
1

SUPPLEMENTAL LIBRARY PROCEDURE DESCRIPTIONS

This document contains a description of two small libraries for use in conjunction with
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman. The two libraries are
LAPACK_S, which is a small subset of the free LAPACK library, and BOOKLIB, which is a library
prepared especially for use with this book.

The LAPACK_S library contains four subroutines for solving systems simultaneous equations.
They were extracted from the FORTRAN 77 version of the full LAPACK library and converted to
Fortran 90 format. The full LAPACK library is free, and may be downloaded from the Internet at
http://www.netlib.org. The BOOKLIB contains procedures written especially for use with the
exercises in Fortran 90/95 for Scientists and Engineers.

Both of these libraries are distributed on a disk along with the Instructors Manual that
accompanies the book, and they are available for download at the book’s Web site
http://www.mhhe.com/engineering/chapman/. Your instructor will probably have compiled
the two libraries on the computer that you are using in this course.

The procedures in LAPACK_S are indexed by name and by function in the table shown below.

Table 1: Procedures included in the LAPACK_S library
Name Function Page
SGESV Solve a system of simultaneous equations. (single precision) 33
DGESV Solve a system of simultaneous equations. (double precision) 33
CGESV Solve a system of simultaneous equations. (single prec. complex) 33
ZGESV Solve a system of simultaneous equations. (double prec. complex) 33

The procedures in BOOKLIB are indexed by name and by function in the table shown below.

Table 2: Procedures included in the BOOKLIB library
Name Function Page

cross_prod Calculate the cross product of two 3-element vectors. 3
deriv Calculate derivative of a user-supplied function. 4
dft Calculate Discrete Fourier Transform from its definition. 6
fft Calculate Fast Discrete Fourier Transform. 8

heapsort Sort an array into ascending order using the heapsort algorithm. 10
heapsort_2 Sort an array into ascending order while carrying along a second

array, using the heapsort algorithm.
11

histogram Print a histogram of an input data set on a line printer. 13
idft Calculate inverse Discrete Fourier Transform from its definition. 15
ifft Calculate inverse Fast Discrete Fourier Transform. 17
integ Integrate a user-supplied function f(x) between points x1 and x2

using rectangles of width ∆x.
19

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

2

integ_d Integrate a discrete function specified by a series of (x,y) values
between points x1 and x2, where x1 and x2 both lie within the
range of input values in the (x,y) pairs.

20

interp Linearly interpolate the value yo at position xo, given a set of
(x,y) measurements organized in increasing order of x.

22

lcase Shift a character string to lower case. 23
lsq_fit Perform a least-squares fit of an input data set to the nth order

polynomial.
24

mat_inv Invert an N x N matrix using Gaussian elimination and the
maximum pivot technique.

25

nxtmul Calculate the next power of a base above a specific number. 27
plot Print a line printer plot a function. 28
plotxy Print a line printer cross-plot a set of (x,y) data points. 30
random_u Uniform distribution random number generator (function). 32
random_n Normal distribution random number generator (function). 32
random_r Rayleigh distribution random number generator (function). 32
simul Solve a system of simultaneous equations. 35
sinc Calculate the sinc function: sinc(x) = sin(x) / x. 36

spline_fit Calculate the set of cubic spline polynomials that fit an input data
set.

37

spline_int Interpolate a point using the set of cubic spline polynomials
generated by subroutine spline_fit.

39

ssort Sort an array into ascending order using the selection sort
algorithm.

41

statistics Calculate the average, standard deviation, and mean of a data set. 42
ucase Shift a character string to upper case. 23

Many of the procedures in these libraries are generic procedures, which work with multiple
types of input data. The types of data supported by each procedure is shown in parentheses after the
procedure name. The keywords associated with dummy procedure arguments are shown in capital
letters in the calling sequences, and the keywords for optional arguments are shown in parentheses.

In the following procedure descriptions, data types are given by the following abbreviations:

Abbreviation Type
R Single Prec. Real
D Double Prec. Real
C Single Prec. Complex
D Double Prec. Complex
I Integer
L Logical

Char Character

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

3

cross_prod (Single/Double Precision Real)

Purpose: To calculate the cross product of two three-element real vectors.

Usage: USE booklib
vector = cross_prod (VA, VB)

Arguments:

Name Type Dim I/O Description
VA R/D 3 I First vector.
VB R/D 3 I Second vector.
cross_prod R/D 3 O Cross product of VA and VB.

Algorithm:

This function calculates the cross product of two vectors according to the equations:

cross_prod(1) = v1(2) * v2(3) - v2(2) * v1(3)
cross_prod(2) = v1(3) * v2(1) - v2(3) * v1(1)
cross_prod(3) = v1(1) * v2(2) - v2(1) * v1(2)

Example:

This example calculates cross product of two vectors va = [1. 0. 1.] and vb = [-1 1 -1].

USE booklib
IMPLICIT NONE
REAL, DIMENSION(3) :: va = (/ 1., 0., 1. /)
REAL, DIMENSION(3) :: vb = (/ -1., 1., -1. /)
WRITE (*,'(A,3(2X,F10.4))') ' The cross product is ', &
 cross_prod (va, vb)
END PROGRAM

Result:

The cross product is -1.0000 .0000 1.0000

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

4

deriv (Single/Double Precision Real)

Purpose: To calculate the derivative of a function f(x) at point xo using step size ∆x. If ∆x = 0.0,
then take the derivative with as much accuracy as possible. This subroutine expects the
function f(x) to be passed as a calling argument.

Usage: USE booklib
CALL deriv (F, X0, DX, DFDX, ERROR)

Arguments:

Name Type Dim I/O Description
F R/D

Func.
I Function to take derivative of

X0 R/D I Point at which to take derivative
DX R/D I/O Step size to use when taking derivative (≥

0.0). If DX = 0.0, then the subroutine
calculates an optimal step size, and returns
that step size in this variable.

DFDX R/D O The derivative df(x)/dx
ERROR I 0 Error flag: 0 = No error

1 = DX < 0.

Algorithm:

This subroutine calculates the derivative using the central difference method:

d
dx

f x
f x x f x x

x

(+ / 2) - (- / 2)
() ≈

∆ ∆
∆

The subroutine uses the user-specified ∆x if it is > 0. Otherwise, it tries values of ∆x = 0.1, 0.01,
etc. until roundoff errors start to dominate in the solution. If ∆x is zero, then the actual ∆x used to
calculate the derivative is returned in variable DX.

Example:

This example calculates derivative of function sin(x) at xo = 1.0 using the default step size.

