaded to the RCX.

❖ Chapter 8: leJOS Internals

Advanced Usage of leJOS
� You can link several programs into a single binary by calling the linker with

a comma-separated list of the entry classes containing the main method.

� You can store data persistently by using thelibrary’s
josx.platform.rcx.PersistentMemoryArea class.

www.syngress.com

Chapter 7 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 417

418 Appendix B • Programming LEGO MINDSTORMS with Java Fast Track

� You can inspect and modify the contents of the RCX’s memory by using
the methods in the library class josx.platform.rcx.Memory.

Examining leJOS Internals
� leJOS uses the standard Java compiler, but employs a leJOS-specific linker

on the host computer and a leJOS-specific virtual machine in the firmware
on the RCX.

� The linker reads the Java class files and produces a leJOS binary that can be
loaded into the firmware without any modification. Class, method and field
names are replaced by offsets into the binary.

� The firmware contains a loader that loads the binary and a virtual machine
that executes it.The virtual machine executes slightly modified Java byte
code instructions.

� Threads are scheduled strictly according to priority, and round-robin within
the same priority.They are preempted after a time-slice of 20 milliseconds.

� Each thread uses approximately 400 bytes of memory for its stack and other
data structures.

Extending leJOS with Native Methods
� Native methods are used to interface with the hardware and with the virtual

machine.

� To add a native method to the VM you need to add its signature to
common/signatures.db, and you need to provide an implementation for the
RCX in rcx_impl/native.c and for the emulator in unix_impl/nativeemul.c.

� To optimize for memory you can use variables for common expressions.
Always test whether your optimization is better than the original.

Additional Tips and Tricks with leJOS
� You can determine the amount of free memory with the method freeMemory

in the class java.lang.Runtime.

� You can change the stack size by modifying the values in vmsrc/configure.h
and recompiling the leJOS firmware.

www.syngress.com

Chapter 8 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 418

Programming LEGO MINDSTORMS with Java Fast Track • Appendix B 419

❖ Chapter 9: Programming LEGO
MINDSTORMS with Jini

Overview of Jini
� Jini is a Java technology built on top of RMI, enabling clients and services

to interact in a network with very little administrative overhead.

� One feature of Jini is that it is vary applicable to embedded devices,
including devices like the RCX.

� The Jini Technology Starter Kit (TSK) includes all of the required jar files as
well as some service implementations such as reggie, an implementation of a
lookup service.

A Simple Jini Service Example
� We covered an example of a simple Jini service to calculate checksums and a

client that made use of the service.

� The example showed how to register a service with a single known lookup
service, as well as how a client could discover the registered service by
querying the known lookup service.

� The service example was quite simplistic, especially in that the client actually
executed the service object within its own JVM.

Proxies and Service Architectures
� Solutions that make use of Jini can be implemented according to various

architectures.

� One such service architecture involves the use of a proxy object that is
registered as a service, but actually abstracts the real service and
communicates with it behind the scenes.

� The proxy architecture is especially suitable when providing services for
devices that are not capable of running Jini themselves.

www.syngress.com

Chapter 9 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 419

420 Appendix B • Programming LEGO MINDSTORMS with Java Fast Track

A RCX Jini Proxy Service
� Since the RCX is not capable of running Jini itself, it is a very good candi-

date for the proxy architecture, where a proxy object would run on a
machine, which would then communicate with the RCX via the infrared
tower.

� A single machine with a single infrared link could potentially control
multiple RCXs if the firmware were modified.This would require a unique
identifier to be stored in each of the RCXs’ firmware.

� Another architecture (as used in the example in this chapter) involves one
infrared tower per RCX, and the proxy objects themselves storing the
unique identifiers of the respective RCXs.

Using the RCX Jini Service:
Example Server and Client
� We covered a much less simplistic example that involved the networking of

a number of RCX units.

� This example showed how servers and clients could dynamically discover
lookup services on a network by using multicast, and also showed the use of
RMI stub objects to make method calls across a network.

� The outcome was that RCXs could interact with one another, performing a
synchronized dance.

www.syngress.com

Chapter 9 Continued

177_LEGO_Java_AppFT.qxd 4/3/02 10:47 AM Page 420

421

Index
A
AC/DC jack adapter, 6
ACodes for system sounds, 182
Add-on building elements, 24–25
addPortOwnershipListener() method, 38
AI. See Artificial intelligence (AI)
Air conditioning units, 335, 356
AllMessagesListener interface in RCXJava API,

127
Analyzing data and protocols, 57
Andrews, Paul, 15, 170, 177
Apache HTTP servers, 338
API. See Bluetooth Java API; Java

Communications Extension API (JCE
API); RCXJava API; RCXPort API

Apple Macintosh. See Macintosh (Mac OS)
Applets

building and extending, 139–147
signing, 131

Application programming interfaces (APIs).
See Bluetooth Java API; Java
Communications Extension API (JCE
API); RCXJava API; RCXPort API

Arbitrator class, 226–227
Architecture

event-based, 43–45
Java communications, 112–124
Jini federation, 356
LEGO Java Operating System (leJOS),

177–195
subsumption, 204, 225–226

Array length, maximum, 174–175
ArrayToString(byte[] array) method, 122
Artificial intelligence (AI), 150–163
Assembly code for RCX, 20–21
Asynchronous event-based I/O, 42–43
Automatic Binding Brick, 3
AWT. See Java Advanced Window Toolkit

(AWT)

B
Barcodes, 23
Batteries, 16, 150
Battery class, 194
Baud rate, 45
Baum, Dave, 12–13
Behavior, real-time, 306–307
Behavior interface, 227–232
Big blocks, 18
Binary code

building, 302
format, 303–304

Bit masks, 192–193
BlackBox sample program, 57–64
Blocking light sensors, 185
Blocking the input stream, 42
Bluetooth Java API, 67
Books

Building Robots with LEGO
MINDSTORMS, 5, 18, 151, 162, 277

Constructopedia manual, 4–5, 93
Design Patterns:Abstraction and Reuse of

Object-Oriented Design, 220–221
Rossum User’s Guide (Simlink manual), 263
See also CD-ROMs; Companion CD-

ROM; Documentation
Braking, 131
Brick, smart or programmable. See Robotics

Command Explorer (RCX)
BricxCC integrated development

environment (IDE), 13
Broad Blue Chess Robot, 163
Building applets, 139–147
Building Robots with LEGO MINDSTORMS

book, 5, 18, 151, 162, 277
BuildTool, 389
Button class, 179
ButtonListener class, 179
Bytecodes. See Opcodes

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 421

422 Index

C
Calibrator.java, 217
Callback listener, 38
Candy sorter, 97–105
CandySorter.java class, 99
CD-ROMs

LEGO MINDSTORMS, 16
RIS software, 4–5
Ultimate Builders Set projects, 24
See also Books; Companion CD-ROM;

Documentation
CDC. See Connected Device Configuration

(CDC)
CharTest.java, 208–209
ChecksumCalcClass.java, 341–343, 352–353
ChecksumCalc.java, 341–342
ChecksumClient/Client.java, 348–351
ChecksumService.java, 342–347
Chess robot, 150–163
Circuit board, 8
Class loading, dynamic, 178
Class record, 303
Classes

event listener classes, 33
listener classes, 33
rcx.* package, 125–126
RCXJava API, 125–126
See also leJOS classes

