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Introduction

We want to do our best work, and we want the work we do to have meaning. And, all 
else being equal, we prefer to enjoy ourselves along the way.

Those of us whose work is to write software are incredibly lucky. Building soft-
ware is a guiltless pleasure because we get to use our creative energy to get things 
done. We have arranged our lives to have it both ways; we can enjoy the pure act of 
writing code in sure knowledge that the code we write has use. We produce things 
that matter. We are modern craftspeople, building structures that make up present-
day reality, and no less than bricklayers or bridge builders, we take justifiable pride in 
our accomplishments.

This all programmers share, from the most enthusiastic newbie to the apparently 
jaded elder, whether working at the lightest weight Internet startup or the most staid, 
long-entrenched enterprise. We want to do our best work. We want our work to have 
meaning. We want to have fun along the way.

And so it’s especially troubling when software goes awry. Bad software impedes 
our purpose and interferes with our happiness. Where once we felt productive, now 
we feel thwarted. Where once fast, now slow. Where once peaceful, now frustrated.

This frustration occurs when it costs too much to get things done. Our internal 
calculators are always running, comparing total amount accomplished to overall effort 
expended. When the cost of doing work exceeds its value, our efforts feel wasted. If 
programming gives joy it is because it allows us to be useful, when it becomes pain-
ful it is a sign that we believe we could, and should, be doing more. Our pleasure 
follows in the footsteps of work.

This book is about designing object-oriented software. It is not an academic 
tome, it is a programmer’s story about how to write code. It teaches how to arrange 
software so as to be productive today and to remain so next month and next year. 
It shows how to write applications that can succeed in the present and still adapt 
to the future. It allows you to raise your productivity and reduce your costs for the 
entire lifetime of your applications.



This book believes in your desire to do good work and gives you the tools you 
need to best be of use. It is completely practical and as such is, at its core, a book 
about how to write code that brings you joy.

Who Might Find This Book Useful?
This book assumes that you have at least tried to write object-oriented software. It 
is not necessary that you feel you succeeded, just that you made the attempt in any 
object-oriented (OO) language. Chapter 1, “Object-Oriented Design,” contains a brief 
overview of object-oriented programming (OOP), but its goal is to define common 
terms, not to teach programming.

If you want to learn OO design (OOD) but have not yet done any object-oriented 
programming, at least take a tutorial before reading this book. OOD solves problems; 
suffering from those problems is very nearly a prerequisite for comprehending these 
solutions. Experienced programmers may be able to skip this step, but most readers 
will be happier if they write some OO code before starting this book.

This book uses Ruby to teach OOD but you do not need to know Ruby to under-
stand the concepts herein. There are many code examples but all are quite straight-
forward. If you have programmed in any OO language you will find Ruby easy to 
understand.

If you come from a statically typed OO language like Java or C++ you have 
the background necessary to benefit from reading this book. The fact that Ruby is 
dynamically typed simplifies the syntax of the examples and distills the design ideas 
to their essence, but every concept in this book can be directly translated to a stati-
cally typed OO language.

How to Read This Book
Chapter 1 contains a general overview of the whys, whens, and wherefores of OO 
design, followed by a brief overview of object-oriented programming. This chapter 
stands alone. You can read it first, last, or, frankly, skip it entirely, although if you are 
currently stuck with an application that suffers from lack of design, you may find it 
a comforting tale.

If you have experience writing object-oriented applications and want to jump 
right in, you can safely start with Chapter 2. If you do so and then stumble upon an 
unfamiliar term, come back and browse the “Introduction to Object-Oriented Pro-
gramming” section of Chapter 1, which introduces and defines common OO terms 
used throughout the book.



Chapters 2 through 9 progressively explain object-oriented design. Chapter 2, 
“Designing Classes with a Single Responsibility,” covers how to decide what belongs 
in a single class. Chapter 3, “Managing Dependencies,” illustrates how objects get 
entangled with one another and shows how to keep them apart. These two chapters 
are focused on objects rather than messages.

In Chapter 4, “Creating Flexible Interfaces,” the emphasis begins to shift away 
from object-centric toward message-centric design. Chapter 4 is about defining inter-
faces and is concerned with how objects talk to one another. Chapter 5, “Reducing 
Costs with Duck Typing,” is about duck typing and introduces the idea that objects 
of  different classes may play common roles. Chapter 6, “Acquiring Behavior through 
Inheritance,” teaches the techniques of classical inheritance, which are then used in 
Chapter 7,  “Sharing Role Behavior with Modules,” to create duck typed roles. Chapter 8, 
“Combining Objects with Composition,” explains the technique of building objects via 
composition and provides guidelines for choosing among composition, inheritance, 
and duck-typed role sharing. Chapter 9, “Designing Cost-Effective Tests,” concentrates 
on the design of tests, which it illustrates using code from earlier chapters of the book.

Each of these chapters builds on the concepts of the last. They are full of code 
and best read in order.

How to Use This Book
This book will mean different things to readers of different backgrounds. Those 
already familiar with OOD will find things to think about, possibly encounter some 
new points of view, and probably disagree with a few of the suggestions. Because 
there is no final authority on OOD, challenges to the principles (and to this author) 
will improve the understanding of all. In the end, you must be the arbiter of your own 
designs; it is up to you to question, to experiment, and to choose.

While this book should be of interest to many levels of reader, it is written with 
the particular goal of being accessible to novices. If you are one of those novices, this 
part of the introduction is especially for you. Know this: Object-oriented design is not 
black magic. It is simply things you don’t yet know. The fact that you’ve read this far 
indicates you care about design; this desire to learn is the only prerequisite for benefit-
ing from this book.

Chapters 2 through 9 explain OOD principles and provide very explicit program-
ming rules; these rules will mean different things to novices than they mean to experts. 
If you are a novice, start out by following these rules in blind faith if necessary. This 
early obedience will stave off disaster until you can gain enough experience to make 



your own decisions. By the time the rules start to chafe, you’ll have enough experi-
ence to make up rules of your own, and your career as a designer will have begun.

Software Versions Used in This Book
The examples in this book were written using Ruby 2.4 and tested with Minitest 
5.10.3. Source code for the examples can be found at https://github.com/skmetz/
poodr2.

Register your copy of Practical Object-Oriented Design, Second Edition, on 
the InformIT site for convenient access to updates and/or corrections as they 
become available. To start the registration process, go to informit.com/register 
and log in or create an account. Enter the product ISBN (9780134456478) and 
click Submit. Look on the Registered Products tab for an Access Bonus Content 
link next to this product, and follow that link to access any available bonus 
materials. If you would like to be notified of exclusive offers on new editions 
and updates, please check the box to receive email from us.

https://github.com/skmetz/poodr2
https://github.com/skmetz/poodr2
http://informit.com/register


Chapter 1
Object-Oriented Design

The world is procedural. Time flows forward and events, one by one, pass by. Your 
morning procedure may be to get up, brush your teeth, make coffee, dress, and then 
get to work. These activities can be modeled using procedural software; because you 
know the order of events, you can write code to do each thing and then quite delib-
erately string the things together, one after another.

The world is also object-oriented. The objects with which you interact might 
include a spouse and a cat, or an old car and a pile of bike parts in the garage, or 
your ticking heart and the exercise plan you use to keep it healthy. Each of these 
objects comes equipped with its own behavior, and while some of the interactions 
between them might be predictable, it is entirely possible for your spouse to unex-
pectedly step on the cat, causing a reaction that rapidly raises everyone’s heart rate 
and gives you new appreciation for your exercise regimen.

In a world of objects, new arrangements of behavior emerge naturally. You don’t 
have to explicitly write code for the spouse_steps_on_cat procedure; all you need 
is a spouse object that takes steps and a cat object that does not like being stepped 
on. Put these two objects into a room together and unanticipated combinations of 
behavior will appear.

This book is about designing object-oriented software, and how it views the 
world as a series of spontaneous interactions between objects. Object-oriented design 
(OOD) requires that you shift from thinking of the world as a collection of predefined 
procedures to modeling the world as a series of messages that pass between objects. 
Failures of OOD might look like failures of coding technique, but they are actually 
failures of perspective. The first requirement for learning how to do object-oriented 
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design is to immerse yourself in objects; once you acquire an object-oriented perspec-
tive, the rest follows naturally.

This book guides you through the immersion process. This chapter starts with 
a general discussion of OOD. It argues the case for design and then proceeds to 
describe when to do it and how to judge it. The chapter ends with a brief overview of 
object-oriented programming that defines the terms used throughout the book.

1.1 In Praise of Design
Software gets built for a reason. The target application—whether a trivial game or a 
program to guide radiation therapy—is the entire point. If painful programming were 
the most cost-effective way to produce working software, programmers would be 
morally obligated to suffer stoically or to find other jobs.

Fortunately, you do not have to choose between pleasure and productivity. The 
programming techniques that make code a joy to write overlap with those that most 
efficiently produce software. The techniques of object-oriented design solve both the 
moral and the technical dilemmas of programming; following them produces cost-
effective software using code that is also a pleasure to work on.

1.1.1 The Problem Design Solves
Imagine writing a new application. Imagine that this application comes equipped 
with a complete and correct set of requirements. And if you will, imagine one more 
thing: once written, this application need never change.

For this case, design does not matter. Like a circus performer spinning plates in a 
world without friction or gravity, you could program the application into motion and 
then stand back proudly and watch it run forever. No matter how wobbly, the plates 
of code would rotate on and on, teetering round and round but never quite falling.

As long as nothing changed.
Unfortunately, something will change. It always does. The customers didn’t know 

what they wanted, they didn’t say what they meant. You didn’t understand their 
needs, you’ve learned how to do something better. Even applications that are perfect 
in every way are not stable. The application was a huge success, now everyone wants 
more. Change is unavoidable. It is ubiquitous, omnipresent, and inevitable.

Changing requirements are the programming equivalent of friction and gravity. 
They introduce forces that apply sudden and unexpected pressures that work against 
the best-laid plans. It is the need for change that makes design matter.

Applications that are easy to change are a pleasure to write and a joy to extend. 
They’re flexible and adaptable. Applications that resist change are just the opposite; 
every change is expensive and each makes the next cost more. Few difficult-to-change 
applications are pleasant to work on. The worst of them gradually become personal 
horror films where you star as a hapless programmer, running madly from one spin-
ning plate to the next, trying to stave off the sound of crashing crockery.
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1.1.2 Why Change Is Hard
Object-oriented applications are made up of parts that interact to produce the behav-
ior of the whole. The parts are objects; interactions are embodied in the messages that 
pass between them. Getting the right message to the correct target object requires 
that the sender of the message know things about the receiver. This knowledge 
creates dependencies between the two, and these dependencies stand in the way 
of change.

Object-oriented design is about managing dependencies. It is a set of coding 
techniques that arrange dependencies such that objects can tolerate change. In the 
absence of design, unmanaged dependencies wreak havoc because objects know too 
much about one another. Changing one object forces change upon its collaborators, 
which in turn forces change upon its collaborators, ad infinitum. A seemingly insig-
nificant enhancement can cause damage that radiates outward in overlapping concen-
tric circles, ultimately leaving no code untouched.

When objects know too much, they have many expectations about the world in 
which they reside. They’re picky, they need things to be “just so.” These expectations 
constrain them. The objects resist being reused in different contexts; they are painful 
to test and susceptible to being duplicated.

In a small application, poor design is survivable. Even if everything is connected 
to everything else, if you can hold it all in your head at once, you can still improve 
the application. The problem with poorly designed small applications is that if they 
are successful, they grow up to be poorly designed big applications. They gradually 
become tar pits in which you fear to tread lest you sink without a trace. Changes that 
should be simple may cascade around the application, breaking code everywhere and 
requiring extensive rewriting. Tests are caught in the crossfire and begin to feel like a 
hindrance rather than a help.

1.1.3 A Practical Definition of Design
Every application is a collection of code; the code’s arrangement is the design. Two 
isolated programmers, even when they share common ideas about design, can be 
relied upon to solve the same problem by arranging code in different ways. Design is 
not an assembly line where similarly trained workers construct identical widgets; it’s 
a studio where like-minded artists sculpt custom applications. Design is thus an art, 
the art of arranging code.

Part of the difficulty of design is that every problem has two components. You 
must not only write code for the feature you plan to deliver today, you must also cre-
ate code that is amenable to being changed later. For any period of time that extends 
past initial delivery of the beta, the cost of change will eventually eclipse the original 
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cost of the application. Because design principles overlap and every problem involves 
a shifting timeframe, design challenges can have a bewildering number of possible 
solutions. Your job is one of synthesis; you must combine an overall understanding of 
your application’s requirements with knowledge of the costs and benefits of design 
alternatives and then devise an arrangement of code that is cost effective in the pre-
sent and will continue to be so in the future.

Taking the future into consideration might seem to introduce a need for psychic 
abilities normally considered outside the realm of programming. Not so. The future 
that design considers is not one in which you anticipate unknown requirements and 
preemptively choose one from among them to implement in the present. Program-
mers are not psychics. Designs that anticipate specific future requirements almost 
always end badly. Practical design does not anticipate what will happen to your 
application; it merely accepts that something will and that, in the present, you cannot 
know what. It doesn’t guess the future; it preserves your options for accommodating 
the future. It doesn’t choose; it leaves you room to move.

The purpose of design is to allow you to do design later, and its primary goal is 
to reduce the cost of change.

1.2 The Tools of Design
Design is not the act of following a fixed set of rules, it’s a journey along a branching 
path wherein earlier choices close off some options and open access to others. Dur-
ing design, you wander through a maze of requirements where every juncture repre-
sents a decision point that has consequences for the future.

Just as a sculptor has chisels and files, an object-oriented designer has tools—
principles and patterns.

1.2.1 Design Principles
The SOLID acronym, coined by Michael Feathers and popularized by Robert Mar-
tin, represents five of the most well-known principles of object-oriented design: 
Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation, and 
Dependency Inversion. Other principles include Andy Hunt and Dave Thomas’s 
DRY (Don’t Repeat Yourself) and the Law of Demeter (LoD) from the Demeter 
project at Northeastern University.

The principles themselves will be dealt with throughout this book; the question 
for now is, “Where on earth did they come from?” Is there empirical proof that these 
principles have value, or are they merely someone’s opinion that you may freely dis-
count? In essence, who says?
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All of these principles got their start as choices someone made while writing 
code. Early OO programmers noticed that some code arrangements made their lives 
easier while others made them harder. These experiences led them to develop opin-
ions about how to write good code.

Academics eventually got involved and, needing to write dissertations, decided 
to quantify “goodness.” This desire is laudable. If we could count things, that is, com-
pute metrics about our code and correlate these metrics to high- or low-quality appli-
cations (for which we also need an objective measure), we could do more of the 
things that lower costs and fewer of things that raise them. Being able to measure 
quality would change object-oriented design from infinitely disputed opinion into 
measurable science.

In the 1990s, Chidamber and Kemerer1 and Basili2 did exactly this. They took 
object-oriented applications and tried to quantify the code. They named and meas-
ured things like the overall size of classes, the entanglements that classes have with 
one another, the depth and breadth of inheritance hierarchies, and the number of 
methods that get invoked as a result of any message sent. They picked code arrange-
ments they thought might matter, devised formulas to count them, and then corre-
lated the resulting metrics to the quality of the enclosing applications. Their research 
shows a definite correlation between use of these techniques and high-quality code.

While these studies seem to prove the validity of the design principles, they 
come, for any seasoned programmer, with a caveat. These early studies examined 
very small applications written by graduate students; this alone is enough to justify 
viewing the conclusions with caution. The code in these applications may not be rep-
resentative of real-world OO applications.

However, it turns out, caution is unnecessary. In 2001, Laing and Coleman exam-
ined several NASA Goddard Space Flight Center applications (rocket science) with the 
express intention of finding “a way to produce cheaper and higher quality software.”3 
They examined three applications of varying quality, one of which had 1,617 classes 
and more than 500,000 lines of code. Their research supports the earlier studies and 
further confirms that design principles matter.

Even if you never read these studies, you can be assured of their conclusions. 
The principles of good design represent measurable truths, and following them will 
improve your code.

1. Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object-oriented design. IEEE 
Trans. Softw. Eng. 20(6): 476–493.

2. Basili Technical Report (1995). Univ. of Maryland, Dep. of Computer Science, College Park, MD, 
20742 USA. April 1995. A Validation of Object-Oriented Design Metrics as Quality Indicators.

3. Laing, Victor, & Coleman, Charles. (2001). Principal Components of Orthogonal Object-
Oriented Metrics (323-08-14).
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1.2.2 Design Patterns
In addition to principles, object-oriented design involves patterns. The so-called Gang 
of Four (GoF), Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, wrote 
the seminal work on patterns in 1995. Their Design Patterns book describes patterns 
as “simple and elegant solutions to specific problems in object-oriented software 
design” that you can use to “make your own designs more flexible, modular, reusable, 
and understandable.”4

The notion of design patterns is incredibly powerful. To name common prob-
lems and to solve the problems in common ways brings the fuzzy into focus. Design 
Patterns gave an entire generation of programmers the means to communicate and 
collaborate.

Patterns have a place in every designer’s toolbox. Each well-known pattern is a 
near perfect open-source solution for the problem it solves. However, the popularity 
of patterns led to a kind of pattern abuse by novice programmers, who, in an excess 
of well-meaning zeal, applied perfectly good patterns to the wrong problems. Pattern 
misapplication results in complicated and confusing code, but this result is not the 
fault of the pattern itself. A tool cannot be faulted for its use; the user must master 
the tool.

This book is not about patterns; however, it will prepare you to understand them 
and give you the knowledge to choose and use them appropriately.

1.3 The Act of Design
With the discovery and propagation of common design principles and patterns, all 
OOD problems would appear to have been solved. Now that the underlying rules are 
known, how hard can designing object-oriented software be?

Pretty hard, it turns out. If you think of software as custom furniture, then prin-
ciples and patterns are like woodworking tools. Knowing how software should look 
when it’s done does not cause it to build itself; applications come into existence 
because some programmer applied the tools. The end result, be it a beautiful cabinet 
or a rickety chair, reflects its programmer’s experience with the tools of design.

1.3.1 How Design Fails
The first way design fails is due to lack of it. Programmers initially know little about 
design. This is not a deterrent, however, as it is possible to produce working applica-
tions without knowing the first thing about design.

4. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable 
Object-Oriented Software. New York, NY: Addison-Wesley.
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This is true of any OO language, but some languages are more susceptible than 
others, and an approachable language like Ruby is especially vulnerable. Ruby is very 
friendly; the language permits nearly anyone to create scripts to automate repetitive 
tasks, and an opinionated framework like Ruby on Rails puts web applications within 
every programmer’s reach. The syntax of the Ruby language is so gentle that anyone 
blessed with the ability to string thoughts into logical order can produce working 
applications. Programmers who know nothing about object-oriented design can be 
very successful in Ruby.

However, successful but undesigned applications carry the seeds of their own 
destruction; they are easy to write but gradually become impossible to change. A pro-
grammer’s past experience does not predict the future. The early promise of painless 
development gradually fails, and optimism turns to despair as programmers begin 
to greet every change request with “Yes, I can add that feature, but it will break 
everything.”

Slightly more experienced programmers encounter different design failures. 
These programmers are aware of OOD techniques but do not yet understand how 
to apply them. With the best of intentions, these programmers fall into the trap of 
 overdesign. A little bit of knowledge is dangerous; as their knowledge increases 
and hope returns, they design relentlessly. In an excess of enthusiasm, they apply 
 principles inappropriately and see patterns where none exist. They construct compli-
cated, beautiful castles of code and then are distressed to find themselves hemmed 
in by stone walls. You can recognize these programmers because they begin to greet 
change requests with “No, I can’t add that feature; it wasn’t designed to do that.”

Finally, object-oriented software fails when the act of design is separated from 
the act of programming. Design is a process of progressive discovery that relies on 
a feedback loop. This feedback loop should be timely and incremental; the iterative 
techniques of the Agile software movement (http://agilemanifesto.org/) are thus per-
fectly suited to the creation of well-designed OO applications. The iterative nature of 
Agile development allows design to adjust regularly and to evolve naturally. When 
design is dictated from afar, none of the necessary adjustments can occur and early 
failures of understanding get cemented into the code. Programmers who are forced 
to write applications that were designed by isolated experts begin to say, “Well, I can 
certainly write this, but it’s not what you really want and you will eventually be sorry.”

1.3.2 When to Design
Agile believes that your customers can’t define the software they want before seeing 
it, so it’s best to show them sooner rather than later. If this premise is true, then it 
logically follows that you should build software in tiny increments, gradually iterating 
your way into an application that meets the customer’s true need. Agile believes that 
the most cost-effective way to produce what customers really want is to collaborate 

http://agilemanifesto.org/
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with them, building software one small bit at a time such that each delivered bit has 
the opportunity to alter ideas about the next. The Agile experience is that this collab-
oration produces software that differs from what was initially imagined; the resulting 
software could not have been anticipated by any other means.

If Agile is correct, two other things are also true. First, there is absolutely no 
point in doing a Big Up Front Design (BUFD) (because it cannot possibly be correct), 
and second, no one can predict when the application will be done (because you don’t 
know in advance what it will eventually do).

It should come as no surprise that some people are uncomfortable with Agile. 
“We don’t know what we’re doing” and “We don’t know when we’ll be done” can be 
a difficult sell. The desire for BUFD persists because, for some, it provides a feeling of 
control that would otherwise be lacking. Comforting though this feeling may be, it is 
a temporary illusion that will not survive the act of writing the application.

BUFD inevitably leads to an adversarial relationship between customers and pro-
grammers. Because any big design created in advance of working software cannot 
be correct, to write the application as specified guarantees that it will not meet the 
customer’s needs. Customers discover this when they attempt to use it. They then 
request changes. Programmers resist these changes because they have a schedule to 
meet, one that they are very likely already behind. The project gradually becomes 
doomed as participants switch from working to make it succeed to striving to avoid 
being blamed for its failure.

The rules of this engagement are clear to all. When a project misses its delivery 
deadline, even if this happened because of changes to the specification, the program-
mers are at fault. If, however, it is delivered on time but doesn’t fulfill the actual need, 
the specification must have been wrong, so the customer gets the blame. The design 
documents of BUFD start out as roadmaps for application development but gradually 
become the focus of dissent. They do not produce quality software; instead they sup-
ply fiercely parsed words that will be invoked in the final, scrambling defense against 
being the person who ends up holding the hot potato of blame.

