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Preface

It has long been recognized that there is a relationship between logic and computer
programming. Since the 1940s many logicians, including Alan Turing and John von
Neumann, and computer scientists such as Edsgar Dijkstra and John McCarthy, have
drawn attention to the connection between the two disciplines and commented on
its importance. During the formal methods boom of the 1980s and 1990s it was
common to read assertions to the effect that programming could be reduced to a
quasi-logical process of theorem proving and formula derivation.

However, despite having a background in both programming and logic, I found
something elusive about such assertions. My practical experience of programming
had led me to understand it as a very different type of activity from the formal ma-
nipulations of logical proof. With the intention of resolving this uncertainty, I em-
barked upon a Ph.D. to study the ways in which the development of programming
languages had been influenced by logic. This book is based on the resulting thesis,
although it has a wider focus and marks a further stage in my growing understanding
of the connection between the two areas.

Broadly speaking, I have come to understand this connection not as a fact about
the two disciplines, but as something more like a decision made by identifiable
historical actors as to how the new discipline of programming should be understood
and structured. A key event in this process was the creation of the Algol language
in the years around 1960. The motivation for this decision has very deep roots,
however, reaching back to ideas about machines and machinic processes that date
from the very beginning of the scientific revolution.

From this starting point, the book gives an account of the history of what we
now call programming. It is useful, however, to view this not simply as computer
programming, but to think more generally of attempts to define the steps involved
in computations and other information-processing activities in such a way that they
could be performed by machines, or at least by humans mimicking the behaviour
of machines. From this perspective, the history of programming is distinct from
the history of the computer, despite the close relationship between the two in the
twentieth century.
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vi Preface

The story told in this book stops in the 1970s, at the point where object-oriented
programming emerged as a successor, or alternative, to structured programming.
This is not an arbitrary cut-off point; rather, I believe that structured programming
marks the completion of a particular historical trajectory, and that object-orientation,
despite its rich inheritance from existing practices, is something quite different, or
at least something which has deep roots in approaches and disciplines other than
logic. Untangling these roots is part of a different project, however, and the history
of how programming and programming languages developed after the 1970s is part
of a different story from the one told here.

There are several things this book is not, therefore. Although it contains much
historical material, it does not pretend to be a complete history of programming
languages, and still less a history of the computer. What it does try to do is to tell a
particular story about these historical developments and to show one way in which
the history of programming languages can be set in a wider context and seen as an
integral part of a development which, ultimately, is central to the project started by
the scientific revolution in the seventeenth century.

The history of computing has recently been expanding its focus from technical
details and embracing wider narratives and historical contexts. These encouraging
developments have been principally evident in studies of commercial and military
applications of computing and their societal impacts. If I had a single hope for this
book, it would be that it might contribute to a similar process in the more technical
aspects of the subject and to inspire computer scientists and historians of science and
technology to see programming not as a isolated technical field. but as an interesting
and important part of general intellectual history.

Acknowledgements I would like particularly to thank my supervisor Donald
Gillies and external examiner John Tucker, without whose enthusiastic advice, sup-
port and encouragement this book would never have seen the light of day.

Mark PriestleyLondon, UK
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Chapter 1
Introduction

Since its development at the end of the Second World War, the electronic digital
computer has been widely seen as a revolutionary technological innovation. Within
the space of 50 years, the computer became part of everyday life to an extent that
was unforeseen by many of its developers. Computers form the infrastructure of
business and commerce worldwide; desktop, portable and mobile computers are
ubiquitous, used for both work and leisure, small embedded computers are found in
virtually all complex machinery, and more and more people are connecting to the
worldwide network of the Internet. For many years, it has been a commonplace to
refer to a ‘computer age’ or ‘computer revolution’.

The very ubiquity of computers might make us reflect, and ask how it is that one
device can fulfil such a dazzling array of roles. The answer, of course, is that the
computer is a universal device, in a sense made precise by the British mathematician
Alan Turing in the 1930s. Unlike, say, a washing machine, which is designed to
perform one specific function, a computer has the potential to perform an unlimited
range of tasks. For example, one and the same machine might be used to process
text or financial data, to act as a communication device across the global networks,
to play games, music or movies, or to simulate other devices.

Computers possess this flexibility because of the great range of programs that
can be run on them. A program is a set of instructions telling a computer how to
perform a particular task: the flexibility of the computer is therefore limited only by
the ingenuity of its programmers in describing complex activities in a way that can
be interpreted by the machine. In fact, a better way of looking at the situation is to
notice that computers perform only the single task of carrying out the instructions
in a program: universality is not an intrinsic property of computers, but is derived
from the range of programs that can be written for them.

Programs are often referred to as software, as opposed to the electronic hard-
ware that makes up the computer itself. This terminology marks a basic distinction:
whereas computers are physical devices, programs are linguistic, or logical, entities.
A program can be thought of as a text, and the conventions governing how program
instructions should be expressed so as to be interpretable by a computer are thought
of as defining a programming language.

M. Priestley, A Science of Operations, History of Computing,
DOI 10.1007/978-1-84882-555-0_1, © Springer-Verlag London Limited 2011
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2 1 Introduction

Both the programs themselves and also the languages in which they have been
written have been addressed by historians of programming. Early work focused on
the details and evolution of programming languages, and this work is documented
in a number of books and conference proceedings.1 From about 1980, however,
professional historians began to take an interest in the history of computing, and
one effect of this was an increased emphasis on the social and economic context
surrounding the technical developments. Among other things, this contributed to a
move of historical focus away from accounts of programming languages to a more
general attempt to write the history of software.2

This book has a slightly different aim, namely to describe the history of the idea
of a programming language, rather than that of the individual languages themselves,
to consider the different forms that notations for expressing programs have taken in
the course of their evolution. This history is seen as part of a larger story about the
development of ideas about machinery and mechanical approaches to language.

The analogy between programs and machines was made explicit by Turing, who
was concerned to offer an account of what was known as effective computability, or
the extent to which humans can carry out mental processes, such as calculation, in a
mechanical way. He defined a class of very simple information-processing devices,
now known as Turing machines, each of which performed a single computational
task. Rather than building these machines, however, he developed a notation, known
as machine tables, to describe what they did. One of these machines, the universal
machine, played a significant role in Turing’s theory. The distinguishing feature of
the universal machine was that it could simulate the behaviour of any other machine,
if only it was provided with the table for the machine to be simulated.3

The tables interpreted by the universal machine are equivalent to the programs
run on a modern-day computer, of course. To reinterpret Turing’s insight in modern
terminology we might say that programs are descriptions of information-processing
machines. We do not have to build these machines, however, because the universal
machine is capable of simulating the behaviour of them all.

Understanding this relationship between programs and machines opens up the
possibility of widening the scope of the history of programming to include episodes
involving the construction and use of certain information-processing machines that
predate the invention of the electronic digital computer. This in turn suggests a wider
perspective, which sees the history of programming as part of the broader field of
the history of machinery. Ideas about programming have evolved in parallel with
developments in machinery, and in particular the development of machines meant
to carry out programmed instructions.

1Well-known early books on the history of programming languages include those by Saul Rosen
(1967) and Jean Sammet (1969). A subsequent series of conferences organized by the ACM has
documented the history of many individual languages (Wexelblat 1981; Bergin and Gibson 1996;
Ryder and Hailpern 2007).
2See the book by Martin Campbell-Kelly (2003) for a good example of this approach.
3Turing’s ideas, and the machine table notion, are covered in detail in Chap. 4.



1.1 Minds, Method and Machines 3

In this book, the history of programming is seen to stand at the intersection of
the two fields of machinery and language, and in particular to be closely related to
attempts to give a mechanical account of language on the one hand, and a linguistic
account of machines on the other. The starting point for the story told here will be
the machines and the associated concept of the mechanical which were developed at
the start of the nineteenth century, partly in response to the increasing prominence
of machines in the early industrial revolution. The remainder of this chapter will
consider the background of this work in a debate about machines and languages that
dates from the very start of the scientific revolution.

1.1 Minds, Method and Machines

In 1620, Francis Bacon published a collection of texts which were intended to
form part of the Instauratio magna, a multi-volume work in which he called for
a complete overhaul of the ways in which scientific research was carried out, and a
“wholesale Renewal of the sciences, arts and all human learning, raised on proper
foundations”.4 The most complete part of the work was the second, the Novum Or-
ganum, in which Bacon described his ideas about scientific method.

Bacon saw a great difference between the state of the sciences and that of the
“mechanical arts”. The sciences appeared to make little or no progress, and to be
stuck in a traditional Aristotelian approach, characterized by Bacon as involving
never-ending verbal debates which led to no new knowledge or useful discovery. By
contrast, the mechanical arts “as if they were partaking of a certain breath of life,
grow and get better by the day”,5 a condition he attributed to the fact that they were
based on observation and experimentation.

Nevertheless, progress in the mechanical arts appeared rather haphazard. Bacon
attributed this to the fact that they lacked a definite method which could guide the
process of inquiry. He drew an analogy between physical and intellectual labour:
just as the productive capacity of the human body can be greatly enlarged by the use
of appropriate tools, so too could the capacity of the human mind. He described two
kinds of assistance in particular.

Firstly, it appeared that the mind needed the guidance of a method to direct it
in its inquiries. In the very first sentence of the Instauratio, Bacon wrote that “the
human intellect was the author of its own difficulties”, by not making use of avail-
able remedies. He recommended that “from the very start, the mind should not be
left to itself, but constantly controlled; and the business done, as it were, by ma-
chines”.6 For empirical investigations, Bacon suggested that a form of induction be

4Bacon (1620). Originally written in Latin, this work has been variously translated as The Great
Instauration (Rees and Wakely 2004) and The Great Renewal (Jardine and Silverthorne 2000), and
the second part as The New Organon.
5Bacon (1620), preface to the Instauratio magna. Translated by Rees and Wakely (2004), p. 13.
6Bacon (1620), preface to the Novum Organum. Translated by Jardine and Silverthorne (2000),
p. 28.



4 1 Introduction

used. The account he gave of induction was rather different from the way in which it
was later understood, but it was nevertheless clearly distinguished from the deduc-
tive approaches adopted by Aristotelians, which centred on the use of the syllogism.
In the field of mathematics, Bacon explicitly appealed to the idea of machinery to
emphasize the importance of the help that a suitable method could give to the un-
derstanding:

For I recall that when you have a machine to hand a demonstration in mathematics is easy
and transparent, but that without one everything seems obscure and more subtle than it
actually is.7

In the empirical, observation-based science envisaged by Bacon, however, the
senses needed assistance as much as the intellect. He proposed that this assistance
could be provided by making use of experiments. Experiments could be more subtle
than the senses, and increase their power. Part of this increased power came from the
fact that experiments were consciously designed to “confine and harass” nature, to
create situations and reactions that went beyond what could be achieved by unaided
human capabilities. In making this proposal, Bacon was drawing upon the success
of the mechanical arts: his idea was, essentially, that experiments were mechanical
aids to the senses.

Bacon’s vision of a new approach to scientific enquiry, therefore, was informed in
two distinct ways by mechanical metaphors. The workings of the mind itself were to
be governed by rules by the application of which knowledge could be systematically
produced, and not left to emerge by chance. In this endeavour, it was to be assisted
by experiments which would draw upon, and further develop, the existing practice
of the mechanical arts.

1.2 Language and Science

An important part of Bacon’s proposals was the unmasking of the illusions, or idols,
which interfered with, or blocked, the relationship between mind and world, and so
hampered the intellect’s access to truth. Bacon described four categories of illusion:
the idols of the tribe, or those illusions arising from human nature; the idols of the
cave, those arising from individual peculiarities; the idols of the marketplace, those
attributable to language; and finally the idols of the theatre, the illusions caused by
adherence to the doctrines of past philosophies.

Of these, Bacon regarded the idols of the marketplace, the illusions and errors
caused by language, as the most problematic: because of the role that language
plays in shaping thought, it was harder to rid the mind of these than of the other
types of idol. The idols of the marketplace were of two types. The first was the use
of “the names of things which do not exist”, and the second “the names of things
which do exist but are muddled, ill-defined, and rashly and roughly abstracted from

7Bacon (1620), Plan of the Work. Translated by Rees and Wakely (2004), p. 43.
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the facts”.8 Bacon pointed out that many intellectual debates ended in controversies
about the meaning of words, and even suggested that “it would wiser (following the
custom and practice of the mathematicians) to reduce these controversies to order
by beginning with definitions”.9 However, he recognized that things were not so
simple in empirical science, where words could not always be defined in terms of
other words but had, at some point, to connect with things outside language.

The common source of the idols of the marketplace lay in the failure of language
to correspond exactly with the world: words could either fail to refer to anything, or
have a confused definition which muddled together aspects of more than one type
of thing. Reflection on these problems throughout the seventeenth century led to a
change of ideas about language, and in particular about the relationship between
science and language.10 The new science emphasized the role of observation and
experiment, and characterized earlier work as sophistical and over-concerned with
argument and disputation caused by the shortcomings of natural language. It was
felt that reliance on language obscured a clear view of the truths of nature that were
accessible to simple observation.

It was of course recognized that science could not function without language,
or at least without some means to communicate and share observations and results
with scientists in one’s own and other countries. This recognition led many scientists
and philosophers to consider ways of reforming natural language or of developing
artificial languages that would be more suitable for scientific work. Two approaches
were common: the first attempted to reform natural language and to remove the
problems that Bacon had identified, while the second drew inspiration directly from
the symbolic language of mathematics.

Universal Languages If the root of the problem was the failure of the terms in
natural languages to correspond precisely to the objects that science was uncovering
in the world, one attractive path to a solution was to devise a ‘scientific language’
whose terminology would be more exact.

In the first half of the seventeenth century, a number of attempts along these lines
were made to develop what was sometimes called a “real character”, based on a
complete categorization of all the objects and concepts that could be referred to in
scientific discourse. Some proposals followed the route of giving new or modified
definitions to words, while others invented complex sets of new symbols to represent
scientific concepts.

On the basis of this precise vocabulary, a “philosophical language” could then be
defined which would be suitable for clear and unambiguous communication on any
subject whatsoever. One particularly comprehensive and ambitious proposal was
the Essay Towards a Real Character and a Philosophical Language written by John
Wilkins, Bishop of Chester and one of the founders of the Royal Society.11

8Bacon (1620), aphorism 60. Translated by Rees and Wakely (2004), pp. 93–94.
9Bacon (1620), aphorism 59. Translated by Rees and Wakely (2004), p. 93.
10A general discussion of this topic can be found in Jones (1932).
11Wilkins (1668).
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A similar, if more programmatic, proposal was put forward by Leibniz, who
hoped to create what he called a characteristica universalis. This was intended to
be a universal language which would be adequate to represent the whole of human
thought. Leibniz stressed the structured nature of his characteristic: he envisaged
that it would define a set of elementary concepts from combinations of which all
complex propositions could be expressed.12

A second, more original, part of Leibniz’s ideas was his proposal for a calculus
ratiocinator, a calculus or algebra which would make explicit the particular forms
of ‘reckoning’ applied in reasoning. He made some progress in the development
of such a calculus, formalizing, for example, the idempotency of logical addition,
in which it differs from the numerical operation. This proposal is often seen as a
forerunner of later developments in mathematical logic.

Similar ideas to those of Leibniz had been put forward by the philosopher
Thomas Hobbes. In Hobbes’ account of language, “general” or “universal” names
signified collections, or “parcels”, of objects, and “consequence” was a relationship
between names corresponding to the relation of inclusion between these collections.
He explicitly compared reasoning with numerical computation, as follows:

When a man Reasoneth, he does nothing else but conceive a summe total, from Addition
of parcels; or conceive a Remainder, from Substraction of one summe from another: which
(if it be done by Words,) is conceiving of the consequence from the names of all the parts,
to the name of the whole; or from the names of the whole and one part, to the name of the
other part.13

Symbolic Language None of the various proposals for a new symbolic language
of science put forward at this time achieved any significant level of use, however. In
this same period, however, mathematical language was undergoing a transformation
of the way in which in understood symbols and their meaning and role.14

This innovation is often associated with the name of Francois Viète, who in 1591
published a book entitled Introduction to the Analytic Art. In place of the words
and abbreviations drawn from natural languages that had been used up to that point,
Viète used arbitrary letters to stand for the quantities in equations. He represented
unknown quantities by the vowels A, E, I , O and U , and used consonants to rep-
resent known quantities. This second innovation in particular allowed a level of
abstraction that had not previously been available, and allowed Viète to find general
solutions of equations more easily than before. According to Pycior, this new sym-
bolism had the effect of focusing the attention of mathematicians on the structure of
formulae.

The symbolical style was enthusiastically adopted in England partly thanks to
the efforts of William Oughtred, whose textbook The Key of the Mathematicks was
published in 1631. Oughtred endorsed Viète’s innovation, arguing that the use of
symbols enabled mathematicians to grasp situations more quickly, and enabled them

12Lewis (1918).
13Hobbes (1651), Chap. 5.
14The remainder of this section is largely based on the account given by Helena Pycior (1997).
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to reason more generally. He introduced a wide range of new symbols, including
those for operations and relationships of quantity.

The concision and clarity of the symbolic style recommended it to the scientific
reformers. Thus Bacon recommended that disputes caused by language could be
alleviated by following the practice of the mathematicians, and Leibniz’s calculus
ratiocinator attempted to capture common patterns of reasoning in symbols.

1.3 The Age of Machinery

At the beginning of the nineteenth century, the effects of the industrial revolution in
England were becoming increasingly apparent. One particularly prominent symp-
tom was the changes brought about by the increasing use of machinery in all areas
of industry. As well as the invention and use of new types of machines in many areas,
machines were widely seen to be bringing about great social changes, particularly
in the growth of the factory system and the associated movement of population from
the countryside to the new and expanding cities of the industrial north.

The scale and significance of the external and material changes brought about by
these developments were widely recognized by contemporary commentators. There
was also a wider cultural effect, in that an increasing familiarity with machines
provided metaphors and enabled modes of thought that affected developments in
other areas perhaps far removed from manufacturing industry. In his essay Signs
of the Times, published anonymously in 1829, Thomas Carlyle considered that the
present age could best be described as “the age of machinery”, and wrote that “men
are grown mechanical in head and in heart, as well as in hand”.15 Carlyle’s essay
is of interest, as it attempts to give a general account of the cultural meaning of the
mechanical, rather than a straightforward description or criticism of technological
innovations.

Carlyle characterized the mechanical by contrasting it with what he saw as its
opposite: he saw it as external rather than internal, concerned with procedures and
methods for bringing about certain ends, rather than a more intuitive emphasis on
the ends themselves. In the social and political arenas he saw the mechanical in the
proliferation of societies, meetings and periodicals by means of which people were
enabled to work together to achieve their purposes, a tendency contrasted with the
less planned and more inspirational approach which he detected in the past. In the
arts, he saw the genius of the great figures of the past being replaced by the creation
of academies; in education, the inspirational effect of a great teacher being replaced
by systems of instruction, turning it into “a secure, universal, straightforward busi-
ness, to be conducted in the gross, by proper mechanism, with such intellect as
comes to hand”. In summary, “everything has its cunningly designed implements,
its preestablished apparatus; it is not done by hand, but by machinery”.

15Carlyle (1829).
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Of particular interest is Carlyle’s description of an increasing mechanization in
abstract thought. He described contemporary trends in philosophy as moving from
an intuitive, meditative approach to one concerned more with argument, and the
tracing out of causes and effects. Associated with this was a decline in importance
of the philosophy of mind in favour of an emphasis on properties of matter. In a
striking image, Carlyle wrote that “philosophers . . . stand among us not to do, not
to create anything, but as a sort of Logic-mills to grind out the true causes and effects
of all that is done and created”. A similar situation prevailed in mathematics, where
the same industrial metaphor was developed at greater length:

their calculus, differential and integral, is little else than a most cunningly constructed arith-
metical mill; where the factors being put in, are, as it were, ground into the product, under
cover, and without other effort on our part than steady turning of the handle.

For Carlyle, the basic characteristic of the mechanical approach to a particular
subject was an interest in the arrangement and combination of its elements in such
a way as to bring about certain ends in a predictable and controllable manner. It
was an analytical approach, laying open and making visible the operative structure
of things; it required no application of insight or intuition, but rather an appeal to
ingenuity.

1.4 The Mechanization of Mathematical Language

At the beginning of the nineteenth century, a long-running debate about the relative
merits of the geometrical and algebraic approaches to mathematics again became
prominent.

Playfair’s Paradox Prior to the nineteenth century, mathematics was considered
to be a science of quantity. It was common to present mathematical arguments in the
form of geometrical demonstrations in which arbitrary quantities were represented
by particular line segments and angles. These representations were understood to be
quantities themselves, and so arguments using them were guaranteed not to exceed
the limits of what was true of quantity in general. Mathematicians reasoned about
the connections between complex ideas about quantity, and geometrical notation
simply made these connections visible.

The increasing use of algebraic techniques, however, called into question many
of these traditional assumptions. Algebra used arbitrary symbols to represent both
quantities and operations, and it appeared to many observers that this enabled reason
to somehow outstrip or come adrift from its subject matter. According to the Scottish
mathematician John Playfair, “the analyst continues to reason about the characters
after nothing is left which they can possibly express . . . obscurity and paradox must
of necessity ensue”.16 In particular, unrestrained algebraic manipulation introduced
and made extensive use of negative and imaginary numbers, such as

√−1. Such

16Playfair (1778), p. 319.
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numbers did not conform to existing notions of quantity: for example, they could
not be thought of as representable by the length of a line segment. As a result, they
were frequently referred to as impossible quantities.

Expressions for impossible quantities were therefore often taken to be meaning-
less, because they denoted nothing: this in turn raised the question of what sense
could be made of formulae in which they occurred. A common view was that such
expressions acted as a diagnostic sign of inconsistency or impossibility in the stated
conditions of a problem. The occurrence of

√−1, for example, in a solution meant
that the problem was in some way ill-stated, or admitted of no solution.

However, the situation was more problematic than this, because in many cases
the use of impossible quantities in mathematical arguments seemed to lead to correct
and useful conclusions. As Playfair put it:

Here then is a paradox which remains to be explained. If the operations of this imaginary
arithmetic are unintelligible, why are they not also useless?17

Playfair’s explanation of this phenomenon appealed to a notion of analogy: he
considered a proof of certain properties of the circle and noted that if the impossible
expression

√−1 was replaced throughout by
√

1, the result was an unobjectionable
demonstration of the equivalent properties of a hyperbola. He took the acceptability
of the second proof as a warrant of the validity of the reasoning in the proof that used
impossible expressions, appealing to a principle of analogy between “the subjects
of investigation”.

Woodhouse’s Formalism Twenty years later, Playfair’s arguments were criticized
by Robert Woodhouse, a fellow of Caius College in Cambridge, who went on to put
forward his own solution of the paradox. Woodhouse believed that “there can be
neither paradoxes nor mysteries inherent and inexplicable in a system of characters
of our own invention, and combined according to rules, the origin and extent of
which we can precisely ascertain”,18 and wished to provide a stronger justification
of the use of impossible quantities in mathematical reasoning than simply an appeal
to analogy.

According to Woodhouse, the truth of an algebraic formula such as

(a + b)(c + d) = ac + ad + bc + bd

derived from “observations made on individual objects”. In this case, the relevant
observations concerned the properties of the addition and multiplication of real
quantities. The use of letters conferred the advantage of generality: the equation
will be valid whatever quantities the letters are taken to stand for. However, when
the same operations are performed with imaginary quantities, giving for example

(
a + b

√−1
)(

c + d
√−1

) = ac + ad
√−1 + bc

√−1 − bd,

17Playfair (1778), p. 321.
18Woodhouse (1801), p. 93.
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there no longer appeared to be any justification for its truth, because we have no
knowledge of the properties of the imaginary quantities, or even reason to believe
in their existence.

In Woodhouse’s view, expressions containing symbols for imaginaries were to be
understood as extensions of similar expressions involving only real symbols. Thus
the equality of the two terms in the second equation above was not demonstrated,
but postulated. In his words, they were “not proved equivalent, but put so”. The
justification for this procedure lay in the fact that the properties of the operators
involved were being preserved. Thus,

it is to be understood, that . . . x
√−1 − x

√−1 is put equal 0, not by bringing
√−1 under

the predicament of quantity, and making it the subject of arithmetical computation, but by
giving to + and − their proper signification when used with real quantities, and then they
designate reverse operations.19

In other words, rather than justifying particular manipulations by appealing to the
properties of the objects being manipulated, Woodhouse appealed to the properties
of the operators being used: “the relations between the symbols of general terms
were to be established by giving the true meaning to the connecting signs, which in-
dicate not so much the arithmetical computation of quantities, as certain algebraical
operations”.20

In parallel with this approach, Woodhouse gave a novel account of mathematical
reasoning. He cited the traditional Lockean description of a valid step in reasoning
as one which preserved the “agreement of ideas”, but immediately rephrased this
in terms of propositions rather than ideas, thus radically changing its meaning. For
Woodhouse, reasoning was concerned more with the transformation of symbols than
the agreement of ideas, “each proposition being converted into its next, by changing
the combination of signs that represent it, into another shewn to be equivalent to
it”.21

Playfair had noted the apparent tendency of algebraic reasoning to outstrip sense,
and viewed it as a problem that required explanation. Woodhouse, by contrast,
seems to have viewed it as a demonstration of the power of algebraic techniques,
and used it to motivate a novel account of mathematical language in which emphasis
was placed on the formal properties of operators rather than the intuited properties
of quantities, and on the equivalence of propositions rather than the agreement of
ideas.

The Analytical Society In 1812, a number of Cambridge students formed the so-
called Analytical Society. The principal mission of the society was to encourage
the dissemination of continental approaches to mathematics at Cambridge. Charles
Babbage was a founder member of this society, and other notable members included
John Herschel, the son of the renowned astronomer William Herschel, and George

19Woodhouse (1801), p. 99.
20 Woodhouse (1802), p. 86.
21 Woodhouse (1801), p. 107.



1.4 The Mechanization of Mathematical Language 11

Peacock. The first meeting of the society took place in rooms in Caius College, and
Woodhouse’s work was certainly known to them, but Woodhouse himself does not
appear to have taken an active part in the society, whose members were all students
of the University.

In addition to its general mathematical interests and activities, the Analytical So-
ciety devoted a fair amount of attention to methodological issues of notation and lan-
guage in mathematics. Their conclusions are presented in the preface to the Memoirs
of the Analytical Society, published anonymously but in fact co-written by Babbage
and Herschel. They described the “peculiar province of mathematical analysis”, as
opposed to other branches of mathematics, as being the examination of “the var-
ied relations of necessary truth”, and took a very positive view of its achievements:
the techniques of analysis enabled mathematicians to pursue “trains of reasoning,
which, from their length and intricacy, would resist for ever the unassisted efforts of
human sagacity”.22

This success was attributed to the “accurate simplicity” and concision of the
language of analysis, and its methodological approach. According to Babbage and
Herschel, “by separating the difficulties of a question” analysis made it possible to
reduce complex problems to simpler ones, which could be, if not solved, at least
clearly identified as outstanding problems.

The Society in general, and Babbage in particular, were struck by the advantages
that could be gained by the use of a suitable symbolic notation. One of the most
important ambitions of the society was to replace Newton’s fluxional notation for
the calculus, used in Britain, with the Leibnizian notation used on the continent; the
assertion was made that the adoption of an unsuitable notation had greatly retarded
the development of mathematics in Britain.

The particular benefits of analytical notation derived firstly from the fact that its
symbols were precisely defined, and thereby given a meaning which did not change,
and secondly from the advantage that symbols gave in abbreviating and making
accessible longs chains of reasoning. To explain this, Babbage and Herschel drew
an explicit analogy with machinery:

It is the spirit of this symbolic language, by that mechanical tact (so much in unison with
all our faculties) which carries the eye at a glance through the most intricate modification
of quantity, to condense pages into lines, and volumes into pages.23

In particular, they highlighted “the happy idea of defining the result of every
operation, that can be performed on quantity, by the general term of function, and
expressing this generalization by a characteristic letter” as an innovation that both
generalized and simplified the notation, and so suggested possibilities for further
research as well as providing the means to describe that research.24

22Babbage and Herschel (1813), p. i.
23Babbage and Herschel (1813), pp. i–ii.
24Babbage and Herschel (1813), p. xiv.
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Babbage’s Philosophy of Analysis In the light of his importance in the history
of computing, it is worthwhile here to examine Babbage’s ideas about analysis and
mathematical notation in more detail. The Analytical Society was itself short lived,
but Babbage remained in contact with some of its members, Herschel and Peacock
in particular, for many years, and he returned to consider the issues of notation and
methodology, working for a number of years on an unpublished manuscript titled
The Philosophy of Analysis.25

Babbage described the application of analysis to a problem as consisting of three
stages. The first consisted “in translating the proposed question into the language of
analysis”, the second in “comprehending the system of operations necessary to be
performed, in order to resolve that analytical question into which the first stage had
transformed the proposed one”, and lastly “retranslating the results of the analytical
process into ordinary language”.26

It is clear from the examples that he gave that by the ‘language of analysis’
Babbage meant the symbolic language of algebra and the calculus. The strategic
aim of his mathematical work was to demonstrate the superiority of the algebraic
approach over the geometrical. A geometrical solution involved drawing diagrams
representing the problem, and reasoning directly on the basis of these diagrams, thus
keeping an intuitive connection with the reality of the problem. By contrast, analysis
translated the problem into the more abstract language of algebra, and the steps of
the subsequent argument could not be directly compared with the problem until they
were ‘retranslated’.

Much of the success of analysis was attributed to the nature of the notation used,
and in particular to “the accurate simplicity of its language”. In part Babbage is
referring here to the straightforward semantics of symbols that are introduced by
means of definitions. After its introduction, a symbol “can neither convey, nor excite
any idea foreign to its original definition”. Babbage later expanded on this thought,
explaining that symbols have, by and large, one meaning, which is originally given
by a simple definition. This leads to a lack of ambiguity which makes the operations
of reason transparent and checkable and, by reducing the burden on memory, leads
to a greater speed in mental operation.

A further important property of analytical notation, according to Babbage, is its
concision. This helps by reducing the load on memory, thus making it easier to
exercise the judgement in deciding on the validity of a particular step in a train of
reasoning.

A final point worth noting here is that, in his mathematical writings, Babbage
frequently commented on the importance of the distinction between operations and
quantity, picking up an earlier point about the utility of functional notation. In a
popular account of mathematical notation, published in 1830, he stated this most
clearly:

25Dubbey (1978).
26 Babbage (1827), p. 346.
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There are in analysis two great divisions of symbols—those which denote quantity and
those which denote operations.27

Peacock’s Algebra In 1830, Peacock published A Treatise on Algebra, which
gave a comprehensive and very influential statement of the new view of algebra,
one which was profoundly influenced by the discussions of the Analytical Society.28

Peacock drew a fundamental distinction between ‘arithmetical’ and ‘symbolical’ al-
gebra. Arithmetical algebra was a generalization of arithmetic: symbols replaced
numbers, but the significance of expressions was still given purely in terms of their
numerical interpretation. Thus an expression such as a − b only made sense in the
case where a was greater than b.

By contrast, in symbolical algebra symbols were considered to be quite general,
capable of representing “all species of quantity”, including negative and imaginary
numbers. Operations were defined by their laws of combination: thus rather than
being thought of as representing the concrete numerical operations of addition and
subtraction, the operations denoted by + and − were defined to be inverses of each
other.

The laws of combination of the operations were suggested by the properties of the
arithmetic operations, thus guaranteeing the applicability of symbolical algebra to
arithmetic. It was assumed that the same laws would apply generally, an assumption
known as the principle of the permanence of equivalent forms. This principle was
applied to extend the applicability of an expression like am ×an = am+n from whole
numbers to negative numbers, say, and also to give an interpretation to an expression
like a−n, by observing that a−n × an = a0 = 1.

By 1830, then, the debates about the use of impossible quantities in algebra had
led to the working out of a radical new account of algebra, which saw it as the
science of the laws of symbolic combination or, as Peacock put it, “the science
of general reasoning by symbolical language”.29 Two aspects of this view are of
particular importance here.

Firstly, Peacock viewed algebra as being primarily a language of operations: the
quantities or objects being operated on were represented by symbols, but nothing
was assumed about their nature or properties. The general applicability of operations
to all quantities was assumed, and subsequent development was governed by the
laws of combination of the operations.

Secondly, Peacock held that algebraic demonstrations were legitimate even in the
absence of an interpretation of the symbols involved. Only the final expressions in a
demonstration needed to be interpreted, the intermediate stages being justified on the
grounds that they were “algebraically necessary”. This was Peacock’s approach to
Playfair’s paradox, one which appears to sidestep it rather than provide a resolution;
this is indicative perhaps of how the climate of debate had changed since Playfair
wrote. Peacock’s view is very similar to Babbage’s account of the analytical method,

27Babbage (1830), p. 398.
28Peacock (1830).
29Peacock (1830), p. 1.
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highlighting the commonality of assumptions shared by the former members of the
Analytical Society. Peacock did not rule out the possibility of providing geometrical
interpretations of impossible quantities, but his view of symbolical algebra meant
that they were not needed to justify the properties of algebraic operations.

The Machine Metaphor From the very beginning of this debate, a comparison
was drawn between the operations performed by the mathematician who carried out
symbolic manipulations, and the operations of machines. Such observations were
often accompanied by comments bemoaning the apparently diminished place left
for the employment of intuition and intelligence in mathematical work. Playfair,
for example, considering the manipulation of formulae which contained impossible
expressions, protested:

Is investigation an art so mechanical, that it may be conducted by certain manual operations?
Or is truth so easily discovered, that intelligence is not necessary to give success to our
researches?30

The opposition perceived here between ‘mechanical’ operations and those requiring
intelligence was echoed by Woodhouse:

During the operation of these quantities, it is said, all just reasoning is suspended, and the
mind is bewildered by exhibitions that resemble the juggling tricks of mechanical dexter-
ity.31

Woodhouse, in line with his overall view, is in general less critical of mechanical
approaches than Playfair, though he also issued a warning against “mathematicians,
neglecting to exercise mental superintendance, [being] too prone to trust to mechan-
ical dexterity”.32

Babbage made similar comparisons between mental and mechanical processes,
but without any trace of this kind of criticism. Instead, reflecting perhaps the spirit
of Carlyle’s age of machinery, he pointed out the assistance that the mechanical,
or algebraic, approach could give to the productivity of the mathematician. Writing
with Herschel, he stated that

It is the spirit of this symbolic language, by that mechanical tact (so much in unison with all
our faculties) which carries the eye at one glance through the most intricate modifications
of quantity, to condense pages into lines, and volumes into pages.33

and he later referred to “the almost mechanical nature of many of the operations
of Algebra” as something which “certainly contributes greatly to its power”.34 This
line of thought has been pursued by William Ashworth, who writes of “the attempt
of John Herschel and Charles Babbage to discipline the human mind and speed up
the operations of intelligence through a philosophy of algebraic analysis”.35

30Playfair (1778), p. 321.
31Woodhouse (1801), p. 90.
32Woodhouse (1801), p. 119.
33Babbage and Herschel (1813).
34Babbage (1827), p. 333.
35Ashworth (1996).
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Babbage, of course, was to attempt more than this: he would take the metaphor of
the machine literally, designing and endeavouring to build calculating engines which
combined the new, mechanical philosophy of algebra with the physical power made
available by the machine-based industry of the industrial revolution, as described in
the following chapter.





Chapter 2
Babbage’s Engines

Although Babbage was a significant figure in English mathematics at the start of
the nineteenth century, he is now principally remembered for his work on the design
and development of a series of what he described as mechanical calculating engines.
He devoted a large amount of time and money to these projects, but unfortunately
none of them was ever fully completed.

The earliest machine, the Difference Engine, was intended to compute and print
accurate mathematical and navigational tables. In 1822, Babbage completed a small
prototype of this machine, which demonstrated the feasibility of his ideas. This was
displayed and widely commented on, and the subsequent development of a full-
scale machine was funded by the British Government. Progress was slower than
expected, however, and was further hindered by Babbage’s occasionally problematic
relationship with the engineers he employed to work on the construction. By about
1830, work had come to a standstill, despite the investment of a considerable amount
of Babbage’s own money in the project. Government funding was not renewed, and
the Difference Engine was never completed.

In the early 1830s, when he was no longer occupied with work on the Difference
Engine, Babbage conceived of a more powerful and flexible machine, which became
known as the Analytical Engine. Over a period of years, he produced a large number
of drawings and associated specifications for this machine, but he never seriously
considered undertaking its construction.

Late in life, he revisited his earlier ideas, developing the design for a new and
simplified difference engine, using insights gained from his work on the Analytical
Engine. This machine became known as the Difference Engine No. 2, though again,
Babbage did not succeed in completing the construction of the engine.

Babbage’s machines, and in particular the Analytical Engine, are often portrayed
as isolated precursors of the modern computer, and Babbage as an anachronistic
genius who had the misfortune to live at a time when technology was insufficiently
developed to enable him to fully implement his vision. When viewed in context,
however, a rather different picture emerges. Babbage engaged whole-heartedly with
the scientific, industrial and even political life of his time, and this chapter describes
how his calculating engines can be seen in a fuller historical context.

M. Priestley, A Science of Operations, History of Computing,
DOI 10.1007/978-1-84882-555-0_2, © Springer-Verlag London Limited 2011

17



18 2 Babbage’s Engines

2.1 The Division of Mental Labour

From the onset of the Industrial Revolution, observers were struck by the increases
in productivity that were brought about by the application of machinery and the
factory system to the manufacture of goods of all sorts. In The Wealth of Nations,
published in 1776, the Scottish philosopher and economist Adam Smith attempted
to explain the great discrepancies observable between the levels of production in
different countries. The starting point of his analysis was the idea of the division of
labour, or breaking down the overall task of manufacturing a product into a number
of simple processes, and the allocation of these processes to different workers within
a factory.

Famously, Smith took as his primary example of the division of labour the trade
of pin-making, and he described how as many as 18 different processes were in-
volved in the manufacture of pins. These ranged from fundamental operations, such
as cutting the wire used to make the pins to the length and thickness required, to less
obvious tasks such as inserting the completed pins into paper holders before they
could be sold. He took as an example a ‘small manufactory’ of ten workers which
produced 48,000 pins per day, and by estimating that a single worker carrying out
all the required operations could make at most 20 pins in a day, concluded that the
division of labour had increased the productivity of the workers in the pin-making
trade by a factor of at least 240.

Smith attributed the effect of the division of labour to three major causes. Firstly,
he observed that a workman specializing in one simple process would become more
skilled and so quicker in carrying it out than someone for whom it was one of many
different tasks to be carried out during a day’s work. A further economy of time was
obtained by having each workman perform the same task continually, thus saving
the time lost in switching from one type of work to another. Finally, in an observa-
tion that is particularly relevant to the concerns of this chapter, Smith pointed out
that once an activity had been broken down by the division of labour, it was often
possible to develop machinery that would assist or replace human workers in the
execution of the simple processes involved, increasing the ease and efficiency with
which the work was carried out.

Babbage whole-heartedly agreed with Smith’s view of the division of labour: he
devoted two chapters to it in his book The Economy of Machinery and Manufactures,
describing it as “perhaps the most important principle on which the economy of a
manufacture depends”. In addition to the factors listed by Smith, Babbage believed
he had identified a further important principle to explain the cheapness of articles
manufactured through the division of labour, namely that “the master manufacturer,
by dividing the work to be executed into different processes, each requiring different
degrees of skill or force, can purchase exactly that precise quantity of both which is
necessary for each process”.1 He also gave a typically detailed account of the pin-
making trade in England and France, with details of the productivity and wages of
the workers in each of the processes into which it was divided.

1Babbage (1835b), pp. 175–176.
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Babbage went beyond Smith, however, and considered the effect of applying the
division of labour not only to manufacturing processes but also to activities which
involved mental rather than physical labour, and in particular, to the calculation of
mathematical tables. His principal example was the production of a large set of
tables recently undertaken in France under the direction of the engineer Gaspard
Riche de Prony.2

De Prony’s tables were produced as part of the reform of weights and measures
instigated in the 1790s by the French revolutionary government. The reform was
intended to introduce the decimal system wherever possible, and one application
of this principle was a proposal to divide a right angle into 100, rather than 90,
degrees. This system had been used in the survey of the Paris meridian that led to the
definition of the new unit of length, the metre, and in 1794 it was decided that new
tables of trigonometrical functions and their logarithms were required which were
adapted to this new angular measure. The calculation of these tables was entrusted
to de Prony, then the director of the Bureau de Cadastre, an organization concerned
with the production of accurate land surveys required for the purposes of taxation.

De Prony had been instructed to ensure that the tables “left nothing to desire
with respect to exactitude” and would be “the vastest and most imposing monument
to calculation that had ever been executed or even conceived”. The tables required
an unprecedented amount of calculation, and when complete would contain several
hundred thousand figures, calculated to an accuracy of between 12 and 22 decimal
places. Clearly, a project of this magnitude would require careful organization, and
according to his own account, de Prony explicitly drew upon Smith’s ideas as an
inspiration for the organization of his workforce: “I came across the chapter where
the author treats of the division of work . . . I conceived all of a sudden the idea of
applying the same method to the immense work with which I had been burdened,
and to manufacture logarithms as one manufacture pins”.3

In order to apply the division of labour to computation, de Prony turned to a
mathematical technique known as the method of differences. This method enabled
complex logarithmic and trigonometric functions to be calculated by employing
only the much simpler operations of addition and subtraction. Suppose, for example,
that it is required to calculate the values of the formula f (x) = x2 + x + 41. A few
values of this formula are given in the second column of Table 2.1.

The first differences, shown in the column headed Δ1, are found by calculating
the difference between two adjacent values of the function. So the first figure in this
column is found by computing f (2) − f (1) = 47 − 43 = 4. In a similar way, the
second differences, shown in the column headed Δ2 are found by computing the
difference between adjacent values in the first difference column. It can be seen that
in the case the second differences are all the same, a property that is always true for
polynomial formulae in which the highest power is 2.

We can use this property to reverse the process and compute the next value of
the formula using only addition. The fourth entry in the Δ2 column will be 2; this

2Descriptions of this project have been given by Grattan-Guinness (1990) and Daston (1994).
3de Prony (1824), quoted in Grattan-Guinness (1990).
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Table 2.1 Application of the
method of differences to the
function x2 + x + 41

x f (x) Δ1 Δ2

1 43 4 2

2 47 6 2

3 53 8 2

4 61 10

5 71

can be added to the entry in the Δ1 column to give the fifth Δ1 value, which is 12;
this can in turn be added to the last value in the f (x) column to give the value 83.
It can be checked by direct computation that the value of the formula for x = 6 is
in fact 83, but the method of differences has allowed us to work this out without
performing any multiplications. In a similar way, provided that the first number in
each column is known, all the values of the function can be tabulated. Subtraction
will be required as well as addition if negative numbers appear in the table.

The application of the method of differences is not always as straightforward as in
the example above, but provided that some preliminary mathematical work is done,
the method can be used to calculate the logarithmic and trigonometric functions
that de Prony was concerned with to any required degree of accuracy. To bring this
about, De Prony divided his workforce into three sections.

The first section consisted of mathematicians who derived the formulae that
would be used to calculate the required functions. This work required a consid-
erable degree of mathematical expertise; on the other hand, the number of workers
required in the first section was relatively small, and they carried out no numerical
work.

From these formulae, the workers in the second section derived the more detailed
information required to compute the results using the method of differences. Unlike
the simple example given above, logarithmic and trigonometrical functions do not
have a constant final difference. If a sufficient number of differences are computed,
however, the final difference will be constant over significant ranges of values of x.
The job of the second section was to work out what these ranges were and to com-
pute, for each range, the values in the top row of the table, including the constant
last difference.

The results were handed on to the workers in the third section in the form of
sheets “ruled with fifty horizontal lines . . . and divided into a number of vertical
columns according to the number of orders of differences which had to be written.
The topmost line of each of these sheets reproduced the numbers determined by
the calculators of the second section, and thus served as a point of departure”.4

The workers in the third section could then complete the sheets by performing only
additions and subtractions, as explained above. Once completed, the sheets were
passed back to the second section for checking; this could be done without repeating
the detailed calculations.

4Lefort (1858), p. 127.
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The workers in the third section were instructed in how to complete the sheets.
This would have involved learning the order in which the intermediate results were
to be calculated. The actual additions and subtractions were carried out on loose
sheets which were discarded once the results had been transcribed onto the sheets
prepared by the second section.5 The third section, therefore, had little, if any, scope
for the exercise of judgement or initiative.

Babbage later made an explicit comparison between the organization of de
Prony’s calculations and the typical organization of “a cotton or silk mill, or any
similar establishment”. Furthermore, he observed that the work of the third section
might “almost be termed mechanical”, and referred to a time “when the completion
of a calculating engine shall have produced a substitute for the whole of the third
section of computers”.6 As he makes clear in a footnote, this is a reference to his
project to build a ‘difference engine’ which occupied much of his time, effort and
money during the 1820s. This comment also provides a nice illustration of the way
in which Babbage’s work exemplifies Smith’s third principle, according to which the
introduction of new forms of machinery is a consequence of employing a suitable
division of labour.

2.2 The Difference Engine

In Babbage’s own accounts, the invention of the Difference Engine closely followed
Smith’s principle whereby the simple processes resulting from the division of labour
became susceptible to mechanization. As early as 1813, Babbage and Herschel had
made a case for the introduction of a suitable division of labour into computation:

The ingenious analyst who has investigated the properties of some curious function, can feel
little complaisance in calculating a table of its numerical values; nor is it for the interest of
science, that he should himself be thus employed, though perfectly familiar with the method
of operating on symbols; he may not perform extensive arithmetical operations with equal
facility and accuracy; and even should this not be the case, his labours will at all events
meet with little remuneration.7

In his autobiography, Babbage recounted an anecdote suggesting that the idea
of mechanical calculation had occurred to him at this time.8 However, it was not
until several years later that he seriously entertained the idea of building a machine
which would perform calculations. In 1821, he and Herschel were reflecting on the
experience of overseeing a large computation in which “the calculations . . . were
distributed among several computers”, thus sparing Babbage and Herschel from
“that wearisomeness and disgust, which always attend the monotonous repetition
of arithmetical operations”. However, they still found the preliminary calculations

5Lefort (1858), p. 134.
6Babbage (1835b), p. 195.
7Babbage and Herschel (1813), p. viii.
8Babbage (1864).
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and subsequent comparison and verification of the results “a considerable trial of
the patience of those who superintend them”. As a result of this frustration, “it was
suggested by one of us, in a manner which certainly at the time was not altogether
serious, that it would be extremely convenient if a steam-engine could be contrived
to execute calculations for us; to which it was replied that such a thing was quite
possible”,9 and in Babbage’s account, it was this casual suggestion which sparked
in him a serious consideration of the possibility of mechanical computation.

In the following year, Babbage gave a similar account of the origin of the machine
in a letter to Humphry Davy, then the president of the Royal Society:

The intolerable labour and fatiguing monotony of a continued repetition of similar arith-
metical calculations, first excited the desire, and afterwards suggested the idea, of a ma-
chine, which, by the aid of gravity or any other moving power, should become a substitute
for one of the lowest operations of human intellect.10

In the same letter, he gave a description of de Prony’s project, and stated explicitly
the intended scope of his machine: “If the persons composing the second section,
instead of delivering the numbers they calculate to the computers of the third section,
were to deliver them to the engine, the whole of the remaining operations would be
executed by machinery”.11

Babbage did not view the Difference Engine as simply a calculator, however, but
rather as an attempt to mechanize a complete process, namely the production of
mathematical tables. Tables were by far the most important mathematical aid in use
at the time: those in use ranged from simple tables of products to those tabulating
complex trigonometric functions and, as in the project entrusted to de Prony, were
often produced in both natural and logarithmic forms. The areas in which tables
were used also varied widely: a particularly significant market was the production
of astronomical tables, which found a very practical application to the maritime
navigation on which international trade depended.

As well as the saving of labour, Babbage repeatedly stressed a further benefit to
be hoped for from the mechanization of calculation, namely the avoidance of errors.
It was well known that all published tables contained errors, and the detection and
correction of errors was an important aspect of the work of calculation. Errors could
arise not only in the process of computation, but also in the subsequent printing
process, and Babbage placed as much emphasis on the mechanization of typesetting
as on that of calculation. His overall vision was of a machine divided into two parts,
each dealing with one of these fundamental processes.

In order to produce printed tables free from error I proposed the engine should be able to
calculate any tables whatever, and that it should produce a stereotype plate of the computed
results . . . This view of the subject naturally divided the engine into two great branches:
one part must make the calculations, another must produce the plates.12

9Babbage (1822c), p. 15.
10Babbage (1822b), p. 3.
11Babbage (1822b), p. 10.
12Babbage (1822c), p. 16.
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Table 2.2 A schematic
calculating sheet equivalent
to the Difference Engine

x f (x) Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

1 7 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

In order to be able to produce “any tables whatever”, Babbage needed a simple
yet general mathematical method and, like de Prony and many table-makers before
him, he turned to the method of differences. As well as its generality, this method
recommended itself to Babbage because of “the great uniformity which it would
necessarily introduce into all [the machine’s] parts . . . The whole difficulty was
now reduced to that of forming a machine which should add or subtract, as might
be required, any number of differences”.13

The basic idea behind the calculating part of the engine was to provide a phys-
ical representation of one row of the calculating sheets used by de Prony. Babbage
planned to build a machine which would calculate with six orders of differences and
up to 20 digits in each number stored; if de Prony had organized his calculations on
a similar scale, the sheets used would have looked something like Table 2.2.

Babbage presented the design of the Difference Engine as proceeding through
a number of stages; at each stage he showed how a complex operation could be
analyzed in terms of simpler ones, which could then be recombined to produce the
desired overall effect.14

To complete such a table, a computer would start from the right, adding the last
difference to the preceding column, then adding the resulting number to the column
to its left, and so on until the next function value had been obtained. Babbage’s
first step of analysis, therefore, was to observe that if he could devise a mechanism
for adding one number to another, this mechanism could be replicated as often as
necessary to add the successive differences across a row in the sheet.

However, each number in the table was itself made up of a number of digits;
Babbage further observed that a mechanism that could add one digit to another could
simply be repeated as often as required to add together all the digits in a number.
This plan was slightly complicated by the necessity of dealing with carries, when
the sum of two digits was greater than 9 and required a further increment to the
digit in the next place. Babbage’s strategy at this point was to separate these two
fundamental operations: the overall design of the engine is therefore based on the
repetition of two basic mechanisms, one to add together two digits, and the other to
deal with any resulting carry. Babbage saw an analogy between the structure of the
machine and that of arithmetic itself:

In fact, the parts of which it consists are few but frequently repeated, resembling in this
respect the arithmetic to which it is applied, which, by the aid of a few digits often repeated,
produces all the wide variety of number.15

13Babbage (1822c), p. 17.
14The following description is based on the account given in Babbage (1822c).
15Babbage (1822b), pp. 6–7.
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It is not necessary to consider the mechanical details of the engine here, but the
overall organization of the machine is of some interest. Individual digits were rep-
resented by wheels mounted on an axle. The numerals 0 to 9 were inscribed on the
circumference of some of the wheels and positioned in such a way that the number
stored on the axle could be read off at the front of the machine. Babbage later re-
ferred to the assemblage consisting of a figure wheel and its associated machinery
as a ‘cage’. A complete number was represented by a set of cages mounted in a
column on a single axle.

Adjacent columns represented the numbers stored in a row of a calculating sheet.
Addition was performed by a rotation of the axis to which a number was fixed.
By means of various contrivances, this would cause the digits represented on the
moving axle to be added to those on its stationary neighbour, while at the same time
the machine would record the various carries that were required. The operation of
adding the carries to the resulting sum was performed in a separate step, once the
rotation of the moving axle was completed.

The action of the various parts of the machine was to be coordinated in such a
way that a number of additions could be performed simultaneously. In one step, the
numbers stored on the columns representing the even differences would be added
to the adjacent columns; then the columns would be geared differently, and the odd
differences added to the even columns. In a description of the engine written after
construction had halted, the journalist Dionysius Lardner described the functioning
of the engine in poetical style:

There are two systems of mechanical action continually flowing from bottom to top; and
two streams of similar action constantly passing from the right to the left. The crests of
the first system of adding waves fall upon the last difference, and upon every alternate
one proceeding upwards whilst the crests of the other system touch upon the intermediate
differences. The first stream of carrying action passes from right to left along the highest
row and every alternate row, whilst the second stream passes along the intermediate rows.16

This nicely evokes the way in which the calculating part of the engine embodied
the complexity of the method of differences, despite being built out of relatively
simple components. By contrast, the design for the printing part of the engine was
worked out in much less detail, and its details need not be considered here.

The difficulties that Babbage encountered, or created, in trying to construct a
working difference engine have been described elsewhere, and it is not necessary to
recount them in detail here. A prototype engine was built in 1822, computing only
two rather than the proposed six orders of differences. Its application was therefore
rather limited, but it served for Babbage as a demonstration of the feasibility of
his ideas, and was displayed at his house. He used it to construct tables of square
and triangular numbers, and tabulations of formulae such as x2 + x + 41. With the
support of the Royal Society and some financial assistance from the Government,
construction of the full-size engine started in 1823 and occupied much of Babbage’s
time for several years. After a number of financial disagreements with his engineer,
construction was suspended in 1833 and never restarted. Babbage made appeals to

16Lardner (1834), p. 298.
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successive Prime Ministers for additional funding, but none was forthcoming, and
in 1842 the Government finally decided to withdraw support from the machine. The
completed portions of the machine ended up in the South Kensington Museum.

2.3 The Meanings of the Difference Engine

The Difference Engine was not, of course, the first mechanical calculator. However,
earlier machines such as those of Pascal and Leibniz had only mechanized single
arithmetical operations such as addition and multiplication, where the user would
supply the numbers to be operated on and the machine would calculate the result.

By contrast, Babbage’s engine was intended to automate several aspects of a
complex process, namely the production of scientific and navigational tables by
means of the method of differences. In contrast to the earlier machines, it would be
productive: as it implemented a complete algorithm and not just a single operation,
large numbers of results could be produced from a relatively small amount of input
data. Furthermore, not only was it inspired by the division of labour apparent in the
manual production of tables, but it also embodied a further division in the distinction
between the calculating and printing parts of the machine.

The scale and novelty of Babbage’s proposal generated a lot of interest in the
Difference Engine; in the 1820s, Babbage had a small prototype set up in his house
and demonstrated it to many interested visitors. The engine was widely perceived
as having more significance than as a simple aid to calculation; rather, it was seen
to be a novel application of the processes of mechanization that were clearly visible
elsewhere in society.

The Mechanization of the Mental As discussed in Chap. 1, machines were used
in many areas of manufacturing and industry by the 1820s, and their introduction
had profound social and practical implications. Machine performance surpassed that
of humans in many physical tasks, leading to great changes in the nature of work.
Among the benefits claimed for mechanization were that it increased the power that
a worker could apply to a task, and also enabled work to be carried out faster and
more accurately than before.

Even more fundamental than these practical advantages, however, was the fact
that the Difference Engine appeared to increase the scope of what could potentially
be mechanized. In 1825, in an address given when Babbage received the gold medal
of the Astronomical Society, Henry Colebrooke observed that hitherto “mechanical
devices have substituted machines for simpler tools or for bodily labour”, before
commenting:

But the invention, to which I am adverting, comes in place of mental exertion: it substitutes
mechanical performance for an intellectual process: and that performance is effected with
celerity and exactness unattainable in ordinary methods.17

17Colebrooke (1825), p. 509.
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As Babbage later put it in a letter to the Prime Minister, the Duke of Wellington,
the engine represented “the first conversion of mental into mechanical processes”.18

The fact that Babbage had disparaged calculation as “one of the lowest operations
of the human intellect” does not alter the fact that this marks a significant extension
of the reach of the mechanical.

Despite the novelty of the application area, however, Babbage and his associates
appeared to align mental with physical labour, at least in terms of the benefits that
mechanization could be expected to deliver.

Economy In common with other mechanical innovations, the Difference Engine
was expected to deliver greater productivity at lower costs. The bulk of de Prony’s
workforce was made up of the calculators in the third section, and it was precisely
this section that would be made redundant by Babbage’s engine. Babbage also
pointed out that the automatic printing facilities would result in “the whole work
of the compositor being executed by the machine, and the total suppression of that
most annoying of all literary labour, the correction of the errors of the press”.19

A key factor in this projected saving was the fact that the operator would only
have to supply a small amount of initial data, from which the engine would be able
to calculate a significant portion of a table along with all its intermediate differences.
For Colebrooke, this distinguished Babbage’s proposal from the earlier machines of
Pascal and Leibniz where the individual numbers to be operated on had to be set on
the machine before each operation. The Difference Engine was not just a calculator,
but encoded a complete mathematical process; furthermore, the constant repetition
of the simple operations required to perform the calculation made the process a
suitable one to be carried out by the unvarying behaviour of a machine.

The ability of the Difference Engine and related machines to automate an entire
arithmetical process, rather than just single operations, also promised to remove an
obstacle that was impeding the progress of mathematics in some areas. For example,
Colebrooke referred to certain equations of Lagrange “which involve operations too
tedious and intricate for use, and which must remain without efficacy, unless some
mode be devised of abridging the labour or facilitating the means of its perfor-
mance”.20

Avoidance of Error Even more than its productivity, the capacity of the engine
to deliver tables that were more reliable than those produced manually was stressed
by Babbage who wrote that “[t]he quantity of errors from carelessness in correcting
the press, even in tables of the greatest credit, will scarcely be believed”.21

This theme was given great prominence by Lardner, who gave a compendious
summary of the tables currently in use, but commented that their usefulness was

18Babbage (1834), p. 4.
19Babbage (1822b), p. 10.
20Colebrooke (1825), p. 512.
21Babbage (1822b), p. 5.
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limited by their “want of numerical correctness”, 22 reiterating Babbage’s point that
the engine was designed to remove not only errors of calculation, but also those
introduced during the processes of typesetting and printing.

Mathematical Innovation The purpose of the difference engine was to express a
familiar mathematical procedure in machinery. In a curious reversal of this process,
Babbage was led to investigate the mathematical properties of some novel functions
that had been suggested to him by a consideration of some modifications that could
be made to the machine. In 1822, he explained to the Astronomical Society how he
had been led to this discovery.23

The engine was designed to compute tables which had a constant last difference.
Many important functions, particular trigonometrical functions, did not have this
property, but could nevertheless be approximated over suitably chosen intervals by
functions which did have a constant difference. A disadvantage of this procedure
was that, at the boundaries between these intervals, the constant difference in use
would have to be manually altered to the value appropriate for the next interval.
Babbage considered that this could be a significant source of error, and therefore
looked for ways to avoid this procedure.

For some functions, he found that there was a mathematical relationship between
the value to be calculated and one of the later differences. For example, it can be
shown by simple algebraic manipulation that

Δ2 sin(x) = K sin(x + 1),

for a constant value K . In other words, the value of sin(x + 1) can be calculated
from the second difference of the preceding value of the function. Although it seems
rather circular, this in fact means that the sine function can be tabulated if an initial
value sin1 and first difference Δ1 sin1 are given, even though it has no column of
constant differences. The calculations proceed as follows (where for clarity sin1 is
written in place of sin(1), and so on):

sin2 = sin1 +Δ1 sin1,

Δ2 sin1 = K sin2,

Δ1 sin2 = Δ1 sin1 +Δ2 sin1,

sin3 = sin2 +Δ1 sin2,

. . .

Babbage observed that if this idea were to be implemented, one requirement
would be the ability to pass values between columns, in this case from the result
column to the second difference column. He considered ways in which this could
be done, and in fact the portion of the engine that was actually assembled in 1832
included mechanism which provided the ability to transfer a single digit between
these two columns.24

22Lardner (1834), p. 283.
23Babbage (1822a).
24Collier (1970), pp. 111–112.
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Babbage then noticed that connecting the columns of the engine in this way
would enable it to “produce tables of a new species altogether different from any
with which I was acquainted”.25 As his first example of such a table, he considered
one where the second difference was equal to the units figure of a number already
computed. This is, of course, a table that could be easily have been computed by the
machinery assembled in 1832.

Babbage proceeded to analyze these new functions, and succeeded, with some
difficulty, in deriving formulae that would generate the same numerical sequences.
He commented later that this episode provided the first ever “example of analytical
enquiries, suggested and rendered necessary by the progress of machinery adapted
to numerical computation”.26 He was further surprised to discover that one of the
functions he investigated was related to enquiries that he had made years previously
in the course of an investigation into the problem of describing knight’s tours on a
chessboard.

A further example of a table that Babbage claimed the engine would be able to
compute was a series of cube numbers, “subject to this condition, that whenever the
number 2 occurred in the tens’ place, that and all the succeeding cubes should be
increased by ten”.27 This example appears to introduce a new requirement, namely
the ability for the machine to detect the occurrence of a 2 and to react accordingly.
Unfortunately, Babbage did not give a detailed explanation of how the engine might
have performed this task.

Babbage attached great significance to these discoveries,28 even giving a detailed
example of the phenomenon in The Economy of Machinery and Manufactures, an
unexpected detail in a book intended for the general reader.29 He was struck in
particular by the contrast between the ease with which such new tables could be
mechanically computed and the difficulty of finding an analytical solution. This
led him to reflect that the ability to perform mechanical calculation could produce
useful results even when no theoretical account was given, and also that “one of the
first effects of machinery adapted to numbers, has been to lead us to surmount new
difficulties in analysis”.30

2.4 The Mechanical Notation

In the course of his early work on the design of the Difference Engine, Babbage
reflected on his working practices, and formulated a explicit account of the process

25Babbage (1822a), p. 312.
26Babbage (1826b), p. 217.
27Babbage (1823), p. 125.
28Baily (1823), p. 419, describes Babbage as considering that the “mechanical contrivances” em-
bodied in the engine were of “a secondary kind” compared to these theoretical results.
29Babbage (1835b), p. 198.
30Babbage (1823), p. 127.
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of “mechanical invention”, a process which he broke down into three main stages.
Given a description of what the proposed machine was intended to do, and taking
advantage of any natural divisions such as that between calculation and printing
in the Difference Engine, Babbage recommended that the inventor start with what
appeared to be the most difficult part. Then,

[a] kind of analysis of it must be made, and it will be subdivided into a number of different
movements, some of which must be executed simultaneously, others in succession; some
actions must take place at regular, others at irregular, periods.31

Some means to implement each of these individual movements should then be
found, and they should all be assembled into a complete design without regard to
elegance or mechanical efficiency. At this stage, the only requirement was “that
supposing them all executed with perfect accuracy and supposing no flexure nor
friction in the materials the machine would do its work”. The inventor could then
begin the second stage of the process, which “ought to consist almost entirely of
simplification”, and Babbage gave a number of detailed heuristics which could be
applied to help spot ways of simplifying complex mechanical designs. Once the
design had been simplified as much as possible, the third stage of Babbage’s method
involved selecting, or if necessary developing, the mechanisms to implement the
new, simplified design.

To indicate the level of simplification that could be hoped for at the second stage,
Babbage stated that his initial design for the prototype engine had consisted of 96
wheels and 24 axes, but that after simplification he was able to reduce this to 18
wheels and three axes. Lardner gave a similar account some years later of an instance
where Babbage had managed dramatically to reduce the number of revolutions of
a particular axis required to perform a specific task, indicating that simplification
could be applied to the functioning as well as to the structure of the mechanism.

In the course of this work, Babbage found that the traditional method of using
drawings to describe machinery was inadequate. A drawing could only represent the
state of a machine at one instant, and so provided little assistance in understanding
the sequences of movements involved in a complex mechanism or in working out
the appropriate timing of the movements of its interacting parts. Babbage rejected
as impractical the idea of producing a series of drawings of successive states of the
machine, and believed that natural language was too verbose and ambiguous to be
used. Instead, “being convinced from experience of the vast power which analysis
derives from the great condensation of meaning in the language it employs”, he
decided “to have recourse to the language of signs”.32

Unlike existing symbolic languages such as that of algebra, the notation Babbage
developed was partly graphical: the machine to be analyzed was represented by a
two-dimensional diagram containing various textual annotations. A diagram began
with an enumeration of the moving parts of the machine in question, which were
labelled to enable easy cross-reference with the drawings of the machine. No attempt

31Babbage (1822c), p. 24.
32Babbage (1826a), p. 251.
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was made in the notation to describe the actual form of the parts, although a number
of their properties could be listed, such as their velocity. The names of the parts were
listed in a row across the top of the diagram, and each part had a vertical ‘indicating
line’ below it.

Arrows were drawn between the indicating lines to show a second major feature
of mechanisms, namely the connections between parts by means of which motion
was communicated from one to another. Different forms of arrow showed alternative
types of connection, indicating whether motion was communicated by attaching one
part to another, by friction, by a ratchet-driven mechanism, or a variety of other
means.

Most importantly, the notation showed the “succession of the movements which
take place in the working of the machine”. Babbage assumed that a machine’s action
was periodic, and that after a certain period of time it would return to its initial state
and the sequence of movements would be repeated. The movements of each part
were shown by means of various symbols written next to the indicating lines. Thus
reading down the indicating line for a part would show its motion through one cycle
of machine operation, whereas reading horizontally across all the indicating lines
would show the motions of all the parts at a given instant. As Lardner later put it, “it
exhibits in a map, as it were, that which every part of the machine is doing at each
moment of time”.33

Lardner devoted several pages of his article to the notation, giving examples of
its utility and power. He described it as an aid to “invention and discovery”, a claim
that had also been made when symbolic notation was introduced into algebra two
centuries earlier. Lardner himself drew attention to this comparison, writing that
“[w]hat algebra is to arithmetic, the notation we now allude to is to mechanism”.34

He stressed its applicability to the second, simplifying stage of Babbage’s method:
if the complexity of the whole machine was represented in easily manipulable signs,
it would help the inventor to identify possible modifications and simplifications that
would otherwise have remained obscure. Finally, in an observation which throws
an interesting light on contemporary understanding of the relationships between
machines and society, he claimed that the notation could be applied to describe the
organization of “an extensive factory, or any great public institution, in which a vast
number of individuals are employed, and their duties regulated (as they generally
are or ought to be) by a consistent and well-digested system”.35

Babbage continued to use and further develop the notation while working on the
Analytical Engine, but he wrote little else about it and it never became widely known
or applied. Nevertheless, it is of interest as a novel attempt to apply a symbolic
approach to the design and description of complex processes.

33Lardner (1834), p. 313.
34Lardner (1834), p. 315.
35Lardner (1834), p. 319.
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2.5 The Analytical Engine

It is misleading to talk about Babbage’s ‘Analytical Engine’ as if it was a single,
definite artefact: the term refers to a projected machine which Babbage described in
a series of drawings and other documents over a period of many years, during which
time his plans naturally changed considerably. Babbage published no description of
the machine until the appearance of his autobiography, and the machine was never
built, though a model of certain parts of it was constructed late in Babbage’s life.

The Origins of the Engine Babbage referred to a new engine in 1834, in a letter
to the Prime Minister, the Duke of Wellington. Babbage explained that difficulties
he had encountered in the construction of the Difference Engine had led to him
having no access to the engineering drawings of that machine for two years. When
he regained possession of the drawings, Babbage said, he “immediately began a
re-examination and criticism of every part. The result of this, and of my increased
knowledge, has been the contrivance of a totally new engine possessing much more
extensive powers, and capable of calculations of a nature far more complicated”.36

However, he gave no specific details of the new machine, and in fact seemed rather
pessimistic about his chances of success in persuading the British Government to
support its construction.

This re-examination began with a reconsideration of the mechanism necessary to
transfer numbers from one column to another. Babbage had examined this ten years
earlier, when considering how transcendental functions could be computed on the
difference engine, but had put the matter aside while concentrating on the practical
problems of building the machine. He now referred to this technique as enabling the
machine to “eat its own tail”, and settled on a scheme where the columns would be
arranged around a large central wheel, enabling numbers to be transferred between
them easily.37

Computation of functions by this new method would also require the ability to
handle negative as well as positive numbers, and to perform multiplications. Both
of these requirements went beyond the capabilities of the difference engine, and so
Babbage turned his attention to the design of machinery to carry out multiplication
and division. This led to two significant developments. Firstly, in order to minimize
the time taken, Babbage came up with more efficient methods for adding numbers,
using in particular a technique known as anticipatory carrying. The mechanism for
implementing this was rather extensive, however, and rather than making multiple
copies of it for each number column, Babbage was led to the idea of separating
the parts of the machine that carried out arithmetical operations from those which
simply stored numbers.

Secondly, he came up with what he later called a “tentative” process for carrying
out division, by repeatedly subtracting multiples of the divisor from the dividend.

36Babbage (1834), p. 6.
37This account is largely taken from the account of Babbage’s notebook entries summarized by
Collier (1970), pp. 116–140.
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This process should come to an end when a subtraction caused the remaining value
of the dividend to become negative. Babbage designed a mechanism which would
enable the engine to detect when this had happened, undo the last subtraction, and
proceed to the next part of the calculation.

At this point, towards the middle of 1835, Babbage mentioned the new engine
in a letter to the Belgian statistician Quetelet. He described it as being “capable of
having 100 variables (or numbers susceptible of change) placed upon it” and being
able to perform a range of arithmetical operations on any of these variables. The
operations Babbage lists are addition, subtraction, multiplication and division of two
numbers, extracting the square root of a number, and reducing a number to zero. By
these means, Babbage claimed, “if f (v1, v2, . . . , vn), n < 120, be any given formula
which can be formed by addition, multiplication, subtraction, division, or extraction
of square root the engine will calculate the numerical value of f ”,38 and he went on
to give examples of some situations where this capability could be used.

This suggests that Babbage viewed the primary purpose of the new engine as
being the evaluation of algebraic formulae. However, he had at this stage no easy
way of controlling the great variety of operations that would be required in the
evaluation of any significant computation. In 1836, however, he came up with the
idea of using punched cards to control the progress of the machine, as Jacquard had
done earlier in the century in the development of his automated loom.

This turned out to be last major innovation in the design of the new engine, and
in 1837 Babbage described its structure and functioning in a lengthy but incomplete
manuscript entitled On the mathematical powers of the calculating engine.39 As
the title suggests, Babbage was more concerned to describe the capabilities of the
proposed machine than the details of its construction, but nevertheless he did not
give a clear statement of its purpose. However, the final section of the manuscript,
on the use of the machine, is headed “Of computing the numerical value of algebraic
formulae”, and the discussion and examples given strongly support the idea that at
this period Babbage saw this as the primary application for the machine.

The Structure of the Analytical Engine Despite inevitable later revisions, most
of the features described in the manuscript of 1837 remained constant during the
years that Babbage worked on the Analytical Engine.40 Like the Difference Engine,
at the top level it was divided into two major components.

The calculating part of the engine may be divided into two portions:
First. The mill in which all operations are performed.

38Babbage (1835a), pp. 12, 13. The apparent discrepancy between the number of variables stored
in the machine and the number of function arguments is in Babbage’s text.
39Babbage (1837b).
40According to Allan Bromley, who carried out extensive research on Babbage’s unpublished de-
sign notations for the engine, the design that emerged around 1838 was the basis for Babbage’s
refinements and elaborations in the subsequent ten years (Bromley 1982). Bromley’s paper gives a
detailed physical description of the engine, including the engaging observation that the completed
machine would “have been about the size and weight of s small railway locomotive”.
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Secondly. The store in which all the numbers are originally placed and to which the numbers
computed by the engine are returned.41

At one level, the top-level structure of the engine and the terminology used by
Babbage to describe it can be seen as reflecting a division of labour similar to that
employed in the cotton industry, where the raw material was worked on in the mill
and the resulting fabrics were removed from and replaced in a storehouse. However,
a deeper motivation comes from Babbage’s philosophical views on the notation of
mathematics, which took as fundamental the distinction between operations and
variables, and saw the evaluation of a formula as a question of applying the required
operations to the numbers provided. Babbage’s distinction between the mill and the
store, on this view, simply makes concrete this theoretical distinction. As Lovelace
put it some years later,

[i]n studying the action of the Analytical Engine, we find that the peculiar and independent
nature of the considerations which in all mathematical analysis belong to operations, as dis-
tinguished from the objects operated upon and from the results of the operations performed
upon those objects, is very strikingly defined and separated.42

The store consisted of a number of figure axes, also known as variables, each of
which was capable of storing one number. Each axis consisted of 40 figure wheels
mounted vertically on a single axle. Each wheel was marked with the digits 0 to 9,
and could be moved to the desired position by hand, thus allowing manual entry of
numbers into the store. A additional wheel recorded the sign of the number stored on
the axis; this wheel also had ten positions, of which the even positions were marked
with a plus sign and the odd positions with a minus sign. Each axis was identified
by a fixed label or variable number, such as V1, which was displayed above the axis.
In addition, below the figure wheels each axis had

a small square frame [. . . ] in which may be inserted a card to be changed according to the
nature of the calculation directed. On this card is written that particular variable or constant
of the formula to be computed whose numerical coefficient and sign are expressed on the
wheels above it.43

If, for example, it was necessary to calculate the value of the formula
√

a2 + x2

from the values of a and x, it might be decided to place the values of a and x on
the variable axes V2 and V3, respectively, and the final value on V6. In this case,
the symbols a, x and

√
a2 + x2, using the mathematical notation relevant to the

problem at hand, would be written on cards and placed beneath the variables V1, V2
and V6. Clearly, this technique had no effect on the operation of the machine, and
was purely intended as an aid to its human users.

Numbers could be transferred from the store to the mill, where they would be
operated upon, and the results of these operations could then be transferred back
to the store. The engine was designed to perform arithmetical operations, and in
particular addition, subtraction, multiplication and division. Babbage occasionally

41Babbage (1837b), p. 15.
42Lovelace (1843), p. 692.
43Babbage (1837b), p. 23.
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referred to other possible operations, such as the extraction of roots, but described
only the four basic operations in detail.

The detailed progress of an operation such as the addition of two numbers was
controlled by cylinders known as barrels. Studs were attached to the barrels in a
number of vertical columns, and as the barrels rotated, the studs caused different
parts of the mechanism of the mill to be brought into action, in a manner similar to
that employed in a music box or barrel organ. The barrels were capable of more than
simply controlling a sequence of actions, however, and various mechanisms enabled
the mill to detect and respond to situations that might arise in the course of carrying
out an operation.

The most important such situation was when a larger number was subtracted
from a smaller, giving rise to a negative result. This particular event was known as
running up; it was, in effect, a carry that, because of the numerical representation
used, ran off the end of the figure axes, hence the name. The machine contained
“a lever on which the running up warning acts and this lever governs many parts of
the engine according as the circumstances demand”.44 This feature gave the engine
the capacity to detect and react to certain events that took place during the course
of a computation by affecting the way in which barrel selected the next column of
studs to be applied to the mechanism.45

The course of a computation was determined by the sequence of operations that
was to be performed. Operations were selected by means of operation cards, which
would be presented in order to the mill. These cards were to be perforated pieces of
pasteboard or thin metal similar to those used in Jacquard’s automated loom. A card
would be pressed against an array of levers; the unperforated positions in the card
would engage a particular set of levers, which would then control the progress of
the specified operation. As Babbage commented, “by arranging a string of cards
with properly prepared holes any series of orders however arbitrary and however
extensive may be given through the intervention of these levers”.46

The process of reading an operation card and carrying out the specified operation
was carried out under the control of the barrels. When an operation was requested,
the numbers to be operated on would be fetched from the store and placed on two
figure axes in the mill; on completion of the operation, the result would be returned
to the store. In the same way as operation cards selected the operations that were to
be performed, variable cards selected the quantities that would be operated on. At
the start of an operation, the mill would request numbers from the store; the numbers
selected would be those on the figure axes specified by the next variable cards to be
presented to the store. At the conclusion of an operation, the result would be placed
on a figure axis specified by the next variable card.

44Babbage (1837b), p. 17.
45Allen Bromley describes in detail the conditional operations implemented within the mill, and
gives Babbage the credit for originating “the whole concept of a conditional sequence of operations
in a machine, and in particular of a conditional dependence on the outcome of previous actions of
the machine” (Bromley 1982).
46Babbage (1837b), p. 20.
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The independence of the operation and variable cards is a notable feature of the
design of the Analytical Engine. The cards controlled the operations of separate
parts of the machine, the mill and the store, respectively. Because the control levers
differed, the two types of card were to be of different sizes and to have different
patterns of perforation. An operation card could be used to operate on different data
at different times, as the numbers used on each occasion would be determined solely
by the variable cards that were presented to the store.

Babbage saw that particular operations and sequences of operations might need
to be carried out repeatedly in the course of a computation. He therefore proposed
that special cards, known as combinatorial cards, could be inserted in the sequence
of operation cards. The function of the combinatorial cards was:

To govern the repeating apparatus of the operation and of the variable cards and thus to
direct at certain intervals the return of those cards to given places and to direct the number
and nature of the repetitions which are to be made by those cards.47

Subsequent entries in Babbage’s notebooks described a set of special counting
wheels which would record the number of times operations should be repeated.
When a combinatorial card was encountered, the number on these wheels would
be reduced by one and the operation cards backed up as far as required. When the
number on the wheels reached zero, the combinatorial card would be ignored and
the computation would proceed with the next operation card. Babbage’s first idea
involved backing up the operation cards to the beginning, but he later proposed that
the cards could be backed up to a predetermined spot in the sequence, or by a certain
number of cards.48

A different further method of repeating operations, suggested in the early 1840s,
was for each operation card to contain an index number which would specify how
many times the operation on that card should be carried out before the next operation
card was read.49 The sole purpose of this suggestion seems to have been to minimize
the number of operation cards that needed to be prepared for a calculation.

A further type of cards were the number cards; these were perforated in such a
way as to make it possible to transfer a number from the card to a figure axis. An
advantage of a number card as opposed to the manual entry of a number on an axis
was the possibility of reusing the card whenever necessary. Babbage also considered
that the cards could be used in cases where a calculation exceeded the number of
variables provided in the store, and the use of number cards in a calculation was
therefore to be controlled by the variable cards.50

The mechanical description of the engine concluded with a number of proposed
auxiliary devices, such as a card punch which would enable numbers to be punched
onto the number cards in the first place. Other planned output devices included an
apparatus for printing results on paper or copperplate, and Babbage also mentioned

47Babbage (1837b), p. 21.
48The relevant notebook entries have been summarized by Collier (1970), pp. 196–200.
49See the references listed by Collier (1970), p. 199.
50Babbage (1837b), p. 27.
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the possibility of producing a graphical representation of results by means of a curve
drawing apparatus.

The Mathematical View In the 1837 manuscript, Babbage gave few details of
how the engine would be used. He seems to have envisaged a loose division of
labour between the “employer of the engine”, who would specify the operation and
variable cards to be used for a computation along with any required constants, and
a number of “attendants” and a “superintendent” who would actually operate the
engine.51 As well as simple sequences of operations, it was proposed that users
could order the repetition of groups of operations using the combinatorial cards,
but Babbage does not seem to have envisaged at this point that users could specify
alternative sequences. The running up mechanism provided conditional execution
at certain points in the internal implementation of operations, in particular division,
but this capability was not made available to the user.

In 1840, Babbage travelled to Turin, where he presented his ideas to a number
of Italian scientists. Following this visit, the mathematician L.F. Menabrea wrote an
account of the engine, which was published in 1842. A translation of this article,
which was written in French, was published by Ada Lovelace in the following year.
Lovelace added some extensive notes of her own to the translation. Both Menabrea
and Lovelace had discussed the engine at length with Babbage, and their writings
form an important source of information about Babbage’s ideas. In particular, they
included a number of detailed descriptions of the operations that would be required
to perform various computational tasks, derived from examples that Babbage had
developed between 1837 and 1840, but never published. These examples included
the tabulation of polynomials and iterative formulae, and the solution of simultane-
ous equations using Gaussian elimination.52

Unlike Babbage, Menabrea and Lovelace paid little attention to the mechanical
details of the Engine, focusing instead on those aspects of it that would be important
to someone wanting to use the completed machine to perform calculations. Lovelace
characterized this situation by drawing a distinction between the “mechanical” and
“mathematical” views of the engine. The mathematical view was that of someone
“taking for granted that mechanism is able to perform certain processes, but without
attempting to explain how”, and describing instead “the manner in which analytical
laws can be so arranged and combined as to bring every branch of that vast subject
within the grasp of the assumed powers of mechanism”.53 She emphasized that the
two views were complementary, and commented that “the same mind might not be
likely to prove equally profound or successful in both”.

Menabrea and Lovelace gave just enough mechanical detail about the engine to
enable the reader to understand how it might be used to perform calculations. Rather
than going into the details of how division was performed, for example, Menabrea
wrote that “we must limit ourselves to admitting that the first four operations of

51Babbage (1837b), p. 52.
52Bromley (1982), p. 215.
53Lovelace (1843), p. 700.
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arithmetic . . . can be performed in a direct manner through the intervention of the
machine”. The general pattern for the execution of an arithmetical operation was the
following:

When two numbers have been thus written on two distinct columns, we may propose to
combine them arithmetically with each other, and to obtain the result on a third column.54

To carry out an operation it was necessary first to configure the mill to perform
that operation, and then to transfer the required numbers from the store to the mill;
when the operation was completed, the answer should be transferred back to the
store. Menabrea explained how operation and variable cards were used to carry out
these tasks automatically. However, when giving detailed examples of calculations,
Menabrea followed the example of Babbage’s unpublished work and rather than
describing the actual cards required, he listed the operations carried out, in a “three
address” notation of a kind that would become familiar a century later.

It is worth noting, however, that this notation simplifies the actual behaviour of
the engine. In order to deal with the complexities of adding and subtracting signed
numbers, Babbage distinguished what he called the ‘algebraic’ sign of a number
from its ‘accidental’ sign. In the formula P − Q, for example, the algebraic signs
of P and Q are + and −, respectively; however, their accidental signs could be +
or −, depending on whether the corresponding numbers in the store were positive
or negative. Depending on the combination of these signs, the actual operation to
be performed might differ from that specified on an operation card: in the formula
above, if the accidental sign of Q was negative, for example, its absolute value
would be added to that of P rather than subtracted from it.

Whereas the tabular notation suggests that addition and subtraction operations
were specified by a single card, Babbage had actually stated that:

For the processes of addition and subtraction two operation cards only are necessary. One
of these is required for each quantity, and assigns to it the algebraic sign of the quantity.55

This approach allowed formulae such as −P −Q to be handled in a consistent way,
and also allowed repeated sums to be formed without moving partial answers back
and forth between the mill and the store, making a potential saving in computation
time.

For his first example, Menabrea described the operations required to calculate
the value of x in the following pair of simultaneous equations:

mx + ny = d,

m′x + n′y = d ′.

The series of operations specified by the cards together with the results of each
operation were given in the tabular format shown in Table 2.3; the formula used to
calculate x is displayed in the bottom right-hand cell of the table. Each line in this
table represents a single operation and shows the two variables holding the numbers

54Menabrea (1842), p. 676.
55Babbage (1837b), p. 49.
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Table 2.3 A computation on the Analytical Engine

Number of
the operations

Operation
cards

Variable cards Progress of
the operations

Symbol of
operation

Columns on which
operations are
performed

Columns which
receive results

1 × V2 × V4 = V8 . . . = dn′

2 × V5 × V1 = V9 . . . = d ′n
3 × V4 × V0 = V10 . . . = n′m
4 × V1 × V3 = V11 . . . = nm′

5 − V8 − V9 = V12 . . . = dn′ − d ′n
6 − V10 − V11 = V13 . . . = n′m − nm′

7 ÷ V12
V13

= V14 . . . = x = dn′−d ′n
n′m−nm′

to be operated on as well as the variable that would receive the calculated result.
The final column shows the mathematical meaning of the result variable, using the
notation of the original problem. These are the formulae that would be written on
the cards beneath the columns V8 to V14.

To execute this calculation on the Analytical Engine, a set of operation cards
would have to be derived from the list of operations given in the second column of
the table and a set of variable cards from the entries in the third and fourth columns.
There was no need, however, to reconfigure the mill when the same operation was
repeated, and therefore no need for a sequence of operation cards requesting the
same operation. Menabrea observed that the number of operation cards required
could be reduced if the machine included “an apparatus which shall, after the first
multiplication, for instance, retain the card which relates to this operation, and not
allow it to advance so as to be replaced by another one, until after this same operation
shall have been four times repeated”.56 To reflect this, he used a revised tabular
format, which included an additional column numbering the operation cards that
were physically required.57 He did not give any details of the postulated counting
mechanism, however, nor do the tables include an explicit statement of the number
of times any particular operation card is to be used.