CLASSPATH environment variable, 46–47,
120, 172, 300

CLDC. See Connected Limited Device
Configuration (CLDC)

Clock, four-digit, 16
Code base, shared, 135
Code blocks, 18
Code Pilot expansion kit, 23
Code sequence, 303
Command-line leJOS emulator, 251
Command-line options, 57, 92
Command-line programming environment,

246
Command-line switches, 246

Command-line tools
javac compiler, 247–248
lejosc compiler, 172–173, 247–248, 330
lejosc linker, 248–249
lejosfirmdl downloader, 250
lejosrun linker, 249–250

Command types, 21
Commands, formatting for RCX, 82–84
CommDriver interface, 33, 48, 65–66, 68–69,

71
comm.jar library, 46–47, 48, 97
CommPort abstract class, 33, 35, 37, 72
CommPortIdentifier class

central point for port control, 37
controlling system ports, 35, 38
native driver, hiding selection of, 43
no documentation, 68
non-public helper classes, 43
port factory, 33
shared libraries, finding and loading, 46
source code, 68

CommPortOwnershipListener interface, 38
Communication

architecture, 112–124
basic, 113–120
network, 132–139

Communication towers. See Towers
Companion CD-ROM

Calibrator.java, 217
CandySorter.java class, 99
CharTest.java, 208–209
ChecksumCalcClass.java, 341–343, 352–353
ChecksumCalc.java, 341–342
ChecksumService.java, 342–347
Cruiser.java, 214–215, 229–230
dance/Dance.java, 195–196
Dispense.nqc, 98–99
LatencyTest.java, 324–326
LightReader.java, 214
LightRover.nqc, 94–96
LineFollowBehavior.java, 228–229

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 422

Index 423

LineFollower.java, 217–222
LineValueHolder.java, 213–214
linuxusb.so shared library, 113
macusb.shlib shared library, 113
MyRCX.java, 87
PersistentMemoryArea.java, 293–295
PersistentMemoryAreaTest.java, 295–297
poll/PollDemo.java, 192–193
proximity/Proximity.java, 187–189
RCXControlApp.java, 139
RCXNeuralBrain.java, 160–162
RCXNeuralTest.java, 151–162
RCXPort code re-architecture, 86
RCXSimpleTest.java, 127–128
sensorread/SensorPoll.java, 197
servo/ServoDemo.java, 190–191
SimpleRobot.java class, 278–279
SimpleWriteRead.java, 112, 119
StackTest.java, 320–321
StringBufferTest, 207–208
StringTest.java, 206
TestEnumeration.java code, 35
TestOwnership.java code, 38
Turner.java, 215–216, 224–225
TurnResolve.java, 232–236
USB support rcx.comm package, 75
VMStatistics.java class, 315–316
See also Books; CD-ROMs; Documentation

Comparison table of kits, 23
Compatibility

Macintosh, 14, 28, 65
RCX versions, 17
RIS versions, 5
video camera, 14

Compiling
Java, 85
LEGO Java Operating System (leJOS),

171–173, 313
Not Quite C, 93, 96

Components of RCX, 9–11
com.sun.comm.* package, 65

Configuration
infrared (IR) towers, 16
Java Communications Extension API (JCE

API), 48–50
Connected Device Configuration (CDC), 176
Connected Limited Device Configuration

(CLDC), 176
Constant pool, 302
Constant record, 303
Constant value, 303
Constants for opcodes, 84–85, 90
Constructopedia manual, 4–5, 93
Converting opcodes from RCX Code, 10
Corso,Tom, 57
Cruiser.java, 214–215, 229–230
CyberMaster expansion kit, 3, 22–23, 123
CygWin, 177
Cygwin system for Windows, 313

D
-d compiler option, 49, 50
Dacta, 6
Dance/Dance.java, 195–196
Dancing example

client, 378–388
debugging, 377–378
description, 358–359
interface, 361
MindstormClient/Client.java, 378–387
Mindstorm.java, 359–361
MindstormProxy.java, 361–370
MindstormService.java, 371–377
proxy class, 361–370
running, 388–393
server, 371–377

Dark Side Developer Kit (DSDK), 23
Data

monitoring and analyzing, 57
persistent, 292

Data bits, 45
Data control, 45

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 423

424 Index

Data flow, 297–298
DC/AC jack adapter, 6
Dead threads, 306
Debugging

dancing example, 377–378
Jad debugger, 281
Jlint debugger, 281
LEGO Java Operating System (leJOS),

236–238, 322–323
lint debugger, 281
RCXJava API, 145–147

Decompiling Java, 281
Design

future tools, 280–281
line-following robot, 210–212
simple robot, 277–280

Design Patterns:Abstraction and Reuse of Object-
Oriented Design, 220–221

Development environment, 48–50
Devices, embedded, 204, 335, 356–357
Devices, federation of, 334–335
Differential drive, 188
Differential drive-based robot, 225
Direct-control programming, 21, 147–163
Direct memory access, 292, 295
Direct mode technique, 83, 85–86, 92, 98–99
Dispense.nqc.java, 99
Documentation

Java Communications Extension API (JCE
API) installation, 46, 53

LEGO Java Operating System (leJOS),
170–171

LEGO MINDSTORMS 2.0 SDK, 64, 72,
112

none for CommPortIdentifier, 68
Robotics Command Explorer (RCX)

internals, 62
See also Books; CD-ROMs; Companion

CD-ROM
Downloading

downloadProgram()method, 91
lejosfirmdl downloader, 177, 202, 250

MINDSTORMS SDK 2.0 download, 17
multiprogram downloading, 290–292
Not Quite C (NQC) compiler, 96
RCXDownLoad program, 282–283
RCXDownload/RCXDirectMode, 16
RCXPort API, 91–93
SDK 2.0, 17
See also Web sites

downloadProgram()method, 91
Droid Development Kit, 3, 23
Dynamic class loading, 178

E
Eclipse IDE (IBM), 251
Embedded devices, 204, 335, 356–357
emu-lejos emulator, 251
emu-lejosrun linker, 251
Emulation mode, 145–147
Emulator, LEGO Java Operating System

(leJOS), 251, 310–311
Encapsulation of native ports, 43
Encoding of Java types in signatures, 316–317
Entry class index, 303
Entry points, 292
Environment variable RCXTTY, 171, 202,

250
Environments, alternative, 11
Error messages, 131
ErrorListener interface in RCXJava API, 127
Event-based architecture, 43–45
Event-based I/O, asynchronous, 42–43
Event listener classes, 33
Exception handling, 127–129, 131, 237–238,

243
Exception record, 303
Expanding RCX brain, 11–16
Expansion kits. See LEGO expansion kits
Exploration Mars kit, 25
Extending

applets, 139–147
Java Communications Extension API (JCE

API), 64–75

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 424

Index 425

LEGO Java Operating System (leJOS),
314–323

Extension folder, 47, 48
Extreme Creatures kit, 25

F
Federation of devices, 334–335
Ferrari, Mario and Giulio, 5, 88, 151, 277
Fiber-optic cable, 4
Fiddler service in Jini, 337
Firewire, 68
firm0328.lgo release of RCX, 17
Firmware, replacement. See LEGO Java

Operating System (leJOS); legOS
replacement firmware; pbForth language

Firmware for Infrared (IR) towers, 10–11
Firmware for LEGO Java Operating System

(leJOS)
debugging, 322–323
description, 304–305
leJOS Virtual Machine, 305–306
scheduler, 305
thread states, 305–306