If insanity is doing the same thing over and over again and expecting different 
results, the Agile Manifesto was where we collectively began to regain our senses. 
Agile works because it acknowledges that certainty is unattainable in advance of the 
application’s existence; Agile’s acceptance of this truth allows it to provide strategies 
to overcome the handicap of developing software while knowing neither the target 
nor the timeline.

However, just because Agile says “don’t do a big up front design” doesn’t mean it 
tells you to do no design at all. The word design when used in BUFD has a different 
meaning than when used in OOD. BUFD is about completely specifying and totally 
documenting the anticipated future inner workings of all of the features of the pro-
posed application. If there’s a software architect involved, this may extend to deciding, 
in advance, how to arrange all of the code. OOD is concerned with a much narrower 
domain. It is about arranging what code you have so that it will be easy to change.
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Agile processes guarantee change, and your ability to make these changes 
depends on your application’s design. If you cannot write well-designed code, you’ll 
have to rewrite your application during every iteration.

Agile thus does not prohibit design, it requires it. Not only does it require design, 
it requires really good design. It needs your best work. Its success relies on simple, 
flexible, and malleable code.

1.3.3 Judging Design
In the days of yore, programmers were sometimes judged by the number of lines 
of code (referred to as source lines of code, or SLOC) they produced. It’s obvious 
how this metric came to be; any boss who thinks of programming as an assembly 
line where similarly trained workers labor to construct identical widgets can easily 
develop a belief that individual productivity can be judged by simply weighing out-
put. For managers in desperate need of a reliable way to compare programmers and 
evaluate software, SLOC, for all its obvious problems, was far better than nothing; it 
was at least a reproducible measure of something.

This metric was clearly not developed by programmers. While SLOC may provide 
a yardstick by which to measure individual effort and application complexity, it says 
nothing about overall quality. It penalizes the efficient programmer while rewarding 
the verbose and is ripe to be gamed by the expert to the detriment of the underly-
ing application. If you know that the novice programmer sitting next to you will be 
thought more productive because he or she writes a lot of code to produce a feature 
that you could produce with far fewer lines, what is your response? This metric alters 
the reward structure in ways that harm quality.

In the modern world, SLOC is a historical curiosity that has largely been replaced 
by newer metrics. There are numerous Ruby gems (a Google search on ruby metrics 
will turn up the most recent) that assess how well your code follows OOD principles. 
Metrics software works by scanning source code and counting things that predict 
quality. Running a metrics suite against your own code can be illuminating, humbling, 
and sometimes alarming. Seemingly well-designed applications can rack up impres-
sive numbers of OOD violations.

Bad OOD metrics are indisputably a sign of bad design; code that scores poorly 
will be hard to change. Unfortunately, good scores don’t prove the opposite; that is, 
they don’t guarantee that the next change you make will be easy or cheap. The prob-
lem is that it is possible to create beautiful designs that over-anticipate the future. 
While these designs may generate very good OOD metrics, if they anticipate the 
wrong future, they will be expensive to fix when the real future finally arrives. OOD 
metrics cannot identify designs that do the wrong thing in the right way.

The cautionary tale about SLOC gone wrong therefore extends to OOD metrics. 
Take them with a grain of salt. Metrics are useful because they are unbiased and 
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produce numbers from which you can infer something about software; however, they 
are not direct indicators of quality but are proxies for a deeper measurement. The 
ultimate software metric would be cost per feature over the time interval that matters, 
but this is not easy to calculate. Cost, feature, and time are individually difficult to 
define, track, and measure.

Even if you could isolate an individual feature and track all of its associated costs, 
the time interval that matters affects how code should be judged. Sometimes the 
value of having the feature right now is so great that it outweighs any future increase 
in costs. If lack of a feature will force you out of business today, it doesn’t matter how 
much it will cost to deal with the code tomorrow; you must do the best you can in the 
time you have. Making this kind of design compromise is like borrowing time from 
the future and is known as taking on technical debt. This is a loan that will eventually 
need to be repaid, quite likely with interest.

Even when you are not intentionally taking on technical debt, design takes time 
and therefore costs money. Because your goal is to write software with the low-
est cost per feature, your decision about how much design to do depends on two 
things: your skills and your timeframe. If design takes half your time this month and 
does not start returning dividends for a year, it may not be worth it. When the act 
of design prevents software from being delivered on time, you have lost. Delivering 
half of a well-designed application might be the same as delivering no application at 
all. However, if design takes half of your time this morning, pays that time back this 
afternoon, and then continues to provide benefits for the lifetime of the application, 
you get a kind of daily compounding interest on your time; this design effort pays off 
forever.

The break-even point for design depends on the programmer. Inexperienced 
programmers who do a lot of anticipatory design may never reach a point where 
their earlier design efforts pay off. Skilled designers who write carefully crafted code 
this morning may save money this afternoon. Your experience likely lies somewhere 
between these extremes, and the remainder of this book teaches skills you can use to 
shift the break-even point in your favor.

1.4 A Brief Introduction to Object-Oriented 
Programming
Object-oriented applications are made up of objects and the messages that pass 
between them. Messages will turn out to be the more important of the two, but in this 
brief introduction (and in the first few chapters of the book), the concepts will get 
equal weight.



111.4 A Brief Introduction to Object-Oriented Programming

1.4.1 Procedural Languages
Object-oriented programming is object-oriented relative to non-object-oriented, or 
procedural, programming. It’s instructive to think of these two styles in terms of 
their differences. Imagine a generic procedural programming language, one in which 
you create simple scripts. In this language, you can define variables, that is, make up 
names and associate those names with bits of data. Once assigned, the associated 
data can be accessed by referring to the variables.

Like all procedural languages, this one knows about a small, fixed set of differ-
ent kinds of data, things like strings, numbers, arrays, files, and so on. These differ-
ent kinds of data are known as data types. Each data type describes a very specific 
kind of thing. The string data type is different from the file data type. The syntax of 
the language contains built-in operations to do reasonable things to the various data 
types. For example, it can concatenate strings and read files.

Because you create variables, you know what kind of thing each holds. Your 
expectations about which operations you can use are based on your knowledge of a 
variable’s data type. You know that you can append to strings, do math with numbers, 
index into arrays, read files, and so on.

Every possible data type and operation already exists; these things are built into 
the syntax of the language. The language might let you create functions (group some 
of the predefined operations together under a new name) or define complex data 
structures (assemble some of the predefined data types into a named arrangement), 
but you can’t make up wholly new operations or brand new data types. What you see 
is all you get.

In this language, as in all procedural languages, there is a chasm between data 
and behavior. Data is one thing, behavior is something completely different. Data gets 
packaged up into variables and then passed around to behavior, which could, frankly, 
do anything to it. Data is like a child that behavior sends off to school every morning; 
there is no way of knowing what actually happens while it is out of sight. The influ-
ences on data can be unpredictable and largely untraceable.

1.4.2 Object-Oriented Languages
Now imagine a different kind of programming language, a class-based object-oriented 
one like Ruby. Instead of dividing data and behavior into two separate, never-the-
twain-shall-meet spheres, Ruby combines them together into a single thing, an object. 
Objects have behavior and may contain data, data to which they alone control access. 
Objects invoke one another’s behavior by sending each other messages.

Ruby has a string object instead of a string data type. The operations that work 
with strings are built into the string objects themselves instead of into the syntax of 
the language. String objects differ in that each contains its own personal string of data, 
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but they are similar in that each behaves like the others. Each string encapsulates, or 
hides, its data from the world. Every object decides for itself how much, or how little, 
of its data to expose.

Because string objects supply their own operations, Ruby doesn’t have to know 
anything in particular about the string data type; it need only provide a general way 
for objects to send messages. For example, if strings understand the concat message, 
Ruby doesn’t have to contain syntax to concatenate strings, it just has to provide a 
way for one object to send concat to another.

Even the simplest application will probably need more than one string or num-
ber or file or array. As a matter of fact, while it’s true that you may occasionally need 
a unique, individual snowflake of an object, it’s far more common to desire to manu-
facture a bunch of objects that have identical behavior but encapsulate different data.

Class-based OO languages like Ruby allow you to define a class that provides 
a blueprint for the construction of similar objects. A class defines methods (defini-
tions of behavior) and attributes (definitions of variables). Methods get invoked in 
response to messages. The same method name can be defined by many different 
objects; it’s up to Ruby to find and invoke the right method of the correct object for 
any sent message.

Once the String class exists, it can be used to repeatedly instantiate, or create, 
new instances of a string object. Every newly instantiated String implements the 
same methods and uses the same attribute names, but each contains its own personal 
data. They share the same methods, so they all behave like Strings; they contain 
different data, so they represent different ones.

The String class defines a type that is more than mere data. Knowing an 
object’s type lets you have expectations about how it will behave. In a procedural 
language, variables have a single data type; knowledge of this data type lets you have 
expectations about which operations are valid. In Ruby, an object may have many 
types, one of which will always come from its class. Knowledge of an object’s type(s) 
therefore lets you have expectations about the messages to which it responds.

Ruby comes with a number of predefined classes. The most immediately rec-
ognizable are those that overlap the data types used by procedural languages. For 
example, the String class defines strings, the Integer class, integers. There’s a pre-
existing class for every data type that you would expect a programming language to 
supply. However, object-oriented languages are themselves built using objects, and 
here’s where things begin to get interesting.

The String class, that is, the blueprint for new string objects, is itself an object; 
it’s an instance of the Class class. Just as every string object is a data-specific instance 
of the String class, every class object (String, Integer, ad infinitum) is a data-
specific instance of the Class class. The String class manufactures new strings, the 
Class class manufactures new classes.
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OO languages are thus open-ended. They don’t limit you to a small set of built-in 
types and pre-predefined operations; you can invent brand new types of your own. 
Each OO application gradually becomes a unique programming language that is spe-
cifically tailored to your domain.

Whether this language ultimately brings you pleasure or gives you pain is a mat-
ter of design and the concern of this book.

1.5 Summary
If an application lives long enough, that is, if it succeeds, its biggest problem will 
become that of dealing with change. Arranging code to efficiently accommodate 
change is a matter of design. The most visible elements of design are principles and 
patterns, but unfortunately even applying principles correctly and using patterns 
appropriately does not guarantee the creation of an easy-to-change application.

OO metrics expose how well an application follows OOD principles. Bad metrics 
strongly imply future difficulties; however, good metrics are less helpful. A design that 
does the wrong thing might produce great metrics but may still be costly to change.

The trick to getting the most bang for your design buck is to acquire an under-
standing of the theories of design and to apply these theories appropriately, at the 
right time, and in the right amounts. Design relies on your ability to translate theory 
into practice.

What is the difference between theory and practice?
In theory, there is none. If theory were practice, you could learn the rules of 

OOD, apply them consistently, and create perfect code from this day forward; your 
work here would be done.

However, no matter how deeply theory believes this to be true, practice knows 
better. Unlike theory, practice gets its hands dirty. It is practice that lays bricks, builds 
bridges, and writes code. Practice lives in the real world of change, confusion, and 
uncertainty. It faces competing choices and, grimacing, chooses the lesser evil; it 
dodges, it hedges, it robs Peter to pay Paul. It makes a living by doing the best it can 
with what it has.

Theory is useful and necessary and has been the focus of this chapter. But 
enough already; it’s time for practice.



Chapter 2
Designing Classes with a 
Single Responsibility

The foundation of an object-oriented system is the message, but the most visible 
organizational structure is the class. Messages are at the core of design, but because 
classes are so obvious, this chapter starts small and concentrates on how to decide 
what belongs in a class. The design emphasis will gradually shift from classes to mes-
sages over the next several chapters.

What are your classes? How many should you have? What behavior will they 
implement? How much do they know about other classes? How much of themselves 
should they expose?

These questions can be overwhelming. Every decision seems both permanent and 
fraught with peril. Fear not. At this stage, your first obligation is to take a deep breath 
and insist that it be simple. Your goal is to model your application, using classes, such 
that it does what it is supposed to do right now and is also easy to change later.

These are two very different criteria. Anyone can arrange code to make it work 
right now. Today’s application can be beaten into submission by sheer force of will. 
It’s a standing target at a known range. It is at your mercy.

Creating an easy-to-change application, however, is a different matter. Your appli-
cation needs to work right now just once; it must be easy to change forever. This 
quality of easy changeability reveals the craft of programming. Achieving it takes 
knowledge, skill, and a bit of artistic creativity.

Fortunately, you don’t have to figure everything out from scratch. Much thought 
and research has gone into identifying the qualities that make an application easy to 
change. The techniques are simple; you only need to know what they are and how 
to use them.
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2.1 Deciding What Belongs in a Class
You have an application in mind. You know what it should do. You may even have 
thought about how to implement the most interesting bits of behavior. The problem 
is not one of technical knowledge but of organization; you know how to write the 
code but not where to put it.

2.1.1 Grouping Methods into Classes
In a class-based OO language like Ruby, methods are defined in classes. The classes 
you create will affect how you think about your application forever. They define a 
virtual world, one that constrains the imagination of everyone downstream. You are 
constructing a box that may be difficult to think outside of.

Despite the importance of correctly grouping methods into classes, at this early 
stage of your project you cannot possibly get it right. You will never know less than 
you know right now. If your application succeeds, many of the decisions you make 
today will need to be changed later. When that day comes, your ability to successfully 
make those changes will be determined by your application’s design.

Design is more the art of preserving changeability than it is the act of achieving 
perfection.

2.1.2 Organizing Code to Allow for Easy Changes
Asserting that code should be easy to change is akin to stating that children should 
be polite; the statement is impossible to disagree with, yet it in no way helps a parent 
raise an agreeable child. The idea of easy is too broad; you need concrete definitions 
of easiness and specific criteria by which to judge code.

If you define easy to change as

• changes have no unexpected side effects,

• small changes in requirements require correspondingly small changes in code,

• existing code is easy to reuse, and

• the easiest way to make a change is to add code that in itself is easy to change,

then the code you write should have the following qualities. Code should be

• Transparent

  The consequences of change should be obvious in the code that is changing and 
in distant code that relies upon it.
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• Reasonable

  The cost of any change should be proportional to the benefits the change 
achieves.

• Usable

  Existing code should be usable in new and unexpected contexts.

• Exemplary

  The code itself should encourage those who change it to perpetuate these 
qualities.

Code that is Transparent, Reasonable, Usable, and Exemplary (TRUE) not only 
meets today’s needs but can also be changed to meet the needs of the future. The 
first step in creating code that is TRUE is to ensure that each class has a single, well-
defined responsibility.

2.2 Creating Classes That Have a Single 
Responsibility
A class should do the smallest possible useful thing; that is, it should have a single 
responsibility.

Illustrating how to create a class that has a single responsibility and explaining 
why it matters requires an example, which in turn requires a small divergence into 
the domain of bicycles.

2.2.1 An Example Application: Bicycles and Gears
Bicycles are wonderfully efficient machines, in part because they use gears to provide 
humans with mechanical advantage. When riding a bike, you can choose between a 
small gear (which is easy to pedal but not very fast) or a big gear (which is harder to 
pedal but sends you zooming along). Gears are great because you can use small ones 
to creep up steep hills and big ones to fly back down.

Gears work by changing how far the bicycle travels each time your feet complete 
one circle with the pedals. More specifically, your gear controls how many times the 
wheels rotate for each time the pedals rotate. In a small gear, your feet spin around 
several times to make the wheels rotate just once; in a big gear, each complete pedal 
rotation may cause the wheels to rotate multiple times. See Figure 2.1. 
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The terms small and big are not very precise. To compare different gears, bicy-
clists use the ratio of the numbers of their teeth. These ratios can be calculated with 
this simple Ruby script:

Listing 2.1

1  chainring = 52                    # number of teeth
2  cog       = 11
3  ratio     = chainring / cog.to_f
4  puts ratio                        # => 4.7272727272727275
5 
6  chainring = 30
7  cog       = 27
8  ratio     = chainring / cog.to_f
9  puts ratio                        # => 1.1111111111111112

The gear created by combining a 52-tooth chainring with an 11-tooth cog 
(a 52 × 11) has a ratio of about 4.73. Each time your feet push the pedals around one
time, your wheels will travel around almost five times. The 30 × 27 is a much easier 
gear; each pedal revolution causes the wheels to rotate a little more than once.

Believe it or not, there are people who care deeply about bicycle gearing. You 
can help them out by writing a Ruby application to calculate gear ratios.

The application will be made of Ruby classes, each representing some part of 
the domain. If you read through the preceding description looking for nouns that 
represent objects in the domain, you’ll see words like bicycle and gear. These nouns 
represent the simplest candidates to be classes. Intuition says that bicycle should be 
a class, but nothing in the description lists any behavior for bicycle, so, as yet, it does 
not qualify. Gear, however, has chainrings, cogs, and ratios; that is, it has both data 
and behavior. It deserves to be a class. Taking the behavior from Listing 2.1, you cre-
ate a simple Gear class:

1
2
3
4
5
6
7
8
9

Small Gear Big Gear

Little chainring, big cog.
Feet go around many times, wheel goes
around just once.

A big chainring and little cog.
Feet go around once; wheel goes
around many times.

Figure 2.1 Small versus big bicycle gears
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Listing 2.2

 1 class Gear
 2   attr_reader :chainring, :cog
 3   def initialize(chainring, cog)
 4     @chainring = chainring
 5     @cog       = cog
 6   end
 7 
 8   def ratio
 9     chainring / cog.to_f
10   end
11 end
12 
13 puts Gear.new(52, 11).ratio
14 # => 4.7272727272727275
15 
16 puts Gear.new(30, 27).ratio
17 # => 1.1111111111111112

This Gear class is simplicity itself. You create a new Gear instance by providing 
the numbers of teeth for the chainring and cog. Each instance implements three meth-
ods: chainring, cog, and ratio.

Gear is a subclass of Object and thus inherits many other methods. A Gear 
consists of everything it directly implements plus everything it inherits, so the com-
plete set of behavior, that is, the total set of messages to which it can respond, is 
fairly large. Inheritance matters to your application’s design, but this simple case 
where Gear inherits from object is so basic that, at least for now, you can act as if 
these inherited methods do not exist. More sophisticated forms of inheritance will be 
covered in Chapter 6, “Acquiring Behavior through Inheritance.”

You show your Gear calculator to a cyclist friend, and she finds it useful but 
immediately asks for an enhancement. She has two bicycles; the bicycles have exactly 
the same gearing, but they have different wheel sizes. She would like you to also cal-
culate the effect of the difference in wheels.

A bike with huge wheels travels much farther during each wheel rotation than 
one with tiny wheels, as shown in Figure 2.2. 

Cyclists (at least those in the United States) use something called gear inches to 
compare bicycles that differ in both gearing and wheel size. The formula follows:

• gear inches = wheel diameter * gear ratio

where

• wheel diameter = rim diameter + twice tire diameter.

 1
 2 
 3 
4
 5 
 6 
7
 8 
 9 
10 
11
12
13
14
15
16
17
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You change the Gear class to add this new behavior:

Listing 2.3

 1 class Gear
 2   attr_reader :chainring, :cog, :rim, :tire
 3   def initialize(chainring, cog, rim, tire)
 4     @chainring = chainring
 5     @cog       = cog
 6     @rim       = rim
 7     @tire      = tire
 8   end
 9 
10   def ratio
11     chainring / cog.to_f
12   end
13 
14   def gear_inches
15       # tire goes around rim twice for diameter
16     ratio * (rim + (tire * 2))
17   end
18 end
19 
20 puts Gear.new(52, 11, 26, 1.5).gear_inches
21 # => 137.0909090909091
22 
23 puts Gear.new(52, 11, 24, 1.25).gear_inches
24 # => 125.27272727272728

The new gear_inches method assumes that rim and tire sizes are given in 
inches, which may or may not be correct. With that caveat, the Gear class meets the 
specifications (such as they are) and the code, with the exception of the following 
bug, works.

1
2 
3 
4 
5 
6 
7
8 
9

10 
11 
12 
13
14
15 
16 
17
18
19
20
21
22
23
24

Big wheel — one rotation goes a long way. Small wheel — one rotation goes hardly anywhere.

Figure 2.2 Effect of wheel size on distance traveled
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Listing 2.4

1 puts Gear.new(52, 11).ratio # didn't this used to work?
 2 # => wrong number of arguments (given 2, expected 4)
 3 # => 2_15.rb:3:in `initialize'
 4 # => 2_15.rb:26:in `new'

The bug in Listing 2.4 was introduced when the gear_inches method was 
added. Gear.initialize was changed to require two additional arguments, rim 
and tire. Altering the number of arguments that a method requires breaks all exist-
ing callers of the method. This would normally be a terrible problem that would 
have to be dealt with instantly, but because the application is so small that Gear.
initialize currently has no other callers, the bug can be ignored for now.

Now that a rudimentary Gear class exists, it’s time to ask the question: Is this the 
best way to organize the code?

The answer, as always, is: it depends. If you expect the application to remain 
static forever, Gear in its current form may be good enough. However, you can 
already foresee the possibility of an entire application of calculators for bicyclists. 
Gear is the first of many classes of an application that will evolve. To efficiently 
evolve, code must be easy to change.

2.2.2 Why Single Responsibility Matters
Applications that are easy to change consist of classes that are easy to reuse. Reusable 
classes are pluggable units of well-defined behavior that have few entanglements. An 
application that is easy to change is like a box of building blocks; you can select just 
the pieces you need and assemble them in unanticipated ways.

A class that has more than one responsibility is difficult to reuse. The various 
responsibilities are likely thoroughly entangled within the class. If you want to reuse 
some (but not all) of its behavior, it is impossible to get at only the parts you need. 
You are faced with two options and neither is particularly appealing.

If the responsibilities are so coupled that you cannot use just the behavior you 
need, you could duplicate the code of interest. This is a terrible idea. Duplicated code 
leads to additional maintenance and increases bugs. If the class is structured such 
that you can access only the behavior you need, you could reuse the entire class. This 
just substitutes one problem for another.

Because the class you’re reusing is confused about what it does and contains 
several tangled-up responsibilities, it has many reasons to change. It may change for a 
reason that is unrelated to your use of it, and each time it changes, there’s a possibil-
ity of breaking every class that depends on it. You increase your application’s chance 
of breaking unexpectedly if you depend on classes that do too much.