USE booklib
INTRINSIC SIN
INTEGER :: error
REAL :: dfdx, dx = 0.
CALL deriv (SIN, 1.0, dx, dfdx, error)
WRITE (*,1000) dfdx
1000 FORMAT (' The derivative of SIN(X) at X0 = 1.0 is: ', F10.6)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

5

WRITE (*,1010) COS(1.0)
1010 FORMAT (' The theoretical value is: ', F10.6)
WRITE (*,1020) dx
1020 FORMAT (' The step size used is: ', F10.6)

Result:

The derivative of SIN(X) at X0 = 1.0 is: .540316
The theoretical value is: .540302
The step size used is: .001000

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

6

dft (Single / Double Precision Complex)

Purpose: To perform a discrete Fourier transform on complex array ARRAY_IN with the result
returned in array ARRAY_OUT. This subroutine calculates the DFT directly from its
definition.

Usage: USE booklib
CALL dft (ARRAY_IN, ARRAY_OUT, N)

Arguments:

Name Type Dim I/O Description
ARRAY_IN C/Z N I Time series to analyze
ARRAY_OUT Same as

above
N O Frequency spectrum of data set

N I I Number of values in array

Algorithm:

This subroutine calculates the DFT directly from its definition. It is very slow compared to
subroutine fft for large arrays of data. Unlike subroutine fft, it does not require that the number of
input points be a power of 2. If there are N input values, tk is the kth value in the input time
sequence, and Fn is the nth component in the output frequency spectrum, then

F t en k
ikn N

k

N

= −

=

−

∑ 2

0

1
π /

WARNING: This subroutine is very slow for large array sizes. It is included in the library to
support homework problems only. For real work, use subroutine fft instead.

Example:

This example calculates the frequency spectrum of a 16-point complex data set consisting of all
(1.0,0.0). Because this data set is constant, the peak of the frequency spectrum of the data should
be 0 Hz (DC).

USE booklib
COMPLEX, DIMENSION(16) :: array_in(16) = (/ ((1.,0.), i=1,16) /)
COMPLEX, DIMENSION(16) :: array_out(16)
CALL dft (array_in, array_out, 16)
WRITE (*,1000) (i,array_out(i), i=1,16)
1000 FORMAT (' array_out(',I2,') = (',F10.4,',',F10.4,')')

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

7

Result:

array_out(1) = (16.0000, 0.0000)
array_out(2) = (0.0000, 0.0000)
array_out(3) = (0.0000, 0.0000)
array_out(4) = (0.0000, 0.0000)
array_out(5) = (0.0000, 0.0000)
array_out(6) = (0.0000, 0.0000)

...
array_out(15) = (0.0000, 0.0000)
array_out(16) = (0.0000, 0.0000)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

8

fft (Single / Double Precision Complex)

Purpose: To perform a fast discrete Fourier transform on complex array ARRAY_IN. The resulting
frequency spectrum is returned in array ARRAY_OUT. The size of the data set in array
ARRAY_IN must be a power of 2 (32, 64, 128, etc.).

Usage: USE booklib
CALL fft (ARRAY_IN, ARRAY_OUT, N, ERROR)

Arguments:

Name Type Dim I/O Description
ARRAY_IN C/Z N I Time series to analyze
ARRAY_OUT Same as

above
N O Frequency spectrum of data set

N I I Number of data points (must be a power of
2)

ERROR I O Error flag: 0 = No error
1 = N not a power of 2

Algorithm:

This subroutine employs a Radix 2, in-place, decimation in frequency algorithm. To avoid
destroying the input data set, it copies the contents of ARRAY_IN to ARRAY_OUT before performing the
FFT. For details, see Oppenheim and Shaffer, Digital Signal Processing, Prentice-Hall, 1975. If
there are N input values, tk is the kth value in the input time sequence, and Fn is the nth component in
the output frequency spectrum, then

F t en k
ikn N

k

N

= −

=

−

∑ 2

0

1
π /

Example:

This example calculates the frequency spectrum of a 16-point complex data set consisting of all
(1.0,0.0). Because this data set is constant, the peak of the frequency spectrum of the data should
be 0 Hz (DC).

USE booklib
INTEGER :: error
COMPLEX, DIMENSION(16) :: array_in(16) = (/ ((1.,0.), i=1,16) /)
COMPLEX, DIMENSION(16) :: array_out(16)
CALL fft (array_in, array_out, 16, error)
WRITE (*,1000) (i,array_out(i), i=1,16)
1000 FORMAT (' array_out(',I2,') = (',F10.4,',',F10.4,')')

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

9

Result:

array_out(1) = (16.0000, 0.0000)
array_out(2) = (0.0000, 0.0000)
array_out(3) = (0.0000, 0.0000)
array_out(4) = (0.0000, 0.0000)
array_out(5) = (0.0000, 0.0000)
array_out(6) = (0.0000, 0.0000)

...
array_out(15) = (0.0000, 0.0000)
array_out(16) = (0.0000, 0.0000)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

10

heapsort (Integer/Single Prec. Real/Double Prec. Real/Character)

Purpose: To sort an array into ascending order using the heapsort algorithm.

Usage: USE booklib
CALL heapsort (ARRAY, N, ERROR)

Arguments:

Name Type Dim I/O Description
ARRAY I/R/D/C N I/O Array to sort
N I I Number of elements in array
ERROR I O Error flag: 0 = No error

1 = N <= 0

Algorithm:

These subroutines sort arrays into ascending order using the heapsort algorithm. This
algorithm is much more efficient than the selection sort algorithm. It should be used instead of the
selection sort whenever large arrays are to be sorted.

Example:

This example declares an integer array iarray and initializes it with 15 values. It uses
subroutine heapsort to sort the array into ascending order.

USE booklib
INTEGER, DIMENSION(15) :: iarray = &
 (/ -100, 0, -20, 1, -20, &
 90, -123, 602, 5, 17, &
 91, -4, 0, 37, -11 /)
INTEGER :: n = 15, error
WRITE (*,*) ' iarray before sorting: '
WRITE (*,'(3X,5I6)') iarray
CALL heapsort (iarray, n, error)
WRITE (*,*) ' iarray after sorting: '
WRITE (*,'(3X,5I6)') iarray

Result:

 iarray before sorting:
 -100 0 -20 1 -20
 90 -123 602 5 17
 91 -4 0 37 -11
 iarray after sorting:
 -123 -100 -20 -20 -11
 -4 0 0 1 5
 17 37 90 91 602

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

11

heapsort_2 (Integer/Single Prec. Real/Double Prec. Real/Character)

Purpose: To sort an array into ascending order while carrying along a second array, using the
heapsort algorithm.