A second modification to the notation concerned the reuse of numbers stored on
the variable columns. The normal behaviour of the engine was to erase a variable
when the number on it was transferred to the store. After operation 1 in Table 2.3, for
example, the number stored on variable V4 would be erased and would no longer be
available for use by operation 3. It was possible to use an alternative form of variable
card, however, which specified that when a number was transferred to the mill it
would also be preserved in the store. Menabrea therefore extended the notation with
an additional column headed “indication of the new columns on which the variables

56Menabrea (1842), p. 679.
57Menabrea (1842), p. 681.
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are written”; for the first operation, the entry in this column would have read “V2 on
V2, V4 on V4”, indicating that both columns V2 and V4 kept the number stored on
them after it was called into the mill for the multiplication.58

Menabrea gave further examples of calculations in which the variable columns
were taken to represent, not simply the numbers in an algebraic formula, but the co-
efficients of the terms in a series such as Σi cosi x. This use of the engine, although
it required a different approach to the planning of a calculation, did not require any
additional features of the engine or notation.

As well as the ability to repeat cycles of operations, the need for the engine to
be able to perform different sequences of operations in different circumstances was
recognized. Menabrea introduced this requirement by considering “certain functions
which necessarily change in nature when they pass through zero or infinity”, and he
described how the machine might stop and ring a bell to summon an operator when
this happened. However:

If this process has been foreseen, then the machine, instead of ringing, will so dispose itself
as to present to the new cards which have relation to the operation that is to succeed the
passage through zero and infinity. These new cards may follow the first, but may only come
into play contingently upon one or other of the two circumstances just mentioned coming
into place.59

To illustrate this capability, Menabrea considered the evaluation of terms of the
form abn, where the number of multiplications to be performed depends on the
value of the exponent n. He described how the value of n could be placed on a
certain “registering-apparatus” and reduced by one each time a multiplication took
place. The engine would detect when this value reached zero, and “pursuing its
course of operations, will order the product of bn by a”.60

In a second example, he considered a calculation where it was required to tell
when the two expressions m + q and n + p were equal. Menabrea wrote that:

For this purpose, the cards may order m + q and n + p to be transferred to the mill, and
there subtracted one from the other; if the remainder is nothing [. . . ] the mill will order
other cards to bring to it the coefficients Ab and Ba, that it may add them together.

However, no details were given of the mechanisms that would enable the engine
to perform this kind of conditional execution of operations, nor of the details of
the cards that would be required to specify them. However, Menabrea did draw the
following general conclusion about the scope and power of this procedure:

This example illustrates how the cards are able to reproduce all the operations which in-
tellect performs in order to attain a determinate result, if these operations are themselves
capable of being precisely defined.

58In her translation, Lovelace slightly altered the heading of this new column and the notation used
to express the preservation of the variables.
59Menabrea (1842), p. 685.
60Menabrea (1842), p. 686.
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Translating Analysis As discussed at the beginning of this section, it appears
that Babbage originally saw the Analytical Engine as a device to evaluate algebraic
formulae. However, over the years a more expansive interpretation seems to have
evolved, articulated around the notion that the engine was, in a very literal sense,
a translation of the language of analysis into machinery. This idea was developed
on two levels. On the material level, as pointed out above, the physical structure of
the engine reflected Babbage’s view of the structure of the mathematical universe,
with the mill and the store corresponding to the basic categories of operations and
variables, respectively.

The various operations that the engine could perform were carried out by largely
independent pieces of machinery in the mill. To execute a particular operation, the
perforations in an operation card would cause the machinery for that operation to
be engaged. So in a very immediate way, mathematical operations were represented
by machinery, a situation described by Lovelace as one in which “matter has been
enabled to become the working agent of abstract mental operations”.

However, as the engine was only planned to implement four basic arithmetical
operations, it could be asked, as Lovelace did, whether the “executive faculties of
this engine” were “really even able to follow analysis in its whole extent?” She
answered this question in the affirmative, by listing the analytical procedures that
the engine could carry out.

On a more abstract level, however, an equivalence was proposed between the
engine and the notion of a function itself. Lovelace wrote that

the engine may be described as being the material expression of any indefinite function of
any degree of generality and complexity,

while receiving by means of the cards “the impress of whatever special function we
may desire to develop or to tabulate”.61

The cards themselves were described as literal translations of the corresponding
algebraic formulae. Menabrea expressed this point of view very clearly, writing that
“the cards are merely a translation of algebraical formulae, or, to express it better,
another form of analytical notation”.62 Thus, to take a very simple example, the
translation of the formula x × y would require one operation card corresponding to
the multiplication symbol, and two variable cards denoting the variables in the store
holding the values of x and y.

Another notion of generality was brought out in Babbage’s comment that “the
operation cards partake of that generality which belongs to the algebraic signs they
represent”, and Menabrea stated similarly that “the cards will themselves possess all
the generality of analysis, of which they are merely a translation”. One aspect of this
generality had to do with the distinction between variables and numbers. Menabrea
pointed out that just as “a formula simply indicates the number and order of the
operations requisite for arriving at a certain definite result”, so the corresponding

61Lovelace (1843), p. 691.
62Menabrea (1842), p. 688.
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set of operation and variable cards “will serve for all questions whose sameness of
nature is such as to require nothing altered excepting the numerical data”.63

The combination of the claim that the cards translated formulae and the fact that
the engine only implemented a limited range of operations raised certain problems,
however. For example, consider the case of formulae of the form bn, where one
number is raised to an integral power. If the idea of translation is to be preserved,
this formula cannot be interpreted as containing an exponential operation, as the
engine contained no such operation. Rather, it should be interpreted as containing
a reference to a multiplication operation, with the exponent n indicating how often
the multiplication should be carried out. As Menabrea put it, as the cards were to
be a translation of the analytical formula, the number of operation cards required
to evaluate such terms should be the same whatever the value of n, even though
differing values of n indicated that the multiplication operation must be performed
a different number of times.

While this interpretation preserves the analogy between operation symbols and
operation cards, however, it is difficult to square with the idea that variables simply
store quantities that are used in calculations. In the formula bn, n is not a straight-
forward symbol of quantity: the value of n is not used directly in calculation, but
is rather used to control the progress of the calculation, specifying how often the
quantity represented by b should be multiplied by itself. Lovelace blamed this on
the deficiencies of current analytical notation, writing that “figures, the symbols of
numerical magnitude, are frequently also the symbols of operations, as when they
are the indices of powers”,64 and she went on to describe how numbers representing
operations and those representing quantities are kept separate in the store, although
it appears that this distinction was a matter of conventional usage, rather than being
enforced mechanically.

2.6 The Science of Operations

The distinction between operations and the objects operated on was fundamental to
the design of the Analytical Engine. This reflected current philosophical thinking
about mathematics, as Lovelace pointed out in the first of the notes she added to
her translation of Menabrea’s account. She went on to give a general account of this
new outlook, broadening its scope away from the purely mathematical.

She first offered an abstract definition of what an operation was, as “any process
which alters the mutual relation of two or more things”. Although it was inspired
by mathematics, this definition was meant to be applicable to “all subjects in the
universe”, and Lovelace saw the study of operations as having a completely general
scope:

63Menabrea (1842), pp. 685, 688.
64Lovelace (1843), p. 693.
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the science of operations, as derived from mathematics more especially, is a science of
itself, and has its own abstract truth and value; just as logic has its own peculiar truth
and value, independently of the subjects to which we may apply its reasonings and pro-
cesses.65

Lovelace did not give details of other applications of the science of operations,
although she did speculate that if “the fundamental relations of pitched sounds in
the science of harmony” could be expressed as operations of the requisite sort and
adapted to the mechanism of the engine, then it might be able to “compose elaborate
and scientific pieces of music of any complexity or extent”.66 Later, she referred to
“symbolical results” being generated by the machine, but without giving a clear
example of what was meant by this.67

For Lovelace, therefore, the Analytical Engine was not simply a machine which
evaluated formulae. In her view, it had a more general significance as “an embody-
ing of the science of operations, constructed with particular reference to abstract
number as the subject of those operations”, in contrast with the Difference En-
gine, which was “the embodying of one particular and very limited set of opera-
tions”.68

By “the science of operations”, Lovelace appears to have meant some kind of
general study of the way in which the operations required in calculations could
be specified. The engine was designed primarily to execute a sequence of oper-
ations, and given the assumption that at each step in the calculation “the same
operation would be performed on different subjects of operation” she found it
natural to use a notation which represented the sequence of operations, but not
the variables required at each step. For a simple example, she notes that she re-
quired

In all, seven multiplications to complete the whole process. We may thus represent them:

(×,×,×,×,×,×,×), or 7(×).

A more complex formula, which involved finding the quotient of two terms, was
represented as follows:

{
7(×),2(×),÷}

, or
{
9(×),÷}

,

suggesting that Lovelace was not concerned whether the sequence of operations
manifested the structure of the original formula or not.

In a later note, Lovelace gave a more complex example, in which she expanded
and commented on this notation. The example was to multiply two trigonometrical
series with coefficients An and Bn by calculating the coefficients Cn of the terms

65Lovelace (1843), p. 693; emphasis in original.
66Lovelace (1843), p. 694.
67Lovelace (1843), p. 695; emphasis in original.
68Lovelace (1843), p. 694; emphasis in original.
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of the resulting series. The required coefficients Cn could be calculated using the
following formulae:69

C = BA + 1

2
B1A1,

C1 = BA1 + B1A + 1

2
B1A2,

Cn = BAn + 1

2
B1 · (An−1 + An+2).

Lovelace then gave the following expression, representing “the successive sets of
operations for computing the coefficients of n + 2 terms”:

(×,×,÷,+), (×,×,×,÷,+,+), n(×,+,×,÷,+),

observing that “the brackets . . . point out the relation in which the operations may
be grouped, while the comma marks succession”. The operations in the first set of
brackets compute the term C, those in the second the term C1 and those in the third
any subsequent term; it is not altogether straightforward to check the equivalence
between the sequences of symbols and the operations that would be performed to
evaluate the formulae.

This expression contains what Lovelace termed a recurring group of operations,
or a cycle, and she observed that “[w]herever a general term exists, there will be
a recurring group of operations”. Further, “[i]n many cases of analysis there is a
recurring group of one or more cycles; that is a cycle of a cycle, or a cycle of cycles”.
For example, if it was required to form the quotient of two polynomials of order p,
the operations required to form the coefficient of one term of the quotient are

{
(÷),p(×,−)

}
,

and so the operations required to calculate n terms of the quotient could be repre-
sented as

n
{
(÷),p(×,−)

}
.

Lovelace then took a further step, adapting “some of the notation of the integral
calculus” to her evolving notation. She rewrote the previous expression in what was
intended to be an equivalent form as:

Σ(+1)n
{
(÷),Σ(+1)p(×,−)

}
.

Lovelace explains this notation by writing that “p stands for the variable; (+1)p

for the function of the variable, that is for φp; and the limits are from 1 to p, or
from 0 to p − 1, each increment being equal to unity”.70

This notation is further applied to the case of varying cycles, where “each cycle
contains the same group of operations, but in which the number of repetitions of the
group varies according to a fixed rate, with every cycle”. What Lovelace appears
to have in mind here is the case of a cycle within a cycle, where the inner cycle is

69Lovelace (1843), pp. 715–716; A, B and C can here be read as A0, B0 and C0.
70Lovelace (1843), p. 719.
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repeated a different number of times at each repetition of the outer cycle. Without
the new notation, the outer cycle must be written out in full, as in the following
example:71

p(1,2, . . . ,m), (p − 1)(1,2, . . . ,m), (p − 2)(1,2, . . . ,m), . . . , (p − n)(1,2, . . . ,m).

Lovelace claimed that this could be equivalently written as

Σp(1,2, . . .m), the limits of p being fromp − n to p,

but this idea was not explored or explained further, and it was left unclear how the
variable n of the outer cycle could be related to the inner cycle, and how the informal
description of the limits might have been symbolized.

Lovelace’s notes, then, contain some suggestions for a potentially sophisticated
notation for expressing complex sequences of operations, and in particular those
containing recurring groups of operations. These ideas were not integrated into the
more comprehensive notation that she used for planning calculations, however. Her
final example, a “diagram for the computation by the Engine of the Numbers of
Bernoulli”, used a tabular format similar to that used by Menabrea, but with a
greater number of annotations describing the mathematical progress of the calcu-
lation. On this diagram, cycles and cycles of cycles were indicated by means of
brackets in the margins of the table indicating the recurring groups of operations,
but the notation gave no indication of how often a particular cycle would be re-
peated.

Also, the relationship between the notation and those aspects of the machine
that would control the execution of cycles was left rather vague. Lovelace stated
that the backing mechanism was to be used to execute the operations in a cycle,
but her explanation of how the extent of the cycle or the number of required re-
currences were communicated to the engine was restricted to the following sugges-
tion:

Σ , in reality, here indicates that when a certain number of cards have acted in succession,
the prism over which they revolve must rotate backwards, so as to bring those cards into
their former position; and the limits 1 to n, 1 to p, etc., regulate how often this backward
rotation is to be repeated.72

2.7 The Meanings of the Analytical Engine

Mechanizing the Mind As with the Difference Engine, an important aspect of the
Analytical Engine was its demonstration of how an apparently mental process, that
of evaluating algebraic formulae, was in fact mechanizable. Menabrea had argued
that mathematics could be divided into a mechanical part, “subjected to precise and
invariable laws, that are capable of being expressed by the operations of matter”,

71Lovelace (1843), p. 719; the sequence (1,2, . . . ,m) here denotes a group of unspecified opera-
tions.
72Lovelace (1843), p. 720.
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and a part “demanding the intervention of reason” which “belongs more specially to
the domain of the understanding”. Because it implemented not simply the four basic
arithmetical operations, but also the operations that were involved in applying the
sequence of operations required to evaluate a formula, the Analytical Engine was of
a much wider scope than its predecessor. As we have seen, Menabrea considered it
to be a “system of mechanism whose operations should themselves possess all the
generality of algebraical notation”.73

The greater capabilities of the Analytical Engine brought with them a temptation
to use increasingly anthropomorphic language in talking about it, as Babbage noted
apologetically in 1837:

In substituting mechanism for the performance of operations hitherto executed by intellec-
tual labour it is continually necessary to speak of contrivances by which certain alterations
in parts of the machine enable it to execute or refrain from executing particular functions.
The analogy between these acts and the operations of mind almost forced upon me the fig-
urative employment of the same terms. They were found at once convenient and expressive
and I prefer continuing their use rather than substituting lengthened circumlocutions.
For example, the expression ‘the engine knows, etc.’ means that one out of many possible
results of its calculations has happened and that a certain change in its arrangement has
taken place by which it is compelled to carry on the next computation in a certain appointed
way.74

In particular, it seems to have been the apparent ability of the Engine to choose
between alternative courses of action which raised questions about what the most
appropriate way to describe it was. Menabrea tended to emphasize its mechanical
nature, and to stress that it could only proceed in a determinate manner. He pointed
out that Babbage had had to devise a method for carrying out division which did not
employ the usual “method of guessing indicated by the usual rules of arithmetic”,
and wrote that the machine “must exclude all methods of trial and guesswork, and
can only admit the direct processes of calculation. It is necessarily thus; for the
machine is not a thinking being, but simply an automaton which acts according to
the laws imposed upon it”.75

At times, Lovelace expressed herself with a greater freedom, however, and her
comment on Babbage’s comments above was that “[t]his must not be understood
in too unqualified a manner. The engine is capable, under certain circumstances, of
feeling about to discover which of two or more possible contingencies has occurred,
and of then shaping its future course accordingly”.76 This is reminiscent of the pas-
sage to which the above quote from Babbage is a footnote, in which he describes
his so-called “anticipatory carriage” mechanism by saying that he has designed the
machine to “foresee” the effect of a carry operation in addition.

At other times, however, Lovelace too emphasized the machinic nature of the
Engine, as in the following remark, later to be discussed in detail by Turing:

73Menabrea (1842), pp. 669, 674.
74Babbage (1837b), p. 31, footnote.
75Menabrea (1842), p. 675.
76Lovelace (1843), p. 675, footnote.
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The Analytical Engine has no pretensions whatever to originate anything. It can do whatever
we know how to order it to perform.77

However, this did not mean that every step and result had to be known in advance:
it is “by no means necessary that a formula proposed for solution should ever have
been actually worked out, as a condition for enabling the engine to solve it. Provided
we know the series of operations to be gone through, that is sufficient”.78

Time and Economy Babbage paid great attention in the design of the Analytical
Engine to making its operations as fast as possible, going so far as to say that “the
whole history of the invention has been a struggle against time”; he gave a detailed
account of the way in which the timing of the machine had been estimated and
optimized.79 This applied at the most detailed levels of the mechanism, as well as
in more general concerns, such as the choice of the algorithm to be implemented for
the basic operations of multiplication and division.

Menabrea referred to the “economy of time” that the machine enabled, quoting
Babbage’s estimate that the multiplication of two 20-digit numbers could be com-
pleted in three minutes. He further identified “economy of intelligence” as one of
the machine’s advantages, writing that “the engine may be considered as a real man-
ufactory of figures”.80

Lovelace reinforced this perception of a connection between the machine and
contemporary views about political economy when describing its productive nature:

In the case of the Analytical Engine we have undoubtedly to lay out a certain capital of
analytical labour in one particular line; but this is in order that the engine may bring us in a
much larger return in another line.81

The means by which this profit was to be realized was made clear by drawing an
analogy between the internal structure of the engine and current practices of labour
organization:

The columns which receive [intermediate and temporary combinations of the primitive data]
are rightly named working Variables, for their office is in its nature purely subsidiary to
other purposes.82

In both its use and its internal structure, then, the Analytical Engine was viewed as
having a close relationship with the capitalist economy of the factory system, and
embodying its labour relations, just as its predecessor had been.

Avoidance of Error A significant advantage of the engine was what Menabrea
called its “rigid accuracy”, a property which stemmed not only from the supposed

77Lovelace (1843), p. 722.
78Lovelace (1843), p. 721.
79Babbage (1837b), pp. 39; 55–61.
80Menabrea (1842), p. 690.
81Lovelace (1843), p. 698.
82Lovelace (1843), p. 707.
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infallibility of mechanical processes but also the fact that it required “no human
intervention during the course of its operations”.83 However, there were still many
points in the process of using the engine for a complete calculation at which the
intervention of human operators would have been required. Babbage pointed out that
users would have to insert potentially large amounts of numerical material into the
machine, and also to compose the sequences of operation and variable cards required
to translate a particular formula and make sure that they were correctly presented
to the engine. While noting this, Lovelace claimed that there was nevertheless less
chance of error in these tasks than in purely numerical work.84

Babbage suggested a number of techniques for verifying the correctness of the
engine’s results. For example, he suggested that all numbers entered into it should be
immediately printed out, so that a subsequent check could be made that the correct
numbers had been entered. For what he considered to be the more difficult task of
checking the correctness of the cards used, a number of approaches to verification
were suggested, including the use of coloured cards which would provide a visual
check that the structure of the cards matched that of the formula.

He also suggested running test cases to verify a formula, using “such numerical
values to the constant quantities as shall render its value easily computed by the
pen”, arguing rather optimistically that

If trials of three or four simple cases have been made, and are found to agree with the results
given by the engine, it is scarcely possible that there can be any error among the cards.85

Further ideas put forward included the suggestion that a computation could be
carried out using two different, but mathematically equivalent, formulae and the
results compared, and the use of a machine which would translate a set of cards back
into the analytical formula represented before printing it out for checking. Finally,
Babbage suggested that the use of combinatorial cards to reduce the number of cards
required would simplify the task of preparing the cards for a computation, and even
speculated that “the formula printing-machine might by some improvements itself
ultimately work out many of such algebraic developments”.86

Natural Theology In the 1830s, the Earl of Bridgewater sponsored the publica-
tion of eight treatises On the Power, Wisdom, and Goodness of God, as manifested
in the Creation. Written by a number of well-known scientists and divines, the trea-
tises were intended to demonstrate how the results and theories of recent natural
science were compatible with an over-arching view of God as a designer. Babbage
detected a ‘prejudice’ in the published treatises, particularly one written by William
Whewell on physics and astronomy, to the effect “that the pursuits of science are
unfavourable to religion” Babbage (1837a). He published his own views on natural
theology in what he called an unofficial, ‘ninth’ Bridgewater treatise.

83Menabrea (1842), p. 689.
84Babbage (1837b), pp. 51–54, Lovelace (1843), p. 698.
85Babbage (1837b), p. 53.
86Babbage (1837b), p. 54.



48 2 Babbage’s Engines

A central part of his argument focused on the question of miracles. This was an
important question for natural theology, as the scientific world view, of a clockwork
universe of matter which had been set in motion at the creation and was thereafter
governed by unchangeable natural laws, seemed to be at odds with the assumed fact
of miraculous events as revealed in the Bible.

Babbage advanced a view which purported to explain how miracles could in fact
be produced by the operation of purely mechanical laws of nature. This argument
was inspired by the properties of the Analytical Engine. Unlike the mechanism of a
clock, in which the same processes would take place repeatedly so long as energy
was available to drive them, the Analytical Engine could be set up in such as way
that after any prespecified length of time its behaviour would change. Furthermore,
any number of such changes could be specified. From the human point of view, these
changes, coming perhaps after eons of regular behaviour, would appear miraculous,
though they were in fact inevitable, being prefigured in the design of the machinery
of the universe.

2.8 Conclusions

Babbage was ultimately unsuccessful in his attempt to build automatic computing
engines. A small working prototype of the Difference Engine was completed, and
portions of the full-sized machine were built, but work on the Analytical Engine did
not proceed beyond the production of design drawings.

In the light of the subsequent history of computers, it is interesting to consider
the reasons for this failure. Babbage wrote generally of technological innovation
that “[i]t is partly due to the imperfection of the original trials, and partly to the
gradual improvements in the art of making machinery, that many inventions which
have been tried, and given up in one state of art, have at another period been emi-
nently successful”.87 Most historians have followed Babbage’s suggestion here, and
concluded that Babbage’s designs made too great a demand on the mechanical and
tool-making expertise available at the time. However, as Babbage elsewhere made
clear, the early nineteenth century was a time of great technical innovation, and
the work carried out on the Difference Engine was itself responsible for significant
advances.

An additional factor in Babbage’s failure was certainly financial, in that the costs
of the development even of the Difference Engine would in no way be met by the
savings that its use would lead to. Babbage was aware of this, believing that the costs
of the project should be underwritten by the Government rather than private capital,
a position he supported by pointing out the national importance of the application
of the Engine to fields such as navigation. The Government ultimately withdrew its
support, however, being unconvinced that significant savings would follow from the
use of the Engine. Some retrospective support for this position can be drawn from

87Babbage (1835b), Sect. 324.
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the experience of the American Nautical Almanac Office in trying to make use of
Scheutz’s completed difference engine in 1859.88

Babbage as Pioneer Babbage is commonly taken to be a ‘pioneer’ of the com-
puter, someone whose designs anticipated modern developments. In contrast, this
chapter has attempted to describe Babbage’s work as it was presented to and under-
stood by his contemporaries.

It is a misleading anachronism to describe the Analytical Engine as a ‘computer’.
This characterization prevents us from seeing it in its own terms, as Babbage and
his collaborators understood it. As argued above, Babbage thought of it primarily
as a machine for the numerical evaluation of algebraic formulae, and much of its
structure, organization and use can be best understood by thinking of it in these
terms. If we think of it as a computer, it is impossible not to notice the ways in which
it differs from current designs, and hence to describe it as a limited first attempt, or
to wonder at the fact that Babbage did not include certain current design features.
This prevents us from understanding it in its own terms, and from forming a just
evaluation of Babbage’s achievement.

Nevertheless, there are striking similarities between the design of the Analytical
Engine and certain features of mid-twentieth century computer architecture. If we
conclude, as seems likely, that the later developments were largely independent of
the details of Babbage’s work, then what is left with is a striking case of design
convergence. Bromley points out that because of the inaccessibility of Babbage’s
design for the Analytical Engine, it is unlikely that direct influence could have been
anything other than superficial, and concludes: “I am bothered that the Analytical
Engine is too much like a modern computer. Do we infer that a computer can be
built in fundamentally only one way?”.89

This seems too strong. It is notable that Babbage and computer developers of
the 1930s and 1940s were facing, in many ways, the same material situation, and
were trying to develop computers that were essentially calculators. The material
practice of computation had been remarkably constant in the intervening years: de
Prony would have recognized and understood the industrial practices in a typical
computing laboratory of the 1930s. The similarities between Babbage’s and the later
work can perhaps be understood as similar responses to the desire to automate the
same material practice.

Babbage and Programming The Difference Engine was a physical embodiment
of a single algorithmic process, and therefore did not need to be programmed. As
suggested in Chap. 1, it can been seen to be more closely analogous to a single
program than to a computer. Setting the machine up for a calculation would have
been a matter of providing certain initial data, by setting the appropriate number
wheels with the required differences.

88Grier (2005), p. 69.
89Bromley (1982), p. 217.
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The Analytical Engine, on the other hand, was to be capable of evaluating any
analytical formula, and so some method was needed to control the operations that
the machine would carry out on a particular occasion of use. Its design was based
around the idea that the sequence of operations required for a computation was
specified explicitly by a deck of operation cards. However, Babbage was also aware
that patterns could frequently be found in the sequence of operations to be carried
out that meant, for example, that the number of operation cards could be reduced.
An example of such a capability was the repeating apparatus, which in conjunction
with the combinatorial and index cards would allow the engine to return to an earlier
point in the sequence and repeat certain operations.

Babbage occasionally gave descriptions of what he saw as the significant patterns
of computation. For example, in the Ninth Bridgewater Treatise, he gave a general
description of the capabilities of the machine, stating that

it will calculate the numerical value of any algebraical function—that, at any period pre-
viously fixed upon, or contingent or certain events, it will cease to tabulate that algebraic
function, and commence the calculation of a different one, and that these changes may be
repeated to any extent.90

However, he does not appear to have considered in much detail the ways in which
decks of cards could conveniently be prepared by the user to specify such structured
computations. In part, this was no doubt due to the fact that he put much less effort
into the preparation of computational plans that to the mechanical design of the
engine. According to Allen Bromley, “[a]side from the Bernoulli numbers program
prepared for Ada Lovelace’s notes, there is no evidence that Babbage prepared any
user programs for the Analytical Engine after his 1840 trip to Turin”.91

One later development is relevant to this issue. Throughout the 1840s, Babbage
continued work on the design of the engine, and at various times produced lists
of the basic operations that it would provide. Originally, these had been limited to
the basic arithmetical operations, but by 1844 they had been supplemented with
operations for checking whether the number at a given location in the store was
equal to zero.92 The proposed implementation of this operation involved the use
of index numbers on the operation and variable cards. If the specified number was
found to be equal to zero, the decks of cards would be turned back by the number
of cards specified by the indexes. A similar operation was specified for detecting
whether a number was greater or less than zero. There appear to be no examples of
the use of these operations in detailed computation plans, however.

This proposal bears an interesting relationship to the idea that the engine was
translating the language of analysis, a key part of which was the correspondence
between the operations of analysis and the operations carried out by the mill. The
operation of ascertaining if a variable is equal to zero does not act on numbers;
rather, its purpose is to act on the sequence of cards being presented to the machine.

90Babbage (1837a), p. 187.
91Bromley (2000), p. 11.
92Bromley (2000), pp. 8–9.
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It therefore represents a new type of operation, and its inclusion means that it is no
longer possible to read the sequence of operation cards as a simple translation of an
analytical formula.

There is an echo here of Lovelace’s suggestions that the Σ in her notation of
operation sequences represented a particular non-arithmetical operation of the mill,
namely turning back the string of operation cards by a specified amount, and her
view that the science of operations was a general theory which could be applied to
many different areas. Neither Babbage nor Lovelace was able, however, to cleanly
separate the operations required by this new science from the familiar operations of
analysis.





Chapter 3
Semi-Automatic Computing

The previous chapter described how Babbage’s repeated attempts to design and
build calculating engines were ultimately unsuccessful, despite, or perhaps because
of, the visionary nature of many of his proposals. The development of automatic
computing proceeded in a more gradual and ad hoc manner during the late nine-
teenth and early twentieth centuries, and this chapter describes some of the major
features of this development.

This development was not primarily driven by the demands of scientific or math-
ematical computation, but rather by the increasing volumes of data processing work
required by government bureaucracies and large commercial organizations.1 Large
technological systems, such as railway and telegraph networks, and commercial
concerns such as insurance companies required increasingly complex systems to
manage their businesses, and towards the end of the nineteenth century they began
to be automated, using the punched card technology. The first major application of
this approach was in the 1890 census in the United States, which made use of the
tabulating machines developed by Herman Hollerith.

3.1 The Census Problem

Like the Difference Engine, Hollerith’s system was developed to address a particular
practical problem, namely the processing and tabulation of the statistical returns
needed by the US Census. The design of the system was conditioned by the needs of
this particular application, and so before looking at the details of Hollerith’s system,
it is worth understanding how census data were processed manually.2

The raw data that were gathered about individual citizens in the census of 1880
included information about personal characteristics, civil status, occupation, educa-
tion and place of origin. These were recorded on sheets allocating one line to each

1These developments have been well described by Jon Agar (2003), and in unpublished lectures
by Martin Campbell-Kelly.
2The following account draws on the details presented by Truesdell (1965).
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person within a household. These data were then transformed into summary tables,
which gave a statistical overview of the population. For example, a basic table in the
1880 census classified the population by race, sex and place of birth, showing for
example the number of white males born in each state of the US.

A two stage process was required to generate the published tables from these
data. First, the data were tallied: a tally sheet was ruled into boxes corresponding to
the classifications required in the table. Clerks then examined each schedule in turn,
entering for each individual a tally mark in the appropriate space. When the tally
was complete, the marks were counted, and the totals transferred to consolidation
sheets which recorded the totals, first for individual enumeration districts and then
for progressively larger geographical areas as required.

One of the most significant shortcomings of this process was the need to go back
and re-examine the original schedules for each different tally. Some characteristics,
such as a person’s sex for example, were used in many different tables. This meant
in effect that the work of classifying individuals by sex was being carried out over
and over again, with an obvious loss of efficiency.

To address this problem, methods were developed to transcribe all the data about
individuals onto slips of paper or card. These cards could be marked in some way
and so easily grouped together and counted in the various combinations required.
Although this process involved an initial overhead in transcribing data onto cards,
the hope was that the cost this labour would be offset by the subsequent elimination
of tallying in favour of the simpler processes of grouping and counting the cards.

For example, Charles Pidgin developed a ‘chip’ system for the Massachusetts
census of 1885; this system used cards of different colours to represent various
characteristics of individuals. These cards could be sorted visually, to generate the
necessary counts. In this system, the information about each individual was simply
written on the card, however, and later read by clerks.

The suggestion to use machinery to automate part of the processing of the census
returns appears to have been first made by John Billings, head of the department of
Vital Statistics in the 1880 Census.3 The suggestion was made to the young Herman
Hollerith, who had recently graduated from the Columbia School of Mines, and
was employed as a special agent by the Census Office, with the responsibility of
collecting statistics concerning the steel industry.

Hollerith worked on this idea throughout the 1880s. He initially represented the
information by holes punched in a long strip of paper, similar to the paper tapes used
by telegraph systems. However, this proposal had the shortcoming that it was hard to
process the information about a subset of the population, as the whole tape had to be
read to retrieve any information from it. To get round this problem, Hollerith moved
from using a continuous strip of paper to a system based on punched cards. All the
information about an individual would be represent by a pattern of perforations on
a single card, and by selecting and grouping together the required cards, statistics
could be easily obtained on any required subset of the population.

3Austrian (1982), pp. 5–9.
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Hollerith later claimed to have got the idea of using punched cards from the
example of a system used for checking railway tickets, although his brother claimed
that the idea had come from the use of punched cards in the Jacquard loom, with
which Hollerith would have been familiar. Wherever the idea came from, while he
was working in the Patent Office throughout the 1880s Hollerith developed a number
of machines for processing census data on punched cards. In 1886, a system using
punched cards was used to record and process data for Baltimore’s Department of
Health. This and further successful trials led to the adoption for the US Census of
1890 of a complete tabulating system developed by Hollerith.

3.2 The Hollerith Tabulating System of 1890

Representation of Data In the 1890 census, the handwritten census returns were
encoded onto punched cards, with one card holding all the information about a sin-
gle person. The cards contained 288 punch positions, divided into a number of fields.
A field represented a single property of an individual, such as their age, sex or race,
and contained a number of punch positions, each position corresponding to one pos-
sible value of that property. So, for example, the field representing a person’s sex
contained two punch positions, labelled ‘M’ and ‘F’: for males, the ‘M’ position
would be punched, and the ‘F’ position for females.

Numbers were not represented directly on the cards. For example, two fields
were used to record a person’s age. The first contained 23 positions, including 21
positions representing five-year periods from 0 to 100, and the second contained five
positions, labelled 0 to 4. By punching one hole from each field, any age from 0 to
104 could be represented by adding together the labels of the two holes punched.
For example, an age of 37 would be represented by punching the hole labelled ‘35’
in the first field and that labelled ‘2’ in the second field.

Hollerith’s Machines The equipment that Hollerith designed for use in the 1890
Census did not attempt to fully automate the process of tallying and tabulating the
data on the schedules. Rather, it consisted of a number of separate devices which
were deployed in a system which was still controlled and driven by human labour.

Two machines, the so-called pantograph and gang punches, were employed in the
transcription of data from the census returns to the punched cards. The pantograph
punch enabled clerks to punch holes accurately anywhere on the card, whereas the
gang punch enabled reference information about the card, such as the enumeration
district, to be recorded simultaneously on a group of cards prior to the punching of
an individual’s details.

Once punched, the cards were counted by tabulators. An operator would insert
a card into a press, and lower an array of metal pins onto the card. The pins would
pass through any holes punched in the card, making contact with a small cup of
mercury underneath the cards. This completed a circuit, generating an electrical
impulse which could be communicated to one or more counters mounted on the
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front of the machine. Depending on the set-up of the machine, counts could be
made of any of the properties or groupings of properties represented by the cards.

The demands of the census made it necessary to extract subsets of the cards,
for further tabulation of properties within certain subgroups of the population. This
process of extraction was assisted by a machine called a sorter. The sorter consisted
of a number of boxes with lids that were electrically operated. A sorter could be
connected to a tabulator in such a way that when a certain combination of properties
was detected on a card, the lid of a particular box would be opened automatically.
The operator would then insert the card into the open box, and close the lid by hand.

Functionality A large amount of clerical work was still required by Hollerith’s
system. Firstly, of course, the cards had to be punched from the raw census returns.
They were then processed by being repeatedly run through the process of tabulation
and sorting. The details of the operations performed were controlled by the physi-
cal set-up of the tabulators used, and the connections made between tabulators and
sorters.

The tabulators were not limited to counting the number of cards with holes
punched at particular positions. A system of relays lay between the card press and
the counters, and depending on the connections made between these relays, and
number of more sophisticated counts could be made. So, for example, it might be
required to count the number of white males in the population. This could be done
by connecting the holes for ‘white’ and ‘male’ to a single counter, using a relay, in
such a way that the count would only be incremented if a current could flow through
both holes. Another possibility was to join together the wires coming from a number
of punch positions and connect them to a single counter so that the card would be
counted if any one of the holes had been punched.

A number of checks and controls could also be built in to the tabulators. For
example, additional counters could be set to generate subtotals that would be used
to verify the counts. Checks could also be set so that if, for example, a batch of
cards representing males was being tabulated, the machine would not accept a card
representing a female.

After a tabulation, the numbers displayed on the counters of the tabulators had to
be transcribed by hand onto result slips: Hollerith’s machines provided no support
for the tasks of storing and adding together the partial totals. The groups of sorted
cards also had to be dealt with manually, stored and combined to make the batches of
cards required for subsequent tabulations. Nevertheless, the gain in speed obtained
by automating the tallying process, and in particular the ability to use the cards
repeatedly and in various combinations, meant that the 1890 census was able to
produce a wider range of statistics more quickly that had been possible previously.

The use of Hollerith’s machines for the census attracted wide attention, and many
comparisons were drawn between the census office and an industrial factory. One
significant innovation of the system was the mechanization of data, the representa-
tion of information in a permanent, machine-readable form. Calculating machines
of various sorts existed, but like the difference engine, they required that the data to
be used in a calculation be entered by a human operator. For each calculation, the
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data would have to be reentered. The use of punched cards changed all this: a card
encoded the same information as a census return, but unlike the written return, could
be read automatically and reused as often as necessary.

3.3 Further Developments in Punched Card Machines

After the 1890 census, Hollerith’s business evolved in a number of ways, leading
to a number of changes and adaptations to his machines. He began to explore a
number of other applications areas such as, in the mid-1890s, the need for railroad
companies to keep track of freight. He was awarded the contract to process the data
for the 1900 US Census, but by 1905 his relationship with the Census Office had
broken down, leaving his business dependent on commercial applications.

Some of the changes were in the direction of increased automation, leading to
faster processing times, but did not change the basic design and functionality of the
equipment. In particular, a mechanical feed was added to the sorting device, leading
to a much greater throughput of cards. This capability was also provided on the
tabulator, which removed the need for the operator to manually handle each card.

Some specific projects presented requirements which did involve changes to the
functionality of the machines, however. The railroad application required that his
tabulators had the capability to add numbers, rather than just counting perforations,
so this capability was added to the tabulators, and subsequently extensively used,
for example in the Census of 1900.

For bespoke applications, such as the Census and the early railroad companies,
Hollerith had designed individual card formats for each user, and supplied machines
wired to perform precisely the tabulation required for that task. This approach was
not viable as the number of customers grew: instead, a standardized card format
was adopted and, by means of a plugboard, it became easier to make the electrical
connections between the tabulator and the sorter.

Standardization of Cards Prior to 1890, a variety of ad hoc card formats were
used for the early applications of Hollerith’s tabulators. They were characterized by
the fact that hole were punched using a manual punch similar to that used by guards
on trains for punching holes in tickets. They had punch positions arranged in a small
number of rows round the edge of the card, as determined by the limited range of
the manual punches.

For the 1890 census, however, the pantograph punch enabled holes to be punched
anywhere on a card, and the population card contained 288 positions, arranged in 12
rows of 24 holes each. These punch positions were grouped into irregularly shaped
‘fields’, each field catering for all the possible answers to one of the questions on
the census schedule.

For the railroad applications of the mid-1890s, this approach was modified to
enable numerical data to be coded directly onto the cards. For example, the freight
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account card that Hollerith designed in 1895 for the New York Central and Hud-
son River Railroad contained a mixture of fields:4 some were irregularly shaped
‘qualitative’ fields, as used in 1890, but others were arranged as regular columns
containing positions labelled with the digits 0 to 9. A number was represented by
grouping together a number of these columns, and punching a hole in each.

Three different types of card, of differing dimensions, were used for the 1900
Census. The population card was very similar to the card used in 1890, but the farm
and crop cards, used in the census of agriculture, were far more regular in layout.
These cards contained some fields for identification of the farm or crop represented
by the card, but the bulk of the card was made up of digit columns grouped into
rectangular fields representing numbers.

The vertical fields on these cards were punched by a new device, the key punch.
This punch had keys representing the 10 digits: pressing a key would result in a
hole being punched in the appropriate place in the current column, and then the card
would automatically move to the next field. A so-called X key was provided which
would move the card onto the next position without punching a hole, in case there
were no data to record in a particular field. Finally, in 1907 Hollerith introduced a
standard card format, consisting of 45 digit columns. This remained a standard until
1928, when an 80 column standard was introduced.

Adding During the 1890s the tabulators were deployed in railroad companies, for
calculating freight loading statistics. As well as requiring the introduction of cards
that could hold numeric data, this required that the tabulators included the capability
to add numbers as well as simply count cards.

Hollerith designed an ‘integrating tabulator’ for trials at the New York Central
Railroad. An initial design proved inadequate, but a second version, known as the
‘New Integrator’, proved more successful and was in use at the Central by 189. This
same technology was extensively used in the 1900 agriculture census.

The new integrating calculator was significantly more complex than the original
tabulator. It had to interpret a hole punched in a field as a number, and then increment
the appropriate counter by the correct amount. In terms of control, however, there
were no significant innovations required: the fields on the cards were still physically
wired to the appropriate counters.

Increasing Programmability Hollerith’s early tabulators were each constructed
to perform a specific task. Each machine was equipped with the appropriate number
of counters, and the connections between the brushes that detected the presence of
holes at particular card positions and the counters were hardwired. This meant that it
was in general not possible to use a tabulator for more than one application. In 1900,
for example, three types of tabulators were provided, each with connections and
counters specifically set up to handle the differing requirements of the population,
farm and crop censuses.

4Kistermann (1991).



3.3 Further Developments in Punched Card Machines 59

Companies that adopted Hollerith’s technology increasingly found, however, that
they wanted to run different applications, using different card layouts, and that it was
impractical to do this on a tabulator with a fixed configuration. A solution to this
problem had been found very early on, by Otto Schäffler, who built the machines
used for the Austrian census of 1890. Prior to this, Schäffler’s business had been to
build telephone equipment, in which plugboards were in common use. He adopted
this idea, equipping the tabulators with a plugboard which enabled the connections
between pins and counters to be made by plugging wires into a plugboard rather
than by soldering a direct connection.

Hollerith did not immediately adopt this idea, however. The large amounts of
data produced by the censuses of 1890 and 1900 meant that the time taken to rewire
the tabulators between counts was relatively insignificant. There was therefore not
much incentive to add to the complexity and expense of the machines by adding
a plugboard. As the range of Hollerith’s customers grew in the 1900s, however,
the advantages of a more flexible machine became clearer, and from about 1912
Hollerith marketed tabulators which included a plugboard. A similar feature had
been added to the machines supplied by Hollerith’s German subsidiary company
Dehomag in about 1910.5

By 1907, the various developments and experiments that had been undertaken in
response to different customers’ demands were stabilized as the decision was taken
to begin marketing the ‘tabulating machine’ as a standard product. This machine
used the standard 45-column card, and contained a key punch for the preparation of
cards, and comprised an integrating tabulator which made use of a new digital adder
invented by Hollerith in 1905, together with an automatic card fed mechanism.

Another common customer requirement was the ability to print subtotals during
a tabulation. The deck of cards being tabulated would be sorted into groups, and
in addition to the totals displayed at the end of the deck, subtotals for each group
were required. Hollerith’s first solution to this problem involved the use of special
cards, known as stop cards, each with a distinctive cutout. When it encountered a
stop card, the tabulator would halt, allowing the operator to read off the appropriate
subtotals and reset the subtotal counters to zero before restarting the machine.

One disadvantage of this approach was that the stop cards had to be inserted
manually into a deck of cards. Later developments enabled the tabulators to examine
a particular field, and to stop automatically when a change in the value of that field
was detected. This meant that subtotals could be taken off the machine without
making any special changes or additions to the cards being processed.

Multiplication Bookkeeping and general financial applications require the ability
to perform multiplications as well as addition and subtraction. The calculation of
totals on invoices, for example, requires the multiplication of the item price by the
number of items ordered. One approach to this problem was to add functionality to
existing machines and to design a special ‘multiplying tabulator’, by analogy with

5Kistermann (2005).
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Hollerith’s original integrating tabulator which incorporated addition. This approach
was followed by Dehomag in Germany.6

In the United States, by contrast, multiplication was mechanized as an operation
separate from the tabulating process. In 1928 IBM, which by this time had taken
over Hollerith’s company, had built a prototype multiplier, and from 1931 this went
into production as the IBM Type 600, a distinct machine which could multiply two
numbers on a card and punch the product in a separate, blank field on the same card.
In 1933, an improved multiplying punch, the IBM Type 601, was produced, which
could evaluate a range of simple formulae involving the numbers on a card as well
as recording the answer.

The invention of the multiplying punch changed the role of the punched card
within a data processing system. Up until this point, all punched card systems had
treated the cards as a read-only source of data. Cards were punched at the beginning
of the process and through repeated processes of tabulation and sorting, the infor-
mation they contained could be handled in various ways. The multiplying punch,
however, for the first time allowed a tabulating system to add to the data recorded
on the cards during processing.

Summary Punched card systems did not completely automate the process of data
processing. Rather, manufacturers provided a range of machines, each performing
a specific task and for a given application, a selection of machines could be used
together. A certain amount of manual assistance, in punching and collating decks of
cards and transporting them from one machine to another, was still required.

The manual processes required had been reduced to very simple ones, however.
The planning of an application required the design of a process that was, if not fully
automatic, at least in principle mechanizable, in which the human contribution was
principally in routine tasks requiring little application of skill or interpretation.

Furthermore, there were many aspects of these systems that were configurable,
including the set-up of the plugboard for a particular computation, the detection of
changes in control fields, and subsequent printing of subtotals, and the configuration
of the sorter and the calculations performed by multiplying punches. A punched
card installation had the form of a large, distributed machine from the components
of which the particular machine required for the task at hand could be constructed.

3.4 Comrie and the Mechanization of Scientific Calculation

Despite the uptake of punched card equipment in the commercial world, as late as
the mid-1920s scientific calculation was still largely carried out using traditional
manual methods. In 1925, Leslie J. Comrie, a mathematician who was shortly to
do much to change this situation, suggested a number of reasons for this. Among
these he considered particularly important the high initial cost and unreliability of

6Heide (2009), p. 122.
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the calculating machines then available, and the fact that the use of machines would
also require a substantial initial overhead in the development of new computational
methods and non-logarithmic trigonometrical tables.7

In 1925, Comrie was appointed to the position of Deputy Superintendent of the
Nautical Almanac Office (NAO) in Greenwich, and he subsequently served there
as Superintendent from 1930 until 1936. In 1936, he left the NAO and set up what
has been described as the world’s first independent computing centre, the Scientific
Computing Service.8 From 1925 onwards he had attempted to increase the use of
computing machinery at the NAO by adapting existing commercial machines to
scientific use rather than developing new and specialized machines. He hoped by
this strategy to obtain machines that were reliable and affordable; this approach
proved very successful, and by 1932 could write that:

During the past six years, the calculations done in H.M. Nautical Almanac Office have been
completely mechanized. Not a single logarithm is now used. The older generation has been
succeeded by one which knows only how to produce figures mechanically.9

In carrying out this process of mechanization, Comrie investigated all the types of
computing equipment then available. Two particular classes of machine, namely
register machines and Hollerith punched card machinery, turned out to offer the
most substantial benefits, including the possibility of automating significant portions
of large-scale computations.

Register Machines From 1929 onwards, a variety of register machines were used
at the NAO for a wide range of applications based on the method of differences.10

Comrie explicitly drew attention to the striking continuity between this work and
that of Babbage a century earlier. He described the register machines in use at the
NAO as “difference engines” and “modern Babbage machines”, and even reminded
his readers that Babbage was the first person to be awarded the Gold Medal of the
Royal Astronomical Society, the very society whose journal Comrie was writing for
in 1932.

These register machines consisted of a keyboard and a number of mechanisms
called registers which were capable of storing and adding numbers. The machines
could carry out two types of operation. Firstly, a number could be manually entered
on the keyboard and then printed, while at the same time being added into selected
registers. Typically, some registers would provide the additional capability for a
number to be subtracted from their current contents. The second type of operation
involved printing the total value in a register; at this point the accumulated total
could be cleared, or transferred to another register. It was this last feature, the ability
to transfer numbers between registers, which in Comrie’s view made it possible to
use these machines for scientific computing.

7Comrie (1925).
8For more details on Comrie’s career, see Croarken (1990).
9Comrie (1932b), p. 523.
10Comrie (1932b, 1936).
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Table 3.1 Calculating a function from its second differences

Position 1 2 3

Crossfooter Non-add Add Add

Register Add Non-add Add

Print Cols. 1–17 Cols. 1–13 Cols. 1–13

Stop 14 6 14

Operation Total register Set second difference Total crossfooter

Computed results were printed on paper which was wide enough to permit the
printing of multiple columns. A movable carriage carried the paper past the printing
mechanism, and a number of stops could be set, at each of which an operation could
be carried out and a number printed. This resulted in output that was neatly tabulated
in columns. At the end of a line, the machine would automatically return to the first
stop position. The position of the stops and the operations performed at each were
configurable in different ways on different machines.

For example, the Burroughs Class 11 machine contained two registers, known as
the crossfooter and the register. It was controlled by a combination of a stop-rod
and a control rod. The stop rod controlled the positions on the paper at which the
machine would stop and print a number. The control rod controlled the details of the
operation that would be performed at each position; for example, whether a number
entered on the keyboard would be added into the crossfooter and register or not.
Different computations could be performed by different settings of the rods; it was
easy to change the rods in the machine, and old rods were kept so that it was easy
to set up the machine quickly to perform a variety of different computations.

Comrie used a tabular notation to describe the set-up of a register machine for a
particular problem. For example, we can consider the task of using the Burroughs
machine to compute the values of a function from its known second differences. The
overall plan was to enter the second differences on the keyboard, to add these to the
first difference stored in the crossfooter, and then to add this in turn to the function
value stored in the register. This procedure is summarized in Table 3.1.11

‘Position’ refers to the three columns printed, containing the function value, the
second difference, and the first difference. The computation proceeded by moving
from one position to another, and at each position performing the operations that
were specified in the table. So in position 2, for example, the next second difference
would be entered on the keyboard by the operator and printed. This difference would
be added to the crossfooter, which stored the first differences. At position 3, the first
difference in the crossfooter would be printed out, and at the same time added to
the register, thus forming the next function value. The ‘Add’ in the crossfooter row
at this position indicates that the crossfooter was not cleared at this point. A car-

11This table is from Comrie (1932b), p. 534. The operation row is not in the original, but appears
in later tables given by Comrie. It has been added here to clarify the working of the procedure.
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Table 3.2 Comrie’s revised format for register machine calculations

Position Stop Operation Print Contents of registers

– Margin Initial contents – Δv

− 1
2

riage return would then be carried out, and in position 1 the new function value was
printed from the register.

The computation started in position 1, where the initial argument and value of
the function to be tabulated were entered and printed. The carriage was then moved
manually to position 3, where the initial first difference was entered and added to
the register. The machine then returned to position 1, printed out the second value
of the function, and then moved to position 2. From this point on, the operations
described in the previous paragraph were repeatedly carried out until the required
tabulation was complete.

Comrie was struck by the cyclical nature of such computations, and the degree
to which they could be automated on the available machinery, the human operator
being viewed simply as another part in a larger mechanism:

In the application of a machine of this nature the operations to be performed occur in cy-
cles, and it is advisable that the operator should be given as little responsibility as possible,
beyond that of entering the correct figures on the keyboard, and of performing a few simple
mechanical movements. The degree of automatic control that is effected is truly remark-
able.12

Later machines offered greater scope for calculations of this type. For example
the National Accounting Machine contained six registers, allowing computations
that went as far as the sixth difference, thus giving the same degree of accuracy as
Babbage had planned for his Difference Engine. Because of the greater complexity
of this machine, the tabular notation was adapted slightly, being supplemented with
columns that listed in mathematical notation the value held by each register as the
computation proceeded, as shown in Table 3.2.

Hollerith Machinery In contrast to the register machines, Hollerith equipment
tended to be used in calculations where there was a large amount of data that needed
to be processed repeatedly, and where the structure of the computation mapped well
onto the repeated runs of punched card decks through a tabulator.

One such application was the tabulation of the positions of the moon, carried
out at the NAO in 1929. Lunar positions were calculated using the data in Brown’s
Tables of the Moon. This contained 180 tables giving values of harmonic functions
of the form a sin(b + ct): in order to calculate a given property of the position of the
moon, values from a number of different tables were selected and added together.
This was straight-forward, though laborious, work: as Comrie said, “although the

12Comrie (1932b), p. 529.



64 3 Semi-Automatic Computing

entries from each table are used over and over again, combinations of entries from
any one group of tables do not recur”.13

Comrie partially mechanized this procedure, replacing the work of two full-time
employees of the NAO with “mechanical methods that have . . . eliminated much
fatigue, increased tenfold the speed with which results can be obtained, and reduced
the cost to one-quarter of its former amount”.14 This mechanization required that
the data from Brown’s tables were transferred onto punched cards, a job that took
six months before the calculations could begin.

The process used was as follows. Firstly, the tables that were needed for a given
calculation were identified, and the cards for those tables were arranged in stacks.
The next value in the result was then found by adding the values on the top card
of each stack and then moving these cards to the bottom of their stacks. In general,
the stacks would be of different heights, as the different harmonic functions had
different periods. As the calculation proceeded, therefore, different combinations of
cards from the stacks would be selected and summed.

The cards were taken off the stacks by hand, and a new deck of cards prepared in
which the cards were ordered by date rather than by table. This new deck of cards
was fed through a printing tabulator, which added and printed the total for each
date, and then into a sorter which rearranged the cards back into the groups which
corresponded to each table. These sorted groups were then added by hand to the end
of the corresponding stacks so that the cards would again be available for selection
and tabulation as required.

Crucial to the success of this procedure was the ability of the tabulator to detect
when all the cards for a particular date had been read, so that the total for that date
could be printed and the counter reset. Comrie referred to this as ‘automatic control’.

A later application, dating from 1936, was more statistical, dealing with data
about the experimental planting of sugar beet.15 Eight data values were punched
onto cards for each of 7200 field locations, and these cards were then processed to
find out the optimum sample size for sugar beet.

Comrie’s scientific work with Hollerith machines was taken further by Wallace
Eckert at Columbia University during the 1930s.16 Eckert pointed out that punched
card machines were “designed for computation where each operation is done on
many cards before the next operation is begun”, whereas for applications such as
numerical integration it was required to perform different arithmetical operations
in quick succession. To facilitate this change of use, he developed a device known
as the calculation control switch which connected and controlled the operation of
multipliers, tabulators and punches so that a sequence of operations could be carried
out by the different devices in succession.

13Comrie (1932a), pp. 694–695.
14Comrie (1932a), p. 694.
15Comrie (1937).
16Eckert (1940).
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3.5 Semi-Automatic Programming

The computing systems described in this chapter were not completely automatic.
Commercial punched card installations consisted of a number of separate machines,
each performing a single well-defined task. The sequencing of these tasks was left
to human operators, however, as was much of the physical manipulation of the data,
in the form of carrying packs of cards from one machine to another.

A similar situation obtains in the work of Comrie and Eckert. Comrie did much
to reduce the complexity of the work carried out by humans, but did not remove
it altogether. Operators were still responsible for entering data into the machines’
registers and for physically ensuring that operations were carried out. The nearest
approach to automation was the calculation control switch developed by Eckert.

One might feel a reluctance to describe the activities described in this chapter
as programming. The semi-automated computations carried out on calculators and
Hollerith machinery sit somewhere in the middle of a spectrum which has at one
end a numerical analyst devising a new pen-and-paper algorithm, and at the other
the programming, in the modern sense, of a fully automated machine such as the
Analytical Engine.

Examples can be found to justify this usage, however. For example, Truesdell’s
book on the development of the US Census contains examples of “outlines of actual
tabulation programs”; the term ‘program’ was being used here to refer to the orga-
nization of the required data processing, without there being any commitment as to
the degree of automation involved in the process.17

The overall situation is that between 1885 and 1935 the amount of mechanical
computation being carried out in the world dramatically increased. This increase
was at first most noticeable in the commercial world, where both calculators and
Hollerith machinery were increasingly used, but this usage later spread to scientific
calculation as well, thanks to the efforts of Comrie and Eckert in particular.

As well as the use of actual physical machinery, this trend led to the instructions
for calculation, even where they were to be executed by humans, becoming more
routine, and requiring less ‘intelligence’, or interpretation, in their execution, For
example, Comrie’s development of a certain new interpolation method was in part
motivated by a desire to reduce the amount of judgement and expertise involved
in existing methods, and so to enable the process to be carried out by more junior
staff.18 As the next chapter describes, Turing and Post would take this line of thought
further in their theoretical work, simplifying the execution of computations to the
extent that it became plausible to imagine that the human element could in fact be
replaced by machines.

17Truesdell (1965).
18Croarken (1990), p. 25.





Chapter 4
Logic, Computability and Formal Systems

The work of Comrie and Eckert demonstrated the benefits that could be obtained
from even a partial automation of the processes of computation. Human input was
still required in order to control operations and ensure that steps in the calculation
were performed in the right order and with the right data, but increasingly all that
was required was the ability to perform routine labour which involved little skill or
initiative. During the 1930s, the extent to which even this residual human agency
could be replaced by machines began to be investigated more systematically, both
in theory and in practice.

On the theoretical side, mathematical logicians constructed various accounts of
the notion of mechanical computation, or ‘effective computability’. Different, but
provably equivalent, accounts of this notion were published in 1936 by Stephen
Kleene, Alonzo Church, Emil Post and Alan Turing.1 At the same time, logicians
also developed a new theory of formal languages, one which made concrete the
idea of a notation or language that could be processed ‘mechanically’, and so by
extension read and interpreted by actual machines.

Also in the mid-1930s Konrad Zuse in Germany and Howard Aiken in the US
started to build machines that would more completely automate the processes of
calculation, including the control functions still performed by humans in Comrie’s
laboratory. Zuse and Aiken worked independently of each other, and in ignorance of
current research in mathematical logic, but there are striking similarities between the
machines they designed and the theoretical machines described by Post and Turing.
Their work is described in the following chapter, after a discussion of the evolution
of the logical notions of effective computability and formal languages.

Before looking in detail at the work of the 1930s, it is useful to consider briefly
the origins of the relationship between logic and computation. Logic is often defined
as the study of valid patterns of reasoning in human thought, and if it is understood
in this way the connection with computation is perhaps hard to see. However, since
the seventeenth century philosophers and logicians had explicitly linked the two

1This ‘confluence of ideas’ was analyzed by Robin Gandy (1988), who did not, however, go on to
consider contemporary technological innovations.
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areas, and as a number of historical accounts have pointed out, a major theme in
logical research has been to develop a calculus of reasoning so that deductions can
be made or verified by algorithmic methods.2

The new view of algebra formulated at the start of the nineteenth century and
summarized in Peacock’s treatise of 1830 viewed it as the study of the operations
that were defined on numbers. The relevant properties of the operations of interest
were captured by rules for the symbolic manipulation of formulae, and these rules
could then be applied independently of the meaning of the symbols. This suggested
the possibility of applying this approach to domains other than numbers, as Ada
Lovelace hinted at in her brief proposal of a machine to compose music.

The first application of these ideas to a domain outside mathematics was made by
George Boole, who studied the properties of the operations applicable to the truth
values of logic.3 Boole’s goal was to mathematize existing logic, particularly the
syllogism, but the formulae of his algebra of logic were not expressive enough to
capture all the features of sentences important to valid reasoning. In particular, the
approach did not seem adequate to account for all the patterns of reasoning used in
mathematics and so serve as a rigorous foundation for the subject.

Frege, by contrast, created a notation which was sufficiently expressive, but one
in which the processes of deduction did not possess the clarity and ease of use of
algebra.4 Deduction was represented by a formal system defined by a number of
axioms and rules of inference, and Frege’s system and those based on it, notably
Russell and Whitehead’s Principia Mathematica,5 shared with the algebra of logic
the property that logical relationships and proofs could be checked by manipulating
symbols, putting aside any thought of their meaning. Among others, Gödel, drew
attention to this aspect of it:

The development of mathematics toward greater precision has led, as is well known, to the
formalization of large tracts of it, so that one can prove any theorem using nothing but a few
mechanical rules.6

In arithmetic, algorithmic processes such as long division will lead in time to
an answer to any problem, if correctly applied. By contrast, Frege’s system did not
seem to provide a guaranteed way of establishing whether a particular conclusion
followed from a set of premisses. The decision problem or Entscheidungsproblem,
given prominence by Hilbert and Ackermann,7 was the question of whether there
was a mechanical process for establishing the relationship of logical consequence.

Although it did not directly address this question, Gödel’s famous paper on the
incompleteness of formalized theories of elementary arithmetic introduced many

2See Pratt (1987) or Davis (2000) for accounts relevant to the development of computers.
3Boole (1854).
4Frege (1879).
5Whitehead and Russell (1910).
6Gödel (1931).
7Hilbert and Ackermann (1928).
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ideas and techniques that were widely used later, and it is a convenient place to
begin a more detailed consideration of the logical background.

4.1 Gödel’s Construction

Gödel’s incompleteness proof was based on the idea of constructing, in the formal
system of Principia Mathematica, a self-referential sentence similar to those that
occur in paradoxes such as the Liar.8 The various formulations of the Liar involve a
sentence of natural language which asserts its own falsity; examples are “I am now
lying” or “this assertion is not true”. Call this latter statement S: the problem is that
it does not seem possible to say definitively whether S is true or false. Assume, for
example, that S is true; what it says is therefore correct, namely that the assertion
S itself is not true. If S is not true, however, then the assertion it makes seems to
coincide with the facts, implying that it is, after all, true.

A similar situation seems to arise with a sentence such as “this statement is not
provable”; for brevity, call this statement U . Let us assume that all statements which
can be proved are in fact true. Then if U is provable, what it asserts is true; however,
what it asserts is its own unprovability, so from this contradiction we conclude that
U is not, in fact, provable. This, however, is exactly what U asserts of itself, so we
conclude that U is in fact true. This suggests that there are sentences which are true,
but cannot be proved to be so, a claim which undermined the hopes of logicians
to construct a formal system within which all the truths of mathematics could be
proved.

Informal presentations of the paradoxes, such as those given above, rely on the
fact that in natural languages like English it is possible for sentences to refer to other
sentences, and even to themselves, and also to make semantic assertions, such as
“S is true” about those sentences. Given these resources, the paradoxical sentences
can easily be constructed. It is not obvious that a system designed for formalizing
mathematics will be equally expressive, however, and a large part of Gödel’s paper
was devoted to showing that this was in fact possible, and presenting the technical
details of how to define the self-referential sentences in any formal language, like
that of Principia Mathematica, which had the ability to formalize number theory.

Arithmetization Gödel based his proof on the details of a specific formal system,
which he called P . The description of P was given in natural language; and started
with the definition of a set of primitive signs. The primitive signs of P were ‘∼’,
‘∨’ and ‘Π ’, representing the logical notions ‘not’, ‘or’ and ‘for all’, ‘0’ and ‘f ’ for
the number zero and the successor function, and the punctuation symbols ‘(’ and ‘)’.
There were also variables such as x1 and y1 of type 1, standing for numbers, x2 and
y2 of type 2, standing for classes of numbers, and so on.

8See Barwise and Etchemendy (1987).
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The formulae of the system were defined to be finite sequences of primitive signs,
and Gödel wrote that “it is easy to state with complete precision which sequences
of primitive signs are meaningful formulae and which are not”.9 This was carried
out by first defining a general notion of a sign, as a sequence of the form a, fa,
ffa, fffa and so on, in which a could either be 0 or a variable of type 1; these signs
therefore denoted numbers. Elementary formulae were defined to be combinations
of signs of the form a(b) where b was a sign of type n and a a sign of type n + 1.
Finally, formulae were defined to be members of the class containing the elementary
formulae and sequences of signs of the forms ∼(a), (a) ∨ (b) and xΠ(a), where a

and b were themselves formulae and x a variable of any type.
A number of further signs, such as ‘=’, were then introduced by definitions, and

Gödel went on to give a number of axioms; some of these, such as

∼(f x1 = 0),

which asserted that zero was not the successor of any number, defined the properties
of the natural numbers, and others defined a system of propositional and predicate
logic. In essence, P combined Peano’s axioms for the natural numbers with the logic
of Principia Mathematica, and provided a concrete example of a formal system
which was powerful enough to represent elementary number theory.

Gödel then pointed out that for metamathematical purposes the exact choice of
primitive signs was irrelevant, and proposed to use natural numbers as primitive
signs in place of the conventional typographic symbols. The primitive symbols were
assigned natural numbers as follows:

‘0’ → 1, ‘f ’ → 3, ‘ ∼ ’ → 5, ‘ ∨ ’ → 7,

‘Π ’ → 9, ‘(’ → 11, ‘)’ → 13,

and variables of the form ‘xn’ were assigned the number pn, where p was a prime
number greater than 13. Given this encoding, every formula could be represented as
a sequence of natural numbers instead of a sequence of primitive signs. Gödel then
described how the sequence n1, n2, . . . , nk of natural numbers could be encoded as
the single natural number 2n1 .3n2 . . . pk

nk , where pk is the kth prime number. Proofs
in P were simply sequences of formulae, and so by repeating this process they too
could be coded as natural numbers.

The details of Gödel’s construction meant that every sign, formula and proof in P

could be represented by a distinct natural number, its Gödel number. Gödel denoted
the function which mapped linguistic elements to their Gödel numbers and picked
out an “isomorphic image” of P in the natural numbers by Φ .10 This encoding of the
formulae of P as numbers, or arithmetization, is at the heart of Gödel’s approach.

Formalizing Metamathematics Arithmetization is an essential preliminary to the
attempt to construct a formal equivalent of the sentence U in the system P . P is a

9Gödel (1931), p. 147, emphasis in original.
10Gödel (1931), p. 147.
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language for talking about numbers, so by encoding the linguistic structures of P

as integers, a sentence of P can be interpreted as referring to the signs, formulae or
proofs of P itself. The other thing that needs to be done is to show how notions such
as “sentence” or “provable” can be expressed in the language of P : only when this
has been done will it be possible to exhibit a translation into P of the sentence U .

The terms requiring translation deal with the syntax and semantics of P ; they
are normally be expressed in natural language and referred to as metamathematical
properties of P . By using arithmetization, however, they can be defined by predi-
cates in the system P which apply to the isomorphic image Φ(P ), rather than as
informal properties of the formulae of P themselves. In other words, an informally
stated syntactic or semantic property RP of formulae of P , such as the property
of being provable, can be expressed formally as a property RN of natural numbers
provided that RP is true of certain formulae if and only if RN is true of the corre-
sponding Gödel numbers, or in symbols, if:

RP (e1, . . . , en) ≡ RN

(
Φ(e1), . . . ,Φ(en)

)
.

Gödel did not define the metamathematical properties directly in the language
of P , however, but proceeded in a slightly roundabout manner which allowed him
to use a more expressive notation. He defined a class of number-theoretic functions
and predicates which could be specified by so-called ‘recursive’ definitions; this
class included bounded quantifiers and a predicate which picked out the smallest
number with a given property. He further proved that in principle every recursive
function and predicate could be directly defined by a formula of P itself, and that
the use of recursive functions was a convenience adopted for the sake of readability,
but not a necessity.

Like a formula of P , a recursive predicate defines a property of natural numbers;
however, by interpreting these numbers as elements of Φ(P ), the class of Gödel
numbers, it can also be interpreted as defining a property of sentences of P . Gödel
accordingly defined the relevant metamathematical properties of P by means of a
series of recursive definitions, culminating in the definition of a predicate Bew which
was true of the Gödel number of a formula in P if and only if that formula was
provable. With this machinery in place, Gödel could construct the formal equivalent
of U , and so demonstrate the incompleteness of formal systems like P .

It is not necessary to examine the details of Gödel’s construction here; it is worth
noting, however, that it made it explicit that many linguistic properties, particularly
those having to do with the syntax of language, could be defined mathematically
or formally, rather than ‘precisely’ in a natural language. This gave support to the
efforts of Carnap and others later in the decade to come up with a definition of
formal languages, and thanks to the association that already existed between the
notions of formality and mechanizability, also suggested ideas about languages that
could be processed by machines.

Gödel’s Strategy In summary, then, Gödel encoded the formulae of P as natural
numbers, thus mapping the syntax of P into its own domain of interpretation. The
metamathematical predicates required for his proof were then defined as number-
theoretic predicates which were themselves expressible as formulae of P . These
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formulae could then be interpreted in two ways: firstly as statements about natural
numbers, and secondly, thanks to the mapping Φ , as statements about formulae
of P . By means of this second interpretation, P was capable of acting as its own
metalanguage. This enabled Gödel to construct a formula of P which, in this second
interpretation, made reference to itself and asserted its own unprovability.

The techniques and arguments employed by Gödel were highly influential. In
particular, Turing adapted Gödel’s strategy in his definition of a universal machine,
as discussed in detail in Sect. 4.6. The following section describes the further de-
velopment of the notion of recursively defined functions. These formed the basis
of one of the definitions of effective computability given in 1936, and were later of
importance in the development of programming languages.

4.2 Recursive Functions

The class of functions that Gödel called ‘recursive’ had been investigated before
1931. Functions over the natural numbers were commonly defined using ‘simple
recursion’; a familiar example is the definition of the operation of adding two natural
numbers a and b by the following equations:

a + 0 = a,

a + (b + 1) = (a + b) + 1.

A definition by simple recursion suggests a simple step-by-step approach to the
evaluation of the function. For example, given the definition above we can reduce
an expression like 2 + 3 so that it only uses the primitive successor operation by
rewriting it as follows:

2 + 3 = (2 + 2) + 1 = (
(2 + 1) + 1

) + 1.

Procedures like this seemed to capture an important aspect of the notion of effective
computability, and recursive definitions were widely discussed as an example of a
finitistic approach to the definition of functions, acceptable to intuitionistic modes
of thought.

With this in mind, in 1919 the Norwegian mathematician Thoralf Skolem applied
“the recursive mode of thought” to elementary arithmetic with the aim of remov-
ing quantification over infinite domains from the system of Principia Mathematica.
He made extensive use of simple recursive definitions and based his approach on
“Kronecker’s principle that a mathematical definition is a genuine definition if and
only if it leads to the goal by means of a finite number of trials”.11 This approach
highlighted the connection between recursive definition and the informal notion of
effective computability.

In 1925 Hilbert categorized the “elementary” methods of constructing functions
as substitution and recursion, and restated the connection between recursion and

11Skolem (1923), p. 333, emphasis in original.



4.2 Recursive Functions 73

finiteness as follows: “[t]he method of search for the recursions required is in
essence equivalent to that reflection by which one recognizes that the procedure
used for the given definition is finitary”.12

Gödel’s 1931 definition of recursive functions employed both of these basic
techniques. Substitution allowed a function φ to be defined from functions θ and
χ1, . . . , χm by the equation

φ(x1, . . . , xn) = θ
(
χ1(x1, . . . , xn), . . . , χm(x1, . . . , xn)

)
,

and a function φ could be “recursively defined in terms of” functions ψ and χ by
the equations

φ(0, x2, . . . , xn) = ψ(x2, . . . , xn),

φ(k + 1, x2, . . . , xn) = χ
(
k,φ(k, x2, . . . , xn), x2, . . . , xn

)
.

This is a generalized form of the definition of addition given above. A function φ

was said to be “recursive” if it was a constant function, the successor function, or
could be defined from other recursive functions using these two techniques.13

It turned out, however, that there were functions which appeared intuitively to be
effectively computable, but which could not be defined by using only substitution
and recursion. Wilhelm Ackermann discovered two techniques for constructing such
functions: one involved higher-level recursions, making use of “functionals” which
could take functions as arguments, and the other involved simultaneous recursion on
more than one variable.14 A simple example of the second category is the function
defined by the following equations, which involves a ‘double’ recursion:

ψ(0, y) = y + 1,

ψ(x + 1,0) = ψ(x,1),

ψ(x + 1, y + 1) = ψ
(
x,ψ(x + 1, y)

)
.

It can be proved that this function grows faster than any function that can be defined
using only substitution and recursion, and yet it appears that for any numbers m and
n the equations show how the value of ψ(m,n) could be calculated in a mechanical,
step-by-step manner in which the arguments of ψ are continually decreasing.15

To address this problem, Gödel later gave a more general definition of recursive
functions, based on a suggestion made by Jacques Herbrand.16 The idea was that any
given system of equations, such as those defining the Ackermann function above,
which included an unknown function ψ and a number of functions already known
to be recursive, defined a “general recursive function” if from the equations exactly
one equation of the form

ψ(k1, . . . , kn) = m

12Hilbert (1926), p. 388.
13Gödel (1931), p. 159.
14Ackermann (1928).
15See Cutland (1980), for example, for further discussion of the function ψ .
16Gödel (1934).
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could be derived, for natural numbers ki and m. In other words, a general recursive
function was one defined by a system of equations involving a function symbol φ

from which it followed that φ was in fact a uniquely defined function. Definitions
involving only substitution and recursive definition were special cases for which this
property could easily be proved.

In his definitive paper of 1936, Kleene discussed Gödel’s definition, introducing
the now standard terminology of “primitive recursive” for functions defined using
substitution and recursion only, and “recursive” for the wider class.17 Kleene also
gave the first ‘formal’ definition of recursive functions, in the sense of describing the
sets of equations involved in a recursive definition as terms in a formal language.
He adopted Gödel’s technique of arithmetization and, like Gödel, defined a series
of number-theoretic functions which characterized important syntactic properties of
recursive definitions.

4.3 λ-definability

The λ-calculus, a notation for the definition of functions, was developed by Alonzo
Church, and used in the first explicit attempt to give a formal characterization of the
intuitive notion of effective calculability. It was inspired by work in which Schön-
finkel had investigated the minimal set of primitive notions necessary for the for-
mulation of logic and in particular had attempted to remove the need for the use of
variables in purely logical formulae.18

Schönfinkel took the notion of a function as primitive, and generalized it firstly
by allowing functions to use other functions as arguments and result values, and
secondly by using this capability to reduce functions of several arguments to those
of a single argument. Schönfinkel’s work was further developed by Haskell Curry,
who commented that the “raison d’être of the theory” was the fact that any expres-
sion involving variables x1, . . . , xn could be transformed into the form Fx1, . . . , xn

where F was a variable-free expression denoting a function of x1, . . . , xn.19

Church first made use of this work in a paper on the foundation of logic.20 In
his original notation, the function of x defined by an expression M was represented
by the notation λx[M], and the application of a function F to an argument X by
the notation {F}(X). These notations were related by the rule that function appli-
cations of the form {λx[M]}(N) could be evaluated by substituting the argument N
for the variable x in the expression M, giving a result which Church symbolized as
Sx

NM|. This procedure could also be reversed, allowing a term to be rewritten as the
application of a function to an argument.

17Kleene (1936a).
18Schönfinkel (1924).
19Curry (1929).
20Church (1932).
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It turned out that the attempt to found logic on the basis of the λ-calculus gave
rise to inconsistencies. However, following the discovery of a way of representing
the natural numbers as λ-expressions, investigations by Church’s students Kleene
and Rosser revealed that an unexpectedly wide range of number-theoretic functions
were λ-definable. In 1934, Church came to the opinion that the informal notion
of effective calculability and the formal notion of λ-definability were equivalent,
a belief dubbed as “Church’s thesis” by Kleene.21

In 1936 Church and Kleene both published proofs that the set of functions that
could be defined in the λ-calculus was exactly the same as the set of recursive
functions, and therefore that both approaches could be identified with the notion
of effective computability.22 Church’s paper gave a more detailed account of the
formal properties of the notation of the λ-calculus, including an arithmetization
which Church described as “the Gödel representation of a formula”.23 This was
used to demonstrate that syntactical operations on formulae were themselves recur-
sive. Finally, Church answered the decision problem in the negative, by exhibiting
an unsolvable problem.

Gödel was apparently unimpressed by the λ-calculus, and his 1934 definition of
general recursive functions has been described as an attempt, carried out at Church’s
suggestion, to put forward an alternative account of effective computability.24 For
Church and his colleagues, however, both approaches seemed intuitively acceptable,
and their unexpected equivalence gave support to Church’s thesis.25

4.4 Direct Approaches to Defining Effective Computability

Both Gödel and Church characterized the informal notion of effective computability
by specifying formal systems in which the class of computable functions could be
defined. However, the plausibility of this approach depends on the extent to which it
is felt that the basic operations defined by the formal systems fall within the informal
notion of effectiveness.26 In 1936, Emil Post and Alan Turing independently gave
analyses of effective computability which aimed at greater “psychological fidelity”,
in Post’s words.27 This work had a significant impact in gaining acceptance for
Church’s view that the informal notion of effective computability could be captured
by a formal system.

Post and Turing described models which were based on taking seriously the
metaphor that human beings perform certain intellectual tasks in a mechanical way.

21Rosser (1984), p. 345.
22Church (1936), Kleene (1936b).
23Church (1936), p. 349.
24Rosser (1984).
25Church (1936), footnote to p. 346.
26Gandy (1988), Soare (1996).
27Post (1936), Turing (1936).
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Turing, for example, was inspired by the behaviour of ‘computers’, the term then
current to describe people who carried out complex calculations by following pre-
defined plans.28 Post and Turing abstracted two essential features from the familiar
activity of human computation: an external medium on which the data involved in
the computation could be recorded, and a representation of the instructions that the
computer was following.

Post’s Formulation In Post’s model, computational work was carried out by a
“problem solver or worker” in a “symbol space”, which Post envisaged as “a two
way infinite sequence of spaces or boxes”. Each box could be in one of two states:
either “empty or unmarked”, or “having a single mark in it, say a vertical stroke”.
The worker operated within this symbol space, and could only occupy one box at a
time.

A problem was presented to the worker by singling out a specific box as the
starting point and marking a finite number of boxes with a stroke. After the work was
complete, the answer would be given by the final configuration of marked boxes.
During the solution of the problem, the worker could perform only the following
“primitive acts”:

(a) Marking the box he is in (assumed empty)
(b) Erasing the mark in the box he is in (assumed marked)
(c) Moving to the box on his right
(d) Moving to the box on his left
(e) Determining whether the box he is in, is or is not marked.29

The solution for a problem was given by a finite sequence of directions; the ith
direction had one of the following forms:

(A) Perform operation Oi [Oi = (a), (b), (c), or (d)] and then following direction ji .
(B) Perform operation (e) and according as the answer is yes or no correspondingly follow

direction ji
′ or ji

′′ .
(C) Stop.30

The set of directions was to be preceded by a standard header reading “Start at the
starting point and follow direction 1”.

Unlike Gödel, Kleene and Church, Post did not define an arithmetization of his
notation. Without giving any proof, however, he anticipated that his account would
“turn out to be logically equivalent to recursiveness in the sense of the Gödel-Church
development”,31 as indeed proved to be the case.

The proposals made by Post and Turing were similar in many respects, though
Turing gave much more detail and proved a number of significant theoretical results.

28Jon Agar (2003) has described how similar ‘mechanical’ processes had been introduced in non-
numerical areas, particularly in the British Civil Service, and speculates that awareness of this was
an additional factor leading to Turing’s mechanical definition of computability.
29Post (1936), p. 103, emphasis in original.
30Post (1936), p. 104, emphasis in original.
31Post (1936), p. 105.
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In place of Post’s symbol space, Turing described a “tape” infinite in one direction
only and divided into squares each capable of storing one of a range of distinct
symbols. Instead of referring to a vaguely anthropomorphic notion of “worker”,
however, Turing talked in terms of “machines” which embodied just the agency that
was necessary to execute the basic operations and respond to the contents of the tape.
This made explicit the sense in which the model represented the nature of effective
computation, and Turing went a step further in showing that the operations carried
out by a worker following a set of instructions could themselves be represented as a
machine, the so-called “universal machine”. The next two sections describe Turing’s
proposals in more detail.

4.5 Turing’s Machine Table Notation

Turing’s proposal involved the definition of a class of abstract machines embodying
the essential processes carried out by a human clerk or computer. The behaviour of
specific machines was described using a notation that Turing called machine tables,
and in the first half of his 1936 paper this notation was developed into a powerful
and sophisticated formalism for describing computations.

Despite the importance of Turing’s work, the machine table notation itself has
not received much attention from logicians, and has gained a reputation for being
obscure and confusing.32 When it has been discussed in detail, it has often been with
a view to identifying anticipations of features found in later programming languages
rather than understanding its structure and the underlying reasons for its design.33

Some of the resemblances between Turing’s notation and subsequent languages are
indeed striking, but focusing on these leads to a rather unhistorical interpretation
of Turing’s work. This section describes the machine table notation in the context
of the other notations for computability defined in the 1930s, and highlights the
continuities between Turing’s work and that of his contemporaries.

Turing Machines When carrying out complex calculations, humans follow well-
defined procedures in a way that is often described as being ‘mechanical’. There is
a clear intuitive difference between calculations that follow a rule-based procedure
like long multiplication, and the use of methods that involve guesswork or intuition.
In trying to understand this distinction and come up with a definition of the informal
notion of effective computability, Turing took the mechanical metaphor literally,
defining the ‘computable numbers’ to be those which could be written down by a
machine.

Turing went on to flesh out this proposal by defining in detail a class of machines,
now known as ‘Turing machines’, that would be able to calculate and write down
numbers. The principal features of these machines were based on aspects of the

32See Chaitin (2001), p. 16, for example.
33See Knuth and Trabb Pardo (1980) and Copeland (2004a) for representative examples.
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behaviour of a human being carrying out a computation. Turing identified three
important characteristics of such procedures.

1. Human computation typically involves writing symbols on paper. Abstracting
from the example of school exercise books, where digits are written within
preprinted squares, Turing suggested that it would be sufficient to provide each
machine with a tape, a one-dimensional sequence of squares in each of which a
single symbol could be placed. He further assumed that only a finite number of
different symbols could be used.

2. Turing then discussed the role that memory plays in human calculation: at any
stage in a computation, the next action taken will depend on the calculator’s
memory of what stage in the procedure has been reached, and perhaps also some
details of the results computed so far. Turing described this situation by saying
that the next step in any computation was determined by the ‘state of mind’ of
the calculator and the symbols being observed. States of mind were modelled
by what Turing called m-configurations, and he stipulated that a machine could
be in one of a finite set of m-configurations at any given time. Turing further
assumed that at any moment a machine would only have access to some of the
squares on its tape, known as the scanned or observed squares. This was intended
to reflect the fact that computations can be carried out which are so large that a
human cannot immediately recognize all the details of the work being done, and
at different times will focus on particular aspects only.

3. Human calculators can be observed to direct their attention to different parts of
the paper being used and to write symbols at various places. Accordingly, the
basic operations available to a Turing machine are to place a symbol in one of
the scanned squares, to erase a symbol found in a scanned square, and to change
the distribution of the scanned squares on the tape. Turing claimed that “these
operations include all those which are used in the computation of a number”.34

A Turing machine computes in a sequence of discrete steps. At each step, the
machine’s behaviour is determined by its current m-configuration and the symbols
in the currently scanned squares, together known as the machine’s configuration. In
a single step, the machine may perform one or more basic operations and possibly
change its m-configuration. The new m-configuration and scanned symbols then
define a new configuration which determines the machine’s behaviour in the next
step of the computation.

A particular class of machines can be defined by specifying the set of symbols
used, the details of which squares on the tape can be scanned at any one time, and
the precise repertoire of basic operations. The machines that Turing described in
detail are only capable of scanning one square at a time, and at any step in the
calculation can only change the scanned square to one of the adjacent squares. The
basic operations, then, allow the machine to move by one square left or right on the
tape, as well as writing or erasing a symbol in the currently scanned square. The
symbols used may vary from machine to machine, and are specified as required.

34Turing (1936), p. 232.
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The different roles played by memory in computation were clearly distinguished
by Turing. It is possible to carry out small computations mentally, in which case the
intermediate results are not written down, but just remembered for a short period
of time. This suggests the possibility of representing the intermediate results as m-
configurations rather than writing them on the machine’s tape. However, Turing’s
distinction between m-configurations and the tape is based strictly on the differing
functional roles of each component. The tape stores all the intermediate and final
results of the computation, and in writing them all down, Turing machines are more
pedantic than a typical human computer might be. The m-configurations represent
the computer’s knowledge of which steps in the computation have been performed
and what is to be done next, but not the results of those steps. If we imagine that the
instructions specifying a computation are written down somewhere, the purpose of
an m-configuration is simply to record which instruction is to be followed next.

Machine Tables An individual Turing machine carries out a single computation.
In 1936, Turing was interested in the definition of computable numbers and so was
concerned primarily with machines which produced unending sequences of 0s and
1s. These sequences were interpreted as the binary representations of real numbers
between 0 and 1. Each machine computed a single well-defined sequence. Turing
described these machines using a notation known as machine tables: a table does
not describe the physical structure of machine, however, but its behaviour, or the
sequence of basic operations that it will carry out.