Firmware for Robotics Command Explorer
(RCX)

description, 10, 17
installing, 16
new features, using, 28
reloading, 10–11
replacing, 14–16
See also LEGO Java Operating System

(leJOS); legOS replacement firmware;
pbForth language

Floating, 131
Floor plans, Simlink, 262–269
Flow control, 45
Flow of data, 297–298
Format of binary code, 303–304
Format of opcode messages, 83–84
Forte IDE (Sun)

configuration, 252
Web site, 251

FORTH language, 15
Frameworks

direct-control, 150–163
distributed computing (Jini), 334
Java Media Frameworks, 144
port access, 34–43

Freeware, 12
Frequency, polling, 144
Future design tools, 280–281

G
Game Boy, 301
Gamma, Erich, 221
Garbage collection, 174–175, 330
Gasperi, Michael, 24
GCC-3.0 cross-compiler for leJOS, 313
getAvailableSerialPorts() method, 37, 120
getBatteryPower() method, 150
getCurrentOwner() method, 38
getName()method, 35
getPortIdentifier(), 120
getPortIdentifiers() static method, 35
getPortType() method, 35
GNU tools, 313
Gombos,Andy, 240, 253, 258, 280
GUI-based programming environment, 246

H
Hacking, 60
Handling exceptions, 127–129, 131, 237–238,

243
Hardware

TECHNIC series, 3, 24
See also Kits; Robotics Command Explorer

(RCX); Sensors;Towers
Heap, LEGO Java Operating System (leJOS),

292
Heat problems, 173
HelloWorld.java, 250
Helm, Richard, 221
History of Robotics Invention System

(RIS), 3

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 425

426 Index

Hitachi H8 microprocessor, 7, 299, 308
Home appliance control systems, 335, 356
Hooks, 307
HTTP servers, 338–340, 351–352, 388–389
Hysteresis, 216

I
I/O, event-based, 42–43
Identifiers, long, 302
IDEs. See Integrated development

environments (IDEs)
idle_hook(), 307
IEEE 1284 parallel ports, 63–64
Infinite loop required, 197–198
Infrared (IR) proximity detector, 24
Infrared (IR) towers

commands, echoing, 84
configuring, 16
description, 4
firmware, reloading, 10–11
port, naming, 91
port variations, 64
RCXPort connections, 84
reliability of infrared signal, 86

Infrared (IR) transmitter, 4
Input Buffersize property, 42
Input devices, 4
Input stream, blocking, 42
Installation of JCE API, 46–48
Installing RCX firmware, 16
Instance field record, 303
instanceof operator, 174
instruction_hook(), 307
Integrated development environments (IDEs),

12, 13, 251–253
Interchanging streams between serial ports,

62–64
Interfaces

AllMessagesListener in RCXJava API, 127
Behavior, 227–232
CommDriver, 33, 48, 65–66, 68–69, 71
CommPortOwnershipListener, 38

dancing example interface, 361
ErrorListener in RCXJava API, 127
Java Native Interface (JNI), 66, 314
Jini user interface, 397
RCX Code language improved interface, 6
RCXCommPort in RCXJava API, 126, 132
RCXListener in RCXJava API, 127
SensorConstants, 183–186
SensorListener, 186–187
See also leJOS Visual Interface (lVI)

Interfacing external software with RCXPort
API, 93–96

Interpreting, 20
IR. See Infrared (IR) transmitter
isCurrentlyOwned() method, 38

J
J2EE. See Java 2 Enterprise Edition (J2EE)
J2ME. See Java 2 Micro Edition (J2ME)
J2SE. See Java 2 Standard Edition (J2SE)
Jad debugger, 281
Java

communications architecture, 112–124
compiling, 85
decompiling, 281
runtime (jview), 49
sizes, 175–176
types, encoding in signatures, 316–317

Java 2 Enterprise Edition (J2EE), 175
Java 2 Micro Edition (J2ME), 170, 176, 331
Java 2 Standard Edition (J2SE), 174–176
Java Advanced Window Toolkit (AWT), 179
Java application programming interfaces

(APIs). See Java Communications
Extension API (JCE API); RCXPort
API

Java Communications Extension API (JCE
API)

asynchronous event-based I/O, 42–43
BlackBox sample program, 57–64
comm.jar library, 47
configuration, 48–50

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 426

Index 427

-d compiler option, 49, 50
development environment, 48–50
encapsulation of native ports, 43
event-based architecture, 43–45
features, 34
framework for port access, 34–43
installation, 46–48
javax.comm package, 33
javax.comm.properties configuration file, 37,

47–49
limitations, 34
native library, 33, 46–47
overview, 32–34
port discovery and enumeration, 34–37
port ownership management, 37–42
pure-Java interface, 32, 34, 112, 124
reading from serial ports, 50–53
Universal Serial Bus (USB), 66–75
update plans, 78–79
Web sites, 32
writing to serial ports, 54–56
See also rcx.* package; rcx.comm.* subpackage

Java Media Frameworks, 144
Java Native Interface (JNI), 66, 314
Java Remote Method Invocation (RMI), 336,

338–341, 354–355, 361, 377
Java Runtime Environment (JRE), 83, 167
Java Swing, 167
Java Virtual Machine (JVM)

LEGO Java Operating System (leJOS), 93
needed for Java APIs, 13
selecting, 299
separate JVMs, 352–355, 377
TinyVM, 15, 176, 300

javac compiler, 247–248
JavaCard, 176, 238
java.class.forName method, 178
javah command line tool, 66
java.lang.Class, 174–175, 222
java.lang.Math, 177
java.lang.Object, 177

javax.comm package, 33
javax.comm.properties configuration file, 37,

47–49, 68
javax.usb extension API for USB devices, 67
JBuilder Personal Edition IDE (Borland),

251–252
JCE API. See Java Communications Extension

API (JCE API)
jEdit text editor, 253
Jini

BuildTool, 389
ChecksumCalcClass.java, 341–343, 352–353
ChecksumCalc.java, 341–342
ChecksumClient/Client.java, 348–351
ChecksumService.java, 342–347
community Web site, 334
description, 334
distributed computing framework, 334
event mailbox service (Mercury), 337
federation architecture, 356
HTTP servers, 338–340, 351–352, 388–389
information Web sites, 397
Java Remote Method Invocation (RMI),

336, 338–341, 354–355, 361, 377
JavaSpaces services (Outrigger), 337
lease renewal, 347
lease renewal service (Norm), 337
lookup discovery service (Fiddler), 337
lookup services (reggie), 334, 337–341,

351–353
multiple RCX units, 356, 392
network protocol, 336
overview, 334–336
proxies, 356–358
registering services, 334, 340–342, 347, 351
Robotics Command Explorer (RCX) API,

358
security manager, 387–388
security policy file, 341, 352
service example, 337–355
services available, 337
stub objects, 353–355

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 427

428 Index

Technology Starter Kit (TSK), 337
transaction manager service (Mahalo), 337
user interface, 397
See also Dancing example

Jlint debugger, 281
JNI. See Java Native Interface (JNI)
Johnson, Ralph, 221
josx.platform.rcx package, 170, 177–195,

314–315
josx.platform.rcx.PersistentMemoryArea class,

193–194, 293
josx.robotics package, 226
jre folder, 46, 48
js.tinyvm.TinyVM class, 176, 300
Jtext text editor, 253
jview (Java runtime), 49
JVM. See Java Virtual Machine (JVM)