Usage: USE booklib
CALL heapsort_2 (ARRAY, ARRAY_2, N, ERROR)

Arguments:

Name Type Dim I/O Description
ARRAY I/R/D/C N I/O Array to sort
ARRAY_2 Same as

above
N I/O Array to carry along

N I I Number of elements in array
ERROR I O Error flag: 0 = No error

1 = N <= 0

Algorithm:

This subroutine sorts arrays into ascending order using the heapsort algorithm, and carries
along a second array. For example, if ARRAY(i) is moved to the top of array ARRAY, then
ARRAY_2(i) is moved to the top of array ARRAY_2. This subroutine permits a user to sort the
contents of one array according to the values in another one.

Example:

This example declares two integer arrays iarray and ipoint. It initializes iarray with 15
arbitrary values, and ipoint with the numbers 1 through 15. After sorting the arrays with
subroutine heapsort_2, the values in ipoint are pointers to the original locations of the values
in iarray.

USE booklib
INTEGER, DIMENSION(15) :: iarray = &
 (/ -100, 0, -20, 1, -20, &
 90, -123, 602, 5, 17, &
 91, -4, 0, 37, -11 /)
INTEGER, DIMENSION(15) :: ipoint = &
 (/ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 /)
INTEGER :: n = 15, error
CALL heapsort_2 (iarray, ipoint, n, error)
WRITE (*,*) ' Sorted array and original locations: '
WRITE (*,1000) (iarray(i), ipoint(i), I = 1, 15)
1000 FORMAT (3X,2I6,8X,2I6,8X,2I6)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

12

Result:

 Sorted array and original locations:
 -123 7 -100 1 -20 3
 -20 5 -11 15 -4 12
 0 13 0 2 1 4
 5 9 17 10 37 14
 90 6 91 11 602 8

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

13

histogram (Single Precision Real)

Purpose: Subroutine to print a histogram of an input data set on a line printer.

Usage: USE booklib
CALL histogram (DATA1, NPTS, LU, ERROR, NBINS, MINBIN, MAXBIN)

Arguments:

Name Type Dim I/O Description
DATA1 R NPTS I Data set to analyze
NPTS I I Number of points in input data set
LU I I I/o unit to print histogram on.
ERROR I O Error flag: 0 = No error

1 = Too few bins requested (<1)
2 = MAXBIN = MINBIN. These
 values must differ.

NBINS I I Number of bins to accumulate statistics in. If
present, NBINS must be greater than 1. If absent, it
defaults to 20.

MINBIN R I Value of the smallest bin in the histogram. The
default value is the smallest number in the data set.

MAXBIN R I Value of the largest bin in the histogram. The
default value is the largest number in the data set.

Algorithm:

This subroutine calculates the range of values associated with each bin, and then
accumulates statistics on the input data set. It then prints the resulting histogram on the device
specified by i/o unit LU.

Example:

This example uses function g_random1 to generate 10000 random numbers with a normal
distribution, and then plots a histogram of the data using subroutine histogram. Note that the
values of NBINS, MINBIN, and MAXBIN are defaulted.

USE booklib
INTEGER :: error
REAL, DIMENSION(10000) :: data1
DO i = 1, 10000
 data1(i) = g_random1()
END DO
CALL histogram(data1, 10000, 6, error)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

14

Result:

 584 1169
 +-------------+--------------+--------------+--------------+
 <=-3.300000E+00
 -3.000000E+00
 -2.700000E+00 *
 -2.400000E+00 ***
 -2.100000E+00 ******
 -1.800000E+00 ************
 -1.500000E+00 *********************
 -1.200000E+00 *****************************
 -8.999999E-01 **
 -5.999999E-01 **
 -2.999999E-01 **
 1.192093E-07 **
 3.000001E-01 ***
 6.000001E-01 **
 9.000002E-01 ***************************************
 1.200000E+00 *******************************
 1.500000E+00 ********************
 1.800000E+00 ************
 2.100000E+00 *******
 2.400000E+00 ***
 2.700000E+00 **
 3.000000E+00
 >= 3.300000E+00
 +-------------+--------------+--------------+--------------+
 584 1169

 Number of samples = 10000

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

15

idft (Single / Double Precision Complex)

Purpose: To perform an inverse discrete Fourier transform on complex array ARRAY_IN with the
result returned in array ARRAY_OUT. This subroutine calculates the inverse DFT directly
from its definition.

Usage: USE booklib
CALL idft (ARRAY_IN, ARRAY_OUT, N)

Arguments:

Name Type Dim I/O Description
ARRAY_IN C/Z N I Frequency spectrum of data set
ARRAY_OUT Same as

above
N O Resulting time series

N I I Number of values in array

Algorithm:

This subroutine calculates the inverse DFT directly from its definition. It is very slow
compared to subroutine ifft for large arrays of data. Unlike subroutine ifft, it does not require
that the number of input points be a power of 2. If there are N input values, tk is the kth value in the
input time sequence, and Fn is the nth component in the output frequency spectrum, then

F
N

t en k
ikn N

k

N

=
=

−

∑1 2

0

1

 π /

WARNING: This subroutine is very slow for large array sizes. It is included in the library to
support homework problems only. For real work, use subroutine ifft instead.

Example:

This example shows that idft is the inverse of dft. Here, we take both the DFT and the inverse
DFT of a data set, and wind up with the data we started with.

USE booklib
COMPLEX, DIMENSION(16) :: c_in, c_inter, c_out
c_in = (/ (0.,0.), (1.,0.), (2.,0.), (1.,0.), &
 (0.,0.), (-1.,0.), (-2.,0.), (-1.,0.), &
 (0.,0.), (1.,0.), (2.,0.), (1.,0.), &
 (0.,0.), (-1.,0.), (-2.,0.), (-1.,0.) /)
CALL dft (c_in, c_inter, 16)
CALL idft (c_inter, c_out, 16)
WRITE (*,1000) (c_out(i), i=1, 16)
1000 FORMAT (' c_out = ',/,4(' (',F4.1,',',F4.1,')'))

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

16

Result:

 c_out =
 (0.0, 0.0) (1.0, 0.0) (2.0, 0.0) (1.0, 0.0)
 (0.0, 0.0) (-1.0, 0.0) (-2.0, 0.0) (-1.0, 0.0)
 (0.0, 0.0) (1.0, 0.0) (2.0, 0.0) (1.0, 0.0)
 (0.0, 0.0) (-1.0, 0.0) (-2.0, 0.0) (-1.0, 0.0)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

17

ifft (Single / Double Precision Complex)

Purpose: To perform a fast inverse discrete Fourier transform on the frequency spectrum in
complex array ARRAY_IN. The resulting time series is returned in array ARRAY_OUT. The
size of the data set in array ARRAY_IN must be a power of 2 (32, 64, 128, etc.).