1
2 
3 
4 
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2.2.3 Determining If a Class Has a Single Responsibility
How can you determine if the Gear class contains behavior that belongs somewhere 
else? One way is to pretend that it’s sentient and to interrogate it. If you rephrase 
every one of its methods as a question, asking the question ought to make sense. For 
example, “Please, Mr. Gear, what is your ratio?” seems perfectly reasonable, while 
“Please, Mr. Gear, what are your gear_inches?” is on shaky ground, and “Please, 
Mr. Gear, what is your tire (size)?” is just downright ridiculous.

Don’t resist the idea that “What is your tire?” is a question that can legitimately 
be asked. From inside the Gear class, tire may feel like a different kind of thing 
than ratio or gear_inches, but that means nothing. From the point of view of 
every other object, anything that Gear can respond to is just another message. If 
Gear responds to it, someone will send it, and that sender may be in for a rude sur-
prise when Gear changes.

Another way to home in on what a class is actually doing is to attempt to describe 
it in one sentence. Remember that a class should do the smallest possible useful 
thing. That thing ought to be simple to describe. If the simplest description you can 
devise uses the word “and,” the class likely has more than one responsibility. If it uses 
the word “or,” then the class has more than one responsibility and they aren’t even 
very related.

OO designers use the word cohesion to describe this concept. When everything 
in a class is related to its central purpose, the class is said to be highly cohesive or 
to have a single responsibility. The Single Responsibility Principle (SRP) has its roots 
in Rebecca Wirfs-Brock and Brian Wilkerson’s idea of Responsibility-Driven Design 
(RDD). They say, “A class has responsibilities that fulfill its purpose.” SRP doesn’t 
require that a class do only one very narrow thing or that it change for only a single 
nitpicky reason; instead SRP requires that a class be cohesive—that everything the 
class does be highly related to its purpose.

How would you describe the responsibility of the Gear class? How about 
“Calculate the ratio between two toothed sprockets”? If this is true, the class, as it 
currently exists, does too much. Perhaps “Calculate the effect that a gear has on a 
bicycle” ? Put this way, gear_inches is back on solid ground, but tire size is still 
quite shaky.

The class doesn’t feel right. Gear has more than one responsibility, but it’s not 
obvious what should be done.

2.2.4 Determining When to Make Design Decisions
It’s common to find yourself in a situation where you know something isn’t quite 
right with a class. Is this class really a Gear? It has rims and tires, for goodness sake! 
Perhaps Gear should be Bicycle? Or maybe there’s a Wheel in here somewhere?
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If you only knew what feature requests would arrive in the future, you could 
make perfect design decisions today. Unfortunately, you do not. Anything might hap-
pen. You can waste a lot of time being torn between equally plausible alternatives 
before rolling the dice and choosing the wrong one.

Do not feel compelled to make design decisions prematurely. Resist, even if 
you fear your code would dismay the design gurus. When faced with an imperfect 
and muddled class like Gear, ask yourself: “What is the future cost of doing nothing 
today?”

This is a (very) small application. It has one developer. You are intimately famil-
iar with the Gear class. The future is uncertain and you will never know less than 
you know right now. The most cost-effective course of action may be to wait for more 
information.

The code in the Gear class is both transparent and reasonable, but this does not 
reflect excellent design, merely that the class has no dependencies so changes to it 
have no consequences. If it were to acquire dependencies, it would suddenly be in 
violation of both of those goals and should be reorganized at that time. Conveniently, 
the new dependencies will supply the exact information you need to make good 
design decisions.

When the future cost of doing nothing is the same as the current cost, postpone 
the decision. Make the decision only when you must with the information you have 
at that time.

Even though there’s a good argument for leaving Gear as is for the time being, 
you could also make a defensible argument that it should be changed. The structure 
of every class is a message to future maintainers of the application. It reveals your 
design intentions. For better or for worse, the patterns you establish today will be 
replicated forever.

Gear lies about your intentions. It is neither usable nor exemplary. It has mul-
tiple responsibilities and so should not be reused. It is not a pattern that should be 
replicated.

There is a chance that someone else will reuse Gear or create new code that 
follows its pattern while you are waiting for better information. Other developers 
believe that your intentions are reflected in the code; when the code lies, you must be 
alert to programmers believing and then propagating that lie.

This “improve it now” versus “improve it later” tension always exists. Applications 
are never perfectly designed. Every choice has a price. A good designer understands 
this tension and minimizes costs by making informed tradeoffs between the needs of 
the present and the possibilities of the future.
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2.3 Writing Code That Embraces Change
You can arrange the code so that Gear will be easy to change even if you don’t know 
what changes will come. Because change is inevitable, coding in a changeable style 
has big future payoffs. As an additional bonus, coding in these styles will improve 
your code, today, at no extra cost.

Here are a few well-known techniques that you can use to create code that 
embraces change.

2.3.1 Depend on Behavior, Not Data
Behavior is captured in methods and invoked by sending messages. When you create 
classes that have a single responsibility, every tiny bit of behavior lives in one and 
only one place. The phrase “Don’t Repeat Yourself” (DRY) is a shortcut for this idea. 
DRY code tolerates change because any change in behavior can be made by changing 
code in just one place.

In addition to behavior, objects often contain things you might think of as data. 
These data objects are held in instance variables and can be anything from simple 
strings to complex hashes. Data can be accessed in one of two ways; you can refer 
directly to the instance variable or you can wrap the instance variable in an accessor 
method.

Hide Instance Variables
Always wrap instance variables in accessor methods instead of directly referring to 
variables. That is, do not write code like this ratio method:

Listing 2.5

 1 class Gear
 2   def initialize(chainring, cog)
 3     @chainring = chainring
 4     @cog       = cog
 5   end
 6 
 7   def ratio
 8     @chainring / @cog.to_f      # <-- road to ruin
 9   end
10 end

Hide the variables, even from the class that defines them, by wrapping them in 
methods. Ruby provides attr_reader as an easy way to create the encapsulating 
methods:
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Listing 2.6

 1 class Gear
 2   attr_reader :chainring, :cog  # <-------
 3   def initialize(chainring, cog)
 4     @chainring = chainring
 5     @cog       = cog
 6   end
 7 
 8   def ratio
 9     chainring / cog.to_f        # <-------
10   end
11 end

Using attr_reader caused Ruby to create simple wrapper methods for the vari-
ables. Here’s a virtual representation of the one it created for cog:

Listing 2.7

1 # default-ish implementation via attr_reader
2 def cog
3   @cog
4 end

This cog method is now the only place in the code that understands what cog 
means. Cog becomes the result of a message send. Implementing this method changes 
cog from data (which is referenced all over) to behavior (which is defined once).

If the @cog instance variable is referred to ten times and it suddenly needs 
to be adjusted, the code will need many changes. However, if @cog is wrapped in 
a method, you can change what cog means by implementing your own version of the 
method. Your new method might be as simple as the first implementation below, or 
more complicated, like the second:

Listing 2.8

1 # a simple reimplementation of cog
 2 def cog
 3   @cog * unanticipated_adjustment_factor
 4 end
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Listing 2.9

1 # a more complex one
2 def cog
3   @cog * (foo? ? bar_adjustment : baz_adjustment)
4 end

The first example could arguably have been done by making one change to the 
value of the instance variable. However, you can never be sure that you won’t even-
tually need something like the second example. The second adjustment is a simple 
behavior change when done in a method, but a code-destroying mess when applied 
to a bunch of instance variable references.

Using attr_reader to wrap Ruby variables in methods introduces two new 
issues. The first involves visibility. The attr_reader in Listing 2.6 creates a public
cog method. If you’d prefer the method to be private, you could simply restrict access 
by using the private keyword, as shown on line 2:

Listing 2.10

 1 class Gear
 2   private
 3   attr_reader :chainring, :cog
 4 
 5   public
 6   def initialize(chainring, cog)
 7     @chainring = chainring
 8     @cog       = cog
 9   end
10   # ...
11 end
12 
13 class Blinkered
14   def cog(gear)
15     gear.cog
16   end
17 end
18 
19 puts Blinkered.new.cog(Gear.new(54,11))
20  # => private method `cog' called for

#<Gear:0x00007fa4ef926120 @chainring=54, @cog=11>

The second issue is more abstract. Because it’s possible to wrap every instance 
variable in a method and to therefore treat any variable as if it’s just another object, 
the distinction between data and a regular object begins to disappear. While it’s 
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sometimes expedient to think of parts of your application as merely data, most things 
are better thought of as plain old objects.

Regardless of how far your thoughts move in this direction, you should hide 
data from yourself. Doing so protects the code from being affected by unexpected 
changes. Data very often has behavior that you don’t yet know about. Send messages 
to access variables, even if you think of them as data.

Hide Data Structures
If being attached to an instance variable is bad, depending on a complicated data 
structure is worse. Consider the following ObscuringReferences class:

Listing 2.11

 1 class ObscuringReferences
 2   attr_reader :data
 3   def initialize(data)
 4     @data = data
 5   end
 6 
 7   def diameters
 8     # 0 is rim, 1 is tire
 9     data.collect {|cell|
10       cell[0] + (cell[1] * 2)}
11   end
12   # ... many other methods that index into the array
13 end

This class expects to be initialized with a two-dimensional array of rims and tires:

Listing 2.12

1 # rim and tire sizes (now in millimeters!) in a 2d array
2 @data = [[622, 20], [622, 23], [559, 30], [559, 40]]

ObscuringReferences stores its initialization argument in the variable @data
and obediently uses Ruby’s attr_reader to wrap the @data instance variable in a 
method. The diameters method sends the data message to access the contents of the 
variable. This class certainly does everything necessary to hide the instance variable 
from itself.

However, since @data contains a complicated data structure, just hiding the 
instance variable is not enough. The data method merely returns the array. To do 
anything useful, each sender of data must have complete knowledge of what piece 
of data is at which index in the array.
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The diameters method knows not only how to calculate diameters but also 
where to find rims and tires in the array. It explicitly knows that if it iterates over 
data, then rims are at [0] and tires are at [1].

It depends upon the array’s structure. If that structure changes, then this code 
must change. When you have data in an array, it’s not long before you have references 
to the array’s structure all over. The references are leaky. They escape encapsulation 
and insinuate themselves throughout the code. They are not DRY. The knowledge 
that rims are at [0] should not be duplicated; it should be known in just one place.

This simple example is bad enough; imagine the consequences if data returned 
an array of hashes that were referenced in many places. A change to its structure 
would cascade throughout your code; each change represents an opportunity to cre-
ate a bug so stealthy that your attempts to find it will make you cry.

Direct references into complicated structures are confusing, because they obscure 
what the data really is, and they are a maintenance nightmare, because every refer-
ence will need to be changed when the structure of the array changes.

In Ruby it’s easy to separate structure from meaning. Just as you can use a 
method to wrap an instance variable, you can use the Ruby Struct class to wrap a 
structure. In the following example, RevealingReferences has the same interface 
as the previous class. It takes a two-dimensional array as an initialization argument, 
and it implements the diameters method. Despite these external similarities, its 
internal implementation is very different.

Listing 2.13

 1 class RevealingReferences
 2   attr_reader :wheels
 3   def initialize(data)
 4     @wheels = wheelify(data)
 5   end
 6 
 7   def diameters
 8     wheels.collect {|wheel|
 9       wheel.rim + (wheel.tire * 2)}
10   end
11 
12   # now everyone can send rim/tire to wheel
13   Wheel = Struct.new(:rim, :tire)
14   def wheelify(data)
15     data.collect {|cell|
16       Wheel.new(cell[0], cell[1])}
17   end
18 end
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The diameters method above now has no knowledge of the internal structure 
of the array. All diameters knows is that the message wheels returns an enumer-
able and that each enumerated thing responds to rim and tire. What were once 
references to cell[1] have been transformed into message sends to wheel.tire.

All knowledge of the structure of the incoming array has been isolated inside the 
wheelify method, which converts the array of Arrays into an array of Structs. 
The official Ruby documentation (http://ruby-doc.org/core-2.5.0/classes/Struct.html) 
defines Struct as “a convenient way to bundle a number of attributes together, using 
accessor methods, without having to write an explicit class.” This is exactly what 
wheelify does; it creates little lightweight objects that respond to rim and tire.

The wheelify method contains the only bit of code that understands the struc-
ture of the incoming array. If the input changes, the code will change in just this one 
place. It takes four new lines of code to create the Wheel Struct and to define the 
wheelify method, but these few lines of code are a minor inconvenience compared 
to the permanent cost of repeatedly indexing into a complex array.

This style of code allows you to protect against changes in externally owned data 
structures and to make your code more readable and intention revealing. It trades 
indexing into a structure for sending messages to an object. The wheelify method 
above isolates the messy structural information and DRYs out the code. It makes this 
class far more tolerant of change.

Although it might be easier to just have an array of Wheels to begin with, it is not 
always possible. If you can control the input, pass in a useful object, but if you are 
compelled to take a messy structure, hide the mess even from yourself.

2.3.2 Enforce Single Responsibility Everywhere
Creating classes with a single responsibility has important implications for design, 
but the idea of single responsibility can be usefully employed in many other parts of 
your code.

Extract Extra Responsibilities from Methods
Methods, like classes, should have a single responsibility. All of the same reasons 
apply; having just one responsibility makes them easy to change and easy to reuse. 
All the same design techniques work; ask them questions about what they do and try 
to describe their responsibilities in a single sentence.

Look at the diameters method of class RevealingReferences:

Listing 2.14

 1   def diameters
 2     wheels.collect {|wheel|
 3       wheel.rim + (wheel.tire * 2)}
4   end
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This method clearly has two responsibilities: it iterates over the wheels and it 
calculates the diameter of each wheel.

Simplify the code by separating it into two methods, each with one responsibil-
ity. This next refactoring moves the calculation of a single wheel’s diameter into its 
own method. The refactoring introduces an additional message send, but at this point 
in your design, you should act as if sending a message is free. Performance can be 
improved later, if need be. Right now, the most important design goal is to write code 
that is easily changeable.

Listing 2.15

1   # first - iterate over the array
 2   def diameters
 3     wheels.collect {|wheel| diameter(wheel)}
4   end
5 
6   # second - calculate diameter of ONE wheel
7   def diameter(wheel)
8     wheel.rim + (wheel.tire * 2)
 9   end

Will you ever need to get the diameter of just one wheel? Look at the code again; 
you already do. This refactoring is not a case of overdesign, it merely reorganizes 
code that is currently in use. The fact that the singular diameter method can now be 
called from other places is a free and happy side effect.

Separating iteration from the action that’s being performed on each element is a 
common case of multiple responsibility that is easy to recognize. In other cases, the 
problem is not so obvious.

Recall the gear_inches method of the Gear class:

Listing 2.16

 1   def gear_inches
 2     # tire goes around rim twice for diameter
 3     ratio * (rim + (tire * 2))
 4   end

Is gear_inches a responsibility of the Gear class? It is reasonable that it would 
be. But if it is, why does this method feel so wrong? It is muddled and uncertain and 
seems likely to cause trouble later. The root cause of the problem is that the method 
itself has more than one responsibility.
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Hidden inside gear_inches is the calculation for wheel diameter. Extracting 
that calculation into this new diameter method will make it easier to examine the 
class’s responsibilities.

Listing 2.17

1   def gear_inches
2     ratio * diameter
3   end
4 
5   def diameter
6     rim + (tire * 2)
7   end

The gear_inches method now sends a message to get wheel diameter. Notice 
that the refactoring does not alter how diameter is calculated; it merely isolates 
the behavior in a separate method. Once isolated, it becomes obvious that Gear’s 
diameter method depends solely on things in Wheel. This suggests that the method 
ought to be in Wheel.

Do these refactorings even when you do not know the ultimate design. They are 
needed, not because the design is clear, but because it isn’t. You do not have to know 
where you’re going to use good design practices to get there. Good practices reveal 
design.

This simple refactoring makes the problem obvious. Gear is definitely responsi-
ble for calculating gear_inches, but Gear should not be calculating wheel diameter.

The impact of a single refactoring like this is small, but the cumulative effect of 
this coding style is huge. Methods that have a single responsibility confer the follow-
ing benefits:

• Expose previously hidden qualities

 Refactoring a class so that all of its methods have a single responsibility has a 
clarifying effect on the class. Even if you do not intend to reorganize the methods 
into other classes today, having each of them serve a single purpose makes the 
set of things the class does more obvious.

• Avoid the need for comments

 How many times have you seen a comment that is out of date? Because com-
ments are not executable, they are merely a form of decaying documentation. 
If a bit of code inside a method needs a comment, extract that bit into a sepa-
rate method. The new method name serves the same purpose as did the old 
comment.
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• Encourage reuse

 Small methods encourage coding behavior that is healthy for your application. 
Other programmers will reuse the methods instead of duplicating the code. They 
will follow the pattern you have established and create small, reusable methods 
in turn. This coding style propagates itself.

• Are easy to move to another class

 When you get more design information and decide to make changes, small meth-
ods are easy to move. You can rearrange behavior without doing a lot of method 
extraction and refactoring. Small methods lower the barriers to improving your 
design.

Isolate Extra Responsibilities in Classes
Once every method has a single responsibility, the scope of your class will be more 
apparent. The Gear class has some wheel-like behavior. Does this application need a 
Wheel class?

If circumstances allow you to create a separate Wheel class, perhaps you should. 
For now, imagine that you choose not to create a new, permanent, publicly available 
class at this moment. Perhaps some design restriction has been imposed upon you, or 
perhaps you are so uncertain about where you’re going that you don’t want to create 
a new class that others might start depending on, lest you change your mind.

It may seem impossible for Gear to have a single responsibility unless you 
remove its wheel-like behavior; the extra behavior is either in Gear or it’s not. How-
ever, casting the design choice in either/or terms is shortsighted. There are other 
choices. Your goal is to preserve single responsibility in Gear while making the few-
est design commitments possible. Because you are writing changeable code, you are 
best served by postponing decisions until you are absolutely forced to make them. 
Any decision you make in advance of an explicit requirement is just a guess. Don’t 
decide; preserve your ability to make a decision later.

Ruby allows you to remove the responsibility for calculating tire diameter from 
Gear without committing to a new class. The following example extends the previous 
Wheel Struct with a block that adds a method to calculate diameter.

Listing 2.18

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring, cog, rim, tire)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = Wheel.new(rim, tire)

 1
 2 
3 
4
 5 
 6 



332.4 Finally, the Real Wheel

 7   end
 8 
 9   def ratio
10     chainring / cog.to_f
11   end
12 
13   def gear_inches
14     ratio * wheel.diameter
15   end
16 
17   Wheel = Struct.new(:rim, :tire) do
18     def diameter
19       rim + (tire * 2)
20     end
21   end
22 end

Now you have a Wheel that can calculate its own diameter. Embedding this 
Wheel in Gear is obviously not the long-term design goal; it’s more an experiment in 
code organization. It cleans up Gear but defers the decision about Wheel.

Embedding Wheel inside of Gear suggests that you expect that a Wheel will only 
exist in the context of a Gear. If you lift your head from this book for a moment and 
look out at the real world, common sense suggests otherwise. In this case, enough 
information exists right now to support the creation of an independent Wheel class. 
However, every domain isn’t this clear-cut.

If you have a muddled class with too many responsibilities, separate those 
responsibilities into different classes. Concentrate on the primary class. Decide on its 
responsibilities and enforce your decision fiercely. If you identify extra  responsibilities 
that you cannot yet remove, isolate them. Do not allow extraneous responsibilities to 
leak into your class.

2.4 Finally, the Real Wheel
While you’re pondering the design of the Gear class, the future arrives. You show 
your calculator to your cyclist friend again, and she tells you that it’s very nice but 
that while you’re writing calculators, she would also like to have one for “bicycle 
wheel circumference.” She has a computer on her bike that calculates speed; this 
computer has to be configured with the bicycle’s wheel circumference to do its job.

This is the information you’ve been waiting for; it’s a new feature request that 
supplies the exact information you need to make the next design decision.
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You know that the circumference of a wheel is pi times its diameter. Your embed-
ded Wheel already calculates diameter; it’s a simple matter to add a new method to 
calculate circumference. These changes are minor; the real change here is that now 
your application has an explicit need for a Wheel class that it can use independently 
of Gear. It’s time to set Wheel free to be a separate class of its own.

Because you have already carefully isolated the Wheel behavior inside of the 
Gear class, this change is painless. Simply convert the Wheel Struct to an inde-
pendent Wheel class and add the new circumference method:

Listing 2.19

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring, cog, wheel=nil)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = wheel
 7   end
 8 
 9   def ratio
10     chainring / cog.to_f
11   end
12 
13   def gear_inches
14     ratio * wheel.diameter
15   end
16 end
17 
18 class Wheel
19   attr_reader :rim, :tire
20 
21   def initialize(rim, tire)
22     @rim       = rim
23     @tire      = tire
24   end
25 
26   def diameter
27     rim + (tire * 2)
28   end
29 
30   def circumference
31     diameter * Math::PI
32   end
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33 end
34 
35 @wheel = Wheel.new(26, 1.5)
36 puts @wheel.circumference
37 # => 91.106186954104
38 
39 puts Gear.new(52, 11, @wheel).gear_inches
40 # => 137.0909090909091
41 
42 puts Gear.new(52, 11).ratio
43 # => 4.7272727272727275

Both classes have a single responsibility. The code is not perfect, but in some 
ways, it achieves a higher standard: it is good enough.

2.5 Summary
The path to changeable and maintainable object-oriented software begins with classes 
that have a single responsibility. Classes that do one thing isolate that thing from the 
rest of your application. This isolation allows change without consequence and reuse 
without duplication.

33
34
35
36
37
38
39
40
41
42
43



Chapter 3
Managing Dependencies

Object-oriented programming languages contend that they are efficient and effective 
because of the way they model reality. Objects reflect qualities of a real-world prob-
lem and the interactions between those objects provide solutions. These interactions 
are inescapable. A single object cannot know everything, so inevitably it will have to 
talk to another object.

If you could peer into a busy application and watch the messages as they pass, 
the traffic might seem overwhelming. There’s a lot going on. However, if you stand 
back and take a global view, a pattern becomes obvious. Each message is initiated 
by an object to invoke some bit of behavior. All of the behavior is dispersed among 
the objects. Therefore, for any desired behavior, an object either knows it personally, 
inherits it, or knows another object who knows it.