K
Kits

comparison table, 23
CyberMaster, 3, 22–23, 123
Dark Side Developer Kit (DSDK), 23
Droid Development Kit, 3, 23
Exploration Mars, 25
Extreme Creatures, 25
Java Advanced Window Toolkit (AWT), 179
Jini Technology Starter Kit (TSK), 337
Micro Scout, 4, 22–23
RCX Code standard kit, 4
RoboSport, 25
Robotics Invention System (RIS), 2
Scout, 22–23, 123
See also LEGO expansion kits

Knudsen, Jonathan, 253

L
Languages

FORTH, 15
Logo, 18
new, 12

Not Quite C (NQC), 12–13, 93, 96
pbForth, 15
RCX Code, 4, 6, 10, 18–19

Latency, measuring, 324–326
LatencyTest.java, 324–326
Laverde, Dario, 13, 86
LCD class, 180
LCDConstants class, 180–181
Lease renewal, 347, 352
LEGO Dacta, 6
LEGO educational branch Web site, 6
LEGO expansion kits

add-on building elements, 24–25
alternative processing units, 22–23
comparison table, 23
overview, 21–22

LEGO Java Operating System (leJOS)
advanced programming example, 210–236
advanced usage, 290–297
allowing Java code, 85, 90, 93
architecture, 177–195
Behavior interface, 227–232
benefits, 173
Bit masks, 192–193
compiling, 171–173, 313
debuggers, 281
debugging, 236–238, 322–323
description, 15–16, 170
documentation, 170–171
emulator, 251, 310–311
exception handling, 237–238
extending, 314–323
firmware, 304–311, 322–323
free memory, 324
GCC-3.0 cross-compiler, 313
heap, 292
hooks, 307
infinite loop required, 197–198
Jad debugger, 281
javac compiler, 247–248
Jlint debugger, 281

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 428

Index 429

josx.platform.rcx package, 170, 177–195,
314–315

josx.robotics package, 226
leJOS linker, 299–304
leJOS Visual Interface (lVI), 16, 253–258
lejosc compiler, 172–173, 247–248, 330
lejosc linker, 248–249
lejosfirmdl downloader, 250
lejosrun linker, 249–250
librcx library, 313
limitations, 174, 204–205
Linux environment, 171–172
memory layout, 308–310
motors, controlling, 195–196
multiprogram downloading, 290–292
native methods, 314–323
OCIA interrupt routine, 303
poll masks, 192–193
programming environments, 246–253
RCXDirectMode program, 283–284
RCXDownLoad program, 282–283
RCXDownload/RCXDirectMode, 16
real-time behavior, 306–307
sample programs, 195–199
SensorConstants interface, 183–186
SensorListener interface, 186–187
sensors, reading, 196–199
simulator (Simlink), 258–281
source code, 311–312
stateChanged() method, 186
string objects, manipulating, 206–210
testing, 238–240
timing, 306–307
tricks and tips, 281, 323–326
Universal Serial Bus (USB), 202
Web site for downloading, 170
Windows environment, 171
Windows Universal Serial Bus (USB)

support, 250
See also leJOS classes; leJOS Visual Interface

(lVI); Line-following robot; Stacks;
Steering

legOS replacement firmware, 14–15
leJOS. See LEGO Java Operating System

(leJOS)
leJOS classes

Arbitrator, 226–227
Battery, 194
Button, 179
ButtonListener, 179
class selection, 206
js.tinyvm.TinyVM, 176, 300
LCD, 180
LCDConstants, 180–181
Memory, 194
MinLCD, 180
MinSound, 181–182
MinuteTimer, 194–195
Motor, 189
no java.lang.Class, 222
Opcode, 191
PersistentMemoryArea, 193–194, 293
Poll, 192
ProximitySensor, 187–189
ROM, 194
Segment, 180–181
Sensor, 185
Serial, 191–192
SerialListener, 191–192
Servo, 190–191
Sound, 181–182
TextLCD, 180–181
VMStatistics.java class, 315–316

leJOS linker
binary code, building, 302
binary code, format of, 303–304
C wrapper, 299–300
Java main program, 300–301
js.tinyvm.TinyVM class, 300
JVM executable, 299–300
lejosp command, 304

leJOS Visual Interface (lVI)
configuration, 255–257

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 429

430 Index

description, 16, 253–254
installation, 254
preferences bug, 287
Universal Serial Bus (USB), 287
usage, 257–258

lejosc compiler, 172–173, 247–248, 330
lejosc linker, 248–249
lejosp command, 304
lejosrun linker, 249–250
Lewis, Scott, 13, 82, 85, 90
Libraries

comm.jar, 46–47, 48, 97
Java Communications Extension API (JCE

API), 46–47
LEGO Java Operating System (leJOS), 313
librcx, 313
libSolarisSerialParallel.so, 46
linuxusb.so, 113
macusb.shlib, 113
native, 33, 46–47
rcxport.jar, 97
shared libraries, finding and loading, 46
Solaris, 46–47
win32com.dll, 46, 49, 112–113
win32usb.dll, 112–113

librcx library, 313
libSolarisSerialParallel.so native library, 46
Light sensors, 4, 185, 187–189
LightReader.java, 214
LightRover.nqc, 94–96
LightRover.nqc.java, 94–96
Limitations of RCXPort, 85–86
Line-following robot

Calibrator.java, 217
Cruiser.java, 214–215
design, 210–212
LightReader.java, 214
LineFollowBehavior.java, 228–229
LineFollower.java, 217–222
LineValueHolder.java, 213–214
Turner.java, 215–216

LineFollowBehavior.java, 228–229
LineFollower.java, 217–222
LineValueHolder.java, 213–214
Linkers

emu-lejosrun linker, 251
leJOS linker, 299–304
lejosc, 248–249
lejosrun, 249–250

lint debugger, 281
Linux

Java Communications Extension API (JCE
API), 32

Java USB reference implementation, 67
javax.usb extension API for USB devices, 67
LEGO Java Operating System (leJOS)

environment, 171–172
LEGO USB driver Web site, 250
RCXPort and USB, 86
Universal Serial Bus (USB) tower drivers, 65

linuxusb.so shared library, 113
Listener classes, 33
Listeners

callback, 38
limit of one, 41

Logical structure of RCX, 9–11
Logo programming language, 18
Long identifiers, 302
Lookup services, 334
Low-level instructions. See Opcodes
LVI. See leJOS Visual Interface (lVI)

M
Macintosh (Mac OS)

compatibility, 14, 28, 65
Java Communications Extension API (JCE

API) download, 32
Mac OS X, 65
no Universal Serial Bus (USB) tower driver,

65
macusb.shlib shared library, 113
Magic number, 317
Mahalo service in Jini, 337

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 430

Index 431

Mangling names, 318
Martin, Fred, 3
Master record, 303
Maximum array length, 174–175
Measuring latency, 324–326
Memory

available, 28
conservation, 204–210
direct access, 292, 295
free space, 324
layout, 308–310
persistent, 292–297
types, 8–9
See also Random-Access memory (RAM);

Read-Only memory (ROM)
Memory class, 194
Mercury service in Jini, 337
Message format, 83–84
Messages, 83–84, 122, 127, 131
Method record, 303
Method signatures

encoding of Java types, 316–317
name mangling, 318
native method identification, 314, 316
source code, 311
throws declarations, 237
verbose output, 239, 249, 301