The simplest form of machine table consists of a set of rows, each defining what
the machine does in a single step of a computation. The behaviour of a machine
is determined by its configuration, so each row in a table corresponds to a single
machine configuration. and consists of the following elements:

1. The m-configuration and the scanned symbol that define the configuration in
question. Gothic characters were used to denote m-configurations, and symbols
were shown literally; the word ‘none’ was used to denote a blank square. The
word ‘any’ was used to indicate that the identity of the symbol in the scanned
square had no effect on the machine’s behaviour.

2. The actions that the machine performs in this step of the computation. Turing
used the abbreviations Pα for the operation of writing the symbol α in the
scanned square, E for the operation of erasing the symbol in the scanned square,
and L and R for the operations of moving the scanned square one position to the
left or right, respectively.

3. The m-configuration that the machine moves to when the operations have been
carried out, known as the final m-configuration.

Using these conventions, Turing’s first table described a machine which printed
the sequence ‘010101 . . .’ on alternate squares of the machine’s tape:35

35Turing (1936), p. 233.
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m-config. symbol operations final m-config.
b None P 0, R c

c None R e

e None P 1, R k

k None R b

This table conforms to Turing’s initial description of how the machines behaved,
which stated that they could perform at most one write or erase operation and one
move at each step in the computation. Turing immediately extended the notation
in two ways, however. Firstly, he allowed arbitrary sequences of basic operations
to be specified in a single line of a table. In general, this reduces the number of
m-configurations needed to describe a computation. Secondly, he allowed all the
rows in a table that shared the same m-configuration to be grouped together, using a
notation similar to the mathematical notation for ‘definition by cases’. The required
behaviour is then associated with the currently scanned symbol. These conventions
can be used to give a simpler table for the machine defined above which uses only
one m-configuration:36

m-config. symbol operations final m-config.

b

⎧
⎨

⎩

None P 0 b

0 R,R,P 1 b

1 R,R,P 0 b

Turing gave the following informal explanation of how these simple tables were
to be interpreted:

for a configuration described in the first two columns the operations in the third column are
carried out successively, and the machine then goes over into the m-configuration described
in the last column. When the second column is left blank, it is understood that the behaviour
of the third and fourth columns applies for any symbol and for no symbol.37

This basic notation is enough to permit the fundamental structures of computation to
be expressed. The rows in a table are not ordered, but the sequencing of operations is
determined by the explicit specification of a final m-configuration in each row; this
mechanism also allows recurring cycles of operations to be specified. Finally, the
ability to select between alternatives is provided by allowing the machine, when it
is in a particular m-configuration, to carry out different courses of action depending
on the nature of the currently scanned symbol.

A Standard Tape Format In the examples given so far, the computation per-
formed is so simple that each machine can simply write the required output directly
on to its tape. There is no need to examine or alter any symbols once they have been
written, and no requirement to calculate or recall any intermediate results. More
complex problems cannot be tackled in this way. In general, machines need to be
able to examine their earlier output and to erase and rewrite the symbols that are
used temporarily to record the progress of a computation.

36Turing (1936), p. 234.
37Turing (1936), p. 233.
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This presents a difficulty, because a Turing machine has no way of knowing
where on the tape the current scanned square is. The squares on the tape have no
absolute coordinates, and the view that the machine has of the tape is strictly local.
At any moment it can examine one square only and move to an adjacent square, but it
has no built-in way of recognizing the scanned square as one which has been visited
previously, distinguishing one occurrence of a symbol from another, or locating a
specific square on the tape.

Turing addressed these problems by defining a standard tape format to be used in
computations. This format is not part of the definition of the Turing machines, and
many alternative formats could be chosen. It is simply a set of conventions which
make it easier to write and understand programs.

There are two aspects to the tape format used by Turing. Firstly, a special symbol
is used to mark the beginning of the tape, or rather, since the tape is assumed to be
unbounded to left and right, the position of the machine when computation started.
Turing’s examples only made of the portion of the tape to the right of this position,
though other conventions and uses would be perfectly feasible.

Secondly, a means is required of enabling squares to be marked in some way
so that a particular square can be recognized at different stages in a computation.
Turing achieved this by dividing the squares on the tape into two categories, known
as F-squares and E-squares. These squares alternate, each F-square being followed
by an E-square which can store an arbitrary symbol used to mark, or label, the F-
square to its left. In Turing’s application, the F-squares hold the figures, the binary
digits 0 and 1 which made up the output of the computation, whereas the E-squares
hold temporary and erasable marks. More general conventions could be used in
other applications: the general role of the E-squares is to allow the F-squares to be
named and subsequently identified.

The tape format described by these two conventions is illustrated in the diagram
below:

The first two squares on the tape contain the ‘start of tape’ characters; as the
tape to the left of these characters is not used, it is not shown on the diagram. The
tape contains two figures, a 0 and a 1. Turing allows no spaces in the sequence of
figures stored in the F-squares, so the blank F-square shown at the right of the figure
above marks the end of the tape, or rather the end of the portion of the tape that
has been used in the current computation. The figure 0 is unmarked; the figure 1,
and the square it is in, are said to be marked by the symbol α which appears in the
following E-square.

Turing used these conventions in his second example, a machine which prints
the sequence 0010110111011110 . . . .38 To print the next block of 1s at the end of

38Turing (1936), p. 234.
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Fig. 4.1 The design of the
machine to print
0010110111011110 . . .

the tape, it is necessary in some way to count the 1s in the preceding block and to
print a block containing one more. Turing achieves this by marking all the 1s in
the rightmost block of 1s, writing a 1 at the end of the tape, and then removing the
marks. Each time a mark is removed, an additional 1 is written at the end. Once all
the marks have been removed, therefore, the new block contains one more 1 than
the block before, and by repeating this process indefinitely, the required sequence is
generated.

The machine tables that Turing presented typically had a very clear structure,
with each m-configuration having a well-defined role to play in the computation.
These roles, together with an indication of the way that the computation moves from
state to state, can conveniently be depicted in an informal flowchart, as shown in
Fig. 4.1. This makes clear the nesting of the two loops in the computation, a feature
which is not so apparent in the corresponding machine table.

The detailed table for this computation, comprising the same m-configurations
as the flowchart, is shown below.

m-config. symbol operations final m-config.
b P

e

,R,P

e

,R,P 0,R,R,P 0,L,L o

o

{
1
0

R,Px,L,L,L o

q
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None
R,R

P 1,L

q

p

p

⎧
⎨

⎩

x

e

None

E,R

R

L,L

q

f

p

f
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Any
None

R,R

P 0,L,L

f

o
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In m-configuration b, the symbol column is left blank, so the operations specified
will be carried out whatever the contents of the scanned square. At this point, the two
start of tape symbols and the first two 0s in the output sequence are printed. Note
that figures are only printed on F-squares, so that two R operations are required
between the print operations, in order to skip over the intervening E-square. The
machine then moves one F-square to the left, so that it is positioned over the first 0
written on the tape, and moves to m-configuration o.

Whenever m-configuration o is entered, the last figure written on the tape is a
0 and the machine is scanning the F-square to the left of this figure. The first time
this m-configuration is entered, the symbol in this square will be a 0, but in general
it will be the final 1 in the last sequence of 1s on the tape, as the diagram below
illustrates.

In this diagram, the scanned square is identified by an arrow with the current m-
configuration written above it. In m-configuration o the machine moves left, mark-
ing each 1 with the symbol x; when it encounters a 0 it stops and moves to m-
configuration q. At this point the rightmost block of 1s on the tape has been marked,
and the scanned square is the F-square to the left of this block, which will contain
a 0, as shown below.

In m-configuration q, the reference to the symbols ‘0 and 1’ is not a restriction,
but a clarification: when this state is entered, an F-square after the beginning of the
tape is being scanned and the only symbols written in such squares by this machine
are 0 and 1. The machine now moves right over the F-squares until it finds an empty
one. This signifies that the end of the used portion of tape has been reached, so the
first 1 of the new block is written, and the machine moves left to an E-square and
enters state p, as shown below.

In m-configuration p, the machine moves left on the E-squares until it finds either
a x or the beginning of the tape. If an x is found, it is deleted and the machine



84 4 Logic, Computability and Formal Systems

moves back to m-configuration q. As described above, this results in an additional 1,
corresponding to the mark that has just been deleted, being written at the end of the
tape, and the machine then moves back to m-configuration p.

This alternation between m-configurations p and q continues until the machine,
moving left on E-squares in m-configuration p reaches the start of tape. This means
that there are no more marks on the tape, and hence no more 1s to be written. The
machine then moves to m-configuration f, in which it moves right on the F-squares
to the end of the tape, writes a 0, moves to the F-square preceding the last 0 on the
tape, and then moves back to m-configuration o ready to repeat the whole process.

This example illustrates how Turing used a standard tape format to monitor and
control the progress of a more complex computation. It also illustrates one way in
which this format makes the machine designer’s job harder: it is necessary to keep
track carefully of whether the machine is expected to be scanning an E-square or an
F-square at each point in the computation.

Variables and Functions Turing next considered ways in which the task of writ-
ing tables for particular machines could be made easier. He observed that there are
a number of basic processes which will form part of most machines and which may
be carried out many times in a given computation; these included, for example, lo-
cating, copying, comparing and erasing symbols on the tape. It would obviously
save effort, and make tables shorter and more readable, if these processes could
be defined in one place and reused, rather than being written out in full whenever
required.

In the context of recursive functions, this problem had been addressed by the
technique of substitution, which allowed an already existing function to be used in
the definition of a new function. For example, Gödel’s definition of the predicate
Bew came at the end of a long sequence of intertwined definitions in which simple
functions were repeatedly reused to define more complex ones. Turing applied this
technique for a similar purpose in the context of his machine tables.

The definition of a function consists of an expression which defines in some way
the transformation carried out by the function. Conventional notation uses variables
to represent those elements of the expression that can vary in different contexts of
application. For a computational process, like long multiplication, it is natural to say
that the same procedure can be used to operate on different numbers, or that it can
be used in different overall contexts. However, if different operations were carried
out, one would be tempted to say that the definition of the procedure had changed.

Turing reflected these intuitions in the machine table notation by introducing
variables for symbols and m-configurations, and by allowing m-configurations to
be denoted not simply by names, but by expressions known as m-functions. Tables
containing these extensions were called skeleton tables.

The skeleton table notation is best appreciated by means of an example. The
table below defines a machine which will locate the first occurrence on the tape of
a particular symbol, denoted by the variable α.39 If α does occur on the tape, the

39Turing (1936), p. 236.
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scanned square at the end of the computation will be the one containing the leftmost
α and the final m-configuration will be that denoted by the variable C; if there are
no αs on the tape, the final m-configuration will be that denoted by the variable B.

m-config. symbol operations final m-config.

f(C,B, α)

{ e

L f1(C,B, α)

not e

L f(C,B, α)

f1(C,B, α)

⎧
⎨

⎩

α C

not α R f1(C,B, α)

None R f2(C,B, α)

f2(C,B, α)

⎧
⎨

⎩

α C

not α R f1(C,B, α)

None R B

This table defines three m-functions, f, f1 and f2. On different occasions of use,
these expressions would denote different m-configurations, depending on the values
supplied for the variables C, B and α. The fact that the three m-functions involved
have the same name, distinguished by a subscripted index, was an informal naming
strategy used to emphasize that they are parts of a self-contained table with a single
unified purpose.

When the machine defined by this table starts, it is in m-configuration f(C,B, α),
in which it moves left until it reaches the beginning of the tape. The machine then
moves to m-configuration f1(C,B, α) and begins to search for an α. If an α is
found, the machine moves to the ‘success’ m-configuration, C, and the computation
ends. If a blank square is found the machine moves to m-configuration f2(C,B, α),
and otherwise it moves one square to the right. The behaviour of the machine in
m-configuration f2(C,B, α)is the same as in f1(C,B, α), with one exception: the
discovery of a blank square means that two blanks in a row have been found, and
hence that the end of the tape has been reached. In this case the machine goes to the
‘failure’ m-configuration, B.

Skeleton tables therefore introduce the familiar logical apparatus of variables and
functions into the machine table notation. It should be noted that m-functions have
a different significance depending on whether they appear in the first or last column
of a table. In the first column they behave rather like λ-expressions, binding the
variables that appear in that row: this can be seen by noting that the bound variables
in a row could be consistently renamed without changing the behaviour specified
by the table. In the final column, however, the m-functions are applied in order to
determine the machine’s next m-configuration.

Application of m-functions involves the replacement of the bound variables
by the names of m-configurations and symbols, and the resulting terms, such as
f(d, e, x), denote m-configurations. Such applications enable a skeleton table, like
a function, to be ‘reused’ whenever it is necessary to carry out the process that
it defines. For example, given the following table fragment, a machine in the m-
configuration c will proceed to delete the first occurrence of the symbol x on the
tape.
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m-config. symbol operations final m-config.
c f(d, e, x)

d E e

e . . .

From m-configuration c, the machine will move to the m-configuration specified
by the expression f(d, e, x). This is the first row of the skeleton table above, with the
obvious replacement of d for C, e for B, and x for α. The machine will then search
for the first occurrence of the symbol x on the tape, as specified in the skeleton table.
If this search is successful, the machine will move to m-configuration d, in which
case the currently scanned symbol, the x that has just been located, will be erased.
After erasure, or in the case that no x was found on the tape, the machine will be in
m-configuration e.

Turing defined the general effect of m-function application in the same way as
function application is defined in the λ-calculus, “by repeated substitution (of m-
configurations and symbols in place of variables) in the skeleton tables”.40 Applying
this procedure to the table fragment above, and replacing expressions like f(d, e, x)

with a simple m-configuration name such as f, yields the following expanded table
in the basic notation without variables and m-functions.

m-config. symbol operations final m-config.
c f

f

{ e

not e

L

L

f1

f

f1

⎧
⎨

⎩

x

not x

None
R

R

d

f1

f2

f2

⎧
⎨

⎩

x

not x

None
R

R

d

f1

e

d E e

e . . .

In practice, of course, this substitution would remain implicit and use of the m-
function f in the original table would be understood as the invocation of an operation
to find a particular symbol. In this way, skeleton tables provide a mechanism for
building complex tables out of simpler and independent components. Furthermore,
m-functions allow the instructions for a particular task to be defined once and then
used many times. There may be many occasions in a complex computation when
specific symbols must be located: once the skeleton table is defined, this can be
achieved simply by writing f, with suitable arguments, as the final m-configuration
of some row in the table.

40Turing (1936), p. 236.
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Thought of in this way, an analogy can be drawn between skeleton tables and
the open subroutines or macro instructions found in later programming languages,
as noted by Knuth and Trabb Pardo and more recently by Copeland.41 However,
a richer historical understanding of Turing’s motivation for the introduction and use
of skeleton tables is gained by viewing it in the light of contemporary practice. As
noted above, the strategy of defining complex functions in terms of simpler ones was
commonly used by writers on recursive functions and effective computability.42 In
this context, Turing’s use of skeleton tables appears as a natural extension of the
same strategy to the new domain of machine tables.

Substitution and Recursion In Gödel’s original definition of recursive functions,
new functions could be defined in terms of old ones by using the two techniques
of substitution and recursive definition. Turing used both techniques in the machine
table notation to enable the definition of new m-functions.

Substitution, in this context, was defined by Gödel as the “substitution of some of
the preceding functions at the argument places of one of the preceding functions”.43

In the machine table notation, this means allowing m-function expressions to appear
in the argument positions of the application of an m-function. As in the case of
recursive functions, this provided a powerful mechanism whereby new operations
could be built up in terms of those already defined. For example, Turing gave the
following definition of an operation e to erase the first occurrence of symbol a on
the tape:44

m-config. symbol operations final m-config.
e(C,B, α) f(e1(C,B, α),B, α)

e1(C,B, α) E C

This table defines an m-function e(C,B, α) which will erase the first occurrence
of the symbol α on the tape and then move to m-configuration C. If no occurrence
of α is found, the machine moves to m-configuration B. The machine first moves
directly to an m-configuration defined by the skeleton table for the m-function f,
which finds the first occurrence of α on the tape. If the symbol is found, the machine
will moved to the m-configuration specified by the first parameter of f; this is a new
m-configuration e1 which will erase the symbol before moving to the ‘success’ m-
configuration C.

Although the syntax used here for nested m-function applications is identical to
the standard functional notation, it is important to note that it implies a different
order of evaluation. In a functional expression of the form φ(ψ(x)), the function
ψ(x) is evaluated first, and its value used in the evaluation of φ. In the m-function
f(e1(C,B, α),B, α), however, the effect is that the computation denoted by the m-
function e1 takes place after that denoted by f.

41Knuth and Trabb Pardo (1980), p. 201, Copeland (2004a), p. 12.
42See Skolem (1923) and Kleene (1935a, 1935b) for further examples.
43Gödel (1931), p. 159, footnote.
44Turing (1936), p. 237.
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The m-function e(C,B, α) will erase the first occurrence of α on the tape, but if
all occurrences of αs are to be deleted, this operation needs to repeated until none
remain or, in other words, until it fails. Turing gave the following recursive definition
of an m-function to achieve this:45

m-config. symbol operations final m-config.
e(B, α) e(e(B, α),B, α)

The m-configuration e(B, α) will erase all occurrences of α from the tape and
then go to state B. It is important to note here that there are two distinct m-functions
in this table, both denoted by e, and distinguished only by the fact that one takes
two and the other three parameters. A machine in m-configuration e(B, α) moves
straight to an application of the m-configuration e(C,B, α) defined in the previous
table; this will delete the first occurrence of α. If this succeeds, the machine will
move to the success m-configuration, which in this case is simply e(B, α), and this
process will repeat as often as necessary to delete the second and any subsequent
occurrences of α. Eventually, there will be no more αs on the tape and the deletion
will be unsuccessful, and the machine will move to the m-configuration B.

Free Variables The final syntactic feature of the notation provides a way to pass
the value of the currently scanned symbol to the final m-configuration without hav-
ing to name it, by allowing ‘free’ symbol variables, which are not among the ar-
guments to the initial m-function, to appear in the second column of the tables.
In the table below, the m-configuration pe prints the symbol β at the end of the
tape and then goes to the m-configuration C. This operation is then used in an m-
configuration c1 which copies the currently scanned symbol at the end of the tape.46

m-config. symbol operations final m-config.
pe(C, β) f(pe1(C, β),C,

e

)

pe1(C, β)

{
Any
None

R,R

Pβ

pe1(C, β)

C

c1(C) β pe(C, β)

In the first two lines, β is a parameter, or bound variable, and the value supplied
when the row is called will be substituted in the remainder of the row. In the line
defining c1, β is free: the effect is that it will temporarily be bound to the scanned
symbol, whatever that is, and that symbol will be supplied as a parameter to pe.
Turing explained this as follows:

The last line stands for the totality of lines obtainable from it by replacing β by any symbol
which may occur on the tape of the machine concerned.47

45Turing (1936), p. 237.
46Turing (1936), p. 237.
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In other words, the line defining c1 can be thought of as a shorthand for the lines

mconfig. symbol operations final m-config.
c1(C) 0 pe(C,0)

c1(C) 1 pe(C,1)

. . .

where there is exactly one line for each symbol used by the machine.
At this point the question arises whether every skeleton table written using the

abbreviations and conventions that Turing has introduced can be represented by a
table in the unextended notation. Turing asserted this, but did not provide a proof.
He considered the features of the extended language to be convenient abbreviations,
and wrote that “[s]o long as the reader understands how to obtain the complete
tables from the skeleton tables, there is no need to give any exact definitions in this
connection” and “a table can always be put in this [simple] form by introducing
more m-configurations”.48

4.6 Universal Machines

Turing initially stressed the role of memory in human computation: an individual
machine simulates the behaviour of a human who is performing a calculation by
following a memorized procedure. However, humans can also compute by following
written instructions, as in the case where a new procedure is being carried out for the
first time. Turing described another scenario in which written material is required to
enable a computation to proceed:

It is always possible for the computer to break off from his work, to go away and forget all
about it, and later to come back and go on with it. If he does this he must leave a note of
instructions (written in some standard form) explaining how the work is to be continued.
This note is the counterpart of the “state of mind”.49

In the extreme case we can imagine that the computer only performs a single step
of the computation in each period of work.

If we imagine that the computer also forgets the details of the procedure being
carried out, or perhaps that each step is performed by a different computer, it is clear
that the note of instructions must comprise a description of the procedure as well as
a record of the stage the computation has already reached. In terms of machines, this
means that the note must include the machine table as well as details of the current
m-configuration and the symbols on the tape.

Now, consider the case of a person who is able to interpret a note of instructions
and carry out the basic operations involved in computation. It appears plausible that
they would be able to perform any computation whatsoever, regardless of whether

47Turing (1936), p. 238.
48Turing (1936), pp. 236, 239.
49Turing (1936), p. 253.
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or not they knew the details of the procedure involved. A person with this ability
would have a kind of ‘universal’ skill, and would not be limited to carrying out a
specific set of memorized procedures.

The ability to interpret and carry out instructions itself appears to be an effective,
or ‘mechanical’ skill, at least if it is assumed that the instructions are sufficiently
explicit and detailed. This raises the question of whether it is in fact mechanizable,
of whether it would be possible to construct a single machine which would be able
to perform any computation. Turing answered this question in the affirmative, by
explicitly defining such a universal machine, which he called U .

U is a Turing machine which can be supplied with the machine table for any
other Turing machine T . It works through the steps that T would have performed,
recording on its tape all the details of the configurations that T passes through in
the course of a computation. Matters can be arranged so that U writes down exactly
the output symbols that T would write down, even though the internal details of
the computation carried out are different. U is therefore “a single machine which
can be used to compute any computable sequence”,50 and the existence of U is
a demonstration that the process of following explicitly given instructions is itself
a mechanical, effective procedure. As Turing later put it, “we should consider the
[universal] machine as doing something quite simple, namely carrying out orders
given to it in a standard form which it is able to understand”.51

Turing began the construction of the universal machine by formalizing the simple
form of machine table to which all tables can be reduced. This format is referred to
as the standard form of a table. It is assumed that an enumeration q1, . . . , qm of
the m-configurations used in the table is given, and also an enumeration S0, . . . , Sn

of the symbols which can appear on the tape, including an explicit representation
of a ‘blank’ symbol to denote an empty square. A machine table in standard form
consists of a number of lines each of which has one of the following forms:

qiSjSkLqm,

qiSjSkRqm,

qiSjSkNqm.

Here qi and Sj denote the initial m-configuration and scanned symbol, and qm and
Sk the final state and symbol. L, R and N represent the three basic operations of
moving one square to the left, one square to the right, or staying in the same position
on the tape. Each line defines the behaviour of the machine when the current m-
configuration is qi and the scanned symbol is Sj . When the machine reaches this
configuration in the course of a computation, the following events will take place.
The symbol Sk will be written to the scanned square; if Sj and Sk are the same,
the effect is that the symbol is unchanged, but this form of description allows this
case to be subsumed into the case where a new symbol is written. The machine then

50Turing (1936), p. 241.
51Turing (1946), p. 21.
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moves one square to the left or right, or stays put, and the final m-configuration
is qm.

For a concrete example of standard form, consider the first example table on
p. 80. It has four m-configurations and uses three tape symbols: let S0 represent a
blank square, S1 the symbol 0 and S2 the symbol 1. Assuming that the tape contains
the symbol S0 in every square at the beginning of the computation and starts in the
m-configuration q1, the following table defines a machine which prints the unending
sequence 010101 . . . on alternate squares of the tape.

q1S0S1Rq2,

q2S0S0Rq3,

q3S0S2Rq4,

q4S0S0Rq1.

A universal machine must be able to examine the table of another machine. This
can be achieved if it is defined how a machine table can be represented on the tape
of the universal machine. For this purpose, Turing defined a further representation
of machine tables, which he called their standard descriptions.

A standard description of a machine is an encoding of a table in standard form
into the specific set of symbols used by the universal machine. Turing’s universal
machine uses the symbols A, C, D, L, N , R and ; to represent the standard form
of tables. The m-configuration qi is represented by the symbol D followed by i

occurrences of A; the symbol Sj is represented by the symbol D followed by j

occurrences of C; L, N and R represent themselves and each line in the standard
form table is prefixed by ;. The standard description for the table given above in
standard form would therefore be:

;DADDCRDAA;DAADDRDAAA;DAAADDCCRDAAAA;DAAAADDRDA.

Standard descriptions are one-dimensional sequences of symbols, and therefore
comprise an encoding scheme which enables machine tables to be represented on a
tape, and hence read by other machines. Like Kleene and Church, Turing went one
step further and produced an arithmetization of his notation, thereby associating a
unique natural number with each machine table. This representation was only used
for theoretical purposes, however, and did not form part of the definition of the
universal machine.

Turing’s Universal Machine Turing gave a completely explicit definition of the
universal machine U using the machine table notation. He first defined a number of
general-purpose skeleton tables, and the table for U itself is broken down into nine
subtables, each with a single well-defined role to play in the overall computation.

For present purposes, the most important thing is to understand how the execu-
tion of T is represented on the tape of U . The progress of T is defined by its table, by
the symbols written on its tape, and by the position of the currently scanned square.
In general, these last two factors will change at every step of the computation.
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U therefore keeps a record on its tape of the complete contents of the tape of T
at each stage of the computation, along with the standard form of T ’s table. During
the course of a computation, the structure of U ’s tape is as follows:

;DADDCRDAA︸ ︷︷ ︸
instruction

;DAADDRDAAA:: : DCDAADCC : 0 : DCDDAADDCC︸ ︷︷ ︸
complete configuration

.

The instructions making up the table of T appear in standard form at the start of
the tape, terminated by the special symbol ::. The remainder of the tape is occupied
by complete configurations, also in a standard form. These record the contents of
T ’s tape at a particular point in the computation, along with a note of the position
of the currently scanned square. These complete configurations are separated by
colons; at each stage of the simulation U will write the figure, if any, produced by
T at that stage, followed by the next complete configuration.

A complete annotated account of the tables comprising Turing’s definition of
U is given in the Appendix; this gives a very good idea of how the machine table
notation could be used in the definition of larger computational processes.

4.7 The Concept of a Formal Language

The second area of research to be considered in this chapter is the development of
a mathematical theory of a formal languages themselves. Logicians were familiar
with the similarity between the syntactic operations involved in the definition of a
formal notation and the recursive, or ‘inductive’, definitions used in mathematics.
For example, in an early paper Church commented on an informal explanation of the
structure of the well-formed formulae of his system, saying that “[t]his is a definition
by induction”.52

Gödel made this idea precise by employing the technique of arithmetization and
defining syntactic properties as recursive number-theoretic functions. As described
above, a number of logicians subsequently provided an explicit arithmetization of
their notations and commented on the theoretical role of the encoding. Kleene, for
example, wrote that “[t]he operations on symbols which occur in the computation
have a similarity to ordinary recursive operations on numbers”, and Church referred
to “the now familiar remark that, in view of the Gödel representation and the ideas
associated with it, symbolic logic in general can be regarded, mathematically, as a
branch of elementary number theory”.53

This insight made the development of a mathematical theory of formal languages
possible, a development associated particularly with the work of Alfred Tarski and
Rudolf Carnap.54 This section briefly describes the major features of their account
of formal languages, which later served as the theoretical framework within which
programming languages were studied.

52Church (1932), p. 352.
53Kleene (1936a), p. 727, Church (1936), p. 94, footnote 8.
54Tarski (1933), Carnap (1937, 1939, 1942).
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Object Language and Metalanguage The starting point of this account was the
distinction drawn between the language under investigation, or object language, and
the metalanguage, the language in which the investigation was carried out. This dis-
tinction originated in Hilbert’s notion of metamathematics, or the study of the formal
properties of mathematical systems. Gödel was one of the first people to make ex-
plicit use of this distinction: in the technical parts of his 1931 paper, he used distinct
logical symbols to distinguish the object language P from the metamathematical
notation used to define recursive functions over the expressions of P by for the two
cases.

For Tarski, the importance of the distinction between object and metalanguage
lay in the fact that not every language possessed “terms belonging to the theory
of language”,55 and so in general it would not be possible to discuss the syntax,
say, of a language in that language itself. Carnap made the link to syntax explicit,
writing that “we are concerned with two languages: in the first place the language
which is the object of our investigation—we shall call this the object-language—
and, secondly, with the language in which we speak about the syntactical forms of
the object-language—we shall call this the syntax-language”.56

This distinction raised the possibility of the need for an unending hierarchy of
metalanguages. Carnap argued against this view, emphasizing that arithmetization
provided a general technique whereby a language rich enough to contain the theory
of the natural numbers could, without fear of contradiction, function as its own
syntactic metalanguage.57

Different metalinguistic resources were needed for different purposes. For the
purposes of logical syntax, Carnap only needed a metalanguage in which he could
describe the syntax of the object language, hence his use of the more specific term
‘syntax language’. Tarski’s semantic investigations, however, required the ability to
describe not only the syntactic forms of object-language sentences, but also their
meanings. Tarski therefore demanded that the metalanguage was expressive enough
to contain a translation of each expression of the object language: “the fact that the
metalanguage contains both an individual name and a translation of every expres-
sion . . . of the language studied will play a decisive part in the construction of the
definition of truth”.58

Syntax The first aspect of the metatheory of logic to be addressed in detail was
that of syntax. Formal languages were originally characterized by the fact that their
structure and properties could be discussed without any reference to the meaning
of expressions in the language. Tarski wrote that formalized languages were those
which could be described using “only those concepts which relate to the form and
arrangement of the signs and compound expressions of the language”, and Carnap

55Tarski (1933), p. 167.
56Carnap (1937), p. 4, emphases in original.
57Carnap (1937), p. 53.
58Tarski (1933), p. 172.
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stated that “[a] theory, a rule, a definition or the like is to be called formal when no
reference is made in it either to the meaning of the symbols (for example, the words)
or to the sense of the expressions (e.g. the sentences), but simply and solely to the
kinds and order of the symbols from which the expressions are constructed”.59

Formal syntax was therefore understood to be the theory of the purely structural
properties and relationships of the expressions of a language. Carnap thought of the
syntactical description of a language as containing two aspects:

The rules of the calculus determine, in the first place, the conditions under which an expres-
sion can be said to belong to a certain category of expressions; and, in the second place,
under what conditions the transformation of one or more expressions into another or others
may be allowed. . . . The two different kinds of rules are those which we have previously
called the rules of formation and transformation—namely the syntactical rules in the nar-
rower sense . . . , and the so-called logical laws of deduction.60

The rules of formation described the structure of the expressions of a language,
and defined which expressions constituted meaningful sentences or formulae. Tarski
characterized the important aspects of the rules of formation by two properties:

(α) for each of these languages a list or description is given in structural terms of all signs
with which the expressions of the language are formed; (β) among all possible expressions
which can be formed with these signs those called sentences are distinguished by means of
purely structural properties.61

Property (α) specified that the alphabet of the language should be given in purely
structural terms. The expressions in a language were all sequences, grammatical or
not, of signs in the alphabet, and Tarski gave an axiomatization of the operation
of concatenation by means of which these sequences are formed. The sentences of
the language were those expressions which were ‘well-formed’, and property (β)
said that it should be possible to distinguish the subset of well-formed expressions,
or sentences, within the complete class of expressions purely by looking at their
structural properties, or in other words without referring to any interpretation of
those expressions.

As the quotation above indicates, Carnap seems at this time to have thought of
deduction as being an intrinsic part of a formal language. Tarski was more open
minded, and commented that “formalized languages have hitherto been constructed
exclusively for the purposes of studying the deductive sciences”, but for him too the
relationship of entailment between sentences was of particular interest. The study of
proofs had made it apparent that much of the notion of entailment could be captured
in formal terms, and so dealt with as part of logical syntax. Tarski summarized the
way in which this was typically done in two further properties. Property (γ ) stated
that a set of sentences called axioms should be specified in purely structural terms,
and property (δ) that a number of rules of inference should be specified by which
sentences could be transformed into other sentences.

59Tarski (1936b), p. 403, Carnap (1937), p. 1, italics in original.
60Carnap (1937), p. 4.
61Tarski (1933), p. 166, italics in original.
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Semantics Gödel’s incompleteness result had shown that the syntactic notion of
validity or provability did not in general coincide with the notion of truth. Tarski had
subsequently given a ‘semantic’ definition of truth, so called because it was built
upon a relationship of denotation, or designation, between the terms of a language
and the objects and properties in a suitable domain of interpretation. Building upon
this definition, Morris and Carnap defined semantics as the study of the “relations
between the expressions of [a language] and their designata”.62

Carnap believed that Tarski’s definition of truth was a good example of the type
of semantic definition needed for formal languages. Tarski required that “the sense
of every expression is uniquely defined by its form”.63 One important aspect of this
requirement is compositionality: the meaning of a whole expression is given as a
function of the meaning of its parts, and the way in which the meaning of a whole
expression is arrived at depends solely on its syntactic construction. For example,
Tarski’s definition of satisfaction is based on the syntactic structure of sentences:
for each clause defining how a sentence can be constructed from simpler sentences,
there is a matching clause defining satisfaction of the resulting sentence in terms of
the satisfaction of the simpler sentences.64

The Structure of the Metatheory Tarski’s definition of truth drew attention to a
distinction between purely syntactic accounts of formal languages and a semantic
treatment. This distinction was applied and generalized by Charles Morris as part of
the theory of signs, which Morris based on the process of semiosis, a relationship
between a “sign vehicle”, a “designatum” and an “interpretant”, the “effect on some
interpreter in virtue of which the thing in question is a sign to that interpreter”.65

Considering the three terms in this relationship, Morris defined semantics as the
study of “the relations of signs to the objects to which the signs are applicable” and
pragmatics as the study of “the relation of signs to interpreters”. Noting that signs
normally occur in the context of a system of related signs, “syntactics” was further
defined as the study of the “relations of signs to one another in abstraction from the
relation of signs to objects or interpreters”.66

Carnap restated Morris’s categorization for the specific case of the analysis of
language, distinguishing between “the action, state, and environment of a man who
speaks or hears, say, the German word ‘blau’ . . . the word ‘blau’ as an element of
the German language . . . [and] a certain property of things, viz., the color blue, to
which this man . . . intends to refer”.67 Carnap suggested that all three aspects, which
he called “pragmatics”, “semantics” and “logical syntax”, should be studied as part
of a theory of language.

62Carnap (1939), p. 6.
63Tarski (1933), pp. 165–166.
64Tarski (1933), p. 193.
65Morris (1938), p. 3.
66Morris (1938), pp. 6, 13.
67Carnap (1939), p. 4.
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4.8 The Relationship Between Turing’s Work and Logic

Turing’s 1936 paper has often been described as foundational to the development of
computing and the computer science that soon followed. This chapter has taken a
different perspective, however, emphasizing instead the close relationship between
Turing’s ideas and contemporary work in mathematical logic. This is not an attempt
to deny Turing’s originality, however, but rather to relocate it in the details of his
mathematical practice.

Turing’s use of Gödel’s work fits well with the account of theoretical innovation
as conceptual modelling put forward by Andrew Pickering.68 Pickering viewed this
as a three-stage process, and called the first stage bridging, the discovery of a way
of using the concepts and results of one field to guide the development of some
new area. Turing wanted to take seriously the idea of computation by machines as
a basis for an analysis of computability, and his problem was how to bridge the gap
between the existing discipline of mathematical logic and the more concrete world
of machines. He achieved this by the introduction of the machine table notation,
which provided textual equivalents of potentially physical machines. By treating
machine tables as texts in a formal language, it became possible for Turing to apply
the well-developed resources of formal logic to the study of machines.

Bridging is followed by a stage which Pickering describes as transcription, in
which ideas and techniques from the existing domain are applied, in a more or less
routine manner, to the new area. For example, in his development of the machine
table notation, Turing appears to have systematically imported some key notational
features from more established logical theories into his new domain, as described in
Sect. 4.5. Similarly, Gödel’s technique of arithmetization was transcribed and used
in the definition of the universal machine, as discussed in Sect. 4.6.

Because of the differences between machine tables and conventional languages
of logic such as Gödel’s language P , however, Turing’s approach differs in detail
from Gödel’s. One significant difference originates in the basic semantic distinction
between the languages. The atomic formulae in conventional languages are formed
by applying a predicate to one or more terms, which are in their turn made up from
variables and constants combined with function applications. Semantically, terms
denote objects in some domain of interpretation, and the role of atomic formulae
is to make assertions which can be true or false. More complex formulae can be
built up using truth-functional connectives and quantifiers, and these formulae also
represent assertions and are evaluated for their truth value.

Turing’s machine table language is quite different. It contains three kinds of
terms, representing the symbols that appear on the tape, the m-configurations, and
the primitive actions that can be taken by a machine. More complex terms can be
built up using m-functions. However, there are no predicates, and hence no atomic
formulae and no way of expressing an assertion or a judgement in a machine table.
At this point, the transcription of ideas from mathematical logic breaks down and

68Pickering (1995).
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reveals the need for what Pickering calls filling, or the creation of new material to
fill out or complete the new theory.

The question is, how should the semantics of a machine table be understood?
Turing wrote of his first example, “[t]he behaviour of the machine is described in
the following table”,69 and his informal annotations to subsequent tables take the
form of a description of what the machine would do when in the appropriate m-
configuration. This suggests an interpretation where machine tables and the lines
comprising them are taken to be expressions denoting machine behaviour. Apart
from informal descriptions, however, Turing gives no characterization of machine
behaviour separate from the machine tables themselves, and this interpretation is
therefore left undeveloped.

Later in the paper, in the discussion of the universal machine, Turing makes use
of an alternative interpretation. Tables are translated into standard descriptions in
order to be written on the tape of the universal machine; this is a purely syntactical
transformation, however, which we can assume leaves the semantics of the table
unchanged. Turing then writes that “[t]he S.D. [standard description] consists of a
number of instructions, separated by semi-colons”.70 A very similar interpretation
is suggested by Post, who spoke in terms of a “set of directions” to be given which
would determine the operations performed by a worker.

The use of the word ‘instruction’ to describe lines in machine tables suggests
an interpretation in which lines are treated not as denoting terms but as commands,
as linguistic forms in the imperative, not the indicative, mood. If machine tables
are understood in this way, however, the question arises of how to understand their
semantics: commands are not naturally understood as making assertions, so the kind
of interpretation used for indicative sentences does not seem to apply in this case.

Speaking informally, what we do with commands is to obey them, or carry them
out, actually performing the actions that they specify: Post’s notion of a worker
obeying a set of directions captures this intuition. For the instructions contained in
a machine table, we are interested in the computation that would be performed and
the results obtained by the machine whose behaviour was described by the table.
However, this is precisely what the universal machine does. Given a machine table,
the universal machine will go through the steps involved in obeying the instructions
in the table, and in so doing generate precisely the results that the original machine
would produce. From this perspective, then, the universal machine defines a formal
semantic account of the meaning of machine tables. This is not a semantic account
of the denotational form assumed by Carnap and Morris, but one appropriate to the
imperative nature of machine tables.

Given this, the relationship between Turing’s work and Gödel’s can be presented
by means of the following structural analogy. Both began with the definition of a
formal language, in Gödel’s case the language P and in Turing’s case the machine
table notation. The expressions of the language are then coded by mapping them
into the domain of interpretation of the language. Gödel’s P is a formal language

69Turing (1936), p. 233.
70Turing (1936), p. 243.
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for number theory, so its formulae are encoded as natural numbers. Turing’s notation
describes the behaviour of machines computing with symbols on a tape, so Turing
encodes machine tables as standard descriptions which can be written on a tape,
thus making them accessible to other tables in the same way that an arithmetized
formula of P is accessible to other formulae. Finally, the chosen encoding is used
to express metalinguistic properties of the object language in the object language
itself. For Gödel this involved the definition of recursive functions, which are known
to be expressible in P . For Turing, this must involve the definition of appropriate
machine tables: the example he gave was the universal machine which, as argued
above, defines a semantic account of machine tables in terms of what is involved in
following the instructions they contain.

Morris wrote in 1938:

[Logical syntax] has limited its investigation of syntactical structure to the type of sign com-
binations which are dominant in science, namely, those combinations which from a seman-
tical point of view are called statements, or those combinations used in the transformation
of such combinations. Thus on Carnap’s usage commands are not sentences . . .71

However, Turing’s work of 1936 can be understood as extending the domain of
mathematical logic by introducing the machine table notation as a formal, textual
representation of commands. Further, it has been argued that Turing applied and
generalized existing work in logic, particularly that of Gödel, to give a formalization
of the semantic notion of obeying a command, namely the universal machine.

71Morris (1938), p. 16.



Chapter 5
Automating Control

In October 1945, shortly after the end of the Second World War, a conference on
Advanced Computation Techniques was held at the Massachusetts Institute of Tech-
nology.1 The conference was held to coincide with the first public demonstration of
MIT’s new differential analyzer, but in the event many of the presentations at the
conference were about machines of a very different type. This new type of machine
worked on digital rather than analogue principles, provided a much greater degree of
automation than existing machines, and in some cases held the promise of extremely
fast computational speeds.

The best known of these new machines were American: machines using electrical
relays had been developed in a collaboration between Harvard University and IBM,
and also slightly later at Bell Laboratories, and an electronic machine, the ENIAC,
had been constructed at the University of Pennsylvania. The electronic machines
in particular demonstrated the possibility of attaining computational speeds far in
excess of what could be achieved by electro-mechanical means.

New developments had also been taking place elsewhere, however: in Germany,
Konrad Zuse had constructed a number of mechanical and relay-based machines,
and in the UK efforts to build machines to assist in the task of breaking German
codes had culminated in the development of Colossus, a special-purpose machine
that nevertheless had much in common with the more general-purpose calculators.
In the confused situation at the end of the war, however, Zuse’s machines did not
achieve wide publicity, and even the very existence of Colossus remained classified
information in the UK for many years.

The detailed stories behind the construction of these machines are well known.
There were many differences of detail between them, and the fact that the ENIAC
was the first large-scale electronic machine has often led historians to consider it
separately from the relay machines, and to treat it rather as a precursor of later
developments. However, when viewed from the perspective of the development of
programming, it is evident that a common approach informs the design of all these

1A brief summary of the conference was given by Archibald (1946).
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machines, one which represents a distinctive stage in the development of automatic
computation. This chapter gives a brief description of some of these machines and
the way they were programmed, before drawing some general conclusions on their
common features.

5.1 Konrad Zuse’s Early Machines

In 1935, Konrad Zuse had recently graduated as an engineer from the Technical
University of Berlin and, apparently motivated by a desire to automate the long
and complex calculations he had to perform, left his recently acquired job at the
Henschel Aircraft Company and decided to dedicate himself to building computers.2

He set up what he described as an “inventor’s workshop” in his parents’ apartment in
Berlin, and by 1936 had started work on the Z1, the first in a line of machines leading
in 1941 to the Z3, a device that has been described as the “first fully-operational
program-controlled computing machine in the world”.3

The Z1, which was completed in 1938, was a purely mechanical implementation
of Zuse’s ideas. However, it turned out to be rather unreliable, and so Zuse started
work on its successor, the Z2. This machine had the same basic design as the Z1
but was built with a mechanical memory and a calculating unit built using relays.
Finally, in 1938 he started construction of the Z3, which was again built to the same
design, but this time using relays exclusively. The Z3 became operational in 1941,
but despite being demonstrated to a variety of government departments, was never
actually put to work. It was destroyed in an air raid in 1944.

The Design of Zuse’s Machines According to Zuse’s later reconstruction of the
design process, he began by considering the paper forms that were typically used
to plan manual computations. Numbers were entered in cells at various places on
these forms, and the layout of the form was utilized to indicate the order in which
the operations were to be performed. Zuse gave an example where numbers in the
horizontally adjacent cells of the form were to be multiplied together and numbers
in vertically adjacent cells were to be added.

His first thought was simply to try to mechanize this arrangement, using a two-
dimensional layout in which numbers would no longer be written on paper, but
instead represented by holes punched in the forms. The numbers would be read
and transferred to a calculating unit by a sensing device attached to a mobile arm.
Zuses’s subsequent refinements of this idea included the use of reusable registers
instead of punched holes to store numbers, and then the abandonment of the form
layout altogether. Zuse came to view this as only being of importance for human
computers. A machine, on the other hand, would not benefit from the intuitive hint

2The biographical details in this section are largely taken from Zuse’s autobiography, first pub-
lished in German in 1984. See Zuse (1993) for a translation.
3Ceruzzi (1983), p. 29.
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that adjacent numbers were to be operated on together, and a simple and arbitrary
sequence of registers could be used instead.

A computation for the Z3 was specified by a computing plan, which broke a
formula down into a sequence of the elementary operations required to compute it.
As an example, Zuse gave the evaluation of the formula

√
a2 + b2 = c. If a, b and

c were identified with the registers V1, V2 and V3, respectively, the following plan
would computer the value of c:

V1 · V1 = V4,

V2 · V2 = V5,

V4 + V5 = V6,
√

V6 = V3.

Zuse’s design, therefore, drew a fundamental distinction between a storage unit,
comprising a set of registers which only stored numbers, and a calculating unit.
A computing plan was to be read from a punched tape; a program unit would trans-
mit the numbers of the registers required for a computational step to a selection unit
which was responsible for accessing the required data. The program unit would also
communicate the details of the operation required to the calculating unit.

The basic outlines of this design were modified slightly in the case of the Z3.
A tape reader read commands, passing register addresses to the memory unit, and
a control unit synchronized the machine for performing the requested operation.
Numbers could be entered from a keyboard, and results were output on a numerical
display.4

Programming the Z3 Programming the Z3 was very simple: numbers could be
loaded from the registers into the calculating unit, an operation performed, and the
result transferred back to a register. The calculating unit contained two registers,
R1 and R2. To perform an operation, the first number was loaded into R1, and the
second into R2. The required operation was then specified, and the result placed in
R1. Subsequent load operations placed numbers in R2, so continued calculations
could be easily performed. Finally, the result in R1 could be stored or displayed, at
which point R1 was cleared; the next load operation would then refer again to R1.

As an example of the Z3’s code, Table 5.1 shows the sequence of instructions
required to carry out the calculation shown above. This example makes no attempt
to minimize the number of commands involved in the computation. As the Z3 was
only used for demonstration purposes, it appears that at this stage Zuse did not
consider ways of iterating subsequences of commands or of conditionally executing
certain sections of a program.

4This description, together with the following details on programming the Z3, are taken from Rojas
(2000).
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Table 5.1 A program for
Zuse’s Z3 computer Pr 1 (load a into R1)

Pr 1 (load a into R2)

Lm (form a2 in R1)

Ps 4 (store a2 in V4)

Pr 2 (load b into R1)

Pr 2 (load b into R2)

Lm (form b2 in R1)

Ps 5 (store b2 in V5)

Pr 4 (load a2 into R1)

Pr 5 (load b2 into R2)

Ls1 (form a2 + b2 in R1)

Ps 6 (store a2 + b2 in V6)

Pr 6 (load a2 + b2 into R1)

Lw (form
√

a2 + b2 in R1)

Ps 3 (store
√

a2 + b2 in V3)

5.2 Mark I: The Automatic Sequence Controlled Calculator

In the mid-1930s, Howard Aiken, then a graduate student at Harvard, conceived the
idea of building an automatic calculator to perform scientific calculations. Unlike
Zuse, Aiken did not intend to build the machine himself, but hoped to interest a
company with experience in building calculating machines in his ideas. He initially
contacted the Monroe Calculator Company, but after little progress was made in
negotiations, Aiken succeeded in interesting IBM in his proposals.

Between 1939 and 1943, the calculator was built by a group of IBM engi-
neers, following the design specifications laid down by Aiken. In early 1944, it
was moved from IBM’s research laboratory to Harvard where it became operational
on March 15. A formal dedication ceremony was held on 7 August, an event which
gave rise to considerable bad feeling between Harvard and IBM, who felt they had
not been given sufficient recognition for their role in the development of the machine
and their generosity in donating it to Harvard.

The new calculator was immediately put into service to help solve a wide range
of scientific and mathematical problems. These including ballistic computations,
a question about implosion properties for John von Neumann, and the production of
a new set of tables of Bessel functions. Many of these problems required significant
machine time to complete. The implosion calculation took most of September 1944
to run, and the production of Bessel function tables ran throughout 1945 and much
of 1946, unless interrupted by higher priority problems.

Originally known as the Automatic Sequence Controlled Calculator (ASCC),
once Aiken’s machine was installed at Harvard it acquired the more familiar name of
Mark I. It was the first in a series of machines, the Marks II, III and IV, developed at
Harvard during the 1940s and 1950s. In many ways, these later machines followed
the design of Mark I, and so by the time they were developed were seen as being
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rather conservative, and although performing much useful computation, did not have
the impact on computer developments that Mark I had.

Aiken’s Proposal The clearest description of Aiken’s motivation in designing the
ASCC is contained in a proposal he wrote in 1937 for an “automatic calculating
machine”.5 This proposal formed the basis for Aiken’s initial contacts with IBM.
The proposal makes clear that Aiken had in mind a machine that would provide help
with the growing computational needs of “the mathematical and physical sciences”.
He listed a number of examples, including the tabulation of many new functions.

Aiken situated his proposed machine at the end of long a tradition of mechanical
aids to computation. Babbage’s work is described in some detail, though it is not
clear whether Aiken fully understood Babbage’s plans for the Analytical Engine.
The influence of Babbage’s used of punched cards on Hollerith’s work is discussed,
and Aiken highlighted the fact that commercial uses of Hollerith machines were in
fact carrying out many of the things that Babbage wanted to accomplish.

However, in Aiken’s opinion, the Hollerith machines were not suitable vehicles
for scientific computation. He gave a number of reasons for this, including the facts
that they could not handle positive and negative numbers and that mathematical
functions were not available. He also pointed out that scientific calculations have a
different structure from data processing tasks: whereas a commercial punched card
machine would carry out a single operation on a large data set, represented by a pack
of cards, the reverse situation, that of performing an extended sequence of operations
on a small data set, was what was typically required in scientific computation. He
pointed out the repetitive nature of many computations, and stated that

For this reason calculating machinery designed for applications to the mathematical sci-
ences should be fully automatic in its operation once a process is established.

Aiken described the current computational capabilities of IBM’s punched card
equipment, and appeared to envisage that his new machine would be constructed
out of a suitable set of machines of existing types, linked together. In the light of
this, he wrote that

The whole problem of design of an automatic calculating machine suitable for mathematical
operations is thus reduced to a problem of suitable control design . . . The main features of
the specialized controls are machine switching and replacement of the punched cards by
continuous perforated tapes.

Aiken’s view of the typical calculation that his machine would perform involved
an independent variable which would be incremented in equal steps. The machine
would then calculate the value of the required function for each value of this vari-
able. To carry this out automatically, Aiken defined the Master Control as the part
of the machine responsible for moving numbers from one position in the machine
to another, and starting a particular operation.

5Aiken (1937).
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The Design of the ASCC Aiken planned to build the machine by plugging to-
gether existing IBM products and supplying suitable control facilities. In the end, it
turned out that the requirements of the machine were such that many new compo-
nents were required. However, the overall design of the machine remained that of a
number of connected but functionally distinct components.

The various components of the ASCC were connected by means of the number
transfer bus. The bus was used to convey numbers, which were coded as a series
of timed electrical impulses, between components; numbers consisted of 23 digits
together with a plus or minus sign. The functional components of the machine were
connected to the bus by relays: input relays controlled the transfer of numbers from
the bus to a component, and output relays controlled transfer from a component to
the bus.

The most important components were 72 storage registers. Each register could
hold a single number, and was connected to the bus by input and output relays.
The registers were not simply storage devices: when a number was transferred to
a register it was added to, or subtracted from, the existing contents of the register,
rather than replacing the number already stored there. This essentially replicated the
functionality provided on existing manual register machines.

Whereas addition and subtraction were performed by the registers, a separate unit
was provided to carry out multiplication and division. To perform a multiplication,
say, the numbers to be multiplied together had to be transferred to the multiplication
unit and the multiplication operation started. Once the operation was complete, the
product could be transferred to a register for storage and later use.

The ASCC also contained three interpolation units, which could calculate the
values of functions or return them from data punched on paper tape, and a functional
unit which could evaluate the special functions sin x, log10 x and 10x . Numeric data
could be provided to the machine on 60 constant registers and two card readers.
Numbers had to be entered manually onto the constant registers at the start of a
computation; by contrast, packs of cards could store numbers that could be used
repeatedly. The results produced by the ASCC could be punched onto cards, and
subsequently used as input to a later calculation, or printed on electric typewriters
connected to the machine.

The overall behaviour of the ASCC was under the control of the sequence control
unit. At each step of the computation, this unit was responsible for setting relays so
that a number could be transferred from one location in the machine to another, and
for invoking the operation to be performed, such as the execution of a mathematical
process such as a multiplication or function interpolation.

The sequence unit read commands from a paper tape. A command had three
components, specifying the input source and output destination for the transfer of
a number, and the operation that should be initiated. As well as the mathematical
functions, the operation of reading the next command on the tape had to be explicitly
specified as part of a command; this made it possible to arrange for a computation
to be automatically halted in certain circumstances. Commands were read from the
paper tape in strict sequence: in particular, it was not possible to wind back the tape
or to skip over a command.
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Despite the use of punched cards, and the connection with the Hollerith machines
manufactured by IBM, the overall design of the ASCC more closely resembled a
giant version of the existing manual register machines than a typical punched card
installation. As Comrie had pointed out, the ability to transfer numbers between
registers was the key factor that made register machines suitable for carrying out
scientific calculation, and this was precisely the basic operation carried out by the
ASCC.

Programming the ASCC Commands read by the sequence unit consisted of a
pattern of perforations in the 24 punch positions available on the input tape. These
were divided into three fields of eight positions each. Fields A and B each contained
a coded representation of a location within the machine, while field C defined the
settings of the relays that controlled the operation of the machine. The general form
of a command was “Take the number out of unit A; deliver it to unit B; start op-
eration C”, and according to Aiken and Hopper, a sequence of commands of this
form was sufficient to carry out any computation that used the five fundamental
arithmetical operations.6

Because of the nature of the registers, the operation of addition did not need to
be explicitly specified. A command of the form (21, 7321, 7) would have the effect
of adding the contents of register 3 (code 21) to register 71 (code 7321) and then
advancing to the next command on the tape (operation code 7).7 Subtraction was
performed by forming the complement of the number stored in the A register and
adding that to the contents of the B register. Forming the complement had operation
code 32, so the command to subtract the contents of register 3 from the contents of
register 71 and then execute the next command would be coded as (21, 7321, 732).

The operation of resetting a register to zero was accomplished by subtracting
the contents of the register from itself. This was coded by a command of the form
(21, 21, 7), in which the A and B fields have the same location code. A special
‘reset relay’ detected a command with duplicate location codes,and ensured that the
necessary complement was taken.

Multiplication could not be coded by a single command: two commands were
required to move the numbers to be multiplied into the multiplication unit, and a
third to move the product back to a register. To multiply the numbers in registers
56 (code 654) and 18 (code 52) and store the result in register 13 (code 431) the
following commands would be given:

(654, 761, blank)

(52, blank, blank)

(blank, 431, 7).

6Aiken and Hopper (1946).
7The code numbers represent the columns to be punched in each field of the tape. The location
code 21, therefore, indicates that columns 1 and 2 would be punched, giving a representation of
the binary numeral 00000011, corresponding to register 3.
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In the first command, the 761 code in the B field represents the first register in
the multiplication unit; the command has the effect of transferring the contents of
register 56 to this register. The multiplication unit was designed to compute the first
nine multiples of this number before reading in the multiplier. To allow time for this
to happen, the first command does not contain the operation code 7 specifying that
the sequence unit should immediately read the following command. Instead, control
was passed to the multiplication unit which would instruct the sequence unit to read
the next command when construction of the table of multiples was complete. The
second command simply contains the code for the register containing the multiplier;
its destination was left implicit. The actual multiplication would then take place, and
when complete, the multiplication unit would instruct the sequence unit to read the
third command, specifying the location in which to store the computed product. This
command does contain the ‘continue’ code, 7, in field C, so at this point control was
returned to the sequence unit and the computation would proceed normally.

While the internal operations of the multiplication unit were taking place the
number transfer bus was not in use. It was soon realized that in many cases the
overall time taken by a computation could be reduced by using these intervals to
carry out other operations that did not involve the multiplication unit. This was
accomplished by interposing the necessary commands between the three commands
that defined the multiplication. For example, the code sequence

(654, 761, 7)

(21, 7321, blank)

(52, blank, blank)

(blank, 431, 7)

would perform the same multiplication as in the previous example, but would also
add the contents of register 3 to those of register 71, using the main bus, while the
multiplication unit was computing its table of multiples. The first command ends
with the continuation code instructing the sequence unit to proceed immediately
to the second; when this is complete, the sequence unit pauses and waits for the
multiplication unit to request the next command. This technique clearly required
the programmer to pay great attention to the timing of the computation, to ensure
that the interposed commands are completed by the time the multiplication unit is
ready for its next command.

Division and the computation of function values by means of the interpolators
and the ‘electro-mechanical tables’ for sines, logarithms and exponentials were
coded in a similar way to multiplication, involving the use of multiple commands
and subsidiary sequence control by the specialized units. They also allowed the use
of interposed commands, therefore.

Certain registers were equipped with additional circuits to provide specialized
functionality. These including the provision for storing numbers with 12 or 46 digits
instead of the standard 23, thus increasing either the storage capacity or the precision
of the machine, depending on the needs of particular applications. A particularly
significant extension involved register 72, the so-called check counter, to provide
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a means for checking the results produced during a computation, and halting the
machine if an error was detected. It was argued that all numeric checks could be
reduced to checking whether a given value c was equal to zero, to within a specified
degree of tolerance t . In other words, we need to check if t − |c| > 0. If T and C

were the codes for the registers holding the values of t and c, respectively, such a
check could be coded as follows:

(T , 74, 7)

(C, 74, 71)

(blank, blank, 64).

The first line loads t into register 72 (code 74) and the second subtracts the value
of |c| from the same register, using the special operation code 1 which returned the
negative absolute value of the contents of a register. The operation 64 in the final line
generated a continuation code only if it was detected that the result of the subtraction
was not less than zero. Otherwise, the machine would stop, and the operator would
be required to investigate what had caused the check to fail.

The ASCC could execute automatically any sequence of commands presented to
the sequence unit. However, it was soon recognized that many problems could not
be efficiently represented as a single sequence of commands. In particular, many
problems had an iterative structure, requiring a particular sequence of commands to
be given to the machine many times; for example, problems involving the tabulation
of functions fell into this category.

On some occasions, the iterated commands were simply punched repeatedly on
the sequence tape; however, this involved additional punching, and also preparatory
work to calculate the required number of iterations.8 An alternative strategy was to
physically join the two ends of the tape containing the commands to be iterated, thus
forming a loop, or ‘endless tape’. This enabled the ASCC to carry out the iteration
automatically, but typically meant that a computation would require a ‘starting tape’
to be run before the iteration could begin, thus increasing the amount of operator
involvement required.

These problems were addressed in 1947 by equipping the ASCC with a second
control unit, known as the ‘subsidiary sequence unit’, and defining commands that
would enable control to be switched from one unit to another. In practice, however,
a significant degree of human intervention was still required to run a computation on
the ASCC; the complete documentation for a program included detailed instructions
for the operators of the machine as well as the commands making up the program
itself.

5.3 The ENIAC

The ENIAC was constructed in a collaborative project between the Moore School of
Electrical Engineering at the University of Pennsylvania and the Ballistics Research

8Bloch (1947).
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Laboratory (BRL) of the US Army Ordnance Department at the nearby Aberdeen
Proving Ground. The BRL was committed to the use of mathematics to improve
the state of ballistics, and had been liaising with the Moore School since before the
war. Of particular concern was the production of firing tables for new weapons, and
the ENIAC was intended to carry out the calculations involved in the production of
such tables.

The initial impetus for the Moore School work was provided by John Mauchly
who before the war was professor of physics at a small college near Philadelphia.9

He was interested in meteorology, and in particular in the possibility of automating
the very large calculations required in numerical meteorology. He explored the use
of vacuum tubes to build electronic counters, and in 1941 visited the University
of Iowa and examined an electronic device developed by John Atanasoff which
was intended to solve simultaneous equations. In the summer of 1941, Mauchly
attended a training course in electronics at the Moore School, and subsequently
joined the faculty in the autumn of 1941. While on the course he came into contact
with Presper Eckert, an electronic engineer, and succeeded in interesting him in the
possibility of using electronic technology to construct very high speed calculating
devices.

In 1942, Mauchly wrote a report entitled “The Use of High-Speed Vacuum Tube
Devices for Calculating”, in which he stressed the advantages to be gained from
employing electronic technology to perform automatic calculation:

There are many sorts of mathematical problems which require calculation by formulas
which can readily be put in the form of iterative equations . . . a great gain in the speed
of calculation can be obtained if the devices which are used employ electronic means for
the performance of the calculation.10

The report was submitted both to the Moore School and to the Army Ordnance
Department, but little action was taken until 1943, when it came to the attention of
Herman Goldstine, a mathematician with a background in ballistics who in 1942
had been posted to the US Army Ordnance Department at the BRL.

A significant computational problem faced by the BRL was the timely production
of firing tables for new artillery. A firing table listed properties of the trajectory of
a shell, depending on various external factors, and a large amount of computation
was involved in the production of each table. The development of new weapons was
proceeding at such a pace that the computational resources of the BRL could not
keep up with the demand. Early in 1943, Goldstine came across Mauchly’s report,
and became convinced that electronic technology could provide a solution to the
BRL’s computational needs. A joint project was initiated in April 1943 between
the Moore School and the BRL to develop the ENIAC, or Electronic Numerical
Integrator And Computer.

The ENIAC was designed and built over the subsequent two years; even before
its official completion, it was used to perform calculations for the Manhattan Project

9See Stern (1981) and McCartney (1999) for general accounts of the history of the ENIAC.
10Mauchly (1942).
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in the autumn of 1945, and it was first publicly demonstrated on February 14, 1946,
when it was famously reported as being able to “compute the trajectory of a shell
faster than the shell itself flies”.11 It was then transferred to the Ballistics Research
Laboratory, where it was extensively used until finally being decommissioned in
1955.12

The ENIAC was not the first actual or proposed machine to use electronics for
automatic calculation, but the project was on a far larger scale than its predecessors,
and demonstrated once and for all the feasibility of constructing reliable, large-scale
electronic devices. Although its design was inspired by the need for the production
of firing tables, it was not a special-purpose machine, and in the course of its active
life was used for many other mathematical problems.

The Structure of the ENIAC The ENIAC was a large and innovative machine:
it consisted of 30 functional units, which together contained approximately 18,000
vacuum tubes and 1,500 relays, making it by a long way the most complex electronic
device in existence at the time it was built.13 Its design, however, drew extensively
on existing technology: in the original proposal of April 1943, Mauchly and Eckert
stated that

[i]t is then, in every sense, the electric analogue of the mechanical adding, multiplying and
dividing machines which are manufactured for ordinary purposes,14

and this was particularly clear in the units which performed arithmetic operations.
The most significant of these were the accumulators: the ENIAC possessed 20 ac-
cumulators, each of which could store a single 10 digit number and perform the
operations of addition and subtraction. These units behaved in a similar way to the
ASCC’s registers: when an accumulator received a number, it would be added to or
subtracted from the number already held there. In a further echo of the design of
the ASCC, multiplication was performed by a separate, dedicated unit, and a further
unit was provided to carry out the operations of division and the extraction of square
roots.

The accumulators therefore provided storage for 20 numbers as well as the abil-
ity to operate on these numbers during a computation. Constant numeric data could
be provided on three function table units. Although these were intended to store the
values of tabular function, in fact any numbers known before the start of a calcula-
tion could be stored on them. Numbers could also be stored on a unit known as the
constant transmitter: this was intended to be used for the parameters specific to a
particular computation, and numbers were read into it from standard IBM punched
card reader. If the numeric data produced in the course of a calculation exceeded the

11Burks (1947), p. 756.
12Fritz (1994).
13Goldstine and Goldstine (1946) give a contemporary account of the ENIAC, from which many
of the following details are taken.
14Proposal for ENIAC, 4/8/43, quoted in Marcus and Akera (1996).
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electronic storage available, numbers could be sent to a printer, from which they
would be punched onto cards and later read in again via the constant transmitter.

The remaining three units were the master programmer, which controlled certain
aspects of the overall computations, and initiating and cycling units which provided
the electronic signals which controlled the operation of all the other units.

The Operation of the ENIAC The ENIAC did not read numbers or instructions
directly from punched card or paper tape readers, as the Z3 and ASCC had done. The
mismatch between the slow speed of these mechanical input devices and the very
high speed of the electronic computing circuits made this approach infeasible: the
time taken to read a card would be so long relative to the time taken to process the
number on the card that all the advantages of speed provided by electronics would be
lost. With numeric input, this problem was solved by the constant transmitter, which
transformed the data given on punched cards into a stored electronic form. This
approach was not followed in the case of program commands, however; instead, the
designers of the ENIAC adopted an distributed approach to control.

The individual units of the ENIAC contained program switches, which defined
the operations that unit would perform in a given computation. There was no central
control unit controlling the execution of operations; instead, control was established
by means of electronic signals, known as program pulses, which were passed be-
tween units. When a unit received a program pulse, it would carry out the operations
specified by its program switches, and then emit a program pulse to trigger the next
operation required, typically on a different unit.

The units of the ENIAC were therefore connected by a number of circuits: digit
trunks transmitted numbers, and program trunks transmitted program pulses. Each
trunk was made up of a number of lines along which individual signals could pass.
The operations of the machine were synchronized by means of an electronic signal
generated by the cycling unit. The fundamental unit was the addition time, or the
time taken by an accumulator to perform an addition, 1/5000th of a second.

The master programmer unit controlled certain aspects of the overall flow of
control in a computation. It consisted of ten steppers, each of which received and
counted program pulses and depending on the number of pulses received so far,
sent the subsequent outgoing pulse to one of six different connections. A number
was associated with each of the six outgoing connections: these numbers acted as
thresholds, and when the threshold number of pulses was received, the destination
of the outgoing pulse would change to the next connection. The master programmer
therefore allowed cycles of repeated operations to be defined in a computation.

The program switches on an accumulator allowed it to be set to receive a number,
adding it to or subtracting it from the current contents of the accumulator, or to
transmit a number. A number could also be transmitted as a complement, to enable
it to be subtracted from the contents of the accumulator receiving it. In a single
addition time, an accumulator could receive a number, and transmit its contents
through either or both of its outputs. An accumulator could be set to perform these
operations repeatedly, up to nine times.
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Programming the ENIAC Programming the ENIAC was fundamentally different
from the Z3, the ASCC, or even Babbage’s Analytical Engine. Rather than preparing
a list of commands specifying the operations to be carried out, programmers had to
set the program switches on the individual units manually according to requirements
of a given problem.

For example, consider the basic task of adding the number in one accumulator
to another. The analogous operation on the ASCC would have been coded by a
single command that specified the addresses of the two registers. When executing
this command, the central control unit would ensure that the in and out relays on
the relevant registers were correctly set, the addition would be carried out, and the
control would move on to read the next command from the input tape.

On the ENIAC, by contrast, the programming involved in this operation would
be distributed across the two accumulators involved. The program switches on the
first accumulator would be set to transmit the contents of the accumulator, and on
the second to receive a number and so add it to its existing contents. These program
switches would be set manually before the computation started. At the appropriate
point, a program pulse would be sent to the appropriate switches on both of the
accumulators and the number would be transferred. Either accumulator could then
be set up to transmit a program pulse to the unit which had been set up to perform
the next operation in the program.

In the absence of a central control unit, then, the ENIAC had to be physically
configured to execute the operations required for a given computation in the correct
sequence. Operations were performed when a unit received a program pulse, so a
key factor in programming the ENIAC was to connect the various units together
in such a way that program pulses would be transmitted at the correct time to the
correct units. This was done by physically wiring the relevant units to the program
lines, which connected all the units of the machine; this wiring was done manually
before a computation started.

Given this, it would not have been practical or useful to write down a program for
the ENIAC as a list of commands. Instead, what were essentially wiring diagrams
were used, showing the connections that had to be made between functional units
and program lines to ensure the correct sequencing of operations. In addition, it was
necessary to give the setting of the program controls on the units involved in the
computation.

Figure 5.1 shows how a calculation involving the constant transmitter and three
accumulators could be defined.15 At the beginning of the calculation, accumulators
18, 19 and 20 hold the values n, n2 and n3, respectively; the aim is to replace these
values with n+1, (n+1)2 and (n+1)3. The approach adopted is to make use of the
relationships (n+ 1)2 = n2 + 2n+ 1 and (n+ 1)3 = n3 + 3n2 + 3n+ 1 and to form
the new values by simple addition. The constant value 1 which will be required is
set up on the constant transmitter.

15This diagram is adapted from an example given by Goldstine and Goldstine (1946), p. 108. The
major difference is that Fig. 5.1 shows the program pulses being passed directly between units
whereas the original shows the program lines explicitly, making it harder to following the routing
of the pulses.



112 5 Automating Control

Fig. 5.1 A simple computation on the ENIAC

Each unit involved in the calculation is represented by a box, within which are
shown the program controls that will be used. In this example, the program controls
are simply set to transmit (T) or receive (R) a number; this number of times this
operation will be repeated is also shown. The digit trunk is not shown: it should be
remembered that any number that is transmitted will be sent to all units, but only
those whose program controls are set to receive a number at that moment will do
anything with it. All other units will ignore it.

The computation proceeds in three stages, and three program lines are used to
transmit the program pulses which move the machine from one stage to another.
Figure 5.1 is not a realistic wiring diagram: the lines labelled A1, A2 and A3 do not
represent the program lines explicitly, but simply show the effect of the connections
made in routing the program pulses from one unit to another. As a result, the diagram
makes it clear that the output of one program control could be connected via a
program line to the inputs of more than control, and hence distribute a program
pulse to more than one unit.

The number stored on each unit is shown at the bottom of each box, along with
the changes made to this value as the computation proceeds. To start the calculation,
a program pulse is sent on line A1 to program controls in accumulators 19 and 20. As
a result, accumulator 19 is set to transmit its contents three times, and accumulator
20 is set to receive seven numbers. The effect is that n2 is added three times to
accumulator 20, following which it is still set to receive four numbers.
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Once this transmission is over, accumulator 19 emits a program pulse on line
A2. This is sent to accumulator 18, which prepares to transmit its contents three
times, and also to accumulator 19 itself, which prepares to receive two numbers.
Accumulator 18 then transmits its contents, n, three times: this is added twice to the
contents of accumulator 19 and three times to accumulator 20, which after this is
still set to receive one more number.

Once this transmission is over, accumulator 18 emits a program pulse on line A3,
which is sent to the constant transmitter and accumulators 18 and 19. As a result,
the constant transmitter transmits the number 1 once, and this is added to all three
accumulators. At this point there are no outstanding transmit or receive operations
set on any unit, and the computation finishes.

Cycles and the Master Programmer It is easy to see from this example how a
simple cycle of operations could be set up. If the output of the program control on the
constant transmitter in Figure 5.1 was connected to program line A1, the program
pulse it emitted would be detected by accumulators 19 and 20 and the computation
would start again from the beginning. This would set up an endless repetition of the
operations involved, however. It was the job of the master programmer to control
cycles which would only repeat a fixed number of times.

Suppose that it was required to repeat the calculations shown in Fig. 5.1 and to
print out the values in the accumulators after every seven repetitions. In addition,
the whole computation should stop once 200 sets of results have been printed. A di-
agram illustrating the use of the master programmer to enable this level of control
is shown in Fig. 5.2.16

The master programmer contained ten units known as steppers, which received,
counted and emitted program pulses. Each stepper had a number of counters on
which the number of program pulses received was recorded. In addition, a stepper
could be in one of six stages, and a number could be associated with each stage, by
entering it manually on switches provided on the master programmer. Two steppers
are shown in Fig. 5.2: stepper 1 has the number 200 set on its first stage, and 1 on its
second, and stepper 2 has 7 set on its first stage and 1 on its second. Unused stages
are all set to zero.

Each stage of a stepper had its own output connection, and the output connection
that a program pulse was sent to depended on the current stage of the stepper and
the number of pulses received. At the beginning of a calculation, all steppers were in
stage 1 with the count set to zero. So long as the count was less than the number set
for the current stage, the program pulse would be emitted at the output connection
for that stage. When the count reached the stage total, however, the stepper advanced
to the next stage, and the count was reset to zero. Stepper in Fig. 5.2, for example,
will first receive 200 pulses in stage 1, emitting the pulses to the input of stepper 2.
After 200 pulses, however, it will move to stage 2.

16This diagram is adapted from an example given by Goldstine and Goldstine (1946), p. 109. As in
Fig. 5.1, the routing of program pulses between units is shown directly, Note that the labelling of
the program lines is consistent with the original diagram, and that the program pulses are emitted
in the order A1, A2, A3, A5, A6, A4.
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Fig. 5.2 A looping computation on the ENIAC

The overall flow of the computation shown in Fig. 5.2, then, is as follows. The
first program pulse is sent from the initiating unit to stepper 1, which is in stage
1. The pulse is then sent to stepper 2, which is also in stage 1 and so emits it on
program line A1, causing the operation in the cycle to be performed for the first
time. Once the operations are completed, a program pulse is sent from the constant
transmitter on program line A5 to the input of stepper 2. The count on this stepper
will be increased to 2, and as it is still in stage 1, a pulse will be emitted on line A1
and the operations performed again. This cycle will be repeated seven times; stepper
2 will then move to stage 2 and the program pulse will instead be emitted on line A6
and sent to the printing unit. Once printing is complete, a pulse will be sent on line
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A4 to stepper 1 which will increment its count and send a pulse back to stepper 2.
Stepper 2 will have been reset to stage 1 at this point, and so another cycle of seven
calculations followed by a print operation will be performed. This whole process
will be repeated 200 times, and stepper 1 will then move to stage 2. As this marks
the end of the computation, the output from this stage is not shown on the diagram.

The basic capability of the master programmer, therefore, was to enable the
ENIAC to be set up to perform cycles of operations a fixed number of times. Each
stepper could program a sequence of six such cycles, and cycles could be nested to
a maximum depth of 10 by connecting one stepper to another as shown in Fig. 5.2.

Conditional Execution Like the Z3 and ASCC, the original design of the ENIAC
made no provision for affecting the flow of control based on the values calculated
so far. However, experience soon made clear the necessity for such a capability in
most programming tasks, and modifications were made to the machine to provide
basic discrimination facilities.

The basic modification was to provide each stepper with a direct input which
moved the stepper from one stage to the next regardless of the number of pulses
counted so far. Furthermore, it was arranged that digit lines as well as program lines
could be attached to the direct input. So, for example, a digit line representing the
sign of a number could be connected to a stepper’s direct input in such a way that if
the number was greater than zero, the stepper moved on to the next stage. Depending
on the output connections made, this meant that the ENIAC could perform different
operations depending on the sign of a particular number in an accumulator.

5.4 The Bell Labs Relay Machines

In 1938 George Stibitz, who worked at the Bell telephone company’s laboratories,
suggested the possibility of building calculating machines using standard telephone
relays in conjunction with teletype apparatus. A prototype ‘complex computer’ was
constructed which was capable of adding, subtracting, multiplying and dividing
complex numbers; this machine was demonstrated in 1940. During the war, fur-
ther experience was gained by building two special-purpose machines, a so-called
‘relay interpolator’ and a ‘ballistic computer’.

In 1944 the decision was taken to develop a general-purpose computing system
using relays, and by the beginning of 1948 two copies of this machine had been built,
one of which was installed at the National Advisory Committee for Aeronautics
and the other at the Ordnance Department at the Aberdeen Proving Ground. These
machines were on a much larger scale than their special-purpose predecessors, and
provided a greater degree of automation.

In many ways, the overall purpose and design of the Bell Laboratories Relay
Computing System, as it became known, resembled those of the ASCC, though
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there were many differences of detail.17 It was intended to support the increasing
need for numerical computation in research and development, and was thought of as
an ‘adding machine’ that could be controlled to perform the four basic arithmetical
operations as required.

The Design of the Bell Labs Machine Each of the two installations of the Bell
Labs machine was viewed as a computing ‘system’ comprising two computers. The
computers in a system were linked together, and results could be passed between
them, depending on the needs or the scale of the computation being undertaken.
Program tapes could be set up on independent tape readers which were connected
to a computer when ready; in this way, the operation of the machines was interrupted
as little as possible by the slow manual process of mounting tapes.

Each machine contained 15 storage registers and eight ‘sign registers’, which
just recorded the sign of a number. A single calculating unit provided support for
the five mathematical operations of addition, subtraction, multiplication, division
and the extraction of square roots. Unlike the ASCC and the ENIAC, the registers
were purely storage devices without even the capability to perform addition, and
this single calculator was used to carry out all numerical operations.

A problem for the machine was coded on a number of input tapes, consisting of
a single problem tape, and up to five subsidiary routine tapes. A problem control
unit read the problem tape, directing the overall behaviour of the machine and also
reading numeric data from the tape. Program orders were read and executed by the
routine control unit, which had the ability to carry out certain conditional orders.
Precomputed function data could be read from a number of table tapes, and results
could be printed on teletypes or punched onto paper tape.

A more complicated form of control was provided by a special unit called the
discriminator, which could receive and record the signs of numbers. Control of the
computation could be made to depend on the number of signs received, or on certain
aspects of the pattern of signs, such as a sequence of minus signs uninterrupted by
a positive sign. This rather baroque device could be used to control the situations
under which iterations could be terminated or restarted. However, descriptions of the
machine do not make it clear whether the discriminator was controlled by orders on
the routine tapes, or whether it was set up for a calculation and directly influenced
control when the specified circumstances obtained.

Programming the Bell Labs Machine The overall control of computations was
defined on open-ended problem tapes which could be read in one direction only.
They were divided into a number of ‘problem control sections’ (PCS), each of which
was further divided into subsections of three types. ‘Cycle control sections’ (CCS)
contained the numeric data that were required for a specific computation; orders that
needed to be carried out only once during a computation could be coded in ‘switch

17The Bell Labs machines were described in a presentation by Samuel Williams at the 1947 Har-
vard conference, and in an extended paper by Franz Alt published in the following year. See
Williams (1947) and Alt (1948a, 1948b) for details.
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to routine’ sections (SWR), and instructions to the printer, for example to control
the production of headings for the printed output, were coded in ‘switch to printer’
sections (SWP). Routine tapes contained instructions only, and table tapes contained
precomputed function values, arranged in a hierarchical structure of ‘pages’ and
‘blocks’ designed to make the necessary values easy to retrieve.18

A computation was started by reading the problem tape. Any instructions found
in SWR and SWP sections were immediately executed, but when a cycle control
section was encountered, control was passed to the first routine tape. Routine tapes
were usually endless loops, and orders would be read in until control was eventually
passed back to the problem tape. In the course of this process, numbers could be
read from the current CCS on the problem tape, and control could be passed to
other routine tapes.

The commonest type of order was one which instructed the machine to perform
an arithmetic operation on the numbers stored in two registers, storing the result in a
third register. These orders were coded in single instructions of the following form:

AC − CH = BEO.

In this code, the 15 registers in the machine were denoted by the letters A to O , and
the example above instructs the machine to subtract the number in register C from
that in register A, storing the result in register C. The meaning of each symbol in an
order was dependent on its position. The letters C and H appearing after a register
name instructed the machine to clear or hold (preserve) the number in that register,
respectively. The special symbol EO denoted the end of the order.

Some instructions only required reference to two rather than three registers. To
calculate the square root of the number stored in register A and store it in register B ,
for example, the following instruction might be written:

AC
√ = BEO.

Another type of instruction that only required the specification of two registers
caused a value to be moved from one register to another:

AC ≡ BEO.

In all cases, the names of the source register or registers were followed by a C or
H to specify what should happen to the original contents of the register after the
operation was complete. If an attempt was made to store a number in a register that
was not cleared, an error condition was raised and the machine halted.

Some orders enabled the future course of a computation to be determined on
the basis of values calculated so far. A decision could be made based on the sign
(positive or negative) of the number stored in a register, or on whether such a number
was equal to or different from zero. Instead of simply continuing to the next order,
the machine had the capability of switching to a different section of a routine tape,
switching to a different problem, or halting the computation.

18The terminology of pages and blocks reflects the extent to which table tapes were seen simply as
an automated version of existing manual tables.
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These choices were coded as an extended version of the transfer order illustrated
above. For example, the following order examines the sign of the number stored in
register A:

AC ≡ PRBEO,

continuing to the next order if it was negative, but moving to beginning of section 2
of the current routine if it was positive.

5.5 The Significance of the Automatic Calculators

The primary purpose of the machines described in this chapter was to automate
scientific calculation, and to a larger extent than in any previous devices, this aim
was indeed achieved. It is striking, however, how much manual intervention was still
required in order to carry out a significant computation. On the ASCC, for example,
operators were required to plug the machine in specified ways, to change tapes at
certain points, and to watch out for specified events such as the machine stopping
when a programmed check failed.

Functional Scope All the machines carried out numerical computation of the kind
needed in scientific and engineering applications. These included the solution of
systems of differential equations, numerical solution of differential equations, and
perhaps most notably the production of tables using the well-known methods of
interpolation and differencing. A major consumer of this new computing power was
the Ordnance Department of the US Army, which required the production of firing
tables for the many new weapons developed at its Proving Grounds at Aberdeen,
Maryland, during the war.

The development of novel techniques in numerical analysis meant that the only
operations required to perform such computation were the fundamental arithmetic
operations of addition, subtraction, multiplication and division. The basic pattern
of a computation was to carry out an extended sequence of these basic operations,
along with the marshaling and distribution of the input data provided and the results
that were produced.

These machines were therefore required to automate the process of carrying out
a defined sequence of these basic operations, a goal which also required some way
of storing and retrieving the numbers to be operated on. It is notable that this was
essentially the same goal that Babbage had in the design of the Analytical Engine.
Aiken in particular was very conscious of this continuity, to the extent of including
a paper on Babbage’s work in the session entitled ‘Existing Calculation Machines’
at the conference he organized in 1947.19 However, it does not appear that prior
knowledge of Babbage’s work was in fact influential in the design of the ASCC and
other machines.

19The Navy Department Bureau of Ordnance and Harvard University (1947).
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Within the scope of this overall project, different choices were made about which
operations counted as ‘basic’. For example, after designing a dividing unit for the
ASCC, Aiken claimed that it would have been more efficient to have provided a unit
for finding the reciprocal of a number, and then performing division by multiplying
by the reciprocal. The Bell Labs machine, on the other hand, provided the extraction
of square roots as a fifth basic operation.

Analogy with Manual Computation In the 1930s, scientific computation was
still largely carried out by human computers, with the aid of calculating machines
of the register or punched card types, as discussed in Chap. 3. Despite the efforts of
Comrie and Eckert, the paradigmatic situation was that of single human computer
carrying out a paper-based process, and using mechanical assistance for carrying
out individual numerical operations.

This paradigm served, explicitly or implicitly, as the basis for the design of the
automatic calculators. The analogy was made explicit by Samuel Williams, writing
in 1947 about the Bell Labs machine.20 Williams presented two adjacent diagrams
of virtually identical structure, one depicting the process of manual computation,
and the other the design of the Bell Labs machine itself.

In the manual scenario, the computation was specified by an algebraic formula
together with some numerical problem data. The actual computation was carried
out by a calculator capable of performing at least the basic arithmetical operations;
in the course of a computation, numbers might be stored on a work sheet and tables
would be used to look up the precomputed values of the functions involved in the
formula. The results of the computation would be recorded on an answer sheet.

In the design of the automated machine, the control function performed by the
formula was instead carried out by a routine control unit, and the numeric data were
provided by a problem control unit. A calculator provided the same functionality as
in the manual case, but storing registers took the place of the work sheet and a table
control unit provided precomputed function values. Finally, a printer control unit
took care of the production of the final results.

This analogy makes it clear what the scope of the new machines was. Control
of the manual computation was the task of the human computer, responsible for
interpreting the formulae provided and making appropriate decisions at key points
about how to proceed. In the design of the machine, however, control is built in:
four of the seven components shown by Williams have the word ‘control’ in their
titles. Furthermore, the human capacity to make decisions is replaced by a new unit,
called the discriminator, which is fully integrated into the machine structure.