The previous chapter concerned itself with the first of these, that is, behaviors 
that a class should personally implement. The second, inheriting behavior, will be 
covered in Chapter 6, “Acquiring Behavior through Inheritance.” This chapter is about 
the third, getting access to behavior when that behavior is implemented in other 
objects.

Because well-designed objects have a single responsibility, their very nature 
requires that they collaborate to accomplish complex tasks. This collaboration is pow-
erful and perilous. To collaborate, an object must know something know about oth-
ers. Knowing creates a dependency. If not managed carefully, these dependencies 
will strangle your application.
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3.1 Understanding Dependencies
An object depends on another object if, when one object changes, the other might be 
forced to change in turn.

Here’s a modified version of the Gear class, where Gear is initialized with four 
familiar arguments. The gear_inches method uses two of them, rim and tire, to 
create a new instance of Wheel. Wheel has not changed since you last you saw it in 
Chapter 2, “Designing Classes with a Single Responsibility.”

Listing 3.1

 1 class Gear
 2   attr_reader :chainring, :cog, :rim, :tire
 3   def initialize(chainring, cog, rim, tire)
 4     @chainring = chainring
 5     @cog       = cog
 6     @rim       = rim
 7     @tire      = tire
 8   end
 9 
10   def gear_inches
11     ratio * Wheel.new(rim, tire).diameter
12   end
13 
14   def ratio
15     chainring / cog.to_f
16   end
17 # ...
18 end
19 
20 class Wheel
21   attr_reader :rim, :tire
22   def initialize(rim, tire)
23     @rim  = rim
24     @tire = tire
25   end
26 
27   def diameter
28     rim + (tire * 2)
29   end
30 # ...
31 end
32 
33 puts Gear.new(52, 11, 26, 1.5).gear_inches
34 # => 137.0909090909091
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Examine the preceding code and make a list of the situations in which Gear 
would be forced to change because of a change to Wheel. This code seems innocent, 
but it’s sneakily complex. Gear has at least four dependencies on Wheel, enumerated 
as follows. Most of the dependencies are unnecessary; they are a side effect of the 
coding style. Gear does not need them to do its job. Their very existence weakens 
Gear and makes it harder to change.

3.1.1 Recognizing Dependencies
An object has a dependency when it knows:

• The name of another class. Gear expects a class named Wheel to exist.

• The name of a message that it intends to send to someone other than self. Gear 
expects a Wheel instance to respond to diameter.

• The arguments that a message requires. Gear knows that Wheel.new requires a 
rim and a tire.

• The order of those arguments. Gear knows that Wheel takes positional 
arguments and that the first should be rim, the second, tire.

Each of these dependencies creates a chance that Gear will be forced to change 
because of a change to Wheel. Some degree of dependency between these two 
classes is inevitable; after all, they must collaborate, but most of the dependencies 
listed above are unnecessary. These unnecessary dependencies make the code less 
reasonable. Because they increase the chance that Gear will be forced to change, 
these dependencies turn minor code tweaks into major undertakings where small 
changes cascade through the application, forcing many changes.

Your design challenge is to manage dependencies so that each class has the few-
est possible; a class should know just enough to do its job and not one thing more.

3.1.2 Coupling Between Objects (CBO)
These dependencies couple Gear to Wheel. Alternatively, you could say that each 
coupling creates a dependency. The more Gear knows about Wheel, the more tightly 
coupled they are. The more tightly coupled two objects are, the more they behave 
like a single entity.

If you make a change to Wheel, you may find it necessary to make a change 
to Gear. If you want to reuse Gear, Wheel comes along for the ride. When you test 
Gear, you’ll be testing Wheel too.

Figure 3.1 illustrates the problem. In this case, Gear depends on Wheel and four 
other objects, coupling Gear to five different things. When the underlying code was 
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first written, everything worked fine. The problem lies dormant until you attempt 
to use Gear in another context or to change one of the classes upon which Gear 
depends. When that day comes, the cold hard truth is revealed; despite appearances, 
Gear is not an independent entity. Each of its dependencies is a place where another 
object is stuck to it. The dependencies cause these objects to act like a single thing. 
They move in lockstep; they change together. 

When two (or three or more) objects are so tightly coupled that they behave as 
a unit, it’s impossible to reuse just one. Changes to one object force changes to all. 
Left unchecked, unmanaged dependencies cause an entire application to become an 
entangled mess. A day will come when it’s easier to rewrite everything than to change 
anything.

3.1.3 Other Dependencies
The remainder of this chapter examines the four kinds of dependencies listed previ-
ously and suggests techniques for avoiding the problems they create. However, before 
going forward, it’s worth mentioning a few other common dependency-related issues 
that will be covered in other chapters.

One especially destructive kind of dependency occurs where an object knows 
another who knows another who knows something; that is, where many messages 
are chained together to reach behavior that lives in a distant object. This is the “know-
ing the name of a message you plan to send to someone other than self ” dependency, 
only magnified. Message chaining creates a dependency between the original object 
and every object and message along the way to its ultimate target. These additional 
couplings greatly increase the chance that the first object will be forced to change 
because a change to any of the intermediate objects might affect it.

Gear depends on wheel, A, B, C and D Gear and its dependencies act like one thing

Gear Gear

Wheel

W
he

el

B

B

A A

C
C

D
D

Figure 3.1 Dependencies entangle objects with one another
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This case, a Law of Demeter violation, gets its own special treatment in Chapter 4, 
“Creating Flexible Interfaces.”

Another entire class of dependencies is that of tests on code. In the world out-
side of this book, tests come first. They drive design. However, they refer to code and 
thus depend on code. The natural tendency of “new-to-testing” programmers is to 
write tests that are too tightly coupled to code. This tight coupling leads to incredible 
frustration; the tests break every time the code is refactored, even when the funda-
mental behavior of the code does not change. Tests begin to seem costly relative to 
their value. Test-to-code over-coupling has the same consequence as code-to-code 
over-coupling. These couplings are dependencies that cause changes to the code to 
cascade into the tests, forcing them to change in turn.

The design of tests is examined in Chapter 9, “Designing Cost-Effective Tests.”
Despite these cautionary words, your application is not doomed to drown in 

unnecessary dependencies. As long as you recognize them, avoidance is quite simple. 
The first step to this brighter future is to understand dependencies in more detail; 
therefore, it’s time to look at some code.

3.2 Writing Loosely Coupled Code
Every dependency is like a little dot of glue that causes your class to stick to the 
things it touches. A few dots are necessary, but apply too much glue, and your appli-
cation will harden into a solid block. Reducing dependencies means recognizing and 
removing the ones you don’t need.

The following examples illustrate coding techniques that reduce dependencies 
by decoupling code.

3.2.1 Inject Dependencies
Referring to another class by its name creates a major sticky spot. In the version of 
Gear we’ve been discussing (repeated in Listing 3.2), the gear_inches method con-
tains an explicit reference to class Wheel.

Listing 3.2

 1 class Gear
 2   attr_reader :chainring, :cog, :rim, :tire
 3   def initialize(chainring, cog, rim, tire)
 4     @chainring = chainring
 5     @cog       = cog
 6     @rim       = rim
 7     @tire      = tire
 8   end
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 9 
10   def gear_inches
11     ratio * Wheel.new(rim, tire).diameter
12   end
13   # ...
14 end
15 
16 puts Gear.new(52, 11, 26, 1.5).gear_inches
17 # => 137.0909090909091

The immediate, obvious consequence of this reference is that if the name of the 
Wheel class changes, Gear’s gear_inches method must also change.

On the face of it, this dependency seems innocuous. After all, if a Gear needs 
to talk to a Wheel, something, somewhere, must create a new instance of the Wheel 
class. If Gear itself knows the name of the Wheel class, the code in Gear must be 
altered if Wheel’s name changes.

In truth, dealing with the name change is a relatively minor issue. You likely have 
a tool that allows you to do a global find/replace within a project. If Wheel’s name 
changes to Wheely, finding and fixing all of the references isn’t that hard. However, 
the fact that line 11 above must change if the name of the Wheel class changes is the 
least of the problems with this code. A deeper problem exists that is far less visible 
but significantly more destructive.

When Gear hard-codes a reference to Wheel deep inside its gear_inches 
method, it is explicitly declaring that it is only willing to calculate gear inches for 
instances of Wheel. Gear refuses to collaborate with any other kind of object, even if 
that object has a diameter and uses gears.

If your application expands to include objects such as disks or cylinders and you 
need to know the gear inches of gears which use them, you cannot. Despite the fact 
that disks and cylinders naturally have a diameter, you can never calculate their gear 
inches because Gear is stuck to Wheel.

The code above exposes an unjustified attachment to type. It is not the class of 
the object that’s important, it’s the message you plan to send to it. Gear needs access 
to an object that can respond to diameter; a duck type, if you will (see Chapter 5, 
“Reducing Costs with Duck Typing”). Gear does not care and should not know about 
the class of that object. It is not necessary for Gear to know about the existence of 
the Wheel class in order to calculate gear_inches. It doesn’t need to know that 
Wheel expects to be initialized with a rim and then a tire; it just needs an object 
that knows diameter.

Hanging these unnecessary dependencies on Gear simultaneously reduces 
Gear’s reusability and increases its susceptibility to being forced to change unneces-
sarily. Gear becomes less useful when it knows too much about other objects; if it 
knew less, it could do more.
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Instead of being glued to Wheel, this next version of Gear expects to be initial-
ized with an object that can respond to diameter:

Listing 3.3

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring, cog, wheel)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = wheel
 7   end
 8 
 9   def gear_inches
10     ratio * wheel.diameter
11   end
12   # ...
13 end
14 
15 # Gear expects a ‘Duck’ that knows ‘diameter’
16 puts Gear.new(52, 11, Wheel.new(26, 1.5)).gear_inches
17 # => 137.0909090909091

Gear now uses the @wheel variable to hold, and the wheel method to access, 
this object, but don’t be fooled: Gear doesn’t know or care that the object might be 
an instance of class Wheel. Gear only knows that it holds an object that responds to 
diameter.

This change is so small it is almost invisible, but coding in this style has huge 
benefits. Moving the creation of the new Wheel instance outside of Gear decouples 
the two classes. Gear can now collaborate with any object that implements diameter. 
As an extra bonus, this benefit was free. Not only is the resulting Gear class smaller 
than the original, but the decoupling was achieved by simply rearranging existing 
code.

This technique is known as dependency injection. Despite its daunting reputa-
tion, dependency injection truly is this simple. Gear previously had explicit depend-
encies on the Wheel class and on the type and order of its initialization arguments, 
but through injection these dependencies have been reduced to a single dependency 
on the diameter method. Gear is now smarter because it knows less.

Using dependency injection to shape code relies on your ability to recognize that 
the responsibility for knowing the name of a class and the responsibility for know-
ing the name of a message to send to that class may belong in different objects. Just 
because Gear needs to send diameter somewhere does not mean that Gear should 
know about Wheel.
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This leaves the question of where the responsibility for knowing about the actual 
Wheel class lies; the example above conveniently sidesteps this issue, but it is exam-
ined in more detail later in this chapter. For now, it’s enough to understand that this 
knowledge does not belong in Gear.

3.2.2 Isolate Dependencies
It’s best to break all unnecessary dependencies but, unfortunately, while this is always 
technically possible, it may not be actually possible. When working on an existing 
application, you may find yourself under severe constraints about how much you can 
actually change. If prevented from achieving perfection, your goals should switch to 
improving the overall situation by leaving the code better than you found it.

Therefore, if you cannot remove unnecessary dependencies, you should isolate 
them within your class. In Chapter 2, you isolated extraneous responsibilities so that 
they would be easy to recognize and remove when the right impetus came; here you 
should isolate unnecessary dependencies so that they are easy to spot and reduce 
when circumstances permit.

Think of every dependency as an alien bacterium that’s trying to infect your class. 
Give your class a vigorous immune system; quarantine each dependency. Dependen-
cies are foreign invaders that represent vulnerabilities, and they should be concise, 
explicit, and isolated.

Isolate Instance Creation
If you are so constrained that you cannot change the code to inject a Wheel into 
a Gear, you should isolate the creation of a new Wheel inside the Gear class. The 
intent is to explicitly expose the dependency while reducing its reach into your class.

The next two examples illustrate this idea.
In the first, creation of the new instance of Wheel has been moved from Gear’s 

gear_inches method to Gear’s initialization method. This cleans up the gear_
inches method and publicly exposes the dependency in the initialize method. 
Notice that this technique unconditionally creates a new Wheel each time a new 
Gear is created.

Listing 3.4

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring, cog, rim, tire)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = Wheel.new(rim, tire)
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 7   end
 8 
 9   def gear_inches
10     ratio * wheel.diameter
11   end
12   # ...
13   end
14 end
15 
16 puts Gear.new(52, 11, 26, 1.5).gear_inches
17 # => 137.0909090909091

The next alternative isolates creation of a new Wheel in its own explicitly defined 
wheel method. This new method lazily creates a new instance of Wheel, using Ruby’s 
||= operator. In this case, creation of a new instance of Wheel is deferred until 
gear_inches invokes the new wheel method.

Listing 3.5

 1 class Gear
 2   attr_reader :chainring, :cog, :rim, :tire
 3   def initialize(chainring, cog, rim, tire)
 4     @chainring = chainring
 5     @cog       = cog
 6     @rim       = rim
 7     @tire      = tire
 8   end
 9 
10   def gear_inches
11     ratio * wheel.diameter
12   end
13 
14   def wheel
15     @wheel ||= Wheel.new(rim, tire)
16   end
17   # ...
18 end
19 
20 puts Gear.new(52, 11, 26, 1.5).gear_inches
21 # => 137.0909090909091
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In both of these examples, Gear still knows far too much; it still takes rim and 
tire as initialization arguments, and it still creates its own new instance of Wheel. 
Gear is still stuck to Wheel; it can calculate the gear inches of no other kind of object.

However, an improvement has been made. These coding styles reduce the num-
ber of dependencies in gear_inches while publicly exposing Gear’s dependency 
on Wheel. They reveal dependencies instead of concealing them, lowering the barri-
ers to reuse and making the code easier to refactor when circumstances allow. This 
change makes the code more agile; it can more easily adapt to the unknown future.

The way you manage dependencies on external class names has profound effects 
on your application. If you are mindful of dependencies and develop a habit of rou-
tinely injecting them, your classes will naturally be loosely coupled. If you ignore 
this issue and let the class references fall where they may, your application will be 
more like a big woven mat than a set of independent objects. An application whose 
classes are sprinkled with entangled and obscure class name references is unwieldy 
and inflexible, while one whose class name dependencies are concise, explicit, and 
isolated can easily adapt to new requirements.

Isolate Vulnerable External Messages
Now that you’ve isolated references to external class names, it’s time to turn your 
attention to external messages, that is, messages that are “sent to someone other than 
self.” For example, the gear_inches method below sends ratio and wheel to 
self but sends diameter to wheel:

Listing 3.6

1 def gear_inches
2   ratio * wheel.diameter
3 end

This is a simple method and it contains Gear’s only reference to wheel.diameter. 
In this case, the code is fine, but the situation could be more complex. Imagine that cal-
culating gear_inches required far more math and that the method looked something 
like this:

Listing 3.7

1 def gear_inches
2   #... a few lines of scary math
 3   foo = some_intermediate_result * wheel.diameter
4   #... more lines of scary math
5 end
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Now wheel.diameter is embedded deeply inside a complex method. This com-
plex method depends on Gear responding to wheel and on wheel responding to 
diameter. Embedding this external dependency inside the gear_inches method is 
unnecessary and increases its vulnerability.

Any time you change anything, you stand the chance of breaking it; gear_inches
is now a complex method, and that makes it both more likely to need changing and 
more susceptible to being damaged when it does. You can reduce your chance of 
being forced to make a change to gear_inches by removing the external depend-
ency and encapsulating it in a method of its own, as in this next example:

Listing 3.8

 1 def gear_inches
 2   #... a few lines of scary math
 3   foo = some_intermediate_result * diameter
 4   #... more lines of scary math
 5 end
 6 
 7 def diameter
 8   wheel.diameter
 9 end

The new diameter method is exactly the method that you would have written 
if you had many references to wheel.diameter sprinkled throughout Gear and you 
wanted to DRY them out. The difference here is one of timing; it would normally be 
defensible to defer creation of the diameter method until you had a need to DRY 
out code; however, in this case, the method is created preemptively to remove the 
dependency from gear_inches.

In the original code, gear_inches knew that wheel had a diameter. This 
knowledge is a dangerous dependency that couples gear_inches to an external 
object and one of its methods. After this change, gear_inches is more abstract. 
Gear now isolates wheel.diameter in a separate method, and gear_inches can 
depend on a message sent to self.

If Wheel changes the name or signature of its implementation of diameter, the 
side effects to Gear will be confined to this one simple wrapping method.

This technique becomes necessary when a class contains embedded references 
to a message that is likely to change. Isolating the reference provides some insurance 
against being affected by that change. Although not every external method is a can-
didate for this preemptive isolation, it’s worth examining your code, looking for and 
wrapping the most vulnerable dependencies.

1
2 
3 
4
5
6
7
8 
9



48 Chapter 3. Managing Dependencies

An alternative way to eliminate these side effects is to avoid the problem from 
the very beginning by reversing the direction of the dependency. This idea will be 
addressed soon, but first there’s one more coding technique to cover.

3.2.3 Remove Argument-Order Dependencies
When you send a message that requires arguments, you, as the sender, cannot avoid 
having knowledge of those arguments. This dependency is unavoidable. However, 
passing arguments often involves a second, more subtle dependency. Many method 
signatures not only require arguments, but they also require that those arguments be 
passed in a specific, fixed order.

In the following example, Gear’s initialize method takes three arguments: 
chainring, cog, and wheel. It provides no defaults; each of these arguments is 
required. In lines 11–14, when a new instance of Gear is created, the three arguments 
must be passed and they must be passed in the correct order.

Listing 3.9

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring, cog, wheel)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = wheel
 7   end
 8   # ...
 9 end
10 
11 puts Gear.new(
12       52,
13       11,
14       Wheel.new(26, 1.5)).gear_inches
15 # => 137.0909090909091

Senders of new depend on the order of the arguments as they are specified 
in Gear’s initialize method. If that order changes, all the senders will be forced 
to change.

Unfortunately, it’s quite common to tinker with initialization arguments. Espe-
cially early on, when the design is not quite nailed down, you may go through several 
cycles of adding and removing arguments and defaults. If you use positional argu-
ments, each of these cycles may force changes to many dependents. Even worse, you 
may find yourself avoiding making changes to the arguments, even when your design 
calls for them, because you can’t bear to change all the dependents yet again.
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Use Keyword Arguments
There’s a simple way to avoid depending on positional arguments. If you have control 
over Gear’s initialize method, change the code to take keyword arguments.

The following example illustrates this technique:

Listing 3.10

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring:, cog:, wheel:)
4     @chainring = chainring
5     @cog       = cog
6     @wheel     = wheel
7   end
8   # ...
9 end

The arguments on line 3 now end in :, which denotes that they are keyword 
arguments. Keyword arguments are referenced just like positional arguments, so lines 
4–6 have not changed.

You can pass keyword arguments as a hash, as shown in the following example:

Listing 3.11

 1 puts Gear.new(
 2       :cog       => 11,
 3       :chainring => 52,
 4       :wheel     => Wheel.new(26, 1.5)).gear_inches
 5 # => 137.0909090909091

You can also use the explicit keyword syntax:

Listing 3.12

 1 puts Gear.new(
 2       wheel:     Wheel.new(26, 1.5),
 3       chainring: 52,
 4       cog:       11).gear_inches
 5 # => 137.0909090909091

Keyword arguments offer several advantages. As you likely noticed in two exam-
ples above, keyword arguments may be passed in any order. Additionally, Gear is 
now free to add or remove initialization arguments and defaults, secure in the knowl-
edge that no change will have side effects in other code.
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This technique adds verbosity. In many situations verbosity is a detriment, but 
in this case, it has value. The verbosity exists at the intersection between the needs 
of the present and the uncertainty of the future. Using positional arguments requires 
less code today, but you pay for this decrease in volume of code with an increase in 
the risk that changes will cascade into dependents later.

When Gear switched to keyword arguments, it lost its dependency on argument 
order but it gained a dependency on the names of the keywords. This change is 
healthy. The new dependency is more stable than the old, and thus this code faces 
less risk of being forced to change.

Using keyword arguments requires the sender and the receiver of a message to 
state the keyword names. This results in explicit documentation at both ends of the 
message. Future maintainers will be grateful for this information.

Keyword arguments are so flexible that the general rule is that you should prefer
them. While it’s certainly true that some argument lists are so stable, and so obvious, 
that keywords are overkill (for example, what would Point take but an x and a y?), 
your bias should be toward declaring arguments using keywords. You can always fall 
back to positional arguments if that technique better suits your specific problem.

Also, it is perfectly acceptable for some classes in your application to take posi-
tional arguments and others to take keyword arguments. This is especially true in 
long-lived applications, where much of the code predates the introduction of key-
words. In these cases, as you change or add code, consider using keyword arguments. 
However, there’s no need to proactively retrofit the entire application. Over time, as 
you touch code, introduce keyword arguments if doing so will add clarity and enable 
subsequent refactorings.

The remainder of this book uses both types, to supply a flavor of the 
consequences.

Explicitly Define Defaults
So far, keyword arguments look very similar to hashes. One advantage they have over 
hashes, however, is that they allow you to set defaults right in the argument list, just 
like positional arguments. Line 3 below supplies defaults for chainring and cog.

Listing 3.13

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring: 40, cog: 18, wheel:)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = wheel
 7   end
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 8   # ...
 9 end
10 
11 puts Gear.new(wheel: Wheel.new(26, 1.5)).chainring
12 # => 40

Notice that the syntax for adding defaults to keyword arguments is a bit different 
than that of positional arguments. Keywords omit the = operator and state the default 
directly after the trailing :. Adding a default renders the keyword argument optional.

The above syntax is great for supplying simple defaults to optional arguments, 
but some situations may benefit from a bit more sophistication. For example, line 3 
below sets a more complex default by sending a message.

