
Fortran90 for Fortran77 Programmers

Clive Page

2002 November 21

This document may be found at: http://www.star.le.ac.uk/∼cgp/f90course/f90.html or .pdf

Contents

1 Introduction 3
1.1 What was wrong with Fortran77? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 What’s New in Fortran90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Will old code still work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Fortran90 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 The Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 New Look and Feel 5
2.1 Basic Rules for both free and fixed-format . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Free-format layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 New Forms for Specification Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 New Control Structures 6
3.1 The SELECT CASE Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 DO, EXIT and CYCLE statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 DO WHILE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Structure Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Label-free programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Internal Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Arrays 9
4.1 Declaring and Initialising Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Array-valued expressions and assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Array Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Array Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Array Intrinsic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 WHERE structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Dynamic Storage 11
5.1 Automatic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Allocatable Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



5.3 Pointer arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Modules and Interfaces 13
6.1 Example defining constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Module Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Public and Private accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.4 Avoiding name clashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.5 Pros and Cons of Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.6 Explicit Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Procedures and Arguments 17
7.1 Assumed shape arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Keyword calls and optional arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Generic names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 Recursive procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Derived Data Types (structures) 18
8.1 Accessing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2 Structure constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.3 Nested Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.4 Pointers as Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.5 Defined and overloaded operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Input Output 21
9.1 New OPEN and INQUIRE options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.2 Internal File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.3 Formatted I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.4 Non-advancing I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10 Character Handling 22

11 Pointers 23
11.1 Pointer Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11.2 Array of arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11.3 Pointer as alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11.4 Function may return a pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11.5 Dynamic Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

12 Portable Precision 25

13 Other features 26
13.1 Bit-wise operations on integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
13.2 Other intrinsic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

14 Resources 26

15 Language Progression 27

2



15.1 Deprecated features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.2 Superseded features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.3 Main New Features of Fortran95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.4 Possible New Features of Fortran2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1 Introduction

1.1 What was wrong with Fortran77?

• There are no dynamic storage facilities at all.

• There are no user-defined data types or data structures (except the COMMON block).

• It was too easy to make mistakes which the compiler could not detect, especially when calling
procedures (subroutines or functions). A study of some 4 million lines of professional Fortran
showed ≈17% of procedure interfaces were defective.

• Programs are less than 100% portable because of a few remaining platform-dependent features.

• Control structures are poor, so it hard to avoid using GOTOs and labels, often leading to spaghetti
code.

• Archaic features left over from the punched-card era:

– fixed-format lines,

– statements all in upper-case,

– variable names limited to 6-characters.

• In practice programmers are driven to use extensions to Fortran77 Standard – which reduce porta-
bility.

1.2 What’s New in Fortran90

• Free-format source code and many other simple improvements.

• Arrays as first-class objects, whole-array expressions, assignments, and functions.

• Dynamic memory allocation; pointers to allow complex dynamic data structures to be con-
structed.

• User-defined data types; existing operators can be overloaded (re-defined) or new ones defined.

• The MODULE – a new program unit which can encapsulate data and a related set of proce-
dures (subroutines or functions). Can implement classes and member functions for object-oriented
programming.

• New control structures: SELECT CASE, CYCLE, and EXIT so labels and explicit jumps are rarely
needed.

• Recursive functions, generic names for procedures, optional arguments, calls with keywords, and
many other procedure call options.
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1.3 Benefits

• Programs often simpler, and thus easier to maintain.

• Programs are safer and more reliable because the compiler can detect many more mistake (provided
sensible safety features are used).

• Programs more portable, because very few machine-dependant features remain, and there is little
need to use extensions.

• Parallel processing supported by whole array operations and other features.

• Fortran77 is a true subset: nothing has been taken out. You can adopt the new features gradually.

1.4 Will old code still work?

Yes – if it used only Standard Fortran77 or extensions which are now part of Fortran90.
But common extensions to Fortran77 which were not included in Fortran90 include:

• Tab-formatted source-code lines – change tabs to spaces, maybe use free-format.

• Data type declarations like INTEGER*2 and REAL*8 – new syntax better but more complicated.

• Hexadecimal, octal, and binary constants in expressions – allowed only in DATA statements.

• VAX data structures – Fortran90 structures have different syntax.

• Functions like %VAL in subprogram calls – the new dynamic memory facilities are much better.

• Expressions in formats (e.g. FORMAT(F<nw>.3) – can do this indirectly with internal-file I/O.

• Some OPEN options such as ACCESS=’APPEND’ – change to POSITION="APPEND".

Function name clashes – Fortran has no reserved words, but problems may arise one of your external
function names matches that of an intrinsic function. There are 75 new ones, and names to avoid now
include: ALL, ANY, COUNT, HUGE, KIND, MAXVAL, MERGE, MINVAL, PACK, RANGE, SCALE, SCAN, SIZE, SUM,
TRIM, and UNPACK. This problem can be avoided by declaring your function to be EXTERNAL wherever
necessary.
Static storage assumption – Fortran77 compilers generally used static storage for all variables, so
SAVE statements could be omitted with impunity. Most Fortran90 systems use static storage only when
required (variables given an initial value, or has an explicit SAVE attribute). Otherwise local variables
in subprograms will not be preserved after control returns, and missing SAVE statements may cause
problems.

1.5 Fortran90 Compilers

Wide choice for PC/Windows and most Unix platforms, one or two for PC/Linux, VMS and Macintosh.
They tend to be more expensive than for Fortran77, and not all are as efficient or stable.
The following are available free:

• F for Linux is another subset, free for Linux from Imagine1 http://www.imagine1.com/imagine1

• A translator from Fortran90 to Fortran77 can be obtained free for Linux from Pacific-Sierra Research
http://www.psrv.com (but it has many limitations).

The subsets supported by ELF90 and F are slightly different: both support all the modern features of
Fortran90 and leave out all the obsolete stuff, so they are not suitable for legacy code.
GNU’s free compiler, g77, is suitable for legacy code and runs on many platforms, but supports only a
few of the new features of Fortran90.
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1.6 The Future

Fortran95 was formally adopted as the ISO Standard in November 1997. It adds only a few new features
(e.g. a way of specifying initial values for data structures). The first Fortran95 compilers have already
started to appear and many more are likely to appear by the end of 1998.
Fortran2000 is currently being defined: major new features are likely to include full support for object-
oriented programming, and syntax for inter-operability with C.

2 New Look and Feel

Use of lower-case and long variable names already a common extention to Fortran77; free-format layout
is a more radical change.
Examples here will use UPPER CASE for Fortran keywords and intrinsic functions, lower case for user-
chosen names. This is not a recommended convention, just for clarity in these notes.