Physical Representation of Computational Structures A striking feature of the
machines considered in this chapter is the way in which the overall structure of a
computation was represented in the physical structure of the machine, rather than in
the orders presented to it. The initial focus of the designers of these machines was
on the computation itself, the sequence of mathematical operations carried out by

20Williams (1947).
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the calculator. Automatic sequence control meant, in practice, giving the machine
a list of commands on a paper tape or cards: the machine would then read these
commands and perform the associated operations.

Even this was not a universal characteristic, of course. On the ENIAC, even the
sequencing of operations was represented physically, being defined by the way in
which the accumulators and the other units of the machine were connected to the
program lines.

There was initially no clear distinction between the list of commands provided
to the machine and the operations performed. However, it soon became clear in
practice that something more complex than a simple correspondence between the
two was required to make best use of the machines and to ease the task of coding for
them. In particular, the fact that many computations were iterative in structure and
required the repetition of a relatively small set of commands was soon recognized.

However, the command tapes of the ASCC and the Bell Labs machines could
only be read in one direction: it was not possible to reverse the tape to go back to an
earlier point and repeat a sequence of commands. One way to address this problem,
adopted on the ASCC, was simply to punch the required commands on the input
tape as many times as necessary. However, this was clearly a time-consuming and
error-prone practice, and also involved additional preparatory work to ensure that
the number of repetitions was adequate for the purposes of the computation.

An alternative approach was to make a tape ‘endless’, for example by gluing its
ends together. The commands on such a tape would be executed over and over again
until a suitable check stopped the entire computation. This basic approach was also
followed on the Bell Labs machine’s routine tapes.

The designers of these machines converged on a common view of the overall
structure of a typical computation This consisted of a main sequence of instructions,
which would be run through once, and a number of subsidiary sequences, which
would usually be executed repeatedly. In one way or another, this structure was
reflected in the physical design of the machine.

Tables A further feature shared by many of these calculators, and one that clearly
links them with the existing practice of manual calculation, is the use that they made
of tables of functions. Tables were a key resource for human calculators, one which
provided easy reference to thousands of precomputed values for many common and
application-specific functions. The design of all the automatic calculators discussed
in this chapter included specific hardware components to replicate this ability.

The production of tables for use in manual calculation was a key application of
most of these machines. The development in the Second World War of many new
types of ordnance meant that there was a great need to produce firing tables for new
weapons. Outside of military applications, the ASCC for example was for a number
of years primarily used for the production of new tables of Bessel functions.

These examples show how these machines, far from representing a revolutionary
break, represented an evolutionary step in computing practice. Current practices
were inscribed in their very design, and in application they added to the available
computational power, but without changing its nature.
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In practice, it soon became apparent that there was a need for commands which
could affect the course of a computation. The ASCC, for example, had commands
for the use of the check counter, and later for switching control between sequence
mechanisms. It is notable, however, that these facilities were for the most part not
foreseen or provided as part of the original design of the machines.

This is compelling evidence that the need to think about how to automate control
beyond the requirements of a simple sequence of operations was far from obvious
to the designers of these machines. In particular, the idea of defining a code which
would contain both arithmetical and control operations, which seems so natural in
hindsight, was far from obvious to computer designers in the 1940s.

Subsequent Developments Although computers based on relays were destined to
be made obsolete by the vastly greater computational speeds available on electronic
machines, developments on these projects continued throughout the 1940s and early
1950s. Electronic machines were at this time still highly experimental and untested,
and the relay machines represented the most significant source of computational
power.

In 1942, for example, Zuse started work on a further machine, the Z4. This had
a similar overall design to his earlier machines, having a mechanical memory and
electro-mechanical arithmetic and control units. This machine had rather an exciting
life. Towards the end of the war, when it was almost completed, it was evacuated
from Berlin to Göttingen to protect it from air raids. It was assembled and ran a few
calculations, but was then moved again to an underground ordnance factory in the
Bavarian Alps; as the war came to an end it ended up in storage in the village of
Hopferau, where Zuse and his family were then living.

In 1949, however, Eduard Stiefel from the ETH in Zurich heard that the Z4 had
been saved, and decided to acquire it for use at the ETH. In 1950, Zuse made a
number of modifications to the machine that had been requested by Stiefel. The
most significant change made to the programming of the machine was the inclusion
of two conditional instructions.21

Zuse’s original design had included Start, Jump and Stop instructions. The Z4
would read instructions from the tape, but not execute them until a Start instruction
was encountered. A Jump instruction would cause the machine to skip instructions
until another Start instruction was encountered, and a Stop instruction would bring
the computation to a halt. Stiefel’s modifications provided versions of the Jump and
Stop instruction which would only take effect when the number in the first register
of the calculating unit was negative.

The machine was moved to Zurich in September 1950, and remained in continual
use for solving problems in numerical analysis until 1954.

21Speiser (2000).





Chapter 6
Logic and the Invention of the Computer

The logical investigation of the concept of effective computability, described in
Chap. 4, and the development of the machines described in Chap. 5 were largely
independent of each other. In particular, Zuse and Aiken were primarily motivated
by the desire to avoid having to perform long calculations by hand and were, at
least initially, ignorant of developments in logic. Zuse, for example, came up with
what he thought was a novel notation to describe certain features of the design of
his machine, only to be told later that he had in effect rediscovered the propositional
calculus.1

By contrast, at least some logicians were aware of the importance of practical
computation. By the 1930s, calculating machines and punched card machinery were
widely used in industry and commerce, and techniques for organizing large-scale
scientific calculations were being developed. Turing used the example of a human
performing complex calculations to motivate the design of his abstract machines,
and it has been suggested that his use of the machine concept in the definition of
computability may have been partly motivated by his awareness of the processes of
mechanization employed, for example, in the British Civil Service.2

In the following decade computing machinery developed extremely rapidly.
A major cause of this was the extensive computational requirements of the Second
World War, not only in traditional areas of applied mathematics but also notably in
cryptanalysis. By 1950, the machines described in Chap. 5 were obsolescent, partly
because of their limited computational capacity, but also because the design princi-
ples on which they were based had been superseded. Of particular significance was
the adoption of the so-called stored-program design: unlike the earlier machines,
which, with the exception of the ENIAC, read their instructions from an external
medium such as punched cards or paper tape, the later machines held instructions
internally, in the same medium that was used to store the data being operated on. The
stored-program concept was evolved by the ENIAC group in collaboration with the

1Zuse (1993), p. 46.
2Agar (2003).
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mathematician John von Neumann, who joined them on a consultancy basis in 1944,
and was first described in a proposal describing the ENIAC’s successor, known as
the EDVAC.

Much recent historical writing has tended to place these events in a wider context
and rather than describing a self-contained episode of technological innovation, has
emphasized continuities within the wider history of computation. The history of
pre-electronic calculating technology has been extensively described,3 as have the
links between the office automation industry and the post-war computer.4 However,
even in this broader historiographical tradition, the EDVAC is seen as a watershed.
In their history, entitled simply Computer, Campbell-Kelly and Aspray devoted a
chapter entitled “Inventing the Computer” to the topic. Similarly, Ceruzzi’s History
of Modern Computing dated the advent of the modern period to the completion of
the ENIAC and the writing of the Draft Report in 1945, and Ceruzzi later wrote that
“the stored-program principle remains a valid focus for computing’s history”.5

During the 1940s, the logical and practical approaches to computation became
increasingly intertwined. From the war years onwards, Turing contributed to the
development of various machines in Britain, and in the United States von Neumann
was centrally involved in the planning and construction of new machines, starting
with the EDVAC in 1944. After 1950, it became common to describe electronic
digital computers as being instantiations of Turing’s concept of a universal machine,
and stored-program computers are to this day described as being based on the ‘von
Neumann architecture’.

These observations raise the question of the way in which theory and practice
interacted in the development of computing technology. A widely accepted account
sees the adoption of the stored-program design as being the crucial innovation on
the way to the development of the ‘computer as we know it’, an innovation in which
logic played a crucial role in guiding the direction of development. This view was
clearly expressed by the historian of computing, Michael Mahoney:

it is really only in von Neumann’s collaboration with the ENIAC team that two quite sepa-
rate historical strands come together: the effort to achieve high-speed, high-precision, auto-
matic calculation and the effort to design a logic machine capable of significant reasoning.6

The image of the confluence of two separate lines of research has been used by a
number of other writers, such as Eloina Peláez, who wrote that “[t]he development
of the stored-program computer can be seen as the result of the coming together of
two quite different traditions”.7 In her account, the two strands had been separated
by the increasing formalization of mathematics since the nineteenth century and
were then reunited by the practical demands of the war.

3Aspray (1990a).
4See Aspray (1990a) and Agar (2003).
5Ceruzzi (2001), p. 51.
6Mahoney (1988), p. 116.
7Peláez (1999), p. 359.
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Other writers have made a stronger assertion, namely that the confluence of these
two strands was a necessary precondition for the emergence of the computer in its
modern form. Stan Ulam, for example, a mathematician who became an computer
user at a very early stage thanks to his involvement with the Manhattan project,
wrote that “computer development became possible only by a confluence of at least
two entirely different streams” and, in his influential biography of Turing, Andrew
Hodges described Turing and von Neumann as “assembling the necessary ideas
for the digital computer out of the conjunction of Hilbertian rationalism and Second
World War technology”.8 Forceful arguments in favour of this theory have also been
made by the logician and computer scientist Martin Davis.9

These arguments rely to a considerable extent on retrospective interpretation,
however, and some contemporary sources suggest that a widespread belief about
the importance of logic to the practical development of the computer only emerged
some time after the fact. For example, in the mid-1950s the logician Hao Wang
wrote that:

Turing’s theory of computable functions antedated but has not much influenced the exten-
sive actual construction of digital computers. These two aspects of theory and practice have
been developed almost entirely independently of each other.10

This chapter considers the role that logic played in the development of the stored-
program computer, and the interaction between theory and practice in this process.
A notable recent trend has been to emphasize the importance of logic. Mahoney, for
example, strengthened the ‘confluence’ account, writing that “[a]s logic machines,
the first stored-program computers . . . emerged as byproducts of theoretical inquiry
into the nature and limits of logical thought”.11 This idea has been reinforced by
Davis, whose writings give the impression that the first stored-program computers
were created by means of a relatively straightforward implementation of Turing’s
abstract machines.

This line of thought leads to a strong conclusion about the nature or essence of
the computer, namely that it can best be characterized by its relationship with logic,
rather than by its relationship with numerical analysis or electronic engineering.
Martin Davis expressed this view very clearly, writing that “a computing machine is
really a logic machine”.12 This view gains some support from the general-purpose
nature of computers, their ability to be used not only for numerical computation,
but for any task involving information processing. According to Davis, the general
applicability of computers can be explained by their origins in Turing’s concept of
a universal machine.

The best place to begin an examination of these views is by considering the events
and the intellectual background that led to the development and introduction of the
stored-program concept.

8Ulam (1980), Hodges (1983), p. 556, emphases added.
9Davis (2000).
10Wang (1957), p. 63.
11Mahoney (1989).
12Davis (2000), p. xii.
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6.1 The Origins of the Stored-Program Computer

Historians have traditionally located the origin of the computer in its modern form
in work carried out at the Moore School of Engineering, part of the University of
Pennsylvania, during the period 1943–1946.13 The major practical effort during this
period was the development of the ENIAC, described in Chap. 5, by a group of
engineers led by John Mauchly and Presper Eckert.

The group soon recognized that there were several shortcomings in the design of
the ENIAC, however, and during 1944 work started on a follow-up project. Later
that year, the ENIAC team came into contact with von Neumann, who joined the
group as a part-time consultant. This appears to have been a fruitful collaboration,
which led in 1945 to the writing of the First draft of a report on the EDVAC,14 an
internal report describing aspects of the design of a proposed successor machine to
the ENIAC. Although it was not intended for publication, this report was widely
circulated and is generally credited with articulating for the first time the high-level
design principles underlying virtually all subsequent computers.

The ENIAC became operational at the beginning of 1946, and both it and the ‘von
Neumann design’ were described in detail at a summer school held later that year at
the Moore School.15 Many of those attending this summer school were subsequently
active in developing computers, including Maurice Wilkes from Cambridge whose
EDSAC was very closely modelled on the machine described by von Neumann.
The Draft Report therefore had an immediate and direct influence on subsequent
computer developments.

The most significant perceived shortcoming of the ENIAC was not do with its
construction or the design of its electronic circuitry, but rather the ease with which
it could be programmed. As described in Chap. 5, the ENIAC had to be manually
reconfigured for each different problem it was applied to, a time-consuming and
laborious process. This was recognized by its developers to be a problem, but it was
felt that in the ENIAC’s intended context of use the approach was tolerable, because
it was assumed that the machine would be running the same program, to calculate
firing tables, for long periods of time. This was noted in a progress report written at
the end of 1943:

No attempt has been made to make provision for setting up a problem automatically. This is
for the sake of simplicity and because it is anticipated that the ENIAC will be used primarily
for problems of a type in which one setup will be used many times before another problem
is placed on the machine.16

The inconvenience of programming the ENIAC was soon recognized to be a
significant limitation, however, and one of the goals for the subsequent project was
to come up with a practical way of programming an electronic machine whose speed

13See Campbell-Kelly and Aspray (1996) and Ceruzzi (2003), for representative accounts.
14von Neumann (1945), hereafter simply ‘Draft Report’.
15Campbell-Kelly and Williams (1985).
16ENIAC (1943).
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made the familiar approach of reading instructions from punched cards impractical.
In January 1944, Eckert proposed a solution that was partly mechanical and partly
electronic, making use of magnetic storage devices.17

Eckert’s proposal envisaged a rotating shaft with a number of discs or drums of
different types mounted on it. Some of these, the type (a) devices, would be able to
be magnetized and demagnetized quickly, and therefore would provide “a method of
storing, in some usable code, those characters or digits which must be used later or
indicated”. Type (b) devices, on the other hand, would be engraved in some suitable
way to “generate such pulses or other electronic signals as were required to time,
control and initiate the operations required in the calculations”. These descriptions
suggest that Eckert was envisaging different storage media for data and program
code, with numbers being stored on the volatile type (a) discs while the type (b)
discs played the role of punched cards or paper tape in other machines, holding
the program instructions. The proposal therefore clearly addressed the problem of
reprogramming the ENIAC: the machine Eckert described could be reprogrammed
simply by changing the disc containing the program code. However, he went on to
say:

If multiple shaft systems are used, a great increase in the available facilities and for allow-
ing automatic programming of the facilities and processes involved may be made . . . this
programming may be of the temporary type set up on alloy discs or of the permanent type
on etched discs.

The statement that “this programming may be of the temporary type”, using the
type (a) discs, seems to imply that data and instructions could be stored in the same
medium. However, Eckert does not appear to view this as an intrinsic feature of his
machine. It is hard to draw firm conclusions from such a short document, but in this
proposal Eckert does not appear to be thinking of a machine whose design is based
round a single, integrated store.

In mid-1944, the ENIAC group was joined on a part-time basis by von Neumann.
Although originally a pure mathematician, von Neumann was extensively involved
in consulting activities to the US government concerned with various aspects of
applied mathematics, an activity which during the war years occupied much of his
time. His consulting activities began in 1937 at the BRL, coincidentally enough, and
after the outbreak of war quickly intensified. A significant involvement was with the
Manhattan project at Los Alamos, where he advised on the shaping of explosions
by the appropriate placement of explosive charges.

Many of these projects brought with them significant computational challenges,
and von Neumann developed a serious interest in the current state of computational
equipment. This interest was fostered by a visit to England in April 1943, when
he visited the Nautical Almanac Office in Bath and helped to work out a program
for an interpolation formula to be run on the punched card equipment being used

17Eckert (1944).
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there.18 Following this visit, von Neumann wrote to Oswald Veblen that “I have
also developed an obscene interest in computational techniques”.19

During 1943 and 1944, von Neumann carried out on behalf of the Manhattan
project a survey of the existing technology for automatic computation. In January
1944, he contacted Warren Weaver, then head of the Applied Mathematics Panel of
the Office of Scientific Research and Development, asking for information about the
current situation. Weaver directed him to research groups at IBM and Harvard, Bell
Labs and Columbia University, which von Neumann subsequently visited. None
of these projects seemed to be in a state enabling them to be of immediate use
to Los Alamos, however. Von Neumann also gained first hand experience of the
computational equipment then in use at Los Alamos. In a letter of 1 August, 1944 to
Robert Oppenheimer, von Neumann summarized his findings, and demonstrated a
“deep and practical understanding of many of the important concepts of high-speed
digital computation”.20

Curiously, it appears that despite this interest in automatic computation, von
Neumann had not, before August 1944, either been told about or come across the
ENIAC. Weaver had not mentioned the project, despite the fact that he undoubtedly
knew of its existence. Various arguments have been put forward for this omission. In
a book emphasizing the contributions made by Eckert and Mauchly, Nancy Stern has
suggested that this was because the ENIAC project was held in low esteem by the
scientific establishment, partly because neither Eckert and Mauchly had at this stage
much of a scientific reputation.21 Alternatively, it has been suggested that Weaver
would not have known of any significant progress on the ENIAC, as he would have
been unlikely to have read the first progress report, dated 31 December 1943, before
responding to von Neumann’s enquiry in January 1944.22

Whatever the reason, it appears that von Neumann had not heard about the
ENIAC project until he met Herman Goldstine, apparently by chance, who told him
about his involvement in the development of an electronic calculating device.23 Well
aware by this time of the limitations of electromechanical technology, von Neumann
was quick to appreciate the potential of the increased computation speed promised
by the electronic ENIAC and its planned successor, and soon became involved with
the Moore School group as a consultant.

Von Neumann therefore brought to his work on the EDVAC proposal a detailed
practical knowledge of current calculating technology, and a keen appreciation of
the need in many areas of applied mathematics for greater computational capacity
than was then available. This complemented the existing orientation of the ENIAC
group towards the applications of automated calculation in areas such as ballistics
and meteorology.

18Todd (1974).
19Aspray (1990b), p. 27.
20Aspray (1990b), p. 33.
21Stern (1981).
22Aspray (1990b), p. 35.
23Goldstine (1972), p. 182.
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Progress reports on the EDVAC project give some insight into von Neumann’s
contributions to the work. The first report, in March 1945, does not mention the
stored-program idea specifically, but does indicate what the group was expecting
from the Draft Report:

The problems of logical control have been analyzed by means of informal discussions
among Dr. John von Neumann, . . . Dr. Mauchly, Mr. Eckert, Dr. Burks, Capt. Goldstine
and others. . . . Points which have been considered during these discussions are flexibility
of the use of EDVAC, storage capacity, computing speed, sorting speed, the coding of prob-
lems, and circuit design. . . . Dr. von Neumann plans to submit within the next few weeks
a summary of these analyses of the logical control of the EDVAC together with examples
showing how certain problems can be set up.24

A second report, in September 1945, goes into more detail about the historical
background of the project, and claims that the stored-program concept dates from
Eckert’s 1944 proposal, though describing it in terms which go beyond what Eckert
had originally written:

. . . in January, 1944, a “magnetic calculating instrument” was disclosed. . . . An important
feature of this device was that operating instructions and function tables would be stored
in exactly the same sort of memory device as that used for numbers. . . . [Von Neumann]
has contributed to many discussions on the logical controls of the EDVAC, has prepared
certain instruction codes, and has tested these proposed systems by writing out the coded
instructions for specific problems. Dr. von Neumann has also written a preliminary report
in which most of the results of earlier discussions are summarized.25

The attribution of credit for the invention of the stored-program concept has
proved to be very controversial. Turing’s universal machine has been retrospectively
interpreted as embodying the notion, and some writers have therefore argued that
credit ought ultimately to be given to Turing. The relationship between Turing and
von Neumann and the extent to which von Neumann’s contribution to the EDVAC
was influenced by his knowledge of Turing’s work are discussed further below.

In his autobiography, Zuse quoted diary entries made in 1937 and 1938 which
appear to state, very briefly, the idea of holding both program and data in the same
store.26 However, Zuse did not build a machine based on these principles before
1945, and his work was in any case unknown to the EDVAC team.

Prior to 1945, the other computer developers in the USA do not seem to have
considered storing data and instructions in the same store. Like Zuse’s machines,
the ASCC and the Bell Labs machines were programmed by means of externally
supplied programs. In 1940, Norbert Wiener described a computing machine which
would use electronic technology and store data on a rewritable tape, in a manner
very reminiscent of Turing’s machines.27 Wiener was thinking of a special-purpose
machine, however, and despite incorporating many of the features of the post-1945
machines, his account did not include any mention of a stored program.

24Eckert et al. (1945).
25Anonymous (1945).
26Zuse (1993), p. 53.
27Wiener (1940).
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Testimony from the members of the Moore School group themselves is mixed,
and is coloured by the fallout from a split between von Neumann and Eckert and
Mauchly. Goldstine and Arthur Burks, who both had a background in mathematics
and logic, went to work with von Neumann at Princeton, and were clear that credit
should be given to von Neumann. Eckert and Mauchly, on the other hand, contested
this. Von Neumann himself appears never to have claimed credit for the idea, and
in the EDVAC progress reports, as quoted above, he was credited primarily for his
work on logical control and coding.

The documentary evidence, summarized above, does not give an unequivocal
answer to the question of who first came up with the stored-program idea. Drawing
on Eckert’s 1944 disclosure in particular, some writers have concluded that priority
should be assigned to Eckert and Mauchly.28 This places a heavy weight on a rather
thin text, however, and neglects the substantial differences between the disclosure
and the later Draft Report. A reasonable compromise position, which seems to go
as far as the evidence will allow, was taken by Ceruzzi, who wrote that “Eckert
and Mauchly had conceived of something like a stored-program principle by 1944,
but . . . it was von Neumann who clarified it and stated it in a form that gave it
great force”.29 The relationship between logic and the stored-program concept is
discussed further in Sect. 6.4.

6.2 The Early Development of Cybernetics

The previous section described the origins of the idea of the stored program in the
context of the field of automated calculation and the search for a feasible method of
programming electronic computers. Logic seems not to have played an explicit role
in this process, but there was one relevant area where logic and computers did come
together at this time, namely in the emerging subject of cybernetics. This section
briefly describes the origins of cybernetics, and in particular the involvement of
Turing and von Neumann with the subject in the period before 1945.

Von Neumann first met Turing in Cambridge in 1935, and they later came into
contact in Princeton, where Turing was spending the years between 1936 and 1938
working with Alonzo Church. In his thesis, William Aspray related testimony from
Stephen Rosser about this period, in which the interaction between Turing and von
Neumann is described in the following terms:

Even as early as his student days at Princeton, Turing argued vociferously that computing
machines could be built which would adequately model any mental feature of the human
brain. Von Neumann . . . was attracted to Turing because of their common interest in math-
ematical logic. Turing’s view on the computer and the brain was disputed by von Neumann,
and the two discussed the issue on many occasions while Turing was completing his disser-
tation. This is purportedly what inspired von Neumann’s interest in computing. Von Neu-

28Stern (1980), Metropolis and Worlton (1980).
29Ceruzzi (1998), p. 22.
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mann and Turing separated when Turing returned to England, leaving both determined to
build computers to test the possibility of mathematically modelling the human brain.30

There are a number of anecdotal references to von Neumann’s interest in Turing’s
work and the high regard in which he continued to hold it. According to Stan Ulam,
von Neumann spoke highly of Turing’s work and “played with Turing machine-like
mechanical descriptions of numbers” in the summer of 1938.31 In a letter quoted
by Brian Randell, Stan Frankel describes how in 1943 or 1944, while working at
Los Alamos, von Neumann urged him to read Turing’s 1936 paper. Frankel went on
to say that an “essential role” played by von Neumann was “in making the world
aware of these fundamental concepts introduced by Turing”.32

It is striking, however, that it appears to have been the analogy between Turing’s
machines and the brain that caught von Neumann’s imagination. This analogy was
also central to the work of Norbert Wiener who at the beginning of the war started
work at MIT’s Radiation Laboratory with Julian Bigelow, an engineer, investigating
ways of making antiaircraft artillery more effective.33

As the speed of aircraft increased, human gunners were unable to track them
visually, and the accuracy of fire was decreasing; given the strategic importance of
aerial bombardment in modern warfare, this was a significant problem. Wiener and
Bigelow developed new mathematical methods enabling an aircraft’s future position
to be more accurately predicted given the details of its course so far. This process
involved a feedback loop: an initial prediction would be used to aim the gun, and
information about the accuracy of the resulting fire would be used in the calculations
leading to the next prediction.

Wiener and Bigelow described the more philosophical aspects of this work in
an essay written with the physiologist Arturo Rosenblueth, a friend of Wiener’s.
This paper described an approach to the study of behaviour which emphasized the
observable inputs to and outputs from an object; this ‘behaviouristic’ approach was
contrasted with a ‘functional’ approach which described behaviour by giving an
account of the internal structure and workings of objects. As a result, Wiener and his
collaborators were able to argue that “a uniform behavioristic analysis is applicable
to both machines and living organisms”.34 One motivation for this approach was
that it offered a uniform approach to studying systems, such as antiaircraft batteries,
that had both human and mechanical components.

The paper outlined a taxonomy of behaviour, and gave an account of the notion
of acting with a purpose. The authors concluded that “[a]ll purposeful behavior may
be considered to require negative feedback”, a principle which was later commonly
seen as encapsulating the central message of cybernetics.35 Throughout, the paper

30Aspray (1980), pp. 147–148.
31Aspray (1990b), p. 178.
32Randell (1972), p. 10.
33Heims (1980), p. 182ff.
34Rosenblueth et al. (1943), p. 22.
35Wiener (1948), p. 19, Wisdom (1951).
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stressed the similarities between the behaviour of machines and organisms. In the
absence of “any one or more qualitatively distinct, unique characteristics present
in one group and absent in the other”, the behaviourist approach allowed both to
be studied in the same way, the authors further observing that “[s]uch qualitative
differences have not appeared so far”.36

At about the same time, the psychologist Warren McCulloch and logician Walter
Pitts described a model according to which aspects of the behaviour of a network
of neurons, such as that found in the brain, could be captured in a logical calculus.
McCulloch later described the work as having been directly inspired by Turing’s
paper on computability, claiming that they had viewed themselves as “treating the
brain as a Turing machine”.37 The paper concluded by claiming that neural nets
equipped with a tape could “compute the same numbers as can a Turing machine”,
a result viewed as providing a “psychological justification of the Turing definition
of computability and its equivalents”.38

Von Neumann read this paper in 1943, apparently at the recommendation of
Wiener and Bigelow, and according to Bigelow, was “enormously impressed” with
the work of McCulloch and Pitts.39 In 1948 he described the main result of the
work as being the demonstration that behaviour which can be “defined at all logi-
cally, strictly, and unambiguously in a finite number of words can also be realized
by . . . a formal neural network”.40 In other words, McCulloch and Pitts had linked
the earlier work on computability with a plausible model of the brain, thus involving
logic centrally in the emerging cybernetic framework.

Von Neumann immediately became involved in the area. An early result of this
involvement was a conference organized by Wiener, von Neumann and Howard
Aiken, held in Princeton in January, 1945. This meeting was described by Wiener
as follows:

The first day von Neumann spoke on computing machines, and I spoke on communication
engineering. The second day Lorente de Nó and McCulloch joined forces for a very con-
vincing presentation of the present status of the problem of the organization of the brain.
In the end we were all convinced that the subject embracing the engineering and neurology
aspects is essentially one, and we should go ahead with plans to embody these ideas in a
permanent program of research.41

Plans to found a research institute subsequently came to nothing, however, and
the most concrete outcome of the 1945 was a series of conferences held over the
next few years under the auspices of the Macy foundation. These conferences were
of great importance to the history of cybernetics but of less immediate relevance to
the development of the computer and computer programming, and so will not be
discussed further here.

36Rosenblueth et al. (1943), p. 22.
37McCulloch (1948).
38McCulloch and Pitts (1943), p. 129.
39Aspray (1990b), pp. 180, 313, note 23.
40von Neumann (1948), p. 412.
41Wiener (1945).
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Because of constraints on travel during and immediately after the war, and the
classified nature of his other work, Turing himself was only peripherally involved in
these developments, however. However, he was visited by Wiener and McCulloch
during the war, and spent the early months of 1944 in the United States, visiting
Claude Shannon at Bell Labs.42

6.3 Von Neumann’s Design for the EDVAC

By 1945, then, von Neumann was not only deeply involved in the field of automatic
calculation, but was also playing a leading role in an informal group of scientists
exploring analogies between computing machines and the neuronal structures of
the brain. This section illustrates how these two approaches were made explicit in
the Draft Report, which presented not simply an electronic calculator, but rather a
machine in which, to echo Wiener, “the engineering and neurology aspects were
essentially one”.

The report began by defining the purpose of the EDVAC, characterizing it as
“a very high speed automatic digital computing system”. This term was then ex-
plained as denoting “a device, which can carry out instructions to perform calcula-
tions of a considerable order of complexity—e.g. to solve a non-linear partial differ-
ential equation in 2 or 3 independent variables numerically”. Von Neumann wrote
later that “the device is primarily a computer”,43 reinforcing the idea that the ED-
VAC was thought of as a machine to automate mathematical calculation; the Draft
Report nowhere suggested any wider uses for it.

Von Neumann next addressed the overall structure of the machine. The design
was based on a small number of relatively high-level components, each with one
specific function to perform. This was very different from the design of the ENIAC,
which was based upon a set of 20 identical accumulators, each capable of carrying
out a number of different functions, such as storing data, performing arithmetic
operations and controlling the sequencing of subsequent operations. In the EDVAC,
by contrast, components would not be replicated, and each would have a single
clearly defined role.

The first component that was considered was motivated by the EDVAC’s intended
role as a calculator:

Since the device is primarily a computer, it will have to perform the elementary operations of
arithmetic most frequently. These are addition, subtraction, multiplication and division . . . It
is therefore reasonable that it should contain specialized organs for just these operations.44

In a discussion of an advanced electronic device, the use of the word ‘organ’ is
striking. It introduces a metaphor that runs through the text of the draft report, that

42Hodges (1983).
43von Neumann (1945), Sect. 1.1, emphasis in original; Sects. 1.2, 2.2.
44von Neumann (1945), Sect. 2.2.
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of the machine viewed as a body. Like those of the body, the organs of the EDVAC
are characterized primarily by the functions they perform. Observing that the list
of operations that the machine should be able to perform directly is debatable, von
Neumann concluded that “[a]t any rate, a central arithmetical part of the machine
will probably have to exist, and this constitutes the first specific part: CA”.45

The report then went on to consider how the course of a computation would be
controlled:

The logical control of the device, that is the proper sequencing of its operations, can be most
efficiently carried out by a central control organ. If the device is to be elastic, that is as nearly
as possible all purpose, then a distinction must be made between the specific instructions
given for and defining a particular problem, and the general control organs which see to it
that these instructions—no matter what they are—are carried out. The former must be stored
in some way—in existing devices this is done as indicated in 1.2—the latter are represented
by definite operating parts of the device. By the central control we mean this latter function
only, and the organs which perform it form the second specific part: CC.46

In its description of a machine which will be supplied with and will carry out
instructions for different computations, this passage is reminiscent of the universal
machine described by Turing. Von Neumann does not draw attention to this analogy,
however, and as the reference to “existing devices” makes clear, did not view this as
a particularly innovative feature of the EDVAC design.

The identification of a CC again distinguished the EDVAC from the ENIAC, and
placed it firmly in the mainstream of established practice in automatic computation.
In virtually all preceding machines, including Babbage’s Analytical Engine, Zuse’s
machines, the ASCC and the Bell Labs machine, the instructions for a program were
read and interpreted by a single device which then configured the machine so that
the requested operation was carried out.

The report then continued by noting that “[a]ny device which is to carry out long
and complicated sequences of operations . . . must have a considerable memory”,47

using a term perhaps calculated to reinforce the machine/body metaphor. Among
other requirements, it was noted that the instructions for the current calculation must
be remembered as well as any intermediate results generated during the calculation,
and this raised the question of whether different types of memory would be required:

While it appeared that various parts of this memory have to perform functions which differ
somewhat in their nature and considerably in their purpose, it is nevertheless tempting to
treat the entire memory as one organ, and to have its parts as interchangeable as possible for
the various functions enumerated above. . . . At any rate, the total memory constitutes the
third specific part of the device: M.48

This decision to have a single uniform memory is the innovation that makes the
Draft Report the canonical source of the stored-program idea. Again, although von
Neumann did not comment on this, the design is reminiscent of Turing’s universal

45von Neumann (1945), Sect. 2.2, emphases in original.
46von Neumann (1945), Sect. 2.3, emphases in original.
47von Neumann (1945), Sect. 2.4.
48von Neumann (1945), Sect. 2.5, emphases in original.
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machine, which used its single tape to store both the information required for, and
that generated in the course of, a computation.

Von Neumann then refined the machine/body metaphor by referring explicitly to
the different roles of neurons in the central nervous system. The metaphor was used
to motivate the introduction of the remaining components of the EDVAC design,
the input and output devices I and O which transfer information from some external
recording medium R to the internal parts (CA, CC and M) of the device.

The three specific parts CA, CC (together C) and M correspond to the associative neurons
in the human nervous system. It remains to discuss the equivalents of the sensory or afferent
and the motor or efferent neurons. These are the input and output organs of the device.49

One effect of this was to draw a further analogy between the internal components
CA, CC and M of the EDVAC and the brain. This analogy was reinforced in the next
section of the report when von Neumann came to consider the detailed structure of
the three internal parts and the elements out of which they were built. Rather than
moving straight to a description of this structure in terms of electronic components
and circuits, he noted that computing devices were typically built out of elements
which had two or more stable states, and could switch between states in response
to various stimuli. He commented that “[i]t is worth mentioning, that the neurons
of the higher animals are definitely elements in the above sense”,50 thus reinforcing
further the connection between brains and computers.

To clarify this, Von Neumann referred at this point, in the only technical reference
in the Draft Report, to McCulloch and Pitts’s abstract model of the neuron. Vacuum
tubes were then presented as components which shared the properties of abstract
neurons and were suitable for the construction of electronic computers. The details
of the EDVAC’s circuits in the remainder of the report were not presented in terms of
tubes, however, as von Neumann wanted to separate issues of design from detailed
considerations of electronics. Instead:

The analogs of human neurons, discussed in 4.2-3. . . seem to provide elements of just the
kind postulated at the end of 6.1. We propose to use them accordingly for the purpose de-
scribed there: As the constituent elements of the device, for the duration of the preliminary
discussion.51

In other words, von Neumann was now presenting the ‘machine as brain’ metaphor
as a substantial structural equivalence, and proposing that at an appropriate level of
abstraction, an electronic computer can be described as being built out of the same
sort of elements as the human brain.

Von Neumann later described this strategy as a form of axiomatization.52 The
problem of understanding the functioning of the brain consisted of two parts: the
first part would consider the physiological details of the neurons, the ‘elements’ of
the brain, while the second would describe the overall organization of the elements,

49von Neumann (1945), Sect. 2.6, emphases in original.
50von Neumann (1945), Sect. 4.2.
51von Neumann (1945), Sect. 6.2.
52von Neumann (1948).
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and the behaviour emerging from this organization. The two parts were linked by
an abstract description of the elements, such as that given by McCulloch and Pitts.
This should be framed in such a way as is convenient for building up the higher-
level theory, while at the same time remaining faithful to the lower-level properties
of the elements. Turing made a similar point, distinguishing between the roles of
“mathematicians” and “engineers” in the design and use of automatic computers.53

This discussion has demonstrated that the underlying cybernetic assumption of a
fundamental analogy between natural organisms and machines was made explicit in
the first presentation of the architecture of the modern computer, and von Neumann
carefully demonstrated that the new machines could be understood, at one level,
as being artificial brains. The Draft Report was in this respect part of a much wider
discourse in which advanced electronic machines, and computers in particular, were
figured as ‘giant brains’; this issue will be discussed further in Sect. 6.7.

The community of applied mathematicians who were the primary users of the
early computers, and presumably very conscious of their limitations, were much
less enthusiastic about seeing computers as brains, however, and in von Neumann’s
later reports on computer design, coauthored with Burks and Goldstine, little use
is made of the analogy.54 It continued to play an important role in von Neumann’s
thinking, however, notably in a paper entitled The General and Logical Theory of
Automata which he presented to an audience of cyberneticians in 1948.55

The role of logic in the Draft Report, then, is rather indirect. Rather than locating
the EDVAC in an explicitly logical tradition, as Turing had done with his abstract
machines, von Neumann presented the computer as simultaneously a calculator and
an artificial brain. The connection between the stored-program computer and the
Turing machine was left implicit, mediated by McCulloch and Pitts’s work on the
application of logic to the modelling of neuronal structures.

6.4 Logic and the Stored-Program Concept

Seen in its historical context, the Draft Report appears to be a rather conservative
document, in terms both of the design and the intended purpose of the machine
it describes. The EDVAC was part of a very practical programme of research into
automatic computation, and like earlier machines it was intended to be primarily
a calculator: the problems of manual calculation provided the impetus which led
several individuals to enter the field, and the importance of this area was greatly
amplified by the military demands of the war. The details of its design owed as much
to machines such as the ASCC as to its immediate predecessor, the ENIAC, and for
all that von Neumann had an interest in logic and Turing’s proposals, the EDVAC
project had started well before he became involved with it. It would oversimplify

53Turing (1946).
54Goldstine and von Neumann (1946), Burks et al. (1946).
55von Neumann (1948).
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a complex historical situation to suggest, with Mahoney and Davis, that the stored-
program design emerged simply as a byproduct of theoretical research in logic.

A weaker claim, however, might be that specific features of the design were
adopted for reasons of logic, and a number of aspects of the Draft Report have
been characterized as being ‘logical’ in one way or another. For example, Aspray
has described one sense in which von Neumann’s influence could be described as
involving logic:

Von Neumann was interested in presenting a “logical” description of the stored-program
computer rather than an engineering description; that is, his concern was the overall struc-
ture of a computing system, the abstract parts it comprises, the functions of each part, and
how the parts interact to process information.56

While this is probably a fair description of the contribution von Neumann made
to the presentation of the EDVAC design, it should be remembered that the abstract
description of a computer’s architecture as a set of functionally distinct subsystems
was not original to the Draft Report. In particular, the idea of an architecture based
around an extensive memory and a control or arithmetic unit operating on the con-
tents of that memory appears to have occurred independently to several people. The
store and mill of Babbage’s Analytical Engine are perhaps the earliest example of
such an architecture, and in the 1930s Turing and Zuse independently came up with
similar designs. Given this, it would be implausible to assert that this represented a
specific influence of logic on the design of the EDVAC.

In the EDVAC progress reports, von Neumann’s particular contributions were
described as being in the area of logical control. The phrase ‘logical control’ is
defined in the Draft Report as signifying “the proper sequencing of [the EDVAC’s]
operations”,57 and referred to the control circuits that ensured that operations were
carried out in the intended order and to the sequencing of operations required in
particular problems. Elementary logic was certainly a useful tool in the design of
such circuits, as Zuse and Claude Shannon had discovered,58 but again, this does
not point to a specific influence of logic on the design of the EDVAC.

Perhaps the strongest argument in support of the influence of logic derives from
the discussion in the Draft Report of the stored-program concept, the idea of storing
both the instructions and the data of a program in the same memory. This is widely
taken to be the key feature that distinguishes ‘modern’ computers from their prede-
cessors. The argument goes on to point out that Turing’s universal machine seems
to incorporate this idea: the tape of the universal machine contains a representation
of the machine being simulated, as well as the other data required by the simulation.
Given von Neumann’s familiarity with Turing’s work, the argument goes, we can
credit him with bridging the gap between theory and practice, and giving logic a
crucial role to play in the invention of the computer.

One objection that can be made to this is the observation that the use of a single
tape is not essential to Turing’s arguments. A universal machine requires access to

56Aspray (1990b), p. 40.
57von Neumann (1945), Sect. 2.3.
58Shannon (1938).
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some representation of the machine it is simulating, but this representation does not
need to be in the same medium as the data generated in the course of the simulation.
Turing’s arguments in 1936 would not have been affected if he had equipped the
universal machine with a second tape to hold the coded table of the machine being
simulated.

This point is sometimes obscured by a confusion between the idea of universality
and the stored-program principle itself. For example, Ceruzzi appears to conflate
the two notions, writing that “the reason [for the importance of the computer] is
the stored-program principle. A computer is not a single machine, but one of an
infinite number of machines, depending on the software written for it”,59 a comment
referring to the programmability of computers rather than the stored program itself.

The historical evidence supporting the idea of a direct influence from logic on the
idea of the stored program is rather circumstantial. On the one hand, von Neumann
was aware of and admired Turing’s work, and would certainly have been familiar
with the design of the universal machine. On the other hand, there is no explicit
mention of Turing in the Draft Report which, as discussed above, seemed more
concerned to link the new machine with the developing area of cybernetics than
directly to logic.

One way to address the question is to ask why this particular design feature was
adopted, when other aspects of Turing’s design such as the restriction on movement
to adjoining tape positions, were not echoed in the EDVAC proposal. The accounts
given by members of the EDVAC team do not stress the similarity of the two forms
of stored information, numeric data and stored instructions, and nor do they give
abstract or logical reasons for holding both in a single store; rather, the two forms
of information were clearly distinguished and pragmatic reasons, firmly based on
engineering arguments, were given for holding the two in a single store.

In the Draft Report itself, von Neumann suggested that the most important factor
was the need to deal with the very high computational speeds that could be achieved
in an electronic machine:

Indeed, all existing (fully or partially automatic) computing devices use R—as a stack of
punched cards or a length of teletype tape—for all these purposes [including the storage
of instructions] . . . Nevertheless it will appear that a really high speed device would be
very limited in its usefulness unless it can rely on M, rather than R, for all the purposes
enumerated . . . 60

A different argument was given by Eckert in one of the Moore School lectures
in the summer of 1946.61 He identified a number of distinct uses for the memory
of a computer, including the need to store data and instructions, and compared the
characteristics of the memory required for these purposes. In particular, he noted that
instructions must be available at high speed, so as not to hinder the progress of the
computation. He then observed that different types of problem can have significantly

59Ceruzzi (2001), p. 50.
60von Neumann (1945), Sect. 2.9.
61Eckert (1946).
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different memory requirements, in terms of the relative amount of space required
for these numbers and orders. Maximum flexibility and economy in construction
could be obtained by combining both in a single store, rather than providing separate
memory components for each.

In another report dating from 1946,62 Goldstine and von Neumann gave a similar
account. They noted that the memory used to store instructions should provide the
flexibility of media like paper tape, which could store an indefinitely large number
of instructions and allow a machine to be easily reprogrammed, and also the ability
to access these instructions at a high speed. They then noted that instructions on
paper tape are already digitally encoded, and hence that there was no reason why
they should not be stored in the same memory that is used for storing numerical
data. The same point was also made in another report:

Conceptually we have discussed above two different forms of memory: storage of numbers
and storage of orders. If, however, the orders to the machine are reduced to a numerical
code and if the machine can in some way distinguish a number from an order, the memory
organ can be used to store both numbers and orders.63

None of the writings originating from the Moore School group mention a logical
or theoretical rationale for the introduction of the stored-program concept. It remains
a possibility, of course, that the idea was suggested by von Neumann’s knowledge
of Turing’s work, but even if that was so, its inclusion in the design was justified
by practical, not theoretical, arguments. A logical pedigree for the idea would not,
on its own, have been sufficient to ensure its incorporation in the design without a
detailed examination of its engineering implications.

6.5 The EDVAC Code and Address Modification

The real significance of the stored-program concept relates not to hardware design,
but rather to software and the ease of programming. The Draft Report stipulated that
orders were to be stored in the same memory organ as numbers, and recognized that
this meant that both types of information were coded in the same way. This made it
possible to treat orders as if they were numbers and to carry out operations on them,
which in turn led to the possibility of a computation modifying the very instructions
that a computer was following as the computation progressed.

This idea of self-modifying code turned out to be highly significant. In the Draft
Report it was introduced rather tentatively, however, and the general idea of treating
orders as data was only applied for the specific purpose of modifying the memory
address to which a particular order referred.

62Goldstine and von Neumann (1946).
63Burks et al. (1946).
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Memory Structure From the user, or programmer’s, point of view, the EDVAC
had a simple structure. The basic memory elements, known as minor cycles, con-
sisted of 32 units, or binary digits. It was envisaged that the memory would be imple-
mented on a number of mercury delay lines, each of which would store a number of
minor cycles. A particular minor cycle was therefore be identified by two numbers,
μ which identified a particular delay line, or major cycle, and ρ which identified a
minor cycle on that line. The sizing considerations examined in the report suggested
that 256 delay lines should be built, each providing storage for 32 minor cycles, or
numbers.

A minor cycle could hold either a single number or an instruction. These two
possibilities were distinguished by the value of the first unit in the cycle, i0. A minor
cycle where i0 = 0 represented a number, and one where i0 = 1 represented an order.

The Operations of CA The arithmetic unit CA contained storage for three minor
cycles. Two of these, denoted by ICA and JCA, were thought of as input organs, and
the third, OCA, as an output organ. The basic principle was that when an arithmetic
operation had to be carried out, its arguments would be transferred to ICA and JCA,
and when the calculation was complete, the result would be available at OCA. The
transfer of data into CA was in fact performed in the following manner:

Every real number coming from M into CA is routed into ICA. At the same time, the real
number previously in ICA is moved on to JCA, and the real number previously in JCA is
necessarily cleared.64

The operations that could be performed by CA were the following:

1. The basic arithmetic operations +, −, ×, ÷ and √.
2. Two operations i and j to move data from ICA and JCA, respectively, to OCA.

These were intended, among other things, to facilitate the transfer of data from
one location in M to another, by routing it through CA.

3. An operation s which “was able to sense the sign of a number, or the order
relation between two numbers, and to choose accordingly between two (suitably
given) alternative courses of action”.65 The operation s would move either the
contents of ICA or JCA into OCA, depending on whether the number originally
in OCA was greater or less than zero.

4. Two operations bd and db which would convert numbers between binary and
decimal formats, for input and output.

The Orders The orders that were defined in the Draft Report are summarized in
Table 6.1. The report went into some detail about how the orders would actually be
coded in the units of a minor cycle, and in addition a short symbol for each order was
given. The short symbols were intended to be mnemonic and to make the reading
and writing of orders easier.

64von Neumann (1945), Sect. 11.1.
65von Neumann (1945), Sect. 11.2.
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Table 6.1 The orders of the
EDVAC Description Short symbol

Carry out operation w in CA . . .

. . . and hold result in OCA wh

. . . and transfer result to minor cycle μρ w → μρ

. . . and hold result in OCA wh → μρ

. . . and transfer result to next minor cycle w → f

. . . and hold result in OCA wh → f

. . . and transfer result to ICA w → A

. . . and hold result in OCA wh → A

Transfer number from minor cycle μρ to ICA A ← μρ

Connect CC with minor cycle μρ C ← μρ

The basic purpose of the code was to enable numbers to be moved between M and
CA, and to specify what operation was to be performed on the numbers in CA. The
order A ← μρ moved the contents of a specific minor cycle into ICA. In addition, if
the control organ came across a minor cycle which contained a number rather than
an order, it would interpret this as a request to move that number to ICA.

A number of different orders defined which operation of CA was to be performed
and how the result of the operation should be handled. After an operation was com-
plete, the number in OCA could be transferred to a specific minor cycle in memory,
or simply to the minor cycle following the one holding the current instruction. Al-
ternatively, it could be reentered into CA itself, and either held in or cleared from
OCA itself.

Address Modification and Conditional Execution This code only defined a very
limited form of instruction modification, which arose from the fact that the effect
of transferring a number from OCA to a minor cycle in M depended on whether
that minor cycle currently held a number or an order; this could be detected by
examining the contents of its first unit i0. If the minor cycle held a number, its entire
contents were replaced by the contents of OCA. If it held an order, however, only
the last 13 digits, representing the address of a minor cycle, would be copied.

The default operation of the control organ was to proceed through minor cycles
sequentially, executing the orders found there one after the other. A control transfer
order was defined to alter this default sequencing by switching the control organ to
a specified minor cycle. This was an unconditional jump, however; programming
a conditional jump, where the behaviour of the program depended on data values
computed so far, required the use of the s operation and address modification.

Suppose that it was required to transfer control to one of the instructions c1 or
c2, depending on whether a certain number was greater than zero. This could be
accomplished in the follow manner. First, compute the number to be tested, and



142 6 Logic and the Invention of the Computer

leave it in OCA. Secondly, move the addresses c1 and c2 into CA, and then invoke
the operation s. Depending on the sign of the number in OCA, this would replace
it with either c1 or c2. Finally, transfer the new contents of OCA to the minor cycle
containing the transfer order; this would change the address in the transfer order
which, when executed, would transfer control to c1 or c2, as required.

The code specified in the Draft Report was never in fact used. In subsequent
publications, von Neumann and his colleagues modified it in various ways, and by
the time the first stored-program machines came into regular operation in 1949, the
codes used were considerably more sophisticated than this first attempt. Chapter 7
contains a general discussion of programming using this style of code.

6.6 Turing and the ACE

The importance of the Draft Report lay in the concepts and approach put forward
in it rather than in the specific details of the design presented. Later in 1945, von
Neumann developed an algorithm for sorting and collating data; in the course of this
work he made several changes to the machine design and code presented in the Draft
Report,66 and subsequent designs, such as that described in 1946 for a machine to
be built at the Institute of Advanced Study,67 differed from the EDVAC in many
details. Although they are important to the history of computer architecture, these
alternative proposals did not introduce any significantly different approaches to the
issue of coding. The situation is slightly different, however, in the case of a design
produced by Turing in 1946.

In 1945, at the end of the war, Turing had joined the UK’s National Physical
Laboratory (NPL) in Teddington. He was given a copy of von Neumann’s report,
and by the end of the year had produced a proposal of his own outlining the design
of a stored-program computer that he proposed the NPL should build, the Automatic
Computing Engine, or ACE.68 Turing’s report is in many ways comparable in scope
and ambition to the Draft Report, and a comparison of the designs presented in the
two reports is a good way of highlighting the characteristic features of each.

The influence of the Draft Report is apparent in Turing’s work, and in fact he
recommended that the two be read together. In many details, the ACE is similar to
the planned EDVAC. Both designs use mercury delay lines as the principal storage
mechanism, and have a basic structure presented as a number of functionally distinct
units, including a store, an arithmetic unit and a central control unit. Furthermore,
Turing used von Neumann’s abstract neuron-inspired notation for describing the
logical circuits of the ACE, extending the notation in various ways for his own
purposes. Nonetheless, the proposed ACE is in many ways quite different from the

66Knuth (1970).
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EDVAC, and it has been argued that these differences are not merely technical, but
reflect a fundamental difference in the approaches of von Neumann and Turing.69

As discussed above, von Neumann presented the EDVAC as fundamentally a
calculator. By contrast, Turing made an explicit link between the ACE and his earlier
analysis of computability as a formalization of certain more general practices:

The class of problems capable of solution by the machine . . . are those problems which can
be solved by human clerical labour, working to fixed rules, and without understanding.70

He went on to list a number of possible applications of the machine, ranging
from mathematical calculations to the solution of jigsaws and the playing of chess.
In 1947, he was even more explicit and described the ACE as a “practical version”
of the type of machine described in the 1936 paper.71

This difference in orientation is reflected in the design of the ACE in several
ways, most noticeably in the way the machine is structured. At the beginning of the
report, Turing described the ACE as consisting of a memory, a logical control and a
central arithmetic part in a manner virtually identical to von Neumann’s description
of the internal structure of the EDVAC.72 However, Turing’s later treatment of the
memory and the arithmetic unit is rather different from von Neumann’s.

In both designs, it was proposed that the majority of the storage required would
be provided by mercury delay lines. Delay line storage had the advantages of being
cheap and relatively permanent, but the disadvantage of providing slow access to
data because of the latency time involved as the data circulated round the delay line.
More importantly, delay lines provided a passive storage medium, rather reminiscent
of the tape in a Turing machine: data could be written to and retrieved from a delay
line, but in order to add two numbers together, say, the numbers had first to be moved
to a special location where the arithmetic circuits could gain access to them. Both
designs therefore included provision for additional memory capability in order to
get round this problem, but approached it in different ways.

The EDVAC’s arithmetic unit contained storage for three numbers, the two
operands of the desired operation and the result. Instructions were provided to move
data from the delay line storage into the arithmetic unit, and to move the result
back to the delay lines. The arithmetic unit therefore functioned as a sort of ‘black
box’: numbers were inserted into it and the result extracted from it, but its internal
workings were quite independent of the rest of the computer.

The design of the ACE is rather different. It was to contain a number of “quick
reference temporary storage units (TS)” in addition to the delay lines,73 but these
were not associated with any particular functional unit of the computer. Rather, they
were part of the memory, which was therefore divided between the delay line storage

69Carpenter and Doran (1977), Peláez (1999).
70Turing (1946), p. 39.
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72Turing (1946), pp. 21–22.
73Turing (1946), p. 22.
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and the temporary storage. Operations were provided for moving data between the
delay lines and the temporary storage.

Some of the TS locations were reserved for particular purposes. For example,
Turing proposed that the arithmetic circuits should operate on the data found in TS
2 and TS 3 and store the results in TS 4 and TS 5. Similar conventions were put
forward for some of the other TS units. Whereas the EDVAC could be described as
having special-purpose memory encapsulated within the arithmetic unit, the ACE
by contrast did not have a specialized arithmetic unit, but rather a set of conven-
tions governing the use of some locations in the general-purpose memory. The ACE
therefore maintained a strict distinction between memory and control reminiscent
of the universal machine, whereas the EDVAC complicated this basic design with
special-purpose units.

A second difference between the two reports concerns the way in which they
viewed programs. Although its code supported loops and subroutines, in the Draft
Report a program is thought of as being primarily a sequence of instructions which
invoke the basic arithmetic operations provided by the machine; this is very similar
to the conception of programming adopted in earlier machines such as the ASCC.

In contrast to this, Turing suggested that the basic operations required for the task
being programmed should be defined as subroutines built from the ACE’s primitive
instructions. This is reminiscent of the procedure that he had followed in 1936,
when machine tables to perform simple tasks, such as copying or erasing symbols
on the tape, were first defined and then extensively reused. It was argued in Chap. 4
that this technique was derived from existing practice in the definition of recursive
functions, and the ACE proposal carries this approach forward into the sphere of
practical computation. Turing recognized that this principle could be applied even
to basic arithmetical operations: the arithmetic circuits in the ACE were not viewed
as fundamental components, as they were in the Draft Report, but simply as a means
to increase the speed at which arithmetic could be carried out.

Thirdly, the two designs differed in the use made of the ability provided by the
stored-program design to modify the code of a running program. Von Neumann had
clearly distinguished orders from numbers, and only a limited form of instruction
modification was allowed. Turing on the other hand allowed unrestricted operations
to be performed on instructions, and referred in general terms to the possibilities
that would be created by allowing the machine to write its own orders. Although this
possibility was not exploited by the universal machine, machine tables and data were
distinguished on its tape by convention, rather than by explicit details of coding.

It seems plausible to suggest, then, that whereas von Neumann set out to design
an automatic calculator, Turing was more concerned to produce a practical version
of the universal machine which could, with the addition of some specialized cir-
cuitry, be used as a high-speed calculator. In a sense, the ACE could therefore be
described as being more influenced by logic than the design of the Draft Report.
In practice, however, the EDVAC design was vastly dominant. The ACE was never
implemented in precisely the form described in Turing’s report. The first machine
completed at the NPL was the ‘Pilot ACE’, built on a smaller scale than Turing’s
proposed ACE and differing from it in a number of ways. The ACE itself was com-
pleted in the early 1950s, and the design principles it embodied were used in a small
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number of later machines. After the mid-1950s, however, the line of machines that
directly made use of Turing’s ideas died out.

This raises the interesting question of why von Neumann’s ideas about computer
architecture, which were less directly derived from logic than Turing’s, proved so
much more successful in practice. One suggested answer to this question downplays
internal factors, such as the increase in complexity inherent in Turing’s approach
to programming, and suggests that the primary reason for the greater success of
the EDVAC design was its “instrumentality”.74 By emphasizing the provision of
high-speed calculation, the argument goes, von Neumann addressed an immediate
social need, and the EDVAC design was therefore quickly picked up as providing a
solution to a pressing practical problem.

However, the ACE was as capable as the EDVAC of carrying out high-speed
arithmetic, if not even faster, so this cannot be the whole story. Other contributory
factors included the wide circulation of the principles of the EDVAC design at the
Moore School course in 1946, and the prestige lent to the whole project by the
involvement of von Neumann himself. Furthermore, the Draft Report presented the
EDVAC as a relatively straightforward evolution from well-known machines such
as the ASCC, in terms of application area, internal design and programming style.
In contrast, the ACE was in many ways a more radical design put forward by a
relatively unknown researcher, and the more ‘logical’ nature of its design does not
appear to have been sufficient to ensure its widespread adoption. This suggests that
a connection between stored-program computers and the universal machine was not
widely made in 1946: this point and its implications are considered in more depth
in subsequent sections.

6.7 Giant Brains

During the war, most research into computers was carried out in secret, and little
information about the new machines was made publicly available. This situation
changed rapidly after 1945, and the reception and representation of computers can
be traced in both the technical and more popular literature. Firstly, however, it had
to be recognized that a significant development in computing technology had taken
place. In January 1946, the journal of the American Institute of Electrical Engineers
contained an article which discussed the “Impact of the War on Science” which
did not, however, make any reference to computing technology.75 Later that year,
though, the journal Mathematical Tables and other Aids to Computation noted, in
a review of a conference on ‘Advanced Computation Techniques’ held at MIT in
October 1945, that

During the recent war there was a tremendous development of certain types of computing
devices . . . these and other similar developments suggest that there will soon be available
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mechanical and electrical computing equipment which, in terms of speed and flexibility,
will completely outdistance anything thought of before.76

The new machines, in particular the ENIAC and the ASCC, were widely reported
in the press. One prominent aspect of the coverage was the analogy drawn between
high-speed calculators and the brain. During the war, it had been common to refer
to various devices as ‘electronic brains’, and the term was immediately applied to
computing devices, as the following quotation from the psychologist Edwin Boring
reveals:

We have heard so much during the late war about electronic brains. The electronic computer
on a range-finder figures the range and course and speed of a target, setting the fuses and
aiming and firing the gun, all at a speed of which the human brain is incapable. There are
now huge electronic mathematicians which will solve mathematical problems with a speed
and accuracy and lack of fatigue that puts the mere headwork of the human mathematician
out of the running.77

The press coverage of electronic computers in this period has been surveyed by
Dianne Martin, who concluded that “during the critical early years of 1946 to 1948,
the predominant characterization of the computer was as a mechanical or electronic
brain or robot”.78 This phenomenon was not restricted to journalistic accounts; for
example, Edmund Berkeley was deeply involved in the use and promotion of the
early computers, and wrote one of the first books to provide a popular account of
the new machines. He called the book “Giant Brains, or Machines that Think”.79

Computer developers themselves often viewed such characterizations as being
inappropriately anthropomorphic. In a letter to the Times, Douglas Hartree opined
that use of the term ‘electronic brain’ obscured the distinction between the thought
and judgement involved in planning and setting up a computation and the labour of
carrying it out and “ascribes to the machine capabilities that it does not possess”.80

Mauchly, Turing and Aiken all gave newspaper interviews during 1946 and 1947 in
which they were at pains to point out the limitations of the new machines.81

Such arguments were often supported by an appeal to a principle first stated by
Babbage’s collaborator Ada Lovelace: in Hartree’s words, this claimed that “[t]hese
machines can only do precisely what they are instructed to do by the operators who
set them up”.82 Along with the related question of whether machines could think,
this principle generated a substantial public discussion in the following years.

In Sect. 6.2, it was shown that the cybernetic conception of the computer, which
was explicitly drawn upon by von Neumann and Turing, depended on the belief
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that, considered in the abstract as information processing machines, a strong iden-
tification could be made between the brain and the electronic computer. The fact
that computers were described as ‘giant brains’ can therefore be viewed, not as irre-
sponsible anthropomorphism, but rather as a faithful representation of the cybernetic
point of view.

A striking feature of the situation at this time is that it was the early machines,
such as the ASCC and ENIAC, and not the proposals contained in the Draft Report,
which were described as revolutionary. It was several years until the first machines
based on the stored-program design became operational, and even longer until they
were widely available. At the point at which they entered public discourse, then, the
new automatic computers were not represented or understood as logic machines.
However, the way in which they were described reflected the dual heritage that von
Neumann had made explicit: they were scientific devices for carrying rapid and
autonomous calculations, which could also be seen as models or analogues of the
brain.

6.8 Universal Machines

Within a few years this situation had changed somewhat, however, and it became
common, at least in technical circles, to make an explicit link between electronic
computers and Turing’s universal machine concept. Before examining how this
came about, it is interesting to consider the notion of universality in more detail.

In Turing’s 1936 paper, the word ‘universal’ is applied to a specific machine U
which is able to simulate the behaviour of any other machine, given a suitable repre-
sentation of the table of the machine to be simulated. U is only universal relative to
the class of machines described in the paper, however. Presented with a description
of a configuration of the ENIAC, say, it would be unable to simulate the result-
ing computation: for this purpose, a different universal machine would have to be
defined.

A machine such as the EDVAC can also be described as universal in this sense.
We can imagine specialized machines which have the same memory and repertoire
of basic operations as the EDVAC, but whose control units are configured to perform
only the basic operations required by one particular computation, in the same way
that the control circuits of the ENIAC were rewired for each different computation.
An EDVAC program serves as a representation of such a machine, in the same way
that a machine table serves as a representation of a single Turing machine. The
EDVAC itself, whose control unit is wired up in such a way as to interpret the
program and reproduce the coded sequence of basic operations, is therefore acting
in a manner precisely analogous to Turing’s machine U .

As pointed out above, a computer does not have to incorporate a stored program
in order to be universal in this sense. The argument of the previous paragraph could
be applied equally well to machines such as Zuse’s Z3 or the ASCC, and leads to
the conclusion that these machines can also be described as universal, despite the
fact that they read their programs from external storage devices.
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In the examples above, the machine being described as universal belongs to the
same class of machines as those being simulated: U is itself a Turing machine, for
example. It would be perfectly possible for a machine to be universal relative to the
machines of a different class, however: for example, the ENIAC could be wired up
to interpret standard descriptions of Turing machines, and in fact something similar
to this was done in 1948 when it was reconfigured to operate as a stored-program
computer.83 If this is to be possible, the machine doing the interpretation must be
able to simulate the memory structure and basic operations of the machines being
simulated, thus creating a ‘virtual machine’ whose behaviour it will then emulate.
The notion of a virtual machine has found a number of applications, notably in the
semantics of programming languages; this is discussed further in Chap. 8.

This suggests another sense in which a machine can be described as universal:
we might ask whether a particular machine is capable of simulating the behaviour
of any other machine whatsoever. The repertoire of possible machines is unlimited,
of course, so this cannot be established by giving details of particular simulations.
Instead, it is shown that a machine can perform, within the limits of finiteness, all
the computations that can be performed by Turing machines, and hence, by the
Church-Turing theses, all effectively computable processes. Such a machine can
be said to be Turing-complete. Early discussions of electronic computers tended
not to distinguish these two senses of ‘universal’, nor to demonstrate the Turing-
completeness of the machines under discussion.

The characterization of stored-program computers as universal provides one way
in which the claim that computers are ‘really’ logic machines can be understood.
It is striking, however, that this characterization was not immediately obvious, and
it was not until the early 1950s that it was common for computers to be described
as universal machines. As Jon Agar has written, “the good historical question to
ask is not ‘Are stored-program computers universal Turing machines?’ but ‘Why
have electronic stored-program computers been cast as universal, as general-purpose
machines?’ ”.84 This remainder of this section will describe the process by which
this took place, and suggest an answer to Agar’s question.

Turing was quite clear about the connection between his earlier theoretical work
and the practical post-war computer developments, and on a number of occasions
he explicitly compared the ACE with the universal machine. In a report written in
1948, for example, he gave a classification of “logical” and “practical” computing
machines, considering in some detail the question to what extent a finite machine
such as the ACE could be considered to be universal.85

Turing evidently imparted this understanding to his close collaborators. In 1946,
a semi-popular account of the ACE made an explicit link between the construction
of automatic computing machines with On Computable Numbers:

Although this Harvard machine [the ASCC] is an independent and original development,
the possibility of the construction of such machines, and, indeed, more elaborate ones, had
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already been foreseen in this country. Dr. A.M. Turing, a fellow of King’s College, Cam-
bridge, had written in 1936 a severely mathematical paper in which he had discussed the
properties of such machines in connection with certain problems of mathematical logic,
without considering practical problems of construction.86

This report makes no mention of the universal property, however. In a review
article written in 1948, Harry Huskey, who had worked at the NPL for the year of
1947/1948, described a machine resembling the new machines but with an infinite
memory as “absolutely general in the sense that it could be made to imitate any
other computing machine merely by giving it the appropriate instructions”,87 citing
On Computable Numbers in support of this claim. Confusingly, however, he later
refers to computers as providing a “universal model” for a large class of physical
experiments, as opposed to specific models such as wind tunnels. This would appear
to refer to the distinction between digital and analogue calculation, rather than the
more technical notion of universality.

Another long-term collaborator of Turing, Max Newman, made the connection
explicit in 1948 in a discussion on computing machines held at the Royal Society:

[a] universal machine is a single machine which, when provided with suitable instructions,
will perform any calculation that could be done by a specially constructed machine . . .

subject to this limitation of size, the machines now being made in America and in this
country will be ‘universal’—if they work at all; that is, they will do every kind of job that
can be done by special machines.88

However, despite these statements, the connection between the new computers
and the universal machine was not appreciated more widely. At the same discussion
at which Newman made the statement quoted above, Maurice Wilkes described the
EDSAC, a machine then under construction at Cambridge. He made no mention
whatsoever of Turing’s work and focused instead on the influence he expected the
EDSAC to have on scientific research.89

A more detailed presentation can be found in the book Calculating Instruments
and Machines published by Douglas Hartree in 1949.90 In 1946 Hartree had visited
the USA and made practical use of the ENIAC.91 His book was based on a series of
lectures given at the University of Illinois in 1948 and, as the title suggests, Hartree
was primarily interested in the mathematical applications of computers.

Hartree referred to the computer designs of both von Neumann and Turing, and
his presentation of the ideas underlying computers derived from them in a number
of ways. For example, when introducing digital computing machines, he described
their functional design very much in the style of von Neumann, even drawing the
same analogy between the structure of computers and that of living organisms. He
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then motivated the particular design of the computer by referring to the comparison
that Turing had made with the procedures carried out by human computers. Later,
when giving a more detailed description of the structure of computers, he used the
neuron-inspired notation of computing elements “introduced, in this context, by von
Neumann and extended by Turing”.92

Hartree did not, however, refer to Turing’s 1936 paper, and appears not to have
had a very clear notion of the concept of the universal machine. He described the
problem caused by the need to set programs up manually on the ENIAC, and went
on to suggest that this would be replaced by “a means by which the machine can set
up for itself the connections required for the sequence of computing operations”.93

Perhaps this phraseology was an attempt to make the concept accessible to a non-
specialist audience, but it is striking that it does not make the point that a universal
machine removes the need to alter any connections at all from one calculation to
another.

Later, in the context of a discussion of whether machines work with decimal
or binary numerals, Hartree commented that, with the exception of the UNIVAC,
the proposed computers “work in the scale of two, though the ACE is intended as a
universal machine and will be able to be programmed to work in scale of ten—or any
other scale—and this may also be the case for the others”.94 This rather contorted
sentence suggests on the one hand that Hartree was aware of Turing’s description of
the ACE as universal, but on the other that its significance was lost on him. Given
Hartree’s first hand experience of electronic computing and intellectual standing,
this is strong evidence that the characterization of computers as universal machines
was not at all obvious or straightforward.

A different perspective was offered by Claude Shannon in an article discussing
work carried out in 1948 on “the problem of constructing a computing routine or
‘program’ for a modern general-purpose computer which will enable it to play
chess”.95 Shannon did not define what he meant by “general purpose”, however,
and immediately introduced a contrast between such computers and machines which
would carry out specific non-numerical tasks, stating that “[m]achines of this [lat-
ter] general type are an extension over the ordinary use of numerical computers in
various ways”. Later in the paper, when discussing the need to “represent chess as
numbers and operations on numbers, and to reduce the strategy decided upon to a
sequence of computer orders”, Shannon concluded that “[i]deally, we would like
to design a special computer for chess containing, in place of the arithmetic organ,
a ‘chess organ’ specifically designed to perform the simple chess calculations”.96

It is not easy to extract a single consistent view on universality from Shannon’s
paper. On the one hand, the computer was described as ‘general purpose’ and the
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paper demonstrated the feasibility of programming such a machine to play chess.
On the other hand, Shannon stated that “the rather Procrustean tactics of forcing
chess into an arithmetic computer are dictated by economic considerations”,97 and
he made it clear that his preference would be to develop special-purpose machines.
The paper made no reference to Turing’s work, and it seems clear that Shannon
viewed the machines being designed in 1948 as numerical calculators rather than as
universal machines.

In September 1950, both Shannon and Turing were present at a Symposium on
Information Theory, organized by the Ministry of Supply in London. In a historical
presentation, Colin Cherry made the following observation, suggesting that Shannon
was not alone in his view that special-purpose machines would ideally be developed
for various purposes:

Just as arithmetic has led to the design of computing machines, so we may perhaps infer that
symbolic logic may lead to the evolution of “reasoning-machines” and the mechanization
of thought processes.98

During an informal discussion at this same symposium, Turing distinguished the
construction of special-purpose machines for playing chess from the task of pro-
gramming a computer to perform the same task,99 but in 1950 his most significant
contribution to the debate was in a paper discussing the relationship between ma-
chine thought and intelligence. In discussing the question “Can machines think?”,
Turing proposed to limit the discussion to electronic computers, and to motivate this
included a section on “The Universality of Digital Computers”. He concluded:

This special property of digital computers, that they can mimic any discrete state machine,
is described by saying that they are universal machines. The existence of machines with this
property has the important consequence that, considerations of speed apart, it is unnecessary
to design various new machines to do various computing processes. They can all be done
with one digital computer, suitably programmed for each case. It will be seen that as a
consequence of this all digital computers are in a sense equivalent.100

This paper appears to have been widely read, and very quickly changed the way
in which computers were described. In August 1951, Wilkes wrote an article for the
Spectator on the question “Can Machines Think?” in which he referred to Turing’s
paper, classified “modern automatic-calculating machines” as universal, and wrote
that:

Provided that the basic operations form a logically complete set, a universal machine can
be programmed to do anything which could be done by a specially built machine. The
tendency nowadays is, therefore, to ask whether a universal machine could be programmed
to perform a particular function, rather than to ask whether it would be possible to design a
special machine for the purpose. The universal machines which have been built so far have
been designed for performing arithmetical calculations rather than the logical operations
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which would be involved if they were to simulate human behaviour. This is not, however,
a matter of fundamental importance.101

Although it is clear that Wilkes has here been influenced by Turing, he appears,
like Shannon, to be envisaging classes of specialized machines for different tasks,
while simultaneously recognizing the universality of particular machines within
each class. The required specialization is found in the set of basic operations that the
machine provides. As Wilkes put it later in 1951, “[a] machine primarily intended
for experiments on ‘thinking’ would not differ in any fundamental way from an
automatic calculating machine. The choice of basic order code would, perhaps, be
somewhat different, since the emphasis would be on logical rather than arithmeti-
cal operations”.102 Turing, however, is quite explicit that a single machine could
be used for all purposes: as pointed out above, this point of view is implicit in his
design for the ACE.

Over the next few years, Turing’s view gained ground. In a 1952 article about
chess programs, D.G. Prinz wrote of:

‘electronic brains’ or, to give them their proper name, universal high speed electronic digital
computers. The emphasis here is on the ‘universal’ . . . The problem is no longer ‘making a
machine to play chess’ but rather ‘making a machine play chess’.103

In the same year, Tony Oettinger spent a year with Wilkes in Cambridge working
on programs which simulated learning. One of these simulated a machine with the
ability to go shopping, but rather than suggesting that the EDSAC be supplemented
with a ‘shopping organ’, Oettinger was happy to represent shops and products by
integers and to write a purely numerical simulation. In documenting this work, he
cited Turing’s 1950 paper and wrote that universal machines “have the important
property of being able, when provided with a suitable programme, to mimic arbi-
trary machines in a very general class”.104

By 1953 Wilkes himself had adopted the more general view: “machines of this
kind are sometimes known as universal machines. Given a suitable program a
universal machine can do anything which could be done by a specially built ma-
chine”.105 Shannon, however, retained an interest in special-purpose machines and
developed a physical machine to solve simple mazes rather than writing a program
with the equivalent capability. In a survey paper written in 1953, he stated that
“[m]ost digital computers, provided they have access to an unlimited memory of
some sort, are equivalent to universal Turing machines and can, in principle, im-
itate any other computing machine and compute any computable number”,106 but
large parts of the paper are devoted to a consideration of ‘machines’ built for various
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purposes, not programmes. This preference for special-purpose machines has been
noted to be a feature of the cybernetics community.107

Turing’s paper of 1950 was therefore a turning point in the characterization of the
computer as a universal machine. Before its publication, this link was only made by
Turing and his close associates, and other writers, even those intimately connected
with computers and familiar with the relevant literature, did not make the same con-
nection or think it important. Following 1950, however, Turing’s paper was widely
cited, and his characterization accepted and put into circulation.

6.9 General-Purpose Machines

The final claim to be considered in this chapter is most clearly stated by Davis,
who states that the fact that the computer is now thought of and used as a general-
purpose machine rather than, say, a specialized calculator is attributable to Turing’s
characterization of it as a universal machine. However, automated computation was
applied in a wide variety of areas, both before and after 1945.

As discussed above, modern digital computers emerged from the two fields of
automatic computation and cybernetics. The majority of the early computers were
built specifically for performing numerical calculations; the best known exception
is perhaps the Whirlwind, developed at MIT as a flight simulator.108 Cybernetics
suggested a wider range of applications: Wiener had originally been inspired by
the problems posed by automated support for antiaircraft guns, and the cybernetics-
inspired analogy between the computer and the brain naturally suggested that a wide
range of mental tasks could be performed by computer.

A third influence on the application of computers came from the data processing
industry. Even before the first electronic computers were completed, punched card
equipment was adapted or developed to provide a greater capability for automatic
computation. Such machines continued in use well in to the 1950s, when electronic
machines were still scarce and expensive resources. The possibility of carrying out
commercial applications on computers was encouraged by these developments, and
the company started by Eckert and Mauchly had this as its focus.

Turing himself had a very clear idea of the range of applications that computers
could be used for, and in a lecture in 1947 gave as an example the possibility of
computers being used to solve jigsaw puzzles.109 As Davis comments, it is possible
that Turing’s outlook here was coloured by his computing experience during the war
which, unlike von Neumann’s, was not primarily concerned with numerical calcu-
lation. The details of this work remained classified, but it is striking that Turing’s
design for the ACE made many fewer assumptions about the intended use than the
EDVAC design, and in described a computer which could have been more easily
used for non-numerical applications.

107Pickering (2002).
108Redmond and Smith (1980).
109Turing (1947).
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6.10 Conclusions

The focus of this chapter has been on a particular episode in the development of
the computer, namely the articulation of the stored-program principle in 1945. This
has been given great prominence by historians of computing, and the fact of von
Neumann’s involvement makes it a plausible place to look for a logical influence
on computer design. However, it should be stressed that this episode represents a
moment of closure as much as a moment of invention, a point when the efforts of
many people over the preceding decade to design machines capable of large-scale
automatic calculation reached a widely accepted conclusion. The Draft Report was a
concrete paradigm which, as the response to it at the Moore School course showed,
enabled workers in the field to agree on the basis of the design of computers and
focus in a concentrated and collaborative way on their implementation.

Outside the world of computer builders, however, the stored-program principle
attracted little immediate attention. In the scientific literature before 1950, the new
machines and those under development were treated together, and characterized
firstly by their ability to perform computation automatically, and secondly by the
high speed obtainable with electronic technology. The stored-program property was
seen as a technical feature required by the use of electronics, and slightly later as
one that made programming easier in some respects, not as the defining property of
a new technology as it later became.

The details of the history of the development of the computer lend little support
to the claim of Mahoney and Davis that the computer was developed as a byproduct
or application of theoretical work in mathematical logic. Instead, the majority of
the early work was inspired by the desire to automate numerical calculation. The
interaction between von Neumann and the ENIAC group raises the possibility that
logical concerns played a part in the design of the Draft Report, and while this
cannot be ruled out, it is striking that in the immediately following period arguments
for the design were based on practical concerns of engineering rather than logic. It
seems quite plausible that something like the stored-program design would have
emerged even without von Neumann’s involvement with the ENIAC group.

Similarly, the claim that the general-purpose nature of the computer stems from
Turing’s universal machine concept seems to overstate the role of logic. Automatic
computation using punched card machinery was widespread between the wars, and
the emergence of the computer from a varied background in automatic calculation,
cybernetics and data processing made it inevitable that a range of applications would
be considered for the new machines.

In both areas, of the design and application of computers, the influence of logic
seems to have been indirect, mediated by the ideas of cybernetics and in particular
the idea that the electronic stored-program computer could be understood not merely
as an electronic calculator, but as a device essentially analogous with the brain.
Von Neumann wrote this analogy explicitly into the first description of the new
computer, in the Draft Report. Although more constrained by security restrictions,
Turing seems to have inspired many of his co-workers at Bletchley with a similar
vision of the meaning of the computer and the scope of its potential application. The
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success of this strategy can be seen in popular representations of the new technology
which was very widely described as being an “electronic brain”.

Finally, it was argued that, in the 1950s, stored-program computers became
widely characterized as universal machines, a development that seems to be largely
attributable to the writings of Turing himself. To this extent, then, Davis’s comment
that “computers are logic machines” can be supported, but with the proviso that
this does not describe a fact about the nature or origins of the computer, but rather
the way in which scientific culture came to think of the new machines. Again, we
can note the importance of cybernetics: Turing’s 1950 paper was not specifically
logical or technical, but rather a philosophical contribution to the discussion of the
cybernetic question of whether machines could think.





Chapter 7
Machine Code Programming and Logic

The task of programming an automatic calculator or computer, usually referred to as
‘coding’, was understood to be that of specifying the sequence of operations that the
machine would carry out in the course of a computation. The available operations
were defined in a machine’s ‘order code’, a list of the basic instructions out of which
programs could be constructed. On the early relay machines, the operations were
coded as a list of instructions and given to the machine through a medium such as
punched cards or tape; for the most part operations were executed in the order in
which the instructions were presented to the machine.

In stored-program machines, however, the instructions were held in internal
memory. This approach was motivated by the need to make instructions available
at high speed, but it also allowed two new coding techniques to be introduced. The
designs proposed for the storage units of automatic computers enabled data to be
retrieved from any storage location without too great a delay. If instructions were
held in the same storage, therefore, they could also be accessed by the control unit
in any order, making it feasible for programs to execute them in an order different
from the sequence in which they were stored. Furthermore, programs could modify
data in the store, a feature that made possible the writing of programs that could
modify their own instructions to a potentially unlimited extent.

Many different order codes were possible for stored-program machines, however,
and it would only be through practical experience that the features of a successful
code could be identified, as von Neumann and his colleagues realized:

It is easy to see by formal-logical methods that there exist codes which are in abstracto
adequate to control and cause the execution of any sequence of operations which are indi-
vidually available in the machine and which are, in their entirety, conceivable by the prob-
lem planner. The really decisive considerations from the present point of view, in selecting
a code, are of a more practical nature: simplicity of the equipment demanded by the code,
and the clarity of its application to the actually important problems together with the speed
of its handling of those problems.1

Turing outlined his approach to these issues in the ACE report:

1Burks et al. (1946), p. 100.
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A simple form of logical control would be a list of operations to be carried out in the order in
which they are given. Such a scheme . . . lacks flexibility. We wish to be able to arrange that
the sequence of orders can divide at various points, continuing in different ways according
to the outcome of the calculations to date. We also wish to be able to arrange for the splitting
up of operations into subsidiary operations.2

He went on to argue that the features of the stored-program design made it possible
to meet these requirements, as they gave the machine the “possibility of constructing
its own orders” by “taking a particular minor cycle out of storage and treating it as an
order to be carried out”, and made it easy to change the order in which instructions
were obeyed. This, he claimed, would be sufficient.

By 1950, broad agreement had been reached about the features that a successful
and usable code should provide, and in 1951 Maurice Wilkes and his colleagues
in Cambridge published a book describing the programming system that they had
devised for the EDSAC. Despite the machine-specific nature of the code presented,
the authors believed that the ideas contained in the book were generally applicable,
pointing out that “for the main part [the methods] may readily be translated into
other order codes”.3 The book was widely read, and contributed greatly to the spread
of this model of programming.

The first half of this chapter describes the key features of this model, with an
emphasis on the process of experimentation and consideration of alternatives that
preceded the acceptance of the ‘standard model’. The second half of the chapter
considers some more logical and philosophical aspects of this programming style.

7.1 Sequencing of Operations

In his proposal for an automatic calculating machine, written in 1937, Howard Aiken
observed that the design of existing calculating machinery made it easy to carry out
a small number of operations repeatedly on the elements of large data sets, typically
held as decks of punched cards. For many scientific applications, however, Aiken
believed that the opposite procedure was required, namely the ability to carry out an
extended sequence of operations on individual numbers.4 This requirement strongly
influenced the design of the first large-scale, automatic digital calculators. Aiken
and Grace Hopper wrote of the completed ASCC that:

The development of numerical analysis . . . [has] reduced, in effect, the processes of math-
ematical analysis to selected sequences of the five fundamental operations of arithmetic:
addition, subtraction, multiplication, division, and reference to tables of previously com-
puted results. The automatic sequence controlled calculator was designed to carry out any
selected sequence of these operations under completely automatic control.5

2Turing (1946), p. 43.
3Wilkes et al. (1951), preface.
4Aiken (1937).
5Aiken and Hopper (1946), p. 386.
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and Arthur Burks described the ENIAC in similar terms:

the ENIAC can solve any problem which can be reduced to numerical computation, i.e. to a
finite sequence (of reasonable length) consisting of additions, subtractions, multiplications,
divisions, square-rootings, and the looking up of function values.6

Specifying the required sequence of operations was therefore a basic aspect of
coding problems for these machines. However, most of the calculating machines
and installations designed before 1945 had units which were capable of operating
in parallel. This meant that they could carry out more than one operation at the
same time, a feature which introduced a conflict between the need to describe a
computation as a sequence of operations, and the desire to make the most efficient
use possible of the available machinery.

For example, the ASCC contained a number of storage registers, or counters,
each of which stored a number and allowed other numbers to be added to it. A pro-
gram was a simple sequence of instructions in a standard form, each specifying
that a number be copied from one register to another, along with some operation
that might be performed on the number, such as taking its complement to enable
subtraction rather than addition to be performed. This sequence of instructions was
read from a paper tape by a sequence mechanism which was incapable of skipping
instructions or going backwards in the sequence.

As well as the storage registers the ASCC possessed a number of specialized
units for carrying out other operations, such as a unit to perform multiplications
and divisions. These specialized units were controlled by multiple instructions: for
example, performing a multiplication required two instructions to load the multiplier
and multiplicand into the multiplying unit, followed by a third instruction to retrieve
the result. As Aiken commented, “no longer does each line of coding correspond to
a single operation of the machine”.7

Once started, this dedicated unit carried out a multiplication independently of
the main sequence mechanism. In general, a multiplication would take much longer
than a simple operation to copy a number from one register to another, and until the
multiplication was complete the main sequence unit would be idle. This was seen
as a waste of computing resource, and the technique was adopted of ‘interposing’
unrelated instructions between the instructions that specified a multiplication, thus
allowing the main body of the machine to perform useful work while waiting for the
multiplication unit to finish.