Usage: USE booklib
CALL ifft (ARRAY_IN, ARRAY_OUT, N, ERROR)

Arguments:

Name Type Dim I/O Description
ARRAY_IN C/Z N I Frequency spectrum of data set
ARRAY_OUT Same as

above
N O Resulting time series

N I I Number of data points (must be a power of
2)

ERROR I O Error flag: 0 = No error
1 = N not a power of 2

Algorithm:

This subroutine employs a Radix 2, in-place, decimation in frequency algorithm. To avoid
destroying the input data set, it copies the contents of ARRAY_IN to ARRAY_OUT before performing the
inverse FFT. For details, see Oppenheim and Shaffer, Digital Signal Processing, Prentice-Hall,
1975. If there are N input values, tk is the kth value in the input time sequence, and Fn is the nth
component in the output frequency spectrum, then

t
N

F ek n
ikn N

n

N

=
=

−

∑1 2

0

1

 π /

Example:

This example shows that ifft is the inverse of fft. Here, we take both the FFT and the inverse
FFT of a data set, and wind up with the data we started with.

USE booklib
INTEGER :: error
COMPLEX, DIMENSION(16) :: c_in, c_inter, c_out
c_in = (/ (0.,0.), (1.,0.), (2.,0.), (1.,0.), &
 (0.,0.), (-1.,0.), (-2.,0.), (-1.,0.), &
 (0.,0.), (1.,0.), (2.,0.), (1.,0.), &
 (0.,0.), (-1.,0.), (-2.,0.), (-1.,0.) /)
CALL fft (c_in, c_inter, 16, error)
CALL ifft (c_inter, c_out, 16, error)
WRITE (*,1000) (c_out(i), i=1, 16)
1000 FORMAT (' c_out = ',/,4(' (',F4.1,',',F4.1,')'))

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

18

Result:

 c_out =
 (0.0, 0.0) (1.0, 0.0) (2.0, 0.0) (1.0, 0.0)
 (0.0, 0.0) (-1.0, 0.0) (-2.0, 0.0) (-1.0, 0.0)
 (0.0, 0.0) (1.0, 0.0) (2.0, 0.0) (1.0, 0.0)
 (0.0, 0.0) (-1.0, 0.0) (-2.0, 0.0) (-1.0, 0.0)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

19

integ (Single / Double Precision Real)

Purpose: To integrate a function f(x) between points x1 and x2 using rectangles of width ∆x. This
subroutine expects the function f(x) to be passed as a calling argument.

Usage: USE booklib
CALL integ (F, X1, X2, DX, AREA, ERROR)

Arguments:

Name Type Dim I/O Description
F R/D FUN I Name of function to integrate
X1 Same as

above
I Starting point for integration

X2 Same I Ending point for integration
DX Same I Step size for integration
AREA Same O Integrated value
ERROR I O Error flag: 0 = No error

1 = X1 > X2

Algorithm:

This subroutine calculates the area under the curve f(x) by dividing the distance between x1 and x2

into steps of size ∆x and calculating the area under the curve for each step. The area calculation is
done by approximating the area under the curve as a rectangle whose height is the value of f(x) at the
center of the step interval.

Example:

This example uses integ to integrate the intrinsic function sin(x) from 0 to π. (The theoretical
area of this integral is 2.0.)

USE booklib
INTRINSIC SIN
INTEGER :: error
REAL :: x1 = 0., x2 = 3.141592, dx = 0.05, area
CALL integ (SIN, x1, x2, dx, area, error)
WRITE (*,1000) area
1000 FORMAT (' The area under curve SIN(x) from 0. to PI is: ', F10.6)

Result:

The area under curve SIN(x) from 0. to PI is: 2.000208

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

20

integ_d (Single / Double Precision Real)

Purpose: To integrate a discrete function specified by a series of (x,y) values between points x1

and x2, where x1 and x2 both lie within the range of input values in the (x,y) pairs. The
(x,y) pairs must be passed to this subroutine in increasing order of x.

Usage: USE booklib
CALL integ_d (X, Y, NPTS, X1, X2, AREA, ERROR)

Arguments:
Name Type Dim I/O Description

X R/D NPTS I Values of independent variable x
Y Same as X NPTS I Values of dependent variable y
NPTS I I Number of (x,y) values passed to the

subroutine
X1 Same as X I Starting point for integration
X2 Same as X I Ending point for integration
AREA Same O Integrated value
ERROR I O Error flag: 0 = No error

1 = X1 > X2
2 = X1 < X(1)
3 = X1 > X(NPTS)

Algorithm:

This subroutine calculates the area under a curve specified by a series of discrete (x,y) points by
calculating the area under the trapezoids formed by adjacent pairs of (x,y) values.

Example:

This example uses integ_d to integrate the intrinsic function sin(x) from 0 to π. Note that sin(x)
is specified by (x,y) values in a pair of arrays. (The theoretical area of this integral is 2.0.)

USE booklib
INTEGER :: i, npts = 101, error
REAL, DIMENSION(101) :: x, y
REAL :: x1 = 0., x2 = 3.141592, dx, area
dx = (x2 - x1) / REAL(npts - 1)
DO i = 1, npts
 x(i) = dx * REAL(i-1)
 y(i) = SIN(x(i))
END DO
CALL integ_d (x, y, npts, x1, x2, area, error)
WRITE (*,1000) area
1000 FORMAT (' The area under curve SIN(x) from 0. to PI is: ', F10.6)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

21

Result:

The area under curve SIN(x) from 0. to PI is: 1.999836

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

22

interp (Single / Double Precision Real)

Purpose: To linearly interpolate the value yo at position xo, given a set of (x,y) measurements
organized in increasing order of x.