2.1 Basic Rules for both free and fixed-format

Lower-case letters may be used, but Fortran is case-insensitive (except within quoted character con-
stants).
Symbolic names can be up to 31 characters long, and names may include underscores as well as digits:

temperature_in_fahrenheit = temperature_in_celsius * 1.8 + 32.0

Semi-colons separate two or more statements on the same line:
sumx = 0.0; sumy = 0.0; sumz = 0.0

End-of-line comments start with an exclamation mark (but must not be in column 6 of fixed-format
code).

nday = mjd(year, month, day) ! convert to Modified Julian Date

Character constants may be enclosed either in a pair of apostrophes or double-quote marks – making
it easier to embed the other character in a string:

WRITE(*,*) "If it ain’t broke don’t fix it"

Relational operators may be given in old or new forms:

old form: .GE. .GT. .EQ. .NE. .LE. .LT.
new form: >= > == /= <= <

2.2 Free-format layout

• Free-format an alternative to column-based fixed-format.

• Must choose either free or fixed format for each source file (rules differ).

Most compilers assume free-format if the source file has an extension of .f90 and fixed-format oth-
erwise (but usually one can over-ride this with command-line switches such as -free and -fixed).
Free-format layout rules:

1. Statements may appear anywhere on a line; lines may be up to 132 characters long.

2. Comments start with an exclamation mark “!” (so C or * in column 1 have to be changed to
“!”).

3. To continue a statement put an ampersand “&” at the end of each incomplete line:

CALL predict( mercury, venus, earth, & ! comment allowed here
mars, jupiter, saturn, uranus, neptune, pluto)
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If the line-break splits a name or constant then a comment is not allowed, and the next line must
start with another ampersand:

WRITE(*,*) "University of Leicester, Department of &
&Physics & Astronomy" ! NO comment on preceding line

4. Spaces are significant in free-format code: embedded spaces are not allowed in variable names
or constants, but a space is generally required between two successive words (but they are optional
in some two-word Fortran terms including DOUBLE PRECISION, ELSE IF, GO TO, END DO, and END
IF).

MILLION = 1 000 000 ! valid in fixed-layout lines only

With care one can write code valid in both formats, which may be useful for INCLUDE files to be used
in both old and new code: the secret for continuation lines is to put an ampersand after column 72 and
another in column 6 of the next line.

2.3 New Forms for Specification Statements

IMPLICIT NONE is now standard (and recommended so the compiler flags more mistakes).
The DOUBLE PRECISION data type is now just a special case of REAL so all facilities are identical; this
means that double-precision complex is fully standardised.
INCLUDE statements are also standard (but the MODULE now provides better facilities).
Type statements – new form with double-colon allows all attributes of variables to be specified at once:
INTEGER, DIMENSION(800,640) :: screen, copy, buffer

Define constants without separate PARAMETER statement:
REAL, PARAMETER :: pi = 3.14159, rtod = 180.0/pi

Initialise variables too:
CHARACTER(LEN=50) :: infile = "default.dat"
INTEGER :: file_number = 1, error_count = 0

DATA statement almost redundant – still useful to initialise just part of an array, use a repeat-count, or
a hexadecimal constant:
INTEGER :: dozen(12), forty_two, sixty_three, max_byte
DATA dozen / 6*0, 6*1 /, forty_two / B’101010’ /, &

sixty_three / O’77’ /, max_byte / Z’FF’/

The SAVE attribute is applied automatically to any variable given an initial value, whether in a DATA
or type statement.
INTENT may be specified for procedure arguments: useful aid to documentation, and allows the compiler
to check usage more carefully:

SUBROUTINE readfile(iounit, array, status)
IMPLICIT NONE ! not essential but good practice
INTEGER, INTENT(IN) :: iounit ! unit number to read from
REAL, INTENT(OUT) :: array ! data array returned
INTEGER, INTENT(INOUT) :: status ! error-code (must be zero on entry)

3 New Control Structures

3.1 The SELECT CASE Structure

SELECT CASE replaces the computed GO TO which required a plethora of statement labels. The new
structure is often easier to use and more efficient than a set of ELSE IF clauses and is label-free. The
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example below, given a day-number between 1 and 31, selects a suitable suffix, e.g. to turn “3” into
“3rd”, etc.:

SELECT CASE(day_number)
CASE(1, 21, 31)

suffix = ’st’
CASE(2, 22)

suffix = ’nd’
CASE(3, 23)

suffix = ’rd’
CASE(4:20, 24:30)

suffix = ’th’
CASE DEFAULT

suffix = ’??’
WRITE(*,*)’invalid date: ’, day_number

END SELECT
WRITE(*, "(I4,A2)") day_number, suffix

The selection expression may be of integer or character type; the ranges in each CASE statement must
not overlap. The default clause is optional.

3.2 DO, EXIT and CYCLE statements

The END DO statement is at last part of the Standard, so a label is no longer needed in each DO statement.
In addition CYCLE will cause the next iteration to start at once, while EXIT exits the loop structure
prematurely.
This example scans the headers of a FITS file:
CHARACTER(LEN=80) :: header
DO line = 1,36
READ(unit, "(a80)") header
IF( header(1:8) == "COMMENT") THEN ! ignore comments - loop again
CYCLE

ELSE IF( header(1:8) == "END") THEN ! need READ no more lines
EXIT ! so exit from the loop

ELSE
! process this header...
END DO

An indefinite DO also exists – here an EXIT from the loop is essential:
sum = 0.0
DO
READ(*, IOSTAT=status) value
IF(status /= 0) EXIT
sum = sum + value ! or whatever

END DO

3.3 DO WHILE statement

DO WHILE is supported, but an indefinite DO with an EXIT does much the same:
DO WHILE( ABS(x - xmin) > 1.0e-5)

CALL iterate(x, xmin)
END DO
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3.4 Structure Names

Names may be given to DO-loops, IF-blocks, or CASE-structures – helps readability when they are deeply
nested, and required to EXIT from (or CYCLE around) anything other than the innermost loop.

sum = 0.0
outer: DO j = 1,ny ! sum values until zero encountered
inner: DO i = 1,nx

IF(array(i,j) == 0.0) EXIT outer
sum = sum + array(i,j)

END DO inner
END DO outer

Note that structure names like inner do not have the drawbacks of statement labels because it is not
possible to jump to them using a GO TO statement.

3.5 Label-free programming

Statement labels should be avoided because each one marks the site of a jump from elsewhere, and
thus makes it harder to see the execution sequence. Label-free programming is now feasible in many
cases:

1. DO-loops with END DO no longer need labels, and error-handling can mostly use EXIT or RETURN.

2. Computed-GO TO should be replaced by SELECT CASE.

3. FORMAT statements can be replaced by a format string in the READ or WRITE statement itself, e.g.:

WRITE(unit, "(A,F10.3,A)") "flux =", source_flux, " Jansky"

3.6 Internal Procedures

Generalisation of statement functions – no longer limited to one line:

SUBROUTINE polygon_area(vertices) ! an external procedure
IMPLICIT NONE ! applies throughout

!...
area1 = triangle_area(a, b, x)

!...
area2 = triangle_area(x, c, d)

!...
CONTAINS ! internal procedures follow...