Thus, despite Aiken’s emphasis on sequence control, a program for the ASCC
could not be read as a straightforward specification of the sequence of operations
carried out by the machine, and the parallelism in its architecture was reflected to
some extent in the way it was coded. Although it increased the efficiency of ma-
chine usage, however, the technique of interposing instructions created problems in
writing and maintaining programs, as Richard Bloch, an early ASCC programmer,
noted:

6Burks (1947), p. 756.
7Aiken and Hopper (1946), p. 449.
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Although I tried to annotate my coding sheets thoroughly, it was at times almost impossible
for an operator running a program to decipher exactly what was going on. Aside from
the fact that the logical flow of the program was at times terribly difficult to follow, the
compaction of code made the task of analysing and tracking down the cause of a sudden
machine stoppage doubly difficult.8

Hardware parallelism was also a feature of the ENIAC. The machine was built
around 20 accumulators which, like the ASCC’s storage registers, both stored a
number and carried out simple operations on it. It also possessed separate units for
carrying out operations such as multiplication. The ENIAC was not programmed
by means of instructions read from a tape, however, but was physically reconfigured
for each different problem. Individual instructions could be placed on accumulators,
and the transfer of information or the execution of an operation on a separate unit
were enabled by connecting units together physically in the appropriate way. The
sequencing of operations when the machine was running was controlled by special
‘program pulses’ that circulated round the machine. Depending on the configuration,
any number of distinct operations could be carried out in parallel, and the setup for
a particular problem could be described in a two-dimensional diagram.9

Like Bloch, however, the ENIAC team felt that the advantages of parallelism
were outweighed by the complications it introduced into the programming, as Eckert
explained in a lecture in 1946:

In thinking out the various operations of the machine, if they can be thought out in a purely
serial fashion, it is not necessary to worry about any irrelevant timing between the various
steps. For example, if two steps A and B are being done together, A and B start at the same
time but do not necessarily end at the same time since a different length of time may be
required to do each step. . . . The human brain does not think in several parallel channels at
the same time: it usually thinks these things out step by step. Therefore, in all ways, it is
found exceedingly desirable to build the machine so that only single steps are performed at
any time. The ENIAC is usually used in this way.10

As Eckert went on to note, the relay machine developed by the Bell Telephone
Laboratories was programmed in a purely sequential manner.11 In the Draft Report,
a sequential, step-by-step approach emerged as a fundamental design principle; this
was initially motivated by a desire to minimize the amount of physical equipment
used:

The device should be as simple as possible, that is, contain as few elements as possible.
This can be achieved by never performing two operations simultaneously, if this would
cause a significant increase in the number of elements required. The result will be that the
device will work more reliably . . . It is also worth emphasizing that up to now all thinking
about high speed digital computing devices has tended in the opposite direction: Towards
acceleration by telescoping processes at the price of multiplying the number of elements
required.12

8Bloch (1999), p. 87.
9Goldstine and Goldstine (1946). See Chap. 5 for more discussion.
10Eckert (1946), p. 114.
11Alt (1948a).
12von Neumann (1945), Sects. 5.6–5.7.
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This principle was extended to all levels of the design, however. Numbers were
no longer stored in separate units with some processing capability, but in a passive
memory. A single arithmetic unit performed all calculations, so the possibility of
parallel execution of operations was removed. Further, the individual digits of the
operands to an operation were handled sequentially, one at a time. As a consequence
of this, in the proposed code for the EDVAC there is a strict correspondence between
instructions and operations carried out.

It has been suggested that the emphasis on sequential processing was principally
motivated by the desire to increase reliability by using as little physical equipment
as possible.13 As shown by the quotation above, some support for this view can
be found in the Draft Report. However, many computer designs after the EDVAC
reintroduced parallel processing in some areas: for example, for the machine built
at the Institute of Advanced Studies, von Neumann and his collaborators proposed
handling the digits of a number in parallel.14 This suggests that reliability was not
the only issue. In 1947, without mentioning reliability, Mauchly articulated a view
which balanced the desire for efficiency with the need to simplify programming,
making it clear that parallel processing was acceptable as long as program structure
remained strictly sequential:

the machine should be kept serial as far as the operator is concerned. That is, no two in-
structions which the operator gives the machine are to be carried out at the same time.
Any particular instruction which the operator gives, however, may involve the simultaneous
operation of numerous parts.15

In the context of hardware, Paul Ceruzzi has discussed the transition from “an
architecture that processed data in parallel to one that processed data serially”.16

As we have seen, a similar transition took place in programming, but it took some
time for the notion of sequencing to reach a stable form. The idea that did emerge,
that a program should be thought of as a sequence of instructions each of which
specifies a single operation which must be completed before the next instruction is
executed, was influenced as much by experience in writing programs for the new
machines as by considerations of their architecture. This approach was natural in
machines whose design followed the Draft Report in having a passive store and a
single arithmetic unit: this virtually ruled out the possibility of two operations being
carried out simultaneously. Its adoption therefore reflected a decision to restrict the
space of possible hardware designs in favour of simplifying the programming task.

Two main approaches were adopted to the question of specifying the sequence
of instructions in a program. On machines which read instructions from an external
tape, such as the ASCC, the sequence was simply defined by the order in which
the instructions appeared on the tape. The stored-program machine described in the
Draft Report adopted this approach by storing instructions in contiguous locations

13Marcus and Akera (1996), p. 23.
14Burks et al. (1946).
15Mauchly (1947), pp. 204–205.
16Ceruzzi (1997).
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in memory: when an operation was complete, the next instruction was automatically
read from the following memory location.

However, this introduced an inefficiency when the instructions were stored in
the delay lines which were commonly used in the early machines. In this form of
storage, data circulated continuously through long tanks of mercury, and were only
accessible when they reached the end of the tank. There was no guarantee, of course,
that the next instruction would be available when it was required, and this meant that
computations could be significantly slowed down because of the time spent waiting
for the necessary instructions to emerge.

To avoid these delays, an alternative approach, known as ‘optimum coding’ was
sometimes adopted. In this approach, every instruction contained the address of the
next instruction to be executed. As this could be anywhere in memory, by careful
planning it was possible to avoid delays by ensuring that the required instruction was
available just as it was needed by the program. A few machines adopted optimum
coding,17 but as random access memory became available the practical advantages
of optimum coding became less crucial and the sequential placement of program
instructions in memory became the norm.

7.2 Transfer of Control

It quickly became apparent that programs for automatic calculators could not be a
simple list of the desired sequence of operations. In 1947, Mauchly described the
problem and its solution as follows:

Calculations can be performed at high speed only if instructions are supplied at high speed.
Thus many instructions must be made quickly accessible. The total number of operations
for which instructions must be provided will usually be exceedingly large . . . However,
such an instruction sequence is never a random sequence, and can usually be synthesized
from subsequences which frequently recur.18

This model was shared by all the automatic calculators: a complete program for
a computation was constructed from a number of distinct sequences of instructions.
Normally, one particular sequence defined the structure of the entire computation:
what was needed, therefore, was a method for executing the other sequences when
necessary and causing a given sequence to be repeated as often as required. These
requirements were met in different ways by different machines.

For example, the ASCC’s sequence control unit read instructions from paper
tape. Computations were normally split across multiple tapes, each containing a
particular instruction sequence, but no mechanism was provided for automatically
transferring from one tape to another. Instead, the programmer had to leave detailed
instructions for the operators specifying which tapes should be loaded on to the
machine and when, among other pieces of information. Aiken and Hopper described

17Bloch et al. (1948).
18Mauchly (1947), p. 204.
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a simple program for evaluating a polynomial, which consisted of a “starting tape”,
which would read initial data from cards, and a “main control tape”, which would
compute the value of the polynomial for particular data values. The operator was
instructed to restart the calculator after the starting tape had completed, and then to
run the main control tape “until the card for F (9.99) has been punched, then press
stop key”.19 The repetition of the instructions on the control tape in this process was
achieved by making the tape “endless”: in practice this was done by simply gluing
the ends of the tape together, so forming a loop.20

On the ENIAC, the high-level structure of a program was expressed physically
in the machine’s hardware in a unit known as the “master programmer”, containing
devices known as “steppers” which allowed a sequence of up to six distinct sub-
sequences to be defined, each of which could be repeated a specified number of
times. By using more than one stepper, programs could be constructed in which the
subsequences themselves had a similar internal structure. The master programmer
contained a total of 10 steppers, which allowed for the definition of highly complex
program structures.21 By 1946, Aiken recognized the need to supply the ASCC
with multiple sequence mechanisms, and in 1947 a “subsequence mechanism” was
added, which allowed the machine to be configured with more than one instruction
tape, and provided the ability to switch between them automatically.22

In the early machines, then, the logical structure of a program was expressed
physically by referring to some aspect of the machines’ setup. In the subsequence
mechanisms employed by the ASCC and the Bell Labs relay machine, for example,
transfer of control was effected by an instruction which made explicit reference to
the tape reader containing the next subsequence to be executed. With the adoption
of the stored-program design, however, a complete program was stored in a single,
uniform memory and a different approach to the question of the transfer of control
became necessary. The code defined in the Draft Report made use of the fact that
instructions could be referred to by the address of the storage location holding them.
A generalized transfer instruction was provided which had the effect of transferring
control to the instruction at a specified address. Eckert explained the distinction as
follows:

The only big difference between this control on a relay machine and the control in the
EDVAC is that the control words in the EDVAC are read from its internal memory, and that
some of the operations may send the control from one point in the memory to another. In
other words, the main routine tape in a relay machine may indicate that the operations on a
certain sub-routine tape are to be done, while in the EDVAC there may be a symbol in the
memory which instructs the control to go to another place in the memory and do what is
indicated there.23

19Aiken and Hopper (1946), p. 528.
20Aiken (1946), p. 156.
21Goldstine and Goldstine (1946).
22Bloch (1947).
23Eckert (1946), p. 116.
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The EDVAC included in its code an order ζ which connected the control organ
to a specified memory location where the next order could be found.24 This location
could contain a previously executed instruction, or mark the beginning of a distinct
sequence, so this single transfer order supported the two operations of executing
a new subsequence and repeating the current sequence. (Machines in which each
order specified the address of its successor in effect made unconstrained transfer
of control the default mechanism, and their codes did not need a specific transfer
instruction.)

Transfer orders of this type allowed the flow of control within a program to be
specified without making reference to particular features of the machine on which
the program was running. The stored-program approach therefore made possible
a more abstract understanding of program structure, in which an entire program,
including all the necessary subsequences of operations, was thought of as a single
sequence of labelled instructions. This in turn made it possible to think of a program
separately from the machine it was to run on. The generalized transfer instruction
therefore marks a significant step towards a complete logic of control, or in other
words a notation which was independent of any particular hardware configuration
and yet capable of expressing both the elementary operations required and also the
order in which they should be performed.

Two other points can be made about transfer instructions. Firstly, although they
appeared in conjunction with the stored-program design, this was not a necessary
condition of their use: there is no reason in principle why relay machines should not
have labelled each instruction on a tape, in the same way that certain forms of data,
such as function values, were already labelled. The stored-program design made it
easier to implement, however, as all instructions were stored in a memory location
and the address of the current instruction was stored in the control unit.

Secondly, although transfer instructions allowed more flexibility than expressing
program structure through hardware, their use could also obscure that structure. On
a machine with multiple tape readers, the distinction between the control sequence
and subsequences of instructions was clear: it is harder to perceive this structure
when both are merged into a single sequence of instructions and only implicitly
distinguished by transfer orders.

7.3 Condition Testing

Simple transfer instructions were soon recognized to be insufficiently expressive to
allow the easy coding of many common computations. In many cases, the future
course of a computation depends on the results obtained so far: a frequently cited
situation was the coding of iterative procedures, where it was necessary to repeat a
sequence of instructions until the results fell within a certain tolerance, the precise
number of iterations needed to achieve this not being known in advance.

24von Neumann (1945), Sect. 15.
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A variety of approaches were adopted to provide this capability. On the ASCC,
for example, counter 72 was known as the ‘automatic check counter’, and an order
was provided which would halt the computation if the last result calculated in that
counter was less than zero. This was typically used to test whether a computed
quantity fell within the desired limits. After halting, the overall computation could
be restarted manually by the operator, and the conditions for doing this were stated
in the operating instructions provided with the program.25

The original design of the ENIAC did not include any mechanism for testing
the values currently held in the accumulators. This capability was provided at a late
stage in the development by adding a ‘direct input line’ to the master programmer.
A signal on this line caused computation to continue with the next subsequence,
regardless of whether the current sequence had been repeated the specified number
of times. By connecting the numerical output from an accumulator to the direct input
line, it became possible to use numerical data to trigger the master programmer and
thus affect the course of the computation.26

The situations in which it was thought necessary to interrupt the normal sequence
of instructions were very closely linked to the application area of the machines,
numerical computation. As von Neumann put it in the Draft Report:

A further necessary operation is connected with the need to be able to sense the sign of a
number, or the order relation between two numbers, and to choose accordingly between two
(suitably given) alternative courses of action.27

The code presented in the Draft Report only provided this capability indirectly,
however, relying on the fact that in the stored-program design instructions and their
addresses are available to examined and perhaps modified, just as numeric data can
be. Rather than providing a single conditional jump operation, the code defined
a basic operation, s, of the arithmetic unit which could “sense the order relation
between numbers”. It had four arguments, x, y, u and v: if x ≥ y the operation
would have as result u, and if x < y the result would be v.

Von Neumann went on to claim that “the ability to choose the first or the second
one of two numbers u, v depending on such a relation, is quite adequate to mediate
the choice between any two alternative courses of action”. At the point where such a
choice needed to be made, the machine would have to choose which of two instruc-
tions to carry out next. The addresses of these two instructions could be provided
to s as the arguments u and v: once the relation between x and y had been tested,
one of these addresses would be delivered as the output of s. This address could
then be copied into the address field of a ζ transfer instruction. When the modified
ζ instruction was executed, control would be transferred to whichever address had
been selected, thus allowing the behaviour of the program to vary according to the
outcome of a purely numeric test.

25Aiken and Hopper (1946).
26Marcus and Akera (1996).
27von Neumann (1945), Sect. 11.3.
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In the ACE report, Turing proposed a similar indirect approach. He did not put
forward a specific operation to choose between two numbers, however, suggesting
instead that the address of the next instruction could be calculated using ordinary
arithmetical instructions before being copied into a transfer instruction. He gave the
following example where the program should next carry out instruction either 33 or
50 depending on whether a certain digit D is 0 or 1:

One form the calculation can take is to pretend that the instructions were really numbers
and calculate

D × Instruction 50 + (1 − D) × Instruction 33.

The result may then be stored away, let us say in a box which is permanently labelled
‘Instruction 1’. We are then given an order . . . saying that instruction 1 is to be followed,
and the result is that we carry out instruction 33 or 50 according to the value of D.28

By the middle of 1946, however, codes were being proposed that did not require
programmers to construct alternative transfer instructions explicitly. Instead, these
codes contained a single instruction to carry out a conditional transfer. For example,
Eckert and Mauchly described an order code, known as ‘Code A’, which included a
pair of ‘comparison’ orders. In Code A, each order could contain the addresses of
up to three storage locations, alpha, beta and gamma. The effect of the order c was
described as follows:

If the number stored in register alpha is greater than the number stored in register beta, shift
the control to register gamma.29

The code used by von Neumann’s group at Princeton had similar instructions
which carried out a transfer depending on whether the sign of the number stored
in the accumulator was positive or negative.30 Conditional transfer instructions of
these or similar types were found in all subsequent codes.

It can seem striking in retrospect that conditional patterns of control such as
“transfer to instruction 53 if the value of the number at address 256 is negative”
were not immediately mapped onto a single instruction in an order code. Of the
early machines, only the Bell Labs machine provided such an instruction,31 and
it has even been suggested that “[i]t is strange that conditional branching was a
stumbling block to both von Neumann and Turing, especially since the program for
an abstract Turing machine is just one large decision table”.32

Rather than seeing this as a problem requiring explanation, however, it can be
taken as evidence of the difficulty that can accompany innovations that later come
to seem self-evident, and of the extended process of exploration and negotiation
that often accompanies conceptual innovation. The experience of Paul Verzuh, who
attended the Moore School course and took notes on the lectures, testifies to the

28Turing (1946), p. 35.
29Eckert (1946), p. 122.
30Burks et al. (1946).
31Alt (1948a), pp. 72–73.
32Carpenter and Doran (1977), p. 271.
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potential difficulty of assimilating new ideas: according to the editors of the lectures,
these notes indicate that “he had grave misunderstandings of the transfer of control
orders” in Code A, as presented by Eckert.33 Von Neumann and Turing, on the other
hand, seem rather to have been exploring the possibilities provided by the technique
of instruction modification: to describe the lack of conditional transfer instructions
in their original codes as a stumbling block testifies to a rather narrow view of what
was going on in this process of innovation.

7.4 Instruction Modification

In common with other fundamental programming concepts, the idea of instruction
modification underwent considerable evolution before reaching a definitive form. In
the Draft Report, as a result of a rather complex chain of design decisions, the order
code provided only a partial ability to treat program orders as data. Von Neumann
first considered the desired memory capacity of the machine, and concluded that 32
“memory units”, or binary digits, would be sufficient to store a real number to an
appropriate degree of precision. He then wrote that:

[t]he fact that a number requires 32 memory units, makes it advisable to subdivide the entire
memory in this way: First, obviously into units, second into groups of 32 units, to be called
minor cycles . . . It will therefore be necessary to formulate the standard orders in such a
manner than each one should also occupy precisely one minor cycle, i.e. 32 units.34

No theoretical principle was invoked to justify this decision, however. Rather,
a pragmatic decision was taken to constrain orders to be the same size as numbers
in order to make the engineering of the memory as simple as possible. Underlining
the distinction between the two forms of data, von Neumann went on to write that

[m]inor cycles fall into two classes: Standard numbers and orders. These two categories
should be distinguished from each other by their respective first units i.e. by the value of i0.
We agree accordingly that i0 = 0 is to designate a standard number, and i0 = 1 an order.35

Far from being treated in the same way, orders and numbers were clearly demarcated
and treated separately.

Nevertheless, there were two cases where this demarcation broke down. Firstly,
when considering the orders that were needed to transfer numbers from memory into
the arithmetic unit, von Neumann decided that “[i]t is simplest to consider a minor
cycle containing a standard number . . . as such an order per se”.36 In other words, in
certain contexts a number would be interpreted as if it expressed an implicit order.

Secondly, when a number was transferred from the arithmetic unit back into
memory, the way in which this transfer was carried out depended on whether the

33Campbell-Kelly and Williams (1985), p. 108.
34von Neumann (1945), Sect. 12.2.
35von Neumann (1945), Sect. 15.1.
36von Neumann (1945), Sect. 15.3.
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minor cycle it was being transferred to held a number or an order. In the first case,
the entire minor cycle would be overwritten with the new data, but in the second
case only those parts of the order which held the address of the minor cycle being
operated on would be modified.37 This facility for ‘address modification’ was the
only method that the code provided to modify the orders making up a program, and
was used among other things to provide conditional jumps, as discussed above.

In his description of the ACE, Turing defined its memory in essentially the same
way as von Neumann, as “minor cycles” of 32 binary digits, and wrote that “[s]uch
a storage will be appropriate for carrying a single real number as a binary decimal
or for carrying a single instruction”. When discussing the way in which numbers
would be encoded in the store, he further stated that a minor cycle might contain
some information which would “distinguish between minor cycles which contain
numbers and those which contain orders or other information”.38

However, in the report Turing assumed that programs would have an unrestricted
ability to modify their own orders, using exactly the same basic operations as were
provided for working with numeric data. Turing’s approach therefore made use of
an unrestricted ability to manipulate instructions as numbers, and for a program’s
instructions to be constructed and modified by the program itself as it runs. This
approach was also taken by several speakers in the Moore School lectures in mid-
1946. Mauchly mentioned the requirement to store instructions and numerical data
in the same device and the pragmatic reasons for doing so, but then stated that:

A much more fundamental reason for this requirement is that the instructions themselves
can then be operated on by the use of other instructions. It should be possible to carry out
such operations upon instructions by the use of the same instructions as would be utilized
when operating upon numbers.39

Calvin Mooers made this point even more bluntly, stating that the modification
of orders should be “a simple arithmetic operation between numbers and orders”.40

The codes described by Mauchly and Mooers did not differentiate numbers and data
in the way that von Neumann’s EDVAC code did, but despite the generality of the
statements above, made only a limited use of operation modification in copying bits
from one word to another to set up subroutine parameters, and incrementing address
fields in operations. Whereas Eckert and Mauchly’s Code A included a specific
operation for doing this,41 Mooers used straightforward numerical addition, thus
simplifying his code slightly.

Von Neumann and his collaborators also came to adopt a more flexible approach
than that put forward in the Draft Report. In the computer built for the Institute
of Advanced Studies, they distinguished “two different forms of memory: storage

37von Neumann (1945), Sect. 15.6.
38Turing (1946), pp. 24, 25.
39Mauchly (1946), p. 455.
40Mooers (1946), p. 470.
41Eckert (1946), p. 122.
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of numbers and storage of orders”,42 before observing that orders, suitably coded,
could be stored in the same memory as numbers. Orders and numbers were no
longer formally distinguished, but specific orders were defined which would rewrite
the address field in an order. Functionally, the code defined was very similar to that
in the Draft Report. In 1947, however, von Neumann and Goldstine stated that in
general, control could “modify any part of the coded sequence as it goes along”.43

Despite these statements of principle, however, the importance of instruction
modification and the range of its application was often limited to the modification
of addresses in individual instructions.44 Of particular importance was the situation
where a loop was to be written to carry out a set of operations on data stored in a
number of consecutive memory locations. This could easily be achieved by adding
instructions to the loop to increment the relevant address fields at each iteration.

Some machines enabled this process to be partially automated. The increments
that were to be applied to instructions were stored in special registers, often known
as B tubes or B lines, following the terminology used on the Manchester computer
which first introduced them.45 Other instructions contained a field which was used
to specify one of the available B tubes, and the contents of the selected tube would
be added to the instruction before it was executed. Initially, an entire instruction
could be modified in this way, but later implementations restricted this so that only
the address field could be changed. This idea came into widespread use, B tubes
becoming more commonly known as index registers.

A striking example of what could be achieved when instruction modification was
employed without any restriction was provided by the so-called “Initial Orders”
written by David Wheeler for the EDSAC. These orders read a symbolic form of a
program from paper tape, and loaded the corresponding program in memory when
the EDSAC was started up.46 The initial orders included such techniques as the
use of “ambiguous words”, which at different times were treated as numbers or
instructions, and they repeatedly constructed a “transfer order” which would carry
out quite different tasks on different occasions of use.

In summary, then, the first order code for a stored-program machine, that of von
Neumann’s Draft Report, made an explicit distinction between numbers and orders,
and only permitted a limited form of modification of orders for specific purposes.
Gradually, codes evolved which permitted unrestricted manipulation of instructions
as numerical data, but except in a few cases, this facility was usually made use of
only to modify the address contained in an order.

42Burks et al. (1946), p. 98.
43Goldstine and von Neumann (1947), p. 153.
44See for example Bloch et al. (1948), p. 293, and Bowden (1953), p. 29.
45Williams (1951), p. 176.
46Wheeler (1950).
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7.5 Subroutines

It was universally recognized that certain computational routines were of general
utility, and that the programming task would be simplified if such routines could
be reused rather than being repeatedly coded. From the ASCC onwards, programs
were typically viewed as containing a ‘master routine’ which invoked a range of
subroutines which were not necessarily specific to the problem being solved, and
computing installations aimed at having a ‘library’ of subroutines which could easily
be applied to new problems.

As described above, subroutines, as reusable sequences of instructions, were held
as physically distinct program tapes on the ASCC and the Bell Labs machine. One
consequence of this was that every time a subroutine was called, exactly the same
instructions were executed. On stored-program machines, however, the instructions
making up a subroutine were located in the same memory as the master routine, and
the ability on such machines to modify program instructions led to a much more
flexible use of subroutines.

Subroutines were not mentioned in the Draft Report, but they were central to the
approach to programming described by Turing in the ACE report:

We also wish to be able to arrange for the splitting up of operations into subsidiary opera-
tions. This should be done in such a way that once we have written down how an operation
is to be done we can use it as a subsidiary to any other operation.47

This approach requires the ability to transfer control to the start of a subsidiary
operation and to return to the main operation on completion of the subsidiary. The
former task can be accomplished by a straightforward transfer instruction, but the
latter is more complex because control will have to return to different places at
different times. Turing’s solution was as follows:

When we wish to start on a subsidiary operation we need only make a note of where we
left off the major operation and then apply the first instruction of the subsidiary. When the
subsidiary is over we look up the note and continue with the major operation.48

The notes of the return addresses were to be “buried” in storage, and a record
kept of the location of the most recent one. On completion of a subsidiary routine,
the most recent note would be “disinterred” and control returned to that point. It is
characteristic of Turing’s approach to programming that both these operations were
themselves to be performed by subsidiary routines, known as BURY and UNBURY.

A second problem with the use of subroutines in stored-program machines was
that on different occasions of use a subroutine would be located at different places
in memory. However, subroutines typically make reference to addresses internal to
the subroutine: the commonest occasion for this is when control transfers from one
location to another inside the subroutine, something that would be necessary in all
but the simplest cases. The problem then is how to reconcile the need to provide

47Turing (1946), p. 34.
48Turing (1946), p. 35.
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a fixed address in the transfer instruction with the fact that address will vary in
different programs, depending on where the subroutine is located in memory.

Turing’s solution to this problem was to split the process of program assembly
into two stages. Instructions were to be written on cards in a “popular” form that
was more or less readable by humans, and identified by “group name” and “detail
figure”, or line number within the group. Transfer instructions would refer to their
destination by group name and detail figure. To construct a program, all the cards
required would be brought together and sorted by group name and detail figure. The
instructions would then be renumbered sequentially, and the popular group name
and detail figure references would be replaced by the actual binary addresses used
in the program. Turing recognized that “[i]t would be theoretically possible to do
this rearrangement of orders within the machine”,49 but did not propose to do this
in the first instance.

Goldstine and von Neumann considered the use of subroutines in more detail
in a report circulated in 1948.50 They described the changes that would have to be
made to a subroutine when it was being used as a constituent of a new problem, and
classified them into those that would be made before the subroutine was used in a
particular problem, and those that would have to be made while the program was
running.

The first type of change was the one already described by Turing, namely that
a subroutine would typically appear at different locations in memory on different
occasions of use, and that references to addresses internal to the subroutine would
need to be modified before the subroutine could be successfully used. In contrast
with Turing’s approach, Goldstine and von Neumann considered how this could be
done automatically. They proposed a procedure for subroutine reuse which involved
loading the various instruction sequences into the machine, and running a special
“preparatory routine” which would make the required changes to the code before
the complete program was executed.

The second type of change was due to the fact that a subroutine would in general
be called more than once during the execution of a program. As well as the problem
of returning control to the correct place on completion of the subroutine, Goldstine
and von Neumann noted that subroutines need to be supplied with parameters, or
data which can vary from one call to the next. Unlike the first type of change, which
could be handled by a preparatory routine, the problems presented by changing
parameters and return locations can only be dealt with when a program is running.
Goldstine and von Neumann did not describe in detail a method for doing this, but
it is clear that they assumed that some form of instruction modification while the
program is running would suffice.

It is worth noting that this approach is less flexible than Turing’s proposal to
store return addresses in a separate area of memory. Whereas Turing’s idea would
permit recursive calls to subroutines, this is impossible with an approach which
physically modifies the return instruction at the end of a subroutine. The difference

49Turing (1946), p. 38.
50Goldstine and von Neumann (1948).
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between the two proposals is perhaps accounted for by differing philosophies of
program design. Whereas Turing, as noted above, viewed the use of subroutines as
ubiquitous, Goldstine and von Neumann considered subroutines which performed
significant amounts of computation, and seem to have had in mind a hierarchical
structure in which the main routine of a program would call subroutines, but where
references between subroutines would be rare.

In 1949, once the EDSAC was operational, a detailed scheme for handling all
these aspects of subroutine usage was worked out by David Wheeler. Rather than
reading the complete program into memory and then modifying it, as proposed by
Goldstine and von Neumann, Wheeler wrote a set of “initial orders” which were
loaded into the EDSAC when it was started, and which read a program from paper
tape and placed it in memory before executing it.51 These orders did not modify a
complete program in the style of Goldstine and von Neumann’s preparatory routine,
however, but instead interpreted a coded version of the program read from the tape
and constructed the complete program in memory. Wheeler also invented techniques
for modifying the return addresses in subroutines and for enabling parameterized
data to be used in subroutines. These were later described in the textbook issued by
the Cambridge group, and became highly influential.52

The adaptation of the familiar idea of a subroutine for use on stored-program
computers, then, can be characterized by two main features. Firstly, it turned out
that subroutines could not be effectively used unless they were processed in some
way prior to execution; during this stage, the complete program including correctly
linked subroutines was constructed in some way. Secondly, in the complete program
thus constructed, the capabilities provided by transfer instructions and instruction
modification turned out to be sufficient to make use of subroutines. In other words,
in machine code, subroutines were not marked syntactically in any way, and apart
from certain conventional patterns of usage, were not distinguished in any way from
other code.

7.6 Machine Code and Program Structures

Between 1945 and 1950, then, a widely accepted ‘standard model’ of order codes for
stored-program computers emerged. This standard model had three main aspects.
Firstly, each code defined a number of basic instructions. The commonest of these
controlled the transfer of data from one location in the computer to another and
the various arithmetic operations that could be carried out. From the programmer’s
point of view, the important properties of basic instructions were that only one could
be executed at any time, and that they were atomic, in the sense that the execution of
a basic instruction could not be interrupted by any other instruction in the program.

51Wheeler (1950).
52Wilkes et al. (1951).
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Secondly, control instructions defined the order in which the basic instructions
were carried out. Some codes assumed that instructions would be executed in the
sequence that they were found in memory, and provided an unconditional transfer
instruction to allow variations from this sequence. An alternative approach was for
each instruction to specify explicitly the location of its successor. Also, conditional
transfer instructions were provided which allowed the sequence or orders executed
to vary according to the current state of the computation.

Finally, programs could modify instructions in the course of a computation.
There were a number of situations in which this was known to be necessary, but
instead of providing special instructions for these situations, most codes allowed
instructions to be treated as numeric data and allowed unrestricted manipulations to
be performed on them.

Various extensions to this standard model had been proposed. For example, at
the Moore School course Mauchly had presented a code which included “index
counting instructions” to make the control of loops easier,53 and Mooers described a
change to the von Neumann design to include a device called a “sentinel” and a code
which included so-called “stop order tags” to facilitate the detection of boundary
conditions in certain applications.54 None of these innovations was widely, if at all,
adopted; for example, the very influential EDSAC code was essentially that of the
standard model outlined above.

A striking feature of the standard model was that the facilities it provided for
controlling the flow of a program did not coincide with the ways in which people
thought about computational structure. For example, in the ACE report Turing stated
that instruction modification and branching were together sufficient to carry out all
required computations.55 In a lecture given to the London Mathematical Society
in 1947, however, he described a number of “tactical situations that are met with
in programming”.56 These described the way that a programmer thought about the
overall structure of the computation that is being coded, and their use predated the
stored-program computer and even automatic computation.

As described above, all the automatic machines incorporated some method for
structuring a computation out of a number of subroutines. The standard model of
machine code contained no explicit representation of subroutines, however: instead,
the required behaviour had to be implemented using the more primitive notions of
transfer of control and instruction modification.

Another key computational structure is the ability to repeat instructions as often
as required. Turing describes this situation as being “like an aeroplane circling over
an aerodrome, and asking permission to land after each circle”.57 This situation can
easily be coded using a conditional transfer, but this same instruction can be used

53Campbell-Kelly and Williams (1985), p. 452.
54Mooers (1946).
55Turing (1946), p. 35.
56Turing (1947), p. 117.
57Turing (1947), p. 118.
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in quite different situations, such as choosing between alternative courses of action,
where no loop is involved. As this illustrates, there was no simple correspondence
between the high-level computational structures in terms of which computations
were planned, and the low-level instructions provided by standard machine codes.
Programming textbooks explained how to implement the high-level structures using
machine code, but this meant that it was not easy to grasp the structure and design
of a program simply by inspecting the code.

7.7 Machine Code and Logic

Both Turing and von Neumann commented on the relationship between the new
activity of coding for automatic computers and the existing discipline of formal
logic. Speaking to the London Mathematical Society in 1947, Turing stated that:

I expect that digital computing machines will eventually stimulate a considerable interest
in symbolic logic and mathematical philosophy. The language in which one communicates
with these machines, i.e. the language of instruction tables, forms a sort of symbolic logic.58

and a similar point was made by Goldstine and von Neumann:

Since coding is not a static process of translation, but rather the technique of providing a
dynamic background to control the automatic evolution of a meaning, it has to be viewed
as a logical problem and one that represents a new branch of formal logics.59

However, these comments do not make it clear exactly what the intended force
of this comparison was. As described in Chap. 4, one of the achievements of logic
had been to demonstrate how important aspects of mathematical language could be
captured by formal, or ‘mechanical’ rules. One possible link between order codes
and logic, then, derives from the fact that the former were defined in such a way as
to be readable by machines, and so by definition were ‘mechanical’. Machine code
programs and the instructions they contain bear little resemblance to the sentences
of propositional and predicate logic, however, so it is worthwhile exploring in a bit
more detail what was understood by the analogy.

The terms ‘logic’ and ‘logical’ were used in connection with computers in ways
that did not imply a connection with mathematical logic. For example, a distinction
was often drawn between the ‘logical’ and the ‘physical’ design of a machine, the
difference being that the logical design made no reference to specific circuits or elec-
tronic devices.60 From this, however, it is only a short step to a consideration of the
notation in which the logical description of a machine can be expressed, a transition
exemplified in the following comment on Babbage’s mechanical notation:

Babbage invented a new algebra with which to describe the movements of the intercon-
nected parts of the machine—to evaluate their logic to use the modern phrase.61

58Turing (1947), p. 122.
59Goldstine and von Neumann (1947), p. 154.
60Bloch et al. (1948).
61Bowden (1953), p. 17.
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In this sense, then, ‘logic’ relates to the abstract structure of a device, and in
particular to the static and dynamic relationships between its parts. This usage is
closely related to that of von Neumann and others in discussing issues of coding
and control. The Draft Report defined “[t]he logical control of the device” to be
“the proper sequencing of its operations”,62 and Goldstine and von Neumann later
wrote of an example program that “[t]his extension will bring in a simple induction,
and thus the first complication of a logical nature”.63 It was common to make the
distinction between a computer’s ‘arithmetical’ or ‘mathematical’ operations and
its ‘logical’ operations explicit: for example, Goldstine and von Neumann described
the “arithmetical operations and transfers of numbers” as the “properly mathemat-
ical (as distinguished from the logical) operations of the machine”,64 and Edmund
Berkeley included among the set of logical operations those of detecting a relation
of inequality between two numbers, and providing for conditional branching and
the automatic detection of the end of a calculation.65

The analogy between order codes and logic, then, appears to have been based on
an understanding of machine code as a formal language for defining the sequence
of basic operations to be carried out by a machine. The view of logic as the study of
formal languages was well established, having been put forward in works such as
Rudolf Carnap’s Logical Syntax of Language,66 but nevertheless formal languages
of machine processes are different in many ways from the traditional logical calculi
of deduction, and the question arises of why it seemed natural at this time to widen
the denotation of the term ‘logic’.

A possible explanation for this is based on the observation that formalization had
led to a more abstract view being taken of logic itself. Rather than thinking that rules
of inference say something important about the notion of truth, it was now possible
to think of them simply as defining a formal relationship, that of entailment, between
sentences in a formal language. In a similar way, the ‘logical’ aspects of machine
code could be thought of as describing a particular formal relationship, the order of
execution, holding between the basic instructions of a program.

Support for this interpretation is provided by the terminology used by Konrad
Zuse. His programming notation, the Plankalkül, was named by analogy with the
predicate calculus, or Prädikatenkalkül in German. Zuse is quoted as stating that
his aim was “to provide a purely formal description for any computational proce-
dure”,67 implying that the influence of logic was not to be found in the details of any
particular calculation, but rather in the properties that are common to all, namely the
ways in which computations can be organized.

An alternative interpretation of the naming of the Plankalkül has been offered
by Friedrich Bauer, who states that the “Plankalkül is an instrument for reasoning

62von Neumann (1945), p. 2.
63Goldstine and von Neumann (1947), p. 113.
64Goldstine and von Neumann (1947), p. 115.
65Berkeley (1950).
66Carnap (1937).
67Giloi (1997), p. 18.
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about programs—quite a modern point of view”.68 This comment does not seem
to be valid if it is interpreted as meaning that Zuse was interested in proving or
validating the functional properties of his programs: unlike Goldstine and von Neu-
mann or Turing,69 Zuse never tried to formalize properties of the data being used
in a computation, for example. Zuse was very interested in logic, both at the level
of computer design and also as an application—one of his example programs was
to check the well-formedness of a formula in propositional logic, for example—but
his programming notation does not seem to have been specifically related to more
traditional logical notions of proof and reasoning.

Once the analogy between logic and coding had been made, it became possible
for researchers to consider what other features of logic could be fruitfully applied in
the new area. Following Carnap and Morris, it had become common to structure the
study of formal languages using the metalinguistic categories of syntax, semantics
and, to a lesser extent, pragmatics. The following sections describe the ways in
which these notions began to be applied to machine codes.

7.8 Syntax

Early automatic computers were thought of primarily as numerical calculators, and
the store was correspondingly understood as a repository for numbers. With the
advent of stored-program machines, however, instructions were also placed in the
store. This was often described as a process of coding the instructions as numbers;
for example, the EDSAC team referred to it as “the device of expressing the orders
in a numerical code”.70 However, this does not make explicit the fact that numbers
also had to be coded before they could be stored, and in fact a variety of coding
schemes had been used, even on the early relay computers.71 A more accurate view
of the store was as a neutral medium in which different types of information could
be represented and whose “[w]ords may be interpreted as numerical information or
as instructions”.72

The details of these coding schemes fall into the category of syntax, defined by
Carnap as concerned only with the kind and order of symbols used in the expressions
of a language, the symbols in this case being the individual digits held in the store.
Accounts of specific machines typically explained how numbers were coded, and
gave a description of the machine’s order code in the form of a table listing the
basic machine operations, accompanied by a more or less detailed account of how
an instruction to the machine to perform one of these operations would be coded.

68Bauer (2000), p. 278.
69See Turing (1949) for an early example of program proving.
70Wilkes et al. (1951), p. 3.
71Booth (1949).
72Huskey (1951).
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The structure of a typical order code was extremely simple. Individual orders
contained a number of fields: one field specified the operation to be carried out,
and other fields contained the addresses of one or more locations in the store. In
addition, some codes contained digits used to verify the data stored in a word or
for other internal purposes. In some cases the coded form of an instruction did not
correspond exactly to the word size of the machine and some parts of the word
would be left unused. Alternatively, on some machines it was possible to store more
than one instruction in a single word.

Order codes were sometimes presented in a variety of symbolic representations.
For example, in the Draft Report von Neumann distinguished between the “short
symbols” that were used for discussing code and setting up problems for the device,
and “code symbols”, which were the strings of binary digits holding instructions
in the machine.73 Turing distinguished the “machine form” of the code both from
the “permanent form”, used for example to store subroutines for reuse, and also
from a more readable “popular form” used when instructions were to be listed.74

The input tapes used in the EDSAC programming system represented addresses in
decimal notation, not the binary form used inside the machine, and used a single-
character mnemonic representation of basic operations.75 The alternative forms of
code represented only its functional details, ignoring for example the presence of
check digits in instruction words or the details of placing multiple instructions in
one word.

Machine codes had little, if any, syntactic structure above the level of individual
instructions. The sequence of instructions making up a program was usually shown
by listing actual or illustrative memory locations and showing the instruction stored
in each. These memory locations, however, were those denoted by the addresses
appearing in individual instructions: the overall program structure could therefore
only be grasped by referring to an aspect of the meaning of the code, and not through
purely syntactic means. It was impossible, in other words, to understand the effect
of a program by simple inspection of the instructions making it up: it was also
necessary to know where in memory these instructions were stored.

There was very little theoretical analysis of the syntax of machine code, a more
pressing concern being the best choice of basic operations for a code. The most
widely discussed syntactic issue concerned the number of address fields contained
in a single instruction. Codes which contained three addresses allowed a single order
to express an instruction like “add the numbers stored in locations x and y and
store the result in location z”. In a code which provided only a single address field,
this would require three instructions: “add the number stored in location x into the
accumulator; add the number stored in location y into the accumulator; transfer
the number stored in the accumulator to location z”. A further variant, to support
optimum coding, allowed the address of the next instruction to be stored explicitly
in each instruction, leading to two and four address codes.

73von Neumann (1945), Sect. 15.6.
74Turing (1946), Sect. 13.
75Wheeler (1950).
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There appeared to be no clear advantage in terms of either execution time or
overall code size between one and three address codes, and both schemes were
widely adopted. A theoretical result to this effect was published by Calvin Elgot
in 1954; this is of interest as being an early application of formal language theory
to computer programs.76 Elgot’s proof involved the definition of a formal language
intended to represent the relevant differences between the two forms of code, but
did not, however, give a formal syntactical description of a complete or realistic
machine code.

An interesting attempt to apply logical syntax to computing at this time was made
by George Patterson, who made explicit use of Carnap’s work in sketching out a
general theory of “syntactical machines”.77 He described a class of machines which
he termed “linguistic transducers”, which accepted input data and transformed them
into output data. By viewing these data as symbolic expressions, Patterson hoped
to use Carnap’s approach to develop a logical theory of such machines. Analogue
computers were not amenable to this treatment, but the class of syntactical machines
was wider than just digital “calculating machines”, and Patterson listed a number of
other machines, including cryptographic machines and switching systems, to which
his approach could be applied.

Patterson listed a number of problems whose solution he felt could be aided by
a unified syntactical approach. These included problems in machine analysis and
synthesis, as well as the design of suitable order codes for machines and the cod-
ing of specific problems. The applications described in the paper were concerned
with formalizing and verifying properties of basic electronic circuits for computer
arithmetic, however, and Patterson described no applications of his ideas to the for-
malization of machine code or the construction of programs.

An interesting terminological difference between Patterson and Carnap marks
the shift in the application of the ideas of logical syntax to a type of language
very different from conventional logic. For Carnap, the transformation rules were
meant to capture aspects of the consequence relation between sentences. Patterson
did not explicitly define a class of sentences, however, nor did he discuss the rela-
tionships between sentences. Instead, he was concerned with a class of “numerical
expressions”, or numerals in a specified base, and he gave a recursive definition
of a “quasi successor” relation between numerical expressions. This definition was
subsequently referred to as a “transformation rule”, a usage which clearly marked
a break with logic’s concern with truth and consequence. A more subtle difference
is that for Carnap transformation rules provided a way of capturing non-recursive
relationships such as logical consequence. In Patterson’s usage, however, the term
was used as a synonym for a recursive definition, suggesting that in the context of
computers, the only transformations of interest are those that are computable, or
definable by recursive functions.

76Elgot (1954).
77Patterson (1949).
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7.9 Flow Diagrams and Program Semantics

A very natural account semantic account of programs takes as its starting point the
idea that the meaning of a program text, or sequence of instructions, is in some
way connected to the computation that it expresses or, in more concrete terms, the
different sequences of operations that a computer might carry out while executing
the program. In the course of their exploration of the possibilities of programming
stored-program machines, Goldstine and von Neumann came up with a sophisti-
cated account of this notion of semantics, together with a flow diagram notation
which expressed such meanings and could be used as a way to develop programs.

They began by commenting on the relationship between a list of instructions and
the sequence of operations performed when a program was executed. In the case
of machines like the ASCC, where operations were by and large carried out in the
same order as the instructions were written on the tape, this relationship was rather
straightforward. Techniques such as making endless, looping instruction tapes or
splitting a program among a number of different tapes did not seem to complicate
this basic picture to any significant degree.

The situation with stored-program machines was very different, however, as a
direct result of the two features that had been identified as typical of these new
order codes: transfers of control meant that the sequence of operations executed
could differ in arbitrary ways from the sequence of instructions, and instruction
modification meant that the sequence of instructions itself could be expected to vary
as the computation proceeded, making the very notion of a fixed program text rather
problematic.

These differences meant that a semantic account of programs was going to differ
in some ways from the account given for predicate logic. A semantic account of
logic is typically presented as a mapping from a set of stable, syntactic expressions
to some domain of meanings. The possibility of instruction modification, however,
means that the situation with programs is more complex. If the execution of a pro-
gram can cause the program text itself to change, then the operations subsequently
carried out, and hence the program’s meaning, depends on the modified text, and
hence only indirectly on the original program text. In other words, “coding is . . .
the technique of providing a dynamic background [i.e. the changing instructions]
to control the automatic evolution of a meaning [i.e. the operations automatically
carried out by the computer]”.78

Secondly, semantics for logic are typically compositional, in the sense that the
meaning of an expression can be derived in a systematic way from a knowledge of
the meanings of its constituent subexpressions and the way they are put together.
Machine code programs could not be understood in this way, however. Even in the
simplest case of two adjacent orders it could not be concluded that the operations
they denote will be performed in sequence: even leaving aside the possibility of
instruction modification, a transfer from elsewhere in the program might cause the
second to be executed independently of the first.

78Goldstine and von Neumann (1947), p. 154.
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Faced with the relative obscurity of the relationship between program code and
the operations executed by the program, Goldstine and von Neumann developed a
diagrammatic notation to help in the development of programs. The method they
proposed was “to plan first the course of the process and the relationship of its
successive stages to their changing codes, and to extract from this the original coded
sequence as a secondary operation”.79 The flow diagram notation they developed
was therefore intended to provide a graphical representation of the behaviour of the
running program, the required sequence of operations, a “schematic of the course of
C [the control] through that sequence”. In effect, flow diagrams were a technique for
expressing the semantics of a program, and Goldstine and von Neumann proposed
a development method which would derive from this a sequence of orders which
when executed would result in the required operations being carried out.

The proposed flow diagrams were directed graphs in which the nodes represented
groups of operations that were always executed in the default, sequential order; the
arcs represented transfers between these blocks of operations. A node with two arcs
leading from it represented a block with two possible continuations, and hence a
conditional jump, and loops were represented by cycles in the graph. Because of
the possibility of the dynamic modification of instructions, however, the structure
of the graph might change as the program ran, and in an attempt to deal with this,
Goldstine and von Neumann introduced so-called “variable remote connections”
into the flow diagrams. These were intended to show that particular arcs should be
considered to link different pairs of nodes at different times.

On top of this basic expression of structure, flow diagrams could contain a lot
of information about the properties of the data being manipulated by the program.
The notation maintained a strict distinction between the mathematical expression
of the problem being coded, described in terms of variables, and the actual data
being manipulated, which were referred to by reference to storage locations. The
operations that were needed, together with numerical values stored at each point of
the program’s execution, were described mathematically. A distinction was drawn
between free and bound variables, and the use of this terminology was explicitly
linked with that of “formal logics”;80 free variables were those whose value could
be set from outside the routine being considered, and bound variables those which
were considered ‘private’ to the routine. Unlike in logic, however, where variables
become bound by being used in a quantification, there was no syntactic means of
distinguishing free from bound variables in flow diagrams, the distinction being
purely contextual.

Flow diagrams could also contain assertion boxes, which stated properties that
were expected to hold at various times during program execution. This formed a
bridge between programming and traditional logical notations, as an assertion could
be any logical formula making use of the program variables. These assertions were
to be understood by treating the mapping between program variables and the corre-
sponding stored values at the moment when the assertion came into effect as giving

79Goldstine and von Neumann (1947), p. 84.
80Goldstine and von Neumann (1947), p. 91.
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an interpretation of the variables. The use of assertions was also adopted by Turing
as a method for checking correctness of programs,81 but then faded from view until
the mid-1960s. A further difference between programs and conventional logic can
be noted at this point: whereas the meaning of a predicate logic formula is given
with respect to a single interpretation, or mapping from variables to objects, the
interpretation given to the variables in a program changes as the program executes.

The flow diagram notation can therefore be viewed as being in part an attempt to
assimilate machine code programming to the theory and practice of contemporary
formal logic. Flow diagrams provided a formal representation of the semantics of
programs, and with the use of assertions, first-order logic was built in to the notation
and to the methodology of program construction based upon it. Explicit analogies
were drawn with logic even in relatively minor details of terminology, such as the
distinction between free and bound variables.

Arthur Burks later described the use of “bound variables” in loops in flowcharts
as being related to the bounded quantifiers introduced by Gödel.82 This observation
derives from the fact that in many programs, variables are used to control loops by
counting the number of iterations that the program has made through the loop. In a
similar way, the variables in bounded quantifiers index all the integers in the range
of the quantifier. The use of variables to control loops was a universally adopted
programming technique, however, clearly related to the existing use of variables in
interactive schemes for manual computation. It does not seem likely that this feature
of programs needs to be explained by reference to formal logic.

A striking feature of the flow diagram notation is that it constrained the degree of
freedom theoretically available in programming for stored-program machines. Flow
diagrams were well adapted to express high-level computational structures such as
loops and conditional branching, but only permitted the expression of a limited form
of instruction modification, by means of the variable remote connections. It is not
clear that an arbitrarily complicated program could be perspicuously depicted in a
flowchart. Furthermore, flow diagrams seem most suitable for describing the flow
of control within a single routine, and do not appear to have been used to show the
high-level structure of a program as a set of subroutines, or the calling relationship
between subroutines.

The flow diagram notation was widely adopted, but usually in a simpler form
than that proposed by Goldstine and von Neumann. For example, in 1949 Renwick
used flow diagrams to explain an example program for the EDSAC.83 However, the
diagrams showed only operation boxes and alternative boxes, and the connections
between them: no distinction was made between variables and storage locations,
and assertions were not used. With the exception of Turing’s paper in 1949, these
more ‘logical’ aspects of the notation were not on the whole taken up.

81Turing (1949).
82Aspray and Burks (1987).
83Renwick (1949).
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7.10 Programs as Metalinguistic Expressions

Many years later, Arthur Burks reflected on the relationship between formal logic
and the work that Goldstine and von Neumann did on programming in the 1940s,
and he concluded that “I think it likely that, in his programming work, von Neu-
mann was guided by his knowledge of Gödel’s work, at least intuitively”. In partic-
ular, Burks saw the fact that data in the memory of a stored-program computer can
be interpreted as either numbers or instructions as pointing to “an instance of the
metalanguage versus object language distinction”.84

As described in Chap. 4, Turing adopted Gödel’s strategy of arithmetization to
encode machine tables as data which could be stored on the tape of the universal
machine, and the same strategy is adopted by stored-program computers. Burks’s
distinction arises more from the way in which these data are used, however, than
the way they are stored. In simple cases, machine code programs manipulate nu-
merical data only, and can be viewed straightforwardly as expressions of the object
language. A program that modifies its own instructions, however, is modifying ex-
pressions of the object language, and so the program can be interpreted as belonging
to a syntactic metalanguage. Codes that permit instruction modification can there-
fore be seen as being simultaneously object and metalanguage.

The possibility that a language could, by making use of arithmetization, express
its own syntax initially appeared paradoxical, and one result of Carnap’s work was
to show that in the case of conventional logic this gave rise to no problems.85 A pro-
gram which is capable of modifying its own instructions, however, seems to take
a step beyond what is possible in logic, and to further blur the distinction between
syntax and semantics. For Carnap, syntax was concerned only with the classification
and ordering of symbols in expressions, uncontaminated by any considering of the
meaning of the expressions. If, however, the meaning of a program is considered to
be the operations it carries out, then instruction modification represents an infection
of the syntactic domain by semantics: execution of the program is able to change
the syntactic representation of the program itself.

For many people involved in computer development in the late 1940s and early
1950s, instruction modification, and the possibility of self-modifying programs, was
an extremely significant feature of the stored-program design. This was so for both
practical and theoretical reasons. The ability to change instruction addresses made
the coding of iterative programs much easier and more flexible than it had been on
machines such as the ASCC, but self-modification was also invoked, for example
by Turing, as having the potential to explain higher cognitive functions such as the
ability to learn.

Interestingly, von Neumann consistently adopted a conservative attitude towards
instruction modification. This conservatism can be understood as a side-effect of
applying the metalogical structure created for conventional logic to the new ‘log-
ics’ of computer codes, and in particular as an attempt to keep separate the domains

84Aspray and Burks (1987), pp. 384–385.
85Carnap (1937).
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of syntax and semantics. Further evidence in support of this line of thought will
emerge in subsequent chapters, which describe the emergence of a theory of pro-
gramming languages that was explicitly modelled on metalogic accompanied by the
elimination of the ability to write self-modifying programs.

Leaving aside the issue of instruction modification, there were other programs
which could more straightforwardly be described as metalinguistic. Metalanguages
in logic provide the ability to describe aspects of the syntax and the semantics of
another language. Machine code programs are not declarative, however, consisting
of orders rather than statements, and so they cannot simply describe syntax and
semantics in the way of logical metalanguages. Programs can be written, however,
which manipulate instructions and program code in various ways, and it would seem
reasonable to view such programs as being metalinguistic.

Examples of such ‘metaprograms’ appeared early on, the best documented early
example perhaps being the initial orders for the EDSAC, a program which translated
input programs expressed as a mixture of letters and decimal numbers into a purely
binary form.86 This approach was quickly recognized as providing great benefits
in programming productivity: a number of systems went on to define ‘interpretive
codes’ for various purposes such as floating-point arithmetic, for example. These
enabled the programmer to write code in one notation which would be translated
by an interpretive program into the machine’s native code. This approach to coding
became known as ‘automatic programming’, and throughout the 1950s many such
codes were produced, gradually evolving into what became known as programming
languages. These developments are discussed in detail in the next chapter.

7.11 Conclusions

Von Neumann’s Draft Report is widely recognized as marking a turning point in the
history of computer hardware. It represents a moment of closure, where a number
of elements, individually present for the most part in earlier work, were for the
first time put together in a form that became a definitive model for most, if not all,
subsequent developments.

The role of the report in the development of programming techniques is less
dramatic, however. This chapter has described the gradual evolution of the basic
concepts of machine code programming from the late 1930s to about 1950, and it is
apparent that there is much greater continuity between the way in which the ASCC
and the EDSAC were programmed, than there is in the design of their hardware.
The nearest analogue to the Draft Report in the field of programming is perhaps
the textbook written by the EDSAC group.87 Like the Draft Report, this brought
together in a particularly clear form the principles on which contemporary work
was based, and served as a model for much later work.

86Wheeler (1950).
87Wilkes et al. (1951).





Chapter 8
The Invention of Programming Languages

It quickly became apparent that the task of creating machine code programs was
one that most humans would find challenging, and techniques for simplifying and
automating parts of this process were soon developed. Symbolic abbreviations for
operation codes were often employed and several programming systems, following
the example of the EDSAC, provided special programs to translate the symbolic
form into the internal machine representation automatically.

These developments automated certain aspects of the production of machine code
programs, but still required programmers to define the sequence of basic operations
making up a program. A further stage of automation was envisaged in which this
latter task, described as ‘programming’ to distinguish it from the more mechanical
activity of coding, would itself be performed by machine. Stanley Gill expressed the
goal as follows:

One might say that an ideal programming scheme would allow one merely to state the
problem to be solved . . . existing systems . . . still require the user to specify a series of
steps to be performed by some conceptual computer.1

The first application of such ‘programming schemes’ was in connection with
mathematical formulae. During the 1950s, a number of systems were developed
which allowed programmers to write programs which contained formulae written
in some approximation to standard mathematical notation; these formulae would
then be automatically translated into a sequence of basic machine instructions to
perform the calculation defined by the formula. The most ambitious and successful
of these systems was Fortran, which first became available in 1957 for the IBM 704
computer.2

At the same time, it became apparent that certain coding patterns were used over
and over again to control the sequencing of operations in a program. The clearest
example of this was the coding of loops, which were often controlled by an index
variable counting the number of times the loop had been executed. In much the same

1Gill (1959).
2IBM (1956).
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way as formula translation systems automated the process of writing instructions to
perform calculations, systems gradually began to provide ways of automating the
writing of instructions implementing control structures such as loops. As there was
no existing notation for control structures, however, these developments were rather
more tentative than those to do with the translation of mathematical formulae.

By the end of the decade, many automated programming systems existed, mostly
designed for and implemented on a particular type of computer. A number of groups
had discovered the benefits of sharing code and the necessity of running programs on
more that one type of computer, but the existence of machine-specific programming
notations made these tasks difficult. This situation gave rise to a number of initiatives
aimed at developing a universal programming notation; the best-known and most
influential of such developments was the Algol 60 language.3

This chapter examines these technical developments and the parallel evolution
of theoretical accounts of programming notations. At the start of this period, these
were understood relative to a machine, whether real or imaginary; by the end, they
were increasingly thought of free-standing notations, or ‘languages’, which could be
studied independently of any machine. Both natural languages and formal languages
were taken as models for programming languages. On the whole, natural languages
inspired developments in notations intended for use in data processing applications,
whereas formal logic was taken as a model for programming languages intended for
mathematical and theoretical uses.

8.1 Automatic Coding

At the beginning of the 1950s, the term ‘coding’ was used to refer to the process
of translating the instructions of a program into the coded form used inside the
machine. In some cases this was carried out entirely by hand, but following the
example of the EDSAC, many installations devised a set of ‘initial orders’ which
would translate instructions from a more human-friendly form into machine code.

In simple cases, this translation required little more than a transliteration of the
external symbols used to write the program in a form accessible to humans into
the corresponding internal codes, but the use of subroutines made the task more
complex. In order to make free use of subroutines, it must be possible to place their
instructions at different locations in the store in different programs. This means that
any instructions in the subroutine that refer to specific storage locations or jump
to another instruction within the subroutine may differ from one occasion of use
to another. The EDSAC’s initial orders automated the process of calculating the
required addresses, so that subroutines were correctly translated depending on their
location in any given program. A further refinement was provided by an ‘assembly
subroutine’ which calculated the location of each subroutine in a program, so that

3Naur et al. (1960).
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the programmer would not have to decide where in the store each subroutine should
be placed.

These and related techniques, such as a method for attaching labels known as
‘floating addresses’ to selected instructions, involved the manipulation of a program
before it was run.4 From an input tape consisting of a master routine and a number
of subroutines, a complete translated machine code program would be produced,
and then executed. An alternative approach made use of what became known as
‘interpretive routines’. When an interpretive subroutine was called, the processing
to be carried out was specified by a number of ‘pseudo-orders’, or instructions that
in fact did not belong to the machine’s order code. The job of an interpretive routine
was to read these pseudo-orders and ensure that appropriate code was executed in
response to each one. In contrast with the approaches described above, the pseudo-
orders were not translated in advance into machine code; instead, the interpretation
process was carried out during program execution.

The EDSAC subroutine library contained interpretive routines to make it easier
to code programs which performed calculations with complex and floating-point
numbers. The codes interpreted by these routines bore a very strong relationship to
the basic machine code, being in the same format and even using the same code
letters to refer to analogous operations in most cases. Presumably this was intended
to make the use of the subroutines as natural as possible to programmers, as well as
allowing input of the interpreted codes without having to change the initial orders.5

More generally, interpretive routines raised the possibility of designing codes that
were adapted for specific purposes, and which would therefore diverge further from
the underlying machine code. Wilkes and his collaborators gave an example where
the instructions in the interpreted code were so small that two orders could be placed
in a single machine word.6

In the EDSAC system, the interpretive routines were intended to be called as
part of a larger program, and the interpreted codes therefore formed only part of the
complete program. In effect, a single program could be written using an extended
code, where the basic order code was supplemented by the pseudo-orders handled
by one or more interpretive routines. An alternative approach was to enable an entire
program to be written in a single interpreted code. Perhaps the earliest such system
to have been implemented was John Mauchly’s ‘Brief Code’, which was developed
for the BINAC computer but first ran on the UNIVAC in 1950, by which time it was
known as ‘Short Code’.7

Short Code evolved from a proposal made by Mauchly in 1949 to develop a “spe-
cial code chosen to simplify the work of the human programmer and throw much of
the tedious detail of coding onto the computer”.8 Mauchly’s argument in favour of

4Wilkes (1953b).
5Campbell-Kelly (1980), p. 29.
6Wilkes et al. (1951), pp. 162–164.
7Schmitt (1988). As described below, Short Code was principally a formula translation system.
8Mauchly (1949).
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an interpreted code was primarily economic: he identified a class of “small” prob-
lems where the cost of programming far outweighed the cost, in terms of computer
time, of running the program. He anticipated that the use of interpreted codes would
make programming easier, and therefore significantly reduce the overall cost of such
programs.

A disadvantage with interpreted codes was that the translation to machine code
was performed as the program was running, and therefore increased the time taken
to run programs. An alternative approach was to perform the translation as a separate
step before running the program. Wilkes described this approach as follows: “[t]he
programmer writes down ‘orders’, here called synthetic orders, which the control
circuits of the machine are incapable of executing. The necessary expansion into
sequences of ordinary machine orders . . . takes place once for all in advance of the
execution of the programme”.9 Wilkes gave an example of synthetic orders designed
for the EDSAC, but stated that the technique had not yet been used to any significant
extent.

Related developments, associated particularly with the work of Grace Hopper,
were being carried out on the UNIVAC. Motivated like Mauchly by a growing
awareness of the cost of programming, Hopper hoped that “[t]he programmer may
return to being a mathematician”. This was to be achieved by what Hopper called
“compiling routines”, or programs “designed to select and arrange subroutines ac-
cording to information supplied by the mathematician or by the computer”.10 A se-
ries of such routines were developed and ran on the UNIVAC from 1952 onwards.

From 1950 on, then, a number of different schemes and tools were developed
to implement various approaches to automatic coding. Interpreted and compiled
schemes shared the property that programs were not written directly in the code of
the target machine, but in a pseudocode. It was widely hoped that this would make
programming easier and less time-consuming, although potentially decreasing the
run-time efficiency of the machine. This trade-off was widely seen as having overall
economic value.

8.2 The Semantics of Pseudocodes

Machine codes were, naturally, understood as being notations for expressing or
specifying the behaviour of particular computing machines. It could not be assumed,
however, that an instruction in a pseudocode corresponded to a single instruction in
the underlying machine, although sometimes this was of course the case. This made
it necessary to come to a more complex understanding of the meaning of pseudocode
programs, and a number of different interpretations emerged as codes became more
common and more complex.

9Wilkes (1952).
10Hopper (1952), pp. 244, 248.



8.2 The Semantics of Pseudocodes 189

Extending Machine Code Some pseudocodes were syntactically very similar to
the underlying machine code. This was particularly true of the interpretive orders
that were developed for the EDSAC, of which Wilkes wrote that “[n]o example of
a programme of interpretive orders need be given since it would look just like an
ordinary programme”.11 In cases like this, it was possible to treat the pseudocode as
if it was an extension of the original machine code: “the use of interpretive routines
effectively extends the order code of the machine by increasing the complexity of
the operations which may be performed in response to a single ‘order”’.12 Not only
interpretive orders, but also subroutines could be thought of in this way, and Wilkes
went on to state that “[b]y deciding to place a closed subroutine in the store, the
programmer effectively extends the order code of the machine so as to cover the
operation performed by the subroutine”.13

If the syntactic relationship between machine code and pseudocode was very
close, this could have implications for the ease with which pseudocode programs
could be processed. Again with reference to the EDSAC, Wheeler wrote that “the
[interpretive] sub-routine executes the ‘orders’ in the list in a similar fashion to the
way that the machine obeys ordinary orders”.14

Translation In cases where the pseudocode did not so closely resemble machine
code, the notion of translation was often invoked to explain the relationship between
the two. This was initially understood as a run-time process of interpretation; in
his initial proposal for what developed into Short Code, Mauchly wrote that the
computer on which the code ran “must be provided with routines for interpreting
this special code, and for executing the indicated instructions”.15

This alternative viewpoint was motivated by the fact that, unlike the EDSAC’s
interpretive orders, Short Code was understood to be a new linguistic formalism,
one which was distinct from the underlying machine code. One consequence of
this recognition was that the informal idea of interpretation developed into a more
formal notation of translation, and became applied to a wider range of situations. In
1951, for example, Jack Good asked whether anybody had “studied the possibility
of programme-translating programmes, i.e. given machines A and B, to produce
a programme for machine A which will translate programmes for machine B into
programmes for machine A”.16 In 1952, a group at Manchester described their work
on developing a code for a new machine in precisely these terms, claiming that they
were “developing a scheme which will enable us to test the new programmes on the
old machine and this will be done by means of an interpretative [sic] scheme which

11Wilkes (1952).
12Wilkes et al. (1951), p. 35.
13Wilkes (1952).
14Wheeler (1952).
15Mauchly (1949).
16Good (1951).
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translates the new routine from the new code back into the code of the existing
machine”.17

Translation is usually thought of as a meaning-preserving relationship between
expressions in distinct languages. Applying the translation metaphor to interpretive
routines encouraged people to think of programming codes as languages in their
own right: in the same year, Earl Isaac made this idea explicit, stating as a general
principle that “[c]oding for digital computers is a process of translating from one
language to another”.18

Virtual Machines Yet another interpretation was available, however, according to
which interpretive routines were understood to be extensions or modifications not
to an order code, but to the underlying machine itself. Turing put this as follows:
“[a]n interpretive routine is one which enables the computer to be converted into a
machine which uses a different instruction code from that originally designed for
the computer”.19 The change of perspective, from interpreting an extended code on
a basic machine to programming on an extended machine, was made explicit by
Isaac: “[t]he use of subroutines permits the coder to think in terms of functions that
are complex combinations of the elementary arithmetic and logical operations of
the machine. This is in effect a different structure than that permitted by the basic
machine”.20

This viewpoint gained some of its force from the desire or need to simulate on
one machine the hardware of other, more powerful machines. For example, the
floating-point interpretive routine designed by Brooker and Wheeler simulated in
the EDSAC’s memory both a floating-point accumulator and the B tubes available
on the Manchester machine, and permitted recursive subroutine calls, even though
these capabilities were not provided by the EDSAC’s hardware.21 John Backus may
have been thinking of this case when he later wrote that “[t]he purpose of the early
systems was to provide synthetic machines which had floating-point operations and
often index registers (B-tubes), since the real machines did not”.22 Backus himself
had designed an interpretive scheme for the IBM 701, introducing it in terms of the
“synthetic” machine that it simulated: “[t]he IBM 701 Speedcoding System is a set
of instructions which causes the 701 to behave like a three-address floating point
calculator. Let us call this the Speedcoding calculator”.23

Compilers as well as interpretive routines were understood as creating synthetic
machines. Some years later, Hopper characterized the compiling routines that she

17Bennett et al. (1952).
18Isaac (1952). ‘Coding’ is here used to refer the generation of machine code, not simply writing
a program.
19Turing (1951), p. 192.
20Isaac (1952).
21Brooker and Wheeler (1953).
22Backus (1958), p. 234.
23Backus (1954), p. 4.
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had developed by saying that “the compiler . . . effectively converted the UNIVAC
from a single-address, fixed-decimal computer into a three-address, floating-decimal
computer”.24 The introduction of later pseudocodes was commonly explained or
motivated by an appeal to the notion of a synthetic machine. For example, Laning
and Zierler, whose system is described in more detail below, wrote that “[t]he effect
of our program is to create a computer within a computer . . . ”,25 and in a later
description of programming the DEUCE, the descendant machine of Turing’s ACE,
Robinson wrote that “it is constructive to look upon [three interpretive schemes] as
three alternative machines”.26

Pseudocodes, then, came to be understood in the same way as machine codes,
namely as being the instruction codes of particular computing machines. However,
the machine corresponding to a given pseudocode would usually not have been built,
but would be simulated on an existing machine. When a pseudocode program was
run, the job of the interpreter or compiler writer was to ensure that the same results
were produced that would have been obtained if the ‘synthetic’, or virtual, machine
assumed by the writer of the pseudocode had been operational and the pseudocode
program run directly on it.

As noted above, Turing was an early advocate of this point of view, and the idea
of an interpretive routine enabling one machine to simulate another later became
associated with the universal machine concept:

the founder of [the field of automatic programming] was the late A.M. Turing, who . . .
first enunciated the fundamental theorem upon which all studies of automatic programming
are based . . . it states that any computing machine which has the minimum proper number
of instructions can simulate any other computing machine, however large the instruction
repertoire of the latter. All forms of automatic programming are merely embodiments of
this rather simple theorem.27

It is debatable whether this ‘theorem’ was in fact stated by Turing, however.
Turing demonstrated the existence of a universal machine within a certain class
of machines which shared the same physical structure. He only argued informally,
however, that the machines he had defined were capable of simulating all forms of
computational machinery, commenting for example that a two-dimensional grid of
data values could be represented on a one-dimensional tape.

It is worth noting, however, that the two interpretations of pseudocodes continued
to coexist, as Gill noted at the end of the 1950s: “[t]he net effect may be looked
on either as a translation of the original program language into that required by
the machine, or as a way of making the machine imitate another machine which
recognizes the original language directly”.28 For codes that syntactically resembled
machine code, the virtual machine interpretation continued to seem very natural;

24Hopper (1959), p. 167.
25Laning and Zierler (1954), p. 1.
26Robinson (1960), p. 115.
27Booth (1960), p. 1.
28Gill (1959), p. 111.
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as more sophisticated notations evolved, however, the idea of translation was more
frequently invoked.

Instruction Modification If the instructions of an interpreted pseudocode were
held in a computer’s memory, they were available for modification during program
execution in the same way as machine code instructions. Some, but not all, systems
supported the possibility of modifying pseudocode instructions. The Speedcoding
system, for example, provided automatic address modification by means of three
index registers, one for each of the three addresses appearing in an instruction. Each
arithmetic operation in a Speedcoding program could specify which, if any, of the
addresses should be modified by the contents of the corresponding index register
before execution.

The situation was different in the case of compiled codes, however, where the
pseudocode instructions were translated into machine code and so were no longer
available for modification when the program was running. Compiled pseudocodes
therefore had to provide alternative means to support the common purposes to which
techniques like address modification were put.

A good example of this is provided by the PACT I system, which was developed
in the mid-1950s for the IBM 701. Under the heading of “Automatic Loop Writing”,
Charles Baker wrote that:

An important feature of a stored program computer lies in its ability to modify its own
instructions. To take advantage of this, two logical instructions, “SET” and “TEST”, are
provided for instructing the compiler to write a loop.29

A PACT I loop to add together the values in two vectors is shown in Table 8.1.
The first instruction sets the value of the subscript I to 1. This subscript is then used
in the following three instructions, which add together the values in AI and BI and
store the result in CI . Finally, the TEST operation increments the value of I ; if the
resulting value is not greater than that given in the S2 field, control returns to the
instruction following the SET instruction.

This example illustrates a significant innovation, the definition of a computational
structure, a loop, by specific syntactic features, the SET and TEST instructions. In
machine code, by contrast, loops were implemented in terms of the jump, a simpler
mechanism. It was suggested that the code in Table 8.1 could be treated as a whole
and read as: “Take A sub I , add B sub I , and set the results equal to C sub I . Do
this for I = 1,2, . . . ,10”.

In some respects, then, the use of pseudocodes restricted the set of capabilities
available to the programmer. In general, not every operation that could be carried
out in machine code could be programmed in pseudocode. This restriction was felt
to be acceptable if balanced by an increase in programming productivity, at least for
the range of problems that the pseudocode was designed to address. To compensate
for this, pseudocodes began to develop a greater linguistic richness by including
features providing automatic coding of common programming patterns.

29Baker (1956), p. 275. Baker is referring here to the ability of a computer to modify machine
code, not pseudocode, instructions, of course. The SET and TEST instructions belonged to the
pseudocode and were not themselves modified.
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Table 8.1 A loop to add
vectors in PACT I Step Op. Factor S1 S2

0 SET I 1
1 A I
2 + B I
3 EQ C I
4 TEST I 10

8.3 Formula Translation

In some ways, programming in pseudocode was a similar experience to machine
code programming. Problems still had to be broken down into steps which were
small enough to be expressed as individual instructions in the code being used,
whether or not it was that of a real machine. Low-level coding of this type was
sometimes seen as a routine, but tricky and rather unrewarding task; as computers
became more widely used there was an increasing demand for programmers, giving
rise to some anxiety as to whether this demand could easily be met. One strategy
that was adopted to address this situation was to attempt to make programming more
interesting and accessible by developing programming notations that were directly
related to the problems that users were trying to solve.

In the 1950s, this approach was applied with considerable success to the specific
task of evaluating mathematical formulae. A basic step in many calculations is to
use values already calculated to compute the value of a new variable. Such steps can
be formalized as equations of the form x = F(y, z, . . .), where x is the variable to
be computed and F is a formula expressed in terms of known values. Many such
formulae can be interpreted as expressing algorithms, specifying what arithmetical
operations have to be carried out and in what order. For example, the simple formula

x = z + ab

specifies that the values of a and b should be multiplied together, the value of z

added to this result, and then the final answer stored in the variables x. If machine
code was being used, this sequence of operations would have to be written by hand.
It seemed, however, that it should be possible to have the computer itself interpret
the formula and generate the required machine code instructions. In addition to the
perceived economic benefits of using interpreted codes, this raised the possibility of
allowing mathematicians to program computers directly using a familiar notation,
thus reducing the demand for skilled coders.

Automatic formula translation seemed to be more technically challenging than
the interpretation of pseudocodes, primarily because mathematical formulae were
syntactically more complex than the orders in a typical pseudocode. Earl Isaac broke
the task of translation down into two steps, the “translation of grammar” producing
a sequence of instructions coding the operations required to perform the calculation,
and the “translation of words” generating machine code, for example by replacing
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variable names by machine addresses. He noted that the translation of grammar
appeared to be the harder problem and one on which little progress had been made.30

The developers of formula translation systems in the early 1950s made different
decisions about the ‘grammar’ of formulae. Some assumptions were widely shared:
it was a common goal to allow formulae to resemble standard mathematical notation
as far as possible, using the four basic arithmetical operations and, where necessary,
parentheses to control the order of evaluation, and it was widely felt that it should
be possible to include standard functions, such as trigonometric and exponential
functions, in formulae. Systems varied greatly in detail, however, partly as a result
of the different ambitions and goals of their authors, and partly because of technical
difficulties uncovered while writing a program to translate formulae.

An early example of a formula translation system is provided by Mauchly’s Brief
and Short codes. According to William Schmitt, who developed a program which
implemented the Brief Code proposals for the BINAC:

A BRIEF CODE statement consisted of a destination variable symbol, an EQUALS operator
and an expression made up of arithmetic symbols, variable symbols and parentheses.31

Initially, expressions could use the only the four basic arithmetical operators and
parentheses, but other operators and functions were soon added. The interpreter
associated numerical values with variables, and a statement allowed these values to
be used to calculate a new value.

Because of the limited character sets available, formulae were transliterated by
hand into a machine-readable representation. For example, a programmer might
wish to code the statement represented symbolically as X = Y + Z × W . On the
BINAC, the variable symbols X, Y , Z and W were represented by the numerals
40, 41, 42 and 43, and the = and + operators by 03 and 02. To save space in the
BINAC’s small memory, the multiplication symbol was not represented explicitly;
instead, consecutive variable symbols were interpreted as expressing an implicit
multiplication. The formula above would therefore have been represented in Brief
Code by the sequence 40 03 41 02 42 42.

The Laning and Zierler Program A more sophisticated system was written for
the Whirlwind I computer at MIT by Laning and Zierler, and described by them
as “a program for translation of mathematical equations”.32 They introduced their
program and their understanding of it as follows:

Nearly everyone who has had a problem to solve on a large-scale digital computing machine
has probably felt that it would be indeed convenient if one could give the machine his prob-
lem in ordinary mathematical language with perhaps a suggestion for a method of solution.
. . . The effect of our program is to create a computer within a computer and the purpose of
the present report is to describe this computer and provide a programmer’s manual for its
use.

30Isaac (1952).
31Schmitt (1988), p. 10.
32Laning and Zierler (1954), p. 1.
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A basic goal of the program was to allow users to write formulae in a notation
that was as close to that of normal mathematics as possible. The basic statements in
programs were equations of the following form:

a = 5,

y = −6.3a,

b = 0.0053(a − y)/2ay,

which were interpreted as instructions to the computer to perform the computations
indicated by the formulae on the right-hand side, and to store the results in the
registers denoted by the letters on the left-hand side. Letters had to appear on the
left-hand side of an equation and be assigned a value before they could be used in a
formula on the right-hand side.

The program reflected normal mathematical notation to a considerable degree;
for example, multiplication was represented by the juxtaposition of variables rather
than by an explicit operator symbol. Parentheses could be used to group operations
in a natural way, and a number of common trigonometric and exponential functions
were available as function subroutines.

Although the formulae on the right-hand sides of equations could be interpreted
conventionally, however, the same was not true of equations taken as a whole, and
Laning and Zierler pointed out that examples such as

n = n + 2 and

w = −w

should be interpreted not as expressing the equality of two terms, but as instructions
to update the value of particular registers.

By default, the equations in a program were executed in the sequence they were
written, but instructions for conditional and unconditional transfers of control were
also provided. For example, the instruction SP n transferred control unconditionally
to the equation numbered n, and CP n did the same if the last computed quantity
was negative. Table 8.2 shows a complete example program to compute and print
the value of cosx from 0 to 1 radian in steps of 0.1.

In common with other systems, Laning and Zierler’s program allowed the use
of subscripted variables, used in mathematical notation to represent the elements of
vectors or sequences. Because of the limitations of the Whirlwind’s input devices,
subscripted variables were represented by superscripts; both constants and variables
could be used as superscripts. Variables could be allocated to the Whirlwind’s drum
storage, and it was planned to make special provision for assigning tables of values
to the drum variables, as in the following examples.

g|N = 2,4,6,0,

a|N = 1.0(0.5),2.0(0.25),2.5(1),4.5.

The first of these would assign the values 2, 4, 6 and 0 to the superscripted variables
g|1, g|2, g|3 and g|4, respectively. The second denoted a sequence of values formed
by applying the bracketed increments in the specified ranges. This is a notable pro-
posal for automatic code generation: a single line of source code would be translated
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Table 8.2 A program in
Laning and Zierler’s notation x = 0

1 y = 10

z = 1

2 z = 1 − zx2/y(y − 1)

y = y − 2

e = 1 − y

CP 2

PRINT x, z

x = x + 0.1

a = x − 1.05

CP 1

STOP

into a complex loop to calculate a sequence of numbers. In this case the variables
a|i would be assigned the values 1, 1.5, 2, 2.25, 2.5, 3.5 and 4.5.

Like other early formula translation systems, Laning and Zierler’s program is
as striking for what it leaves out as for what it includes. Viewed as ‘a computer
within a computer’, it prevented the user from having access to the host computer,
the Whirlwind. The virtual machine was very simple and, in common with other
compiled pseudocodes, it did not provide any facility for instruction modification.
The use of superscripted variables, however, provided a means of satisfying one
of the common tasks that instruction modification was used for, namely providing
convenient access to the items in a table of data.

Notational Diversity The different formula translation systems proposed in the
1950s varied considerably in the grammatical forms that they allowed programmers
to use. At one extreme, even at the end of the decade the autocode developed for the
Pegasus computer permitted only one operator to be written in each formula. It was
argued that this made the code very easy to learn.33

By contrast, Laning and Zierler’s program went beyond the evaluation of single
expressions, and even allowed certain systems of differential equations to be solved
automatically. For example, the system dy1/dt = y2 + 1, dy2/dt = −y1 could be
solved by writing the following two equations in a program:

Dy|1 = y|2 + 1,

Dy|2 = −y|1.
The basic idea underlying formula translation systems was the recognition that

mathematical formulae encode algorithms which can be translated into machine
code. A number of people pointed out, however, that an ‘implicit’ formula such as
y − 2 = 3x encodes an algorithm for working out the value of y just as clearly as

33Felton (1960).
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the equivalent ‘explicit’ formula y = 3x + 2. There seemed to be nothing to prevent
translators being written to generate machine code directly from implicit formulae,
and techniques for doing this were proposed.34

This diversity of approach did not last long, however, and later programming
languages show much less variety, typically supporting little, if anything, more
than functional expressions written using explicitly specified arithmetical operators,
parentheses and calls to subroutines. This ‘standard form’ first appeared in Fortran
in the mid-1950s, subsequently spreading to other languages.

8.4 Fortran and Increasing Linguistic Complexity

Fortran, the most successful automatic programming system of the mid-1950s, was
conceived by John Backus at IBM at the end of 1953, and a team of up to a dozen
programmers developed the system over the next few years for the IBM 704. The
first version of the system, Fortran I, was delivered to customers at the beginning of
1957.

Many earlier automatic programming systems had been rather inefficient, and
had to a large extent gained support because they simulated hardware features that
were not supported by existing machines. The 704 changed matters, however, by
providing support for floating-point arithmetic and index registers. In this situation,
Backus and his colleagues believed that the crucial factors governing the success of
Fortran would be the speed at which the translation from source code into object
code could be carried out, and above all the efficiency of the resulting object code.
A preliminary report of 1954 describing the specifications for the system stated that:

programming techniques have been devised which can be applied by an automatic coding
system in such a way that an automatically coded problem, which has been concisely stated
in a language that does not resemble a machine language, will be executed in about the same
time that would be required had the problem been laboriously hand coded. Heretofore, sys-
tems which have sought to reduce the job of coding and debugging problems have offered
the choice of easy coding and slow execution or laborious coding and fast execution.35

Aiming to provide easy coding and fast execution, the Fortran designers reportedly

did not regard language design as a difficult problem, merely a simple prelude to the real
problem: designing a compiler which would produce efficient programs.36

Nevertheless, the language they came up with was significantly more complex and
sophisticated than its predecessors, bringing together two of the principal trends in
automatic coding in the mid-1950s, namely formula translation and the automation
of the coding of control structures.

Like the earlier formula translation systems, Fortran was not designed to be a
universal language capable of completely replacing the use of machine code:

34Cleave (1960).
35IBM (1954), p. 1.
36Backus (1981b), p. 30.
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The FORTRAN language is intended to be capable of expressing any problem of numerical
computation. In particular, it deals easily with problems containing large sets of formulae
and many variables, and it permits any variable to have up to three independent subscripts.
However, for problems in which machine words have a logical rather than a numerical
meaning it is less satisfactory, and it may fail entirely to express some such problems.37

Talking about the language many years later, Backus was of the opinion that
the original key ideas of the Fortran language had been the assignment statement,
subscripted variables and the DO statement. There was much more to the language
than this, however, and compared with other pseudocodes and formula translation
systems, Fortran was described in great detail and with considerable precision. The
metalinguistic terminology used to described the language changed over the years.
The key construct in Fortran was the arithmetic formula, which computed the value
of an expression and assigned it to a variable. In 1954, the word ‘formula’ was used
to describe other procedural elements of the language, such as control and input–
output formulae, and ancillary information was provided by so-called specification
sentences. By 1956, however, Fortran programs were described as consisting of a
sequence of statements. There were 32 different types of statement: as well as the
arithmetic formulae, these were 15 control statements, 13 input–output statements
and three specification statements.

An example Fortran I program is given in Table 8.3.38 Fortran programs were
written on special coding sheets and formatted in four columns which contained
an indication of whether a particular line was a comment, an optional statement
number, an indication of whether a line was a continuation of the previous line and
lastly, a single Fortran statement.

Constants, Variables and Subscripts Higher level programming notations, such
as pseudocodes and Fortran, cannot, of course, be completely insulated from details
of the underlying machine that will ultimately execute the programs. One prominent
area of interaction arises from the representation of numbers.

In order to generate correct code, the compiler of a pseudocode needs to know
what kind of numbers are represented by the constants and variables in a program,
so that the appropriate integer or floating-point routines can be called. This issue
was finessed in the earliest systems by only supporting one representation, typically
by using floating-point numbers exclusively. This had the consequence that integer
values might not be held exactly, leading to problems when integers were required
for control purposes such as checking whether a loop index had reached a particular
value. In Laning and Zierler’s system, for example, a loop that was to be executed
ten times did not check whether an index variables had reached exactly 10, but
instead subtracted 9.5 from it. If the result was negative, the loop would be repeated,
terminating only when the result of the subtraction became non-negative.39

37IBM (1956), pp. 2–3.
38IBM (1956), p. 46.
39Laning and Zierler (1954), p. 8.
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Table 8.3 A Fortran I program

C PROGRAM FOR FINDING THE LARGEST VALUE

C X ATTAINED BY A SET OF NUMBERS

DIMENSION A(999)

FREQUENCY 30(20,1,10), 5(100)

READ 1, N, (A(I), I = 1, N)

1 FORMAT (I3/(12F6.2))

BIGA = A(1)

5 DO 20 I = 2, N

30 IF (BIGA-A(I)) 10, 20, 20

10 BIGA = A(I)

20 CONTINUE

PRINT 2, N, BIGA

2 FORMAT (22H1 THE LARGEST OF THESE I3, 12H NUMBERS IS F7.2)

STOP 77777

In PACT I, information about the types of numbers stored in particular variables
was “supplied to the compiler by means of the variable definition sheet which is
loaded along with the arithmetic and logical instructions”.40 In Fortran, however, all
this information was presented in a single linguistic framework. Fortran supported
both fixed- and floating-point numbers; fixed-point numbers were in fact restricted
to integers, and constants of the two types could be told apart by the presence or
absence of a decimal point. Variables could store one or the other type of number,
depending on the initial letter of the variable name: those beginning with I , J , K ,
L, M , or N stored integer values, and the rest floating point.