Methods, native, 314–323
Micro Scout expansion kit, 4, 22–23
Microcomputer, RCX, 2
Microprocessor, Hitachi H8, 7, 299, 308
Microsoft IIS HTTP servers, 338
Microsoft Windows. See Windows
MIDP. See Mobile Information Device Profile

(MIDP)
MindstormClient/Client.java, 378–387
Mindstorm.java, 359–361
MindstormProxy.java, 361–370
MINDSTORMS for school. See ROBOLAB
MINDSTORMS SDK 2.0 download, 17
MindstormService.java, 371–377
MinLCD class, 180

MinSound class, 181–182
MinuteTimer class, 194–195
Mobile Information Device Profile (MIDP),

176
Monitoring data and protocols, 57
Motor class

LEGO Java Operating System (leJOS), 189
RCXJava API, 126, 139, 144

Motors
choosing via opcodes, 105
controlling, 195–196
fundamental, 4

Multifunctional commands, 21
Multiple RCX units, 162, 356, 392
Multiprogram downloading, 290–292
MyRCX.java, 87

N
Name mangling, 318
Native libraries, 33, 46–47
Native methods in LEGO Java Operating

System (leJOS), 314–323
Native ports, 34, 43
Network Communications, 132–139
Neural networks code, 151, 162
Never-ending turn, 228
New threads, 305
Nintendo Game Boy, 301
NoClassDefFoundError exception., 49
Noga, Markus, 14
Nonprogrammers, 16
Norm service in Jini, 337
Not Quite C (NQC) language

compiler, downloading, 96
compiling opcodes from, 93, 96
description, 12–13
Web site, 93

O
objdump utility, 304
OCIA interrupt routine, 303
100 percent Java. See Pure-Java interfaces to

Robotics Command Explorer (RCX)

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 431

432 Index

Opcode class in LEGO Java Operating System
(leJOS), 191

Opcodes
abstraction, 90
assembly code for RCX, 20–21
bit representation, 89
command types, 21
commands written in bytecodes, 83, 85
compiling from Not Quite C code, 93, 96
constants for, 84–85, 90
conversion from RCX Code, 10
definition, 2, 82
echoed back to tower, 84
examples, specific, 91, 121
interpreting, 20
layer, abstracting, 90
message format, 83–84
motors, choosing, 105
packaged by getBytes(), 84
processing bytecodes, 11, 20
RCX internal commands, 12, 83, 121
RCXCmd class, 84–85
RCXPort, compiling from, 109
receiving, program for, 127–129
reverse engineering, 59–62, 83
sending, program for, 127–129
use of, 20

Operational codes. See Opcodes
Origin of Robotics Invention System (RIS), 3
OutOfMemoryException, 243
Output Buffersize property, 43
Output devices (motors), 4
Outrigger service in Jini, 337
Overheating, 173
Ownership management of ports, 37–42

P
Packages

com.sun.comm.*, 65
javax.comm, 33
josx.platform.rcx, 170, 177–195, 314–315

josx.robotics, 226
rcx.*, 125–135
rcx.comm.*, 66, 69–71, 75, 120, 124
RCXTools, 281–284, 287

Packet sniffing, 83
Papert, Seymour, 3
Parallel ports. See Ports, parallel
paramBase pointer, 318–319
Parity, 45
pbForth language, 15
Persistent data, 292
PersistentMemoryArea class, 193–194, 293
PersistentMemoryArea.java, 293–295
PersistentMemoryAreaTest.java, 295–297
Personal Java, 176
Physical structure of RCX, 9–11
Poll class, 192
Poll masks, 192–193
poll/PollDemo.java, 192–193
Polling frequency, 144
Pool, constants, 302
Ports

arbitrary, 132
common properties, 42–43
identifying, 71
naming, 91
ownership management, 37–42
parallel, 63–64
socket RCX port, 132–139
TCP sockets, 124, 132
Universal Serial Bus (USB), 68–75, 124
variations, 64

Ports, serial
access framework, 34–43
data control, 45
discovery and enumeration, 34–37
encapsulation, 43
flow control, 45
interchanging streams, 62–64
reading from, 50–53
writing to, 54–56

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 432

Index 433

Processing units, alternative, 22–23
Program commands, 21
Program entry points, 292
Programmable brick. See Robotics Command

Explorer (RCX)
programmable brick Forth. See pbForth

language
Programming

advanced example, 210–236
big blocks, 18
class selection, 206
code blocks, 18
decompiling Java files, 281
direct-control, 21, 147–163
environments, alternative, 11
hysteresis, 216
LEGO Java Operating System (leJOS),

210–236
memory conservation, 204–210
string objects, manipulating, 206–210
testing, 238–240
text versus graphical (visual), 12
See also Sample programs; Steering

Programs, sample. See Sample programs
Properties

common properties of ports, 42–43
Input Buffersize, 42
javax.comm.properties configuration file, 37,

47–49, 68
Output Buffersize, 43
Receive Framing, 43
Receive Threshold, 42, 78
Receive Timeout, 42

Protocols, monitoring and analyzing, 57
Proudfoot, Kekoa

firmdl.c tool, 250
librcx library, 313
RCX internals (opcodes), 12, 112, 121, 192,

194
RCX virtual machine, 20
reverse engineering, 59, 83
ROM documentation, 304

send.c tool, 247
Proxies

Jini, 356–358
serial, 60

Proximity detector, infrared (IR), 24
proximity/Proximity.java, 187–189
ProximitySensor class, 187–189
Proxy server, 136–139
Psychedelic Dance program, 195–196
Pure-Java interfaces to Robotics Command

Explorer (RCX)
Java Communications Extension API (JCE

API), 32, 34, 112, 124
RCXJava API, 112, 124
RCXPort API, 82

R
Random-Access memory (RAM), 8–10
RCX. See Robotics Command Explorer

(RCX)
RCX Code language

bytecode conversion, 10
improved interface, 6
standard kit, 4
visual programming tool, 18–19

rcx.* package
classes, 125–126
exceptions, 127–129
interfaces, 126–127
RCXLoader utility program, 129–131
RCXSocketPort.java, 132–135
Unified Modeling Language (UML)

diagram, 125
RCXApplet.java, 131–132, 140
RCXCmd class, 84–85
rcx.comm.* subpackage, 66, 69–71, 75, 120, 124
RCXCommPort interface in RCXJava API,

126, 132
RCXControlApp.java, 139
RCXControl.java, 140–144
RCXDirectMode program, 283–284
RCXDownLoad program, 282–283

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 433

434 Index

RCXDownload/RCXDirectMode, 16
RCXJava API

artificial intelligence (AI), 150–163
classes, 125–126
communication, basic, 113–120
communications, 123
components, 122–123
CyberMaster expansion kit, 123
debugging, 145–147
direct-control programming, 147–163
emulation mode, 145–147
error handling, 122
exceptions, 127–129
interfaces, 126–127
message parsing, 122
origin, 13
overview, 124–129
ports, arbitrary, 132
ports, configuring, 122
protocol management, 122
pure-Java interface, 112, 124
remote-control application, 147–150
Scout expansion kit, 123
TCP sockets, 124, 132
tower communications, 123
Universal Serial Bus (USB), 124
versus RCXPort API, 167–168