Usage: USE booklib
CALL interp (X, Y, NPTS, X0, Y0, ERROR)

Arguments:
Name Type Dim I/O Description

X R/D NPTS I Values of independent variable x
Y Same as X NPTS I Values of dependent variable y
NPTS I I Number of (x,y) measurements
X0 Same as X I Point at which to interpolate Y0
Y0 Same as X O Interpolated value at point X0
AREA Same O Integrated value
ERROR I O Error flag: 0 = No error

-1 = X0 < X(1)
 1 = X0 > X(NPTS)

Algorithm:
Find points X(I) and X(I+1) that straddle X0
slope ← (Y(I+1)-Y(I)) / (X(I+1)-X(I))
Y0 ← slope * (X0 - X(I)) + Y(I)

This subroutine requires that X0 fall between two points in array X. If X0 is outside the range of the
points in X, the subroutine returns an error. (Also see subroutines spline_fit and spline_int.)

Example:

This example interpolates the value at X0 = 5.2.

USE booklib
INTEGER :: npts = 4, error
REAL, DIMENSION(4) :: x = (/ 3., 4., 5., 6. /)
REAL, DIMENSION(4) :: y = (/ 2.0, 0.9, 0.0, -0.9 /)
REAL :: x0 = 5.2, y0
CALL interp (x, y, npts, x0, y0, error)
WRITE (*,1000) ' x0 = ', x0, ' y0 = ', y0
1000 FORMAT (1X,A,F8.3,A,F8.3)

Result:

 X0 = 5.200 Y0 = -.180

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

23

lcase/ucase (Character)

Purpose: Subroutine to shift a character string to lower/upper case.

Usage: USE booklib
CALL lcase (STRING)
CALL ucase (STRING)

Arguments:
Name Type Dim I/O Description

STRING CHAR I/0 Input: Input character string
Output: Lower/upper case character string

Algorithm:

Subroutine lcase shifts all upper case letters in an input character string to lower case, and
leaves all other letters unchanged. Subroutine ucase shifts all lower case letters in an input
character string to upper case, and leaves all other letters unchanged. They work for both ASCII
and EBCDIC collating sequences.

Example:

USE booklib
CHARACTER(len=30) :: string = 'This is a Test: 12345%!?.'
WRITE (*,'(A,A)') ' Before LCASE: ', string
CALL lcase (string)
WRITE (*,'(A,A)') ' After LCASE: ', string
CALL ucase (string)
WRITE (*,'(A,A)') ' After UCASE: ', string

Result:

Before LCASE: This is a Test: 12345%!?.
After LCASE: this is a test: 12345%!?.
After UCASE: THIS IS A TEST: 12345%!?.

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

24

lsq_fit (Single/Double Precision Real)

Purpose: Subroutine to perform a least-squares fit of an input data set to the nth order polynomial:
y(x) = co + c1 x + c2 x

2 + ... + cn xn.

Usage: USE booklib
CALL lsq_fit (X, Y, NVALS, ORDER, C, ERROR)

Arguments:
Name Type Dim I/O Description

X R/D NVALS I Values of independent variable x
Y Same as X NVALS I Values of dependent variable y
NVALS I I Number of (x,y) measurements
ORDER I I Order (highest power) of polynomial to fit
C Same as X 0:ORDER O Coefficients of least squares fit
ERROR I O Error flag: 0 = No error

1 = Singular equations
2 = Not enough input values
3 = Illegal polynomial order
 specified

Algorithm:

Subroutine lsq_fit performs a least squares fit of an input data set consisting of (x,y) pairs
of data points to an nth order polynomial. The algorithm implemented is described in Exercise 12-
6.

Example:

! This code fits a 3rd order polynomial to 6 input data points.
! The data points were produced by the eqn:
! y(x) = 1. - x + x**2 - x**3
USE booklib
REAL, DIMENSION(6) :: x = (/ 0., 1., 2., 3., 4., 5. /)
REAL, DIMENSION(6) :: y = (/ 1., 0., -5., -20., -51., -104. /)
REAL, DIMENSION(0:3) :: c
INTEGER :: nvals = 6, order = 3, error
CALL lsq_fit (x, y, nvals, order, c, error)
WRITE (*,'(A,4(F10.5,1X))') ' The coefficients are: ', c

Result:

The coefficients are: 0.99999 -0.99999 1.00000 -1.00000

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

25

mat_inv (single prec. real/double prec. real/single complex/double complex)

Purpose: To invert an N x N matrix using Gauss-Jordan elimination and the maximum pivot
technique.

Usage: USE booklib
CALL mat_inv (A, B, NDIM, N, ERROR)

Arguments:
Name Type Dim I/O Description

A R/D/C/Z ndim x ndim I Matrix to invert (May be any kind of real or
complex.)

B Same as A ndim x ndim O Inverse matrix a-1 (Same kind as a.)
NDIM I I Declared size of matrices.
N I I No. of rows and columns actually used in a
ERROR I O Error flag: 0 = No error

1 = No inverse found
(pivot too small)

Algorithm:

This subroutine uses Gauss-Jordan elimination and the maximum pivot technique to construct the
inverse of an n x n matrix. It initializes matrix B to the identity matrix, and then performs Gauss-
Jordan elimination on a copy of matrix A, applying exactly the same operations to matrix B that were
applied to matrix A. When the operation is over and the copy of a contains the identity matrix, B
will contain matrix A-1 . These matrix inversion subroutines suffer from the same conditioning
problems as Gaussian elimination subroutines, so the double precision version will be required for
large and/or ill-conditioned matrices.

Example:

This example declares two 10 x 10 arrays a and b, initializes array a with a 2 x 2 matrix, and
inverts the matrix using subroutine mat_inv.

USE booklib
IMPLICIT NONE
INTEGER, PARAMETER :: ndim = 10
REAL, DIMENSION(ndim,ndim) :: a, b
INTEGER :: error, i, j, n = 2
a(1,1) = 1.; a(2,1) = 2.; a(1,2) = 3.; a(2,2) = 4.
CALL mat_inv (a, b, ndim, n, error)
WRITE (*,1000) ((b(i,j), j=1, n), i=1, n)
1000 FORMAT (1X,'b = ',/,(4X,F10.4,4X,F10.4))

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

26

Result:

b =
 -2.0000 1.5000
 1.0000 -.5000

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

27

nxtmul (Integer)

Purpose: Subroutine to calculate the smallest exponent EXP that satisfies the expression
VALUE <= MUL (= BASE**EXP). This calculation is useful for sizing FFT's, etc.