Many pseudocodes supported the mathematical convention of using subscripted
variables to represent elements of a sequence or vector of data values. Subscripted
variables were placed in an array in memory, so that the subscript could be used
to modify the base address of the variable and so access each element of the array
in turn. Fortran required programmers to declare the use of subscripted variables
in a DIMENSION statement which stated the size of an array, and so the highest
possible subscript value.

The use of symbolic variables names allowed programmers to leave details of
storage allocation up to the compiler. However, many codes allowed programmers
to specify when different variables could be safely allocated to the same memory
location at different times in the program. This technique provided a useful way of
enabling optimal use of scarce memory resources, but it did require programmers to
be certain that conflicts would not arise. In Fortran, another specification statement,
the EQUIVALENCE statement, allowed the programmer to specify these details of
storage allocation.

40Baker (1956), p. 279.
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Expressions and Arithmetic Formulae A primary purpose of Fortran was, of
course, formula translation. This was carried out in statements known as arithmetic
formulae.

A FORTRAN arithmetic formula resembles very closely a conventional arithmetic formula;
it consists of the variable to be computed, followed by an = sign, followed by an arithmetic
expression. For example, the arithmetic formula

Y = A − SINF(B − C)

means “replace the value of y by the value of a − sin(b − c)”.41

This definition clearly distinguishes two different aspects of the formula, namely
the specification of the calculation to be performed and the identification of the
storage location that is to hold the resulting value. Like some earlier systems, Fortran
continued to use the standard equality symbol = in formulae, despite the potential
for confusion between its conventional meaning and the new usage. The Fortran
reference manual explained its new, computational meaning as follows.

The = sign in an arithmetic formula has the meaning “is to be replaced by”. An arithmetic
formula is therefore a command to compute the value of the right-hand side and to store
that value in the storage location designated by the left-hand side.42

Notice that this interpretation of what was apparently an equation ruled out any
possibility of the system handling implicit computations such as y − 2 = 3x.

A striking feature of the definition of arithmetic formulae was the way in which
the syntactic form of expressions was specified. As well as an informal definition,
expressions were given a formal recursive definition which was very similar in style
to the definitions given in logic texts of the terms of formal languages. In the original
specification for the system, the following informal definition was given:

Any sequence of variables and functions separated by operation symbols and parentheses
which forms a meaningful mathematical expression in the normal way. Note that every
adjacent pair of variables or functions must be separated by an operation symbol. 43

This definition emphasises both the similarity between Fortran and mathematics,
and also the possibility of difference: the last sentence, for example, rules out the
use in Fortran of juxtaposition to express multiplication. It relies entirely on readers’
intuition, however, about what constituted ‘normal’ mathematical expressions.

The formal definition removed any such ambiguities:

By repeated use of the following rules, all legal expressions may be derived and all expres-
sions so derived are legal provided they have less than 750 characters.

(i) Any constant or variable is an expression.
(ii) If E is an expression not of the form +F or −F , then +E and −E are expressions.

(iii) If xxx denotes a function of n arguments, and if E1,E2, . . . ,En are expressions, then
in general xxx(E1,E2, . . . ,En) is an expression. . . .

(iv) If E is an expression, so is (E).

41IBM (1956), p. 12.
42IBM (1956), p. 16.
43IBM (1954), p. 6.
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(v) If E and F are expressions where F is not of the form +G or −G and o is one of the
permissible binary operations, then EoF is an expression.

(vi) If E and F are expressions, so is E × ×F .44

The ‘permissible binary operations’ referred to in clause (iv) were +, −, × and /,
and ×× represented exponentiation. In general, adjacent operation symbols were
not permitted; clause (vi), however, permitted the formation of expressions such as
1.53 × 10 × × − 14.

It is striking that a very similar definition was given in the programmer’s manual
of 1956: this brought a level of formality to the general description of programming
notations that was at the time unusual. The later definition was completely general,
removing the restriction on the maximum length of expressions, and also made it
clear that expressions could refer to fixed- or floating-point quantities; this property
was referred to as the mode of the expression. The key clauses in the later definition
read as follows:

1. Any fixed-point (floating-point) constant, variable, or subscripted variable is an expres-
sion of the same mode. Thus 3 and I are fixed-point expressions, and ALPHA and
A(I, J,K) are floating-point expressions.

4 If E is an expression, then (E) is an expression of the same mode as E. Thus (A), ((A)),
(((A))), etc. are expressions.

5 If E and F are expressions of the same mode, and if the first character of F is not + or
−, then

E + F
E − F
E ∗ F
E / F

are expressions of the same mode. Thus A − +B and A/ + B are not expressions.45

By and large, expressions in later languages were defined in a similar way to
Fortran, and experiments like the inclusion of differential equations in Laning and
Zierler’s system are no longer seen. This raises the question of why this particular
definition turned out to be so influential. It is tempting to answer this question by
pointing to the success of Fortran and the consequent adoption of its features in
later languages. The explanatory power of this answer is limited, however: many
other features of Fortran were not so influential, and the language has subsequently
changed in many ways, incorporating features derived from later languages and
research. What was special about the definition of formulae given by Fortran that
might account for its differential success and persistence?

One possible answer is that it was the style of the definition that gave rise to its
success. Although a number of writers had perceived a general similarity between
logic and programming, this was the first time that techniques from formal logic
had been applied to a relatively mundane task like syntax definition. As well as
providing a concise and general definition of expressions, this suggested a general

44IBM (1954), pp. 6–7. Clause (iii) also stated that certain functions might place restrictions on the
syntactic forms of their arguments.
45IBM (1956), p. 14.
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approach to the design of programming languages which appealed to the authority
and established results and techniques of the discipline of logic. Later developments,
and in particular the approach taken towards Algol, as described later in this chapter,
provide some support for this idea.

It is worth noting that at around this time a reciprocal interest in programming no-
tations was developing among logicians. The Summer Institute for Symbolic Logic,
held at Cornell University in 1957, included a number of papers on computer-related
topics such as programming notations, mechanical theorem proving, and the formal
representation of computing machines. Among these was a talk by Peter Sheridan,
who had designed the parts of the compiler responsible for interpreting expressions,
in which he briefly described the Fortran system.46

Statements The use of formal techniques of language specification in the Fortran
manual was limited to the definition of expressions, however, and the remaining
statements of the language were only defined informally.

A number of different statements were provided to define the flow of control
through the program. The GO TO statement specified an unconditional jump to
the statement labelled with a particular statement number, and variants allowed the
destination of the jump to be determined by a previously assigned or computed
value. Conditional transfer was provided by the IF statement, which took the form:

“IF (a) n1, n2, n3” where a is any expression and n1, n2, n3 are statement numbers.47

Following the execution of an IF statement, control was transferred to the statement
numbered n1, n2 or n3 depending on whether the value of the expression a was less
than, equal to or greater than zero, respectively. A number of special forms of IF
statement tested various machine conditions of the 704.

Automatic coding of loops was primarily supported by the DO statement, which
performed a similar role to the SET and TEST instructions of PACT I. A statement
of the following form:

DO 30 I = 1, M,3

would repeatedly execute the statements in the range of the DO statement, in this
case those following it up to and including the statement with label 30. The variable
I would first take the value 1, and would be incremented by 3 each time the state-
ments in the range were completed. Once the next increment would cause the value
of I to exceed the value of M , execution of the loop would finish.

The occurrence of a DO statement in a Fortran program therefore explicitly
marked the beginning of a loop. The end of the loop was only marked implicitly,
however, by the statement label given in the DO statement. The last statement of a
DO loop could not be a GO TO or IF statement, however, so a dummy statement
was defined for use in these cases:

46Sheridan (1957).
47IBM (1956), p. 18.
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CONTINUE is a dummy statement which gives rise to no instructions in the object program.
Its most frequent use is as the last statement in the range of a DO, where it provides a
statement number which can be referred to in transfers which are desired to become, in the
object program, transfers to the indexing instructions at the end of the loop.48

In many cases, CONTINUE statements were regularly used, however, and became
a de facto marker of the end of loops, as in the program of Table 8.3.

The authors of the Fortran manual did not find it straightforward to specify the
exact details of the sequencing of DO statements and the interactions between DO
statements and other transfer statements. An indication of this is given in the quote
above: it is striking that an explanation of the behaviour of a dummy statement
seems to require reference to properties of the object code that the compiler would
produce. The first issue concerned the extent to which the ranges of two different
DO statements could overlap:

Rule 1. If the range of one DO includes another DO, then all of the statements in the range
of the latter must also be in the range of the former.

In this case, the statements were said to be nested. Nested DO statements could
specify the same statement number as the end of their ranges; it would therefore
be possible in Fortran for a single CONTINUE statement to mark the end of more
than one loop. A second rule concerned the interaction between various transfer
statements:

Rule 2. No transfer is permitted into the range of any DO from outside its range.49

There was an exception to this rule, however, which permitted transfer from a nest
of DO statements to an unconnected piece of program which made no change to
any of the index variables in the nest; this was provided to make “it possible to
exit temporarily from the range of a DO to execute a subroutine”. Further rules
concerned the calculations that could be performed on the index variables of loops,
and the values that these variables had on exit from a loop.

Automatic loop writing also featured in a number of input and output statements.
For example, the statement

READ 1,N, (A(I), I = 1,N)

would first read a value into the variable N . Further values would then be read into
the subscripted variables A(1),A(2), . . . , input stopping once N values had been
read. The ‘1’ preceding N is a reference to a FORMAT statement which provided
details of the expected format of the data being read, as shown in Table 8.3. The
details of format statements are not important here, however.

Semantics of Fortran Linguistically, then, Fortran can be viewed as an attempt to
combine the benefits of formula translation with the features for automatic coding of
control statements introduced by pseudocodes such as PACT I. This dual approach

48IBM (1956), p. 22.
49IBM (1956), p. 21.
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produced a language that was significantly more complex and sophisticated than its
contemporaries. The design of specific features of the language seems to have been
influenced by logic, but a more significant motivation in many cases was the desire
to produce object code that was as efficient as possible.50

Contemporary accounts of the semantics of the language made reference to both
the established accounts of pseudocode semantics:

The IBM Mathematical Formula Translating System FORTRAN . . . is a 704 program which
accepts a source program written in a language—the FORTRAN language—closely resem-
bling the ordinary language of mathematics, and which produces an object program in 704
machine language.
FORTRAN therefore in effect transforms the 704 into a machine with which communication
can be made in a language more concise and more familiar than the 704 language itself,
The result should be a considerable reduction in the training required to program, as well as
in the time consumed in writing programs and eliminating their errors.51

Some features of the language definition, and in particular the formal account
given of the syntax of expressions, mark the introduction of established metalogical
techniques into the definition of programming languages. However, it did not prove
possible to maintain a strict distinction between syntax and semantics throughout.
For example, the question of whether something as simple as GO TO 3 was a legal
statement depended on whether the statement labelled 3 was in the range of a DO
statement, and if it was, whether the overall behaviour of the program satisfied the
complex semantic rules laid down for the DO statement.

8.5 Universal Languages

By the end of the 1950s, a large number of automatic programming systems of
various kinds were in existence. Most of them had very restricted use, however,
and the overall picture was one of fragmentation. At the beginning of 1961, the
Communications of the ACM used the image of the tower of Babel to reflect the
confusion and lack of communication that was felt to exist at the time.

One reason for this diversity was the fact that most systems were only designed
for and usable on a single type of computer. Machine code programs were obviously
machine specific, but surveys at the end of the 1950s showed that in addition most
automatic programming systems could only be used on a single type of machine.52

Even Fortran was, by the end of the decade, only available on two machines, the
IBM 704 and the IBM 709.

Another factor leading to diversity was the perception that different notations
were required for different application areas. Fortran quickly became the de facto
standard for scientific programming, but it was felt that it was too mathematically

50Backus and Heising (1964).
51IBM (1956), p. 2.
52Bemer (1959).
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oriented for business purposes. Commercial uses of computers centred around data
processing rather than mathematical calculation, and a number of language designs
were made aimed specifically at this market. Specialized requirements were also
found in the new area of artificial intelligence, where programs needed to handle
memory with greater flexibility than in scientific applications. Again, this led to the
development of specialized programming notations.

Research also led to new languages: by the latter half of the 1950s it was feasible
to experiment with new notations by writing an interpreter, and in some cases this
even led to the construction of new machines based on the order code suggested
by the new notation. Often, these experimental proposals were explicitly related
to logic. For example, in 1957 Charles Hamblin observed that formula translation
schemes were only necessary because of the obscurity of machine code, and he
decided that a better solution would be to design a machine whose basic operations
were better adapted to the needs of programmers. He viewed this as “primarily a
problem in applied formal logic”,53 and proposed using an adapted version of a
notation introduced by Łukasiewicz, which he dubbed ‘reverse Polish’ notation. As
presented by Hamblin, this notation had the properties that every symbol could be
viewed as denoting a machine operation and that an expression could be evaluated
by performing the specified operations in the same order as the symbols were written
in the expression. After being used in interpreted form on the DEUCE computer,54

Hamblin’s ideas for a so-called ‘zero-address’ computer were implemented in the
architecture of a later computer, the KDF9.

Attempts at Standardization During the 1950s, a number of groups were formed
to enable the users of particular computers to communicate with each other and
share experiences and knowledge. Perhaps the best known of these was SHARE,
founded in 1955 as a “cooperative programming group for IBM 704 users”.55 As
the name implies, one aim of the group was to enable programmers of the 704 to
benefit from each other’s work. For example, in 1958:

SHARE agreed to accept for distribution self-contained routines in FORTRAN language.
However, since appropriate conventions were not agreed upon, it was decided to defer dis-
tribution of subroutines for the time being.56

and the difficulties involved in sharing code between users of different machines
were even greater.

There was therefore a growing recognition of the desirability of establishing
common standards and languages that would enable results and experience to be
shared between different groups. Mathematical formulae provided a standard way
of expressing simple computational procedures, but traditional mathematics did not
define a universally accepted notation for expressing the sequencing of operations

53Hamblin (1957), p. 135.
54Hamblin (1958).
55SHARE (1958a).
56SHARE (1958b).
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in more complex algorithms. The notations that did exist were machine specific:
Fortran marked a significant step forward, but had not yet been implemented on a
significant number of machines.

In fact, a number of machine-independent programming notations had already
been defined. Many of these originated in Europe, in circumstances suggesting that
lack of easy access to a actual working machine was a factor in encouraging more
theoretical work. For example, as early as 1948 Zuse had published an account of his
Plankalkül notation, based on work he had carried out immediately after the war.57

These proposals do not appear to have influenced the development of programming
notations, however, in part because no compilers or interpreters for the notations
had yet been developed.

Algol Against this background, there were a number of calls for the develop-
ment of ‘common’ or ‘universal’ languages. For example, following a conference
in 1955, the German/Swiss Gesellschaft für angewandte Mathematik und Mechanik
(GAMM) established a committee to define a common formula translation language.
In 1957, members of this committee wrote to the ACM, the American Association
for Computing Machinery proposing a conference which would have the aim of
defining a common formula translation language.58 This led to a meeting in Zurich
in 1957, attended by four delegates each from ACM and GAMM. The result of this
meeting was a language proposal known officially as the International Algebraic
Language (IAL). In the light of subsequent developments, this language is often
referred to as Algol 58; Table 8.4 shows a sample Algol 58 program.59

Algol was not intended to be a universal language that would replace all others:
the aim rather was to produce a language for scientific programming that would
unify existing proposals and become a standard in this particular field. It was not
viewed simply as a programming language, but also as a medium for the expres-
sion and communication of algorithms. The first two objectives defined in the Algol
58 report were that the language should be “as close as possible to mathematical
notation” and usable for “the description of computing processes in publications”,
and in support of this ambition, in 1960 the Communications of the ACM started a
“new editorial department . . . to publish algorithms consisting of ‘procedures’ and
programs in the ALGOL language”.60

The third objective of Algol 58 was that it “should be mechanically translatable
into machine programs”, but unusually for a language proposal of that time, the
report made no reference to the features of any particular computer. Ironically, this
perhaps made it harder for Algol to achieve its goal of universality. Attempts to
implement the language on different machines and for different purposes quickly

57Zuse (1948).
58Bauer et al. (1957).
59Perlis and Samelson (1958). It is interesting to note that, even though Algol 58 contained no
formatting rules, this text was presented in columns, in a manner reminiscent of Fortran.
60Wegstein (1960).
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Table 8.4 An Algol 58
program to integrate F(x) by
Simpson’s rule

procedure Simps(F( ), a, b, delta, V );

begin

Simps: Ibar := V × (b − a)

n := 1

h := (b − a)/2

J := h × (F (a) + F(b))

J1: S := 0;

for k := 1(1)n

S := S + F(a + (2 × k − 1) × h)

I := J + 4 × h × S

if (delta < abs(I − Ibar))

begin Ibar := I

J := (I + J )/4

n := 2 × n; h := h/2

go to J1 end

Simps := I/3

return

integer (k, n)

end Simps

led to the creation of dialects such as NELIAC and JOVIAL, which soon took on a
life of their own as, effectively, separate new languages.61

Following extensive discussion of the Algol 58 proposal, a further conference
was held in Paris in January 1960, resulting in the publication of a report which
defined a new language, Algol 60.62 Even more than its predecessor, Algol 60 was
presented as a language for communication, rather than as a notation to control
the behaviour of computers: the report stated that “[t]he purpose of the algorithmic
language is to describe computational processes”. Table 8.5 shows a sample Algol
60 program, and following sections examine the Algol languages in greater detail.

UNCOL The definition of a single programming notation was not the only way to
tackle the problem of diversity, however. An alternative approach was suggested by
the so-called UNCOL project, sponsored by SHARE. It had already been noted that
“the scope of activity for SHARE was expanded with the advent of the IBM 709
and with the universal acceptance of Fortran as a language common to both the 704
and the 709”.63 At a meeting in February, 1958, discussion took place on “ways to

61See Shaw (1963), for example, for a description of JOVIAL. Development of both NELIAC and
JOVIAL began in 1959.
62Naur et al. (1960).
63SHARE (1958a).
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Table 8.5 An Algol 60 procedure to sum fct(i) from 0 to infinity

procedure euler (fct, sum, eps, tim); value eps, tim;

integer tim; real procedure fct; real sum, eps;

begin integer i, k, n, t ; array m[0:15]; real mn, mp, ds;

i := n := t := 0; m[0] := fct(0); sum := m[0]/2;

nextterm: i := i + 1; mn := fct(1);

for k := 0 step 1 until n do

begin mp := (mn + m[k])/2; m[k] := mn; mn := mp end means;

if (abs(mn) < abs(m[n])) ∧ (n < 15) then

begin ds := mn/2; n := n + 1; m[n] := mn end accept

else ds := mn;

sum := sum + ds;

if abs(ds) < eps then t := t + 1 else t := 0;

if t < tim then go to nextterm

end euler

develop a universal language for the computing field”,64 and over the coming year
a sub-committee of SHARE developed proposals to address this need.

The UNCOL project drew a distinction between machine or computer-oriented
languages (COLs) and problem-oriented languages (POLs). Rather than trying to
define a single problem-oriented language, like Algol, the idea behind the project
was to define a universal computer-oriented language, or UNCOL. This language
would be at a higher level than machine code, but at a lower level than languages
like Fortran or Algol. An implementation of UNCOL was to be written for every
target machine, but because of its lower level, it was felt that this would be easier
than implementing a language like Algol across a range of hardware.

This approach was believed to promise a number of benefits. Firstly, there was
a belief that the Algol approach was in principle wrong, and that there would be a
need for many different problem-oriented languages, each tailored to the needs of
programmers in particular application areas. Secondly, it was anticipated that the
implementation of a new problem-oriented language would require only a POL-to-
UNCOL translator to be written, and that this would be much easier that writing a
full compiler for every machine that the POL ran on. It would therefore be more
economical to develop new POLs using the UNCOL approach.65 It did not prove
possible at the time to develop a practical system based on these proposals, however,
and Algol became seen as the most promising and fully developed proposal for a
universal programming notation.

64SHARE (1958b).
65Steel (1961).
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8.6 Algol 60 as a Formal Language

The influence of Algol 60 on the development of programming and programming
languages in the 1960s is described in the following chapter. The extent of this
influence has less to do with the practical success of the language than with the
way in which it was defined. Unlike its predecessors, Algol 60 was consciously
presented as a formal language. For example, in 1959 Puyen and Vauquis wrote of
the emerging Algol definition in an manner very reminiscent of Carnap’s discussions
of logical syntax:

For this universal language, it will be necessary, just as for programming systems, to begin
by defining its elements: firstly the elementary symbols and their different roles, then the
formation rules for obtaining terms out of aggregates of these symbols, and finally the rules
for constructing expressions out of terms or simpler expressions. It would seem that expe-
rience of current automatic programming could accelerate the purely logical study of the
language as a formal system.66

By the end of the 1950s, the relationship between programming notations and
formal languages was increasingly being commented upon, Woodger for example
claiming that all order codes were formal languages.67 Woodger described a formal
language as one defined by rules specifying its syntax and semantics; most order
codes were not fully defined in this way, however, and relied for their semantic
definition in particular on informal descriptions of the behaviour of a machine or
interpreter. By contrast, the Algol 60 definition made a significant step forward in the
explicit formalization of programming languages. This section describes the method
of language description adopted for Algol, and the next section describes some of
the ways in which logic influenced the features included in the language.

The Alphabet Tarski’s first criterion for formal languages required that the set
of symbols used for constructing expressions in a language be clearly defined. The
symbols used for expressing machine-specific order codes and pseudocodes were
not usually explicitly listed. Instead, it was assumed that programs would be written
using a subset of the characters available on the input devices of the computer that
the code was to run on. It took some time before the concept of a set of symbols
became abstracted from the physical symbol set provided by the hardware.

The case of Fortran illustrates the difficulties experienced in moving to a more
abstract definition. The Fortran I programmer’s manual contained a “table of Fortran
characters”.68 This showed the 48 characters available on the IBM 704 together with
the different ways they were coded on punched cards, on paper tape and within the
704 itself. There were two distinct ‘−’ symbols: both could appear in data presented
to a program, but only one of them could be used in program code, while the other
was the only one that could appear in program output. The ‘$’ symbol, meanwhile,
could only be used in a program within textual data that were to be output.

66Puyen and Vauquois (1960), p. 134. In French in the original.
67Woodger (1960).
68IBM (1956), p. 49.
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Sheridan attempted to formalize this situation by defining an explicit Fortran
alphabet: he excluded one of the ‘−’ signs and the ‘$’ symbol, despite the fact that
it could appear in the text of Fortran programs, but included a symbol ‘�’ which
was “not a character explicitly indicated in any FORTRAN statement, serving solely
as a statement endmark on the executive level”,69 or in other words, not a symbol of
the Fortran language at all. Neither of these approaches, then, succeeded in defining
correctly the set of characters that could appear in legal Fortran source programs.

The Algol 58 group recognized that these difficulties would only be exacerbated
in the case of a language intended to be used on many different machines:

There are certain differences between the language used in publications and a language
directly usable by a computer. Indeed, there are many differences between the sets of char-
acters usable by various computers. Therefore, it was decided to focus attention on three
different levels of language, namely a Reference Language, and Publication Language, and
several Hardware Representations.70

Of these, the reference language was the one used to defined the language, and
consisted of “only one unique set of characters”. The publication language had to
ensure “univocal correspondence” with the reference language, but would allow for
the use of formatting conventions used in print, such as subscripts and superscripts;
different publication languages could be defined to accommodate such things as
varying national conventions for showing decimal points. Finally, each Algol 58
implementation would require a machine-specific hardware representation, whose
details would depend on the capabilities of the target machine. The correspondence
between the different notations was to be specified by transliteration rules.

The reference language of Algol 58 was defined in terms of a set of basic symbols
rather than a simple character set. The set of basic symbols contained a mixture of
individual characters, such as letters and digits, some digraphs, such as ‘:=’, a range
of mathematical and logical symbols, including a subscripted ‘10’, and a number of
words and phrases, such as ‘begin’ or ‘go to’, all of which were considered to be
indivisible, atomic symbols.

The picture that emerged from this account was rather a subtle one. By allowing
for different physical representations of the alphabet, the Algol 58 report made it
apparent that, even in the reference language, the choice of physical symbols used
was arbitrary. It therefore became possible to think of the alphabet of the language
as something more abstract than a set of characters. In 1959, commenting on the
Algol 58 report, members of the Applied Programming Systems group at IBM put
the point in the following way:

The preliminary report on ALGOL defines the basic symbols of the language. A subset of
these can be represented externally (now) only as words; e.g., go to, do, if, etc. Nevertheless,
they stand for single characters which will have some internal representation. A good pro-
cessor translates this external representation to internal. The dictionary used in making this
translation should be flexible enough to allow arbitrary changing of the external representa-

69Sheridan (1959), p. 11.
70Perlis and Samelson (1958), p. 9.
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tion of an internal symbol. We can therefore say that the processing of internal symbols can
be independent of the external language.71

In this respect, Algol differed from traditional accounts of formal languages
which treated the expressions of a language as sequences of characters drawn from a
fixed set. The variety of representations considered focused attention on the abstract
structure of expressions rather than a particular representation, and this structure,
rather than the sequence of characters, came to be seen as defining the expression.

One consequence of this was the way in which white space was treated. Every
input device included characters representing spaces or new lines, and these could
be included in Algol programs. However, there was no basic symbol corresponding
to either of these characters, and the Algol 60 report stated that:

Typographical features such as blank space or change to a new line have no significance in
the reference language. They may, however, be used freely for facilitating reading.72

Object Language and Metalanguage One of the best-known features of the Al-
gol 60 report is its use of a formal notation, now commonly known as Backus–Naur
form (BNF), to specify the syntax of the language.

In a procedure reminiscent of Carnap’s use of “syntactical Gothic symbols”,73

the Algol 58 report had used letters to represent syntactic categories, and used a
mixture of informal definition and schematic templates to give syntactic definitions.
For example, the set of digits was defined by

Figures ζ (arabic numerals 0, . . . ,9)

and the set of integers as follows:

Strings consisting of figures ζ only represent the (positive) integers G (including 0) with
the conventional meaning.

Based on this, numbers were defined as follows:

Form: N ∼ G.G10 ± G where each G is an integer as defined above.74

Backus, however, was not satisfied with this semi-formal approach, and in 1959
argued that if the language’s goal of supporting a variety of implementations on
different machines was to be met, “[t]here must exist a precise definition of those
sequences of symbols which constitute legal IAL [i.e. Algol 58] programs”. He went
on to provide a formal syntactic metalanguage sufficiently powerful to express such
a definition; it was explained as follows:

To begin with, we shall need metalinguistic formulae. Their interpretation is best explained
by an example:

〈ab〉 :≡ (or [or 〈ab〉 (or 〈ab〉〈d〉.

71Green et al. (1959).
72Naur et al. (1960), p. 301.
73Carnap (1937), p. 15.
74Perlis and Samelson (1958), p. 11.
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Sequences of characters enclosed in “〈〉” represent metalinguistic variables whose values
are strings of symbols. The marks “:≡” and “or” are metalinguistic connectives. Any mark
in a formula, which is not a variable or a connective, denotes itself (or the class of marks
which are similar to it). Juxtaposition of marks and/or variables in a formula signifies jux-
taposition of the strings involved. Thus the formula above gives a recursive rule for the
formation of values of the variable 〈ab〉. It indicates that 〈ab〉 may have the value “(” or “[”
or that given some legitimate value of 〈ab〉, another may be formed by following it with the
character “(” or by following it with some value of the variable 〈d〉.75

Backus’ notation was used by Peter Naur in the Algol 60 report. By the time this
report was produced, this notation had been adapted slightly: “::=” replaced “:≡”
and “|” replaced “or”. In addition, the report made it explicit that “the symbols used
for distinguishing the metalinguistic variables (i.e. the sequences of characters ap-
pearing within the brackets 〈〉 . . . ) have been chosen to be words describing approx-
imately the nature of the corresponding variable”; Naur commented later that “this
was intended to provide an “immediate link between syntax and semantics”.76 In the
final notation, the definition of the syntax of integer constants appeared as follows:

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9,

〈unsigned integer〉 ::= 〈digit〉 | 〈unsigned integer〉〈digit〉,
〈integer〉 ::= 〈unsigned integer〉 | +〈unsigned integer〉 | −〈unsigned integer〉.

The background to the invention of BNF is rather unclear. Backus later claimed
that he had been inspired by lectures given by Martin Davis on the work of Emil
Post. Davis, however, stated that the only possible date for any such lectures was
after the invention of BNF, and so they cannot have been the immediate source
of inspiration.77 There was some awareness within the computing community of
Post’s work, however: Rosenbloom’s textbook of 1950 contained a chapter on “The
General Syntax of Language” which was largely an exposition of Post’s results,
and this textbook was cited in some more theoretical computing papers.78 Other
participants in the Algol development have suggested, however, that awareness of
techniques for formalizing syntax and their advantages was rather widespread, at
least among the European members of the committee.79

Whatever the origins of the notation, however, the fact that the Algol 60 report
made explicit use of the logical distinction between object and metalanguage drew
attention to the importance of giving an unambiguous definition of the syntax of
a programming language. Furthermore, the specific formal notation introduced for
syntactic specification was highly influential and widely emulated, and was even
applied retrospectively to existing languages such as Fortran.80

75Backus (1959), p. 129.
76Naur et al. (1960), p. 301, Naur (1981).
77Backus (1980, 1981a), Davis (1988).
78Rosenbloom (1950), Elgot (1954), for example.
79Bauer (1981), Samelson (1981).
80Rabinowitz (1962).
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Syntax The syntax of Algol 60 was defined by means of a large number of BNF
productions. In a few cases, the productions gave an informal characterization of a
syntactic class, for example

〈string〉 ::= 〈any sequence of basic symbols not containing ‘or’〉,
where the ‘metalinguistic variable’ on the right-hand side is actually an informal
description of the intended set of strings, and does not appear on the left-hand side
of any other production. To a much greater extent than any previous document,
however, the Algol 60 report succeeded in formally defining which texts were legal
programs of the language.

Textually, Fortran programs were considered to be sequences of statements.
There were many different types of statement which played very different roles in
a program. Algol employed rather different terminology, and identified three major
syntactic categories, known as expressions, statements and declarations.

These categories were distinguished by the different semantic roles played by
their elements. Expressions denoted values, and as in Fortran, algebraic formulae
were treated as expressions which denoted numbers. Expressions could also denote
different types of value, however: boolean expressions denoted one of the values
true and false, and designational expressions denoted program labels. Statements
described the operations to be performed by a program: simple operations, such
as the assignment of a value to a variable or an unconditional transfer of control,
were defined by basic statements, but statements could also define complex actions
which involved multiple basic operations, and also control structures such as loops.
Finally, declarations defined properties of entities that would be used elsewhere in
the program, such as variables and subprograms.

Recursive definitions were used to specify the syntax of both expressions and
statements, as in the following example from Algol 58:

Strings of one or more statements may be combined into a single (compound) statement
by enclosing them within the “statement parentheses” begin and end. Single statements are
separated by the statement separator “;”.

Form: Σ ∼ begin Σ ; Σ ; . . . ; Σ end.81

The use of the term ‘statement parentheses’ highlighted the similarity between
this definition and the recursive definition of expressions that Fortran had made
familiar. Rule 4 of that definition stated that a parenthesized expression was itself an
expression, and this allowed parentheses to be used to construct nested expressions
of any required degree of complexity. In exactly the same way, Algol’s definition of
compound statements allowed them to be nested to arbitrary depths.

In Algol 58, declarations could be written at any point in the program and appear
in any order. The facts they stated applied throughout the program; for example, the
declaration of the type of a particular variable could appear after all occurrences of
the variable. In Algol 60, however, declarations could only appear at the beginning
of compound statements, and a compound statement which included declarations

81Perlis and Samelson (1958), pp. 13–14.
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was known as a block. The definition of blocks and compound statements in Algol
60 was given by the following productions.

〈unlabelled basic statement〉 ::= 〈assignment statement〉 | 〈go to statement〉
| 〈dummy statement〉 | 〈procedure statement〉,

〈basic statement〉 ::= 〈unlabelled basic statement〉 | 〈label〉 : 〈basic statement〉,
〈unconditional statement〉 ::= 〈basic statement〉 | 〈for statement〉

| 〈compound statement〉 | 〈block〉,
〈statement〉 ::= 〈unconditional statement〉 | 〈conditional statement〉,
〈compound tail〉 ::= 〈statement〉 end | 〈statement〉; 〈compound tail〉,
〈block head〉 ::= begin〈declaration〉 | 〈block head〉; 〈declaration〉,
〈unlabelled compound〉 ::= begin〈compound tail〉,
〈unlabelled block〉 ::= 〈block head〉; 〈compound tail〉,
〈compound statement〉 ::= 〈unlabelled compound〉

| 〈label〉 : 〈compound statement〉,
〈block〉 ::= 〈unlabelled block〉 | 〈label〉 : 〈block〉.

As this definition shows, compound statements could include any other statements,
including nested compound statements, and blocks could contain declarations and
statements. As the report went on to explain,

This syntax may be illustrated as follows: Denoting arbitrary statements, declarations, and
labels, by the letters S, D, and L, respectively, the basic syntactic units take the forms:

Compound statement:
L: L: . . . begin S; S; . . . S; S; end

Block:
L: L: . . . begin D; D; . . . D; S; S; . . . S; S; end

It should be kept in mind that each of the statements S may again be a complete compound
statement or block.82

The recursive approach to the definition of statements also changed the way in
which control structures were defined. A DO statement in Fortran was the single
line defining the properties of the index variable and the number of last statement in
the range of the DO statement. In Algol 58, by contrast, the range of the analogous
for statement was defined to be the single statement following the for statement. If
a range of more than one statement was required, this could be achieved by using
a compound statement. Among other things, this simplified the language definition,
for example by removing the need to consider cases where the ranges of two loops
overlapped: the form of the syntactic definition ruled this out as a possibility.

In Algol 58, however, a loop still consisted syntactically of two statements, one
of which defined the index properties and the other the range. Algol 60 simplified
this by defining the for statement as a single statement which included both the
index information and a nested statement corresponding to the range.

82Naur et al. (1960), p. 306.
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〈for clause〉 ::= for 〈variable〉 := 〈for list〉 do,

〈for statement〉 ::= 〈for clause〉〈statement〉 | 〈label〉 : 〈for statement〉.
As shown above, for statements were themselves statements, so this definition

rather elegantly allowed for unrestricted nesting of for statements. Conditional state-
ments were similarly defined, and the various forms could be combined, allowing
for a great flexibility in program structure.

It was argued above that one major innovation of Fortran was to give a recursive
definition of the structure of arithmetical expressions. The Algol 60 report gave
a similar account of statements, giving them the same combination of simplicity
and potential complexity as mathematical formulae. Thus an Algol program text
could have a complex, recursive structure quite different from the simple sequence
of instructions that characterized programs in Fortran and other autocodes.

The Identification of Programs One seemingly trivial property of the formal lan-
guages used in logic is that a ‘top-level’ category of formulae is identified. These are
the formulae which can be used to perform the speech acts of interest: the predicate
calculus, for example, is a language primarily designed to formalize assertions, and
the category of well-formed formulae is defined accordingly.

In programming languages, the members of the top-level syntactic category are
not declarative sentences but programs. A formally defined programming language,
therefore, should therefore define in purely structural terms what is a program and
what is not. This approach took a while to evolve, however. The Algol 58 report
gave the following explanation:

Sequences of statements and declarations, when appropriately combined, are called pro-
grams. However, whereas complete and rigid rules for constructing translatable statements
are described in the following, no such rules can be given in the case of programs. Con-
sequently, the notion of program must be considered to be informal and intuitive, and the
question whether a sequence of statements may be called a program should be decided on
the basis of the operational meaning of the sequence.83

In other words, the question of whether a given text was a program was consid-
ered to be a semantic, not a syntactic, matter. However, no attempt was made to
spell out a sufficient set of semantic properties for qualification as a program, and
by the time of the Algol 60 report the semantic elements of this definition had been
dropped. In Algol 60,

A program is a self-contained compound statement, i.e. a compound statement which is not
contained within another compound statement and which makes no use of other compound
statements not contained within it.84

It should be noted, however, that even this definition could not be captured in BNF,
and that no production was given defining the metalinguistic variable ‘program’.

83Perlis and Samelson (1958), p. 10.
84Naur et al. (1960), p. 200.
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Semantics In 1959, Backus stated what he thought was be required of a semantic
account of Algol.

For every legal program there must be a precise definition of its ‘meaning’, the process or
transformation which it describes, if any . . . Heretofore there has existed no formal descrip-
tion of a machine-independent language (other than that provided implicitly by a complete
translating program).85

Compared with earlier accounts of the semantics of pseudocodes, this is notable
for putting the emphasis on the meaning of individual programs rather than of the
language as a whole, and also for giving an informal description of the domain of
program meanings. This marks a further alignment of the Algol approach with that
of logic, where accounts such as Tarski’s gave a formal definition of the meaning of
each sentence in the language. Backus went on to promise that “the formal treatment
of the semantics of legal programs will be included in a subsequent paper”. No such
paper appeared, however, and in the Algol 60 report the semantics of the language
were defined informally.

In the Algol 58 report, the major syntactic categories of expressions, statements
and declarations had been distinguished by their differing semantic roles. In more
detail, an arithmetic expression was defined to be “a rule for computing one real
number by executing the indicated arithmetic operations on the actual numerical
values of the constituents of the expression”; presumably other types of expressions,
such as boolean expressions, were understood in the same way, though this was not
stated explicitly. Statements were defined to be “[c]losed and self-contained rules of
operation”, and declarations “state certain facts about entities referred to within the
program”.86

A very similar approach was adopted for Algol 60. The descriptions of many
syntactic categories were accompanied by an account of the meaning the formulae
of that category, suggesting the intention to produce a compositional account of
the semantics. The description of the semantics were, however, informal and very
similar in style to those given for Algol 58.

Although the informal semantics were largely stated in terms of the effect that a
given formula would have on the execution of programs containing it, the precise
nature of the virtual machine on which Algol 60 programs could be considered to
run was not made explicit. This was probably a consequence both of the machine-
independent aspirations of the language, and also its complexity. The details of the
‘Algol machine’ were largely worked out in the course of writing compilers for the
language, and for a number of years the complexity of Algol compilers was often
remarked upon, and in some cases made the basis for criticism of the language.

85Backus (1959), p. 129.
86Perlis and Samelson (1958), pp. 13, 17.
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8.7 The Influence of Logic on Algol

The previous section described how Algol was presented as a formal language, using
the metalinguistic framework developed for formal logic. Logic also appears to have
influenced the design of some of the features of Algol itself. For example, as well
as arithmetic expressions, Algol defined a category of boolean expressions similar
to those of propositional logic. The two truth values were defined, and a range of
boolean operators defined. Algol therefore included an implementation of Boolean
algebra which allowed conditions to be defined more succinctly than in previous
languages. Fortran, by contrast, originally only allowed conditions which compared
the magnitude of a number with zero.

The designers of Algol also appear to have been influenced by the notation and
concepts of the predicate calculus, and in particular by the ideas of substitution and
of quantifiers as syntactic devices which bind variables. This section describes how
these features were treated as Algol evolved.

‘Quantifiers’ in Algol 58 Fortran’s IF statement was basically just a conditional
jump statement which differed little from the kind of statement available in machine
codes. In Algol 58, by contrast, any statement could be preceded by an if statement,
which made the execution of the first statement depend on the truth-value of a given
condition. For example, in

if (a > 0); c := a ↑ 2 ↓ ×b ↑ 2 ↓,

the assignment to c would only take place if the value of a was greater than zero. The
if statement, and others such as the for statement which had a similar syntactic role,
were called ‘quantifiers’. Presumably this terminology was chosen because, like
the quantifiers of predicate logic, these statements are prefixed to other statements
and affect their interpretation in some way. However, there is a significant syntactic
difference between the two: whereas a quantified formula in logic is a single formula
formed by prefixing a quantifier to a subformula, the example above is not treated
as a single statement in Algol 58, but rather as two consecutive statements. This led
to a rather clumsy definition of its semantics:

If the value of [the condition] is true, the statement following the if statement will be exe-
cuted. Otherwise, it will be bypassed and operation will be resumed with the next statement
following.87

By contrast, because of the recursive definition of the syntax of statements in
Algol 60, the equivalent construct,

if a > 0 then c := a ↑ 2 × b ↑ 2,

defined a single statement whose effect when the condition is true is that of the
substatement following then, and the description of its meaning does not refer to the
subsequent statement in the program. In Algol 60, however, the conditional part of
the statement is no longer thought of as a prefix, and the terminology of ‘quantifiers’
is no longer used.

87Perlis and Samelson (1958), p. 14.
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Substitution Substitution of an expression for a variable in a formula is a tech-
nique widely used in logic and the λ-calculus as a means of generating new formulae
from old. Algol 58 defined a mechanism for textual substitution, the do statement,
which had the following form:

do L1,L2 (S→ → I, . . . , S→ → I ).

Here L1 and L2 are labels identifying a sequence of statements, and the parentheses
define a number of substitutions whereby an identifier I would be replaced by an
arbitrary string of symbols S→, provided that the resulting text was syntactically
legal. The effect was defined to be the same as that of executing the resulting code
in place of the do statement.

Although having a completely different meaning, this proposal shared with the
similarly-named DO statement in Fortran the property of referring to a range of
statements. This made it necessary to state a number of obscure rules about the
required properties of the statements within the rules, and the effect of nested do
statements. Perhaps because it did not fit well with the evolving recursive concept
of statements, the do statement was removed from Algol 60. However, the notion of
textual substitution was preserved in the ‘call by name’ mechanism.

Subroutines and Parameter Passing Subroutines had been a prominent feature
of machine code programming, and the methodological advantages of splitting a
large program into a number of independent and reusable components were well
known. Integrating the subroutine concept with autocodes and formula translation
languages proved not to be straightforward, however. Fortran I defined a number of
functions which could be called in expressions, but provided no way for program-
mers to create their own function or subroutine definitions.

In 1958, both Fortran II88 and Algol 58 introduced the possibility of defining
subroutines in the high-level language. In Fortran II, it was possible to compile
subroutines separately from a program, and combine the resulting machine-code
files to create a complete program; this of course made it easy to reuse subroutines
in more than one program. Algol 58, being an unimplemented language proposal,
did not go into such detail, but it also included the ability to define functions and
procedures within the language.

One issue in the design of a subroutine facility in a language was to decide how
data are to be passed from the main or calling program to the subroutine. Fortran II
did not specify the mechanism for this in detail, but assumed it was possible to pass
both constant data and variables, including arrays, to subroutines, and that changes
made by the subroutine to the data held in variables would be visible to the main
program on return from the subroutine.

By contrast, Algol 58 defined two mechanisms for passing data to subroutines.
In one-line function definitions, the formal parameters could only be identifiers, and
the report implies that data would be assigned to these variables before the function
was called. This mechanism, later known as ‘call by value’, fits the mathematical

88IBM (1958).
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notion of a function where parameters are treated as input data which, from the point
of view of the calling routine, cannot be changed by the function.

The second method of parameter passing used textual substitution, as defined
independently by the do statement. The effect of calling a subroutine would be that
of executing the statements making up the subprogram, after textually substituting
the actual parameters for the formal parameters. The do statement was dropped in
Algol 60, but substitution remained the default method for parameter substitution in
subprogram calls, the technique being known as ‘call by name’.

Thus Algol 60 defined two interpretation of the process of passing parameters to
subroutines, call by value and call by name. It is a striking coincidence that these
correspond closely to the two interpretations traditionally given to quantifiers in
logic, with call by value resembling the traditional ‘objectual’ interpretation and call
by name the ‘substitutional’ interpretation (re)introduced to the logical literature by
Ruth Barcan Marcus,89 but there appears to be no evidence of mutual influence
between this work and thee details of the parameter passing mechanisms of Algol.

Blocks and Variable Binding in Algol 60 A characteristic feature of quantifiers
in logic is that they bind variables, in a sense making them inaccessible from outside
the quantified formula. An analogous property of subroutine definitions was noted
by Strachey and Wilkes, who in 1961 described formal subroutine parameters as
“bound variables” and other variables occurring in the body of a subroutine as “free
variables”, commenting further that “the formal parameters in a function definition
are strictly bound variables (that is, local to the definition)”.90 The use of the term
‘local’ here makes a connection between variable binding and the Algol notion of
‘block’.

In Algol 60, a sequence of statements enclosed within the special brackets begin
and end was a compound statement, and a block was a defined to be a compound
statement which additionally contained some declarations. These appeared at the
start of the block, before the statements contained in the block. The Algol 60 report
then stated that:

Any identifier occurring in a block may through a suitable definition be specified to be local
to the block in question. This means (a) that the entity represented by this identifier inside
the block has no existence outside it, and (b) that any entity represented by this identifier
outside the block is completely inaccessible inside the block.91

Table 8.6 shows a rather artificial example of one block nested inside another.
Blocks implied a particular mechanism for the allocation of storage to variables. In
this example, storage will first be allocated for the variables i and j in the outer
block. On entering the inner block, storage will be allocated for the variables j and
k declared there. Crucially, the variable j in the inner block will be allocated a
different storage location from the variable j in the outer block. At the end of each

89Barcan Marcus (1962).
90Strachey and Wilkes (1961), p. 489.
91Naur et al. (1960), p. 9.
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Table 8.6 Blocks in
Algol 60 OUTER: begin integer i, j ;

j := 5;

INNER: begin integer j , k;

j := 3;

k := 2 × j ;

i := j ;

end block INNER

end block OUTER

block, the storage allocated will be again deallocated and any values in the variables
of that block will be lost.

The outer block has no access to the variables declared in the inner block, but
the inner block can access the variables of the outer block, provided that they are
not referred to by a identifier defined in the inner block; the assignment to i above
illustrates this. Further, variables in the inner block are distinct from and ‘hide’
any variables with the same name in outer blocks: thus in the example above k is
assigned the value 6. On completion of the inner block, i and j in the outer block
have the values 3 and 5, respectively.

The local variables in a block, then, share some of the properties of the bound
variables of logic: they are inaccessible from outside the construct in which they
are defined, and they can, for example, be systematically renamed within such a
construct without change of meaning, subject to the familiar restrictions on avoiding
name clashes. Procedure declarations also bound the variables appearing as formal
parameters, a process explained by invoking a “fictitious block” in which variables
corresponding to the parameters were defined.92 As the quotation from Strachey and
Wilkes indicates, the interpretation of blocks as variable binding mechanisms was
made soon after the publication of the Algol report, and by 1980 it was apparently a
commonplace, Mark Wells writing that the concept of block structuring “appeared
first in ALGOL 58–60, although it is related of course to the idea of bound and free
variables of logic”.93

8.8 Lisp and Recursive Function Theory

The last two sections have argued that both the design of the Algol language and
the way in which it was presented were in many ways influenced by the example
of mathematical logic, and that Algol was conceived of as a formal language in the
sense in which that term was understood in logic. This was not the only direction in
which programming notations developed, however. In the area of data processing,

92Naur et al. (1960), p. 12.
93Wells (1980).
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for example, it was believed that the use of anything resembling even elementary
mathematical notation would be unacceptable to users, and languages designed for
use in this application area such as FLOW-MATIC94 and its successor Cobol took
their inspiration from natural rather than formal languages.

Algol did not even represent the only way in which the resources of logic could
be applied to the task of designing programming languages. In 1960, shortly before
the publication of the Algol 60 report, John McCarthy published the first description
of the language Lisp.95 As this section explains, Lisp just as much as Algol could
be described as being ‘based on logic’, but with very different results.

Lisp was developed in response to the demands of programming applications in
the new area of artificial intelligence. Experience had indicated that programs in
this area needed to be able to handle data structures which were of unpredictable
size and which might vary in size throughout the time a program was executing. In
1956, Allen Newell and Herbert Simon developed the ‘Logic Theorist’, a program
intended to discovered proofs in propositional logic; they observed that “machine
code, although suitable for communicating with the computer, is not at all suitable
for human thinking or communication about complex systems”.96 They therefore
developed a pseudocode designed specifically to support the operations required in
this application. Initially known as the “logic language” and described as a “formal
language”, even though it was not defined in a particularly formal manner, this code
evolved into a family of notations known collectively as ‘Information Processing
Language’ (IPL).

The key data structures for this class of problem became known as lists, and
Newell and Simon explained that “IPL-V allows two kinds of expressions: data
list structures, which contain the information to be processed, and routines, which
define information processes”.97 The system was conceived of as a virtual machine,
the “IPL Computer”, whose memory was designed to be suitable for storing list
structures and which provided a number of primitive processes, analogous to the
arithmetic operations found on a conventional computer, defining basic operations
on lists. Programs were then written by combining these primitive processes in a
similar manner to conventional interpreted pseudocodes.

Lisp itself combined the algebraic approach adopted by Fortran with the data
structures used in IPL, and was characterized by McCarthy as an “algebraic list-
processing language”.98 Whereas IPL, like machine code, only permitted sequences
of the basic list operations to be written, McCarthy’s approach allowed complex
expressions to be formed, analogous to the conventional algebraic expressions that
were supported by Fortran.

Like Fortran, Lisp was originally referred to as a programming system, one which
was “based on a scheme for representing the partial recursive functions of a certain

94Taylor (1960).
95McCarthy (1960).
96Newell and Simon (1956), p. 62.
97Newell and Tonge (1960), pp. 205–206.
98McCarthy (1981), p. 174.
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class of symbolic expressions”.99 McCarthy’s initial presentation of Lisp in many
ways echoed the details of the logical work on computability carried out in the
1930s, as the following summary indicates.

Firstly, McCarthy defined some notation for describing partial functions. As well
as the standard means of forming new function from old by using substitution and
definition by recursion, a new notation for conditional expressions was introduced,
allowing ‘definitions by cases’ to be given by means of a single, formal expression.
Church’s λ-notation was used to represent functions, and a new construct ‘label’
was introduced to bind names in function definitions.

McCarthy then defined the data objects that were intended to be the objects
of computation, namely the class of symbolic expressions, or S-expressions. S-
expressions were based on a set of atoms, denoted by strings of upper-case letters,
and were defined by the following two rules:

1. Atoms are S-expressions.
2. If e1 and e2 are S-expressions, so is (e1 · e2).

Some notational abbreviations were then introduced so that a more convenient list
notation could be used. In particular, the list (a1, a2, . . . , an) was defined to be the
S-expression (a1 · (a2 · (· · · (an · NIL) · · ·))), where NIL was a distinguished atom
representing the empty list.

Having defined S-expressions and lists, the next step was to define some prim-
itive functions to manipulate them. McCarthy defined five elementary functions:
atom tested whether or not an S-expression was an atom, eq tested whether two
atoms were equal, cons constructed an S-expression to be constructed out of two
atoms or S-expressions, and car and cdr retrieved the two components making up a
non-atomic S-expression. All other functions over S-expressions were defined from
these basic functions using the methods specified earlier for the construction of re-
cursive functions.

A class of meta-expressions, or M-expressions, was then defined to represent
functions over S-expressions. To distinguish these, from S-expressions, they were
written using lower-case letters and different forms of punctuation. For example,
a function ‘ff’ which returned the first atomic symbol in an S-expressions could be
defined by the following M-expression:

ff[x] = [
atom[x] → x;T → ff

[
car[x]]]

At this point McCarthy had defined a class of data, the S-expressions, and
a class of functions over these data elements, or S-functions, represented by
M-expressions. These two notations were distinct: individual S-expressions could
be represented by meta-notation in M-expressions. However, McCarthy’s next step
was to describe a method for representing M-expressions by S-expressions, “in or-
der to be able to use S-functions for making certain computations with S-functions
and for answering certain questions about S-functions”.100

99McCarthy (1960), p. 184.
100McCarthy (1960), p. 189.
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Although McCarthy did not make this explicit, this was a form of arithmetization.
Gödel had showed how expressions denoting functions over natural numbers could
be encoded as natural numbers, and in exactly the same way, McCarthy encoded
M-expressions, which represented functions over S-expressions, as S-expressions.

The purpose of this representation was to enable the definition of “a universal
S-function apply which plays the theoretical role of a universal Turing machine and
the practical role of an interpreter”.101 apply is universal in the following sense:

if f is an S-expression for an S-function f ′ . . . then apply[f ; arg s] and f ′[arg 1; . . . ; argn]
are defined for the same values of arg 1, . . . , argn, and are equal when defined.102

apply, therefore, is capable of ‘simulating’ every other S-function, once given an
encoding of it as an S-expression, in the same way that the universal Turing machine
can simulate the behaviour of any other machine, given a suitable encoding of its
machine table.

The Lisp programming system itself was based on a program APPLY which
implemented the universal function apply. ‘Lisp programs’ are S-expressions which
represent the functions to be computed, and these S-expressions are then evaluated
by APPLY. Lisp can therefore fairly be described as a programming language which
to a large extent is based on prior work in formal logic. Unlike Algol, however, Lisp
is not presented as a formal language.

As noted above, Lisp is described by McCarthy as a programming ‘system’, not
a language. The purpose of the system is to compute functions of S-expressions;
these functions are denoted by M-expressions, but these must be translated into
S-expressions before they can be submitted to the machine. In the context of the
description given, it is impossible, and probably inappropriate, to single out either
of these notations as ‘the Lisp programming language’. Furthermore, the technical
apparatus associated with the definition of a formal language is missing from Mc-
Carthy’s paper. Despite their name, M-expressions are not a metalanguage in the
sense of Tarski and Carnap, and only an informal presentation of the legal forms of
M-expression is given.

This is not to say, of course, that a description of Lisp as a formal language
could not easily be given, nor that McCarthy was unaware of the importance of
formal languages; the discussion of alternative formalisms, such as “linear Lisp”,
at the end of the paper is evidence to the contrary. Instead, Algol and Lisp can
be viewed as embodying two very different visions of how programming language
development could be rooted in logic. Rather than seeing existing programming
notations as examples of a new type of logical formalism, McCarthy emphasized the
continuities with existing notations, showing how expressions directly representing
recursive functions over a given class of data items could be executed by a machine.

101McCarthy (1960), p. 184.
102McCarthy (1960), p. 189.
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8.9 Conclusions

This chapter has followed one path through the complex history of the development
of programming languages in the 1950s, and argued that the aim of automating parts
of the programming and coding processes led, through the development of systems
for formula translation, to an understanding of programming notations themselves
as being formal languages, a view that was made most explicit in the Algol 60
proposal. In Sect. 8.6 it was argued that Algol was explicitly defined as a formal
language, in the same way as logical notations, and Sect. 8.7 described the way in
which specific features of Algol were influenced by logic.

This is not the only story that could be told, of course. Some languages, and
in particular those intended for data processing applications, such as FLOW-MATIC

and Cobol, emphasized instead the extent to which programming notations could
be made to resemble natural languages, as a way of making them easier to read,
and also, perhaps, to write. A third approach, originating in the needs of artificial
intelligence, also made use of the resources of mathematical logic, but in a very
different way from Algol.

However, it was the Algol proposals that caught people’s attention, and inspired
the developments in programming languages development and theory in the next
decade. These developments are the subject of the following chapters.



Chapter 9
The Algol Research Programme

Compared to some of the other early programming languages, Algol 60 was not
particularly successful in practical terms. Fortran and Cobol were very widely used
in their respective application areas and many systems using these languages are still
in operation, as the efforts made to update software before the year 2000 revealed.
Lisp has also had a long history as a major implementation language in the field of
artificial intelligence. By contrast, the take-up of Algol 60 was widely regarded as
disappointing, even by advocates of the language.

At the same time, however, Algol 60 is widely considered to have been of great
importance in the development of programming languages. In the preamble to the
published proceedings of the 1978 ACM conference on the history of programming
languages, for example, it was described as “an obvious landmark” and it was stated
that “[m]ost theoretical, and much practical, language and compiler work since 1960
has been based on ALGOL 60”.1

The conjunction of these two facts presents something of a puzzle: how did a
language which was a relative failure in practical terms later come to be regularly
described as the most influential of early programming languages? This question
was made explicit, but not answered, in a detailed history of the development of
Algol 60 published by Robert Bemer in 1969; in his introduction Bemer quoted
a comment made by Andrey Ershov, that “the reading of this history . . . does not
enable the beginner to understand why ALGOL, with a history that would seem
more disappointing than triumphant, changed the face of current programming”.2

This chapter suggests an answer to this question, arguing that what changed the
face of programming was not simply the Algol 60 language, but rather a coherent
and comprehensive research programme within which the Algol 60 report had the
status of a paradigmatic achievement, in the sense defined by the historian of science
Thomas Kuhn. This research programme established the first theoretical framework
for studying not only the design of programming languages, but also the process of
software development, the subject of the next chapter.

1Wexelblat (1981), p. xviii.
2Bemer (1969), p. 151.

M. Priestley, A Science of Operations, History of Computing,
DOI 10.1007/978-1-84882-555-0_9, © Springer-Verlag London Limited 2011

225



226 9 The Algol Research Programme

9.1 Algol 60 as a Concrete Paradigm

The creation, publication and subsequent development of Algol involved a large
number of people in both Europe and the USA, and the language has a rich and
well-documented “politico-social history”.3 In particular, the language acted as a
catalyst for the formation of a number of new groups and institutional initiatives.
There were earlier examples of social groups forming around particular computing
technologies, such as the SHARE group formed by users of the IBM 704 computer
as a vehicle to enable the sharing of code examples and working practices.4 Algol
in 1960 was not a fully developed technology, however, but a partially implemented
language proposal, and the groups that formed round it had rather different purposes
and trajectories.

Inventing Institutions Prior to Algol 58, most programming languages had been
developed by small groups, using processes in which the design of the language and
the implementation of a compiler proceeded more or less in parallel. By contrast, the
Algol 58 report was produced by a committee representing many different groups on
two continents, and serious attempts to write compilers did not begin until after the
publication of the language specification. This open structure meant that compiler
writers were no longer able to resolve difficulties locally and ‘make the language up
as they went along’, as Backus claimed had been done with Fortran.

In 1959, a number of academic and commercial computing centres in Europe
began to investigate the possible use of Algol. In February, representatives from
these centres met in Copenhagen and agreed to start a newsletter, the ‘ALGOL-
Bulletin’ (AB), to support continued collaboration and communication. The first
bulletin was circulated by its editor, Peter Naur from the Regnecentralen in Copen-
hagen, in March 1959.5

As well as being a medium for the exchange of information, the AB aimed to be
an instrument for “making agreements on the policy to be followed in developing
ALGOL generator programs”;6 if programs were to be shared, for example, it was
important that each group implemented the same subset of the language. A detailed
procedure was outlined for voting on and arriving at such agreements. The AB was
not simply a means of sharing information, therefore, but also reflected a desire to
create some kind of institutional structure within which the future development of
the Algol language could be managed.

The activities of the all-European AB group had, of course, to fit into the wider
context of the US-European collaboration within which Algol had been developed.

3See Bemer (1969), for example, and also the material on Algol collected in Wexelblat (1981).
4Akera (2001).
5Naur (1959). The bulletin had a rather bureaucratic and formal flavour. It was specified, for exam-
ple, that each contribution to future issues should begin with a ‘type declaration’, stating whether
it was, among other possibilities, a question, an answer, a communication or a request.
6Naur (1959), p. 4.
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Representatives from both continents met at the UNESCO conference on data pro-
cessing held in Paris in July 1959, and a joint committee was formed to consider
proposed changes and extensions to the language.7 A further all-European meeting
was held in Paris in November, prior to the joint meeting in January 1960 at which
the Algol 60 report was finalized. During 1959, therefore, the main role of the AB
was as a forum where interested Europeans could conduct an extensive and wide-
ranging discussion on the definition of the language and its implementation, and
many of the issues discussed were addressed in Algol 60. The Communications of
the ACM, although formally independent of the Algol development effort, played a
similar role in the US.

It soon became apparent, however, that the Algol 60 report was not the last word,
and that ongoing work would be required to address remaining ambiguities in and
proposed changes to the language. In August 1960, the Americans formed an ‘Algol
Maintenance Group’ to consider these issues, and suggested that a parallel group
be set up in Europe. Fearing that the existence of two groups would lead to two
diverging dialects of Algol, however, several members of the AB group applied
for membership in the Maintenance Group rather than forming a parallel European
group. Meanwhile, discussions continued in the AB until 1962, when a meeting in
Rome produced a revised version of the Algol 60 report.

In parallel with this Algol-specific activity, more general institutional support for
work on programming languages began to emerge. This was initially supported by
the International Federation for Information Processing (IFIP), who in 1962 set up a
technical committee on programming languages (TC-2). TC-2 had the responsibility
to look both at “general questions on formal languages, such as concepts, description
and classification” and also the “study of specific programming languages”. At the
same time, a sub-committee of TC-2, known as “Working group 2.1 (WG2.1)”,
was established to “assume responsibility for the development, specification and
refinement of ALGOL”.8 This strongly suggests that Algol had played a significant
part in focusing interest on a more systematic approach to the study of programming
languages.

To a large extent, the ‘politico-social’ history of Algol can be read as a process of
discovering what kind of institutional authority was required to create and maintain
a programming language standard in the face of demands from implementers and
users to create subsets and dialects. It appeared that informal groups like the AB
group were not able to maintain and enforce a common language definition, and
that by 1962 such informal groupings had been made obsolete by the creation of
WG2.1. Among other factors, these developments led to the AB temporarily ceasing
publication, as Naur explained in 1962:

in encouraging the ALGOL community to make use of the ALGOL Bulletin for expressing
their views the editor must feel convinced that the views contained therein will indeed be
taken properly into account when official action is taken. The developments mentioned

7Reported in AB-4, 13 August 1959.
8Bemer (1969), pp. 197–198.
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above and the meeting in Rome have annihilated this conviction. Consequently the ALGOL
Bulletin must cease to exist.9

Scientific Publications The publication of the Algol 60 report was followed by
a flurry of journal articles.10 Three topics were prominent in this literature. First
was the issue of implementation: unlike Fortran, which had been made public in
the form of a working system, the publication of the Algol definition preceded any
implementation of the language, and it turned out that many new techniques were
required in order to create Algol translators. A second topic was discussion of the
language itself: there were many proposals for changes to the language, and the
question of how such changes should be approved while maintaining the hoped-for
universality of the language proved to be difficult to settle. Finally, the form of the
language description, and in particular the use of a formal metalanguage to describe
the syntax, gave rise to a lot of discussion.11

At the same time, computing conferences and symposia began to take a greater
interest in issues related to programming languages. The Information Processing
1962 conference, organized by IFIP, was described in the magazine Datamation as
being “[i]n virtually all respects . . . a programming-oriented conference”.12 This
assertion was based on a perception of the interest shown in sessions on various
topics, however, rather than the comprehensive range of papers appearing in the
conference proceedings.13

More specialized events were also organized. In March 1962, a symposium on
“Symbolic Languages in Data Processing” was held in Rome at the International
Computation Centre,14 and in 1964 the IFIP committee on programming languages
organized a working conference on “Formal Language Description Languages”.15

As the name of this later event indicates, attention was paid not only to the details
of the programming languages themselves, but also to the metalinguistic techniques
used to describe them. The catalytic role of Algol in this explosion of interest in
programming languages was commented on by, among others, Edsger Dijkstra, who
wrote that “through its defects [Algol 60] has induced a great number of people to
think about the aims of a ‘Programming Language’”.16

Paradigm Formation In the years immediately following 1960, then, the study
of programming languages became well enough established to attract considerable

9Naur (1962), p. 3. The Bulletin was, however, revived in 1964 and continued publication, albeit
intermittently at times, until 1988.
10Bemer (1969), pp. 219–234, gives a comprehensive list.
11Floyd (1964).
12Quoted in Bemer (1969), p. 202.
13Popplewell (1963).
14International Computation Centre (1962).
15Steel (1966).
16Dijkstra (1962b), p. 537.
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institutional support and recognition. The events described in this section support
the assertion made by many computer scientists, both at the time and subsequently,
that the Algol development, and in particular the publication of the Algol 60 report,
played a crucial part in this process.

In his famous book, The Structure of Scientific Revolutions, the philosopher and
historian of science Thomas Kuhn introduced the notion of a paradigm, initially
defined as an exemplary scientific achievement which is “sufficiently unprecedented
to attract an enduring group of adherents” and “sufficiently open-ended to leave all
sorts of problems for the redefined group of practitioners to resolve”.17 Both these
properties were certainly true of Algol, and it seems natural to describe the Algol
60 report in particular as a paradigmatic achievement in the field of programming
languages.

9.2 Normal Science in the Algol Research Programme

In Kuhn’s account, the acquisition of a paradigm marks the coming of age of a
scientific field, and enables a transition to a period of ‘normal science’ in which
effort is focused on the solution of well-defined problems using standard techniques.
A comprehensive and highly influential description of the problems and methods of
normal science in the Algol research programme was given by John McCarthy, who
in the early 1960s outlined a programme for the development of a mathematical
theory, or science, of computation, stressing the relationship between this proposed
theory and mathematical logic:

[i]t is reasonable to hope that the relationship between computation and mathematical logic
will be as fruitful in the next century as that between analysis and physics in the last.18

For McCarthy, the central problem that a theory of computation had to solve was
a practical one: “we would like to be able to prove that given procedures solve given
problems”. The ability to do this would radically change the nature of programming:
“It should be possible almost to eliminate debugging . . . Instead of debugging a
program, one should prove that it meets its specification”. This goal was restated in
1965: “The prize to be won if we can develop a reasonable mathematical theory of
computation is the elimination of debugging”.19

However, the existing theories of computability and finite automata were oriented
towards the proof of general theoretical results, such as unsolvability theorems, and
were unsuitable for application to more concrete and practical problems. McCarthy
therefore listed some of the specific results and techniques that would be required,
such as the ability to transform “an algorithm from a form in which it is easily seen

17Kuhn (1962).
18McCarthy (1963a), p. 69.
19McCarthy (1962), p. 21, McCarthy (1965), p. 219.
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to give the right answers to an equivalent form guaranteed to give the same answers,
but which has other advantages such as speed”.20

A prerequisite for the development of a theory of the desired type was that there
should exist convenient notations for describing the “entities with which computer
science deals”, namely “problems, procedures, data spaces, programs representing
procedures in particular programming languages, and computers”.21 For McCarthy,
this notation should take the form of a universal programming language, thus ruling
out theoretical notations on the one hand and machine-specific languages on the
other; Algol was described as “being on the right track but mainly lack[ing] the
ability to describe different kinds of data”.22

As a illustration of what he meant, McCarthy described a formalism similar to
Lisp, based on the λ-calculus, which not only included ways of recursively defining
functions computable on the basis of a given set of primitive functions, but also
methods for defining new data spaces in terms of old ones. This notation was not
presented as a candidate for the universal language, but McCarthy believed that the
design of programming languages could be systematized and improved by applying
the results of a theory of computation to the task.

This chapter and the next consider in detail two central aspects of McCarthy’s
programme. This chapter examines how the problems of describing programming
languages and defining new ones were approached in the Algol tradition, and in
the following chapter the project of replacing debugging with proof is examined in
more depth.

9.3 The Description of Programming Languages

As described in Chap. 4, a distinction between syntax and semantics in logic had
been articulated by Tarski and Carnap in the 1930s. This distinction was drawn
upon by Backus in his treatment of Algol 58,23 and general approach was followed
by the Algol 60 report. Syntax was explicitly distinguished from semantics, and a
formalized metalanguage was used to specify the syntax, while the semantics were
described in rather artificial English. The success of this approach to the definition
of Algol provided a powerful motivation for further exploration of the application
of these metalogical notions to programming languages.

The link between this application and the earlier work on the formal language of
logic was made explicit by a number of people, such as Saul Gorn who as part of
an extended research project into the “theory of mechanical languages” produced
a glossary of fundamental terms in the area. Gorn made use of Morris’s threefold
division between pragmatics, semantics and syntax, but gave revised definitions of

20McCarthy (1961), p. 225.
21McCarthy (1962), p. 22.
22McCarthy (1961), p. 225.
23Backus (1959).
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the key terms which reflected the fact that programming languages were intended
to be processed by machine, rather than interpreted by human agents. Thus whereas
Morris had characterized pragmatics as being concerned with “the relation of signs
to interpreters”,24 Gorn glossed this as follows: “We will ‘interpret’ the words user
and interpreter to have a mechanical sense, i.e. to mean ‘processor”’.25

The application of Morris’s scheme to programming languages provides a clear
example of ‘bridging’, to use Andrew Pickering’s terminology for describing the
process of conceptual innovation.26 Bridging refers to a recognition of similarities
between two domains, in this case logic and programming languages, which makes
it reasonable to consider using the existing domain as a guide for exploration of
the new. According to Pickering, bridging is followed by a phase of ‘transcription’,
where results from the older domain are relatively straightforwardly reinterpreted to
give insight into the new. Much of the theoretical work in programming languages
in the 1960s can be seen as an attempt at transcription from logic in this sense.
However, the differences between programming languages and logic meant that this
process was not as straightforward as might have been hoped. This section examines
some of the issues that arose in this process.

The Role of Syntax According to the traditional view, the role of syntax was to
define the set of sentences comprising a language by means of purely formal or
‘structural’ rules; the semantics would assign a meaning to each of the sentences
defined by the syntax, which could therefore be understood as specifying a class
of ‘meaningful’ sentences. The role of syntax and the nature of the relationship
between syntax and semantics came under some discussion at the Rome symposium
in 1962, however, and there were signs that this distinction could not be applied to
programming languages without some refinement.

In the semantic account given by Tarski for first-order logic, it was impossible
to have a syntactically correct sentence to which the semantics would not assign
a meaning. It was assumed, for example by Gorn, that this property would hold
also for programming languages. Christopher Strachey believed that this was the
ideal situation, arguing that what he called the “integration” of syntax and semantics
would make it “impossible to make a statement which is syntactically correct but
semantically meaningless”. However, he felt that this ideal could not be achieved for
programming languages: “For nonsense program I mean one that makes the machine
work indefinitely for example . . . if you want a language powerful enough to . . .
specify all the programs that you want to run, then we must allow the possibility of
a language being misused”.27

Strachey was here describing a situation where the syntax of a programming lan-
guage permitted ‘nonsense’, or non-terminating, programs to be written, but where

24Morris (1938), p. 6.
25Gorn (1962), Gorn (1961), p. 337.
26Pickering (1995).
27Strachey (1962), pp. 102–103.
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any attempt to modify the syntax to outlaw the offending programs would leave
a language in which many desirable and meaningful programs could no longer be
expressed. Although the extent to which this is seen as a problem depends on the
contestable semantic judgement that non-terminating programs are to be treated as
meaningless, it does at least point to a significant difference between the languages
used in programming and logic, and suggested that the work of transcription might
not be completely straightforward.

A more radical assault on the conventional metalinguistic scheme was made by
van Wijngaarden and Dijkstra, who introduced a notion of “syntax-free languages”,
or more precisely, languages for which syntactical rules did not have their normal
regulatory function. As van Wijngaarden put it, “[t]he main idea in constructing a
general language, I think, is that the language should not be burdened by syntactical
rules which define meaningful texts”.28

Dijkstra later gave an account of the philosophy of language underlying this view,
in which meaning was viewed as being inextricable from the act of communication,
in the sense that “the reaction of my listener determines what my utterances mean”.
It follows, according to Dijkstra, that to know the meaning of an utterance is to
be able to predict the reaction of a listener. This cannot be done precisely if the
listener is a human being, and Dijkstra described conversations between humans as
devices which provide feedback enabling one to improve one’s predictive ability.
If the listener is a machine, however, as in the case of programming languages, its
responses can be precisely predicted. The semantics of a programming language can
then be specified by “the description of a machine that has as reaction to an arbitrary
process description in this language the actual execution of the process”, the point
being that in the case of programming languages we can tell from the text alone
what process will be executed.29

It followed from this account, according to Dijkstra, that “syntax does not have
a defining function”. The semantic description will tell us what the machine will do
in response to any program text presented to it, so syntactical rules are no longer
needed to define a set of meaningful expressions. It may still be found useful to
formulate such rules, but they will have only a practical value, to illustrate structural
relationships that exist between program texts and the machine’s responses, or to
make it easier to formulate texts that elicit a particular response from the machine.

The Meaning of Programs As with syntax, the differences between program-
ming languages and conventional logic meant that there was considerable debate
about how the meaning of a program could be characterized, and what form a se-
mantic definition of a programming language might take.

An early idea was to extend Backus’s notation to deal with more than just the
syntax of a language. Edgar Irons described a technique for the so-called “syntax
directed compilation” of an object language such as Algol into a target language,
typically machine code, and pointed out that a compiler “also serves to define the

28van Wijngaarden (1962), p. 409.
29Dijkstra (1963), pp. 33–34.
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object language in terms of the target language”.30 The technique adopted was to
extend the syntactic production rules with clauses which described the meaning
of the expressions, defined by a rule by specifying the target language expressions
they would be translated into. In general this would be expressed as a function of the
meanings of the subexpressions of an expression. Later work based on this approach
made the link with semantics quite explicit. Feldman, for example, described the
target language in this scheme as a “semantic meta-language” and described his
overall system as giving a “formal semantics” of the object language.31

This work formed an approach to the question of how to define the semantics of
programming languages which was rooted in the very practical problem of writing
compilers for the large number of new high-level languages that were emerging.
The hope was that a single ‘compiler-compiler’ could be written, a program which
would be able to automatically generate a compiler for a new language from its
formal specification. Two characteristic features of the approach derive from this
orientation. Firstly, the meaning of a program was taken to be its translation into
some other language, often an idealized machine code. A semantic definition of a
language was therefore an explanation of how to carry out this translation in the
general case. Secondly, the method drew on the existing work in syntax, structuring
the semantic definition according the formal rules defining the syntax of a language.
This strategy therefore guaranteed a compositional semantics like that developed for
mathematical logic and also preserved the traditional role of syntax as defining the
set of meaningful expressions.

As discussed above, however, the appropriateness of this account of syntax in the
case of programming languages was questioned. Similarly, the view that semantics
consisted primarily in translation also came under direct attack: in 1963, at an ACM
workshop on mechanical languages for example, McCarthy stated bluntly that “to
describe semantics by means of a translation rule is an incorrect thing to do”,32 and
similar views were expressed by Ken Iverson and Maurice Wilkes.

An alternative approach was related to the existing practice of specifying the
meaning of programming codes by describing the real or virtual machine on which
the code ran. This technique was applied to the new programming languages of the
1960s, but with a emphasis on giving a formal definition of the interpreting machine.
McCarthy had hinted at this, stating that one of the goals of a mathematical theory of
computation was “[t]o represent computers as well as computations in a formalism
that permits a treatment of the relationship between a computation and the com-
puter that carries out the computation”,33 and both van Wijngaarden and Dijkstra
described abstract machines which were, according to Dijkstra, “suitable means for
the formalization of the semantic definition of an algebraic language”.34 McCarthy

30Irons (1961), p. 51.
31Feldman (1966), p. 3.
32McCarthy (1963b), p. 134.
33McCarthy (1961), p. 225.
34Dijkstra (1962a), van Wijngaarden (1962).
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had himself explained the meaning of Lisp programs by giving the definition of the
‘apply’ function which evaluated them. Although ‘apply’ was defined in the same
formalism used for the Lisp language, it was the description of a mechanical process
for evaluating Lisp expressions, a ‘Lisp machine’ in effect.

The machine-based approach to semantics was developed further during the
1960s. In 1963, Gilmore described a “Lisp-like” language, writing that “[i]t is our
belief that important purposes can be served by defining the semantics of a program-
ming language by defining an abstract computer for which the programming lan-
guage is the machine language”,35 and a year later Elgot and Robinson described a
class of “random-access stored-program machines”, emphasizing that thereby “a ba-
sis is provided for endowing programming languages with semantics”.36 This gen-
eral approach was later adopted in a project to define the semantics of the new
programming language PL/I, about which it was stated “[t]he method used for the
definition of a programming language is based on the definition of an abstract ma-
chine described by the set of its states and its state transition function”.37 By the end
of the decade, this general strategy to programming language semantics was being
referred to as the operational approach.38

However, in 1962 McCarthy had proposed a more abstract approach in which the
details of the computation performed by a program would drop out of the semantic
account altogether, leaving just the relationship between the initial data presented to
the program and the results it produced. In general terms, he wrote,

[t]he meaning of a program is defined by its effect on the state vector . . . In the case of
ALGOL we should have a function ξ ′ = algol(π, ξ) which gives the value ξ ′ of the state
vector after the ALGOL program π has stopped.39

In a later paper, this approach was applied to a small subset of Algol, and McCarthy
explained that the state vector would include “the value currently assigned to each
variable and also the statement number about to be executed”. In this same paper,
McCarthy asserted that his approach to semantics “corresponds to the notions of
Tarski et al., that are current in mathematical logic”.40

It is interesting to note how this account of semantics dealt with the non-
terminating programs that Strachey wanted to describe as being meaningless. In
the case of non-termination, a computation does not finish, and so there is no final
state. The semantic function is therefore undefined for such programs. For some,
this was an objection to McCarthy’s semantic account: because it did not include
any account of the actions performed by programs, it could not distinguish between,

35Gilmore (1963), p. 73.
36Elgot and Robinson (1964), p. 365.
37Lucas and Walk (1969), p. 105.
38Lucas (1972), Wegner (1972).
39McCarthy (1962), p. 27.
40McCarthy (1964), pp. 3, 6.
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for example, two non-terminating programs which were nevertheless performing
very different computations.41

In giving this account, McCarthy appears to have been trying to align the theory
of programming languages with established recursive function theory, much as he
had done with the definition of languages in the case of Lisp. The syntactic form and
machine-based interpretation of programs in languages like Fortran and Algol made
them appear quite different from traditional notations such as the λ-calculus, but
at the semantic level McCarthy suggested they were in fact similar, being just new
ways of defining recursive functions of their input data. McCarthy also suggested
a strategy for dealing with Algol-like languages, in which a program text would be
translated into a single expression defining the function computed by the program.

This strategy was developed in greater detail by Peter Landin, who described a
form of “Applicative Expression” (AE) based on the λ-calculus, together with an
abstract machine which would evaluate AEs. This was soon followed by an explicit
proposal for a programming language based on AEs.42 Landin gave an operational
definition of the semantics of this language by describing a machine which would
evaluate AEs. For Algol 60, however, he adopted McCarthy’s proposal, arguing that
Algol programs could be translated into semantically equivalent AEs; in fact, in
order to deal with imperative features of Algol, such as assignment, an extended
form of ‘Imperative AEs’ were used, with a suitably extended abstract machine.43

Landin’s work therefore combined two approaches to semantics: the meaning of
an Algol program was to be given by translating it into the language of AEs, but
the resulting AE program was to be understood in the traditional way by describing
a machine to interpret AEs. Christopher Strachey proposed to go one step further,
doing away with the need for an abstract machine in explaining the semantics of a
language and describing “even the imperative parts of a programming language in
terms of applicative expressions”.44

Achieving this required some deviation from the techniques used in conventional
logic, however. For example, the meaning of an expression in the predicate calculus
is built up in a strictly bottom-up way from the meanings of its subexpressions. In
an assignment statement, however, variables are interpreted differently depending
on whether they are on the ‘left’, in which case they denote assignable locations in
the store, or the ‘right’, in which case they denote storable values. This distinction
had been made explicit in connection with the programming language CPL,45 and in
order to get a compositional semantics for programming languages, Strachey found
it necessary to make use of this idea, describing how a subexpression could have an
“L-value” or an “R-value” depending on its context in a larger expression.

41McCarthy (1964), p. 10.
42Landin (1964, 1966).
43Landin (1965a, 1965b).
44Strachey (1964), p. 201.
45Barron et al. (1963).



236 9 The Algol Research Programme

Strachey developed his ideas in the following years into a wide-ranging theory
that became known as denotational semantics.46 Although it had its roots in the
idea of translating Algol programs into AEs, Strachey developed a distinctive view
of the role of syntax which helped differentiate denotational semantics from earlier
accounts of semantics as translation. Strachey felt that an emphasis on the syntactic
definitions of existing programming languages obscured important, and as yet ill-
understood, semantic ideas, and rather than describing a fixed language he preferred
to discuss “basic” or “fundamental” concepts.47 Following McCarthy, he viewed
the textual details of a language’s syntax as being irrelevant, and worked instead
with ‘abstract syntax’ which was chosen to articulate clearly what he considered to
be the important semantic concepts. This concern that the syntactic structure of a
programming language clearly reflect its semantics was shared by others in the field
of programming language design, as described below.

The application of the metalogical distinction between syntax and semantics to
programming languages therefore resulted in the early 1960s in the development
of at least three distinct approaches to the problem of giving their semantics. The
translation-based account was from the beginning associated with the practical task
of writing compilers; however, despite occasional proposals “to define languages
by their compilers”,48 it became less frequently referred to as a semantic account,
compared with the operational and denotational techniques, in part because of the
“inscrutable” nature of the semantic description that a compiler embodied.49

Pragmatics Compared with syntax and semantics, the concept of pragmatics put
forward by semioticians was rather underdeveloped in mathematical logic, and it
did not establish a very clear identity in the field of programming languages. One
contributory factor in this may have been uncertainty as to whether it concerned
the relationship between programming languages and human users, as implied by
Morris’s original definition, or mechanical processors, as in Gorn’s reformulation.
This ambiguity is reflected in the papers presented at an ACM conference in 1965
on “Programming Languages and Pragmatics”:50 some sessions were devoted to
topics in the machine processing of languages, such as ‘translation’ and ‘interpretive
assembly’, while others considered the requirements for programming languages
that were to be used in specific application areas, such as real-time applications
and information retrieval. In an overview paper, Heinz Zemanek listed four specific
areas as being relevant to the pragmatics of programming languages—compilers,
hardware and operating systems, intended application areas and human users—but
commented that “we are very far from any formal treatment”.51

46Tennent (1976).
47Strachey (1967).
48Garwick (1964).
49Rochester and Goldfinger (1964).
50ACM (1966).
51Zemanek (1966).
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One widely discussed aspect of pragmatics concerned the question of whether
different programming languages were required for different application areas. It
was common to draw distinctions between, for example, ‘scientific’ languages such
as Fortran and Algol, and languages such as Cobol which provided facilities for
data description that were felt to be necessary for commercial applications. The
perception of such differences had implications for the design of new programming
languages, as the next section discusses.

9.4 Different Philosophies of Programming Language Design

Investigation into new programming language concepts, and the development of
new languages, continued throughout the 1960s. However, different assumptions
were made by different groups, and these disagreements led to a more general debate
on the principles that should guide language design.

One approach is illustrated by the ‘New Programming Language’ (NPL), later
to be known as PL/I, whose development was started by IBM in 1963. The aims of
the language emphasized convenience and usability: it was intended to be used by
programmers in a very wide range of application areas, to be usable by both novice
and expert programmers, and “to take a simple approach which would permit a
natural description of programs so that few errors would be introduced during the
transcription from the program formulation into NPL”.52

NPL was intended to be a language that would be easy to program in. To this
end, its designers believed that it should not be necessary to know every detail of
the language before making productive use of it, and that the language specification
should not place obstacles in the way of programmers. Two specific design criteria
suggested a route to this goal.53 First, “Anything goes. If a particular combination
of symbols has a reasonably sensible meaning, that meaning will be made official”.
Secondly, a form of ‘modularity’ would allow programmers to remain in ignorance
of aspects of the language which were not appropriate for their current task or level
of expertise: “one cannot get a compile error by leaving something out”. The overall
impression gained is that NPL was intended in many respects to emulate natural,
not formal, languages: the programmer, or ‘speaker’, was allowed a great range and
flexibility of expression, and it was assumed that the interpreter had a considerable
degree of sophistication enabling it to make out the intended meaning.