RCXListener interface in RCXJava API, 127
RCXLoader class, 126
RCXLoader utility program, 129–131
RCXNeuralBrain class, 152
RCXNeuralBrain.java, 160–162
RCXNeuralTest.java, 151–162
RCXOpcode class, 126
RCXPacket object, 84
RCXPort API

basic example, 86–91
code re-architecture, 86
commands, formatting, 82–84
compiling Java, 85
compiling opcodes from, 109

connections, 84
direct mode technique, 83, 85–86
downloading programs, 91–93
interfacing external software, 93–96
limitations, 85–86
object model, 84–85
overview, 82–86
programming the RCX, 86–91
pure-Java interface, 82
RCXPacket object, 84
reliance on Java Communications Extension

API (JCE API), 86
source code,Web site for, 82
troubleshooting, 96–97
versus RCXJava API, 167–168

RCXPort class, 126
RCXPort object, 84
rcxport.jar library, 97
RCXResult protected class, 108
RCXSensorEmulation.java, 145–146
RCXSerialPort class, 126
RCXServer class, 126
RCXServer.java, 136–139
RCXSimpleTest.java, 127–128
RCXSocketPort class, 126
RCXSocketPort.java, 132–135
RCXTest.java, 147–149
RCXTools package, 281–284, 287
RCXTTY environment variable, 171, 202,

250
RCXUSBPort class, 126
Reaction times, 306–307
Read-Only memory (ROM), 8–10, 304
Reading from serial ports, 50–53
Real-time behavior, 306–307
Receive Framing property, 43
Receive Threshold property, 42, 78
Receive Timeout property, 42
reggie service in Jini, 334, 337–341, 351–353
Register file, 20
Registering services in Jini, 334, 340–342,

347, 351

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 434

Index 435

Release, firm0328.lgo, 17
Release compatibility, 5, 17
Reliability of infrared signal, 86
Reloading RCX firmware, 10–11
Remote-control application, 147–150
Replacement firmware. See LEGO Java

Operating System (leJOS); legOS
replacement firmware; pbForth language

Replacing RCX firmware, 14–16
Reserved areas of memory, 308
Resnick, Mitchel, 3
Response messages, 131
Restricted steering, 223–225
Reverse engineering RCX opcodes, 59–62,

83
Reverse Polish notation (RPN), 15
Rinkens,Tim, 281
RIS. See Robotics Invention System (RIS)
RMI. See Java Remote Method Invocation

(RMI)
ROAPI project, 82
ROBOLAB, 13–14
RoboSport kit, 25
Robot body, simulating, 269–277
Robotics Command Explorer (RCX)

API components, 122–123
artificial intelligence (AI), 150–163
assembly code, 20–21
brain, expanding, 11–16
circuit board, 8
command types, 21
commands, formatting for RCX, 82–84
commands in RCX opcodes, 12, 83
communication, basic, 113–120
communication test program, 129–131
components, 9–11
data flow, 297–298
description, 7
direct-control programming, 147–163
firm0328.lgo release, 17
interfacing external software with RCXPort

API, 93–96

internal commands, 12, 83, 121
Java communications architecture, 112–124
logical structure, 9–11
memory, 8–10
memory layout, 308–310
microcomputer, 2
microprocessor, Hitachi H8, 7, 299, 308
multiple RCX units, 162, 356, 392
opcodes, 21
pbForth language, 15
physical structure, 7–9
programmable brick, 3, 15
programming sequence, 10–11
programming using RCXPort API, 86–91
remote-control application, 147–150
reverse engineering, 59–62, 83
second RCX unit, 25
TCP-to-RCX proxy server, 136–139
troubleshooting with RCXPort API, 96–97
version compatibility, 17
virtual machine, 20–21, 90, 298
See also Firmware for Robotics Command

Explorer (RCX); Pure-Java interfaces to
Robotics Command Explorer (RCX)

Robotics Command Explorer (RCX) API
Jini, 358

Robotics Discovery Set, 3
Robotics Invention System (RIS)

contents, 4–7
history, 3
Java Application Programming Interfaces

(APIs), 13
kit, 2
Not Quite C (NQC), 12–13
software, replacing, 11–14
version compatibility, 5

Robots, specific
Broad Blue Chess Robot, 163
Chess robot, 150–163
Differential drive-based robot, 225
Room explorer robot, 151

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 435

436 Index

Simple robot design, 277–280
Simple Steering Drive Robot (Roverbot),

88, 93
See also Line-following robot

ROM. See Read-Only memory (ROM)
ROM class, 194
Room explorer robot, 151
Rossum Playhouse. See Simlink
Rossum User’s Guide (Simlink manual), 263
Rotation sensors, 24
Roverbot (Simple Steering Drive Robot), 88,

93
RPN. See Reverse Polish notation (RPN)
RS232/434. See Ports, serial
RTS/CTL, 45
Running threads, 305

S
Sample programs

BlackBox, 57–64
candy sorter, 97–105
CandySorter.java, 100–105
HelloWorld.java, 250
LEGO Java Operating System (leJOS),

195–199
Psychedelic Dance, 195–196
RCXApplet.java, 131–132, 140
RCXControl.java, 140–144
RCXSensorEmulation.java, 145–146
RCXServer.java, 136–139
RCXSocketPort.java, 133–135
RCXTest.java, 147–149
reading example, 50–53
steering line follower, 18–19
TestUSB.java, 73–74
writing example, 54–56
See also Companion CD-ROM

Sargent, Randy, 3
Scout expansion kit, 22–23, 123
SDK 2.0 download, 17
Security manager, 387–388
Security permissions, 131

Security policy file, 341, 352
Segment class, 180–181
SelectProgram command, 21
Sensor class in LEGO Java Operating System

(leJOS), 185
Sensor class in RCXJava API, 126, 139, 144
SensorConstants interface, 183–186
SensorListener interface, 186–187
sensorread/SensorPoll.java, 197
Sensors

calibration, 14
fundamental, 4
Infrared (IR) proximity detector, 24
light, 4, 185, 187–189
modes, 183
reading, 144, 196–199
rotation, 24
sources, 24
types, 183
Web sites, 24, 184

Serial class, 191–192
Serial ports. See Ports, serial
Serial proxies, 60
Serial towers, 6–7, 28
SerialListener class, 191–192
SerialPort class, 35, 37, 44–45
Servers, HTTP, 338–340, 351–352, 388–389
Services, registering in Jini, 334, 340–342,

347, 351
Servo class, 190–191
servo/ServoDemo.java, 190–191
Shared code base, 135
Signatures. See Method signatures
Signing applets, 131
Silverman, Brian, 3
Simlink

configuring, 260–261
declarations, 264–269
description, 240, 258
floor plans, 262–269
future design tools, 280–281
geometry argument, 266

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 436

Index 437

getting started, 258–260
installing, 260
placements, 266–267
Rossum meters, 280
running, 261–262
simulating a robot body, 269–277

Simple robot design, 277–280
Simple Steering Drive Robot (Roverbot), 88,

93
SimpleRobot.java class, 278–279
SimpleWriteRead.java, 112, 119
Simulating a robot body, 269–277
Simulator for LEGO Java Operating System