REAL FUNCTION triangle_area(a, b, c) ! internal procedure
REAL, INTENT(IN) :: a, b, c
REAL :: s ! local variable in the function

s = 0.5 * (a + b + c)
triangle_area = sqrt(s * (s-a) * (s-b) * (s-c))

END FUNCTION triangle_area
END SUBROUTINE polygon_area

Rules for internal procedures:

• May be subroutines or functions

• Placed within host program unit after CONTAINS statement (which ends executable code of host).

• A host may have any number of internal procedures, which may call one another (but may not be
nested).
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• Need END SUBROUTINE or END FUNCTION at the end – appending the procedure name is optional.

Host association: internal procedures may access to all the host’s variables (unless they declare local
variables with the same name) but not vice-versa.
Host association has its risks: e.g. using a variable x in the internal procedure (above) without declaring
it would inadvertently use the host’s x.
May use scoping rules to set up set of procedures with a few global variables, e.g.

SUBROUTINE main(args)
REAL :: args !accessible to internal procedures
REAL :: global_variables ! likewise
CALL internal
CONTAINS
SUBROUTINE internal
!...
END SUBROUTINE internal
SUBROUTINE lower_level
!...
END SUBROUTINE lower_level

END SUBROUTINE main

4 Arrays

4.1 Declaring and Initialising Arrays

New form of type statement with double colon can declare arrays and simple scalars:
REAL :: array(3,4,5), scalar, vector(12345)

Dimension attribute useful if several arrays have the same shape:
INTEGER, DIMENSION(1024,768) :: screen, window, new_window

An Array constant is a list of elements enclosed in (/ and /) and may be used to give an initial value
to a variable or to define an array constant.
INTEGER :: options(3) = (/ 5, 10, 20 /) ! initial values
CHARACTER(LEN=3), PARAMETER :: day(0:6) = &

(/’Sun’,’Mon’,’Tue’,’Wed’,’Thu’,’Fri’,’Sat’/) ! array constant

Array terminology: An array declared like this:
REAL :: X(2,5,-1:8)

has a rank of 3, extents of 2, 5, and 10, a shape of (/ 2, 5, 10 /), and a size of 100.

4.2 Array-valued expressions and assignments

Arrays are now first-class objects, and array-valued expressions are evaluated element-wise, which saves
writing many simple loops:
REAL, DIMENSION(512,1024) :: raw, background, exposure, result, std_err

!...
result = (raw - background) / exposure

Similarly all appropriate intrinsic functions operate element-wise if given an array as their argument:
std_err = SQRT(raw) / exposure

Array expressions may also include scalar constants and variables: these are effectively replicated (or
expanded) to the required number of elements:
std_err = 0.0 ! every element set to zero
background = 0.1 * exposure + 0.125
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All the elements in an array-valued expression must be conformable, that is they are either either scalars
or arrays all of which have the same shape, i.e. the same number of elements along each axis (the actual
lower and upper-bounds may be different).

4.3 Array Constructors

An array constructor, which is generalisation of the array constant, may appear in any array expression,
and and may contain a list of scalars, arrays, or loops:
array = (/ 1.51, x, 2.58, y, 3.53 /)
ramp = (/ (REAL(i), i = 1,10) /)

The array constructor only works for 1-dimensional arrays. For arrays of higher rank the RESHAPE function
is useful: its second argument specifies the shape of the output array:

INTEGER :: list(2,3) = RESHAPE( (/ 11, 12, 21, 22, 31, 32 /), (/2,3/))

4.4 Array Sections

An array section or slice is specified with a colon separating the lower and upper bounds. Thus
ramp(7:9) is a 3-element slice of array ramp. Similarly raw(2:101,301:500) is a slice of the array called
raw of shape 100 × 200 elements. Note that a slice does not have to occupy contiguous storage locations
– Fortran takes care of this. It also allows assignments statements involving overlapping slices:
a(2:10) = a(1:9) ! shift up one element
b(1:9) = b(3:11) ! shift down two elements

In such cases the compiler must generate code to work through the elements in the right order (or copy
to some temporary space) to avoid overwriting.
Array triplet notation allows sparse sub-arrays to be selected; the stride (third item in the triplet)
must not of course be zero:
b(1:10:2) ! selects five elements: 1, 3, 5, 7, 9
b(90:80:-3) ! selects four elements 90, 87, 84, 81 in that order

Zero-sized arrays may be referenced, just as if a DO-loop had been used which specified no iterations.
Thus b(k:n) has no elements if k is greater than n.
Vector subscripts may also be used:
INTEGER :: mysub(4)
REAL :: vector(100)
mysub = (/ 32, 16, 17, 18 /)
WRITE(*,*) vector(mysub)

This outputs only elements 32, 16, 17, and 18 of the vector in that order.
Note that vector subscripts may only be used on the left-hand side of an assignment if there are no
repeated values in the list of subscripts (otherwise one element would have to be set to two different
values).

4.5 Array Intrinsic Functions

Arguments in italics are optional.
Array reduction functions
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l = ALL(mask, dim ) .true. if all elements are true
l = ANY(mask, dim ) .true. if any elements are true
i = COUNT(mask, dim ) Number of true elements
x = SUM(array, dim, mask ) Sum of elements
x = PRODUCT(array, dim, mask ) Product of elements
x = MAXVAL(array, dim, mask ) Maximum value in array
x = MINVAL(array, dim, mask ) Minimum value in array
x = DOT PRODUCT(va, vb) Dot product of two vectors

Example: if REAL :: myarray(2,3) contains
1 3 5

myarray
2 4 6

SUM(myarray) returns 21
SUM(myarray, DIM=1) returns (/ 9, 12 /) SUM(myarray, DIM=2) returns (/ 3, 7, 11/)

Other array manipulation functions

a = MATMUL(mata, matb) Matrix multiplication (or matrix X vector)
a = TRANSPOSE(matrix) Transpose of 2-d array
a = CSHIFT(array, shift, dim ) Circular shift of elements
a = EOSHIFT(array, shift, dim ) End-off shift of elements
a = PACK(array, mask, pad ) Pack values of array which pass the mask
a = MERGE(tsource, fsource, mask) Use tsource if mask is true, else fsource elements.
a = MAXLOC(array, mask ) Location of maximum element
a = MINLOC(array, mask ) Location of minimum element

Note: MAXLOC and MINLOC used on a 1-d array return an array of one element, which is not the same as
a scalar.
An example of their use is to find the mean and variance of an array but with values of zero to be ignored:
mean = SUM(x /= 0.0) / COUNT(x /= 0.0)
variance = SUM((x-mean)**2, MASK= x /= 0.0) / COUNT(x /= 0.0)

4.6 WHERE structure

When some elements of an array expression have to be treated specially, the WHERE structure may be
useful:
WHERE(x /= 0.0)
inverse = 1.0 / x

ELSEWHERE
inverse = 0.0

END WHERE

There is also a single statement form of it:
WHERE(array > 100.0) array = 0.0

5 Dynamic Storage

There are three forms of dynamic array: automatic, allocatable, and pointer array.