The desire to produce a language that would be usable in different application
areas and the concern showed for the experience of programmers working with the
language suggest that the designers of NPL were strongly influenced by pragmatic
considerations, as defined above. In contrast with this, and pursuing McCarthy’s
overall goal of eliminating debugging, the Algol research programme placed more

52Radin and Rogoway (1965), p. 9.
53Radin and Rogoway (1965), pp. 9–10.
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emphasis on the avoidance of errors in programming, and evolved an approach to
language design that was more rooted in semantic issues.

In 1965 Dijkstra wrote a paper which considered how a “lone programmer” could
have confidence that the results of a program were in fact those intended.54 In some
cases, the results of a program can be directly checked, but in other cases this is not
feasible. Dijkstra considered the example of a program which tests the primality of
large integers. If such a program generates purported factors for a large integer, this
result can be checked by direct calculation. If on the other hand the program reports
that there are no factors, the programmer has to decide how much credence to put in
this report. In its general form, this is an epistemological question. Many programs
function as potential sources of knowledge, whether concerning the primality of
integers or the size of a gas bill, and Dijkstra asked under what circumstances we
can place confidence in the knowledge generated by such programs, and what we
can do to increase this degree of confidence.

Dijkstra proposed an answer to this question which was based on an analogy
between mathematical proofs and computer programs. He considered mathematical
proof to be the best available model of how to gain confidence in the correctness
of assertions, and he planned to apply the lessons learnt from proof to the task of
programming:

In spite of all its deficiencies, mathematical reasoning presents an outstanding model of how
to grasp extremely complicated structures with a brain of limited capacity. And it seems
worthwhile to investigate to what extent these proven methods can be transplanted to the art
of computer usage.55

This analogy was to be exploited by adopting what a strategy of ‘divide and rule’,
whereby a complex artefact is treated as an assemblage of simpler ones.

The analogy between proof construction and program construction is, again, striking. In
both cases the available starting points are given (axioms and existing theory versus prim-
itives and available library programs); in both cases the goal is given (the theorem to be
proved versus the desired performance); in both cases the complexity is tackled by division
into parts (lemmas versus subprograms and procedures).

It seems clear from this that Dijkstra thought of the activity of programming as
largely text-based: a programmer should examine the source code of a program,
and arrive at a conviction of what the program is doing in much the same way
as a mathematician reads a proof and comes to accept the truth of the result that is
proved. The application of these ideas to program development are considered in the
next chapter, but this approach also had a consequence for programming language
design: designers should identify the characteristics of programming languages that
help or hinder the efficacy of programs as documents which engender conviction,
and design languages which gave programmers the best chance of writing correct
programs.

This issue came to prominence in the debate within WG2.1 about the nature of
a successor language to Algol 60. The dominant tendency within the group was in

54Dijkstra (1965).
55Dijkstra (1965), p. 5.
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favour of a form of generalization known as ‘orthogonality’, where “all possible
combinations of two or more independent concepts were allowed”. Given even a
relatively small number of basic concepts, this approach would quickly lead via a
combinatorial explosion to a large and complex language, as proved the case when
this approach was used as the basis for the language Algol 68. The alternative to
orthogonality was “only to insert those possibilities in the language as were seen fit
for some purpose”,56 and this was adopted in a paper by Tony Hoare and Niklaus
Wirth which described the characteristics of a language that would be suitable for
Dijkstra’s purposes:

The perspicuity of programs is believed to be a property of equal benefit to their readers and
ultimately to their writers . . . [A language’s] power and flexibility should derive from unify-
ing simplicity, rather than from proliferation of poorly integrated features and facilities. As
a consequence, for each purpose there will be exactly one obviously appropriate facility, so
that there is minimal scope for erroneous choice and misapplication of facilities, whether
due to misunderstanding, inadvertence or inexperience.57

The remainder of this chapter describes how this principle was applied in the two
areas of control and data structures. This work formed a basis for a general approach
to programming known as structured programming, which had a great influence on
programming and program language design, as discussed in the following chapter.

9.5 Logic and the Design of Control Structures

The debate over program language design became particularly heated in connection
with the design of control structures, and in particular a controversy about the role
of jumps in programming. It had been always been recognized, of course, that the
conditional execution of code and the repeated execution of blocks of code were
essential coding patterns, and in machine code these were implemented using jump
instructions to navigate around a program. In higher-level programming languages,
unconditional jumps were still available, implemented by special statements usually
known as ‘go to’ statements. Some apparently more sophisticated statements, such
as the IF statement of Fortran I, were really little more than convenient ways of
writing multiple jumps.

In addition to jump statements, programming languages gradually introduced
specialized statements, later known as control structures, which encapsulated these
common patterns of control. For example, Fortran’s DO statement provided a basic
iteration facility, and the conditional expressions of Lisp made it explicit that certain
pieces of code would only be executed in certain circumstances. Algol 60 included
both a for statement for writing loops, and an if statement for conditional execution.

A number of people had commented on the anticipated benefits of specialized
notation for describing the flow of control. For example, Hamblin, recognizing that

56van der Poel (1986).
57Wirth and Hoare (1966), p. 414.
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describing transfers of control presented a problem for his proposed programming
notation, wrote that “there are some hopes that control transfer may be unneces-
sary in other cases if a sufficiently flexible system of conditional instructions can
be found”, and McCarthy said of the techniques used in traditional notations for
recursive functions that “controlling the flow in this way is less natural than using
conditional expressions which control the flow directly”.58 It was Dijkstra, however,
who brought the issue to prominence and linked it with the more general issue of
the readability of programs:

I have done various programming experiments and compared the ALGOL text with the text
I got in modified versions of ALGOL 60 in which the goto statement was abolished and
the for statement . . . was replaced by a primitive repetition clause. The latter versions were
more difficult to make: we are so familiar with the jump order that it requires some effort to
forget it! In all cases tried, however, the program without the goto statements turned out to
be shorter and more lucid.59

The explanation that Dijkstra gave for the increase in clarity had specifically to do
with the termination properties of programs. Failure to terminate was usually caused
by faulty iterations: if iteration was consistently expressed throughout a program by
a single control structure, rather than by a number of unstructured jumps, Dijkstra
believed that it would be easier to tell from an examination of the program text
whether or not it terminated.

Dijkstra’s comments about the benefits of programming without jumps raised the
question of whether it was in fact always possible to eliminate go to statements. In
1966 Corrado Böhm and Giuseppe Jacopini published a paper about normal forms
in an artificial flowchart language; their results were widely interpreted as showing
that it was possible to write a program for any algorithm using only conditional
and iterative control structures, and hence showing the dispensability of the go to
statement.60

The theoretical possibility of doing without go to statements did not necessarily
resolve Dijkstra’s requirement for lucidity, however. As he later pointed out, there
was no reason in principle to suppose that a program without go to statements that
was produced by means of Böhm and Jacopini’s method would be significantly
more comprehensible or convincing than one that used go to statements. Dijkstra
expanded on his argument in a famous letter to the editor of the Communications
of the ACM, which appeared under the strap-line “Go To Statement Considered
Harmful”:

More recently I discovered why the use of the go to statement has such disastrous effects,
and I became convinced that the go to statement should be abolished from all “higher level”
programming languages (i.e. everything except, perhaps, plain machine code).61

Dijkstra gave two arguments for this recommendation. The first was related to
a comment made by Wirth and Hoare in which they claimed that “[t]he notational

58Hamblin (1957), pp. 138–139, McCarthy (1961), p. 237.
59Dijkstra (1965), p. 216.
60Böhm and Jacopini (1966).
61Dijkstra (1968b).
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structure of programs expressed in the language should correspond closely with the
dynamic structure of the processes they describe”. Dijkstra made the same point as
follows: “we should do . . . our utmost to shorten the conceptual gap between the
static program and the dynamic process, to make the correspondence between the
program (spread out in text space) and the process (spread out in time) as trivial as
possible”.62

This argument is related to the desire to give a compositional style of semantic
explanation for programming languages, with the additional demand that languages
should not contain statements which do not permit of such an explanation. Consider,
for example, a control structure, such as a for statement, that defines an iteration.
The meaning of this statement, in the sense of the computational processes it gives
rise to when a program is running, is determined solely by the syntax of the for
statement: in order to understand what controls the number of times the iteration
will take place, for example, it is not necessary to look at any statements before or
after the for statement itself. This can be contrasted with the use of a go to statement,
which specifies a label which may be anywhere in the program: without knowing the
location of the labelled statement, it is impossible to give the operational meaning of
the go to statement. The use of go to statements, therefore, suggests that the meaning
of a program can only be given globally.

Dijkstra’s second argument for the abolition of jumps was related to the interest
in the relationship between programs and proof that had been generated by papers
by Floyd and Hoare.63 This work is considered in detail in the following chapter; in
1968 Dijkstra made relatively informal use of it, simply pointing out that in order to
understand a program, we must be able to interpret the values of the variables in it.
However, “we can interpret the value of a variable only with respect to the progress
of the program”.64 In order to do this, Dijkstra claimed that it was necessary to be
able to specify “textual indices to the dynamic process”, or in other words properties
of the program text which would enable us to characterize the point that the dynamic
process has reached when the program is running.

For example, in a program without jumps, the statements could be numbered,
and the state of the dynamic process could be given by simply giving the number of
the currently executing statement. The numbering scheme would need to be more
complex in order to cope with iteration constructs and subroutine calls, and Dijkstra
demonstrated how this could be achieved. If a program included go to statements,
however, the graph of potential paths through the program could become arbitrarily
complex, and there would be no possibility of identifying the state of an executing
program by any number of textual indices. Dijkstra later summarized this argument
as follows:

Investigating how assertions about the possible computations (evolving in time) can be
made on account of the static program text, I have concluded that adherence to rigid struc-
turing disciplines is essential . . . sequencing should be controlled by alternative, conditional

62Wirth and Hoare (1966), p. 414, Dijkstra (1968b), p. 147.
63Floyd (1967), Hoare (1968).
64Dijkstra (1968b), p. 147.
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and repetitive clauses and procedure calls, rather than by statements transferring control to
labelled points.65

The elimination of the go to statement did not, however, settle the question of
what control structures should be provided by a language. On the basis of both
practical experience and Böhm and Jacopini’s theoretical result, it was accepted
that it would be sufficient if programmers the means to express the sequencing and
conditional and repeated execution of basic statements, but there were many ways
to do this, and a wide variety of control statements were defined in contemporary
language proposals.

Initially, rather informal arguments were given for and against various constructs.
For example, Dijkstra referred to the for statement in Algol 60 as being “pompous
and over-elaborate”,66 and Wirth and Hoare wrote that:

The purpose of iterative statements is to enable the programmer to specify iterations in a
simple and perspicuous manner, and to protect himself from the unexpected effects of some
subtle or careless error. . . . It is notorious that the ALGOL 60 for statement fails to satisfy
any of these requirements, and therefore a drastic simplification has been made.67

For Dijkstra, a more principled way to evaluate different control structures was to
consider their proof-related properties. The choice between control structures should
be made by considering the ease with which they enabled convincing arguments
for the correctness of programs to be made, and not made by appealing to their
‘power’ or the ‘usefulness’ they had for programmers. In 1969, Dijkstra made this
point by stating that he had “focused [his] attention . . . on the question ‘for what
program structures can we give correctness proofs without undue labour, even if the
programs get large?’”68 The same point was made more explicit in his monograph
on structured programming, published in 1972 but widely circulated before that:

Why do I propose to adhere to this sequencing discipline? . . . For all three types of
decomposition—and this seems to me a great help—we know the appropriate pattern of
reasoning.69

Hoare confirmed this point, noting that “there is a theory that a high-level language
feature should also simplify the task of proving the correctness of programs ex-
pressed in the language”.70

In order to think about conditional statements, Dijkstra appealed to what he called
“enumerative reasoning”. In order to prove a given property, it might be necessary
to consider a number of different cases which together exhaust all the possibilities.
If the desired result follows from each case individually, then it is proved by appeal
to a theorem of the form (b ⊃ p ∧ ¬b ⊃ p) ⊃ p. For example, suppose it is desired

65Dijkstra (1969b), pp. 85–86.
66Dijkstra (1965).
67Wirth and Hoare (1966), p. 415.
68Dijkstra (1969b), p. 85.
69Dijkstra (1972), p. 20.
70Hoare (1972a), p. 336.
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to show that execution of the following statements will preserve the truth of the
relation 0 ≤ r < dd:

dd := dd/2;
if dd ≤ r do r := r − dd.

There are two possible cases, depending on whether or not the relation dd ≤ r

holds after execution of the first statement, and Dijkstra showed that in each case
execution of the if statement will leave the desired relationship true.71

In order to reason about iterations, Dijkstra made use of mathematical induction
in conjunction with a very simple form of statement, the while statement, which
repeats a statement so long as a specified condition remains true. Suppose that a
program must examine a sequence of values di , where d1 = D and di = f (di−1),
and locate the first value dk which satisfies a given property prop. By a proof based
on induction over the number of times the statement d := f (d) has been executed,
Dijkstra showed that the following statements will achieve the required effect:

d := D;
while non prop(d) do d := f (d).

He also provided a proof that the loop terminates after the kth iteration.72

Dijkstra also gave an example of how enumerative and inductive reasoning could
be used to prove the correctness of a small program.73 The proof was presented in
a style typical of informal mathematical reasoning, consisting of explanatory text
in English interspersed with formally expressed propositions and pieces of program
text. Nevertheless Dijkstra was “infuriated” by the length and complexity of the
proofs obtained in demonstrating the correctness of even extremely small program
fragments, and recognized the impracticality of such proofs being carried out as a
normal part of software development.

The solution proposed to this problem was that certain program structures should
acquire the status of theorems. For example, Dijkstra suggested that the conclusion
proved about the loop above could be considered as the “Linear Search Theorem”,
and claimed that

when a programmer considers a construction like [the loop above] as obviously correct,
he can do so because he is familiar with the construction. I prefer to regard his behaviour
as an unconscious appeal to a theorem he knows, although perhaps he has never bothered
to formulate it; and once in his life he has convinced himself of its truth, although he has
probably forgotten which way he did it.74

In summary, then, this section has shown how specific proposals for the design
of control structures in programming languages were strongly influenced by the
logical orientation of the Algol research programme. A general desire to align the

71Dijkstra (1972), p. 7.
72Dijkstra (1972), p. 8.
73Dijkstra (1972), pp. 12–14.
74Dijkstra (1972), p. 10.
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syntactic and semantic structure of program texts prompted a move away from the
go to statement to more specialized control structures, the specific forms of which
were motivated by a desire to make the correctness of programs accessible to logical
reasoning, even if programmers made only informal and second-hand use of the
logical results.

9.6 Logic and Data Structures

As well as the flow of control, the manner in which programming languages enabled
the description and manipulation of data was extensively investigated in the 1960s.
To a greater extent than with control structures, it was believed that the requirements
for data representation differed in different application areas. In the period around
1960, at least three distinct approaches can be identified.

Firstly, it was widely acknowledged that the so-called scientific languages such
as Fortran and Algol 60 were rather weak in their support for different kinds of data.
With their emphasis on numerical calculation, scientific languages distinguished
between integer and floating-point numbers, but textual data were poorly supported.
The only widely available data structure was the array, which could store a fixed-
size collection of numbers: arrays enabled mathematical structures such as vectors
and matrices to be modelled.

However, the development of non-numerical programs in the field of artificial
intelligence had revealed a class of applications which manipulated symbolic rather
than numerical data, and in which the amount of data that a program would need to
handle, and the structure of that data, could not be predicted in advance. Languages
were therefore developed which enabled programmers to define data structures of
arbitrary size and complexity: the best known were the list structures present in
languages such as IPL and Lisp.75

Finally, commercial data processing applications were accustomed to handling
files of data, consisting of a set of records, each of which was in turn made up
of a number of fields or data items which could be stored in a variety of formats,
either textual or numeric. Languages designed for these applications, such as Cobol,
provided the means to give a detailed description of the structure of the files that
would be manipulated by a program.

Attempts were made, both in practice and in theory, to unify these three different
approaches. Practical proposals made included a number of ad hoc suggestions to
incorporate the features from one area into a language of a different type; it was,
for example, suggested to add support for strings and lists to Algol 60, and some
proposals for new languages, such as NPL, attempted to include features from all
areas.76

75Newell and Tonge (1960), McCarthy (1960).
76Green et al. (1959), Radin and Rogoway (1965).
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The general problem was summarized by Douglas Ross who was involved in the
development of a computer-aided design system which needed to be able to model
the properties of a wide range of objects:

before anything else we must provide for a completely general method of storing and manip-
ulating arbitrarily complex information from any source, and a powerful language facility
for describing data forms and the desired manipulations of data.77

Ross’s solution envisaged “problems as being composed of interconnected n-
component elements of a general type”.78 An n-component element provided a way
of grouping together an arbitrary number of symbolic and numeric data items to
provide “a single unit of information about a problem, which specifies in each of
its components one attribute or property of the element”.79 Elements were allowed
to refer to each other, and the resulting network of linked elements was described
by Ross as a plex. Ross viewed plexes as simpler in general than list structures, in
which each element could hold only two data elements, and as providing a way of
uniting the manipulation of both symbolic and numerical data.

The integration of these ideas into Algol-like languages was considered by Wirth
and Hoare. Their proposal for a successor to Algol 60 introduced the concept of a
record, which could be used to “represent inside the computer some discrete physi-
cal or conceptual object to be examined or manipulated by the program”:80 this was
essentially the same as Ross’s n-component element, but the change of name made
an explicit link to the terminology employed in the field of data processing. With
each record was defined an associated value known as a reference which uniquely
identified that record: by including in one record references to others, complex data
structures equivalent to Ross’s plexes could be constructed.

Unlike arrays, records could be created when they were needed as a program
was running, thus providing programmers with the ability to create data structures
whose size could vary dynamically according to the requirements of a program.
Thus this single proposal provided a way of satisfying the needs of the three distinct
approaches to data structuring found in programming languages.

Records with a common structure intended to capture “the natural classification
of objects under some generic term, for example: person, town or quadrilateral” 81

were considered to be grouped into equivalence classes, known as record classes.
By defining the class of each record explicitly in a program, in the same way as
numeric variables were declared to hold integers or floating-point numbers, it was
proposed that the compiler could detect programming errors that might be caused
by mistaking the structure of a record indicated by a particular reference.

77Ross and Rodriguez (1963), p. 306.
78Ross (1961), p. 147.
79Ross and Rodriguez (1963), p. 306.
80Wirth and Hoare (1966), p. 416.
81Wirth and Hoare (1966), p. 417.
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These proposals about records and record classes were incorporated into Wirth’s
new language, Pascal.82 Pascal defined a number of scalar types, representing
atomic data values such as numbers, characters, user-defined symbols and references
(now called ‘pointers’), and a number of structured types by means of which data
values could be combined to create more complex, structured data values. Structured
types were defined by type expressions, and the form of these type expressions, and
by extension the data structures defined by them, were strongly influenced by the
theoretical work on data structures that had been carried out in parallel with the
practical language developments.

An early proposal was made by McCarthy. As we have seen, McCarthy viewed
computation as the definition of computable functions over given classes of data,
but he pointed out that the theory of data was not as well developed as that of the
computable functions: “Procedures operate on members of certain data spaces and
produce members of other data spaces . . . A number of operations are known for
constructing new data spaces from simpler ones, but there is as yet no general theory
of representable data spaces comparable to the theory of computable functions”.83

McCarthy sketched the beginnings of such a theory by identifying data spaces with
sets, arguing that data spaces could be defined by recursive equations which used
the primitive operations of Cartesian product, direct union and the formation of the
power set. For example, the equation S = A⊕S ×S could be interpreted as defining
“the set of S-expressions on the alphabet A”.84

This approach was further developed by Hoare, who proposed that data types
in programming languages could be understood as denoting sets of data values.
Given a number of basic types, whose values were defined by enumeration, further
types could be defined by means of a range of operators, in the manner proposed
by McCarthy. The link with set theory was made explicit: “The types in which
we are interested are those already familiar to mathematicians: namely, Cartesian
Products, Discriminated Unions, Sets, Functions, Sequences and Recursive Struc-
tures”.85 Some of these operations corresponded to existing data structures: records,
for example, were understood to be elements of the Cartesian product of the types
of their components. Others, such as the set of subsets of a given set, corresponded
to mathematical operators which had not been implemented in practical languages.

Pascal drew upon this theoretical work by defining a number of structured types
many of which were based upon the set-theoretical operators described by McCarthy
and Hoare.86 For example, record types could be defined which corresponded to the
Cartesian product of the types of the record components, and a “powerset structure”
defined a type whose elements were sets of elements of a given type.

It proved impractical, however, for Pascal to implement fully Hoare’s theoretical
account. For example, the powerset structure was limited so that only powersets

82Wirth (1971b).
83McCarthy (1962), p. 21.
84McCarthy (1961), pp. 231–232.
85Hoare (1972b), p. 93.
86Wirth (1971b), p. 37.



9.7 Modelling Data for Information Retrieval 247

of certain small scalar types could be formed. Also, Pascal did not provide a data
structure corresponding directly to the discriminated union operation of set theory.
Instead, record types could include a number of variants identified by tags; by this
means, a record type could represent either a Cartesian product or a discriminated
union.

Another area of difficulty was presented by the pointers, or references, used to
construct linked networks of records. In Pascal, pointers were themselves defined
to be data values, represented as values of pointer types. A pointer could be stored
in a record, say, allowing structures analogous to Ross’s plexes to be constructed.
However, there is no obvious set-theoretic analogue to pointers: in set theory, there
is no intrinsic connection between one data value and another, and no obvious way
of interpreting the computer-based notion of one data value ‘pointing to’ another.
Instead, McCarthy and Hoare had defined plex-like structures by means of recursive
type definitions.

A recursive type definition would model a relationship between data values a and
b by including a copy of b in a. By contrast, a Pascal representation would include a
pointer to b in a. However, the semantics of these two representations are different,
as can be seen by considering the situation where the value of b is updated. With
pointers, this update is immediately visible to a, as it contains only a pointer to the
now updated value of b. With a recursive type, however, a now contains an out of
date copy of b, and clearly it may take significant programming effort to make sure
that this copy is kept consistent with the changing value of b.

Despite these shortcomings and inconsistencies, however, Pascal’s type system
was a product of a collaboration between theory and practice similar to the case
of control structures. In both cases, the design of a central aspect of programming
languages was profoundly influenced by theoretical considerations drawn from logic
and set theory.

9.7 Modelling Data for Information Retrieval

At the beginning of the 1960s, programming systems in the two areas of scientific
and data processing were to a large extent developing independently of each other.
Nevertheless, logic and set theory played a significant role in the development of
information retrieval systems as well as in programming languages oriented towards
scientific applications.

The assumption underlying the design of the so-called scientific languages was
that programs were written to perform particular computations, to generate a set
of results from a given set of input data. This assumption lay behind McCarthy’s
proposal, described above, to model the semantics of programs by their input-output
functions. Data structures such as variables and arrays were defined as required in
the program itself, in the blocks containing the code that manipulated them, and it
was assumed that it would be a relatively straightforward task for a program to read
in the data that it required for a particular run.
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A different model was assumed in the field of data processing applications: “an
information retrieval system consists of a file structure to index and hold information
. . . [and] a body of programs for performing the various processing tasks”.87 Thus
many programs might be written to process the same set of data, which therefore
had to be understood to exist independently of any particular program. This differing
philosophy of data had implications for programming language design: in Cobol, for
example, the description of the structure of the external files and other data used by
a program was placed in a ‘data division’ which was separate from the ‘procedure
division’ containing executable statements.88

Cobol encapsulated a model where information was thought of as being grouped
into a number of files, each consisting of a set of records. Elementary items in
records were ‘atomic’ pieces of data, and records could be given a hierarchical struc-
ture in which subrecords at various levels could be defined to enable a number of
elementary items to be handled as a single unit. However, from the beginning of
the 1960s proposals were also made to treat data in a more abstract way. For exam-
ple, Lionello Lombardi objected to the separation of “descriptive” and “executable”
statements, and proposed a “boolean algebra of files” which would enable these two
aspects of information retrieval systems to be better integrated.89

A more comprehensive attempt along the same lines was the proposal for an
“information algebra”, published in 1962 by the Language Structure Group of the
CODASYL Development Committee.90 This group had been established in 1959 to
study and make recommendations on the languages to be used for data processing
applications. The information algebra aspired to provide a theoretical foundation
for information systems, based on “the concepts of Modern Algebra and Point Set
Theory”, which would guide the development of future programming languages.
The report enumerated various shortcomings in existing languages, and hoped to
address them largely by defining a declarative rather than a procedural framework.

The report gave the following general definition of how an information system
should deal with those aspects of the world relevant to a given application:

An information system deals with objects and events in the real world that are of interest.
These real objects and events, called “entities”, are represented in the system by data. The
data processing system contains information from which the desired outputs can be ex-
tracted through processing. Information about a particular entity is in the form of “values”
which describe quantitatively or qualitatively a set of attributes or “properties” that have
significance in the system.91

The designer of an information system for a particular application should begin
by defining all the relevant properties of the entities involved in the application.
With each property was associated a value set. For example, the value set associated

87Colilla and Sams (1962), p. 11.
88Sammet (1962).
89Lombardi (1960).
90Bosak et al. (1962).
91Bosak et al. (1962), p. 190.



9.7 Modelling Data for Information Retrieval 249

with a property representing the salary of employees in a company might be the
set of natural numbers. The property space of the application was defined to be the
Cartesian product of the value sets defined for the various properties.

Entities were represented by points in this property space, or in other words by
a ordered set (or tuple) of values. This implies that each entity was associated with
exactly one value from the value set for each property. Special null values were
defined to deal with properties that might be irrelevant for given entities.

The information algebra itself provided a way of defining groups of data points
and operations on these groups. This was intended to provide a means to define the
data processing functions required by a typical application.

It is interesting to compare the approach taken by the information algebra to that
of researchers interested in applying mathematics and logic to programming. The
same areas of mathematics were used to model data in both areas, namely set theory
and abstract algebra, but in one respect the approach taken by researchers in the
Algol research programme differed from a purely algebraic approach.

In the formal presentation of the information algebra, it was stated that “[t]he
Algebra is built on three undefined concepts: entity, property and value”.92 However,
the concept of an entity played little part in the subsequent formal definition of the
algebra, referring instead to the external objects being modelled. A methodological
principle in constructing a property space for a given application was that each entity
should be represented by a unique point in property space.

A model constructed using the information algebra, therefore, contained no direct
representation of the entities being modelled. An entity was represented solely as
the collection of the values of its properties at a given time. A consequence of this
type of representation is that, over time, a given entity would be represented by
many different points in property space, as the values associated with its various
properties changed. The model itself provided no representation of the fact that these
are properties of the same entity at different times.

This approach requires that care be taken in the selection of the set of properties
to be used in an information system, to avoid the situation where more than one
entity is represented by the same point in property space. For example, a payroll
system that used only the properties of ‘employee name’ and ‘salary’ would be
unable to handle the situation where two employees had the same name and salary.
An information system designer must ensure that different entities will always have
different values for some subset of the properties in use. This is usually achieved by
defining properties such as ‘employee payroll number’ which are guaranteed to be
distinct for each entity modelled by the system.

As described in the previous section, Ross had proposed a general technique
for modelling data about an arbitrary collection of entities using ‘plexes’ of
n-component elements. Rather than being based on an abstract data space, how-
ever, Ross’s proposal was based on an abstract view of a computer’s memory, in
which representations of distinct entities which happened to share the same prop-
erties could easily coexist at different locations in the store. They would be distin-

92Bosak et al. (1962), p. 191.
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guishable by the fact that the values referring, or pointing, to them would be distinct.
Thus, in contrast with the information algebra, Ross’s proposal made use of data,
in the form of reference values, that had no real-world analogue in the application
being modelled.

The distinction between these two approaches was maintained later in the 1960s
as more concrete proposals for database systems emerged. It was increasingly felt
that even a file-based model like Cobol’s did not recognize the centrality of data in
many application areas. Particularly in large commercial organizations, the data that
were held could be a significant economic asset and have a lifetime much longer
than that of the programs which manipulated it. The same data set might need to
be processed by many different programs, for different purposes. An alternative
perspective was required, one which made data independent of programs, allowing
them to take on a life of their own. As Charles Bachman, a database researcher, put
it in 1973, the move from files to database could be viewed as a kind of Copernican
revolution, challenging the perceived centrality of programs and proposing a new
model of computation in which programs were viewed as satellites of a central data
repository.93

A number of different database models were put forward, but they all shared
a number of characteristics. Firstly, databases were based on a model consisting
of files and records, each record consisting of a number of primitive data items.
However, unlike the information algebra, which defined a single undifferentiated
property space to cover all the data in an application, and Cobol, which assumed a
collection of independently defined files, a database is conceived of as a structured
collection of heterogeneous files whose interrelationships are specified by means of
a single overarching database schema.

Secondly, as databases are assumed to be independent of particular programs,
programs using them cannot in general use the address of a data item in memory
as a way to access it. Entities can only be identified in a database by looking at
the actual data values stored for each. For this to be possible, records must have
some unique attribute distinguishing them from all other records in the file. Entities
often do not have this property: for example, we cannot assume that the individuals
in a group of people will be uniquely identified by their names. To get round this
problem, the records in a database typically include an attribute or attributes, known
as a key, whose value is guaranteed to be unique within the file.

Finally, a database schema will normally record information about significant
relationships between the entities. This is done by associating in some way the key
values for related entities. The key for one entity might occur in the record for
another, or a particular record might store only the key values of related entities. For
example, one field in a record for an employee might be the key attribute for a file of
departments within a company. The value of this field in an employee record would
enable a particular department record to be located, thus modelling the fact that the
employee works in a particular department.

93Bachman (1973).
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A prominent proposal at the end of the 1960s was for ‘network’ databases, based
on earlier work by Charles Bachman and formalized by the CODASYL committee
which also maintained the definition of the Cobol language.94 Network databases
were based on two primitive concepts, the file and the ‘set’. Sets were the vehicles
for representing relationships within a network database: all the records which were
related in a particular way to a given record, such as the set of employees that work
in a particular department, constituted a set of records, explicitly linked together by
pointers into a chain of records.

Bachman described the way a programmer worked with network databases as
“navigation”, and a similar metaphor was used by others, such as Jay Earley who
referred to “access paths” through data structures.95 Programs could have various
‘current locations’ within a database, and by making use of commands embedded
in a programming language could update the current location and thereby move
from one data item to another. For example, suppose a program had to process all
the employees working in a particular department. The relevant records would be
physically linked in the database as part of a set; the program would record the
current position within this set, and a programming operation was provided to move
to the next item in the set. This could be repeated until every record in the set had
been processed. Thus programs accessed network databases ‘from the inside’, as it
were, a record at a time.

An alternative database model, the ‘relational’ model, was introduced by Ted
Codd in 1970.96 There were two significant differences between the relational and
network models. Firstly, the relational data model was based on a single structuring
concept, the relation. This is basically the set-theoretical concept of a relation, or
Cartesian product of sets, used here as a formal model of records. No special data
structure, such as the sets in a network database, was used to model relationships
between entities. Rather, relationships were modelled by pairing up the key fields of
the related entities, and storing these pairs in a further relation. So whereas network
databases had two primitive concepts, files and sets, corresponding to the informal
notions of entity and relationship, relation databases had one primitive concept, the
relation, which modelled both. One advantage claimed for this was that it kept the
logical structure of the data independent of its physical representation, thus making
updates and modifications to the storage strategy easier, because they would not
necessarily imply changes to the application programs using the database.

Secondly, data manipulation in the relational model did not proceed by means
of record-at-a-time navigation through the database. Rather, a number of high-level
operations on relations were provided, the most significant of which was known
as a ‘join’, an operation combining two relations into one. These operations were
defined to work on whole relations, rather than on individual records, and to return
new relations as their results. These resulting relations were virtual, and not stored

94CODASYL Data Base Task Group (1969).
95Earley (1971).
96Codd (1970).
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physically in the database, but as data structures they were identical to the relations
defined in the database schema. This meant that they could be used as the input to
further operations, thus enabling data manipulation to be defined by means of the
repeated application of a small set of powerful operations.

9.8 Conclusions

This chapter has discussed the use of logic and algebra in computer science in the
1960s in the related areas of programming language design and the development of
theoretical models for databases. It has been argued that the publication of the Algol
60 report catalyzed the formation of a coherent research programme which aimed to
use logic as a foundation for understanding and developing programming languages.
This proposes an answer to Ershov’s implicit demand, quoted at the beginning of
the chapter, for an explanation of the influence of Algol 60 given its relative lack of
practical success.

Even in the context of this research programme, however, the application of logic
was not simply a case of drawing straightforward consequences for programming
languages from theoretical results in logic. Even the role of concepts as fundamental
as syntax and semantics could be contested, and significant amounts of work were
required to establish what they might mean in the context programming languages.
Nevertheless, significant results were obtained: in particular, an influential tradition
of program language design was formulated, based on the idea that the syntax of a
language should as far as possible reflect its semantics in a clear and unambiguous
way.

Logic and algebra were also used to investigate the properties of data structures,
both in scientific languages and in the field of data processing applications. In this
area, the concepts of syntax, semantics and proof turned out to be less useful than
the tools of set theory and abstract algebra, but nevertheless there are structural
similarities between the issues raised in both areas.

Perhaps the most striking of these can be described as a move away from a step-
by-step approach to computation to one based on higher-level operators which were
described in terms of their overall effect. In the area of programming, this can be
seen in the introduction of control structures which embodied common patterns of
computation to replace the go to statement. In the database world, the relational
model with its set of general algebraic operations would in the coming years become
much more widespread than the network model with its reliance on navigation from
record to record in the database, a procedure itself very reminiscent of a jump.

However, this transition was incompletely carried out in programming languages
themselves. Pascal incorporated a ‘network’ model of data in the form of records
and pointers, and despite Hoare’s attempt to provide a theoretical model for this in
the form of recursive definition of data types, later programming languages have
preserved a form of programming which relies on ‘navigation’ between data items.
These developments will be considered in Chap. 11; the next chapter considers a
different aspect of the Algol research programme, namely the introduction of logical
ideas into the process of program development.



Chapter 10
The Logic of Correctness in Software
Engineering

This chapter describes the approach taken by those working in the Algol research
programme to the problem of how to improve the quality of software development
and in particular to ensure that software systems met their users’ expectations and
were completed economically and on schedule. These concerns came to prominence
in the mid-1960s in response to a perceived ‘software crisis’, and were extensively
discussed at the well-known NATO conference in 1968 which brought the term
‘software engineering’ to prominence.1

In response to the goals set by McCarthy for the Algol programme, two major
results emerged from this work. Firstly, a novel notion of ‘correctness’ was defined
for software, namely the existence of a particular type of consistency between a
program and its specification. This was claimed to be the most important property
of a software system, and was characterized in such a way as to make plausible the
possibility of applying a type of proof to software development.

Secondly, practical programming techniques were put forward which, it was
hoped, would increase the likelihood of correct programs being developed. Some
of these techniques drew upon the work on desirable properties of programming
languages that was described in the previous chapter, but from the beginning of the
1970s this work was increasingly presented in a way that made it accessible to the
software industry and not solely to researchers.

10.1 Checking Computations

The introduction of large-scale automatic computers to perform calculations which
had hitherto been carried out by hand raised the question of how the correctness of
the results produced could be guaranteed. What was meant by ‘correctness’ in this
context changed as computing and programming technology evolved and brought
different issues to prominence. The reliable functioning of the earliest machines,

1Naur and Randell (1969).
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at a purely mechanical or electronic level, could not be taken for granted, and the
primary problem was taken to be that of checking the computation performed by
the machine, to see if a correct answer had been produced. So, for example, Aiken
and Hopper wrote of the ASCC that “of paramount importance in the design of a
sequence control tape, are the checks on the computation”.2

Aiken and Hopper identified three distinct sources of error. Firstly, errors could
be made in the mathematical formulation of the problem being solved. These did
not differ in principle from the kinds of mistake that were made in the context of
manual computation, however, and familiar mathematical checks could be applied
to detect them. Secondly, errors could be introduced by malfunctioning hardware.
These raised issues of reliability, but were relatively easily dealt with by electrical
engineering methods for ensuring the reliability of circuits.

A third source of error was new, however, and was introduced by the processes
involved in transferring the mathematical solution of a problem onto the computer.
Aiken and Hopper simply put these down to human factors: “two major sources of
human error, incorrect switch settings and incorrect plugging, are perhaps the most
serious of all”, because in cases where there was no feasible mathematical check
on the final results of a computation, these errors could easily go undetected. They
offered no methodological solution to avoiding such errors, however, beyond taking
such obvious precautions as requiring “meticulous precision on the operator’s part
and careful checking of all manual operations”.3

With the introduction of stored-program machines, the manual operations that
were involved in setting up a machine to perform a calculation were significantly
simplified: instead of rewiring parts of the machine, or setting arrays of switches,
all that was required was to feed in a tape containing the instructions for the pro-
gram. As a result, attention became increasingly focused on the design of the se-
quence of operations to be carried out. At the conference held in Cambridge in
1949, J.C.P. Miller discussed the errors that could arise from “[p]rogramming and
coding the [mathematical] solution for the machine”.4

At this time, ‘programming’ referred to the process of designing an algorithm to
solve a problem and ‘coding’ to the process of translating the operations required
by an algorithm into a particular machine code. The ‘programming errors’ identified
by Miller therefore corresponded to the ‘mathematical errors’ of Aiken and Hopper,
who had not themselves identified a separate category of coding errors. Errors in
coding were only gradually recognized to be a significant problem: a typical early
comment was that of Miller, who wrote that such errors, along with hardware faults,
could be “expected, in time, to become infrequent”. Only two years later, however,
Maurice Wilkes and his colleagues reported that “such mistakes are much more
difficult to avoid than might be expected”, and similar comments were made by
others.5

2Aiken and Hopper (1946), p. 525.
3Aiken and Hopper (1946), p. 525.
4Miller (1949).
5Wilkes et al. (1951), p. 38, see also Brooker et al. (1952).
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Programming and coding errors are design errors: unlike hardware errors, they
are not caused by mechanical or electronic failure, and so cannot be removed by
increasing the reliability of any device, or taking particular care over the execution
of computations. A variety of techniques for preventing such errors were proposed
and put into practice, including the inspection of program code to reveal common
mistakes, the inclusion of additional code to check the results being obtained, and
the automation of the programming process itself. The use of library subroutines
was also found to reduce errors: as these contained reusable code performing various
common tasks, they were used frequently and were found more likely to be free from
errors than new code.

During this early period a lot of emphasis was placed on the avoidance of error
by uncovering mistakes before a program was executed, and there is little mention
of the practice of testing, understood as the repeated execution of a program with
particular data values for which the expected results are known, as a technique for
identifying errors. The scarcity and expense of machine time appears to have ruled
out such an approach: Aiken was reported as having had “very little patience for
an error-infested trial session”,6 and Wilkes referred to the amount of machine time
that could be lost running erroneous programs.

At first, then, the notion of correctness was applied generally to the computations
carried out by an automatic computer. Correct computations were taken to be those
which produced correct results, although it was not always easy to tell which these
were: “It cannot therefore be assumed that if a program apparently operates correctly
it is giving correct results, and careful numerical checks must always be applied”.7

The coding process gradually emerged as a significant source of errors, and the
desirability of reducing the number of coding errors was recognized. Correctness
was understood to be a product of many factors, however, including the algorithm
used, the coding of it for a particular machine, any library routines utilized, and the
physical machine itself: as Miller put it, “[a]ll stages must be fully checked if a
satisfactory solution is to be obtained”.8

10.2 Debugging and Testing

As the 1950s progressed, increasing practical experience of programming and of the
problems involved in developing larger software systems led to the development of
new techniques and approaches to the question of program correctness. According
to Stanley Gill, increasing machine reliability led to more emphasis being placed on
mistakes “arising because the orders or data presented to the machine are not those
required to obtain the results sought”. Initial optimism had given way to a belief
that such errors were not “a temporary evil, due to lack of experience”, and “some

6Bloch (1999), p. 97.
7Wilkes et al. (1951), p. 41.
8Miller (1949), emphasis in original.
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attention has, therefore, been given to the problem of dealing with mistakes after the
programme has be tried and found to fail”.9

Gill did not feel that the significant problem was that of detecting that an error
had occurred, at least for programs performing computations: “If its presence is not
immediately apparent, it will be detected by the arithmetical checks which must be
incorporated in every calculation”. Rather, the immediate issue was to locate and
correct the error, a process that came to be known as debugging. Standard test tapes
were used to diagnose faults in the operation of the machine itself, and a variety
of techniques for diagnosing program errors were introduced, such as push-button
operation in which the program was run manually, one instruction at a time. Many
of these techniques had severe disadvantages: push-button operation, for example,
was exceedingly slow and expensive, and prevented a machine from being used for
other work.

A more promising direction of research was to investigate approaches which used
the machine itself to assist in debugging. As with automatic coding, programmers
were quick to realize that the repetitive aspects of their work could be automated and
carried out by machine. Gill described the different “checking routines” in use on the
EDSAC, the most useful of which interpreted a program line by line and printed out
the function letters of the orders being executed, thus allowing the programmer to
trace the history of the program execution. Similar approaches were adopted at other
computer installations. For example, Ira Diehm described how the SEAC computer
of the National Bureau of Standards in the USA was used to analyze coding errors
in the programs run on it by means of techniques such as the use of “breakpoints”
at which program execution could be interrupted, and an “automonitor” checking
routine, among others.10

The development of large systems raised further unanticipated problems, and in
1956 Herbert Benington described the lessons that had been drawn from experience
gained on the SAGE air defence system.11 Benington described a process for the
“production of a large-program system” which surrounded the coding activity with
a preliminary stage of preparing specifications, and a subsequent stage of testing the
program produced against its specifications. The detection of errors was no longer
felt to be the unproblematic activity portrayed by Gill: the tests to be carried out
were themselves planned and specified, and a clear distinction was drawn between
the activities of detecting errors, known as testing, and locating and correcting them
in debugging. Debugging itself was, as on other systems, partially automated by
means of a system program known as the “checker”.

At the same time, Benington felt that there were limitations in the use of testing
as a method of ensuring correctness. It was, he wrote, “debatable whether a program
. . . can ever be thoroughly tested—that is, whether [it] can be shown to satisfy its
specifications under all operating conditions . . . one must accept the fact that testing

9Gill (1951).
10Diehm (1952).
11Benington (1956).
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will be sampling only . . . many sad experiences have shown that the program-testing
effort is seldom adequate”. Like debugging, the testing process could be automated
by programs which performed “test instrumentation” using simulated live inputs.

As well as increasing productivity, it was widely expected that the development
of automatic programming and the increased use of pseudocodes would lead to a
reduction in the frequency of programming errors. Diehm believed that “[t]he trend
toward automatic performance of the clerical parts of the coding process should
reduce the number of coding errors”, and Gill wrote that “[i]t is to be hoped . . .
that many of the tiresome blunders that occur in present-day programmes will be
avoided when programmes can be written in a language in which the programmer
feels more at home”.12 This expectation turned out to be overly optimistic, however:
Robert Bemer later recalled that “[t]he only place where we made a mistake . . . was
believing that when FORTRAN came along we wouldn’t make any mistakes in
coding”, and cited a survey which indicated that Fortran programs typically had to
be compiled up to 50 times before they were correct.13

The use of pseudocodes raised the question of how best to carry out debugging:
at first, debugging efforts were directed towards the machine code generated from
the pseudocode, but it was recognized that it would be more convenient to debug a
program written in a symbolic code by examining the pseudocode itself rather than
the machine code generated from it. Charles Katz discussed the issues raised by this
proposal; after discussing various tools for performing “symbolic debugging” of
pseudocode programs, however, he restated the belief that a much lower frequency
of programming errors would obtain when “compiling techniques are sufficiently
improved and our pseudo-codes are completely natural and simple to use”.14 At the
end of the decade, Gill suggested a two-level approach to the debugging problem,
where “experts” would want to debug machine code and “novices” would require
debugging information presented in terms of the “hypothetical machine which is
visualized by the user”.15

As hardware reliability increased, then, coding and programming became widely
recognized to be the most serious sources of errors in computer programs, despite
repeated expressions of optimism that improvements in the design of pseudocodes
would remove this problem. Correctness became understood more as a property
of the program than of the overall computation, and testing and debugging were
identified as the key techniques for identifying and locating errors in programs.

10.3 Correctness Proofs

One of the goals of the Algol research programme was to utilize the resources of
logic to increase the confidence that it was possible to have in the correctness of a

12Diehm (1952), p. 19, Gill (1953), p. 291.
13Bemer (1984).
14Katz (1957), p. 21.
15Gill (1959).



258 10 The Logic of Correctness in Software Engineering

program. As McCarthy had put it, “[i]nstead of debugging a program, one should
prove that it meets its specifications, and this proof should be checked by a computer
program”.16 McCarthy thus envisaged using the computer to automate the routine
or mechanical parts of the proof-checking process, as was already being done in the
areas of testing and debugging.

The limitations of testing that Benington had been pointed out were articulated
further, by Dijkstra in particular, and developed into a more general argument for
the necessity of stronger techniques to demonstrate the correctness of programs.
The fact that a computer passes an acceptance test, according to Dijkstra “only says
that in these specific test programs the machine has worked correctly”,17 and does
not permit us to conclude that the machine will work correctly when presented with
other programs. This is an application of a familiar argument against an inductive
approach to gaining knowledge, the point being that from a finite set of observations
nothing can be inferred about future or unobserved events. Applied to software, the
point is that when a program fails a test, this can be taken as evidence of an error in
the program, but passing a test only demonstrates its correctness in one particular
case. As Dijkstra later put it in a famous epigram, “Program testing can be used to
show the presence of bugs, but never to show their absence!”18

In 1966, Peter Naur described it as “deplorable . . . that the regular use of proof
procedures . . . is unknown to the large majority of programmers”. In Naur’s view,
an algorithm performed a transformation on some data, and the role of a proof was
“to relate the transformation defined by an algorithm to a description in some other
terms, usually a description of the static properties of the result of the transforma-
tion”. To incorporate proof into the program development process, Naur proposed
a methodology which would start with a static description of the properties of the
algorithm, then “construct an algorithm . . . using examples and intuition to guide
us”, and finally prove that the algorithm had the required properties.19

One difficulty facing attempts to construct proofs of programs arose from the
semantic difference between the assertions describing the transformation carried
out by an program, and the imperative code describing the algorithm to perform the
transformation. Naur described this as the problem “of relating a static description
of a result to a dynamic description of a way to obtain the result”.20 Observing
that one way to follow the execution of an algorithm was to look at “snapshots”
describing the data held in the variables at different times, he proposed a technique
of “General Snapshots” which would not describe individual data values, but rather
define predicates which the program data should always satisfy at specific points
in the execution of the program. By appealing to properties of the program code, it
could be established that the general snapshots would always be true when a running

16McCarthy (1962), p. 22.
17Dijkstra (1962b), p. 537.
18Dijkstra (1969b), p. 85.
19Naur (1966), pp. 310–311.
20Naur (1966), p. 312.



10.3 Correctness Proofs 259

program reached them. The snapshots would therefore give a static description, in
propositional form, of the transformation carried out by the program. This could
then be related to the specification to demonstrate the correctness of the program.

Robert Floyd took a similar line, proposing “the notion of an interpretation of a
program: that is, an association of a proposition with each connection in the flow of
control through a program, where the proposition is asserted to hold whenever that
connection is taken”.21 The correctness of a program could then be obtained “by an
induction on the number of commands executed”, enabling proofs of propositions
of the form “[i]f the initial values of the program variables satisfy the relation R1,
the final values on completion will satisfy the relation R2”. Floyd further made an
explicit connection between proof and semantics, referring to his technique as a way
of “assigning meanings to programs”.

Even before 1966, the technique of using propositions to make assertions about
properties of program executions had quite a long history. For example, when rem-
iniscing about programming the ASCC in 1944, Richard Bloch described his ap-
proach as follows: “I carefully annotated the code using mathematical symbolism
pertinent to the problem being solved. I marked the quantities being transferred as
well as the location of partial results in order to assist in tracing the flow of the
program, and I maintained a dynamic series of ‘snapshots’ of the storage register
contents as the program progressed”.22

Similarly, while developing their technique of using flow diagrams for program
development, von Neumann and Goldstine had observed that “[i]t may be true, that
whenever [control] actually reaches a certain point in the flow diagram, one or more
bound variables will necessarily possess certain specified values, or possess cer-
tain properties, or satisfy certain relations with each other”.23 Such properties were
recorded in special assertion boxes at various points in a flow diagram and used to
argue for the correctness of the algorithm depicted.

In a paper delivered in 1949, Turing adopted von Neumann’s notation and made
the connection with program correctness explicit, asking “[h]ow can one check a
routine in the sense of making sure that it is right? . . . the programmer should make
a number of definite assertions which can be checked individually, and from which
the correctness of the whole programme easily follows”.24 However, this suggestive
early work was not followed up, and it was only in the context provided by the Algol
research programme in the mid-1960s that the use of assertions was systematically
investigated and serious attempts made to apply it to programming practice.

The use of assertions in proofs of the correctness of programs relied on a clear
understanding of the effect of the execution of individual statements. Naur had made
such arguments informally: “suppose that A[i] > A[r] is true. Then clearly A[i] is
the greatest among the elements up to A[i]. Changing r to i as is done in the assign-

21Floyd (1967), p. 19.
22Bloch (1999), p. 94.
23Goldstine and von Neumann (1947), p. 92.
24Turing (1949).
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ment then makes it again true to say that A[r] is the greatest”.25 The formalization
of such arguments, however, required a definition of the statements of a program-
ming language in terms of their effect on the assertions preceding and following
them. Such definitions could act as axioms and rules of inference in constructing
proofs of programs.

A first attempt to give such rules was made by Floyd, who defined for each type
of statement a condition “guarantee[ing] that whenever a command is reached by
way of a connection whose associated proposition is true, it will left (if at all) by
a connection whose associated proposition will be true at that time”.26 Floyd only
applied the technique to a flowchart representation of programs, however, but his
ideas were soon applied by Hoare to a textual programming language.

Hoare began by making a strong and explicit connection between programming
and logic, stating that “all the properties of a program . . . can, in principle, be found
out from the text of the program itself by means of deductive reasoning”, and his
paper aimed to “elucidate the axioms and rules of inference which underlie our
reasoning about computer programs”.27

Hoare’s logic was based on statements of the form P {Q}R, which were to be
interpreted as meaning “[i]f the assertion P is true before initiation of a program Q,
then the assertion R will be true on its completion”. Axioms in the system defined
the properties of individual statements, and inference rules defined the properties of
control structures. The axiom for the assignment statement was given as

� P0{x := f }P
where “P0 is obtained from P by substituting f for all occurrences of x”. In his
other examples, Hoare used the same control statements that Dijkstra had identified
as giving rise to particularly simple patterns of proof. Thus for the sequence of two
consecutive statements he gave the rule

If � P {Q1}R1 and � R1{Q2}P, then � P {Q1;Q2}R,

and for iteration the following rule:

If � P ∧ B{S}P, then � P {while B do S}¬B ∧ P.

This rule shows what can be asserted of an iteration controlled by a while statement,
given a previous demonstration of a certain property of the statement, or program
fragment, S that is being iterated.

Hoare’s paper thus provided an existence proof, showing in outline at least how
the project of embedding at least some program language constructs in the familiar
logic of propositions could be completed. In theory, this would enable proofs about
algorithms and programs to be carried out using the machinery of formal logic,
though Hoare did point out that such proofs were “excessively tedious” and that
the development of practical techniques for program proofs would be needed if the
method was to become widely used.

25Naur (1966), p. 324.
26Floyd (1967), p. 19.
27Hoare (1969), p. 576.
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10.4 Constructive Methods

The existence of a candidate proof theory for programs did not settle the question
of how proofs of programs could be applied in practice, however. The methodology
proposed by Naur, whereby a program created using “examples and intuition” was
subsequently proved to be correct, had the disadvantage that the insights provided
by the proof theory were not used in program development, and it was found in
practice that it was rather difficult to argue mathematically about existing programs:
the arguments needed to prove the correctness even of very trivial programs turned
out to be rather long and tedious.

An alternative approach would be to employ a development process which would
guarantee that the resulting programs were correct. Such a process had been outlined
by McCarthy, who assumed as a prerequisite a theory stating when two programs
or program fragments were equivalent. Given such a theory, transformations that
preserved equivalence could be defined and “used to take an algorithm from a form
in which it is easily seen to give the right answers to an equivalent form guaranteed
to give the same answers but which has other advantages such as speed [or] economy
of storage”.28

This idea was taken up by Dijkstra, who in 1968 published a paper outlining what
he called “a constructive approach to the problem of program correctness”.29 Rather
than proving the correctness of an existing program, Dijkstra tackled the problem
the other way round, demonstrating methods to derive a correct program from “the
specifications of the desired dynamic behaviour”. Taking as his example a simplified
version of a multiprogramming problem, Dijkstra gave as the starting point of the
derivation a simple and high-level version of the required program, without making
clear whether this was intended to be a specification of the required program, or a
form of it which could easily be seen to be correct.

Steps in the derivation process involved the introduction of variables enabling
the required behaviour to be more precisely specified, the definition of assertions
involving these variables, and the further articulation or refinement of the program
to ensure that the assertions were satisfied at the appropriate times. The style of the
presentation used was reminiscent of informal mathematics: Dijkstra stressed that he
was not attempting to derive a program within a formal system, and that significant
“mathematical invention” was required in the refinement process. Nevertheless, the
emphasis was firmly placed on guaranteeing program correctness, and logic was
used to justify individual steps in the argument.

Naur then put forward an approach which would combine the earlier work on as-
sertions and correctness with the constructive approach suggested by Dijkstra.30 He
proposed to identify the variables in terms of which the program requirements could
be more precisely stated by using assertions, or general snapshots. “Action clusters”
were then defined to carry out the required operations on these variables; an action

28McCarthy (1961), p. 225.
29Dijkstra (1968a).
30Naur (1969).
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cluster was a sequence of program statements which would always be performed as
a whole and whose effect could be characterized by assertions. The correctness of
the final program could then be checked by examining the relationship between the
assertions defining the action clusters.

Hoare then took this one step further by combining the ideas of constructive
development with the formal logic of programs, giving as an example an account
of the development of an algorithm to perform certain manipulations on an array
of data.31 He began by giving an informal explanation of the algorithm, but the
development of a corresponding program was carried out completely formally.

The formal process started by providing a “rigorous formulation of what is to
be accomplished”, in the form of predicates defining the assumptions made at the
beginning of the program and the required final state of the data being manipulated.
As with the approaches of Dijkstra and Naur, the general method for refinement
that Hoare proposed started by introducing new variables required by the program,
and defining their properties. Statements could then be written to solve the overall
problem using the new variables, and these statements could be proved correct using
the rules of the program logic. So after the initial introduction of two variables,
Hoare could write:

At this point, the general structure of the program is as follows:

m := 1;n := N;
while m < n do “reduce middle part”.

Furthermore, this code has been proved to be correct, provided that the body of the con-
tained iteration is correct.32

By iterating this procedure, Hoare could demonstrate a complete program together
with the annotations required to demonstrate the correctness of the code using the
rules of program logic.

However, Hoare was careful to point out that this method did not, in fact, prove
that the final program was absolutely correct. Firstly, a separate proof was required
to show that the program would terminate. Secondly, some aspects of the program
were not covered by the initial formal requirements: for example, the algorithm was
meant to rearrange the data in a given array, but the initial requirements used in
the derivation of the program did not state that the array contained the same data
at the end as at the beginning. He commented that it was difficult to formulate this
requirement perspicuously, and that its inclusion would significantly increase the
length and complexity of the proof.

Hoare described the method as “top-down . . . split the process into a number of
stages, each stage embodying more detail that the previous one”; a similar approach
was adopted, though in a less formal manner, by Niklaus Wirth.33 For Wirth, “[i]n
each step, one or several instructions of the given program are decomposed into

31Hoare (1971).
32Hoare (1971), p. 41.
33Hoare (1971), p. 45, Wirth (1971a).
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more detailed instructions”, the process terminating when a complete executable
program in the desired language is obtained. Individual steps, known as refinement
steps implied that some design decisions had been taken, such as the introduction of
a new variable. Wirth’s starting point resembled that of Dijkstra rather than Hoare:
he did not attempt to give a formal characterization of the problem to be solved, but
instead presented a rather high-level program which was supposed to be an accurate
rendition of the algorithm proposed for the solution of the problem.

By the early 1970s, then, McCarthy’s programmatic suggestions about program
transformation and proving the correctness of programs had been given concrete
form for imperative languages as a methodology for program development, namely
stepwise refinement, and a supporting logic by means of which such a development
could be shown to deliver provably correct programs.

This raised the possibility, in principle at least, of treating programming as a
purely formal activity, in which refinement steps corresponded to the application of
inference rules in the appropriate calculus. A number of heuristics were proposed
to assist in this process, notably the introduction of auxiliary data required in the
program, together with the code fragments necessary to work with the new data.

This in turn raised the possibility of the extent to which the programming process
could be automated. As Floyd saw it, however, there was an inescapable role for
human creativity, because of the very large number of programs that might satisfy
given input and output specifications. He imagined an interactive process of design,
in which the checking of individual refinement steps and similar mechanical aspects
would be handled by a computer, with the more creative design decisions being
generated by the human programmer.34

10.5 Specifications and Correctness

In parallel to the development of constructive methods, the concept of correctness
underwent a change from being thought of as a property of individual programs,
to being considered as a meaning-preserving relationship between two programs
which performed the same computation, or between a specification and a program
which implemented the stated functionality.35 Program specifications were still only
stated informally, however, and the technique of stepwise refinement recommended
starting with a simple program whose correctness was self-evident and did not need
to be formally established; it was perhaps inevitable that ways of removing these
remaining traces of informality would be investigated.

In his attempt to produce a completely formalized program derivation, Hoare had
stated the requirements for the example program by defining predicates which stated

34Floyd (1971).
35Programs had always been expected to do what their specifications stated, or course. The point is
that theoretical accounts of correctness were increasingly phrased in terns of a program “meeting
its specification” rather than “being correct”.
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the assumptions made about the data at the start of the process and also the properties
that it was required to have at the end. This particular account of what a specification
was tied in nicely with the suggestion made by McCarthy in 1962 that the meaning
of a program should be considered to be its effect on the state vector, which included
the program variables, and quickly became widespread. For example, Manna and
Waldinger suggested using automatic theorem provers to automate the process of
program development. They formalized the “specifications for the program to be
written” as pairs of predicates, an “input predicate φ(x̄) and an output predicate
ψ(x̄, z̄)” and claimed that “[i]n order to construct such a program, we prove the
theorem (∀x̄)[φ(x̄) ⊃ (∃z̄)ψ(x̄, z̄)]”.36

The relationship between programs and specifications had up to this point been
assumed to be implicitly obvious, but it was soon given a more explicit treatment.
Barbara Liskov and Stephen Zilles believed that in general “[w]hat we are looking
for is a process which establishes that a program correctly implements a concept
which exists in someone’s mind”. The effect of increased formality, however, was
that “a specification is interposed between the concept and the programs . . . and
the correctness of a program is established by proving that it is equivalent to the
specification”.37 While recognizing that the intended equivalence between concept
and specification could not be formally established, Liskov and Zilles argued that, at
least for programs which were primarily intended to be used by other programs, the
“hierarchical nature of the proof process” meant that “the concept which [a program]
was intended to implement can safely be ignored”. The notion of correctness as a
relationship between a program and a preferably formal specification was widely
adopted:

To determine whether a program is correct, we must have some way of specifying what it
is intended to do; we cannot speak of the correctness of a program in isolation, but only
of its correctness with respect to some specifications. After all, even an incorrect program
performs some computation correctly, but not the same computation that the programmer
had in mind.38

Another effect was an increase in the importance of specifications: if correctness
amounted to correctness with respect to a specification, a program could only be
said to be correct insofar as its specification was clearly stated and understood. If
that correctness was to be provable, furthermore, the specification had to be written
in a form accessible to existing proof methods, for example as a pair of input and
output predicates as suggested by Manna and Waldinger.

A further consequence was that the analogy between software development and
logical deduction was enriched. A formal specification was sometimes thought of as
defining a set of axioms or postulates; from the specification other expressions were
deduced, by correctness preserving refinement steps, culminating in the production

36Manna and Waldinger (1971), p. 152.
37Liskov and Zilles (1975), pp. 7–8.
38Manna and Waldinger (1978), p. 201.



10.6 Structured Programming 265

of conclusions in the form of programs in the target programming language. Hoare’s
axioms did not quite function as inference rules, but they did enable the correctness
of individual refinement steps to be checked, and heuristically suggested the form
that such steps might take. The formal structure of software development therefore
became viewed as analogous to a logical theory: this tendency can be expressed by
saying that software development was coming to be understood as a quasi-deductive
activity.

The fact that specifications were viewed as postulates did not imply that they
were immune from revision, of course. A program could be correct with respect
to a specification that is completely inadequate from the users’ point of view. The
activity of specification revision, however, played no role in the quasi-deductive
model: the overall development process was split between an initial phase in which a
specification was created, and a subsequent phase of refinement and implementation
based on the assumption that an adequate specification existed.

This understanding of the process of software development was widely adopted,
even when development was not being carried out in a formal manner. Very many
‘methodologies’ for software engineering were developed which explained how to
develop software satisfying a specification by going through a number of steps
which, even if they were expressed in a mixture of informal textual and graphical
notations, preserved the essence of the quasi-deductive approach, namely a process
of refinement leading from a specification to a conforming implementation.

10.6 Structured Programming

In the early 1970s, many of the concerns of the Algol research programme moved
from the research community to the practical world of commercial and industrial
software development. They were widely thought to represent a new approach to
the problems of programming, one which became widely referred to as ‘structured
programming’. This section examines this process, and the different ways in which
the term was understood. The term ‘structured programming’ appears to have been
first used by Dijkstra, who in August 1969 wrote some widely circulated ‘Notes
on structured programming’, and in the same year presented a working paper titled
simply ‘Structured programming’ at the NATO conference on software engineering
techniques.

For Dijkstra, the central issue was how to be assured of the correctness of what
he called “intrinsically large programs”, where to get any reasonable assurance of a
program’s correctness it was necessary to have a very high degree of confidence in
the correctness of the modules making up the program. The constructive approach to
program development was outlined, with an argument made for the use of specific
control structures rather than jumps. Dijkstra also emphasized the use of abstract
data structures in the program development process: using a curious metaphor, he
described a program as “an ordered set of pearls, a ‘necklace’”, where each pearl
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represented a program module written in terms of the facilities provided by the
module below it in the string.39

The notion of ‘pearls’ derived, like the idea of constructive programming, from
Dijkstra’s experience in designing and writing a multiprogramming system.40 This
system had been designed as a hierarchy of levels with the characteristic that each
level in the hierarchy was written strictly in terms of the level immediately below it.
In explaining this idea, Dijkstra drew upon the old idea of program semantics being
given in terms of a virtual machine: “Between two successive pearls we can make a
‘cut’, which is a manual for a machine provided by the part of the necklace below
the cut and used by the program represented by the part of the necklace above the
cut”.41

The ‘Notes on structured programming’ contained a more leisurely treatment of
these ideas, together with complete examples of constructive program development.
Some flowchart illustrations of the recommended control structures were given, and
Dijkstra pointed out that “[t]hese flowcharts share the property that they have a
single entry at the top and a single exit at the bottom” and that as a result, they
could be treated as a single indivisible action in a sequential program.42 This was
important in constructive programming, as it meant that a single high-level action
could be refined by introducing a control structure whose properties could then be
argued about independently of the rest of the program.

Dijkstra’s notes were published in 1972 in the book Structured Programming,
which also contained contributions from Tony Hoare and Ole-Johan Dahl. An essay
by Hoare on data structuring argued that set theory could be used to define a range
of data structures, and an joint contribution on ‘hierarchical program structures’ by
Hoare and Dahl described how programs in the Simula 67 programming language
were structured. Simula 67 is considered in more detail in the following chapter; its
relevance in the context of structured programming was the claim that it contained
features which allowed the hierarchical structuring of programs, as recommended
by Dijkstra.

As presented in these texts, then, structured programming encompassed not only
a recommended set of control and data structures, but also a concern with the idea
of the provable correctness of programs together with the constructive method by
which such programs could be produced, and finally a general scheme for program
modules. This rich collection of ideas provided a great deal of scope for selection
and interpretation. For example, Henderson and Snowdon described an “experiment
in structured programming” which adopted a “‘top-down’ structural approach with
the hope that the program can be seen to be correct by its very structure”. However,
they discovered that the application of this technique did not prevent the occurrence
of errors in the finished program, and concluded that “in such a technique we must

39Dijkstra (1969a), p. 222, Dijkstra (1969b), p. 225.
40Dijkstra (1968c).
41Dijkstra (1969b), p. 255.
42Dijkstra (1972), p. 19.
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apply formal methods”.43 Henry Ledgard later concluded in a response to this paper
that, “[t]he method used . . . is strictly speaking not really ‘structured programming’,
at least as conceived by Dijkstra”; the reason given for this was that Henderson and
Snowdon had not “formalized and debugged each of the levels”.44 To add to the
confusion, Ledgard, despite claiming to make a case for structured programming,
defined his own methodology which not only combined the ideas of structured and
top-down programming and stepwise refinement, but also adopted a programming
style which made use of the go to statement.

In 1973 Barbara Liskov returned to Dijkstra’s emphasis on correctness when
she characterized structured programming as “a programming discipline intended
to support the production of correct, understandable programs which are easy to
modify and maintain”.45 An example of top-down decomposition of a program into
modules was presented, using “the three sequential control structures proposed for
structured programming”; these were justified not by an appeal to proof, however,
but because they had a “1-in, 1-out” property which made the flow of control through
a program easy to visualize. Indeed, she went further, saying that “[t]here are many
control structures other than [these three] which preserve the 1-in, 1-out property,
and all of these are permissible in structured programming”.46 Liskov downplayed
the significance of proof, however, on the grounds of uncertainty about the form
that a specification language would have to take in order to serve as a foundation for
proofs of the correctness of programs.

Within the software industry, interest in the ideas of structured programming
was stimulated by reports of their successful application on a project carried out by
IBM for the New York Times.47 This project was used as a vehicle to test a new
approach to the management of software projects, the use of ‘chief programming
teams’, which were intended to move projects away from a situation where each
programmer had complete responsibility for everything to do with a particular part
of the program to one where particular functional responsibilities were assigned to
individuals. Inspired by the make-up of surgical teams, a project would be lead by an
experienced designer, the “chief programmer”, who would be assisted by “back-up
programmers”, “programming librarians” and other team members.

As well as adopting a new style of project management, the team used a top-down
approach to design and implementation in conjunction with a version of structured
programming. This was characterized in primarily syntactic terms as “a set of rules
that enhance a program’s readability and maintainability . . . the rules state that any
proper program—a program with one entry and one exit—can be written using only
the following programming progressions”, namely sequence, if-then-else statements
and do-while loops.

43Henderson and Snowdon (1972), pp. 38, 51.
44Ledgard (1974), p. 49.
45Liskov (1973), p. 5.
46Liskov (1973), p. 6.
47Baker (1972a, 1972b).
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The New York Times project was highly successful, and it was claimed that
“[s]tructured programming, and the organization and tools used to achieve it, were
key factors in developing this kind of system”. Even though it was admitted that the
use of chief programmer teams was not an essential part of structured programming,
the widespread interest in this project meant that ‘structured programming’ became
understood to be a general approach to software projects and not simply a technical
approach to the organization of programs.

In 1973 the ideas of structured programming were brought to a wider audience
when the popular magazine Datamation published a special issue on the topic. An
introductory article entitled ‘Revolution in Programming’ asserted that “[s]tructured
programming is a major intellectual invention, one that will come to be ranked with
the subroutine concept or even the stored program concept”.48 The articles in this
issue, however, characterized structured programming in terms that had more in
common with Baker’s description of IBM’s experience on the New York Times
project than from Dijkstra’s theoretical writings.

In more theoretical treatments, the issue of program correctness was of great
importance; for example, Wirth wrote, echoing Dijkstra, that “[i]n order to achieve
intellectual manageability, the elementary composition schemes must be simple. . . .
The simplicity consists in the ease with which we can infer properties about the
[composition scheme] from known properties of the constituent statement”.49 This
point was echoed in the Datamation articles, but with a slightly different emphasis
and wider applicability: “since flow of control is simpler in a structured program,
the development and execution of test cases to adequately debug the program is
simpler . . . structured programs are very easy to read and verify for correctness”.
Verification was here being taken in an informal sense, however, and Donaldson
went on to state that “study of program proof-of-correctness . . . has not yet produced
any practical results”.50

For a more practical audience, the key point about the adoption of a particular
set of control structures was the ensuing increase in the readability of programs; for
example, McCracken stated that “[u]sing only these constructions . . . it is possible
to write programs that can be read from top to bottom without ever branching back
to something earlier . . . Programs are accordingly much easier to read and under-
stand”. The benefits of making programs clear and comprehensible extended not
just to the writing of correct programs, but more widely across the whole software
lifecycle. Thus it was held to be easier to test structured programs, and that ease of
understanding made it simpler to correct errors in programs or to modify programs
to provide new or enhanced functionality. The conferences on software engineering
in the late 1960s and subsequent work had drawn attention to the costs of software
development across the whole lifecycle, and suggestions of how to reduce these
costs were highly attractive to industry.

48McCracken (1973).
49Wirth (1974), p. 252.
50Donaldson (1973).
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There can be no doubt that structured programming made a significant and long-
lasting contribution to programming language design and programming practice.
Older languages, such as Fortran, which did not include the recommended control
structures, were soon revised to include them, and they have been a constant part
of all languages developed since. The controversy over the go to statement has died
away, and in some modern languages it is not even available. Ideas of ‘structure’
were soon more widely applied: for example, the term ‘structured design’ was soon
coined to describe an approach that emphasized a modular structure of programs
consistent with structured programming.51

In its original form, then, structured programming was closely bound up with
the Algol research programme, and in particular with its concern with proving the
correctness of programs. As it became known and applied in industry, however, the
ways in which it was characterized changed. Management issues were emphasized,
and the key point about the suitability of control certain structures was rephrased in
the form of recommendations that could be immediately applied by programmers,
such as rules about the indentation of code.52

In particular, it is noticeable that the positive relationship between structured
programming and program correctness was played down in favour of a more diffuse
connection. As McCracken put it, “[p]rogram proving isn’t yet a practical matter for
programs of realistic size, but the theory influences the daily practice of program-
ming anyway”. By using control structures which had been designed with a view
to making proof easier, it was believed that programmers would obtain the benefits
of programs that were easier to write correctly, to understand and to modify, even
without involving the construction of formal proofs.

10.7 Proof and Testing

As noted above, one of the central goals of the research programme articulated by
McCarthy in 1962 was to replace testing and debugging by proof, and the first half
of this chapter described the evolution of some of the techniques necessary to make
the construction of program proofs feasible. At the end of the 1960s, researchers
were optimistic about the possibilities for proof: Hoare emphasized the expense
of testing and prophesied that “the practical advantages of program proving will
eventually outweigh the difficulties, in view of the increasing costs of programming
error”.53 Despite expressing reservations about the power of the proof techniques
then known, he was soon suggesting that “if a proof is constructed as part of the
coding process for an algorithm, it is hardly more laborious than the traditional
practice of program testing”,54 as well as offering a much stronger guarantee of
reliability.

51Stevens et al. (1974).
52McCracken (1973).
53Hoare (1969), p. 579.
54Hoare (1971), p. 39.



270 10 The Logic of Correctness in Software Engineering

However, despite the success of structured programming, proof never became
widely used in the software development industry, and testing never lost its role as
the most important means for gaining assurance about the correctness of programs.
Despite this, great progress was made in ensuring the reliability of software. Twenty
years later, Hoare himself revisited the topic in a paper titled “How did software get
so reliable without proof?”. He observed that “the problem of program correctness
has turned out to be far less serious than predicted” and went on to suggest that the
systematic application of traditional engineering techniques to the development of
software was largely responsible for the observed increase in software reliability.55

This raises the question of the extent to which the Algol research programme
can be credited with improvements in programming practice if a central part of its
programme, namely proof, was not at all widely employed. One possible answer to
this question might be based on the observation, made earlier, that the Algol research
programme introduced a general model of program development where programs
were systematically derived from specifications by a process of refinement. This
process could be carried out formally, but more often it was not; however, even
informal versions of the process, which included testing, were found useful and
widely adopted by industry. Rather than being completely opposed techniques with
nothing in common, as McCarthy and Dijkstra suggested, proof and testing came
to be viewed as complementary techniques for ensuring the correctness of software
within the context of refinement-based methods.

The remainder of this chapter will give a more detailed analysis of this situation
by drawing on accounts of scientific methodology developed in the philosophy of
science which relate the notions of theory and experiment. A useful categorization
of the possible positions was provided by Imre Lakatos, who modelled scientific and
mathematical theories as deductive systems which identify ‘basic statements’ as the
final conclusions drawn by a theory.56 In scientific theories the basic statements are
said to be those which make some testable, empirical assertion.

These ideas can be applied to the software development process proposed by
the Algol research programme by identifying the specification of a software system
with the axioms of a deductive theory. In a top-down process, a high-level program
is then written and its correctness argued for; by a series of refinement steps a low-
level, executable program is then derived. Refinement steps are akin to inferences
within the system, and the final program, fully expressed in the target programming
language, is the equivalent of a basic statement, the point at which derivation stops.
As in a scientific theory where the basic statements make testable assertions, pro-
grams are run and tested, and accepted or rejected on the results of these tests.

Lakatos identified two basic types of theory, which he termed “Euclidean” and
“quasi-empirical”. These were distinguished by the place where truth values are
“injected” into the system. Euclidean theories inject truth at the top, by assuming
the truth of the chosen axioms and by truth-preserving inference steps deducing
valid conclusions from them. Quasi-empirical theories inject falsity at the bottom,

55Hoare (1996).
56Lakatos (1967).
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by testing the basic statements; a failed test indicates the falsity of a basic statement,
which in turn, forces some modifications at higher points in the theory if consistency
is to be maintained.

Software Engineering as a Euclidean Theory It is evident from what has been
said earlier in this chapter that the overall view of software engineering that was
taken by the Algol research programme was that it was Euclidean, in Lakatos’ sense.
The adoption of a fixed specification is equivalent to an injection of correctness at
the top of the system. The task of software development was understood to be that of
systematically developing from the specification a program which implemented the
specified functionality, by means of a number of development steps which preserved
correctness. It was expected that approaches involving testing and debugging would
become obsolete once techniques had been developed to carry out such derivations
effectively:

I should like to point out that the constructive approach to program correctness sheds some
new light on the debugging problem. Personally I cannot refrain from feeling that many
debugging aids that are en vogue now are invented as a compensation for the shortcomings
of a programming technique that will be denounced as obsolete in the near future.57

Support for this position was largely rooted in the belief that testing on its own
could not guarantee the correctness of software:

Since it is well known that no foolproof methods exist of knowing that the last error in a
program has been found, there is much practical confidence to be gained in never finding
the first error in a program, even in debugging.58

The Role of Testing Within Euclidean Methods However, even though a
broadly Euclidean approach to software development was widely adopted, formal
proof was not, and testing retained a central role in assuring the correctness of soft-
ware. A number of views have been put forward to justify or explain the coexistence
of the two approaches in software engineering.

Stuart Shapiro described the use of proof and testing on the same project as
a pragmatic approach which employed two independent verification techniques to
maximize the chances of producing a correct system.59 One motivation for such
an approach might be an acknowledgement of the possibility of errors even in a
proof of a program. In 1976, Gerhart and Yelowitz published a list of errors that
they had detected in published examples of formal program derivations. Although
they were sympathetic to mathematical approaches to program development, their
evidence pointed out the fallibility of mathematical proof. While accepting that the
formal verification of programs could help ensure that a program was “substantially
correct”, they concluded that “we must simply learn to live with fallibility”.60

57Dijkstra (1968a), p. 185.
58Mills (1976), p. 269.
59Shapiro (1997).
60Gerhart and Yelowitz (1976), p. 206.
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This suggests that a mixture of the Euclidean and quasi-empirical approaches to
software engineering could be used, in which the typical response to the detection
of an error in testing would be to correct the faulty code. Supporters of a purely
Euclidean approach, however, have subsequently articulated a distinctive view of the
role of testing: its purpose is not to assess directly the correctness of the software, but
rather, by checking consistency between the specification and the program, to assess
whether the development process has been correctly carried out. The recommended
response to a failed test on this approach is not to correct the final artefact, but rather
to modify and make less fallible the process that led to it, and then recapitulate the
development: “The real value of tests is not that they detect bugs in the code, but
that they detect inadequacy in the methods, concentration and skills of those who
design and produce the code”.61

A third justification for including testing in a Euclidean model arises from the
distinction between a program text and the executing program that is derived from it.
As Fetzer pointed out, this is a contingent relationship: the fact that a given program
behaves in a certain way when executed can only be established empirically, not by
an examination of the program text, and so testing is necessary to verify the run-time
properties of a program, even when the program itself is assumed to be correct as a
result of a formal derivation.62

Despite the use of the quasi-empirical technique of testing, however, these mixed
positions remain largely Euclidean in that they retain a belief in the feasibility of
the goal of developing correct software. This assumption is not shared by more
thorough-going quasi-empirical approaches, discussed below.

An Inductive View of Testing The traditional view of testing was that program-
mers should keep running, testing and modifying a program until it passes all its
tests. A passed test represents an injection of correctness at the bottom of the sys-
tem, a confirmation that the program was behaving as required. As Lakatos points
out, the belief that correctness can be injected at the bottom of a deductive system is
tantamount to a belief in inductive methods, and the comparison between induction
and the traditional account of testing has often been made in the software engi-
neering literature. The thought is that successful tests are singular statements of a
program’s correctness; from a set of such statements, we want to be able to infer
that the program as a whole will give correct results at all times in the future.

Although this belief underlies much informal, small-scale programming practice,
positive statements of an inductive principle in the literature of software engineering
are rare, no doubt because of the prominence of Dijkstra’s attack on this position.
Ironically, a mixed position which included elements of an inductive approach was
employed by Dijkstra in the development of the multiprogramming system. He de-
scribes how the system was designed in such a way that it could be formally proved
that “the number of relevant test cases will be so small that [the designer] can try
them all”.63

61Hoare (1996).
62Fetzer (1988).
63Dijkstra (1968c), p. 344.
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A later attempt was made by Goodenough and Gerhart to characterize the “logic
of testing”; they proved a “fundamental theorem of testing” which “states that in
some cases, a test is a proof of correctness”.64 The idea underlying this theorem
was to partition the input space of a program in such a way that the successful
completion of one test would imply that the program would function correctly for
all other inputs from a given partition. This attempt foundered, however, on the
difficulty in practice of finding a partition of the testing space with the required
formal properties.

Quasi-Empirical Software Development In the scheme being elaborated here,
a quasi-empirical account of software engineering would characterize failed tests
as injections of incorrectness at the bottom of the quasi-deductive system. This has
suggested to a number of commentators an analogy between the testing of programs
and the refutation of scientific theories: for example, Fetzer wrote that “it might
be said that programs are conjectures, while executions are attempted—and all too
frequently successful—refutations (in the spirit of Popper)”,65 and Dasgupta put
forward the thesis that problem solving in design, including the design of programs,
“is a special instance of (and is indistinguishable from) the process of scientific
discovery”.66

There was a significant tradition in software engineering which adopted a broadly
quasi-empirical approach. In a rather Popperian spirit, this tradition did not take as
its primary aim the development of software that was absolutely correct, but instead
accepted the inherent fallibility of software. In 1971, Friedrich Bauer wrote in an
overview of the young field of software engineering that the aim of the discipline
was “to obtain economically software that is reliable and works efficiently on real
machines”.67 It is noteworthy that Bauer refers not to the correctness of software, but
to its reliability; unlike correctness, reliability is not considered in engineering to be
an all-or-nothing goal, but rather a property which systems can possess to different
extents, depending on contextual and economic factors. A later paper surveying
approaches to the study of reliability in software made this point explicitly: “Our
position is that it is neither necessary nor economically feasible to get 100 per cent
reliable (totally error-free) software in large, complex systems”.68 Rather than trying
to ensure the absolute correctness of software, software engineers who accept the
inevitability of errors have been concerned with techniques for developing fault-
tolerant systems and for statistical characterizations of the reliability of software.69

A further characteristic that we might expect to find in quasi-empirical software
engineering is ‘bold hypotheses, followed by dramatic refutations’, as described in

64Goodenough and Gerhart (1975), p. 157.
65Fetzer (1988), p. 1062.
66Dasgupta (1991), p. 353.
67Bauer and Wössner (1972).
68Schick and Wolverton (1978), p. 105.
69Randell (2000).
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Popperian rhetoric about science. Much current practice can in fact be interpreted
in this way. For example, it is a commonplace that commercial software products
are full of errors, and frequently revised with patches or intermediate releases which
correct faults. Traditional software engineering views this as a problem, feeling that
a mature engineering profession ought to be able to do better. It is precisely what
would be expected, however, if software engineering was in fact a quasi-empirical
discipline.70

Correctness and the User In empirical science, quasi-empirical approaches can
lead to the rejection of the axioms assumed to be the foundations of a theory. If
the analogy is fully applicable, we should expect to find approaches to software
engineering that allow for the revisability of the specification in the light of errors
and problems discovered in the process of software development. An early statement
of this position was made by Douglas Ross:

The most deadly thing in software is the concept, which almost universally seems to be
followed, that you are going to specify what you are going to do, and then do it. And that
is where most of our troubles come from. The projects that are called successful, have
met their specifications. But those specifications were based upon the designers’ ignorance
before they started the job.71

Similar views were later expressed by McCracken and Jackson, who commented
that “systems requirements cannot ever be stated fully in advance, not even in prin-
ciple, because the users don’t know them in advance”,72 an argument based on the
observation that the development process itself frequently changed, among other
things, users’ perceptions of their requirements.

This implies a view of program correctness which is based on something other
than the relationship between a program and a specification. If specifications are
revisable as users’ insight in the system requirements grows, correctness should
instead be understood as a relationship between a program and its users. As this
distinction became appreciated, the process of checking that a program meets its
specification became known as verification, whereas the process of checking that
a software engineering artefact—either specification or program—meets the actual
requirements of its users became known as validation.73

Responses to this situation took the form of proposals for software development
methods that would involve the user extensively throughout. Originally known by

70In the 1990s, a particular approach to software engineering characterized itself as ‘empirical’,
based on the belief that “the most important thing to understand is the relationship between var-
ious process characteristics and product characteristics”; See Basili (1996), for example. In the
Lakatosian framework, this approach would seem to fall squarely in the Euclidean tradition, but
emphasizing the external, managerial aspects of the development process rather than the internal
properties of software-related artefacts. What is being proposed appears to be an empirical study
of a Euclidean process, not an empirical approach to development itself.
71Ross (1968).
72McCracken and Jackson (1982), p. 31.
73Boehm (1984).
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terms such as ‘prototyping’ or ‘evolutionary development’, a similar approach is still
extant, now often referred to as ‘agile’ or ‘iterative and incremental’ development.
A partly anecdotal history of this approach that traces its roots back to the late 1950s
has been compiled by Craig Larman and Victor Basili.74

Such approaches do not take a quasi-deductive view of the software development
process; instead, development is viewed as a continuing dialogue between user and
developer. Aspects of contemporary package software also appear to fit this model,
with the functionality of a program evolving over a series of releases in response to
direct or indirect demands from users. Recent work in the philosophy of science has
described models in which candidate scientific knowledge is not articulated as part
of a deductive structure, but instead emerges in the course of a rather unpredictable
process in which scientists explore the ‘resistances’ provided by a variety of human
and non-human actors. An early example of this approach was the actor-network,
and it has been taken up and refined in Pickering’s notion of the ‘mangle’.75 It
is beyond the scope of this book to explore further the connections between this
work and evolutionary approaches to software development, however, though some
interesting attempts to link software development with the ideas of post-modernism
have been made.76

10.8 Conclusions

This chapter has considered the influence that the Algol research programme had on
the practice of software development. The ideas that became popularized under the
label of ‘structured programming’ were widely influential in the computing industry,
and widely perceived to have introduced a more formal approach:

Before this decade of intense focus, programming was regarded as a private puzzle-solving
activity of writing computer instructions to work as a program. After this decade, program-
ming could be regarded as a public, mathematics-based activity of restructuring specifica-
tions into programs.77

The emphasis on specifications was key to the new programming techniques,
and also became a cornerstone of software engineering practice more generally,
introducing the idea of Euclidean models of the software lifecycle which covered
not only programming but also other activities such as design, testing and program
maintenance. It was in this context that Boehm stressed the “extreme importance”
of “a complete, consistent, unambiguous specification”, in the absence of which
problems could be anticipated in many other stages of development.78

74Larman and Basili (2003).
75Callon (1987), Pickering (1995).
76See Robinson et al. (1998), for example.
77Mills (1986).
78Boehm (1976).
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Structured programming was frequently described as a ‘revolution’,79 and it is
interesting to consider how well this usage corresponds to Kuhn’s sense of the term.
There was certainly a sense of crisis associated with software development in the
late 1960s and early 1970s, as evidenced by the NATO conferences on software
engineering, and many people greeted the ideas of structured programming as a
novel technique which would address these practical problems and make software
development a more straightforward and predictable process. However, for Kuhn,
revolution is associated with the adoption of a new paradigm, and as the last two
chapters have argued, structured programming can be viewed as the outcome of a
logic-inspired paradigm whose revolutionary moment came with the publication
of the Algol 60 report. So the application of Kuhn’s schema in this case is not
straightforward, with the perception of crisis and the adoption of a new paradigm
occurring at different times in the research and industrial communities.