(leJOS), 258–281
Sleeping threads, 306
Smart brick. See Robotics Command

Explorer (RCX)
Sniffing, 60
Sockets, 124, 132–139
Software for RIS, replacing, 11–14
Solaris

access to native ports, 43
Java Communications Extension API (JCE

API), 32
javax.comm.properties configuration file, 37,

47–49
native library, 46–47

Solorzano, Jose, 15, 170, 176–177
Solutions, third-party. See LEGO Java

Operating System (leJOS); legOS
replacement firmware; pbForth language

Solutions Fast Tracks
communication, RCXJava API, 165–166
Introduction, 26–27
Java Communications Extension API (JCE

API), 77–78
Jini, 394–395
LEGO Java Operating System (leJOS)

internals, 328–329
LEGO Java Operating System (leJOS)

introduction, 200–201
LEGO Java Operating System (leJOS)

programming, 241–242

LEGO Java Operating System (leJOS) tools,
285–286

RCXPort Java API, 106–108
Sound class, 181–182
Sounds, used in debugging, 236–237
Source code of leJOS, 311–312
srec format, 304
Stacks

frames, 310
memory location, 308
object references, 177
size, changing, 324
threads, 305–306, 310
usage, finding, 315–316, 319–321

StackTest.java, 320–321
Started threads, 305
stateChanged() method, 186
States of threads, 305–306
Static field record, 303
Static state, 303
Steering

control of, 222–223
LineFollowBehavior.java, 228–229
never-ending turn, 228
restricted, 223–225
subsumption architecture, 225–226
Turner.java, 224–225
TurnResolve.java, 232–236

Stop bits, 45
Streams, interchanging between serial ports,

62–64
String objects, manipulating, 206–210
StringBufferTest, 207–208
StringTest.java, 206
Structure of RCX

logical, 9–11
physical, 7–9

Stub objects, 353–355
Stuber, Jürgen, 15, 170, 177
Subsumption architecture, 204, 225–226
Sun Solaris

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 437

438 Index

access to native ports, 43
javax.comm.properties configuration file, 37,

47–49
native library, 46–47

Sunny days, 173
switch statement, 174–175, 330
Switches, command-line, 246
Switch_thread_hook(), 307
Syngress Web site, 5
System sounds, by aCode, 182
System.out.println(), 378

T
TCP sockets, 124, 132
TCP-to-RCX proxy server, 136–139
TECHNIC series, 3, 24
TestEnumeration.java, 35–37
TestEnumeration.java code, 35
Testing programs, 238–240
TestOwnership.java, 38–41
TestOwnership.java code, 38
TestUSB.java, 73–74
Text programming, 12
TextLCD class, 180–181
Third-party solutions. See LEGO Java

Operating System (leJOS); legOS
replacement firmware; pbForth language

Threads
stacks, 310
states, 305–306

tick_hook(), 307
Timing, 306–307
TinyVM, 15, 176, 300
Tips and tricks, 281, 323–326
Tools, GNU, 313
Touch sensors, 4
Tower drivers, 65
Towers

emulating, 145–147
multiple, 72
serial, 6–7, 28

sunny days, 173
Universal Serial Bus (USB), 6–7, 28, 64–65,

84
See also Infrared (IR) towers

Transmitter, infrared (IR), 4
Tricks and tips, 281, 323–326
Troubleshooting with RCXPort API, 96–97
TSK. See Jini,Technology Starter Kit (TSK)
Turn, never-ending, 228
Turner.java, 215–216, 224–225
TurnResolve.java, 232–236

U
Ultimate Accessory Set, 24
Ultimate Builders Set, 24
Universal resource locators (URLs). See Web

sites
Universal Serial Bus (USB)

Java Communications Extension API (JCE
API), 66–75

javax.usb extension API, 67
LEGO Java Operating System (leJOS), 202
leJOS Visual Interface (lVI), 287
Linux LEGO USB driver, 250
ports, 64, 68–75, 124
RCXJava API, 124
RCXPort incompatibility, 84
RCXTools program, 287
tower drivers, 64–65
towers, 6–7, 28, 64–65, 84
Windows, 64–65, 120
See also rcx.comm.* subpackage

UploadRam command, 21
URLs. See Web sites
USB. See Universal Serial Bus (USB)

V
Van Dam, Bert, 151
Verbose output, 239, 249, 301
Version compatibility, 5, 17
Video camera compatibility, 14, 25

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 438

Index 439

Virtual machine, RCX, 20–21, 90, 298
Visible Light Link (VLL), 4
Visual Command add-on, 25
Visual NQC integrated development

environment (IDE), 13
Visual programming interfaces

leJOS Visual Interface (lVI), 16, 253–258
Not Quite C (NQC), 13
RCS Code language, 18–19
versus text (command-line), 12, 246

Vlissides, John, 221
VLL. SeeVisible Light Link (VLL)
VM. SeeVirtual machine, RCX
VMStatistics.java class, 315–316

W
Waiting threads, 306
Web sites

barcode software, 23
blocking light sensors, 185
commands in RCX opcodes, 12, 83, 112,

304
Forte for Java, 251
GCC-3.0 cross-compiler for leJOS, 313
Hitachi H8 microprocessor manual, 299
Jad debugger, 281
Java Communications Extension API (JCE

API), 32
Jini BuildTool, 389
Jini community, 334
Jini information, 397
Jini Technology Starter Kit (TSK), 337
Jlint debugger, 281
LEGO educational branch, 6
LEGO Java Operating System (leJOS)

debuggers, 281
LEGO Java Operating System (leJOS)

downloading, 170
LEGO Java Operating System (leJOS)

source code, 312

librcx library, 313
MINDSTORMS SDK 2.0 download, 17
neural networks code, 151, 162
NQC language, 93, 96
RCXPort API source code, 82
Rossum Playhouse, 260
sensors, 24, 184
Simlink, 260
subsumption architecture, 204
Syngress, 5

win32com.dll native library, 46, 49, 112–113
Win32Driver, 66
win32usb.dll native library, 112–113
Windows

access to native ports, 43
CygWin, 177
Cygwin system, 313
Java Communications Extension API (JCE

API), 32
Java extensions location, 48
Java runtime (jview), 49
javax.comm.properties configuration file, 37,

47–49
LEGO Java Operating System (leJOS)

environment, 171
native library, 46–47
ports, identifying, 71
RCXPort and USB, 86
Universal Serial Bus (USB) port, 120
Universal Serial Bus (USB) tower driver,

64–65
USB support in leJOS, 250
win32com.dll native library, 46, 49, 112–113
Win32Driver, 66
win32usb.dll native library, 112–113

Writing to serial ports, 54–56

X
XON/XOFF, 45

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 439

440

SYNGRESS PUBLISHING LICENSE AGREEMENT
THIS PRODUCT (THE “PRODUCT”) CONTAINS PROPRIETARY SOFTWARE, DATA
AND INFORMATION (INCLUDING DOCUMENTATION) OWNED BY SYNGRESS
PUBLISHING, INC. (“SYNGRESS”) AND ITS LICENSORS.YOUR RIGHT TO USE THE
PRODUCT IS GOVERNED BY THE TERMS AND CONDITIONS OF THIS
AGREEMENT.