5.1 Automatic Arrays

An automatic array is a local array in a procedure which has its size set when the procedure is called:
SUBROUTINE smooth(npts, spectrum)
IMPLICIT NONE
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INTEGER, INTENT(IN) :: npts
REAL, INTENT(INOUT) :: spectrum
REAL :: space(npts), bigger(2*npts) ! automatic arrays

The dimension bounds may be integer expressions involving any variables accessible at that point: nor-
mally this means other arguments of the routine. Within the procedure an automatic array is just like
any other; it may be passed to lower-level routines, but it becomes undefined as soon as control returns
to above the level at which it is defined. An automatic array cannot be defined initially or be used to
save values from one call to another.
Most systems store automatic arrays on the stack; some Unix systems do not allocate much stack space
by default. The following command may be used to increase it:
> limit stack unlimited

5.2 Allocatable Arrays

Allocatable arrays are more generally useful as their size may be set at any point. Only the rank has
to be declared in advance, with a colon marking the each dimension:
REAL, ALLOCATABLE :: vector(:), matrix(:,:), three_d(:,:,:)

The actual dimension bounds may then be set anywhere in the executable code (the lower bound is 1 by
default):
ALLOCATE(vector(12345), matrix(0:511,0:255))

Allocatable arrays may be passed to lower-level routines in the usual way. But they need to be explicitly
deallocated before the procedure which declares them exits, otherwise a memory leak may occur.
DEALLOCATE(matrix, vector)

Once a its size has been allocated, it cannot be altered, except by deallocating the array and then
allocating it again. If you want to preserve the contents they need to be copied somewhere else temporarily.
Most systems use heap storage for allocatable arrays. With very large arrays one might use up all the
space available, so a status variable can be used to check. It normally returns zero, but is set non-zero if
the allocation fails:
ALLOCATE(huge_array(1:npts), STAT=ierror)
IF(ierror /= 0) THEN

WRITE(*,*)"Error trying to allocate huge_array"
STOP

END IF

In such cases there may be another less memory-intensive algorithm available, otherwise the program
should exit gracefully.
It is important to ensure that you do not attempt to allocate the same array twice; the ALLOCATED
intrinsic function helps here:

IF(ALLOCATED(myarray)) THEN
DEALLOCATE(myarray)

END IF
ALLOCATE(myarray(1:newsize))

An allocatable array can also be declared to have the SAVE attribute, in which case it will survive after the
exit of the procedure which creates it. This is especially useful in connection with modules (as explained
later).

5.3 Pointer arrays

An allocatable array cannot be passed to a procedure when in an un-allocated state. But this can be
done with a pointer array:

PROGRAM pdemo
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IMPLICIT NONE
REAL, POINTER :: parray(:)
OPEN(UNIT=9, FILE=’mydata’, STATUS=’old’)
CALL readin(9, parray)
WRITE(*,*)’array of ’, SIZE(array), ’ points:’
WRITE(*,*) parray
DEALLOCATE(parray)
STOP ! STOP is optional

CONTAINS
SUBROUTINE readin(iounit, z)
INTEGER, INTENT(IN) :: iounit
REAL, POINTER :: z(:) ! cannot use INTENT for pointer

INTEGER :: npoints
READ(iounit) npoints ! find how many points to read
ALLOCATE(z(1:npoints)) ! allocate the space
READ(iounit) z ! read the entire array

END SUBROUTINE readin
END PROGRAM pdemo

This example is especially simple because an internal procedure is used, so that the compiler knows all
the details of the interface when it compiles the subroutine call: a so-called explicit interface, which is
required when passing a pointer to a procedure.

6 Modules and Interfaces

The there are now four types of program unit in Fortran:

1. Main program – should start with a main PROGRAM statement.

2. External procedures (subprograms) – start with SUBROUTINE or FUNCTION statement.

3. Block data subprograms (now superseded along with common blocks) – starts with BLOCK DATA
statement.

4. Module – starts with MODULE statement.

The module may contain any combination of:

• definitions of constants

• definitions of derived types (data structures)

• data storage declarations

• procedures (subroutines and functions)

The module may be accessed with a USE statement in any other program unit (including another module).

6.1 Example defining constants

MODULE trig_consts
IMPLICIT NONE

DOUBLE PRECISION, PARAMETER :: pi = 3.141592653589d0, &
rtod = 180.0d0/pi, dtor = pi/180.0d0

END MODULE trig_consts

13



PROGRAM calculate
USE trig_consts
IMPLICIT NONE

WRITE(*,*) SIN(30.0*dtor)
END PROGRAM calculate

Note that:

• USE statements always precede all other types of specification statement, even IMPLICIT NONE.

• The module must be compiled before all other program units which use it; it may be in the same file
or a separate file. Most compilers support separate compilation, and leave a .mod file, or something
similar, containing the module information for the use of subsequently encountered USE statements.

These simple uses of the module barely distinguish it from an INCLUDE file (now part of the Fortran
Standard), but the module is actually a much more powerful facility, because of module procedures.

6.2 Module Procedures

The general structure of a module:

1. starts with a data section

2. then has a CONTAINS statement (if any procedures follow)

3. any number of module procedures follow.

Module procedures have direct access to all the definitions and data storage in the data section via host
association.
Allows encapsulation of data and a set of procedures which operate on the data or use the storage area
for inter-communication.
This (slightly shortened) module handles output to a VT terminal or X-term window:

MODULE vt_mod
IMPLICIT NONE ! applies to whole module
CHARACTER(1), PARAMETER :: escape = achar(27)
INTEGER, SAVE :: screen_width = 80, screen_height = 24

CONTAINS
SUBROUTINE clear ! Clears screen, moves cursor to top left
CALL vt_write(escape // "[H" // escape // "[2J")

END SUBROUTINE clear

SUBROUTINE set_width(width) ! sets new screen width
INTEGER, INTENT(IN) :: width ! preferred width (80/132)
IF(WIDTH > 80) THEN ! switch to 132-column mode

CALL vt_write( escape // "[?3h" )
screen_width = 132

ELSE ! switch to 80-column mode
CALL vt_write( escape // "[?3l" )
screen_width = 80

END IF
END SUBROUTINE set_width

SUBROUTINE get_width(width) ! returns screen width (80/132)
INTEGER, INTENT(OUT) :: width

width = screen_width
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END SUBROUTINE get_width

SUBROUTINE vt_write(string) ! for internal use only
INTEGER, INTENT(IN) :: string

WRITE(*, "(1X,A)", ADVANCE="NO") string
END SUBROUTINE vt_write

END MODULE vt_mod

To use this module one just needs at the top:
USE vt_mod

6.3 Public and Private accessibility

By default all module variables are available by all program units which USE the module. This may not
always be desirable: if the module procedures provide all the access functions necessary, it is safer if
package users cannot interfere with its internal workings. By default all names in a module are PUBLIC
but this can be changed using the the PRIVATE statement:

MODULE vt_mod
IMPLICIT NONE
PRIVATE ! change default so all items private
PUBLIC :: clear_screen, set_width, get_width

Now a program unit which uses the module will not be able to access the subroutine vt write nor
variables such as screen width.