Listing 3.14

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3    def initialize(chainring: default_chainring, cog: 18, 

wheel:)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = wheel
 7   end
 8 
 9   def default_chainring
10     (100/2) - 10        # silly code, useful example
11   end
12   # ...
13 end
14 
15 puts Gear.new(wheel: Wheel.new(26, 1.5)).chainring
16 # => 40
17 
18  puts Gear.new(chainring: 52, wheel: Wheel.new(26, 1.5)).

chainring
19 # => 52

The key to understanding the above code is to recognize that initialize
executes in the new instance of Gear. It is therefore entirely appropriate for 
initialize to send messages to self. It’s best to embed simple defaults right in 
the parameter list, but if getting the default requires running a bit of code, don’t 
hesitate to send a message.
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Isolate Multiparameter Initialization
So far, all of the examples of removing argument-order dependencies have been 
for situations where you control the signature of the method that needs to change. 
You will not always have this luxury; sometimes you will be forced to depend on a 
method that requires positional arguments where you do not own and thus cannot 
change the method itself.

Imagine that Gear is part of a framework and that its initialization method 
requires positional arguments. Imagine also that your code has many places where 
you must create a new instance of Gear. Gear’s initialize method is external to 
your application; it is part of an interface over which you have no control.

As dire as this situation appears, you are not doomed to accept the dependen-
cies. Just as you would DRY out repetitive code inside of a class, DRY out the creation 
of new Gear instances by creating a single method to wrap the external interface. 
The classes in your application should depend on code that you own; use a wrapping 
method to isolate external dependencies.

In this example, the SomeFramework::Gear class is not owned by your applica-
tion; it is part of an external framework. Its initialization method requires positional 
arguments. The GearWrapper module was created to avoid having multiple depend-
encies on the order of those arguments. GearWrapper isolates all knowledge of the 
external interface in one place and, equally important, it provides an improved inter-
face for your application.

As you can see in line 22, GearWrapper allows your application to create a new 
instance of Gear using keyword arguments.

Listing 3.15

 1 # When Gear is part of an external interface
 2 module SomeFramework
 3   class Gear
 4     attr_reader :chainring, :cog, :wheel
 5     def initialize(chainring, cog, wheel)
 6       @chainring = chainring
 7       @cog       = cog
 8       @wheel     = wheel
 9     end
10     # ...
11   end
12 end
13 
14 # wrap the interface to protect yourself from changes
15 module GearWrapper
16   def self.gear(chainring:, cog:, wheel:)
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17     SomeFramework::Gear.new(chainring, cog, wheel)
18   end
19 end
20 
21 # Now you can create a new Gear using keyword arguments
22 puts GearWrapper.gear(
23   chainring: 52,
24   cog:       11,
25   wheel:     Wheel.new(26, 1.5)).gear_inches
26 # => 137.0909090909091

There are two things to note about GearWrapper. First, it is a Ruby module 
instead of a class (line 15). GearWrapper is responsible for creating new instances 
of SomeFramework::Gear. Using a module here lets you define a separate and dis-
tinct object to which you can send the gear message (line 22) while simultaneously 
conveying the idea that you don’t expect to have instances of GearWrapper. You may 
already have experience with including modules into classes; in the example above, 
GearWrapper is not meant to be included in another class, it’s meant to directly 
respond to the gear message.

The other interesting thing about GearWrapper is that its sole purpose is to cre-
ate instances of some other class. Object-oriented designers have a word for objects 
like this; they call them factories. In some circles, the term factory has acquired a neg-
ative connotation, but the term as used here is devoid of baggage. An object whose 
purpose is to create other objects is a factory; the word factory implies nothing more, 
and use of it is the most expedient way to communicate this idea.

The above technique for replacing positional arguments with keywords is per-
fect for cases where you are forced to depend on external interfaces that you can-
not change. Do not allow these kinds of external dependencies to permeate your 
code; protect yourself by wrapping each in a method that is owned by your own 
application.

3.3 Managing Dependency Direction
Dependencies always have a direction; earlier in this chapter it was suggested that 
one way to manage them is to reverse that direction. This section delves more deeply 
into how to decide on the direction of dependencies.

3.3.1 Reversing Dependencies
Every example used thus far shows Gear depending on Wheel or diameter, but the 
code could easily have been written with the direction of the dependencies reversed. 
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Wheel could instead depend on Gear or ratio. The following example illustrates 
one possible form of the reversal. Here Wheel has been changed to depend on Gear
and gear_inches. Gear is still responsible for the actual calculation, but it expects a 
diameter argument to be passed in by the caller (line 8).

Listing 3.16

 1 class Gear
 2   attr_reader :chainring, :cog
 3   def initialize(chainring:, cog:)
 4     @chainring = chainring
 5     @cog       = cog
 6   end
 7 
 8   def gear_inches(diameter)
 9     ratio * diameter
10   end
11 
12   def ratio
13     chainring / cog.to_f
14   end
15   # ...
16 end
17 
18 class Wheel
19   attr_reader :rim, :tire, :gear
20   def initialize(rim:, tire:, chainring:, cog:)
21     @rim  = rim
22     @tire = tire
23     @gear = Gear.new(chainring: chainring, cog: cog)
24   end
25 
26   def diameter
27     rim + (tire * 2)
28   end
29 
30   def gear_inches
31     gear.gear_inches(diameter)
32   end
33   # ...
34 end
35 
36 puts Wheel.new(
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37        rim:       26,
38        tire:      1.5,
39        chainring: 52,
40        cog:       11).gear_inches
41 # => 137.0909090909091

This reversal of dependencies does no apparent harm. Calculating gear_inches
still requires collaboration between Gear and Wheel and the result of the calculation 
is unaffected by the reversal. One could infer that the direction of the dependency 
does not matter, that it makes no difference whether Gear depends on Wheel or vice 
versa.

Indeed, in an application that never changed, your choice would not matter. 
However, your application will change, and it’s in that dynamic future where this 
present decision has repercussions. The choices you make about the direction of 
dependencies have far-reaching consequences that manifest themselves for the life of 
your application. If you get this right, your application will be pleasant to work on 
and easy to maintain. If you get it wrong, then the dependencies will gradually take 
over and the application will become harder and harder to change.

3.3.2 Choosing Dependency Direction
Pretend for a moment that your classes are people. If you were to give them advice 
about how to behave, you would tell them to depend on things that change less often 
than you do.

This short statement belies the sophistication of the idea, which is based on three 
simple truths about code:

• Some classes are more likely than others to have changes in requirements.

• Concrete classes are more likely to change than abstract classes.

• Changing a class that has many dependents will result in widespread 
consequences.

There are ways in which these truths intersect, but each is a separate and distinct 
notion.

Understanding Likelihood of Change
The idea that some classes are more likely to change than others applies not only to 
the code that you write for your own application but also to the code that you use but 
did not write. The Ruby base classes and the other framework code that you rely on 
both have their own inherent likelihood of change.
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You are fortunate in that Ruby base classes change a great deal less often than 
your own code. This makes it perfectly reasonable to depend on the * method, as 
gear_inches quietly does, or to expect that Ruby classes String and Array will 
continue to work as they always have. Ruby base classes always change less often than 
your own classes, and you can continue to depend on them without another thought.

Framework classes are another story; only you can assess how mature your 
frameworks are. In general, any framework you use will be more stable than the code 
you write, but it’s certainly possible to choose a framework that is undergoing such 
rapid development that its code changes more often than yours.

Regardless of its origin, every class used in your application can be ranked 
along a scale of how likely it is to undergo a change relative to all other classes. This 
ranking is one key piece of information to consider when choosing the direction of 
dependencies.

Recognizing Concretions and Abstractions
The second idea concerns itself with the concreteness and abstractness of code. The 
term abstract is used here just as Merriam-Webster defines it, as “disassociated from 
any specific instance,” and, as so many things in Ruby, represents an idea about code 
as opposed to a specific technical restriction.

This concept was illustrated earlier in the chapter during the section on inject-
ing dependencies. There, when Gear depended on Wheel and on Wheel.new and 
on Wheel.new(rim, tire), it depended on extremely concrete code. After the 
code was altered to inject a Wheel into Gear, Gear suddenly began to depend on 
something far more abstract, that is, the fact that it had access to an object that could 
respond to the diameter message.

Your familiarity with Ruby may lead you to take this transition for granted, but 
consider for a moment what would have been required to accomplish this same trick 
in a statically typed language. Because statically typed languages have compilers that 
act like unit tests for types, you would not be able to inject just any random object 
into Gear. Instead you would have to declare an interface, define diameter as part 
of that interface, include the interface in the Wheel class, and tell Gear that the class 
you are injecting is a kind of that interface.

Rubists are justifiably grateful to avoid these gyrations, but languages that force 
you to be explicit about this transition do offer a benefit. They make it inescapably 
and explicitly clear that you are defining an abstract interface. It is impossible to cre-
ate an abstraction unknowingly or by accident; in statically typed languages, defining 
an interface is always intentional.

In Ruby, when you inject Wheel into Gear such that Gear then depends on a 
Duck who responds to diameter, you are, however casually, defining an interface. 
This interface is an abstraction of the idea that a certain category of things will have a 
diameter. The abstraction was harvested from a concrete class; the idea is now “disas-
sociated from any specific instance.”
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The wonderful thing about abstractions is that they represent common, stable 
qualities. They are less likely to change than are the concrete classes from which 
they were extracted. Depending on an abstraction is always safer than depending 
on a concretion because by its very nature, the abstraction is more stable. Ruby does 
not make you explicitly declare the abstraction in order to define the interface, but 
for design purposes, you can behave as if your virtual interface is as real as a class. 
Indeed, in the rest of this discussion, the term class stands for both class and this 
kind of interface. These interfaces can have dependents and so must be taken into 
account during design.

Avoiding Dependent-Laden Classes
The final idea, the notion that having dependent-laden objects has many conse-
quences, also bears deeper examination. The consequences of changing a dependent-
laden class are quite obvious—not so apparent are the consequences of even having 
a dependent-laden class. A class that, if changed, will cause changes to ripple through 
the application will be under enormous pressure to never change. Ever. Under any 
circumstances whatsoever. Your application may be permanently handicapped by 
your reluctance to pay the price required to make a change to this class.

Finding the Dependencies That Matter
Imagine each of these truths as a continuum along which all application code falls. 
Classes vary in their likelihood of change, their level of abstraction, and their number 
of dependents. Each quality matters, but the interesting design decisions occur at the 
place where likelihood of change intersects with number of dependents. Some of the 
possible combinations are healthy for your application; others are deadly.

Figure 3.2 summarizes the possibilities. 

C
A
B

D
Neutral Zone:

Less

ManyD

e

p

e

n

d

e

n

t

s Few

Likelihood of Requirements Change

More

Changes are unlikely
and have few side
effects.

Neutral Zone:

Changes are likely but
they have few side
effects.

Danger Zone:

These classes WILL
change and the
changes will cascade
into dependents.

Abstract Zone:

Changes are unlikely
but, if they occur, will
have broad effects.

Figure 3.2 Likelihood of change versus number of dependents



58 Chapter 3. Managing Dependencies

The likelihood of requirements change is represented on the horizontal axis. The 
number of dependents is on the vertical. The grid is divided into four zones, labeled 
A through D. If you evaluate all of the classes in a well-designed application and 
place them on this grid, they will cluster in Zones A, B, and C.

Classes that have little likelihood of change but contain many dependents fall 
into Zone A. This zone usually contains abstract classes or interfaces. In a thought-
fully designed application, this arrangement is inevitable; dependencies cluster 
around abstractions because abstractions are less likely to change.

Notice that classes do not become abstract because they are in Zone A; instead 
they wind up here precisely because they are already abstract. Their abstract nature 
makes them more stable and allows them to safely acquire many dependents. While 
residence in Zone A does not guarantee that a class is abstract, it certainly suggests 
that it ought to be.

Skipping Zone B for a moment, Zone C is the opposite of Zone A. Zone C con-
tains code that is quite likely to change but has few dependents. These classes tend to 
be more concrete, which makes them more likely to change, but this doesn’t matter 
because few other classes depend on them.

Zone B classes are of the least concern during design because they are almost 
neutral in their potential future effects. They rarely change and have few dependents.

Zones A, B, and C are legitimate places for code; Zone D, however, is aptly named 
the Danger Zone. A class ends up in Zone D when it is guaranteed to change and 
has many dependents. Changes to Zone D classes are costly; simple requests become 
coding nightmares as the effects of every change cascade through each dependent. 
If you have a very specific concrete class that has many dependents and you believe 
it resides in Zone A, that is, you believe it is unlikely to change, think again. When a 
concrete class has many dependents, your alarm bells should be ringing. That class 
might actually be an occupant of Zone D.

Zone D classes represent a danger to the future health of the application. These 
are the classes that make an application painful to change. When a simple change has 
cascading effects that force many other changes, a Zone D class is at the root of the 
problem. When a change breaks some far away and seemingly unrelated bit of code, 
the design flaw originated here.

As depressing as this is, there is actually a way to make things worse. You can 
guarantee that any application will gradually become unmaintainable by making its 
Zone D classes more likely to change than their dependents. This maximizes the con-
sequences of every change.

Fortunately, understanding this fundamental issue allows you to take preemptive 
action to avoid the problem.

Depend on things that change less often than you do is a heuristic that stands in 
for all the ideas in this section. The zones are a useful way to organize your thoughts, 
but in the fog of development, it may not be obvious which classes go where. Very 
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often you are exploring your way to a design, and at any given moment the future 
is unclear. Following this simple rule of thumb at every opportunity will cause your 
application to evolve a healthy design.

3.4 Summary
Dependency management is core to creating future-proof applications. Injecting 
dependencies creates loosely coupled objects that can be reused in novel ways. Iso-
lating dependencies allows objects to quickly adapt to unexpected changes. Depend-
ing on abstractions decreases the likelihood of facing these changes.

The key to managing dependencies is to control their direction. The road to 
maintenance nirvana is paved with classes that depend on things that change less 
often than they do.



Chapter 4
Creating Flexible 
Interfaces

It’s tempting to think of object-oriented applications as being the sum of their classes. 
Classes are so very visible; design discussions often revolve around class responsibili-
ties and dependencies. Classes are what you see in your text editor and what you 
check in to your source code repository.

There is design detail that must be captured at this level, but an object-oriented 
application is more than just classes. It is made up of classes but defined by messages. 
Classes control what’s in your source code repository; messages reflect the living, 
animated application.

Design, therefore, must be concerned with the messages that pass between 
objects. It deals not only with what objects know (their responsibilities) and 
who they know (their dependencies) but also with how they talk to one another. 
The conversation between objects takes place using their interfaces; this chapter 
explores creating flexible interfaces that allow applications to grow and to change.

4.1 Understanding Interfaces
Imagine two running applications, as illustrated in Figure 4.1. Each consists of objects 
and the messages that pass between them. 

In the first application, the messages have no apparent pattern. Every object may 
send any message to any other object. If the messages left visible trails, these trails 
would eventually draw a woven mat, with each object connected to every other.
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In the second application, the messages have a clearly defined pattern. Here the 
objects communicate in specific and well-defined ways. If these messages left trails, 
the trails would accumulate to create a set of islands with occasional bridges between 
them.

Both applications, for better or worse, are characterized by the patterns of their 
messages.

The objects in the first application are difficult to reuse. Each one exposes too 
much of itself and knows too much about its neighbors. This excess knowledge 
results in objects that are finely, explicitly, and disastrously tuned to do only the 
things that they do right now. No object stands alone; to reuse any you need all, to 
change one thing you must change everything.

The second application is composed of pluggable, component-like objects. Each 
reveals as little about itself, and knows as little about others, as possible.

The design issue in the first application is not necessarily a failure of dependency 
injection or single responsibility. Those techniques, while necessary, are not enough 
to prevent the construction of an application whose design causes you pain. The 
roots of this new problem lie not in what each class does but in what it reveals. In the 
first application, each class reveals all. Every method in any class is fair game to be 
invoked by any other object.

Experience tells you that all the methods in a class are not the same; some are 
more general or more likely to change than others. The first application takes no 
notice of this. It allows all methods of any object, regardless of their granularity, to be 
invoked by others.

In the second application, the message patterns are visibly constrained. This 
application has some agreement, some bargain, about which messages may pass 
between its objects. Each object has a clearly defined set of methods that it expects 
others to use.

These exposed methods comprise the class’s public interface.

Figure 4.1 Communication patterns
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The word interface can refer to a number of different concepts. Here the term is 
used to refer to the kind of interface that is within a class. Classes implement meth-
ods; some of those methods are intended to be used by others, and these methods 
make up its public interface.

An alternative kind of interface is one that spans across classes and that is inde-
pendent of any single class. Used in this sense, the word interface represents a set of 
messages where the messages themselves define the interface. Many different classes 
may, as part of their whole, implement the methods that the interface requires. It’s 
almost as if the interface defines a virtual class; that is, any class that implements the 
required methods can act like the interface kind of thing.

The remainder of this chapter will address the first kind of interface, that is, 
methods within a class and how and what to expose to others. Chapter 5, “Reducing 
Costs with Duck Typing,” explores the second kind of interface, the one that repre-
sents a concept that is broader than a class and is defined by a set of messages.

4.2 Defining Interfaces
Imagine a restaurant kitchen. Customers order food off a menu. These orders come 
into the kitchen through a little window (the one with the bell beside it, “order up!”) 
and the food eventually comes out. To a naïve imagination it may seem as if the 
kitchen is filled with magical plates of food that are waiting, pining to be ordered, 
but in reality the kitchen is full of people, food, and frenzied activity, and each order 
triggers a new construction and assembly process.

The kitchen does many things but does not, thankfully, expose them all to its 
customers. It has a public interface that customers are expected to use; the menu. 
Within the kitchen many things happen, many other messages get passed, but these 
messages are private and thus invisible to customers. Even though they may have 
ordered it, customers are not welcome to come in and stir the soup.

This distinction between public and private exists because it is the most 
effective way to do business. If customers directed the cooking, they would have to 
be re-educated whenever the kitchen ran low on an ingredient and needed to make a 
substitution. Using a menu avoids this problem by letting each customer ask for what 
they want without knowing anything about how the kitchen makes it.

Each of your classes is like a kitchen. The class exists to fulfill a single respon-
sibility but implements many methods. These methods vary in scale and granularity 
and range from broad, general methods that expose the main responsibility of the 
class to tiny utility methods that are only meant to be used internally. Some of these 
methods represent the menu for your class and should be public; others deal with 
internal implementation details and are private.
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4.2.1 Public Interfaces
The methods that make up the public interface of your class comprise the face it 
presents to the world. They:

• Reveal its primary responsibility.

• Are expected to be invoked by others.

• Will not change on a whim.

• Are safe for others to depend on.

• Are thoroughly documented in the tests.

4.2.2 Private Interfaces
All other methods in the class are part of its private interface. They:

• Handle implementation details.

• Are not expected to be sent by other objects.

• Can change for any reason whatsoever.

• Are unsafe for others to depend on.

• May not even be referenced in the tests.

4.2.3 Responsibilities, Dependencies, and Interfaces
Chapter 2, “Designing Classes with a Single Responsibility,” was about creating classes 
that have a single responsibility—a single purpose. If you think of a class as having 
a single purpose, then the things it does (its more specific responsibilities) are what 
allow it to fulfill that purpose. There is a correspondence between the statements 
you might make about these more specific responsibilities and the classes’ public 
methods. Indeed, public methods should read like a description of responsibilities. 
The public interface is a contract that articulates the responsibilities of your class.

Chapter 3, “Managing Dependencies,” was about dependencies, and its take-home 
message was that a class should depend only on classes that change less often than it 
does. Now that you are dividing every class into a public part and a private part, this 
idea of depending on less changeable things also applies to the methods within a class.

The public parts of a class are the stable parts; the private parts are the change-
able parts. When you mark methods as public or private, you tell users of your class 
upon which methods they may safely depend. When your classes use the public 
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methods of others, you trust those methods to be stable. When you decide to depend 
on the private methods of others, you understand that you are relying on something 
that is inherently unstable and are thus increasing the risk of being affected by a dis-
tant and unrelated change.

4.3 Finding the Public Interface
Finding and defining public interfaces is an art. It presents a design challenge because 
there are no cut-and-dried rules. There are many ways to create “good enough” inter-
faces and the costs of a “not good enough” interface may not be obvious for a while, 
making it difficult to learn from mistakes.

The design goal, as always, is to retain maximum future flexibility while writing 
only enough code to meet today’s requirements. Good public interfaces reduce the 
cost of unanticipated change; bad public interfaces raise it.

This section introduces a new application to illustrate a number of rules of thumb 
about interfaces and a new tool aid to in their discovery.

4.3.1 An Example Application: Bicycle Touring Company
Meet FastFeet, Inc., a bicycle touring company. FastFeet offers both road and moun-
tain bike trips. FastFeet runs its business using a paper system. It currently has no 
automation at all.

Each trip offered by FastFeet follows a specific route and may occur several times 
during the year. Each has limitations on the number of customers who may go and 
requires a specific number of guides who double as mechanics.

Each route is rated according to its aerobic difficulty. Mountain bike trips have an 
additional rating that reflects technical difficulty. Customers have an aerobic fitness 
level and a mountain bike technical skill level to determine if a trip is right for them.

Customers may rent bicycles or they may choose to bring their own. FastFeet has 
a few bicycles available for customer rental, and it also shares in a pool of bicycle 
rentals with local bike shops. Rental bicycles come in various sizes and are suitable 
for either road or mountain bike trips.

Consider the following simple requirement, which will be referred to later as a 
use case: A customer, in order to choose a trip, would like to see a list of available 
trips of appropriate difficulty, on a specific date, where rental bicycles are available.

4.3.2 Constructing an Intention
Getting started with the first bit of code in a brand new application is intimidating. 
When you are adding code to an existing code base, you are usually extending an 
existing design. Here, however, you must put pen to paper (figuratively) and make 
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decisions that will determine the patterns of this application forever. The design that 
gets extended later is the one that you are establishing now.

You know that you should not dive in and start writing code. You may believe that 
you should start writing tests, but that belief doesn’t make it easy to do. Many novice 
designers have serious difficulty imagining the first test. Writing that test requires that 
you have an idea about what you want to test, one that you may not yet have.

The reason that test-first gurus can easily start writing tests is that they have so 
much design experience. At this stage, they have already constructed a mental map 
of possibilities for objects and interactions in this application. They are not attached 
to any specific idea and plan to use tests to discover alternatives, but they know so 
much about design that they have already formed an intention about the application. 
It is this intention that allows them to specify the first test.