LICENSE: Throughout this License Agreement, “you” shall mean either the individual or the
entity whose agent opens this package. You are granted a limited, non-exclusive and non-
transferable license to use the Product subject to the following terms:
(i) If you have licensed a single user version of the Product, the Product may only be used on a
single computer (i.e., a single CPU). If you licensed and paid the fee applicable to a local area
network or wide area network version of the Product, you are subject to the terms of the following
subparagraph (ii).
(ii) If you have licensed a local area network version, you may use the Product on unlimited
workstations located in one single building selected by you that is served by such local area network.
If you have licensed a wide area network version, you may use the Product on unlimited
workstations located in multiple buildings on the same site selected by you that is served by such
wide area network; provided, however, that any building will not be considered located in the same
site if it is more than five (5) miles away from any building included in such site. In addition, you
may only use a local area or wide area network version of the Product on one single server. If you
wish to use the Product on more than one server, you must obtain written authorization from
Syngress and pay additional fees.
(iii) You may make one copy of the Product for back-up purposes only and you must maintain an
accurate record as to the location of the back-up at all times.

PROPRIETARY RIGHTS; RESTRICTIONS ON USE AND TRANSFER: All rights
(including patent and copyright) in and to the Product are owned by Syngress and its licensors.You
are the owner of the enclosed disc on which the Product is recorded. You may not use, copy,
decompile, disassemble, reverse engineer, modify, reproduce, create derivative works, transmit,
distribute, sublicense, store in a database or retrieval system of any kind, rent or transfer the Product,
or any portion thereof, in any form or by any means (including electronically or otherwise) except
as expressly provided for in this License Agreement.You must reproduce the copyright notices,
trademark notices, legends and logos of Syngress and its licensors that appear on the Product on the
back-up copy of the Product which you are permitted to make hereunder.All rights in the Product
not expressly granted herein are reserved by Syngress and its licensors.

TERM: This License Agreement is effective until terminated. It will terminate if you fail to
comply with any term or condition of this License Agreement. Upon termination, you are
obligated to return to Syngress the Product together with all copies thereof and to purge and
destroy all copies of the Product included in any and all systems, servers and facilities.

DISCLAIMER OF WARRANTY: THE PRODUCT AND THE BACK-UP COPY OF THE
PRODUCT ARE LICENSED “AS IS”. SYNGRESS, ITS LICENSORS AND THE AUTHORS

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 440

441

MAKE NO WARRANTIES, EXPRESS OR IMPLIED,AS TO RESULTS TO BE OBTAINED
BY ANY PERSON OR ENTITY FROM USE OF THE PRODUCT AND/OR ANY
INFORMATION OR DATA INCLUDED THEREIN. SYNGRESS, ITS LICENSORS AND
THE AUTHORS MAKE NO EXPRESS OR IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE WITH
RESPECT TO THE PRODUCT AND/OR ANY INFORMATION OR DATA INCLUDED
THEREIN. IN ADDITION, SYNGRESS, ITS LICENSORS AND THE AUTHORS MAKE
NO WARRANTY REGARDING THE ACCURACY,ADEQUACY OR COMPLETENESS
OF THE PRODUCT AND/OR ANY INFORMATION OR DATA INCLUDED THEREIN.
NEITHER SYNGRESS,ANY OF ITS LICENSORS, NOR THE AUTHORS WARRANT
THAT THE FUNCTIONS CONTAINED IN THE PRODUCT WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF THE PRODUCT WILL BE
UNINTERRUPTED OR ERROR FREE.YOU ASSUME THE ENTIRE RISK WITH
RESPECT TO THE QUALITY AND PERFORMANCE OF THE PRODUCT.

LIMITED WARRANTY FOR DISC: To the original licensee only, Syngress warrants that the
enclosed disc on which the Product is recorded is free from defects in materials and workmanship
under normal use and service for a period of ninety (90) days from the date of purchase. In the
event of a defect in the disc covered by the foregoing warranty, Syngress will replace the disc.

LIMITATION OF LIABILITY: NEITHER SYNGRESS, ITS LICENSORS NOR THE
AUTHORS SHALL BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL,
PUNITIVE, CONSEQUENTIAL OR SIMILAR DAMAGES, SUCH AS BUT NOT LIMITED
TO, LOSS OF ANTICIPATED PROFITS OR BENEFITS, RESULTING FROM THE USE
OR INABILITY TO USE THE PRODUCT EVEN IF ANY OF THEM HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.THIS LIMITATION OF LIABILITY SHALL
APPLY TO ANY CLAIM OR CAUSE WHATSOEVER WHETHER SUCH CLAIM OR
CAUSE ARISES IN CONTRACT, TORT, OR OTHERWISE. Some states do not allow the
exclusion or limitation of indirect, special or consequential damages, so the above limitation may
not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS. If the Product is acquired by or for the U.S.
Government then it is provided with Restricted Rights. Use, duplication or disclosure by the U.S.
Government is subject to the restrictions set forth in FAR 52.227-19.The contractor/manufacturer
is Syngress Publishing, Inc. at 800 Hingham Street, Rockland, MA 02370.

GENERAL: This License Agreement constitutes the entire agreement between the parties relating
to the Product.The terms of any Purchase Order shall have no effect on the terms of this License
Agreement. Failure of Syngress to insist at any time on strict compliance with this License Agreement
shall not constitute a waiver of any rights under this License Agreement.This License Agreement shall
be construed and governed in accordance with the laws of the Commonwealth of Massachusetts. If
any provision of this License Agreement is held to be contrary to law, that provision will be enforced
to the maximum extent permissible and the remaining provisions will remain in full force and effect.

*If you do not agree, please return this product to the place of purchase for a refund.

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 441

SYNGRESS SOLUTIONS…

s o l u t i o n s @ s y n g r e s s . c o m

AVAILABLE MAY 2002
ORDER at

AVAILABLE NOW!
ORDER at

AVAILABLE NOW!
ORDER at
www.syngress.com

Building Robots with LEGO MINDSTORMS
The LEGO MINDSTORMS Robotics Invention System (RIS) has been called
“the most creative play system ever developed.” This book unleashes the full
power and potential of the tools, bricks, and components that make up
LEGO MINDSTORMS. Some of the world's leading LEGO MINDSTORMS
inventors share their knowledge and development secrets. You will discover
an incredible range of ideas to inspire your next invention. This is the ulti-
mate insider's look at LEGO MINDSTORMS and is the perfect book whether
you build world-class competitive robots or just like to mess around for the
fun of it.
ISBN: 1-928994-67-9

Price: $29.95 US, $46.95 CAN

Journey to the Center of the Internet
Not your typical computer book, Journey to the Center of the Internet
brings readers a brilliant techno-tale in the spirit of the classic science fic-
tion novel and includes over 40 narrated animations taking you inside the
“stuff ” that makes the Internet run.
ISBN: 1-928994-75-X

Price: $29.95 US, $46.95 CAN

C# for Java Programmers
This book is written for Java programmers who are interested in increasing
their flexibility and marketability with a working knowledge of C# and the
.NET framework. C# for Java Programmers is written from a Java pro-
grammer’s point of view and builds upon what they already know of object
oriented languages to give them a comparative tutorial of the C# language
it uses within the .NET fromaework.
ISBN: 1-931836-54-X

Price: $49.95 US, $77.95 CAN

177_LEGO_Java_indx.qxd 4/3/02 1:50 PM Page 442

http://www.syngress.com/catalog/sg_main.cfm?pid=1740
http://www.syngress.com/
http://www.syngress.com/catalog/sg_main.cfm?pid=1902
http://www.syngress.com/solutions

Document3 4/3/02 4:04 PM Page 1

	Cover
	Table of Contents
	Foreword
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Appendix A
	Appendix B
	Index
	Related Titles