6.4 Avoiding name clashes

Even with the precautions suggested above, sometimes a module will contain a procedure (or variable)
name which clashes with one that the user has already chosen. There are two easy solutions. If the name
is one that is not actually used but merely made available by the module, then the USE ONLY facility is
sufficient:

USE vt_mod, ONLY: clear_screen

But supposing that one needs access to two procedures both called get width, the one accessed in the
vt mod module can be renamed:

USE vt_mod, gwidth => get_width

so it acquires the temporary alias of gwidth.

6.5 Pros and Cons of Modules

• Modules can be used to encapsulate a data structure and the set of procedures which manipulate
it – or a class and its methods in OO-speak.

• When a module procedure is called it is said to have an explicit interface - this means that the
compiler can check actual and dummy arguments for consistency. This is a very valuable feature,
since in Fortran77 such interfaces cannot usually be checked and errors are common.

• The module supersedes common blocks, BLOCK DATA and ENTRY statements.

• Modules provide an additional structural level in program design:

1. Program

2. Modules

3. Procedures
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4. Statements.

• The explicit interfaces which come automatically with module procedures allow a range of advanced
features to be used, including: assumed-shape arrays, pointer arrays, optional arguments, functions
returning arrays or pointers, user-defined operators, generic names. These will be described in
detail later.

But there are a few potential drawbacks:

• Each module has to be compiled before any other program unit which uses it: this needs care and
means that the main program has to be last rather than first, as is traditional.

• Changes to a module mean re-compilation of all units which use it: this needs to be coded into
make files, and can lead to slow compiles.

• Usually a module compiles into a single object module, so that reference to any procedure in a
module causes all the code in the module to be present into the executable program.

6.6 Explicit Interfaces

An explicit interface is one where the dummy arguments of the procedure are visible to the compiler
when compiling the procedure call. Explicit interfaces are needed for a variety of advanced features. An
interface is explicit:

• When a module procedure is called from a program unit which uses it, or from any other procedure
of the same module.

• When an internal procedure is called from its host or from any other internal procedure of the same
host.

• A recursive procedure calls itself directly or indirectly.

• Any intrinsic function is called.

• An explicit INTERFACE block is provided.

Here is an example of an interface block:
INTERFACE

DOUBLE PRECISION FUNCTION sla_dat (utc)
IMPLICIT NONE
DOUBLE PRECISION :: utc

END FUNCTION sla_dat

SUBROUTINE sla_cr2tf (ndp, angle, sign, ihmsf)
IMPLICIT NONE
INTEGER :: ndp
REAL :: angle
CHARACTER (LEN=*) :: sign
INTEGER, DIMENSION (4) :: ihmsf

END SUBROUTINE sla_cr2tf
END INTERFACE

Note that an IMPLICIT NONE is needed in each procedure definition, since an interface block inherits
nothing from the enclosing module.
An interface block may, of course, be put in a module to facilitate use. When using an existing (Fortran77)
library, it may be worth-while to create a module containing all the procedure interfaces – may be done
automatically using Metcalf’s convert program.
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7 Procedures and Arguments

7.1 Assumed shape arrays

The assumed-shape array is strongly recommended for all arrays passed to procedures: the rank has to
be specified, but the bounds are just marked with colons. This means the actual shape is taken each time
it is called from that of the corresponding actual argument.

MODULE demo
IMPLICIT NONE
CONTAINS

SUBROUTINE showsize(array)
IMPLICIT NONE
REAL, INTENT(IN) :: array(:,:) ! 2-dimensional.
WRITE(*,*) "array size", SIZE(array,1), " X ", SIZE(array,2)
END SUBROUTINE showsize

END MODULE demo

PROGRAM asize
USE demo
IMPLICIT NONE
REAL :: first(3,5), second(123,456)

CALL showsize(first)
CALL showsize(second)

END PROGRAM asize

The lower bound is one by default, it does not have to be the same as that of the actual argument, as
only the shape (extent along each axis) is passed over, so that intrinsic functions such as LBOUND and
UBOUND provide no additional information.

7.2 Keyword calls and optional arguments

Any procedure which has an explicit interface, may be called using keyword notation in the call, as an
alternative to the positional notation. All intrinsic functions may also be called by keyword, which is
handy when one wants to omit optional arguments:

INTEGER :: intarray(8)
CALL DATE_AND_TIME(VALUES=intarray)

After any argument uses keyword notation, all subsequent ones in same call must do so.
Arguments of user-written procedures may also be made optional, these should be tested to see whether
they are PRESENT before use:

SUBROUTINE write_text(string, nskip)
CHARACTER(*), INTENT(IN) :: string ! line of text
INTEGER, INTENT(IN), OPTIONAL :: nskip ! no of lines to skip

! local storage
INTEGER :: localskip
IF(PRESENT(nskip)) then

localskip = nskip
ELSE

localskip = 0 ! default value
END IF

! rest of code to skip lines etc.

Optional arguments at the end of the list may simply be omitted in the procedure call, but if you omit
earlier ones you cannot simply use two adjacent commas (as in some extensions to Fortran77). After an
optional argument has been omitted, all subsequent arguments must use the keyword notation.

17



7.3 Generic names

Intrinsic functions often have generic names, thus ABS does something different depending on whether
its argument is real, integer, or complex. User-written functions may now be given a generic name in a
similar way.
Suppose you have a module containing several similar data sorting routines, for example sort int to
sort an array of integers, sort real to sort reals, etc. A generic name such as sort may be declared in
the head of the module like this:
INTERFACE sort

MODULE PROCEDURE sort_int, sort_real, sort_string
END INTERFACE

The rules for resolving generic names are complicated but it is sufficient to ensure that each procedure
differs from all others with the same generic name in the data type, or rank of at least one non-optional
argument.

7.4 Recursive procedures

Procedures may now call themselves directly or indirectly if declared to be RECURSIVE. Typical uses
will be when handling self-similar data structures such as directory trees, B-trees, quad-trees, etc. The
classical example is that of computing a factorial:

RECURSIVE FUNCTION factorial(n) RESULT(nfact)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n
INTEGER :: nfact
IF(n > 0) THEN

nfact = n * factorial(n-1)
ELSE

nfact = 1
END IF
END FUNCTION factorial

But it is easy to see how to do this just as easily using a DO-loop.
The use of a RESULT variable is optional here, but required when the syntax would otherwise be ambiguous,
e.g. when the function returns an array so an array element reference cannot be distinguished from a
function call.

8 Derived Data Types (structures)

The terms user-defined type, and data structure and derived type all mean the same thing. A
simple example is shown here, designed to keep handle a list of celestial objects in an observing proposal.
The first step is to define the structure:

TYPE :: target_type
CHARACTER(15) :: name ! name of object
REAL :: ra, dec ! celestial coordinates, degrees
INTEGER :: time ! exposure time requested, secs

END TYPE target_type

Note that one can mix character and non-character items freely (unlike in common blocks). The compiler
arranges the physical layout for efficient access.
This only specifies the structure: to create actual variables with this user-defined data type the TYPE
statement is used in a different form:

TYPE(target_type) :: old_target, new_list(30)
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This has created a structured variable, and an array of 30 elements, each of which has the four specified
components.