Whether you are conscious of them or not, you have already formed some inten-
tions of your own. The description of FastFeet’s business has likely given you ideas 
about potential classes in this application. You probably expect to have Customer, 
Trip, Route, Bike, and Mechanic classes.

These classes spring to mind because they represent nouns in the application that 
have both data and behavior. Call them domain objects. They are obvious because 
they are persistent; they stand for big, visible real-world things that will end up with 
a representation in your database.

Domain objects are easy to find, but they are not at the design center of your 
application. Instead, they are a trap for the unwary. If you fixate on domain objects, 
you will tend to coerce behavior into them. Design experts notice domain objects 
without concentrating on them; they focus not on these objects but on the messages 
that pass between them. These messages are guides that lead you to discover other 
objects, ones that are just as necessary but far less obvious.

Before you sit at the keyboard and start typing, you should form an intention 
about the objects and the messages needed to satisfy this use case. You would be best 
served if you had a simple, inexpensive, communication-enhancing way to explore 
design that did not require you to write code.

Fortunately, some very smart people have thought about this issue at great length 
and have devised an effective mechanism for doing just that.

4.3.3 Using Sequence Diagrams
There is a perfect, low-cost way to experiment with objects and messages: sequence 
diagrams.

Sequence diagrams are defined in the Unified Modeling Language (UML) and 
are one of many diagrams that UML supports. Figure 4.2 shows a sampling of some 
diagrams. 
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If you have joyfully embraced UML, you already know the value of sequence 
diagrams. If you are unfamiliar with UML and find the graphic alarming, fear not. 
This book is not turning into a UML guide. Lightweight, agile design does not require 
the creation and maintenance of piles of artifacts. However, the creators of UML put 
a great deal of thought into how to communicate object-oriented design, and you 
can leverage their efforts. There are UML diagrams that provide excellent, transient 
ways to explore and communicate design possibilities. Use them; you do not need to 
 reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment 
with different object arrangements and message-passing schemes. They bring clar-
ity to your thoughts and provide a vehicle to collaborate and communicate with 
others. Think of them as a lightweight way to acquire an intention about an interac-
tion. Draw them on a whiteboard, alter them as needed, and erase them when they’ve 
served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt 
to implement the use case above. It shows Moe, a Customer, and the Trip class, 
where Moe sends the suitable_trips message to Trip and gets back a response. 

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see, 
they show two things: objects and the messages passing between them. The following 
paragraphs describe the parts of this diagram, but please note that the UML police 
will not arrest you if you vary from the official style. Do what works for you.

Figure 4.2 Sample UML diagrams
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In the example diagram, each object is represented by two identically named 
boxes, arranged one above the other and connected by a single vertical line. It con-
tains two objects, the Customer Moe and the class Trip. Messages are shown as 
horizontal lines. When a message is sent, the line is labeled with the message name. 
Message lines end or begin with an arrow; this arrow points to the receiver. When 
an object is busy processing a received message, it is active and its vertical line is 
expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to 
the Trip class. Therefore, this sequence diagram can be read as follows: Customer 
Moe sends the suitable_trips message to the Trip class, which is activated to 
process it and then, when finished, returns a response.

This sequence diagram is very nearly an exact literal translation of the use case. 
The nouns in the use case became objects in the sequence diagram, and the action 
of the use case turned into a message. The message requires three parameters: 
on_date, of_difficulty, and need_bike.

While this example serves quite adequately to illustrate the parts of a sequence 
diagram, the design that it implies should give you pause. In this sequence diagram 
Moe expects the Trip class to find him a suitable trip. It seems reasonable that Trip 
would be responsible for finding trips on a date and of a difficulty, but Moe may also 
need a bicycle, and he clearly expects Trip to handle that too.

Drawing this sequence diagram exposes the message passing between the 
Customer Moe and the Trip class and prompts you to ask the question: “Should 
Trip be responsible for figuring out if an appropriate bicycle is available for each 
suitable trip?” or more generally, “Should this receiver be responsible for responding 
to this message?”

Therein lies the value of sequence diagrams. They explicitly specify the messages 
that pass between objects, and because objects should only communicate using pub-
lic interfaces, sequence diagrams are a vehicle for exposing, experimenting with, and 
ultimately defining those interfaces.

Moe
Customer

suitable_trips
(on_date,
of_difficulty,
need_bike)

class
Trip

Moe
Customer

class
Trip

Figure 4.3 Simple sequence diagram
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Also, notice now that you have drawn a sequence diagram, this design conversa-
tion has been inverted. The previous design emphasis was on classes and who and 
what they knew. Suddenly, the conversation has changed; it is now revolving around 
messages. Instead of deciding on a class and then figuring out its responsibilities, you 
are now deciding on a message and figuring out where to send it.

This transition from class-based design to message-based design is a turning 
point in your design career. The message-based perspective yields more flexible 
applications than does the class-based perspective. Changing the fundamental design 
question from “I know I need this class, what should it do?” to “I need to send this 
message, who should respond to it?” is the first step in that direction.

You don’t send messages because you have objects, you have objects because 
you send messages.

From a message passing point of view, it is perfectly reasonable for a Customer 
to send the suitable_trips message. The problem isn’t that Customer should not 
send it, the problem is that Trip should not receive it.

Now that you have the suitable_trips message in mind but no place to send 
it, you must construct some alternatives. Sequence diagrams make it easy to explore 
the possibilities.

If the Trip class should not be figuring out if bicycles are available for a trip, per-
haps there’s a Bicycle class that should. Trip can be responsible for suitable_trips 
and Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to 
both of them. That sequence diagram looks like Figure 4.4. 

For each of these diagrams, consider what Moe has to know.

Moe
Customer

class
Trip

class
Bicycle

Moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of_difficulty)

suitable_bicycle
(trip_date,
route_type)

Figure 4.4 Moe talks to trip and bicycle
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In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This 
design removes extraneous responsibilities from Trip, but unfortunately, it merely 
transfers them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also 
knows how other objects should collaborate to provide it. The Customer class has 
become the owner of the application rules that assess trip suitability.

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior 
off of a menu, he’s going into the kitchen and cooking. The Customer class is co-
opting responsibilities that belong somewhere else and binding itself to an imple-
mentation that might change.

4.3.4 Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a mes-
sage that tells the receiver how to behave may seem subtle, but the consequences are 
significant. Understanding this difference is a key part of creating reusable classes 
with well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed 
example. Put the customer/trip design problem aside for a bit; it will return soon. 
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart, and it needs to make sure all the bicycles 
scheduled to be used are in good shape. The use case for this requirement is: A trip, 
in order to start, needs to ensure that all its bicycles are mechanically sound. Trip 
could know exactly how to make a bike ready for a trip and could ask a Mechanic 
to do each of those things: 

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle, 
pump_tires, lube_chain, and check_brakes.
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• Trip expects to be holding onto an object that can respond to clean_bicycle, 
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because 
Trip contains this knowledge and uses it to direct Mechanic, Trip must change 
if Mechanic adds new procedures to the bike preparation process. For example, if 
Mechanic implements a method to check the bike repair kit as part of Trip prepara-
tion, Trip must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each 
Bicycle, leaving the implementation details to Mechanic. 

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes the method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

Trip has now relinquished a great deal of responsibility to Mechanic. Trip 
knows that it wants each of its bicycles to be prepared, and it trusts the Mechanic to 
accomplish this task. Because the responsibility for knowing how has been ceded to 
Mechanic, Trip will always get the correct behavior regardless of future improvements 
to Mechanic.

a
Trip

bicycles

clean_bicycle(bike)

pump_tires(bike)

lube_chain(bike)

check_brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 Trip tells a Mechanic how to prepare each Bicycle



72 Chapter 4. Creating Flexible Interfaces

When the conversation between Trip and Mechanic switched from a how to 
a what, one side effect was that the size of the public interface in Mechanic was 
drastically reduced. In Figure 4.5, Mechanic exposes many methods; in Figure 4.6, its 
public interface consists of a single method, prepare_bicycle. Because Mechanic 
promises that its public interface is stable and unchanging, having a small public 
interface means that there are few methods for others to depend on. This reduces the 
likelihood of Mechanic someday changing its public interface, breaking its promise, 
and forcing changes on many other classes.

This change of message patterns is a great improvement to the maintainability of 
the code, but Trip still knows a lot about Mechanic. The code would be more flexible 
and more maintainable if Trip could accomplish its goals while knowing even less.

4.3.5 Seeking Context Independence
The things that Trip knows about other objects make up its context. Think of it this 
way: Trip has a single responsibility but it expects a context. In Figure 4.6, Trip 
expects to be holding onto a Mechanic object that can respond to the prepare_
bicycle message.

Context is a coat that Trip wears everywhere; any use of Trip, be it for testing 
or otherwise, requires that its context be established. Preparing a trip always requires 
preparing bicycles, and in doing so, Trip always sends the prepare_bicycle mes-
sage to its Mechanic. You cannot reuse Trip unless you provide a Mechanic-like 
object that can respond to this message.

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare_bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 Trip asks a Mechanic to prepare each Bicycle
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The context that an object expects has a direct effect on how difficult it is to 
reuse. Objects that have a simple context are easy to use and easy to test; they expect 
few things from their surroundings. Objects that have a complicated context are hard 
to use and hard to test; they require complicated setup before they can do anything.

The best possible situation is for an object to be completely independent of its 
context. An object that could collaborate with others without knowing who they are 
or what they do could be reused in novel and unanticipated ways.

You already know the technique for collaborating with others without knowing 
who they are—dependency injection. The new problem here is for Trip to invoke 
the correct behavior from Mechanic without knowing what Mechanic does. Trip 
wants to collaborate with Mechanic while maintaining context independence.

At first glance, this seems impossible. Trips have bicycles, bicycles must be pre-
pared, and mechanics prepare bicycles. Having Trip ask Mechanic to prepare a 
Bicycle seems inevitable.

However, it is not. The solution to this problem lies in the distinction between 
what and how, and arriving at a solution requires concentrating on what Trip wants.

What Trip wants is to be prepared. The knowledge that it must be prepared 
is completely and legitimately within the realm of Trip’s responsibilities. However, 
the fact that bicycles need to be prepared may belong to the province of Mechanic. 
The need for bicycle preparation is more how a Trip gets prepared than what a 
Trip wants.

Figure 4.7 illustrates a third alternative sequence diagram for Trip preparation. 
In this example, Trip merely tells Mechanic what it wants, that is, to be prepared, 
and passes itself along as an argument. 

a
Trip

a
Mechanic

prepare_bicycle(bike)

prepare_trip(self)

bicycles

for each bicycle

a
Trip

a
Mechanic

Figure 4.7 Trip asks a Mechanic to prepare the Trip
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In this sequence diagram, Trip knows nothing about Mechanic but still man-
ages to collaborate with it to get bicycles ready. Trip tells Mechanic what it wants, 
passes self along as an argument, and Mechanic immediately calls back to Trip to 
get the list of the Bicycles that need preparing.

In Figure 4.7:

• The public interface for Trip includes bicycles.

• The public interface for Mechanic includes prepare_trip and perhaps 
prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond 
to bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside 
of Mechanic, and the context of Trip has been reduced. Both of the objects are now 
easier to change, to test, and to reuse.

4.3.6 Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement toward 

increasingly object-oriented code, and as such, they mirror the stages of development 
of the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a Bicycle,
 almost as if Trip were the main program and Mechanic a bunch of callable functions. 
In this design, Trip is the only object that knows exactly how to prepare a bike; get-
ting a bike prepared requires using a Trip or duplicating the code. Trip’s context is 
large, as is Mechanic’s public interface. These two classes are not islands with bridges 
between them; they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing 
procedural code. It’s inevitable; this style closely mirrors the best practices of their 
former procedural languages. Unfortunately, coding in a procedural style defeats the 
purpose of object orientation. It reintroduces the exact maintenance issues that OOP 
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare 
a Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller. 
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate 
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great 
improvement, but continues to require that Trip have more context than is neces-
sary. Trip still knows that it holds onto an object that can respond to prepare_
bicycle, and it must always have this object.
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Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or 
care that it has a Mechanic, and it doesn’t have any idea what the Mechanic will do. 
Trip merely holds onto an object to which it will send prepare_trip; it trusts the 
receiver of this message to behave appropriately.

Expanding on this idea, Trip could place a number of such objects into an array 
and send each the prepare_trip message, trusting every preparer to do whatever it 
does because of the kind of thing that it is. Depending on how Trip was being used, 
it might have many preparers or it might have few. This pattern allows you to add 
newly introduced preparers to Trip without changing any of its code, that is, you 
can extend Trip without modifying it.

If objects were human and could describe their own relationships, in Figure 4.5, 
Trip would be telling Mechanic: “I know what I want, and I know how you do it”; 
in Figure 4.6: “I know what I want, and I know what you do”; and in Figure 4.7: “I 
know what I want, and I trust you to do your part.”

This blind trust is a keystone of object-oriented design. It allows objects to col-
laborate without binding themselves to context and is necessary in any application 
that expects to grow and change.

4.3.7 Using Messages to Discover Objects
Armed with knowledge about the distinction between what and how and the impor-
tance of context and trust, it’s time to return to the original design problem from 
Figures 4.3 and 4.4.

Remember that the use case for that problem stated: A customer, in order to 
choose a trip, would like to see a list of available trips of appropriate difficulty, on a 
specific date, where rental bicycles are available.

Figure 4.3 was a literal translation of this use case, one in which Trip had too 
much responsibility. Figure 4.4 was an attempt to move the responsibility for finding 
available bicycles from Trip to Bicycle, but in doing so, it placed an obligation on 
Customer to know far too much about what makes a trip “suitable.”

Neither of these designs is very reusable or tolerant of change. These problems 
are revealed, inescapably, in the sequence diagrams. Both designs contain a violation 
of the Single Responsibility Principle. In Figure 4.3, Trip knows too much. In Figure 
4.4, Customer knows too much, tells other objects how to behave, and requires too 
much context.

It is completely reasonable that Customer would send the suitable_trips 
message. That message repeats in both sequence diagrams because it feels innately 
correct. It is exactly what Customer wants. The problem is not with the sender, it is 
with the receiver. You have not yet identified an object whose responsibility it is to 
implement this method.
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This application needs an object to embody the rules at the intersection of 
Customer, Trip, and Bicycle. The suitable_trips method will be part of its 
public interface.

The realization that you need an as-yet undefined object is one that you can arrive 
at via many routes. The advantage of discovering this missing object via sequence 
diagrams is that the cost of being wrong is very low and the impediments to chang-
ing your mind are extremely few. The sequence diagrams are experimental and will 
be discarded; your lack of attachment to them is a feature. They do not reflect your 
ultimate design, but instead they create an intention that is the starting point for your 
design.

Regardless of how you reach this point, it is now clear that you need a new 
object, one that you discovered because of your need to send it a message.

Perhaps the application should contain a TripFinder class. Figure 4.8 shows a 
sequence diagram where a TripFinder is responsible for finding suitable trips. 

TripFinder contains all knowledge of what makes a trip suitable. It knows the 
rules; its job is to do whatever is necessary to respond to this message. It provides a 
consistent public interface while hiding messy and changeable internal implementa-
tion details.

Moe
Customer

a
TripFinder

class
Trip

class
Bicycle

for each trip found

suitable_trips
(on_date,
of_difficulty,
need_bike)

suitable_trips
(on_date,
of_difficulty)

suitable_bicycle
(trip_date,
route_type)

Moe
Customer

a
TripFinder

class
Trip

class
Bicycle

Figure 4.8 Moe asks the TripFinder for a suitable trip
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Moving this method into TripFinder makes the behavior available to any 
other object. In the unknown future, perhaps other touring companies will use 
TripFinder to locate suitable trips via a web service. Now that this behavior has 
been extracted from Customer, it can be used, in isolation, by any other object.

4.3.8 Creating a Message-Based Application
This section used sequence diagrams to explore design, define public interfaces, and 
discover objects.

Sequence diagrams are powerfully useful in a transient way; they make other-
wise impossibly convoluted conversations comprehensible. Flip back through the last 
several pages and imagine attempting this discussion without them.

Useful as they are, they are a tool, nothing more. They help keep the focus on 
messages and allow you to form a rational intention about the first thing to assert in a 
test. Switching your attention from objects to messages allows you to concentrate on 
designing an application built upon public interfaces.

4.4 Writing Code That Puts Its Best 
(Inter)Face Forward
The clarity of your interfaces reveals your design skills and reflects your self-discipline. 
Because design skills are always improving but never perfected, and because even 
today’s beautiful design may look ugly in light of tomorrow’s requirement, it is difficult 
to create perfect interfaces.

This, however, should not deter you from trying. Interfaces evolve, and to do so, 
they must first be born. It is more important that a well-defined interface exists than 
that it be perfect.

Think about interfaces. Create them intentionally. It is your interfaces, more than 
all of your tests and any of your code, that define your application and determine its 
future.

The following section contains rules of thumb for creating interfaces.

4.4.1 Create Explicit Interfaces
Your goal is to write code that works today, that can easily be reused, and that can be 
adapted for unexpected use in the future. Other people will invoke your methods; it 
is your obligation to communicate which ones are dependable.

Every time you create a class, declare its interfaces. Methods in the public 
interface should:
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• Be explicitly identified as such.

• Be more about what than how.

• Have names that, insofar as you can anticipate, will not change.

• Prefer keyword arguments.

Be just as intentional about the private interface; make it inescapably obvious. 
Tests, because they serve as documentation, can support this endeavor. Either do not 
test private methods or, if you must, segregate those tests from the tests of public 
methods. Do not allow your tests to fool others into unintentionally depending on the 
changeable, private interface.

Ruby provides three relevant keywords: public, protected, and private. Use 
of these keywords serves two distinct purposes. First, they indicate which methods 
are stable and which are unstable. Second, they control how visible a method is to 
other parts of your application. These two purposes are very different. Conveying 
information that a method is stable or unstable is one thing; attempting to control 
how others use it is quite another.

Public, Protected, and Private Keywords
The private keyword denotes the least stable kind of method and provides 
the most restricted visibility. Private methods must be called with an implicit 
receiver or, inversely, may never be called with an explicit receiver.

If class Trip contains private method fun_factor, you may not 
send self.fun_factor from within Trip or a_trip.fun_factor from 
another object. However, you may send fun_factor, defaulting to self 
(the implicit receiver) from within instances of Trip and its subclasses.

The protected keyword also indicates an unstable method, but one 
with slightly different visibility restrictions. Protected methods allow explicit 
receivers as long as the receiver is self or an instance of the same class or 
subclass of self.

Thus, if Trip’s fun_factor method is protected, you may always 
send self.fun_factor. Additionally, you may send a_trip.fun_factor, 
but only from within a class where self is the same kind of thing (class or 
subclass) as a_trip.

The public keyword indicates that a method is stable; public methods 
are visible everywhere.

To further complicate matters, Ruby not only provides these keywords but also 
supplies various mechanisms for circumventing the visibility restrictions that private 



794.4 Writing Code That Puts Its Best (Inter)Face Forward 

and protected impose. Users of a class can redefine any method to public regard-
less of its initial declaration. The private and protected keywords are more like 
flexible barriers than concrete restrictions. Anyone can get by them; it’s simply a mat-
ter of expending the effort.

Therefore, any notion that you can prevent method access by using these 
keywords is an illusion. The keywords don’t deny access, they just make it a bit 
harder. Using them sends two messages:

• You believe that you have better information today than programmers will have 
in the future.

• You believe that those future programmers need to be prevented from acciden-
tally using a method that you currently consider unstable.

These beliefs may be correct, but the future is a long way off and one can never 
be certain. The most apparently stable methods may change regularly, and the most 
initially unstable may survive the test of time. If the illusion of control is a comfort, 
feel free to use the keywords. However, many perfectly competent Ruby program-
mers omit them and instead use comments or a special method naming convention to 
differentiate the public and private parts of interfaces.

These strategies are perfectly acceptable and sometimes even preferable. They 
supply information about method stability without imposing visibility restrictions. 
Use of them trusts future programmers to make good choices about which methods 
to depend upon based on the increased information they have at that time.

Regardless of how you choose to do so, as long as you find some way to convey 
this information, you have fulfilled your obligations to the future.

4.4.2 Honor the Public Interfaces of Others
Do your best to interact with other classes using only their public interfaces. Assume 
that the authors of those classes were just as intentional as you are now, and they 
are trying desperately, across time and space, to communicate which methods are 
dependable. The public/private distinctions they made are intended to help you, and 
it’s best to heed them.

If your design forces the use of a private method in another class, first rethink 
your design. It’s possible that a committed effort will unearth an alternative; you 
should try very hard to find one.

When you depend on a private interface, you increase the risk of being forced to 
change. When that private interface is part of an external framework that undergoes 
periodic releases, this dependency is like a time bomb that will go off at the worst 
possible moment. Inevitably, the person who created the dependency leaves for 
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greener pastures, the external framework gets updated, the private method being 
depended upon changes, and the application breaks in a way that baffles current 
maintainers.

A dependency on a private method of an external framework is a form of techni-
cal debt. Avoid these dependencies.

4.4.3 Exercise Caution When Depending on Private Interfaces
Despite your best efforts, you may find that you must depend on a private inter-
face. This is a dangerous dependency that should be isolated using the techniques 
described in Chapter 3. Even if you cannot avoid using a private method, you can 
prevent the method from being referenced in many places in your application. 
Depending on a private interface increases risk; keep this risk to a minimum by 
isolating the dependency.

4.4.4 Minimize Context
Construct public interfaces with an eye toward minimizing the context they require 
from others. Keep the what versus how distinction in mind; create public methods 
that allow senders to get what they want without knowing how your class imple-
ments its behavior.

Conversely, do not succumb to a class that has an ill-defined or absent public 
interface. When faced with a situation like that of the Mechanic class in Figure 4.5, 
do not give up and tell it how to behave by invoking all of its methods. Even if the 
original author did not define a public interface, it is not too late to create one for 
yourself.

Depending on how often you plan to use this new public interface, it can be a 
new method that you define and place in the Mechanic class, a new wrapper class 
that you create and use instead of Mechanic, or a single wrapping method that you 
place in your own class. Do what best suits your needs, but create some kind of 
defined public interface and use it. This reduces your class’s context, making it easier 
to reuse and simpler to test.