Usage: USE booklib
CALL NXTMUL (VALUE, BASE, EXP, MUL)

Arguments:
Name Type Dim I/O Description

VALUE I I First matrix to multiply
BASE I I Base value for the exponent
EXP I O Smallest exponent satisfying the inequality

given above
MUL I O The next power of BASE that is greater than

VALUE: MUL = BASE**EXP

Algorithm:

This subroutine calculates successive powers of the base number BASE until one of the
exceeds the value VALUE. When that happens, the subroutine returns both the exponent EXP and the
base raised to the exponent MUL. The subroutine is useful for calculating the next power of two
when working with FFTs. For example, the call

CALL nxtmul (48, 2, EXP, MUL)

would return with EXP = 6 and MUL = 64, since 2**6 = 64, which is greater than 48.

Example:

This example calculates the next power of two greater than the number 997:

USE booklib
INTEGER :: exponent, mult
CALL nxtmul (997, 2, EXP=exponent, MUL=mult)
WRITE (*,1000) exponent, mult
1000 FORMAT (' Exponent = ', I6, ' Multiple = ', I6)

Result:

Exponent = 10 Multiple = 1024

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

28

plot (Single Prec. Real/Double Prec. Real)

Purpose: Subroutine to print a line printer plot of a function.

Usage: USE booklib
CALL plot (DATA1, NPTS, LU, MINAMP, MAXAMP)

Arguments:
Name Type Dim I/O Description

DATA1 R/D NPTS I Data set to plot
NPTS I I Number of points in input data set
LU I I I/O unit to print plot on.
MINAMP Same as

DATA1
I Smallest value to plot. The default value is

the smallest number in the data set.
MAXAMP Same as

DATA1
I Largest value to plot. The default value is

the largest number in the data set.

Algorithm:

This subroutine makes a line printer plot of an input data set on the device specified by i/o
unit LU.

Example:

This example plots the function sin(x) for 0 to 10 in steps of 0.5. Note that the values of MINAMP
and MAXAMP are defaulted.

USE booklib
REAL, DIMENSION(20) :: data1
DO i = 1, 20
 data1(i) = SIN(REAL(i)/2.)
END DO
CALL plot (data1, 20, 6)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

29

Result:

 -0.9775 0.9975
 +-------------------------------+-------------------------------+
 0.4794 | | * |
 0.8415 | | * |
 0.9975 | | *
 0.9093 | | * |
 0.5985 | | * |
 0.1411 | | * |
 -0.3508 | * | |
 -0.7568 | * | |
 -0.9775 * | |
 -0.9589 |* | |
 -0.7055 | * | |
 -0.2794 | * | |
 0.2151 | | * |
 0.6570 | | * |
 0.9380 | | * |
 0.9894 | | *
 0.7985 | | * |
 0.4121 | | * |
 -0.0752 | * | |
 -0.5440 | * | |
 +-------------------------------+-------------------------------+
 -0.9775 0.9975

 Number of Points = 20

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

30

plotxy (Single Prec. Real/Double Prec. Real)

Purpose: Subroutine to print a line printer cross-plot a set of (x,y) data points.

Usage: USE booklib
CALL plotxy (X, Y, NPTS, LU, MINX, MAXX, MINY, MAXY, &

 NBINX, NBINY)

Arguments:
Name Type Dim I/O Description

X R/D NPTS I X values of points to plot.
Y Same as X NPTS I Y values of points to plot.
NPTS I I Number of points in input data set
LU I I I/o unit to print plot on.
MINX Same as X I Smallest X value to plot. The default value

is the smallest number in the data set.
MAXX Same as X I Largest X value to plot. The default value is

the largest number in the data set.
MINY Same as X I Smallest Y value to plot. The default value

is the smallest number in the data set.
MAXY Same as X I Largest Y value to plot. The default value is

the largest number in the data set.
NBINX I I Number of x bins to plot. This value is in

the range 1 ≤ NBINX ≤ 65, and the default is
65.

NBINY I I Number of y bins to plot. This value is in
the range 1 ≤ NBINY ≤ 65, and the default is
65.

Algorithm:

This subroutine makes a line printer plot of an input data set consisting of NPTS pairs of (x,y)
values on the device specified by i/o unit LU.

Example:

This example plots the (x,y) pairs formed by the functions x(t) = sin(t) and y(t) = sin(2t) for t = 0
to 2π in steps of π/20. Note that the values of MINX, MAXX, MINY, and MAXY are defaulted.

USE booklib
REAL, PARAMETER :: pi = 3.141593
REAL, DIMENSION(40) :: x, y
INTEGER :: npts = 40
DO i = 1, NPTS
 x(i) = SIN(REAL(i)*(pi/20.))
 y(i) = SIN(2.*REAL(i)*(pi/20.))
END DO

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

31

CALL plotxy (x, y, npts, 6, NBINX = 41, NBINY = 41)

Result:

 -1.0000 0 1.0000
 +-------------------+-------------------+
 -1.0000 | * * * |
 -.9500 | * | * |
 -.9000 | * | * |
 -.8500 | | |
 -.8000 |* | *|
 -.7500 | | |
 -.7000 * | *
 -.6500 | | |
 -.6000 |* | *|
 -.5500 | | |
 -.5000 | | |
 -.4500 | * | * |
 -.4000 | | |
 -.3500 | | |
 -.3000 | * | * |
 -.2500 | | |
 -.2000 | | |
 -.1500 | * | * |
 -.1000 | | |
 -.0500 | | |
 .0000 | * |
 .0500 | | |
 .1000 | | |
 .1500 | * | * |
 .2000 | | |
 .2500 | | |
 .3000 | * | * |
 .3500 | | |
 .4000 | | |
 .4500 | * | * |
 .5000 | | |
 .5500 | | |
 .6000 |* | *|
 .6500 | | |
 .7000 * | *
 .7500 | | |
 .8000 |* | *|
 .8500 | | |
 .9000 | * | * |
 .9500 | * | * |
 1.0000 | * * * |
 +-------------------+-------------------+
 -1.0000 0 1.0000

 Number of Points = 40

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

32

random_u (Single prec. real function)

random_n (Single prec. real function)

random_r (Single prec. real function)

Purpose: These procedures generate a sequence of pseudorandom numbers. Function random_u
generates numbers uniformly distributed in the range [0,1). Function random_n generates
a normal or Gaussian distribution with zero mean and a standard deviation of 1.0.
Function random_r generates a Rayleigh distribution with a mean of 1.25 and a standard

deviation equal to
4

1
π

− times the mean.

Usage: USE booklib
value = random_u()
value = random_n()
value = random_r()

Arguments:
Name Type Dim I/O Description

none

Algorithm:

Functions random_u, random_n, and random_r generate pseudorandom number sequences
of the specified distributions. These functions are convenient if a random number is needed as a
part of a larger calculation.