8.1 Accessing Components

Components of a structure are accessed using per-cent signs (unfortunately not dots as in many other
languages, because of syntax ambiguities).
Thus old target%name is a character variable, while new list(13)%ra is a real variable. Such structure
components can be used exactly like simple variables of the same data type:

new_list(1)%name = "Cen X-3"
new_list(1)%ra = 169.758
new_list(1)%dec = -60.349
new_list(1)%time = 15000

! .....
new_list(2) = old_target ! copy all components
new_list(2)%time = 2 * new_list(2)%time

A space is optional either side of the per-cent sign. Note also that component names are local to the
structure, so that there is no problem if the same program unit also uses simple variables with names
like name, ra, dec etc.

8.2 Structure constructors

These allow all the components of a structure to be set at once, the type-name is used as if it were a
conversion function, with a list of the component values as arguments:

new_list(3) = target_type("AM Her", 273.744, 49.849, 25000)

If you have an array of some structured type, each component may be treated as if it were an array: thus
new list%dec is an array of 30 real values. The elements may not be in adjacent locations in memory,
but the compiler takes care of this:

total_time = SUM(new_list%time)

Besides their use in assignment statements, structured variables can be used in input/output statements.
With unformatted or list-directed I/O this is straight-forward, but with formatted I/O one has to provide
an appropriate list of format descriptors:

WRITE(*,*) old_target ! list-directed format easy
READ(file, "(A,2F8.3,I6)") new_list(4)

8.3 Nested Structures

Two or more structure definitions may be nested:
TYPE :: point

REAL :: x, y ! coordinates
END TYPE point

TYPE :: line
TYPE(point) :: end(2) ! coordinates of ends
INTEGER :: width ! line-width in pixels

END TYPE line

TYPE(line) :: v
REAL :: length
v = line( (/ point(1.2,2.4), point(3.5,7.9) /), 2)
length = SQRT((v%end(1)%x - v%end(2)%x)**2 &
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+ (v%end(1)%y - v%end(1)%y)**2)

8.4 Pointers as Components

One limitation of Fortran structures is that array components must have their length fixed in advance:
an an allocatable array cannot be a component of a structure. Fortunately pointer components are
permitted:

TYPE :: document_type
CHARACTER(80), POINTER :: line(:)

END TYPE document_type
!

TYPE(document_type) :: mydoc ! declare a structured variable
ALLOCATE(mydoc%line(1200)) ! space for 1200-lines of text

To make the structure even more flexible one might allocate an array of CHARACTER(LEN=1) variables to
hold each line of text, although this would not be as easy to use.
In order to pass a structured variable to a procedure it is necessary for the same structure definition to
be provided on both sides of the interface. The easiest way to do this is to use a module.
There are, however, two limitations on the use of derived type variables containing pointer components:

1. They may not be used in the I/O lists of READ or WRITE statements.

2. If an assignment statement copies one derived type variable to another, any pointer component
merely clones the pointer, the new pointer still points to the same area of storage.

8.5 Defined and overloaded operators

When a new data type is defined, it would often be nice if objects of that type could be used in expressions,
because it is much easier to write, say
a * b + c * d than
add(mult(a,b),mult(c,d)).
Each operator you want to use has to be defined, or overloaded, for each derived data type.
This example defines a new data type, fuzzy, which contains a real value and its standard-error. When
two fuzzy values are added the errors add quadratically. Here we define or overload the “+” operator:

MODULE fuzzy_maths
IMPLICIT NONE
TYPE fuzzy
REAL :: value, error

END TYPE fuzzy
INTERFACE OPERATOR (+)
MODULE PROCEDURE fuzzy_plus_fuzzy

END INTERFACE
CONTAINS
FUNCTION fuzzy_plus_fuzzy(first, second) RESULT (sum)
TYPE(fuzzy), INTENT(IN) :: first, second ! INTENT(IN) required
TYPE(fuzzy) :: sum
sum%value = first%value + second%value
sum%error = SQRT(first%error**2 + second%error**2)

END FUNCTION fuzzy_plus_fuzzy
END MODULE fuzzy_maths

PROGRAM test_fuzzy
IMPLICIT NONE
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USE fuzzy_maths
TYPE(fuzzy) a, b, c
a = fuzzy(15.0, 4.0) ; b = fuzzy(12.5, 3.0)
c = a + b
PRINT *, c

END PROGRAM test_fuzzy

The result is, as you would expect: 27.5 5.0

In a similar way, the assignment operator, = can also be overloaded for derived data types, but in this
case one uses a subroutine with one argument INTENT(IN) and the other INTENT(OUT).
Further definitions might cover:

• Other operators: - / * ** etc.

• Combinations of real and fuzzy operands.

• Intrinsic functions like SQRT.

When a new data type has been defined in this way:

• It can be retro-fitted to existing software with a USE statement and a few changes from REAL to
TYPE(FUZZY).

• It is possible to change the internal representation without affecting the software which uses the
fuzzy type if the interfaces are preserved.

Overloading an existing operator is sensible only if the meaning is unchanged. Otherwise it is best to
invent a new one. For example, .like. to compare to character-strings, or .union. for a set-operator.
The precedence of an existing operator is unchanged by overloading; new unary operators have a higher
precedence, and new binary operators have a lower precedence than all intrinsic operators.

9 Input Output

9.1 New OPEN and INQUIRE options

• ACTION="READ" – to ensure read-only access (other actions are "WRITE" or "READWRITE").

• POSITION="APPEND" – to append to an existing sequential file.

• POSITION="REWIND" – to ensure that existing file opened at beginning (more portable).

• STATUS="REPLACE" – to overwrite any old file or create a new one.

• RECL=length – can also be used when creating a sequential file such as a text file to specify the
(maximum) record length required (units are characters for formatted access, otherwise system-
dependent).

The INQUIRE statement has additional keywords to return information on these aspects of an open unit.
The record-length units of an unformatted (binary) direct-access are system-dependent: there is now
a portable solution using a new form of the INQUIRE statement. You supply a specimen I/O list and it
returns the length to use in the OPEN statement.

INQUIRE(IOLENGTH=length) specimen, list, of, items
OPEN(UNIT=unit, FILE=fname, STATUS="new", ACCESS="direct", RECL=length)
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9.2 Internal File I/O

List-directed (free-format) reads and writes can now be used with internal files:
CHARACTER(LEN=10) :: string
string = " 3.14 "
READ(string, *) somereal

9.3 Formatted I/O

New/improved descriptors for formatted read and write:
REAL :: x = 0.125
WRITE(*, "(E12.3, ES12.3, EN12.3)") x, x, x

produces:
0.125E+00 1.250E-01 125.000E-03

ESw.d produces scientific format with the decimal after the first digit, while ENw.d produces en-
gineering format with an exponent which is always a multiple of 3. For input they are all exactly
equivalent.
Integers can be read/written using hexadecimal, octal, or binary conversions:
INTEGER :: n = 125
WRITE(*, "(I10, Z10, O10, B10)") n, n, n, n

Produces:
125 7D 175 1111101

All these may specify a minimum number of digits to be output: e.g. Z10.6
The generic descriptor Gw.d may be used for all data types, including logical and character.