4.5 The Law of Demeter
Having read about responsibilities, dependencies, and interfaces, you are now 
equipped to explore the Law of Demeter.

The Law of Demeter is a set of coding rules that results in loosely coupled 
objects. Loose coupling is nearly always a virtue but is just one component of 
design and must be balanced against competing needs. Some Demeter violations are 
harmless, but others expose a failure to correctly identify and define public interfaces.
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4.5.1 Defining Demeter
Demeter restricts the set of objects to which a method may send messages; it prohib-
its routing a message to a third object via a second object of a different type. Demeter 
is often paraphrased as “only talk to your immediate neighbors” or “use only one dot.” 
Imagine that Trip’s depart method contains each of the following lines of code:

• customer.bicycle.wheel.tire

• customer.bicycle.wheel.rotate

• hash.keys.sort.join(',')

Each line is a message chain containing a number of dots (periods). These chains 
are colloquially referred to as train wrecks; each method name represents a train car, 
and the dots are the connections between them. These trains are an indication that 
you might be violating Demeter.

4.5.2 Consequences of Violations
Demeter became a “law” because a human being decided so; don’t be fooled by its 
grandiose name. As a law, it’s more like “floss your teeth every day” than it is like 
gravity. You might prefer not to confess to your dentist, but occasional violations will 
not collapse the universe.

Chapter 2 stated that code should be transparent, reasonable, usable, and 
exemplary. Some of the message chains above fail when judged against TRUE:

If wheel changes tire or rotate, depart may have to change. Trip has 
nothing to do with wheel, yet changes to wheel might force changes in Trip. This 
unnecessarily raises the cost of change; the code is not reasonable.

Changing tire or rotate may break something in depart. Because Trip is 
distant and apparently unrelated, the failure will be completely unexpected. This 
code is not transparent.

Trip cannot be reused unless it has access to a customer with a bicycle that 
has a wheel and a tire. It requires a lot of context and is not easily usable.

This pattern of messages will be replicated by others, producing more code with 
similar problems. This style of code, unfortunately, breeds itself. It is not exemplary.

The first two message chains are nearly identical, differing only in that one 
retrieves a distant attribute (tire) and the other invokes distant behavior (rotate). 
Even experienced designers argue about how firmly Demeter applies to message 
chains that return attributes. It may be cheapest, in your specific case, to reach 
through intermediate objects to retrieve distant attributes. Balance the likelihood and 
cost of change against the cost of removing the violation. If, for example, you are 
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printing a report of a set of related objects, the most rational strategy may be to 
explicitly specify the intermediate objects and to change the report if it becomes nec-
essary. Because the risk incurred by Demeter violations is low for stable attributes, 
this may be the most cost-efficient strategy.

This tradeoff is permitted as long as you are not changing the value of the attrib-
ute you retrieve. If depart sends customer.bicycle.wheel.tire with the intent 
of altering the result, it is not just retrieving an attribute, it is implementing behav-
ior that belongs in Wheel. In this case, customer.bicycle.wheel.tire becomes 
just like customer.bicycle.wheel.rotate; it’s a chain that reaches across many 
objects to get to distant behavior. The inherent cost of this coding style is high; this 
violation should be removed.

The third message chain, hash.keys.sort.join is perfectly reasonable and, 
despite the abundance of dots, may not be a Demeter violation at all. Instead of 
evaluating this phrase by counting the “dots,” evaluate it by checking the types of the 
intermediate objects.

• hash.keys returns an Enumerable.

• hash.keys.sort also returns an Enumerable.

• hash.keys.sort.join returns a String.

By this logic, there is a slight Demeter violation. However, if you can bring 
yourself to accept that hash.keys.sort.join actually returns an Enumerable of 
Strings, all of the intermediate objects have the same type and there is no Demeter 
violation. If you remove the dots from this line of code, your costs may well go up 
instead of down.

As you can see, Demeter is subtler than it first appears. Its fixed rules are not 
an end in themselves; like every design principle, it exists in service of your overall 
goals. Certain “violations” of Demeter reduce your application’s flexibility and main-
tainability, while others make perfect sense.

4.5.3 Avoiding Violations
One common way to remove train wrecks from code is to use delegation to avoid the 
dots. In object-oriented terms, to delegate a message is to pass it on to another object, 
often via a wrapper method. The wrapper method encapsulates, or hides, knowledge 
that would otherwise be embodied in the message chain.

There are a number of ways to accomplish delegation. Ruby provides support via 
delegate.rb and forwardable.rb, which make it easy for an object to automati-
cally intercept a message sent to self and to instead send it somewhere else.
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Delegation is tempting as a solution to the Demeter problem because it removes 
the visible evidence of violations. This technique is sometimes useful, but beware: 
It can result in code that obeys the letter of the law while ignoring its spirit. Using 
delegation to hide tight coupling is not the same as decoupling the code.

4.5.4 Listening to Demeter
Demeter is trying to tell you something, and it isn’t “use more delegation.”

Message chains like customer.bicycle.wheel.rotate occur when your 
design thoughts are unduly influenced by objects you already know. Your familiarity 
with the public interfaces of known objects may lead you to string together long mes-
sage chains to get at distant behavior.

Reaching across disparate objects to invoke distant behavior is tantamount to 
saying, “There’s some behavior way over there that I need right here, and I know how 
to go get it.” The code knows not only what it wants (to rotate) but how to navigate 
through a bunch of intermediate objects to reach the desired behavior. Just as Trip, 
earlier, knew how Mechanic should prepare a bike and so was tightly coupled to 
Mechanic, here the depart method knows how to navigate through a series of 
objects to make a wheel rotate and therefore is tightly coupled to your overall object 
structure.

This coupling causes all kinds of problems. The most obvious is that it raises the 
risk that Trip will be forced to change because of an unrelated change somewhere in 
the message chain. However, there’s another problem here that is even more serious.

When the depart method knows this chain of objects, it binds itself to a very 
specific implementation, and it cannot be reused in any other context. Customers 
must always have Bicycles, which in turn must have Wheels that rotate.

Consider what this message chain would look like if you had started out by 
deciding what depart wants from customer. From a message-based point of view, 
the answer is obvious:

customer.ride

The ride method of customer hides implementation details from Trip and 
reduces both its context and its dependencies, significantly improving the design. 
When FastFeet changes and begins leading hiking trips, it’s much easier to generalize 
from customer.ride to customer.depart or customer.go than to disentangle 
the tentacles of this message chain from your application.

The train wrecks of Demeter violations are clues that there are objects whose 
public interfaces are lacking. Listening to Demeter means paying attention to your 
point of view. If you shift to a message-based perspective, the messages you find will 
become public interfaces in the objects they lead you to discover. However, if you 



84 Chapter 4. Creating Flexible Interfaces

are bound by the shackles of existing domain objects, you’ll end up assembling their 
existing public interfaces into long message chains and thus will miss the opportunity 
to find and construct flexible public interfaces.

4.6 Summary
Object-oriented applications are defined by the messages that pass between objects. 
This message passing takes place along “public” interfaces; well-defined public inter-
faces consist of stable methods that expose the responsibilities of their underlying 
classes and provide maximal benefit at minimal cost.

Focusing on messages reveals objects that might otherwise be overlooked. 
When messages are trusting and ask for what the sender wants instead of telling the 
receiver how to behave, objects naturally evolve public interfaces that are flexible and 
reusable in novel and unexpected ways.



Chapter 5
Reducing Costs with 
Duck Typing

The purpose of object-oriented design is to reduce the cost of change. Now that 
you know messages are at the design center of your application, and now that you 
are committed to the construction of rigorously defined public interfaces, you can 
combine these two ideas into a powerful design technique that further reduces 
your costs.

This technique is known as duck typing. Duck types are public interfaces that are 
not tied to any specific class. These across-class interfaces add enormous flexibility 
to your application by replacing costly dependencies on class with more forgiving 
dependencies on messages.

Duck typed objects are chameleons that are defined more by their behavior than 
by their class. This is how the technique gets its name; if an object quacks like a duck 
and walks like a duck, then its class is immaterial—it’s a duck.

This chapter shows you how to recognize and exploit duck types to make your 
application more flexible and easier to change.

5.1 Understanding Duck Typing
Programming languages use the term type to describe the category of the contents 
of a variable. Procedural languages provide a small, fixed number of types, generally 
used to describe kinds of data. Even the humblest language defines types to hold 
strings, numbers, and arrays.
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It is knowledge of the category of the contents of a variable, or its type, that 
allows an application to have an expectation about how those contents will behave. 
Applications quite reasonably assume that numbers can be used in mathematical 
expressions, strings concatenated, and arrays indexed.

In Ruby, these expectations about the behavior of an object come in the form 
of beliefs about its public interface. If one object knows another’s type, it knows to 
which messages that object can respond.

An instance of the Mechanic class contains, obviously, the complete public inter-
face of Mechanic. It is blindingly apparent that any object holding onto an instance 
of Mechanic can treat the instance as if it is a Mechanic; the object, by its very 
nature, implements the Mechanic class’s public interface.

However, you are not limited to expecting an object to respond to just one inter-
face. A Ruby object is like a partygoer at a masquerade ball that changes masks to 
suit the theme. It can expose a different face to every viewer; it can implement many 
different interfaces.

Just as beauty is in the physical world, within your application an object’s type is 
in the eye of the beholder. Users of an object need not, and should not, be concerned 
about its class. Class is just one way for an object to acquire a public interface; the 
public interface an object obtains by way of its class may be one of several that it 
contains. Applications may define many public interfaces that are not related to one 
specific class; these interfaces cut across class. Users of any object can blithely expect 
it to act like any, or all, of the public interfaces it implements. It’s not what an object 
is that matters, it’s what it does.

If every object trusts all others to be what it expects at any given moment, and 
any object can be any kind of thing, the design possibilities are infinite. These possi-
bilities can be used to create flexible designs that are marvels of structured creativity 
or, alternatively, to construct terrifying designs that are incomprehensibly chaotic.

Using this flexibility wisely requires that you recognize these across-class types 
and construct their public interfaces as intentionally and as diligently as you did those 
of within-class types back in Chapter 4, “Creating Flexible Interfaces.” Across-class 
types, duck types, have public interfaces that represent a contract that must be explicit 
and well-documented.

The best way to explain duck types is to explore the consequences of not using 
them. This section contains an example that goes through several refactorings, solv-
ing a messy design problem by finding and implementing a duck type.

5.1.1 Overlooking the Duck
In the following code, Trip’s prepare method sends message prepare_bicycles 
to the object contained in its mechanic parameter. Notice that the Mechanic class is 
not referenced; even though the parameter name is mechanic, the object it contains 
could be of any class.
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Listing 5.1

 1 class Trip
 2   attr_reader :bicycles, :customers, :vehicle
 3 
 4   # this 'mechanic' argument could be of any class
 5   def prepare(mechanic)
 6     mechanic.prepare_bicycles(bicycles)
 7   end
 8 
 9   # ...
10 end
11 
12 # if you happen to pass an instance of *this* class,
13 # it works
14 class Mechanic
15   def prepare_bicycles(bicycles)
16     bicycles.each {|bicycle| prepare_bicycle(bicycle)}
17   end
18 
19   def prepare_bicycle(bicycle)
20     #...
21   end
22 end

Figure 5.1 contains the corresponding sequence diagram, where an outside object 
gets everything started by sending prepare to Trip, passing along an argument. 
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Figure 5.1 Trip prepares itself by asking a mechanic to prepare the bicycles
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The prepare method has no explicit dependency on the Mechanic class, but it 
does depend on receiving an object that can respond to prepare_bicycles. This 
dependency is so fundamental that it’s easy to miss or to discount, but nonetheless, it 
exists. Trip’s prepare method firmly believes that its argument contains a preparer 
of bicycles.

5.1.2 Compounding the Problem
You may already have noticed that this example is like the sequence diagram in 
Figure 4.6. The next refactoring there improved the design by pushing knowledge 
of how a Trip gets prepared into Mechanic. The next example here, alas, is no 
improvement at all.

Imagine that requirements change. In addition to a mechanic, trip preparation 
now involves a trip coordinator and a driver. Following the established pattern of 
the code, you create new TripCoordinator and Driver classes and give them the 
behavior for which they are responsible. You also change Trip’s prepare method to 
invoke the correct behavior from each of its arguments.

The following code illustrates the change. The new TripCoordinator and 
Driver classes are simple and inoffensive, but Trip’s prepare method is now a 
cause for alarm. It refers to three different classes by name and knows specific meth-
ods implemented in each. Risks have dramatically gone up. Trip’s prepare method 
might be forced to change because of a change elsewhere, and it might unexpectedly 
break as the result of a distant, unrelated change.

Listing 5.2

 1 # Trip preparation becomes more complicated
 2 class Trip
 3   attr_reader :bicycles, :customers, :vehicle
 4 
 5   def prepare(preparers)
 6     preparers.each {|preparer|
 7       case preparer
 8       when Mechanic
 9         preparer.prepare_bicycles(bicycles)
10       when TripCoordinator
11         preparer.buy_food(customers)
12       when Driver
13         preparer.gas_up(vehicle)
14         preparer.fill_water_tank(vehicle)
15       end
16     }
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17   end
18 end
19 
20 # when you introduce TripCoordinator and Driver
21 class TripCoordinator
22   def buy_food(customers)
23     # ...
24   end
25 end
26 
27 class Driver
28   def gas_up(vehicle)
29     #...
30   end
31 
32   def fill_water_tank(vehicle)
33     #...
34   end
35 end

This code is the first step in a process that will paint you into a corner with 
no way out. Code like this gets written when programmers are blinded by existing 
classes and neglect to notice that they have overlooked important messages; this 
dependent-laden code is a natural outgrowth of a class-based perspective.

The roots of the problem are innocent enough. It’s easy to fall into the trap 
of thinking of the original prepare method as expecting an actual instance of 
Mechanic. Your technical brain surely recognizes that prepare’s argument can 
legally be of any class, but that doesn’t save you; in your heart of hearts, you think of 
the argument as being a Mechanic.

Because you know that Mechanic understands prepare_bicycle and are con-
fident that you are passing a Mechanic, initially all is well. This perspective works 
fine until something changes and instances of classes other than Mechanic begin to 
appear on the argument list. When that happens, prepare must suddenly deal with 
objects that do not understand prepare_bicycle.

If your design imagination is constrained by class and you find yourself unex-
pectedly dealing with objects that don’t understand the message you are sending, 
your tendency is to go hunt for messages that these new objects do understand. 
Because the new arguments are instances of TripCoordinator and Driver, you 
naturally examine the public interfaces of those classes and find buy_food, gas_up, 
and fill_water_tank. This is the behavior that prepare wants.
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The most obvious way to invoke this behavior is to send these very messages, 
but now you’re stuck. Every one of your arguments is of a different class and imple-
ments different methods; you must determine each argument’s class to know which 
message to send. Adding a case statement that switches on class solves the prob-
lem of sending the correct message to the correct object but causes an explosion of 
dependencies.

Count the number of new dependencies in the prepare method. It relies on 
specific classes; no others will do. It relies on the explicit names of those classes. 
It knows the names of the messages that each class understands, along with the argu-
ments that those messages require. All of this knowledge increases risk; many distant 
changes will now have side effects on this code.

To make matters worse, this style of code propagates itself. When another new 
trip preparer appears, you, or the next person down the programming line, will add a 
new when branch to the case statement. Your application will accrue more and more 
methods like this, where the method knows many class names and sends a specific 
message based on class. The logical endpoint of this programming style is a stiff and 
inflexible application, where it eventually becomes easier to rewrite everything than 
to change anything.

Figure 5.2 shows the new sequence diagram. Every sequence diagram thus far 
has been simpler than its corresponding code, but this new diagram looks frighten-
ingly complicated. This complexity is a warning. Sequence diagrams should always 
be simpler than the code they represent; when they are not, something is wrong with 
the design. 

5.1.3 Finding the Duck
The key to removing the dependencies is to recognize that because Trip’s prepare 
method serves a single purpose, its arguments arrive wishing to collaborate to accom-
plish a single goal. Every argument is here for the same reason, and that reason is 
unrelated to the argument’s underlying class.

Avoid getting sidetracked by your knowledge of what each argument’s class 
already does; think instead about what prepare needs. Considered from prepare’s 
point of view, the problem is straightforward. The prepare method wants to prepare 
the trip. Its arguments arrive ready to collaborate in trip preparation. The design 
would be simpler if prepare just trusted them to do so.

Figure 5.3 illustrates this idea. Here the prepare method doesn’t have a preor-
dained expectation about the class of its arguments; instead it expects each to be a 
“Preparer.” 



915.1 Understanding Duck Typing

This expectation neatly turns the tables. You’ve pried yourself loose from existing 
classes and invented a duck type. The next step is to ask what message the prepare 
method can fruitfully send each Preparer. From this point of view, the answer is 
obvious: prepare_trip.

Figure 5.4 introduces the new message. Trip’s prepare method now expects its 
arguments to be Preparers that can respond to prepare_trip. 

What kind of thing is Preparer? At this point it has no concrete existence; it’s an 
abstraction, an agreement about the public interface on an idea. It’s a figment of design.

Objects that implement prepare_trip are Preparers and, conversely, objects 
that interact with Preparers only need trust them to implement the Preparer 
interface. Once you see this underlying abstraction, it’s easy to fix the code. Mechanic, 
TripCoordinator and Driver should behave like Preparers; they should 
implement prepare_trip.
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Here’s the code for the new design. The prepare method now expects its 
arguments to be Preparers, and each argument’s class implements the new interface.

Listing 5.3

 1 # Trip preparation becomes easier
 2 class Trip
 3   attr_reader :bicycles, :customers, :vehicle
 4 
 5   def prepare(preparers)
 6     preparers.each {|preparer|
 7       preparer.prepare_trip(self)}
 8   end
 9   # ...
10 end
11 
12 # when every preparer is a Duck
13 # that responds to 'prepare_trip'
14 class Mechanic
15   def prepare_trip(trip)
16     trip.bicycles.each {|bicycle|
17       prepare_bicycle(bicycle)}
18   end
19   # ...
20 end
21 
22 class TripCoordinator
23   def prepare_trip(trip)
24     buy_food(trip.customers)
25   end
26   # ...
27 end
28 
29 class Driver
30   def prepare_trip(trip)
31     vehicle = trip.vehicle
32     gas_up(vehicle)
33     fill_water_tank(vehicle)
34   end
35   # ...
36 end
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The prepare method can now accept new Preparers without being forced to 
change, and it’s easy to create additional Preparers if the need arises.

5.1.4 Consequences of Duck Typing
This new implementation has a pleasing symmetry that suggests a rightness about 
the design, but the consequences of introducing a duck type go deeper.

In the initial example, the prepare method depends on a concrete class. In this 
most recent example, prepare depends on a duck type. The path between these 
examples leads through a thicket of complicated, dependent-laden code.

The concreteness of the first example makes it simple to understand but danger-
ous to extend. The final, duck typed, alternative is more abstract; it places slightly 
greater demands on your understanding but in return offers ease of extension. Now 
that you have discovered the duck, you can elicit new behavior from your application 
without changing any existing code; you simply turn another object into a Preparer 
and pass it into Trip’s prepare method.

This tension between the costs of concretion and the costs of abstraction is 
fundamental to object-oriented design. Concrete code is easy to understand but costly 
to extend. Abstract code may initially seem more obscure but, once understood, is 
far easier to change. Use of a duck type moves your code along the scale from more 
concrete to more abstract, making the code easier to extend but casting a veil over 
the underlying class of the duck.

The ability to tolerate ambiguity about the class of an object is the hallmark of 
a confident designer. Once you begin to treat your objects as if they are defined by 
their behavior rather than by their class, you enter into a new realm of expressive 
flexible design.

Polymorphism
The term polymorphism is commonly used in object-oriented programming, 
but its use in everyday speech is rare enough to warrant a definition.

Polymorphism expresses a very specific concept and can be used, 
depending on your inclinations, either to communicate or to intimidate. 
Either way, it’s important to have a clear understanding of its meaning.

First, a general definition: Morph is the Greek word for form, morphism 
is the state of having a form, and polymorphism is the state of having many 
forms. Biologists use this word. Darwin’s famous finches are polymorphic; a 
single species has many forms.

Polymorphism in OOP refers to the ability of many different objects to 
respond to the same message. Senders of the message need not care about 
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the class of the receiver; receivers supply their own specific version of the 
behavior.

A single message thus has many (poly) forms (morphs).
There are a number of ways to achieve polymorphism; duck typing, as 

you have surely guessed, is one. Inheritance and behavior sharing (via Ruby 
modules) are others, but those are topics for the next chapters.

Polymorphic methods honor an implicit bargain; they agree to be inter-
changeable from the sender’s point of view. Any object implementing a 
polymorphic method can be substituted for any other; the sender of the 
message need not know or care about this substitution.

This substitutability doesn’t happen by magic. When you use polymor-
phism, it’s up to you to make sure all of your objects are well-behaved. This 
idea is covered in Chapter 7, “Sharing Role Behavior with Modules.”

5.2 Writing Code That Relies on Ducks
Using duck typing relies on your ability to recognize the places where your applica-
tion would benefit from across-class interfaces. It is relatively easy to implement a 
duck type; your design challenge is to notice that you need one and to abstract its 
interface.

This section contains patterns that reveal paths you can follow to discover ducks.

5.2.1 Recognizing Hidden Ducks
Many times, unacknowledged duck types already exist, lurking within existing code. 
Several common coding patterns indicate the presence of a hidden duck. You can 
replace the following with ducks:

• Case statements that switch on class

• kind_of? and is_a?

• responds_to?

Case Statements That Switch on Class
The most common, obvious pattern that indicates an undiscovered duck is the 
example you’ve already seen: a case statement that switches on the class names of 
domain objects of your application. The following prepare method (same as above) 
should grab your attention as if it were playing trumpets.
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Listing 5.4

 1 class Trip
 2   def prepare(preparers)
 3     preparers.each {|preparer|
 4       case preparer
 5       when Mechanic
 6         preparer.prepare_bicycles(bicycles)
 7       when TripCoordinator
 8         preparer.buy_food(customers)
 9       when Driver
10         preparer.gas_up(vehicle)
11         preparer.fill_water_tank(vehicle)
12       end
13     }
14   end
15   # ...
16 end

When you see this pattern, you know that all of the preparers must share some-
thing in common; they arrive here because of that common thing. Examine the code 
and ask yourself, “What is it that prepare wants from each of its arguments?”