Example:

This example uses function random_u to generate 20 random numbers between 0 and 1.

USE booklib
WRITE (*,*) 'Uniform random number sequence:'
DO i = 1, 4
 WRITE (*,'(1X,5F10.6)') (random_u(), j=1,5)
END DO

Result:

Uniform random number sequence:
 0.434307 0.454378 0.914314 0.482636 0.719896
 0.731396 0.896297 0.470225 0.098918 0.326672
 0.703519 0.228887 0.617632 0.079673 0.671855
 0.257803 0.743262 0.741481 0.954373 0.729823

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

33

sgesv (Single Prec. Real)

dgesv (Double Prec. Real)

cgesv (Single Prec. Complex)

zgesv (Double Prec. Complex)

Purpose: To solve a system of N simultaneous equations in N unknowns of the form A*X = B, where
A is an N x N matrix, and B is an N-dimensional column vector. These subroutines can
solve for multiple right hand sides simultaneously, so B can have multiple columns.
These subroutines are from the LAPACK library.

Usage: USE lapack_s
CALL sgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CALL dgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CALL cgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CALL zgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

Arguments:
Name Type Dim I/O Description

N I I Order of the system of equations.
NRHS I I Number of right hand sides, that is the

number of columns in matrix B. NRHS ≥ 1.
A R/D/C/Z LDA x N I/O Coefficients of X
LDA I I Leading dimension of array A.

LDA ≥ MAX(1,N)
IPIV I N O The pivot indices that define the permutation

matrix P; row i of the matrix was
interchanged with IPIV(i).

B Same as A LDB x NRHS I/O Input: the right hand side matrix B.
Output: the solution matrix X.

LDB I I Leading dimension of array B.
LDB ≥ MAX(1,N)

INFO I O Error flag:
= 0: Success
< 0: if INFO = -i, the ith argument had an
illegal value
> 0: if INFO = i, U(i,i) = 0, and the matrix
is singular.

Algorithm:

This subroutine uses LU decomposition with partial pivoting and row interchanges to factor
A as A = P*L*U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular.
The factored form of A is then used to solve the system of equations A*X = B.

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

34

Example:

This example calculates the solution to a 2 x 2 set of equations, and prints the results. The arrays
are declared large enough for a 4 x 4 set of equations, but only a part of each array is used in this
problem.

USE lapack_s
INTEGER :: info, lda = 4, ldb = 4, n = 2, nrhs = 1
INTEGER, DIMENSION(4) :: ipiv
REAL, DIMENSION(4,4) :: a
REAL, DIMENSION(4) :: b = (/ 5., 2., 0., 0. /)
a(1,1) = 1.; a(1,2) = 4.; a(2,1) = 2.; a(2,2) = -3.
CALL sgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
WRITE (*,1000) b(1), b(2)
1000 FORMAT (' The solution is X(1) = ', F10.4, ' and X(2) = ', F10.4)

Result:

The solution is X(1) = 2.0909 and X(2) = .7273

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

35

simul (single prec. real/double prec. real/single complex/double complex)

Purpose: To solve a system of N simultaneous equations in N unknowns of the form AX = B, where A
is an N x N matrix, and B is an N-dimensional column vector.

Usage: USE booklib
CALL simul (A, B, SOLN, NDIM, N, ERROR)

Arguments:
Name Type Dim I/O Description

A R/D/C/Z ndim x ndim I Coefficients of X
B Same as A ndim I Vector of constant terms
SOLN Same as A ndim O Solution to the system of equations
NDIM I I Declared size of arrays.
N I I Order of the system of equations.
ERROR I O Error flag: 0 = No error

1 = Singular equations

Algorithm:

This subroutine uses the Gauss-Jordan method with maximum pivots for finding the solution
to a system of simultaneous equations.

Example:

This example calculates the solution to a 2 x 2 set of equations, and prints the results. The arrays
are declared large enough for a 4 x 4 set of equations, but only a part of each array is used in this
problem.

USE booklib
INTEGER :: error
REAL, DIMENSION(4,4) :: a
REAL, DIMENSION(4) :: b = (/ 5., 2., 0., 0. /), soln
a(1,1) = 1.; a(1,2) = 4.; a(2,1) = 2.; a(2,2) = -3.
CALL simul (a, b, soln, 4, 2, error)
WRITE (*,1000) soln(1), soln(2)
1000 FORMAT (' The solution is X(1) = ', F10.4, ' and X(2) = ', F10.4)

Result:

The solution is X(1) = 2.0909 and X(2) = .7273

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

36

sinc (Single Prec. Real / Double Prec. Real function)

Purpose: To calculate the sinc function: sinc(x) = sin(x) / x.

Usage: USE booklib
result = sinc(X)

Arguments:
Name Type Dim I/O Description
X R/D I Value for which to calculate the sinc function

Algorithm:

This function calculates the function sinc(x) =
sin()x

x
, with special handling of the

computation near x = 0. The result is of the same kind as the input argument (single or double
precision real).

Example:

This example calculates sinc(x) for an arbitrary value of x, and prints the results.

REAL ::x
WRITE (*,*) 'Enter value of X: '
READ (*,*) x
WRITE (*,1000) x, sinc(x)
1000 FORMAT (1X,' sinc(',F10.4,') = ', F10.4)

Result:

Enter value of X:
1.0
 SINC(1.0000) = .8415

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

37

spline_fit (single prec. real/double prec. real)

Purpose: To perform a cubic spline fit to an input data set.

Usage: USE booklib
CALL spline_fit (X, Y, N, YPP, ERROR, YP1, YPN)

Arguments:
Name Type Dim I/O Description

X R/D N I X coefficients of data to fit. X values must
be monotonically increasing.

Y Same as A N I Y coefficients of data to fit
N I I Number of data points
YPP Same as A N O Second derivatives of curves at each point
ERROR I O Error flag: 0 = No error

1 = Insufficient data
YP1 Same as A I First derivative at the beginning of the data

set (optional)
YPN Same as A I First derivative at the end of the data set

(optional)

Algorithm:

This subroutine calculates a set of polynomials that fit an input data set of (x,y) points with a
curve which is smooth in the first derivative and continuous in the second derivative, both within an
interval and at its boundaries. There are two possible boundary conditions at the at the edges of the
data set. If the values of first derivatives are specified at those points, then the equations will be
constrained to have those values at the boundaries. If not, then the subroutine will solve for the
natural cubic spline, which satisfies the condition that the second derivatives at the beginning and
end of the data set are 0.