9.4 Non-advancing I/O

This is a new facility, not quite stream-I/O, but nearly. Normal (advancing) READ and WRITE statements
always process at least one whole record. Non-advancing ones only move a notional pointer as far as
needed. A non-advancing write allows user input on the same line as a screen-prompt:
WRITE(*, "(A)", ADVANCE="no") "Enter the number of iterations: "
READ(*, *) nloops

A non-advancing read can measure the actual length of an input line using the new SIZE keyword.
CHARACTER(LEN=80) :: text
INTEGER :: nchars, code
READ(unit, "(A)", ADVANCE="no", SIZE=nchars, IOSTAT=code) text

If the line entered is too short then the IOSTAT return-code will be negative (and different from the value
signalling end-of-file).

10 Character Handling

Much simpler, especially because of the many new or improved intrinsic functions:
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c = ACHAR(I) Char in Ith position in ASCII table
i = IACHAR(C) Position of Char in ASCII table
i = LEN TRIM(STRING) Length ignoring trailing spaces
s = TRIM(STRING) String with trailing spaces removed
s = ADJUSTL(STRING) Adjust left by removing leading spaces
s = ADJUSTR(STRING) Adjust right by removing trailing spaces
s = REPEAT(STRING, NCOPIES) Repeated concatenation
i = INDEX(STRING, SUBSTRING, back) reverse search if back .true.
i = SCAN(STRING, SET, back) Scan for 1st of any of set of chars
i = VERIFY(STRING, SET, back) Scan for 1st char not in set

Other changes:
Overlapping substrings in assignments are permitted:

text(1:5) = test(3:7) ! now ok, invalid in Fortran77

The concatenation operator // may be used without restriction on procedure arguments of passed-
length.
Character functions may return a string with a length which depends on the function arguments, e.g.

FUNCTION concat(s1, s2)
IMPLICIT NONE
CHARACTER(LEN=LEN_TRIM(s1)+LEN_TRIM(s2)) :: concat ! function name
CHARACTER(LEN=*), INTENT(IN) :: s1, s2
concat = TRIM(s1) // TRIM(s2)
END FUNCTION concat

Zero-length strings are permitted, e.g. a sub-string reference like string(k:n) where k > n, or a
constant like "".
Sub-strings of constants are permitted, e.g. to convert an integer, k, in the range 0 to 9 into the
corresponding character:

achar = "0123456789"(k:k) ! note: error if k < 0 or k > 9.

11 Pointers

Many programming languages support pointers, as they make it easier to implement dynamic data
structures such as linked lists, stacks, and trees. Programs in C are heavily dependent on pointers
because an array passed to a function instantly turns into a pointer. But:

• Pointers may force the programmer to do low-level accounting better left to the the compiler.

• Excessive use of pointers leads to obscure and unmaintainable code.

• It is easy to make mistakes detectable only at run-time: a high proportion of bugs in C arise from
accidental misuse of pointers.

• Pointers inhibit compiler optimisation (because two apparently distinct objects may be just pointers
to the same memory location).

The Java language is, to a large extent, a pointer-free dialect of C++. Clearly pointers must to be used
with care. Fortunately Fortran pointers are relatively tame.

11.1 Pointer Rules

A pointer can only point to another pointer or to a variable explicitly declared to be a valid TARGET.
Unfortunately a pointer starts life in limbo, neither associated nor disassociated (fixed in Fortran95).
The best practice is to nullify each pointer at the start of execution, like this:
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NULLIFY(parray)

and then a test of ASSOCIATED(parray) would be valid, and would return .false. until it had been
pointed at some actual storage.
When a pointer array is passed as an argument to a procedure which also declares it to be a pointer, the
lower-bounds of the argument are passed across as well as the upper-bounds. In all other cases, the lower
bounds need to be specifically declared in the procedure, and default to one unless otherwise specified.

11.2 Array of arrays

Fortran does not allow an array of pointers, but it does allow an array of derived-type objects which have
pointers as components.

TYPE :: ptr_to_array
REAL, DIMENSION(:), POINTER :: arr

END TYPE ptr_to_array
TYPE(ptr_to_array), ALLOCATABLE :: x(:)
!...
ALLOCATE(x(nx))
DO i = 1,nx

ALLOCATE(x(i)%arr(m))
END DO

11.3 Pointer as alias

Pointers are valuable as short-hand notation for array sections, e.g.
REAL, TARGET :: image(1000,1000)
REAL, DIMENSION(:,:), POINTER :: alpha, beta
alpha => image(1:500, 501:1000)
beta => image(1:1000:2, 1000:1,-2) ! axis flipped

Note that pointer assignment uses the symbol => to distinguish the operation from actual assigment of a
value.

11.4 Function may return a pointer

A case in which it is useful for a function to return a pointer to an array is illustrated by the reallocate
function below.

MODULE realloc_mod
CONTAINS
FUNCTION reallocate(p, n) ! reallocate REAL
REAL, POINTER, DIMENSION(:) :: p, reallocate
INTEGER, intent(in) :: n
INTEGER :: nold, ierr
ALLOCATE(reallocate(1:n), STAT=ierr)
IF(ierr /= 0) STOP "allocate error"
IF(.NOT. ASSOCIATED(p)) RETURN
nold = MIN(SIZE(p), n)
reallocate(1:nold) = p(1:nold)
DEALLOCATE(p)

END FUNCTION REALLOCATE
END MODULE realloc_mod

PROGRAM realloc_test
USE realloc_mod
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IMPLICIT NONE
REAL, POINTER, DIMENSION(:) :: p
INTEGER :: j, nels = 2
ALLOCATE(p(1:nels))
p(1) = 12345
p => reallocate(p, 10000) ! note pointer assignment
WRITE(*,*) "allocated ", nels, size(p), " elements"
WRITE(*,*) "p(1)=", p(1)

END PROGRAM realloc_test

Note that pointer assignment uses the symbol => since it needs to be distinguished from simple assignment
of a value.

11.5 Dynamic Data Structures

Pointers can be used to construct complex dynamic data structures of all types, such as singly and
doubly-linked-lists, binary-trees, etc. This is possible because a variable of derived type may contain a
pointer which points to itself or to another object of the same type.
Pointers may only point to objects which have been declared with the TARGET attribute, to other pointers,
or to arrays allocated to a pointer.