An alternative historiographical model for the take-up of structured programming
can be found in the traditional account according to which new ideas are developed
in a research environment and then, when mature, transferred for application in an
industrial setting. However, it is apparent that the ideas themselves may be altered
significantly in such a transfer. Structured programming as conceived of by industry
highlighted certain aspects of the academic work while ignoring or downplaying
others. In particular, program proof and the elimination of testing and debugging
were central goals of researchers in the Algol paradigm, but presentations aimed at
industry downplayed these aspects, emphasizing instead issues to do with project
management, for example, even though these were not part of the theoretical notion
of structured programming.

79See McCracken (1973), Knuth (1974), for example.



Chapter 11
The Unification of Data and Algorithms

In the 1970s it was common to describe programs as having two main aspects,
namely the data structures that the program required and the algorithms used to
manipulate that data. This point of view was clearly reflected in the title of Niklaus
Wirth’s well-known book Data Structures + Algorithms = Programs, and also in
the design of Wirth’s language, Pascal, in which control and data structures were
defined largely independently of each other.1

Investigations into programming methodology, however, had made it clear that
there was a close relationship between these two areas. A common technique in top-
down refinement methods was to introduce new variables and data values that would
allow a high-level algorithm or specification to be expressed in more detail. Along
with the data structures, the necessary operations were defined in terms of these new
data items so that higher-level code could be insulated from the lower-level details
of data representation.

This approach became known as data abstraction, and it was a natural extension
of the Algol research programme to investigate ways in which logic could be used
to help to understand the properties of data types defined in this way. In the early
1970s, and number of languages were developed which provided direct support for
data abstraction in various ways. These included the definition of modules which
implemented in a fairly direct manner the ‘pearls’ of Dijkstra’s necklace, a more
abstract notion, of abstract data type, and a more comprehensive notion, of object-
oriented programming.

This chapter examines in more detail the development of novel programming
language support for data abstraction, and it suggests that a stable configuration of
ideas, one that has profoundly influenced the design of programming languages up
to the present day, was first achieved by the Smalltalk language. Although it drew
heavily on work from the Algol research programme, the design of Smalltalk was
also strongly influenced by ideas from completely different areas, and the chapter
concludes by arguing that in various ways Smalltalk marks a limit to the influence
of logic on programming language design.

1Wirth (1971b; 1976).
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11.1 Simulation Languages

A number of important ideas about the unification of data and algorithms emerged
from the experience gained in writing programs to carry out simulations. This had
always been an important application of digital computers, and as experience was
gained in programming simulations, common features of these applications became
codified in special notations and languages. These languages included SIMSCRIPT
and GPSS and two slightly later languages, Simula and SOL.2

Simulations were used to model the behaviour of complex systems whose global
properties could not be determined easily, or at all, through analytic means. The
particular type of simulation suitable for programming on digital computers became
known as discrete event simulation. The system to be simulated would be modelled
as a collection of entities, and interactions between these entities were thought of as
discrete or non-overlapping events, each of which could change the overall state of
the system in some way.

A typical example given of this type of simulation was the flow of traffic through
a network of streets. In this case the entities in the system might include vehicles,
traffic signals and so on. A vehicle reaching a traffic signal would represent an event,
and the system state would be affected by which way the vehicle turned. Simulation
programs usually needed to take account of the time at which events occurred, and
often also included a probabilistic element, to model the fact that 70% of vehicles
turned left at a particular junction, for example.

The basic assumption behind languages like SOL and Simula was clearly stated
by Knuth and McNeley:

A complex system can be represented as a number of individual processes, each of which
follows a program very much like a computer program.3

A simulation program therefore had to keep track of a potentially very large number
of processes, each of which was capable of acting in some sense independently, and
the interactions between them.

Because of the necessary list processing, complex data structures and program sequencing
demands, simulation programs are comparatively difficult to write in machine language or
in ALGOL or FORTRAN. This alone calls for the introduction of simulation languages.4

A primary goal of the early simulation languages was to provide users with the
concepts and notation needed to describe complex systems, and the generation of
a simulation program was almost seen as secondary to this. The designer of GPSS,
Geoffrey Gordon, later stated that “[w]hat the GPSS user has to do is to draw a block
diagram to represent the system, using some very specific block types”; the blocks
were then translated into textual statements for input to the code generator.5

2See Markowitz et al. (1963), Gordon (1961), Dahl and Nygaard (1965) and Knuth and McNeley
(1964) for details of these languages.
3Knuth and McNeley (1964), p. 401.
4Dahl and Nygaard (1966), p. 671.
5Gordon (1981).
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The designers of Simula made this point very explicit:

Simulation is now a widely used tool for analysis of a variety of phenomena: nerve net-
works, communication systems, traffic flow, production systems, administrative systems,
social systems, etc. . . . still more important is the need for a set of basic concepts in terms
of which it is possible to approach, understand and describe all the apparently very different
phenomena listed above. A simulation language should be built around such a set of basic
concepts and allow a formal description which may generate a computer program.6

Simulation languages, then, were not simply alternatives to algorithmic languages
like Algol, but had an entirely different goal: their purpose was to describe not just
computations, but whole systems. In this respect, they had a different significance
from languages for other application areas, such as data processing languages like
Cobol, whose goal was still to describe computations, albeit with different data and
in a different style from the scientific languages.

Simula Of the simulation languages developed in the early 1960s, Simula had the
most influence on later work on general-purpose languages. It was developed at the
Norwegian Computing Centre by Kristen Nygaard and Ole-Johan Dahl, and had its
roots in Nygaard’s work in operational research. This work led to a recognition of
“the necessity of using simulation, the need of concepts and a languages for system
description, lack of tools for generating simulation programs”.7

The systems of interest were initially characterized as consisting of a number of
active components, or ‘stations’, which processed data held in passive components,
or ‘customers’. Inspired by examples such as an office with a number of clerks
dealing with customers, or a production line in a factory, each station maintained a
queue of customers, and once a customer had been dealt with it could be passed on
to join the queue at another station, thus modelling its progress through the system.

By the time the language was implemented in 1964, however, the two concepts
of ‘station’ and ‘customer’ had been merged into a more general notion of ‘process’
which combined the data associated with the customers and the operations carried
out by the stations. This generalization, which was very similar to the approach
adopted by SOL, was the result of experience gained in modelling a greater range
of systems and also in implementing simulations based on the resulting models.

The need to describe the active behaviour of processes meant that a simulation
language had to contain at least some elements of an algorithmic language. Rather
than creating a new notation, Dahl and Nygaard chose to base Simula on Algol 60;
they did this in such a way that it was an extension of Algol, in the sense that any
feature or structure defined by Algol 60 could be used in a Simula program.

Key to this was the Algol notion of a block. A Simula process was both a passive
carrier of data and an active element of the system. Precisely this combination of
properties was defined by a block:

An ALGOL program (block) specifies a sequence of operations on data local to the pro-
gram, as well as the structure of the data themselves. SIMULA extends ALGOL to include

6Dahl and Nygaard (1966), p. 671.
7Nygaard and Dahl (1981), p. 440.
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Table 11.1 A Simula
program SIMULA begin

integer population, nr uninfected, U1, U2;
real p; array mortality [4:10];
set dead, cured;
activity infected person;
begin integer day;

nr uninfected := nr uninfected −1;
hold(3);
for day := 4 step 1 until 10 do
if draw(mortality[day], U1) then
begin include(current,dead); terminate(current) end
else hold(1);
include(current, cured);

end;
read(population, U1, U2, p, mortality);
nr uninfected := population;
infect: activate new infected person;
hold(negexp(p, U2));
if nr uninfected >0 then go to infect;
hold(11);
write(population, cardinal(dead), cardinal(cured));
end;

the notion of a collection of such programs, called ‘processes,’ conceptually operating in
parallel.8

This extension changed the lifetimes of blocks: in Algol, blocks could be nested,
with the consequence that data defined in the inner block could only be maintained
as long as the outer block was still in existence. For simulation programs, however,
the lifetime of data in the program was unpredictable and depended on the events
being simulated. This made the Algol discipline too restrictive, and Simula therefore
generalized the notion of a block so that “a process may remain and operate after
[the block in which it was created] is out of the system, i.e. the life spans of different
processes may overlap each other in any way”.9

Processes were defined by activity declarations, which were rather like procedure
declarations. Whereas procedures were called, however, processes were created, or
generated, from activities using a symbol new. This returned a pointer to the new
process which could be stored to allow it to be referenced throughout its life. Simula
defined special data structures, called sets, to manage collections of processes and
the queue of events waiting to be dealt with.

Table 11.1 shows a simple Simula program modelling the spread of an infection
through a population.10 Simulations were included within a special SIMULA block;
this could be the outermost block in a program, as here, or nested within a nor-
mal Algol block. The program defines one activity, representing an infected person,

8Dahl and Nygaard (1966), p. 671.
9Dahl and Nygaard (1965), p. 14.
10Dahl and Nygaard (1965), pp. 95–96.
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which applies the probabilities of death on days 4 to 10 of an infection, given in the
mortality array, and assigns the person to one of the sets dead or cured, depending
on the outcome.

The declarations in the SIMULA block hold the global data required for the sim-
ulation, and the statements following the declaration of the activity handle input and
output, and create processes representing infected people which are then added to
the simulation. Once a process is created, the subsequent course of the infection is
modelled solely by the code appearing in the activity. Statements such as activate,
hold and terminate provided means for controlling the progress of the computations
performed by individual processes.

11.2 Modelling the Real World

Because of the nature of simulation systems, languages like Simula were naturally
described as providing the ability to model certain aspects of the real world. This
capability was supported primarily by giving programmers the ability to work with
structured data, where an individual object could be characterized within a program
by a collection of data items of varying types, with the number and type of the
data items required varying from object to object. Apart from simulation languages,
the ability to work with structured data was available in the area of business data
processing where Cobol, for example, provided the ability to exhaustively describe
the structure of data stored in files.

The ability to work with structured data was not supported by scientific languages
such as Fortran and Algol, however. In the mid-1960s proposals were put forward,
most notably by Wirth and Hoare, for adding a general record handling capability
to such languages, as described in Sect. 9.6. These proposals made the connection
with modelling explicit: for example, Hoare wrote that “we often need to construct
within the computer a model of that aspect of the real or conceptual world . . . In such
a model each object of interest must be represented by some computer quantity . . .
Such a quantity is known as a record”.11

The most well-developed proposals for record handling defined the relationship
between the real world and the computer model in terms of four properties. Firstly,
objects were considered to possess a number of attributes represented by fields in
a record, each of which could hold a data value describing the object. Secondly,
similar objects would naturally have the same kinds of attributes, though normally
holding different values. Objects could therefore be grouped into classes, and in a
program the attributes belonging to a particular class of objects would be defined
by a record class. Next, it was also considered important to model relationships
between objects: in the simple case of functional relationships, this was done by
defining a new kind of data value, which defined a reference to a record, and allow-
ing records to hold references to other records to which they were related. Finally,

11Hoare (1968), p. 294.
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it was recognized that many classes consisted of disjoint subclasses of objects, in the
way that the class of vertebrates consists of the subclasses of mammals, birds and so
on. The proposals allowed record classes to contain subclasses, with ‘private’ fields
that defined attributes that applied only to objects belonging to certain subclasses.

Hoare and Wirth’s record handling proposals on the one hand and Simula on
the other therefore represented two alternative ways in which Algol 60 could be
extended to permit the manipulation of structured data which modelled real-world
entities. Simula achieved this by generalizing the Algol notion of a block; as Hoare
pointed out, however, this confused the record concept with that of the process,
thought of as “a rule of behaviour as specified by procedural statements”,12 and
brought with it the complexities of parallel processing. Records, on the other hand,
provided a new language feature which isolated the central problem of handling
structured data, and therefore reinforced such characteristic themes of the Algol
research programme as clarity and the need to be able to understand and control the
behaviour of programs.

11.3 Simula 67

In 1967, Dahl and Nygaard defined a revised version of Simula, which drew on the
experience they had gained with the use of Simula, but also responded to proposals
made for using records to handle structured data. Unlike its predecessor, Simula 67
was intended to be a general-purpose programming language. It was assumed that
high-level languages like Algol had succeeded in the goals of enabling “precise for-
mal description of computing processes”13 and making it easier for non-specialists
to write programs. Simula 67 was intended more generally to help “those who are
confronted with the task of organizing and implementing very complex, highly inter-
active programs”;14 simulation programs were considered to fall into this category,
but were no longer the sole focus of interest.

In its basic structures, however, Simula 67 was very reminiscent of the original
Simula. It was recommended that the components that problems were divided into
should each be describable as individual programs, implemented as before by an
extended version of the blocks of Algol 60. In a terminological change which was
influenced by Hoare’s work on record classes, the ‘activities’ and ‘processes’ of
Simula were renamed as classes and objects. Objects, like the processes of Simula,
consisted of “an aggregated data structure and associated algorithms and actions”.15

The latter consisted of local procedures which could act on the data stored in an
object, and a block body which could be executed in a quasi-parallel fashion along
with the bodies of other objects.

12Hoare (1968), p. 330.
13Dahl et al. (1968).
14Dahl et al. (1968), p. 1.
15Dahl et al. (1968), p. 5.
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A significant innovation in Simula 67 was the introduction of prefix classes,
which were intended to be an alternative to the record subclasses that Hoare had
described.16 The idea was that the definition of a new class could specify a single
prefix class: the attributes of the prefix class would become attributes of the new
class, and further attributes could be added to specialize the concept being modelled
by the class. Class prefixing could be carried out repeatedly as often as required,
allowing a hierarchy of classes to be defined.

Two significant aspects distinguished Simula 67’s prefix classes from the record
subclass proposed by Hoare. Firstly, prefix classes are more flexible than record
subclasses. Hoare’s proposal required all the subclasses of a given record class to be
specified at the point of definition of the class. In Simula, on the other hand, any class
can be used as prefix in any other class definition, giving an ability to reuse code
that went beyond that offered by record subclasses. Consider, for example, the idea
of a linked list, a dynamic data structure of records or objects linked by embedded
references. Linked lists of many types are required in programming, and it would be
nice to find a way of defining the concept of a linked list once and for all, rather than
having to repeat the relevant definitions whenever a new type of list is required. In
Simula 67 this can be done by defining the basic linked list functionality in a class
which is then used as a prefix class to make linked lists of a particular sort of data:
the required data fields are simply added when defining the new class. By contrast,
when using records the definitions for the linked list would have to be repeated in
the record class definition for every type of data that was to be stored in a list.

A second point of difference was the notion of virtual quantities. Using this
mechanism, a prefix class could declare a field which it does not itself define, but
which it is planned will be defined in subclasses. For example, a vehicle class might
define a field called ‘capacity’, even though that field was only defined in the sub-
classes of the vehicle class. The importance of this notion lies in the ability to define
the capacity field differently in different subclasses of vehicle. A programmer would
then be able to refer to the capacity of a vehicle without knowing in detail what
sort of vehicle was referred to at run-time. Record handling proposals contained no
similar capability: the emphasis on the concept of data types in the Algol research
programme made it highly desirable that every field in a record was fully defined
when a program was compiled.

11.4 Data Abstraction

In Sect. 10.6 it was argued that as structured programming made the transition from
academia to industry, it became principally identified with two of the ideas that Di-
jkstra had put forward, namely the use of a restricted repertoire of control structures
and the employment of a top-down approach to program development. A third idea,

16Dahl and Nygaard (1968).
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that programs could be structured as a layered hierarchy of machines, was in com-
parison rather overlooked.

Descriptions of top-down methods did, of course, often recognize the very close
relationship between a program’s data structures and the operations that acted on
them, and the need to consider both together. For example, Wirth stated that “[a]s
tasks are refined, so the data may have to be refined, decomposed or structured, and
it is natural to refine program and data specifications in parallel”.17 However, top-
down methods were often taken to consist of a process of specifically functional
decomposition, or analysis. Wirth later made this clear, writing that “an abstract
program emerges, performing specific operations on abstract data . . . The operations
are then considered as the constituents of the program which are further subjected
to decomposition”.18

This approach reinforced, and was itself perhaps supported by, the traditional
ideas that subroutines, or functions, were the fundamental components out of which
programs were built, and that the structure of a program should be conceived of as
a hierarchy of functions. As discussed above, Simula and Simula 67 employed a
different model, in which at the top-level programs were composed of blocks rather
than functions. However, for reasons that will be considered in more detail below,
proposals such as Simula 67’s classes were not adopted in other languages, despite
the inclusion of an extended discussion of the ideas underlying Simula in the widely
read book Structured Programming, published in 1972.19 Instead, the early 1970s
saw extensive discussion of new language mechanisms intended to provide support
for more data-oriented program modules, and the development of languages based
on these new ideas.

One important theme in this discussion was the idea of isolating data and placing
restrictions on the ways in which it could be accessed directly. Various advantages
were thought to follow from this. For example, the designers of the BLISS language
identified as a significant problem the fact that, in systems programs, data structures
frequently needed to be changed. This made it plausible that “the structure definition
and the algorithms which operate on the elements of a structure must be separated
in such a way that either can be modified without affecting the other”.20 This was
achieved by enabling access to the elements of a data structure through a function-
like interface and, along with the data structure, defining an algorithm for accessing
the elements of the structure. If the data structure was changed, the algorithm for
accessing its components would also need to be changed, but code which made
use of the functional interface would be unaffected. It was hoped that this would
increase the ease with which programs could be modified and reused.

This approach was taken further by James Morris, who introduced a notion of
data ‘protection’. As well as describing programming language mechanisms which

17Wirth (1971a), p. 221.
18Wirth (1974), p. 249.
19Dahl et al. (1972).
20Wulf et al. (1971), p. 787.
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would enable a data structure and procedures for accessing and manipulating the
data to be closely associated, Morris described methods for preventing other parts of
the program from accessing the data structure directly.21 Stephen Zilles described
a related approach, which he called ‘procedural abstraction’, here defined as “the
technique of representing system components in terms of one or more procedures
such that interactions among components are limited to procedure calls”.22 As this
description suggests, it was widely assumed that the procedure was the fundamental
type of program module, and proposals typically tried to show how procedures could
be used or adapted to provide a structure that was more focused on data.

The question of whether functions were in fact the best type of component to base
the design of software on was addressed by David Parnas, who concluded on the
contrary that “it is almost always incorrect to begin the decomposition of a system
into modules on the basis of a flowchart”. His alternative proposals were based on
a principle of ‘information hiding’, and he recommended that “one begins with a
list of difficult design decisions which are likely to change. Each module is then
designed to hide such a decision from the others”.23 This idea is clearly related to
that of Dijkstra, who had described program modules as “pearls”, each embodying
“a specific design decision (or, as the case may be, a specific aspect of the original
problem statement)”.24

One specific type of design decision that could be hidden in a program module
was the choice of representation for a particular data structure. As Parnas, like the
designers of BLISS, pointed out, data structures are commonly accessed by many
different operations. If the subroutines representing these operations are written in
such a way that they rely on detailed knowledge of the data structure, then when
the data structure changes, all the dependent modules will need to be modified. An
alternative approach would be to conceal the choice of representation in a single
module, which would then make a more abstract representation of the data available
to other modules, together with the ability to manipulate it. Dijkstra proposed that

[s]uch a joint refinement of data structure and associated statements should be an isolated
unit of the program text: it embodies the immediate consequences of an (independent) de-
sign decision and is as such the natural unit of interchange for program modification.25

Parnas gave a slightly expanded version of this idea, recommending that “[a] data
structure, its internal linkings, accessing procedures and modifying procedures are
part of a single module” and “not shared by many modules as is conventionally
done”.26

A concrete language proposal based on these ideas was proposed in a session
on structured programming at an ACM meeting in 1973, where Barbara Liskov

21Morris Jr. (1973).
22Zilles (1973).
23Parnas (1972), p. 1058.
24Dijkstra (1969b), p. 87.
25Dijkstra (1969b), p. 87.
26Parnas (1972), p. 1056, emphasis in original.
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put forward the notion that “a hypothetical structured programming language could
provide levels of abstraction as follows. We assume that an abstraction is presented
to the user as an abstract data type together with the operations available on that
type . . . the entity ‘level of abstraction’ must be a syntactic unit of the language”.27

She noted that classes as defined in Simula 67 provided a similar feature, but also
that they did not fully support the desired notion of abstraction, as they made the
data representation accessible to other modules.

A new language meeting these requirements was more fully described in the
following year by Liskov and Zilles. They again emphasized the connection between
this work and structured programming, here understood as “a process of successive
decomposition. The first step is to write a program which solves the problem but
which runs on an abstract machine, one which provides just those data objects and
operations which are ideally suited to solving the problem”. This language, later
named CLU, defined a new program structure, the cluster. Clusters provided a way
of implementing an abstract data type, defined as “a class of abstract objects which is
completely characterized by the operations available on those objects”. An example
cluster is given in Table 11.2.28

A cluster defined a set of data objects which, from the point of view of a program
using them, were completely abstract and could only be manipulated by using the
operations defined in the cluster. A program using the stack cluster in Table 11.2
would therefore be able to declare variables that held stacks, but only manipulate
them using the operations defined in the cluster.

The cluster itself defined a suitable representation for the abstract objects, in
terms of other, lower-level clusters or the basic types provided by the language.
This was defined in the rep clause of the cluster, and the operations were then im-
plemented in terms of this representation. A cluster, therefore, was a concrete pro-
posal for a program module corresponding to Dijkstra’s ‘pearls’, and provided a
kind of abstraction closely related to the notion of a ‘cut’ in the necklace of pearls
that Dijkstra had described.

Clusters were not simply a proposal for a new programming language feature,
however. Liskov and Zilles also saw a strong connection between the use of abstract
data types and giving correctness proofs of programs. They argued that the use of
abstraction enabled the task of proving the correctness of a program to be split into
two independent parts, first proving the correctness of the abstract program that used
the data abstraction, and then proving the correctness of the implementation of the
data abstraction itself. This division of labour could be expected to make program
proving simpler and more effective.

In order to carry out such proofs formally, however, it would be necessary to
have some way of writing formal specifications of abstract data types. Liskov and
Zilles argued that an “input–output specification, which describes the mapping of
the set of input values into the set of output values” was suitable for specifying a

27Liskov (1973), pp. 6–7.
28Liskov and Zilles (1974), pp. 50, 51, 54.
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Table 11.2 A cluster defining an abstract data type of stacks

stack: cluster(element_type: type) is push, pop, top, erasetop, empty;

rep(type_param: type) = (tp: integer;
e_type: type;
stk: array[1..] of type_param);

create
s: rep(element_type);
s.tp := 0;
s.e_type := element_type;
return s;
end

push: operation(s: rep, v: s.e_type);
s.tp := s.tp + 1;
s.stk[s.tp] := v;
return;
end

pop: operation(s: rep) returns s.e_type;
if s.tp = 0 then error;
s.tp := s.tp −1;
return s.stk[s.tp+1];
end

top: operation(s: rep) returns s.e_type;
if s.tp = 0 then error;
return s.stk[s.tp];
end

erasetop: operation(s: rep) returns s.e_type;
if s.tp = 0 then error;
s.tp := s.tp − 1;
return;
end

empty: operation(s: rep) returns boolean;
return s.tp = 0;
end

end stack

procedural abstraction, but not a data abstraction.29 They considered various ways
in which formal specifications of data abstractions could be given, including the use
of existing mathematical models such as graph theory, state machine models, and
the possibility of giving more abstract axiomatic or algebraic specifications, before
concluding that none of the existing techniques were adequate.

From the mid-1970s on, data abstraction and the formal specification of abstract
data types became very significant areas of research and practical work, and many
programming languages were developed in which these ideas were applied. This

29Liskov and Zilles (1975), p. 10.
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section has demonstrated the close relationship between the origins of this work and
issues raised in the development and application of some of the ideas of structured
programming, particularly those relating to program decomposition and proof. This
suggests that this tradition of work should be seen as an integral part of the Algol
research programme.

The key innovation in this work was the construction of a definitive notion of
an abstract data type. This raises the question of why a new concept was felt to be
necessary, or rather why existing mechanisms, such as the classes of Simula 67,
were not felt to be adequate. An initial difficulty was that classes were not types:
types were widely thought of as sets of data values with associated operations. This
was consistent with the way in which basic types in programming languages were
defined, and also provided a natural way in which the properties of the type could
be formalized. Classes, on the other hand, were thought of as mechanisms for the
production of objects, each of which contained data and operations; objects were
therefore significantly different from data values. Furthermore, a different model
of processing is involved: when an operation is invoked on an object, the object
updates itself in situ; with an abstract data type, by contrast, a data value is passed
as an argument to a function and an updated value is returned.

Another important difference was connected with the idea of protection: abstract
data types provided a barrier which allowed programmers to manipulate data only
by means of the provided operations. Simula 67, by contrast, allowed programs to
have unrestricted access to the attributes of objects, and therefore did not support a
crucial part of the notion of abstraction. Finally, although Simula 67’s classes did
provide a unification of data and algorithms, they did a lot else besides. In particular,
they provided support for a coroutine mechanism which allowed objects to exist in
a quasi-parallel fashion. Although useful for applications such as simulation, this
provided a complication that obscured what was felt to be the important new concept
of an abstract data type.

11.5 Smalltalk

By the mid-1970s, then, the Algol research programme had developed a solution to
the question of how to unify algorithms and data in programming languages, in the
form of a fully articulated notion of abstract data types. A number of new languages
were based on the idea, pioneered by CLU, of a program module which defined and
encapsulated an abstract data type. Perhaps the most significant of these languages
was Ada, developed in the late 1970s and early 1980s by the US Department of
Defense.30

Later languages such as C++ and Java did not follow this approach, however,
adopting instead a form of program module derived from the Simula 67 notion of

30Department of Defense (1983). It should be noted that the way in which Ada supported data
abstraction was different in certain technical respects from CLU. The basic principles of data pro-
tection and an operational interface were preserved, however.
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a class. Languages based on this kind of module became known as object-oriented
languages: this approach to programming language design became prominent in the
early 1980s and has remained dominant until the present time. As with structured
programming, earlier languages have been extended with object-oriented features:
this occurred, for example, in the 1995 revision of Ada. An important influence in
the development and adoption of object-oriented ideas was the Smalltalk language,
developed at the Xerox Palo Alto Research Centre (PARC) from the early 1970s
onwards.

Smalltalk was intended to be the programming language that would be used on
a new hardware device, described by Alan Kay and Adele Goldberg as “a personal
dynamic medium the size of a notebook (the Dynabook) which could be owned by
everyone and could have the power to handle virtually all of its owner’s information-
related needs”. The Dynabook was to possess a high-quality graphical display that
would be able to present information in a way not inferior to the printed page, the
capability for high-fidelity sound reproduction, and a variety of input devices that
would enable users to perform a multitude of tasks, including editing text, drawing
images, and composing music. It was thought of as a “metamedium, whose content
would be a wide range of already-existing and not-yet-invented media”.31

The origins of Algol lay in the tradition of scientific programming carried out in
the 1950s. A typical problem in this tradition was to devise an algorithm to carry
out a particular computation, and Algol was conceived as a language for expressing
and communicating such algorithms. The context in which Smalltalk was developed
was very different, however: it was part of a project to develop a highly interactive
device which would be usable by a wide range of people, including young children.
Crucially, Smalltalk was intended to be not only the language in which the system
was coded, but also a medium through which users would work with the system.
Programming was not thought of as the production of code by following a process
modelled on engineering process, but as an ongoing interaction with a complex and
reactive system. This outlook profoundly shaped the design of Smalltalk, which Kay
and Goldberg tended to describe as a “communications system . . . implemented on
small computers” rather than as a programming language.

Kay was inspired by Simula’s notion of an object, and in particular by the idea
of integrating data and procedures into a single structure. He later wrote, “[f]or the
first time I thought of the whole as the entire computer and wondered why anyone
would want to divide it up into weaker things called data structures and procedures.
Why not divide it up into little computers . . .?” However, Kay was not interested in
taking the existing ideas of simulation programming or abstract data types further;
rather, “[i]t was the promise of an entirely new way to structure computations that
took my fancy”. At about the same time as he came across Simula, Kay also studied
Lisp in detail and became fascinated by the idea of building an entire programming
language on one single abstraction, in the way that the use of lambda abstraction had
been fundamental to the design of Lisp. The original design of Smalltalk was written
as a conscious attempt to emulate the McCarthy’s original definition of Lisp, but

31Kay and Goldberg (1977), pp. 31, 40.
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based on a different primitive notion, namely the idea of message passing between
objects.32

As in Simula, every Smalltalk object belonged to, or was an ‘instance of’, a class
which defined the way in which its instances would respond to messages. The
Smalltalk-72 manual put it as follows: “Every entity in Smalltalk’s world is called
an object. Objects can remember things and communicate with each other by send-
ing and receiving messages”.33 Despite the Simula-like terminology, however, it
was recognized that there were important differences. Firstly, Simula’s classes and
objects were provided as an extension to Algol 60, leading to inconsistency in the
way that different data items had to be treated; Simula 67, for example, had two
assignment operations depending on whether the assignment involved an object
or an Algol data item. Secondly, objects communicated in Simula by means of a
“fairly typical procedure invocation”.34 By contrast, the object receiving a message
in Smalltalk could examine or manipulate the message, in effect deciding on its in-
terpretation. To an extent this capability had been included in Simula 67, thanks to
the notion of virtual quantities, but the motivation for including these had more to
do with accessing attributes of objects than dynamically interpreting messages.35

By contrast, Smalltalk made it a fundamental feature of the language, applying to
all inter-object communication.

Smalltalk-72 The first stable version of the language, known as Smalltalk-72, was
designed in 1972 and in use at PARC from 1973 on the “Interim Dynabook”, a small
computer system being used to research aspects of the Dynabook idea. The instruc-
tion manual for Smalltalk-72 was written with an audience of high-school students
in mind, and in style and content it is strikingly different from the manuals written
for languages in the Algol tradition.

The first significant difference arose directly from the purpose of the language,
to be a medium for communicating with the Dynabook. Programmers, or users, did
not submit the texts of Smalltalk programs to a compiler for subsequent execution;
instead, expressions were entered into a “Smalltalk dialog window” and evaluated
immediately by the Smalltalk system. In the instruction manual, this process was
described as “talking to Smalltalk”. In the simplest cases, arithmetic expressions
could be entered, and the system would respond with the value of the expression,
thus functioning as a simple calculator.

A number of introductory examples involved drawing shapes on the screen of
the Dynabook, using a ‘turtle’. A turtle could draw lines of various lengths and
directions on the screen; the name was inspired by the appearance of a pen-holding
robot that drew lines on paper on the floor. The Smalltalk system predefined one
instance of the turtle class, denoted by the ‘smiley’ symbol �. Messages could be

32Kay (1996), pp. 516, 517, 531.
33Goldberg and Kay (1976), p. 6.
34Shoch (1979), p. 72.
35Dahl et al. (1968), p. 24.
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sent to the turtle to move it around the screen and draw lines by entering expressions
such as the following:

� go 100� go 100 turn 90

As these examples illustrate, a Smalltalk statement consisted of the name of an
object, � in this case, followed by the name of a message, such as go. Message
parameters could follow the message name, and more than one message could be
sent to an object in one statement.

The language also defined statements which allowed simple command structures
to be expressed. For example, the do statement could be used to repeat a statement
a given number of times, so the following example would cause the turtle to draw a
square, starting at its current position:

do 4 (� go 100 turn 90)

Iteration could also be expressed using the for statement. The following example
clears the screen, resets the turtle to its default starting position, and then draws a
spiral:

� erase home
for i ← 1 to 200 do (� go i*2 turn 89)

Unusually, Smalltalk also provided a means for expressing unbounded iteration,
whereby a statement could be repeated indefinitely. In the following example, the
message goto causes the turtle to draw a line from its current position to the point
given by the coordinates following, in this case the coordinates of the mouse cursor
which were always available in the variables mx and my. The effect of this was to
cause the turtle to follow the mouse, thus allowing the mouse to be used as a simple
drawing tool.

repeat (� goto mx my)

This is a striking example of the effect that a different set of priorities could have
on programming style. In scientific programming, non-terminating loops were often
taken to be a severe error: Strachey had declared that programs which contained
them were meaningless, and methods for proving that a program terminated when
expected were intensively investigated. In Smalltalk, however, unbounded iteration
simply provided for an open-ending and ongoing interaction between the user and
the computer, and non-termination was not seen as a problem: “[t]o escape from the
loop and get Smalltalk to listen to you again, press the key marked ‘ESC’”.36

New methods and classes were defined by providing suitably formatted textual
definitions. For example, a parameterized method to draw a square could be defined
as follows:

to square size
(� size ← :.

do 4
(� go size turn 90))

36Goldberg and Kay (1976), p. 5.
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Table 11.3 A class definition in Smalltalk-72
to box var | x y size tilt

( � draw ⇒ (� place x y turn tilt. square size)
� undraw ⇒ (� white. SELF draw. � black)
� turn ⇒ (SELF undraw. � tilt ← tilt + :. SELF draw)
� grow ⇒ (SELF undraw. � size ← size + :. SELF draw)
isnew ⇒ (� x ← � y ← 256. � size ← 50. � tilt ← 0. SELF draw))

In this example, both the word to and the pointing hand symbol � are kinds
of quoting devices, which indicate that what follows is a definition of the literal
following the quote. The method square is defined with one parameter, size, which
is initialized with the next value in the message, provided by the symbol :. The body
of the method simply repeats the code for drawing a square shown above. To use
this method to draw a square, the user would simply type something like:

square 50

The definition of a new class, box, is given in Table 11.3.37 The first line defines
a temporary variable var and four instance variables, which hold the data values
which give the individual properties of each instance of the class. The remainder of
the definition lists the four messages that individual boxes know how to respond to.
The special ‘question’ isnew was required in every class definition, and defined how
a new instance of the class should be created.

The details of the Smalltalk language used in this example are not important for
the current discussion. A new instance of the box class could be created by typing
something like the following:

� joe → box

and the new box could then be sent messages in the normal way.

Later Smalltalk Developments Subsequent versions of Smalltalk introduced
new language features, most notably subclassing, the Smalltalk equivalent of Sim-
ula 67’s prefix classes, in Smalltalk-76.38 A class could be defined as a subclass of
another class, its ‘superclass’, from which it would ‘inherit’ behaviour. Behaviour
that was shared by a number of different classes could therefore by this method be
written in one superclass and inherited and reused in as many subclasses as neces-
sary.

In a description of Smalltalk-76, Ingalls drew a distinction between the “object
oriented” approach of Smalltalk and the traditional “function oriented” approach. In
a function oriented language, the expression ‘3 + 4’ would be interpreted as passing
the arguments 3 and 4 to the operation ‘+’; in Smalltalk, on the other hand, it was
interpreted as sending the message ‘+4’ to the object representing the number 3.
Whereas function oriented languages would provide a library of useful functions

37Goldberg and Kay (1976), p. 18.
38Ingalls (1978).
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for programmers to use, Smalltalk provided “a set of well developed superclasses
from which most of the system classes are derived”.39 User-defined classes could
equally well be derived from any available superclass.

Smalltalk reached a definitive form in the 1980 and experienced a considerable
growth of influence and use during the 1980s; in the 1990s it was for a while quite
widely used industrially, particularly in the finance sector. The details of this later
history are outside the scope of this book, however, and the relationship between
Smalltalk and the Algol research programme will now be considered.

11.6 The Relationship Between Smalltalk and Logic

The previous section described some of the key features of Smalltalk-72, suggesting
that its origins and the motivations of its designers were very different from those
of Algol 60. Although the influence of Simula was important in its development,
Smalltalk appears to represent an approach to the design of programming languages
that is quite different from what was familiar in the Algol research programme. This
section supports this claim by describing ways in which Smalltalk differs from the
notion of a programming language which was based on Carnap’s notion of a formal
language.

Smalltalk as a Formal Language In one sense, every programming notation can
be thought of as a formal language: without the existence of decidable syntactic
rules it would not be possible for the notation to be processed by machine. How-
ever, a stronger claim was made in Chap. 8, namely that the Algol 60 report led
to programming languages being considered to be formal languages in the sense of
that notion articulated by Carnap and Tarski in the 1930s, and programs as terms in
such a language. Smalltalk deviated in many ways from this notion, not least in its
use of text to represent programs.

Certain aspects of the Smalltalk system made use of machine-readable text. One
way in which the user could interact with the system was by typing text into a
dialogue window; such text was interpreted by the system as a request to send a
certain message to a specified object. However, non-textual, forms of interaction
were also available, using additional interaction devices such as a mouse. In terms
of their effect on the system, however, textual and non-textual interactions were
semantically equivalent, both specifying that a message be sent to an object.

Text was also used for the definition of new methods and classes, which were
typed by the user into an editing window. However, whereas in more conventional
languages the programming language text was taken as definitional of the program
being written, in Smalltalk more emphasis was placed on the existence of the class
within the complete Smalltalk system. For example, Ingalls described the situation
when a class text was brought up for editing by saying that “[t]he class has thus

39Ingalls (1978), p. 9.
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provided a simulation of itself as structured text”.40 In the context of the Smalltalk
system, the text entered by the user was not the definition of the class, but rather
a message to the object in the system responsible for creating new classes. Other
messages, perhaps utilizing different and even non-textual representations of the
required behaviour, could equally well have been used.

Because Smalltalk was thought of not just as a programming language but more
generally as a programming system, there was no clear notion of what a separate
Smalltalk program might consist of. As opposed to the traditional model, where
program texts were submitted to a computer system that would execute them, the
Smalltalk system was the executive computer system and the user programmed by
communicating with the system in various ways. A Smalltalk program could there-
fore not be isolated from its environment and dealt with in purely linguistic terms.
Programming was not thought of as the task of constructing a linguistic entity, but
rather as a process of working interactively with the semantic representation of the
program, using text simply as one possible interface.

In particular, Smalltalk did not satisfy the properties stated by Tarski and Carnap
as definitional of a formal language, discussed in Chap. 4. The first of these was
that the basic signs in the language should be clearly described: this was not done
for Smalltalk, and given the possibilities for non-textual communication with the
system, it is not clear that it could have been done.

Similarly, the second condition, that the sentences of the language should be
distinguished by purely structural means, was not satisfied. It was argued earlier
that ‘sentence’ should be understood as denoting the linguistic unit expressing the
speech act most important to the users of a language: indicative statements in the
case of logic, and commands or programs in the case of conventional programming
languages. In the Smalltalk system, as Kay stressed, the sole and unifying speech act
was that of sending a message to an object. Certain textual forms for accomplishing
this were specified, but these were not presented as being the only possibilities. As
well as the possibility of non-textual messages, it would be quite possible within
the Smalltalk metaphor for a user to send a garbled or meaningless message to an
object: the effect of this would be defined by the object rather than by the syntax of
the message.

In conclusion, then, the designers of Smalltalk do not appear to have thought of
Smalltalk as a formal language, or to have made any attempt to present it in these
terms. As this was a cornerstone of the Algol research programme, it is therefore
possible to describe Smalltalk as marking a significant departure from the Algol
paradigm, despite the influence of Simula on the language.

Smalltalk’s Computational Model The differences between Smalltalk and other
languages are not to do with more than simply syntax, however, and extend to the
general understanding of what computation is.

As described in Chaps. 5 and 6, the principal motivation for the development
of digital computers was to automate calculation, and the canonical design that

40Ingalls (1978), p. 10.
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emerged, the so-called von Neumann architecture, split the computer into a data
store, and control and arithmetic units which processed data taken temporarily from
the store. This architecture was reflected in the programming languages developed
in the Algol tradition, which by 1970 were commonly viewed as consisting of one
set of features for expressing algorithms and a largely separate set for describing
data structures. Within this tradition, programs were fundamentally seen as a way
of expressing algorithms, which in turn were understood as processes which carried
out functional transformations on data.

Not all application areas fell neatly into this model, however: one which did not
was the use of computers to carry out discrete event simulation, where the focus
of interest lay in the computational process itself, or properties of it, rather than in
the transformation between the initial and final states of the data presented to the
program. As described earlier in this chapter, Simula 67 developed a way to support
simulation within the context of the Algol research programme, a process which
necessitated a number of extensions to Algol.

The designers of Smalltalk saw themselves as adopting the more radical approach
of taking the notion of simulation expressed in Simula as the fundamental principle
of computation. In this understanding, a Smalltalk system constitutes a complete
simulated reality and rather than providing for the definition of isolated algorithms,
the language provides a way for the user to interact with this reality.41 Therefore
a semantic account based on functions does not seem likely to be the most natural
way to understand the behaviour of a Smalltalk system.

It is striking that, like the Algol model, this overall approach reflects aspects
of the target computer architecture. Smalltalk was developed in the context of the
Dynabook project, widely viewed as an originator of a type of ‘personal computing’
very different from traditional scientific computing. The Dynabook was intended
to enable the user to interact simultaneously with a wide range of informational
artefacts: documents, pictures, musical compositions and so on. Just as Pascal can
be seen as reflecting the distinction between store and control in the von Neumann
architecture, the design of Smalltalk can be seen as reflecting the conversational
architecture of the Dynabook user interface.

Smalltalk and Compositional Semantics A further way in which Smalltalk dif-
fers from conventional formal languages emerges in the relationship between syn-
tax and semantics. In the metalogical scheme developed by Tarski and Carnap, the
meaning of a sentence in a formal language stands in a functional relationship to
its syntactic form. An interpretation in a language assigns a meaning to the smallest
linguistic elements, and the meaning of larger expressions is defined in terms of the
meanings of their component subexpressions.

The idea of message passing, and in particular the related concept of dynamic
binding, introduces difficulties into this scheme. Dynamic binding is associated with
the notion of virtual quantities in Simula and was adopted as the default mechanism
in Smalltalk. It provides a mechanism whereby the effect of sending a message

41Shoch (1979).
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cannot be predicted by the sender. Objects are accessed by means of references,
but in both languages it is not always possible to tell from a reference exactly what
kind of object is being referred to. The identity of the object being sent a message,
then, is not in general known until the program is run, and the same message may
invoke different behaviour on different occasions, depending on the history of the
computation.

This means that the computational effect of an expression in Simula and
Smalltalk cannot be foretold from a purely static inspection of the program text.
It is only by running a program that its detailed behaviour can be known. This is
an idea which has no counterpart in formal logic, where the meaning of an expres-
sion is entirely determined by its syntactic form. Dynamic binding introduces a new
feature into object-oriented languages that appears to be incompatible with a key
assumption of classical metalogic.

The Programming Process Finally, Smalltalk had a novel idea of what the activ-
ity of programming consisted of, one in which the notion of inheritance was crucial.
A Smalltalk program is not a self-contained linguistic entity which is compiled and
run. Rather, the programmer works in the context of a pre-existing Smalltalk pro-
gramming environment, itself written in Smalltalk, which provides support for both
program development and execution. Programming is not viewed as an activity of
constructing a discrete program, but rather as an activity of extending and modifying
the environment, primarily using inheritance to reuse existing functionality. In such
an environment, the notion of programming as a quasi-deductive activity can seem
rather unnatural, and there is little if any evidence in the early Smalltalk literature of
the concerns with program derivation or proving properties of programs that were
characteristic of the Algol research programme.

It should be noted in passing that many aspects of the Smalltalk style were
also characteristic of Lisp programming environments, though in a less pronounced
form. The contrast between this open, exploratory style of programming, and the
more rigid, formal style of the Algol tradition is a striking feature of the history of
programming, one which is still in evidence to the present day.

11.7 Conclusions

By the early 1970s, then, programming language researchers had identified that a
key issue was the definition of linguistic structures that would support a unified
treatment of data and algorithms. This chapter has described the development of
two proposed solutions to this problem, namely the concept of abstract data types
developed as part of the Algol research programme, and the approach to object-
oriented programming embodied in Smalltalk.

Further, it has been suggested that Smalltalk, in contrast with many languages
that had been developed in the preceding decade, owed little to the influence of logic,
and so marked a significant break with the Algol research programme. Not only
were the inspiration and informal goals of the language quite different, emphasizing
an interactive approach to programming and the use of computers, but the form of
the language differed profoundly from those developed in the Algol tradition.



Chapter 12
Conclusions

The overarching theme of this book has been the story of how computational agency
has, over a period of several centuries, migrated from humans to machines. From the
sixteenth century onwards, it became increasingly possible, although often contro-
versial, to see mathematics as a mechanical process of symbol manipulation. Chap-
ter 2 described how Babbage’s engines can be seen as an attempt to take this idea
literally, to conceive of physical machines which could simulate, or perhaps carry
out, mental activities. This theme continued to be important in the later history of
the computer, and is particularly evident in the relationship between cybernetics and
computer development in the 1930s and 1940s.

This migration brought with it the need to find a new kind of language, one which
was adequate to express computational processes in such a way that they could be
carried out ‘mechanically’, either literally, or at least in such a way as to make
minimal demands on human faculties of interpretation and judgement. New forms
of mechanical language first appeared in mathematics, as described in Chap. 1, and
then in mathematical logic. As recounted in Chap. 4, this in turn gave rise to a well-
developed metalinguistic account of the relevant notion of formal, or mechanical
language.

To begin with, mathematical logic only formalized the language of imperative
statements and proof, however, and it was only in the mid-1930s that completely
formal notations for the expression of algorithms and computational processes were
developed. These particular notations turned out not to be ideally suited for use with
the technology of automatic computation that was emerging in the same period,
however, and several decades were to pass before developments converged on a
stable set of basic concepts and ideas.

It is a central proposal of this book that this convergence was the achievement
of the Algol research programme, the tradition of work that was inspired by the
Algol 60 language proposals and culminated in the widespread adoption of the ideas
about programming notation associated with the term ‘structured programming’, as
described in Chap. 9. These ideas have a permanence and centrality in both the
theory and practice of computation that is comparable to that of the notation of the
predicate calculus in logic.
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12.1 Paradigms and Revolutions

This book has provided an account of the influence that the established discipline of
mathematical logic had in the development of mainstream scientific and commercial
programming languages. The account given recognizes, as have many others, that
a crucial event in this development was the publication of the Algol 60 report. The
significance of this report was explained, however, by proposing that it played the
role of a concrete paradigm, in Kuhn’s term, for what has been described here as the
Algol research programme.

The key characteristics of the Algol research programme were highlighted by
making use of the concept of a research programme as defined by Imre Lakatos.
For Lakatos, a research programme “consists of methodological rules: some tell
us what paths of research to avoid (negative heuristic), and others what paths to
pursue (positive heuristic)”.1 The negative heuristic tells researchers to preserve
at all costs certain propositions, the “hard core” of the programme. In the case of
the Algol research programme, it was suggested in Chap. 8 that the hard core was
roughly the proposition that programming languages should be understood to be
formal languages in the sense established by mathematical logicians in the 1930s.
This in turn was described, making use of Andrew Pickering’s schematic account of
conceptual innovation, as an example of bridging.2

By contrast, the positive heuristic of a research programme sets out the “research
policy” of the programme, so that researchers will have a framework within which
they can set their work, and which will save them from “becoming confused by the
ocean of anomalies”.3 The positive heuristic of the Algol research programme was
expounded most influentially by John McCarthy in the early 1960s.4 A large part of
McCarthy’s suggestions amounted to a programme for applying the metalinguistic
framework of logic to the study of programming languages. Some of the details
of this work were described in Chaps. 9 and 10, and illustrated Kuhn’s contention
that a large part of normal science consists of puzzle solving rather than profound
innovation. Pickering’s description of this phase as one of transcription, where the
well-understood ideas and techniques from one area are applied to a new area, only
reinforces this picture.

By the early 1970s, the Algol research programme had made significant progress
and it was argued in Chap. 10 that many of its results were making their way to
practical application in the form of ‘structured programming’. In particular, this
period saw the acceptance of particular forms of data and control structures and an
approach to the methodology of program development that have remained central to
the disciplines of computer science and software engineering ever since, and which
represent central achievements of the Algol research programme in the period under
study.

1Lakatos (1970), p. 132.
2Pickering (1995).
3Lakatos (1970), p. 135.
4McCarthy (1961, 1962).
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The use of structural concepts from the philosophy of science, such as ‘paradigm’
and ‘research programme’, in this account suggests further possible observations
about the history of programming languages. For example, it could be argued that
the Algol programme in fact provided the first paradigm in the field of programming
language design, a claim based not on an isolated evaluation of the merits of Algol,
but on the fact that after its publication the field acquired for the first time many of
the characteristics of Kuhnian normal science, as described in Chap. 9.

One consequence of adopting this position would be that the earlier work on
automatic programming carried out in the 1950s would be described as being
preparadigmatic. This description does not underplay the importance of earlier
achievements, in particular Fortran, but draws attention to the fact that it was not
informed by a shared understanding of what the problems in the field were and on
the best ways in which to make progress in solving them. The developments made in
automatic programming during the 1950s were driven by practical motives, such as
the desire to make the most economical use possible of the available machines, but
innovation took the form of a number of small and largely independent initiatives,
as described in Chap. 8, and it was only after 1960 that these began to coalesce into
a coherent programme.

It could be objected that it is inappropriate to view the work of the 1950s as
preparadigmatic, because there existed an existing paradigm for programming based
on the use of machine code, a candidate concrete paradigm for which might be the
textbook of Wilkes, Wheeler and Gill.5 To some extent a verdict on this must remain
a question of judgement and interpretation and there are facts, such as the initially
negative reaction of many machine code programmers to Fortran, which bring to
mind Kuhn’s descriptions of the behaviour of adherents to an existing paradigm
when confronted with a successor. However, it seems on the whole that the work
on automatic programming was addressing issues and problems distinct from those
relevant to machine code programming, and that it is better viewed as preliminary
work in the formation of a new paradigm than as normal science in an established
tradition of machine code programming.

Despite its influence and success, however, the Algol research programme did
not cover all subsequent work on programming languages. Chapter 11 described the
early development of object-oriented languages and concluded that the Smalltalk
project represented a new and independent development that, despite the existence
of certain historical links, differed profoundly from approaches to program language
design that were more directly influenced by logic. It is outside the scope of this
book to describe in detail the later development of object-oriented programming and
the interaction between it and the logic-based tradition, but the following provisional
remarks can be made.

Many widely used programming languages of the present day, such as Java and
C++, are described as being object oriented, and owe a lot to the example of the
ideas developed in Simula and Smalltalk.6 However, they do not differ as radically

5Wilkes et al. (1951).
6Stroustrup (1994).
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from Algol-like languages as Smalltalk did, and the currently dominant form of
programming language can most reasonably be described as a synthesis of the two
approaches, as the following points suggest.

Firstly, the top-level structure of programs is based on the class concept evolved
in the object-oriented tradition, not on the abstract data types of the Algol research
programme, and the characteristically object-oriented features of inheritance and
dynamic binding are widely used. Source code programs are structured as a set of
class definitions, and an executing program is not viewed as a single process, but as
a network of intercommunicating objects.

However, the resemblance between contemporary programming languages and
formal languages is stronger than in the case of Smalltalk. Programming in early
versions of Smalltalk was a process of interacting with a complete system which
included many aspects of what would now be classed as the computer’s operating
system, thus blurring the distinction between a program and its environment. Reuse
and extension of existing code has replaced the Smalltalk model of an extensible
programming environment, however, and programs are still largely understood to
be fundamentally textual objects which are processed by a programming system
which is in principle separate from the applications being written. As a result, the
traditional metalogical distinctions can be applied to these languages, and research
into, for example, the semantics of object-oriented languages has been able to make
progress in a way that was difficult with Smalltalk.

Finally, it should be noted that contemporary programming languages include
data and control structures that are clearly derived from the results of structured
programming. These provide a layer of computational primitives which are used
to define the classes that make up and object-oriented program. Like Simula, then,
these languages are clear descendants of Algol-like languages.

Object-oriented programming has frequently been described as a revolution,
a description perhaps encouraged by the frequent use of the Kuhnian term
‘paradigm’ to describe different approaches to programming language design. There
does seem to have been a significant change in the programming languages used in
industry, which until the late 1980s consisted largely of languages which supported
abstract data types, but which are now more widely based on object-oriented ideas.
In a development reminiscent of the way in which structured programming con-
structs were introduced into older languages like Fortran, furthermore, some older
languages later introduced object-oriented features, supporting the idea that object-
orientation is now in fact the dominant approach.

If the adoption of object-oriented languages has been a revolution, however, it
appears to have been a conservative one in the sense that many of the results from
the previous paradigm have been carried across the revolutionary divide and are still
present in the new paradigm. Specifically, these results include the data and control
structures of structured programming and many of the metalinguistic assumptions of
the Algol research programme. It has been suggested that conservative revolutions
are characteristic of progress in mathematics and logic,7 and it is therefore possible

7Gillies (1992).
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to speculate that the similar pattern of the object-oriented ‘revolution’ reflects the
relationship that had been established by the Algol research programme between
programming languages and logic.

It is still possible to ask, however, if there are any substantive reasons why the
adoption of object orientation should have had a conservative character in which
the new ideas were applied mostly to issues of large-scale program structure and
not to all aspects of programming. One way to address this question would be trace
the relationship between the belief, which became widespread in discussions of the
‘software crisis’, that the most significant problems for software engineering were
those which arose in the development of large-scale systems, and the application
of object-oriented ideas primarily to the overall structure or programs, and also in
program design. This, however, is a topic for future research.

A further interesting question is why object-oriented languages have proved more
successful than those based on abstract data types. One possible factor is that object-
orientation provides a better ‘fit’ with a significant range of applications than the
simpler data abstraction model. For example, consider applications which run over
a network of distributed computers: this scenario fits very naturally with Alan Kay’s
vision of a Smalltalk program being composed out of many objects, each with the
capabilities of a computer. Furthermore, since the widespread adoption of graphical
user interfaces, programs are no longer in control of when input takes place, but
are required to respond to unpredictable input from users. This again relates very
naturally to the metaphor of objects responding to messages; in fact, as argued in
Chap. 11, it is likely that this was an important influence in the development of the
ideas of object-oriented programming.

12.2 Relating Theory and Practice

Another way of looking at the influence of logic on programming is to see it as an
example the application of theoretical ideas to practice, a distinction that is often
taken to ground a distinction between science and engineering. For example, in the
1980s a number of writers described how the logical and mathematical approach to
software developed by the Algol research programme would enable the “craft” of
programming to transform itself into a mature engineering discipline.8

This process of application is often seen as being unproblematic: for example,
Chap. 6 considered claims that the invention of the computer involved the simple
application of ideas from logic, and that the computer emerged as a byproduct of
theoretical research in logic. However, it appears that a far less certain and much
more exploratory process took place than the simple term ‘application’ suggests, and
that within this process ideas derived from logic were just one of many factors whose
interplay led to the development of the computer. The close connection between the
computer and logic appears, on the contrary, to have been established some years

8See Hoare (1982) or Shaw (1990), for example.
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later, suggesting that the interaction between theory and application in this case was
not a causal process but rather a question of interpretation, of a scientific community
coming to see a new device in a particular way.

Similar observations can be made about the relationship between programming
and logic. Throughout the 1950s, there were several explicit attempts made to apply
logical ideas to programming, such as Turing’s ‘anticipation’ of program proving,
Elgot’s use of formal language theory, and Hamblin’s application of Łukasiewicz’s
ideas.9 However, in the absence of a more global understanding and acceptance
of the role of logic, these pieces of work had little if any immediate influence. By
contrast, once the Algol research program had become established in the 1960s, such
applications of logic became routine. This suggests an answer to the question of how
to explain the problematic time-lag identified by Jones between anticipations and
the subsequent further development of similar ideas:10 certain pieces of scientific
work only gain their full significance when interpreted in the context of a research
programme which shares their assumptions.

In the traditional view, application is seen as a separate stage that takes place
after a research programme has delivered significant theoretical results, the results
themselves not being substantially changed by their application. In this way, it was
argued in Chap. 10 that the phenomenon of structured programming in the early
1970s can be seen precisely as the application of the ideas of the Algol research
programme in practice. However, one striking feature of this process was the extent
to which the theoretical ideas were modified, the importance of program proving
being downplayed while new ideas about the management of software projects were
treated as an integral part of the structured approach.

This phenomenon can be seen as related the third stage of Pickering’s schema,
filling, where results from the existing discipline do not provide a clear way forward
and more open-ended work is required than in the transcription stage. Whereas logic
had provided an approach to the design of data and control structures in languages,
for example, its contribution to the practice of program development has been much
more problematic. Informal or semi-formal top-down design became a widespread
practice in practical programming, but formal program proving was not, and has
not been, widely accepted. The belief that a proof-based approach to programming
can guarantee the correctness of programs has been repeatedly criticized,11 and a
number of writers have commented on the lack of practical application of theoretical
results.12 Proponents of the traditional model, such as Hoare, suggest that these
problems can be addressed by further development of the theory, or a greater effort
in education. By contrast, Pickering’s scheme suggests the possibility that there may
be limits to the extent to which a given theory can be straightforwardly applied in a
particular area.

9Turing (1949), Elgot (1954), Hamblin (1957).
10Jones (2003).
11See De Millo et al. (1979) and Fetzer (1988), for example.
12See Arden (1980) and Mahoney (1997).
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12.3 Methodological Conclusions

Internal and External Accounts The subject matter of this book belongs to
what it usually characterized as internal history, which tends to describe histori-
cal episodes in terms of their relationship with the current state of knowledge and
to ignore their historical context. An alternative tradition, associated with various
approaches to the sociology of scientific knowledge, places emphasis instead on the
external context of developments, and in particular social, political and economic
factors. However, it is not clear that such external factors will always be sufficient
to explain all the internal features of a particular subject matter, and the approach
adopted here has been to remain agnostic about what kinds of contextual factors
might be relevant to an explanation in any particular case.

For example, in Chap. 4 Turing’s machine table notation was examined in the
context of contemporary logical work on computability. Accounts of Turing’s work
in the history of computing tend to stress its novelty and its role in the origins of
modern computing. However, there are striking similarities between the machine
table notation and that of recursive function theory and the λ-calculus, and drawing
attention to these makes better historical sense of Turing’s work. In 1936, after all,
Turing was making a contribution to the literature of mathematical logic, not to the
then nonexistent subject of computer science.

In this case, then, related work in the theoretical discipline of mathematical logic
provided a useful context in which to gain a better understanding of Turing’s work.
Chapter 6, by contrast, emphasized the importance of two other disciplines, namely
computational mathematics and cybernetics, in the formation of the stable concept
of an automatic digital computer described by von Neumann in 1945. As writers
such as Paul Edwards have emphasized,13 the Second World War provides a context
which cannot be ignored in discussing the development of computers and the uses to
which they were put, but this broad historical background is not sufficiently specific
to explain the fine detail of proposals such as von Neumann’s Draft Report.

External factors seem more directly relevant to the work described in Chap. 8: the
principal motivation for the development of automatic programming in the 1950s
was the need to make programming less laborious and time-consuming and so to
enable the anticipated demand for programming from industry and commerce to
be met, and the emphasis on formula translation stemmed from the preponderance
of scientific applications, itself attributable to the wartime origins of the computer.
However, these factors are not, it was argued, sufficient to explain details such as the
form of the mathematical expressions that were adopted in programming languages,
and a more theoretical, ‘internal’ explanation was given for this.

As a final example of the possible range of relevant explanatory factors, it was
suggested in passing in Chap. 11 that some aspects of the high-level structure of
programming languages might be explained by reference to the architecture of the
machines on which the programming was to be carried out. This line of thought
could be developed, for example, by considering the extent to which the area in

13Edwards (1996).
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which a given language was intended to be used, such as scientific or commercial
applications, might affect the design and style of the resulting language, and the
features included in it.

In general, then, it can be concluded that a historical interest in the technical
or internal details of a particular subject area does not preclude the possibility of
giving a contextual account of particular episodes. However, obtaining an adequate
understanding may in general involve a wider range of explanatory factors than are
sometimes found in external histories.

The Construction of New Concepts Internal accounts of technical invention
often treat episodes of innovation as pure moments of inspiration which are not
amenable to analysis and explanation. This is a consequence of a perspective, known
as the Whig interpretation of history,14 which sees in the past only those aspects rel-
evant to the present. In contrast, this book has emphasized the work involved in the
construction of new concepts or techniques that may now seem to be obvious and
unquestionable, the alternatives that were considered, and the reasons behind the
choices that were made by the historical actors. A repeated pattern can be observed,
in which a period of experimentation is followed by an episode of closure in which
a standard solution is widely accepted. The reasons for which a particular solution
is widely adopted differ from case to case, however.

This process appears at every stage of the historical story. Chapter 4 outlined
the process by which a mathematical concept of effective computability emerged
and gained acceptance, involving the interactions between the work of a number of
logicians in the early 1930s. In this case, the provable equivalence of a number of
widely different definitions appears to have been the deciding factor in generating
closure.

A similar story can be told about the design of the computer embodied in von
Neumann’s Draft Report, as outlined in Chap. 6. The proposed EDVAC design ap-
pears to have won widespread acceptance very quickly, as it provided an effective
solution to the problem of automatically programming electronic machines. The
identification of computers of this type with Turing’s universal machine concept,
which is now often treated as axiomatic, took some time to become widely accepted,
however. Furthermore, it was philosophical rather than technical arguments which
seem finally to have made the difference in this case.

Such processes were also involved in the development of more technical details.
Chapter 7 described how even such a basic feature of programming as performing
two operations in sequence went through a period of exploration before its final
form was established; the solution adopted in this case was largely determined by
the needs of the programmers of the machines, not by the intrinsic capabilities of
the machines themselves.

A similar process to do with the types of formula that automatic translators would
handle was described in Chap. 8. The interest in formula translation was prompted
by a desire to widen the field of people who could program computers, but it was

14Butterfield (1931).
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suggested in that chapter that the form of the expressions handled was decided not
by the mathematical needs of the users, but by the ease with which a particular class
of formulae could be defined and processed.

The work involved in conceptual innovation provides an explanation for the not
infrequent episodes where a historical actor fails to make an inference or a discovery
that with hindsight appears obvious or inevitable. Rather than simply accounting
for such episodes as unaccountable failures, a more nuanced account of innovation
enables us to recognize that even simple-looking innovations can require a complex
and contingent process of work before their final form is established, and that in
many cases this can only be achieved by the interaction and experience of many
workers. To place responsibility on an individual for a lack of insight, or failure to
make a particular move is in many cases to misunderstand the nature of the historical
processes at work in technical innovation.

A striking example of this is the fact in the mid 1940s, neither von Neumann nor
Turing included in their machine codes a single instruction to perform a conditional
jump, despite being fully aware of the importance of this pattern to programming.
In this case, the relevant general point, that syntactic and semantic structures should
match, only became explicitly recognized with Dijkstra’s work in the mid 1960s,
after much experience in writing programs had been gained.

Further Directions The story of programming told in this book reflects traditional
accounts in that it focuses on innovations rather than on the use of technology.15 For
example, according to the account given in Chap. 8, the early 1950s were significant
for the early development of autocodes, leading up to the development of Fortran.
However, as Saul Rosen pointed out, most programming in 1953 was being carried
out on “the Card-Programmed Calculator, an ingenious mating of an Electrome-
chanical Accounting Machine with an Electronic Calculating Punch”.16 Electronic
computers were very thin on the ground, and for most programmers the use of au-
tocodes would have seemed a remote and theoretical possibility. Similarly, in the
early 1970s theoretical discussion of formal methods was being carried out against
a background in which overwhelmingly the most widely used languages were still
Fortran and Cobol.17

The relationship between the needs and characteristics of different application
areas and the programming languages and techniques developed for them deserves
more detailed attention than was possible in this book, which has focused primarily
on scientific computing. As well as the major areas of commercial programming and
artificial intelligence, the 1950s and 1960s saw the development of a large number
of special-purpose languages motivated by the perceived need to develop a language
suitable for use in a restricted application area.18

15See (Edgerton 2006) for discussion of this distinction.
16Rosen (1964).
17Rosen (1972).
18Wexelblat (1981).
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There are a number of technical aspects of programming languages that have
only been mentioned in passing in the text, but which also deserve more detailed
study. Significant among these are concurrency and types and type theory, though
in both these cases significant theoretical investigation only took place towards the
end and after the period under study. It would also be worthwhile to study further
the effect on programming language design of the perception in the late 1960s of a
‘software crisis’, and the subsequent construction and promulgation of a notion of
software engineering intended to address the crisis.

As discussed in Chap. 11, object-oriented programming challenged some of the
ideas of the Algol research programme, raising for example the question of whether
all practical computation could be modelled on the mathematical notion of a func-
tion specifiable by its input and output characteristics, and whether the nested struc-
ture of Algol 60’s blocks was sufficient for all needs. It would be interesting to
study the ways in which logical models of programs and programming languages
were refined in response to these questions. This in turn leads on to the question of
the possible influence of programming language theory on logic: Gillies and Zheng
have suggested that in general the interaction between two disciplines is a dynamic
process, in which first one side dominates and then the other.19 This idea raises the
interesting possibility that the influence of logic on programming discussed in this
thesis might have been followed or accompanied by a period in which programming
language research exerted a reciprocal influence on logic.

19Gillies and Zheng (2001).



Appendix
Turing’s Universal Machine

This appendix gives the complete table for the universal Turing machine U . There
were a number of errors in Turing’s original paper, as pointed out by Emil Post and
Donald Davies.1 These errors have been corrected in the tables below.

A.1 General Purpose m-functions

The tape of the universal machine uses the convention of alternating F-squares and
E-squares, described in Sect. 4.5, where the E-squares are used to mark, or label,
symbols on the preceding F-squares. The leftmost point of the portion of the tape
used in the computation is identified by means of the symbol eplaced in a pair of
adjacent squares.

f(C,B, α): find The m-function f(C,B, α) finds the leftmost occurrence on the
tape of the symbol α, and then moves to m-configuration C. If there is no occurrence
of α on the tape, the machine moves to m-configuration B.

m-config. symbol operations final m-config.

f(C,B, α)

{ e

L f1(C,B, α)

not e

L f(C,B, α)

f1(C,B, α)

⎧
⎨

⎩

α C

not α R f1(C,B, α)

None R f2(C,B, α)

f2(C,B, α)

⎧
⎨

⎩

α C

not α R f1(C,B, α)

None R B

1See Post (1947) and Davies (2004). Davies describes Turing’s “impatience” when these errors
were pointed out, remembering that he “made it clear that I was wasting my time and his by my
worthless endeavors”.

M. Priestley, A Science of Operations, History of Computing,
DOI 10.1007/978-1-84882-555-0, © Springer-Verlag London Limited 2011
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e(C,B, α): erase The m-function e(C,B, α) erases the leftmost occurrence on the
tape of the symbol α, and then moves to m-configuration C. If there is no occurrence
of α on the tape, the machine moves to m-configuration B.

m-config. symbol operations final m-config.
e(C,B, α) f(e1(C,B, α),B, α)

e1(C,B, α) E C

e(B, α): erase all The m-function e(B, α) erases all occurrences on the tape of
the symbol α, and then moves to m-configuration B.

m-config. symbol operations final m-config.
e(B, α) e(e(B, α),B, α)

pe(C, β): print at end The m-function pe(C, β) prints the symbol β at the end of
the sequence of symbols on the tape, and then moves to m-configuration C.

m-config. symbol operations final m-config.
pe(C, β) f(pe1(C, β),C,

e

)

pe1(C, β)

{
Any R,R pe1(C, β)

None Pβ C

pe(C, β) moves to the start of the tape, and then pe1(C, β) searches for the first blank
F-square before printing β .

A variant of this m-function prints two symbols at the end of the tape:

m-config. symbol operations final m-config.
pe2(C, α,β) pe(pe(C, β),α)

l(C): move left The m-function l(C) performs the basic operation L, and then
moves to m-configuration C.

m-config. symbol operations final m-config.
l(C) L C

f′(C,B, α): find and move left The m-function f′(C,B, α) finds the leftmost oc-
currence on the tape of the symbol α, moves one square to the left, and then moves
to m-configuration C. If there is no occurrence of α on the tape, the machine moves
to m-configuration B.

m-config. symbol operations final m-config.
f′(C,B, α) f(l(C),B, α)

c(C,B, α): copy The m-function c(C,B, α) finds the leftmost symbol on the tape
marked with the symbol α, copies it to the end of the tape, and then moves to m-
configuration C. If there is no symbol marked with α on the tape, the machine moves
to m-configuration B.

m-config. symbol operations final m-config.
c(C,B, α) f′(c1(C),B, α)

c1(C) β pe(C, β)
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ce(C,B, α): copy and erase The m-function c(C,B, α) finds the leftmost symbol
on the tape marked with the symbol α, copies the symbol to the end of the tape,
and then erases the symbol and moves to m-configuration C. If there is no symbol
marked with α on the tape, the machine moves to m-configuration B.

m-config. symbol operations final m-config.
ce(C,B, α) c(e(C,B, α),B, α)

ce(B, α): copy and erase all The m-function ce(B, α) copies all symbols marked
with α to the end of the tape, erases them, and then moves to m-configuration B.

m-config. symbol operations final m-config.
ce(B, α) ce(ce(B, α),B, α)

The table for the universal machine uses a variant of this m-function which will
copy and erase symbols marked with five different symbols. This can be defined in
terms of ce(C,B, α) as follows:

m-config. symbol operations final m-config.
ce5(B, α,β, γ, δ, ε) ce(ce(ce(ce(ce(B, ε), δ), γ ),β),α)

cp(C,U,G, α,β): compare The m-function cp(C,U,G, α,β) compares the first
symbol on the tape marked with α and the first symbol marked with β . If there
are no symbols marked with α or β , the machine moves to m-configuration G; if
both exist, and the marked symbols are the same, it moves to m-configuration C;
otherwise, it moves to m-configuration U.

m-config. symbol operations final m-config.
cp(C,U,G, α,β) f′(cp1(C,U, β), f(U,G, β),α)

cp1(C,U, β) γ f′(cp2(C,U, γ ),U, β)

cp2(C,U, γ )

{
γ C

not γ U

cpe(C,U,G, α,β): compare and erase The m-function cpe(C,U,G, α,β) does
the same as cp(C,U,G, α,β), but if symbols marked with α and β exist and are the
same, the α and β are erased.

m-config. symbol operations final m-config.
cpe(C,U,G, α,β) cp(e(e(C,C, β),C, α),U,G, α,β)

cpe(U,G, α,β): compare and erase all The m-function cpe(U,G, α,β) compares
the sequences of symbols on the tape marked with α and β . So long as they are the
same, the αs and βs are erased. If the sequences are identical, the machine moves to
m-configur ation G when all the marks have been removed; it moves to m-configur-
ation U when a difference is detected.

m-config. symbol operations final m-config.
cpe(U,G, α,β) cpe(cpe(U,G, α,β),U,G, α,β)



310 Turing’s Universal Machine

q(C): find end of tape The m-function q(C) moves to the end of the tape, identi-
fied by two consecutive blank squares, and then moves to m-configuration C.

m-config. symbol operations final m-config.

q(C)

{
Any R q(C)

None R q1(C)

q1(C)

{
Any R q(C)

None C

q(C, α): find last The m-function q(C, α) finds the last occurrence of α on the
tape, and then moves to m-configuration C.

m-config. symbol operations final m-config.
q(C, α) q(q1(C, α))

q1(C, α)

{
α C

not α L q1(C, α)

If there is no occurrence of α on the tape, the machine will endlessly search left-
wards, moving beyond the beginning of tape markers.

e(C): erase marks The m-function e(C) erases all marks from the tape, and then
moves to m-configuration C.

m-config. symbol operations final m-config.

e(C)

{ e
R e1(C)

not e

L e(C)

e1(C)

{
Any R,E,R e1(C)

None R C

A.2 The Contents of the Tape

It is assumed that an enumeration q1, . . . , qm is given of the m-configurations used
in the table of T , the machine to be simulated, along with an enumeration S0, . . . , Sn

of the symbols which can appear on its tape. S0 is a ‘blank’ symbol, which is thought
of as appearing in empty squares; S1 is the digit 0 and S2 the digit 1.

The table of T is assumed to have been reduced to standard form, consisting of
a number of instructions each of which has one of the following forms:

qiSjSkLqm,

qiSjSkRqm,

qiSjSkNqm.

Each instruction has five components: a configuration, consisting of the initial m-
configuration and the symbol in the scanned square, the symbol that will be written
in the scanned square (this will be the blank symbol S0 if the existing symbol is to
be erased), the move that the machine will make, and the final m-configuration.
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Coding Instructions The table of T is written on the tape of U as a standard
description; this is an encoding of its standard form using a limited set of symbols,
namely ;, A, C, D, L, R and N . The m-configuration qi is coded by a D followed
by a sequence of i As, and the symbol Si by a D followed by a sequence of i Cs.
Each instruction is preceded by a semi-colon, and the entire description is written
on the F-squares of the tape immediately following the beginning of tape symbols;
the end of the description is marked by the special symbol ::, as in the following
example.

;DADDCRDAA;DAADDRDAAA;DAAADDCCRDAAAA;DAAAADDRDA ::

Complete Configurations U also needs to record the complete configuration
of T , namely the contents of its tape, the location of the currently scanned square,
and its current m-configuration. This will provide all the information necessary to
select and perform the next instruction of the simulated machine. Complete config-
urations are recorded by listing the sequence of symbols on T ’s tape. The current
m-configuration is inserted into this sequence just before the currently scanned sym-
bol. For example, the complete configuration

S1S0q2S2

represents a configuration where T is in state q5 and with scanned symbol S2.
Because complete configurations consist only of symbols and m-configurations,

they can be represented on U ’s tape by following the same coding conventions as
are used to create standard descriptions of machine tables. Using these conventions,
the complete configuration shown above would be represented by the following
sequence of symbols:

DCDDAADCC.

At any step in the computation, the behaviour of T is determined by its current
m-configuration and the symbol in the currently scanned square, together known
as its configuration. In the context of a complete configuration, a configuration can
be identified by looking for an A, which identifies an m-configuration: the config-
uration is then the sequence of symbols starting with the D preceding the A, and
including all immediately following As and the D and Cs following that represent
the currently scanned symbol.

An auxiliary table con(C, α) is defined to carry out the common task of marking
a configuration with a given symbol α.

m-config. symbol operations final m-config.

con(C, α)

{
Not A R,R con(C, α)

A L,Pα,R con1(C, α)

con1(C, α)

{
A R,Pα,R con1(C, α)

D R,Pα,R con2(C, α)

con2(C, α)

{
C R,Pα,R con2(C, α)

Not C R,R C
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This table will mark the first configuration to the right of the machine’s starting
position. For example, if the machine was positioned at the left of the complete
configuration shown above, at the conclusion of the above table, the configuration
would be marked as follows:

For clarity, in the explanations below the symbols in the F-squares will be written
consecutively, above the symbols that mark them. In this notation, the tape fragment
above would be shown as follows:

DCD DAADCC︸ ︷︷ ︸
α

.

The Structure of U ’s Tape At the beginning of the computation the coded table
of instructions for T is written at the start of U ’s tape, followed by the :: symbol.
As each instruction is executed, both the contents of T ’s tape and its current m-
configuration may change. To record these changes, each complete configuration of
T is written at the end of U ’s tape, preceded by a colon. The current configuration
can therefore always be found at the end of the tape, after the last colon.

The output of the machines that Turing considers consists of the symbols written
in the F-squares. It is assumed that machines write a symbol in every F-square, and
that these symbols are never changed later in the computation. The output of T ,
therefore, consists of the symbols 0 or 1 written in a previously blank square. When
U detects that T has output a symbol, it writes that symbol on its own tape following
the current complete configuration, and separated from it by a colon. Thus the output
of T can be retrieved from the tape of U by looking for these special symbols.

As the computation proceeds, then, the symbols in the F-squares of U have the
structure indicated in the following (unrealistic) example.

;DADDCRDAA︸ ︷︷ ︸
instruction

;DAADDRDAAA:: : DCDAADCC : 0 : DCDDAADDCC︸ ︷︷ ︸
complete configuration

Further output symbols and complete configurations will be added to the end of the
tape, but once written, a symbol in an F-square is never changed.

A.3 The Main Table

The universal machine is defined by nine skeleton tables, each of which carries
out a single step in the overall computation. The relationships between the skeleton
tables and the overall flow of the computation are shown in the flowchart in Fig. A.1.
Each cycle round the outside loop in the flowchart corresponds to the execution of a
single instruction in the description of T . The inner loop represents a search to find
the instruction that matches the current configuration of T .
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Fig. A.1 The design of the
universal machine

b: Write Initial Complete Configuration At the start of a computation, then, the
tape of U contains a pair of esymbols marking the start of the tape, the standard
description of T , written on the succeeding F-squares, and the symbol :: in the next
F-square.

The initial complete configuration of T is q1S0, the initial m-configuration q1

followed by the symbol representing a blank square. In standard form, this would
be represented by the symbols DAD. The m-function b therefore writes the symbols
:DAD at the end of the tape of U , and then moves to m-function anf.

m-config. symbol operations final m-config.
b f(b1,b1, ::)
b1 R,R,P :,R,R,PD,R,R,PA,R,R,PD anf

anf: Mark Current Configuration The m-configuration anf looks for the last
colon on the tape, marks the following configuration, part of the current complete
configuration of T , with the symbol y, and then moves to m-configuration kom.
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m-config. symbol operations final m-config.
anf q(anf1, :)
anf1 con(kom, y)

The effect of this step on the markup of T ’s current complete configuration can be
shown as follows:

Si1 . . . Sik−1 qiSik︸︷︷︸
y

Sik+1 . . . Sin .

kom: Find Next Instruction U must now look for the instruction applicable to
the current configuration of T . The inner cycle in Fig. A.1 searches through the
instructions at the beginning of the tape until an instruction is found with the same
initial m-configuration and scanned symbol as the current configuration.

As each instruction is located, the semi-colon preceding it is marked with a z.
The m-configuration kom searches for the rightmost unmarked semi-colon, marks it
with a z, marks the immediately following configuration with x, and then moves to
m-configuration kmp.

m-config. symbol operations final m-config.

kom

⎧
⎨

⎩

; R,Pz,L con(kmp, x)

z L,L kom

not z nor ; L kom

At the end of this operation, the configuration in the instruction that is currently
being examined will be marked up as follows:

. . . ;︸︷︷︸
z

qinSjn︸ ︷︷ ︸
x

SknMlnqmn; . . .

kmp: Compare Configurations Next, the current configuration, marked with y,
must be compared with the configuration in the current instruction, marked with x.
If they differ, any remaining x and y marks are erased and U moves back to m-
configuration anf to inspect the next instruction. If they are the same, the applicable
instruction has been located and U moves to m-configuration sim.

m-config. symbol operations final m-config.
kmp cpe(e(e(anf, x), y), sim, x, y)

sim: Mark Instruction In m-configuration sim, the configuration in the current
instruction is marked with blanks; this positions the machine after the configuration,
and the rest of the instruction is marked up as follows. The z markings are then
removed and the machine moves to the m-configuration mk.

qinSjn SknMln︸ ︷︷ ︸
u

qmn︸︷︷︸
y
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m-config. symbol operations final m-config.
sim f′(sim1, sim1, z)

sim1 con(sim2, )

sim2

{
A sim3

not A L,Pu,R,R,R sim2

sim3

{
not A L,Py e(mk, z)

A L,Py,R,R,R sim2

mk: Mark Complete Configuration In m-configuration mk, the current complete
configuration, found after the last colon on the tape, is marked up as follows and
terminated with a colon, and the machine moves the m-configuration sh.

Si1 . . . Sik−2︸ ︷︷ ︸
v

Sik−1︸︷︷︸
x

qiSik Sik+1 . . . Sin︸ ︷︷ ︸
w

:

m-config. symbol operations final m-config.
mk q(mk1, :)
mk1

{
not A R,R mk1

A L,L,L,L mk2

mk2

⎧
⎨

⎩

C R,Px,L,L,L mk2
: mk4
D R,Px,L,L,L mk3

mk3

{
not : R,Pv,L,L,L mk3

: mk4

mk4 con(l(l(mk5)), )

mk5

{
Any R,Pw,R mk5
None P : sh

sh: Show Output In m-configuration sh, the current instruction is examined to
see if T produces any output. If it does, the appropriate symbol is written to U ’s
tape before the machine moves to m-configuration inst.

m-config. symbol operations final m-config.
sh f(sh1, inst, u)

sh1 L,L,L sh2

sh2

{
D R,R,R,R sh3

not D inst

sh3

{
C R,R sh4

not C inst

sh4

{
C R,R sh5

not C pe2(inst,0, :)
sh5

{
C inst

not C pe2(inst,1, :)
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The machine first looks for symbols marked with u; these are the new symbol
and the move symbol of the current instruction, marked up in m-configuration sim.
A symbol only counts as output if it is a 0 or 1 written in a previously blank square.
In standard form, a blank square is represented by the symbol D, 0 by DC and 1
by DCC, so in these two cases the relevant part of the tape will be marked up as
follows:

. . .D DCM︸ ︷︷ ︸
u

. . . . . .D DCCM︸ ︷︷ ︸
u

. . .

M here represents one of the symbols L, R or N . The machine therefore looks first
(in m-configuration sh1) at the symbol before the first symbol marked with a u, and
if it is a D, checks for one of the symbol sequences shown above. It prints 0 : or 1 :
on U ’s tape as appropriate, and then moves to m-configuration inst.

inst: Write New Complete Configuration In m-configuration inst the new com-
plete configuration is written at the end of the tape. This is derived by making two
changes to the last complete configuration, which was marked up in the m-configur-
ation mk. Firstly, the current scanned symbol Sik should be replaced with the sym-
bol Skn , which was marked with u in the m-configuration sim. Secondly, the final
m-configuration qmn

, marked with y the m-configuration sim should be written in
one of three possible positions, depending on the move operation in the current in-
struction.

This can all be achieved by copying the symbols marked v, x, u and w in order
at the end of the tape, inserting the final m-configur ation, marked with y, at the
appropriate place in this sequence of symbols. The m-configuration inst first finds
the symbol representing the move operation, removes the u mark from it, and then
copies the remaining marked symbols as required.

m-config. symbol operations final m-config.
inst q(l(inst1), u)

inst1 L R,E ce5(ov, v, y, x,u,w)

inst1 N R,E ce5(ov, v, x, y,u,w)

inst1 R R,E ce5(q(inst2,A), v, x,u, y,w)

inst2 R,R inst3

inst3

{
None PD ov

D ov

The complete configurations written on U ’s tape only represent the part of T ’s tape
that has been used so far. When T moves right and uses a new square, this has to be
added explicitly as a new blank symbol at the end of the new complete configuration.
This is accomplished by the last two lines of the table above.

ov: Erase All Marks Finally, in m-configuration ov, all marks are removed from
the tape and U returns to state anf to find and execute the next instruction of T .

m-config. symbol operations final m-config.
ov e(anf)
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