Example:

This example calculates the spline fit coefficients for ten points from the function f x x() sin= ,
and compares the resulting derivatives values calculated analytically.

USE booklib
INTEGER, PARAMETER :: n = 10
REAL, PARAMETER :: pi = 3.141593
REAL,DIMENSION(n) :: x, y, ypp
INTEGER :: error
REAL :: yp1, ypn
DO i = 1, n ! Generate input pts
 x(i) = REAL(i-1) * pi / REAL(n-1)
 y(i) = sin(x(i))
END DO
yp1 = cos(x(1)) ! Set deriv at start
ypn = cos(x(n)) ! Set deriv at end

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

38

call spline_fit(x,y,n,ypp,error,yp1,ypn) ! Fit curves

WRITE (*,'(18X,A,T35,A)') 'Spline','Actual'
WRITE (*,'(T6,A,T17,A,T33,A)') 'angle','2nd deriv','2nd deriv'
DO i= 1, n
 WRITE (*,'(1X,F8.2,2F16.6)') x(i),ypp(i),-sin(x(i))
END DO

Result:

 Spline Actual
 angle 2nd deriv 2nd deriv
 0.00 -0.000831 0.000000
 0.35 -0.345284 -0.342020
 0.70 -0.649401 -0.642788
 1.05 -0.874837 -0.866026
 1.40 -0.994851 -0.984808
 1.75 -0.994850 -0.984808
 2.09 -0.874840 -0.866025
 2.44 -0.649396 -0.642787
 2.79 -0.345289 -0.342020
 3.14 -0.000825 0.000000

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

39

spline_int (single prec. real/double prec. real)

Purpose: To interpolate points using the cubic spline fit polynomials calculated by subroutine
spline_fit.

Usage: USE booklib
CALL spline_int (X, Y, N, YPP, X0, Y0, ERROR)

Arguments:
Name Type Dim I/O Description

X R/D N I X coefficients of data to fit. X values must
be monotonically increasing.

Y Same as A N I Y coefficients of data to fit
N I I Number of data points
YPP Same as A N I Second derivatives of curve at each point,

calculated by subroutine spline_fit
X0 Same as A I Point at which to interpolate value
Y0 Same as A O Interpolated value
ERROR I O Error flag: 0 - No error

1 - ∆x = 0

Algorithm:

This subroutine calculates an interpolated value Y0 at position X0 using the cubic spline
coefficients calculated by subroutine spline_fit. It first determines the pair of points which X0
lies between, and then uses the cubic equation for that particular interval to estimate Y0. (Also see
procedure interp.)

Example:

This example interpolates a value at x0 = π/2 from the function f x x() sin= , using cubic spline
coefficients calculated from subroutine spline_fit.

USE booklib
INTEGER, PARAMETER :: n = 10
REAL, PARAMETER :: pi = 3.141593
REAL,DIMENSION(n) :: x, y, ypp
REAL :: yp1, ypn, y0
INTEGER :: error
DO i = 1, n ! Generate input pts
 x(i) = REAL(i-1) * pi / REAL(n-1)
 y(i) = sin(x(i))
END DO
yp1 = cos(x(1)) ! Set deriv at start
ypn = cos(x(n)) ! Set deriv at end
call spline_fit(x,y,n,ypp,error,yp1,ypn) ! Fit curves
call spline_int(x,y,n,ypp,pi/2,y0,error)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

40

WRITE (*,'(1X,2(A,F16.6))') 'Actual = ', sin(pi/2.), &
 ' Interp = ', y0
END PROGRAM

Result:

Actual = 1.000000 Interp = 0.999960

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

41

ssort (Integer/Single Prec. Real/Double Prec. Real/Character)

Purpose: To sort an array into ascending order using the selection sort algorithm.

Usage: USE booklib
CALL ssort (ARRAY, N)

Arguments:
Name Type Dim I/O Description

ARRAY I/R/D/C N I/O Array to sort
N I I Number of elements in array

Algorithm:

This subroutine sorts arrays into ascending order using the selection sort algorithm. This
algorithm is very inefficient for large data sets, and is included here only form comparison to the
better heapsort algorithm. Use the heapsort algorithm instead of this one.

Example:

This example declares an integer array iarray and initializes it with 15 values. It uses
subroutine ssort to sort the array into ascending order.

USE booklib
INTEGER, DIMENSION(15) :: iarray = &
 (/ -100, 0, -20, 1, -20, &
 90, -123, 602, 5, 17, &
 91, -4, 0, 37, -11 /)
INTEGER :: n = 15
WRITE (*,*) ' iarray before sorting: '
WRITE (*,'(3X,5I6)') iarray
CALL ssort (iarray, n)
WRITE (*,*) ' iarray after sorting: '
WRITE (*,'(3X,5I6)') iarray

Result:

 iarray before sorting:
 -100 0 -20 1 -20
 90 -123 602 5 17
 91 -4 0 37 -11
 iarray after sorting:
 -123 -100 -20 -20 -11
 -4 0 0 1 5
 17 37 90 91 602

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

42

statistics (Single Prec. Real/Double Prec. Real)

Purpose: To calculate the user-requested statistical values associated with a data set.

Usage: USE booklib
CALL statistics (A, N, ERROR, AVE, STD_DEV, MEDIAN)

Arguments:
Name Type Dim I/O Description

A R N I Data set to analyze
N I I Number of data points
ERROR I O Error flag: 0 = No error

1 = SD invalid (N = 1)
2 = AVE and SD invalid (N < 1)

AVE R O Average of data set
STD_DEV R O Standard deviation of data set
MEDIAN R O Standard deviation of data set

Algorithm:

This subroutine calculates the average, and standard deviation, and median of an input data
set, of the corresponding optional arguments are included in the subroutine call. The formulas use
are:

x
_
 =

1
N ∑

i=1

N
 xi

σ =

 N ∑
i=1

N
 xi2 -











∑
i=1

N
 xi

2

N(N-1)

and
median = middle value of sorted data set

Example:

This example calculates average and median of a small data set.

USE booklib
REAL :: ave, med
INTEGER :: error
REAL, DIMENSION(7) :: a = (/ 1., 4., 1., -4., 0., 2., 6. /)
CALL statistics (a, 7, error, AVE=ave, MEDIAN=med)
WRITE (*,1000) ave, med
1000 FORMAT (' AVE = ', F10.4,' median = ',F10.4)

Supplemental Library Descriptions to accompany
Fortran 90/95 for Scientists and Engineers, by Stephen J. Chapman

43

Result:

AVE = 1.4286 median = 1.0000