12 Portable Precision

It was a common extension to Fortran77 to allow declarations of the form LOGICAL*1, INTEGER*2, or
REAL*8. But this simple scheme was not adopted for Fortran90.
Instead Fortran90 defines 5 distinct intrinsic data types (character, logical, integer, real, complex) but
allows for different kinds of them to exist. Two kinds of real and complex are required (the second
kind of real has the alias of DOUBLE PRECISION. Systems may support additional kinds of any of the 5
intrinsic data types.
The kind is specified with an integer, e.g. INTEGER(2) instead of INTEGER*2 but the Standard does
not define what the integer means. To make software portable, two intrinsic functions are provided:
SELECTED INT KIND selects an integer kind value for the minimum number of decimal digits you want, and
SELECTED REAL KIND does the same for reals given the minimum significant decimal digits and exponent
range. Thus:

INTEGER, PARAMETER :: &
short = SELECTED_INT_KIND(4), & ! >= 4-digit integers
long = SELECTED_INT_KIND(9), & ! >= 9-digit integers
dble = SELECTED_REAL_KIND(15, 200) ! 15-digit reals to 10**200

INTEGER(short) :: myimage(1024,1024)
INTEGER(long) :: counter
REAL(double) :: processed_data(2000,2000)

It may be that on some systems the same kind of integer would be used for those declared short and
long, but this should not affect portability.
The best practice is to include definitions of kind parameters (like those above) in a module which is
used throughtout the program.
Constants may have their kind parameter appended, where kind matching is required (e.g. in procedure
arguments):

CALL somesub( 3.14159265358_dble, 12345_long, 42_short)

Another intrinsic function, KIND returns the kind parameter of any variable.
WRITE(*,*) " Double precision kind is ’, KIND(0d0)
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In principle the kind system may be extended to characters – Fortran systems are free to support 16-bit
character-sets such as Unicode.

13 Other features

13.1 Bit-wise operations on integers

All the MIL-STD intrinsics for bit-manipulation are now standardized. Bit are numbered from 0 on the
right, i.e. the least-significant end.

i = BTEST(i, ipos) Bit testing
i = IAND(i, j) Logical AND
i = IBCLR(i, ipos) Clear bit
i = IBITS(i, ipos, len) Bit extraction
i = IBSET(i, ipos) Set bit
i = IEOR(i, j) Exclusive OR
i = IOR(i, j) Inclusive OR
i = ISHFT(i, j) Logical shift left (right if j -ve)
i = ISHFTC(i, j) Circular shift left (right if j -ve)
i = NOT(i) Logical complement

i = BIT SIZE(i) Number of bits in variables of type i

CALL MVBITS(from, frompos, len, to, topos) is an intrinsic subroutine which copies bits from one
integer to another.
Binary, octal, and hex values may be read and written using new format descriptors Bw.d, Ow.d,
Zw.d, and that DATA statements may contain binary, octal, and hex constants.

13.2 Other intrinsic functions

FLOOR and MODULO work like AINT and MOD but do sensible things on negative numbers, and CEILING
which rounds up to the next whole number.
TRANSFER may be used to copy the bits from one data type to another – a type-safe alternative to tricks
formerly played with EQUIVALENCE statements.

LOGICAL, PARAMETER :: bigend = IACHAR(TRANSFER(1,"a")) == 0

This sets bigend to .TRUE. on a big-endian hardware platform, and .FALSE. otherwise.
Numerical enquiry functions include BIT SIZE, DIGITS EPSILON, MAXEXPONENT, MINEXPONENT, PRECISION,
RADIX, and RANGE. Perhaps the most useful of these are TINY which returns the smallest non-zero real (of
whatever kind), and HUGE which returns the largest representable number (integer or real).
System access intrinsics include:
DATE AND TIME, an intrinsic subroutine, which returns the current date and time as a string or an array
of integers,
RANDOM NUMBER which returns a whole array of pseudo-random numbers,
RANDOM SEED which can randomise the seed.
SYSTEM CLOCK useful in timing tests.
In Fortran95 a true CPU TIME routine is introduced.

14 Resources

Best WWW resources:
The Fortran market: http://www.fortran.com/fortran
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FAQ at http://www.ifremer.fr/ditigo/molagnon/fortran90/engfaq.html

These have links to tools such as style-converters and interface block generators, free software, and
commercial products.
The Usenet news group comp.lang.fortran now has almost as many postings on Fortran90 as on
Fortran77.
The mailing list comp-fortran-90 has on-line archives at http://www.jiscmail.ac.uk which also con-
tains joining instructions.
The best book on Fortran90 for existing Fortran users is, in my opinion, Upgrading to Fortran 90
by Cooper Redwine, published by Springer, 1995, ISBN 0-387-97995-6.
An alternative is Fortran90/95 Explained by Michael Metcalf & John Reid, published by Oxford Uni-
versity Press, ISBN 0 19 851888 9. This is comprehensive, but in my opinion, sometimes a bit too
concise.
See also Numerical Recipes in Fortran90 by Press et. al. published by CUP, ISBN 0-521-57439-0.

15 Language Progression

15.1 Deprecated features

The following features of antique Fortran are officially termed deprecated and some of them have been
officially removed from Fortran95 (but most compilers just issue warnings if you use them):

• DO with a control variable of type REAL or DOUBLE PRECISION.

• A DO loop ending on a statement other than CONTINUE or END DO.

• Two or more DO loops ending on the same statement.

• The arithmetic IF statement (three-way branch).

• Hollerith FORMAT descriptor nHstring.

• A branch to END IF from outside the IF-block (allowed in Fortran77 by mistake).

• The PAUSE statement.

• The ASSIGN statement together with assigned GO TO and assigned FORMAT statements.

• The alternate RETURN facility.

If you are unfamiliar with these, then you never need to know about them.

15.2 Superseded features

Some other features, still commonly used in Fortran77, are essentially redundant and should be avoided in
newly-written code. For example: Fixed source form, implicit data typing, COMMON blocks, assumed-
size arrays, EQUIVALENCE, ENTRY, INCLUDE, BLOCK DATA program units. Specific names
of intrinsics.

15.3 Main New Features of Fortran95

The major features include

• FORALL statement and construct, e.g.
FORALL(i=1:20, j=1,20) x(i,j) = 3*i + j**2
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• PURE and ELEMENTAL user-defined subprograms

• initial association status for pointers using => NULL()

• implicit initialisation of derived type objects

• new intrinsic function CPU TIME

• automatic deallocation of allocatable arrays

• Format width zero (e.g. i0) produces minimum number of digits required.

A good on-line coverage of these new features is given in http://www.nsc.liu.se/ boein/f77to90/f95.html

15.4 Possible New Features of Fortran2000

• High Performance, Scientific and Engineering Computing:

– Asynchronous I/O

– Floating point exception handling

– Interval arithmetic

• Data Abstraction / User Extensibility:

– Allocatable components

– Derived type I/O

• Object-oriented Fortran:

– Constructors/destructors

– Inheritance

– Polymorphism

• Parameterised derived types

• Procedure pointers

• Internationalization

• Inter-operability with C

The name is not yet decided, may be Fortran 2002!
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