The answer to that question suggests the message you should send; this message 
begins to define the underlying duck type.

Here the prepare method wants its arguments to prepare the trip. Thus, 
prepare_trip becomes a method in the public interface of the new Preparer duck.

kind_of? and is_a?
There are various ways to check the class of an object. The case statement above is one 
of them. The kind_of? and is_a? messages (they are synonymous) also check class. 
Rewriting the previous example in the following way does nothing to improve the code.

Listing 5.5

 1       if preparer.kind_of?(Mechanic)
 2         preparer.prepare_bicycles(bicycles)
 3       elsif preparer.kind_of?(TripCoordinator)
4         preparer.buy_food(customers)
 5       elsif preparer.kind_of?(Driver)
6         preparer.gas_up(vehicle)
 7         preparer.fill_water_tank(vehicle)
8       end
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Using kind_of? is no different than using a case statement that switches on 
class; they are the same thing, they cause exactly the same problems, and they should 
be corrected using the same techniques.

responds_to?
Programmers who understand that they should not depend on class names but who 
haven’t yet made the leap to duck types are tempted to replace kind_of? with 
responds_to?. For example:

Listing 5.6

1       if preparer.respond_to?(:prepare_bicycles)
 2         preparer.prepare_bicycles(bicycles)
 3       elsif preparer.respond_to?(:buy_food)
 4         preparer.buy_food(customers)
 5       elsif preparer.respond_to?(:gas_up)
 6         preparer.gas_up(vehicle)
 7         preparer.fill_water_tank(vehicle)
 8       end

While this slightly decreases the number of dependencies, this code still has 
too many. The class names are gone, but the code is still very bound to class. What 
object will know prepare_bicycles other than Mechanic? Don’t be fooled by the 
removal of explicit class references. This example still expects very specific classes.

Even if you are in a situation where more than one class implements prepare_
bicycles or buy_food, this code pattern still contains unnecessary dependencies; it 
controls rather than trusts other objects.

5.2.2 Placing Trust in Your Ducks
Use of kind_of?, is_a?, responds_to?, and case statements that switch on your 
classes indicate the presence of an unidentified duck. In each case, the code is effec-
tively saying, “I know who you are, and because of that, I know what you do.” This 
knowledge exposes a lack of trust in collaborating objects and acts as a millstone 
around your object’s neck. It introduces dependencies that make code difficult to 
change.

Just as in Demeter violations, this style of code is an indication that you are miss-
ing an object, one whose public interface you have not yet discovered. The fact that 
the missing object is a duck type instead of a concrete class matters not at all; it’s the 
interface that matters, not the class of the object that implements it.
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Flexible applications are built on objects that operate on trust; it is your job to 
make your objects trustworthy. When you see these code patterns, concentrate on the 
offending code’s expectations and use those expectations to find the duck type. Once 
you have a duck type in mind, define its interface, implement that interface where 
necessary, and then trust those implementers to behave correctly.

5.2.3 Documenting Duck Types
The simplest kind of duck type is one that exists merely as an agreement about its 
public interface. This chapter’s example code implements that kind of duck, where 
several different classes implement prepare_trip and can thus be treated like 
Preparers.

The Preparer duck type and its public interface are a concrete part of the 
design but a virtual part of the code. Preparers are abstract; this gives them strength 
as a design tool, but this very abstraction makes the duck type less than obvious in 
the code.

When you create duck types, you must both document and test their public 
interfaces. Fortunately, good tests are the best documentation, so you are already 
halfway done; you need only write the tests.

See Chapter 9, “Designing Cost-Effective Tests,” for more on testing duck types.

5.2.4 Sharing Code between Ducks
In this chapter, Preparer ducks provide class-specific versions of the behavior 
required by their interface. Mechanic, Driver, and TripCoordinator each imple-
ment the method prepare_trip. This method signature is the only thing they have 
in common. They share only the interface, not the implementation.

Once you start using duck types, however, you’ll find that classes that implement 
them often need to share behavior. Writing ducks that share code is one of the topics 
covered in Chapter 7.

5.2.5 Choosing Your Ducks Wisely
Every example thus far unequivocally declares that you should not use kind_of? or 
responds_to? to decide what message to send an object, yet you don’t have to look 
far to find reams of well-received code that do exactly that.

The following code is an example from the Ruby on Rails framework (activerecord/
lib/active_record/relation/finder_methods.rb [https://github.com/rails/rails/blob/5-1-
stable/activerecord/lib/active_record/relation/finder_methods.rb#L428]). This exam-
ple patently uses class to decide how to deal with its input, a technique that is in 
direct opposition to the guidelines stated above. The find_with_ids method below 
clearly decides how to behave based on the class of its ids argument.

https://github.com/rails/rails/blob/5-1-stable/activerecord/lib/active_record/relation/finder_methods.rb#L428]
https://github.com/rails/rails/blob/5-1-stable/activerecord/lib/active_record/relation/finder_methods.rb#L428]
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If sending a message based on the class of the receiving object is the death knell 
for your application, why is this code acceptable?

Listing 5.7

 1 def find_with_ids(*ids)
 2   raise UnknownPrimaryKey.new(@klass) if primary_key.nil?
 3 
 4   expects_array = ids.first.kind_of?(Array)
 5   return ids.first if expects_array && ids.first.empty?
 6 
 7   ids = ids.flatten.compact.uniq
 8 
 9   case ids.size
10   when 0
11      raise RecordNotFound, "Couldn't find #{@klass.name} 

without an ID"
12   when 1
13     result = find_one(ids.first)
14     expects_array ? [ result ] : result
15   else
16     find_some(ids)
17   end
18 rescue ::RangeError
19   raise RecordNotFound, "Couldn't find #{@klass.name} with
   an out of range ID"
20 end

The major difference between this example and the previous ones is the stability of 
the classes that are being checked. When find_with_ids depends on Array (line 4) 
and NilClass (the nil? message on line 2 is a type check!), it is depending on core 
Ruby classes that are far more stable than it is. The likelihood of Array or NilClass
changing in such a way as to force find_with_ids to change is vanishingly small. 
This dependency is safe. There probably is a duck type hidden somewhere in this code, 
but it will likely not reduce your overall application costs to find and implement it.

From this example, you can see that the decision to create a new duck type relies 
on judgment. The purpose of design is to lower costs; bring this measuring stick to 
every situation. If creating a duck type would reduce unstable dependencies, do so. 
Use your best judgment.

The above example’s underlying duck spans Array and NilClass, and there-
fore its implementation would require making changes to Ruby base classes. Chang-
ing base classes is known as monkey patching and is a delightful feature of Ruby but 
can be perilous in untutored hands.
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Implementing duck types across your own classes is one thing, but changing 
Ruby base classes to introduce new duck types is quite another. The tradeoffs are dif-
ferent; the risks are greater. Neither of these considerations should prevent you from 
monkey patching Ruby at need; however, you must be able to eloquently defend this 
design decision. The standard of proof is high.

5.3 Conquering a Fear of Duck Typing
This chapter has thus far delicately sidestepped the dynamic versus static typing bat-
tlefield, but the issue can no longer be avoided. If you have a statically typed pro-
gramming background and find the idea of duck typing alarming, this section is for 
you.

If you are unfamiliar with the argument, are happily using Ruby, and were con-
vinced by the prior discourse on duck typing, you can skim this section without fear 
of missing important new concepts. You might, however, find what follows useful if 
you need to fend off arguments made by your more statically typed friends.

5.3.1 Subverting Duck Types with Static Typing
Early in this chapter, type was defined as the category of the contents of a variable. 
Programming languages are either statically or dynamically typed. Most (though not 
all) statically typed languages require that you explicitly declare the type of each 
variable and every method parameter. Dynamically typed languages omit this require-
ment; they allow you to put any value in any variable and pass any argument to any 
method, without further declaration. Ruby, obviously, is dynamically typed.

Relying on dynamic typing makes some people uncomfortable. For some, this 
discomfort is caused by a lack of experience, for others, by a belief that static typing 
is more reliable.

The lack-of-experience problem cures itself, but the belief that static typing is 
fundamentally preferable often persists because it is self-reinforcing. Programmers 
who fear dynamic typing tend to check the classes of objects in their code; these very 
checks subvert the power of dynamic typing, making it impossible to use duck types.

Methods that cannot behave correctly unless they know the classes of their argu-
ments will fail (with type errors) when new classes appear. Programmers who believe 
in static typing take these failures as proof that more type checking is needed. When 
more checks are added, the code becomes less flexible and even more dependent 
on class. The new dependencies cause additional type failures, and the programmer 
responds to these failures by adding yet more type checking. Anyone caught in this 
loop will naturally have a hard time believing that the solution to their type problem 
is to remove type checking altogether.
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Duck typing provides a way out of this trap. It removes the dependencies on 
class and thus avoids the subsequent type failures. It reveals stable abstractions 
on which your code can safely depend.

5.3.2 Static versus Dynamic Typing
This section compares dynamic and static typing, hoping to allay any fears that keep 
you from being fully committed to dynamic types.

Static and dynamic typing both make promises, and each has costs and benefits.
Static typing aficionados cite the following qualities:

• The compiler unearths type errors at compile time.

• Visible type information serves as documentation.

• Compiled code is optimized to run quickly.

These qualities represent strengths in a programming language only if you accept 
this set of corresponding assumptions:

• Runtime type errors will occur unless the compiler performs type checks.

• Programmers will not otherwise understand the code; they cannot infer an 
object’s type from its context.

• The application will run too slowly without these optimizations.

Dynamic typing proponents list these qualities:

• Code is interpreted and can be dynamically loaded; there is no compile/make 
cycle.

• Source code does not include explicit type information.

• Metaprogramming is easier.

These qualities are strengths if you accept this set of assumptions:

• Overall application development is faster without a compile/make cycle.

• Programmers find the code easier to understand when it does not contain type 
declarations; they can infer an object’s type from its context.

• Metaprogramming is a desirable language feature.
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5.3.3 Embracing Dynamic Typing
Some of these qualities and assumptions are based on empirical facts and are easy 
to evaluate. There is no doubt that, for certain applications, well-optimized statically 
typed code will outperform a dynamically typed implementation. When a dynami-
cally typed application cannot be tuned to run quickly enough, static typing is the 
alternative.

Arguments about the value of type declarations as documentation are more sub-
jective. Those experienced with dynamic typing find type declarations distracting. 
Those used to static typing may be disoriented by lack of type information. If you are 
coming from a statically typed language, like Java or C++, and feel unmoored by the 
lack of explicit type declarations in Ruby, hang in there. There’s lots of anecdotal evi-
dence to suggest that, once accustomed to it, you’ll find this less verbose syntax easy 
to read, write, and understand.

Metaprogramming (i.e., writing code that writes code) is a topic that program-
mers tend to feel strongly about, and the side of the argument they support is related 
to their past experience. If you have solved a massive problem with a simple, elegant 
piece of metaprogramming, you become an advocate for life. On the other hand, if 
you’ve faced the daunting task of debugging an overly clever, completely obscure, 
and possibly unnecessary bit of metaprogramming, you may perceive it as a tool for 
programmers to inflict pain upon one another and wish to banish it forever.

Metaprogramming is a scalpel; though dangerous in the wrong hands, it’s a tool 
no good programmer should willingly be without. It confers great power and requires 
great responsibility. The fact that some people cannot be trusted with knives does not 
mean sharp instruments should be taken from the hands of all. Metaprogramming, 
used wisely, has great value; ease of metaprogramming is a strong benefit of dynamic 
typing. 

The two remaining qualities are static typing’s compile-time type checking 
and dynamic typing’s lack of a compile/make cycle. Static typing advocates assert 
that preventing unexpected type errors at runtime is so necessary and so valuable 
that its benefit trumps the greater programming efficiency that is gained by removing 
the compiler.
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This argument rests on static typing’s premise that:

• The compiler truly can save you from accidental type errors.

• Without the compiler’s help, these type errors will occur.

If you have spent years programming in a statically typed language, you may 
accept these assertions as gospel. However, dynamic typing is here to say “It can’t” 
and “They won’t.”

The compiler cannot guarantee safety from accidental type errors. Any language 
that allows casting a variable to a new type is vulnerable. Once you start casting, all 
bets are off; the compiler excuses itself, and you are left to rely on your own wits to 
prevent type errors. The code is only as good as your tests; runtime failures can still 
occur. The notion that static typing provides perfect safety, comforting though it may 
be, is an illusion.

Furthermore, it may well be that you don’t actually need saving. In well-designed 
object-oriented code, runtime type errors almost never occur. This is not to suggest 
that you’ll never experience a runtime type error. Few programmers make it through 
life without sending a message to an uninitialized variable or assuming an array has 
elements when it is actually empty. However, discovering at runtime that nil doesn’t 
understand the message it received is not something the compiler could have prevented.

Languages like Ruby value the benefits of dynamic, simply expressed code over 
the benefits of compile-time type checking. This tradeoff transfers the burden of get-
ting types right onto you, the intrepid programmer. It is utterly possible to avoid 
unexpected type errors in dynamically typed OO languages as long as your code is 
trustworthy and communicates well (a topic for Chapter 9).

If your problem needs static typing, pick a language that enforces it; don’t try to 
add static typing to Ruby. Attempting to write statically typed code in a dynamically 
typed language yields code that suffers from the worst of both worlds. Duck typing is 
built on dynamic typing; to reap the full benefit from duck typing, you must embrace 
this dynamism.

5.4 Summary
Messages are at the center of object-oriented applications, and they pass among 
objects along public interfaces. Duck typing detaches these public interfaces from 
specific classes, creating virtual types that are defined by what they do instead of by 
who they are.

Duck typing reveals underlying abstractions that might otherwise be invisible. 
Depending on these abstractions reduces risk and increases flexibility, making your 
application cheaper to maintain and easier to change.



Chapter 6
Acquiring Behavior 
through Inheritance

Well-designed applications are constructed of reusable code. Small, trustworthy self-
contained objects with minimal context, clear interfaces, and injected dependencies 
are inherently reusable. This book has, up to now, concentrated on creating objects 
with exactly these qualities.

Most object-oriented languages, however, have another code-sharing technique, 
one built into the very syntax of the language: inheritance. This chapter offers a 
detailed example of how to write code that properly uses inheritance. Its goal is to 
teach you to build a technically sound inheritance hierarchy; its purpose is to prepare 
you to decide if you should.

Once you understand how to use classical inheritance, the concepts are  easily 
transferred to other inheritance mechanisms. Inheritance is thus a topic for two 
 chapters. This chapter contains a tutorial that illustrates how to write inheritable 
code. Chapter 7, “Sharing Role Behavior with Modules,” expands these techniques to 
the problem of sharing code via Ruby modules.

6.1 Understanding Classical Inheritance
The idea of inheritance may seem complicated, but as with all complexity, there’s 
a simplifying abstraction. Inheritance is, at its core, a mechanism for automatic 
 message delegation. It defines a forwarding path for not-understood messages. It cre-
ates relationships such that, if one object cannot respond to a received message, it 
delegates that message to another. You don’t have to write code to explicitly delegate 
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the message; instead you define an inheritance relationship between two objects, and 
the forwarding happens automatically.

In classical inheritance, these relationships are defined by creating subclasses. 
Messages are forwarded from subclass to superclass; the shared code is defined in 
the class hierarchy.

The term classical is a play on the word class, not a nod to an archaic technique, 
and it serves to distinguish this superclass/subclass mechanism from other inherit-
ance techniques. JavaScript, for example, has prototypical inheritance, and Ruby has 
modules (more on modules in the next chapter), both of which also provide a way to 
share code via automatic delegation of messages.

The uses and misuses of inheritance are best understood by example, and this 
chapter’s example provides a thorough grounding in the techniques of classical 
inheritance. The example begins with a single class and goes through a number of 
refactorings to reach a satisfactory set of subclasses. Each step is small and easily 
understood, but it takes a whole chapter’s worth of code to illustrate all of the ideas.

6.2 Recognizing Where to Use Inheritance
The first challenge is recognizing where inheritance would be useful. This section 
illustrates how to know when you have the problem that inheritance solves.

Assume that FastFeet leads road bike trips. Road bicycles are lightweight and 
have a curved handlebar (drop bar) and skinny tires that are meant for paved roads. 
Figure 6.1 shows a road bike. 
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Mechanics are responsible for keeping bicycles running (no matter how much 
abuse customers heap upon them), and they take an assortment of spare parts on 
every trip. The spares they need depend on which bicycles they take.

6.2.1 Starting with a Concrete Class
FastFeet’s application already has a Bicycle class, shown below. Every road bike 
that’s going on a trip is represented by an instance of this class.

Bikes have an overall size, a handlebar tape color, a tire size, and a chain type. 
These attributes are passed to a new bike in the initialize method via the **opts 
argument on line 4 below. For those unfamiliar with this syntax, know that **opts 
indicates that initialize will accept any number of keyword arguments and return 
them as a Hash. This leads to the opts references in lines 5 and 6.

Tires and chains are integral parts, and so spares must always be taken. Han-
dlebar tape may seem less necessary, but in real life it is just as required. No self- 
respecting cyclist would tolerate dirty or torn bar tape; mechanics must carry spare 
tape in the correct, matching color.

Listing 6.1

 1 class Bicycle
 2   attr_reader :size, :tape_color
 3 
 4   def initialize(**opts)
 5     @size       = opts[:size]
 6     @tape_color = opts[:tape_color]
 7   end
 8 
 9   # every bike has the same defaults for
10   # tire and chain size
11   def spares
12     { chain:        '11-speed',
13       tire_size:    '23',
14       tape_color:   tape_color }
15   end
16 
17   # Many other methods...
18 end
19 
20 bike = Bicycle.new(
21         size:       'M',
22         tape_color: 'red')
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23 
24 puts bike.size
25 # => M
26 
27 puts bike.spares
28  # => {:chain=>"11-speed", :tire_size=>"23", 

:tape_color=>"red"}

Bicycle instances can respond to the spares, size, and tape_color mes-
sages, and a Mechanic can figure out what spare parts to take by asking each 
 Bicycle for its spares. Despite the fact that the spares method commits the sin 
of embedding default strings directly inside itself, the above code is fairly reasonable. 
This model of a bicycle is obviously missing a few bolts and is not something you 
could actually ride, but it will do for this chapter’s example.

This class works just fine until something changes. Imagine that FastFeet begins 
to lead mountain bike trips.

Mountain bikes and road bikes are much alike, but there are clear differences 
between them. Mountain bikes are meant to be ridden on dirt paths instead of paved 
roads. They have sturdy frames, fat tires, straight-bar handlebars (with rubber hand 
grips instead of tape), and suspension. The bicycle in Figure 6.2 has front suspension 
only, but some mountain bikes also have rear, or “full,” suspension. 

23
24
25
26
27
28



1096.2 Recognizing Where to Use Inheritance

Your design task is to add support for mountain bikes to FastFeet’s application.
Much of the behavior that you need already exists; mountain bikes are definitely 

bicycles. They have an overall bike size and a chain and tire size. The only differ-
ences between road and mountain bikes are that road bikes need handlebar tape and 
mountain bikes have suspension.

6.2.2 Embedding Multiple Types
When a preexisting concrete class contains most of the behavior you need, it’s tempt-
ing to solve this problem by adding code to that class. This next example does just 
that: it changes the existing Bicycle class so that spares works for both road and 
mountain bikes.

As you see on lines 2 and 4 below, three new variables have been added, along 
with their corresponding accessors. The new front_shock and rear_shock vari-
ables hold mountain bike–specific parts. The new style variable determines which 
parts appear on the spares list. Each of these new variables is handled properly by 
the initialize method.

The code to add these three variables is simple, even mundane; the change to 
spares proves more interesting.

Listing 6.2

 1 class Bicycle
 2   attr_reader :style, :size,
 3               :tape_color,
 4               :front_shock, :rear_shock
 5 
 6   def initialize(**opts)
 7     @style       = opts[:style]
 8     @size        = opts[:size]
 9     @tape_color  = opts[:tape_color]
10     @front_shock = opts[:front_shock]
11     @rear_shock  = opts[:rear_shock]
12   end
13 
14   # checking 'style' starts down a slippery slope
15   def spares
16     if style == :road
17       { chain:       '11-speed',
18         tire_size:   '23',       # millimeters
19         tape_color:  tape_color }
20     else
21       { chain:       '11-speed',
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22         tire_size:   '2.1',      # inches
23         front_shock: front_shock }
24     end
25   end
26   # ...
27 end
28 
29 
30 bike = Bicycle.new(
31         style:       :mountain,
32         size:        'S',
33         front_shock: 'Manitou',
34         rear_shock:  'Fox')
35 
36 puts bike.spares
37  # => {:chain=>"11-speed", :tire_size=>"2.1", 

:front_shock=>"Manitou"}
38 
39 bike = Bicycle.new(
40         style:       :road,
41         size:        'M',
42         tape_color:  'red')
43 
44 puts bike.spares
45  # => {:chain=>"11-speed", :tire_size=>"23", 

:tape_color=>"red"}

The spares method now contains an if statement that checks the contents of the 
variable style. This style variable acts to divide instances of Bicycle into two dif-
ferent categories—those whose style is :road and those whose style is anything else.

If any alarms are going off as you review this code, please be reassured, they will 
soon be silenced. This example is simply a detour that illustrates an antipattern, that 
is, a common pattern that appears to be beneficial but is actually detrimental, and for 
which there is a well-known alternative.

 

Note
In case you’re confused by the tire sizes below, know that 
bicycle tire sizing is, by tradition, inconsistent. Road bikes 
originated in Europe and use metric sizing; a 23-millimeter 
tire is slightly less than an inch wide. Mountain bikes origi-
nated in the United States and give tire sizes in inches. In 
the example below, the 2.1-inch mountain bike tire is more 
than twice as wide as the 23 mm road bike tire.
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This code makes decisions about spare parts based on the value held in style; 
structuring the code this way has many negative consequences. If you add a new 
style, you must change the if statement. If you write careless code where the 
last option is the default (as does the code above), an unexpected style will do 
 something but perhaps not what you expect. Also, the spares method started out 
containing embedded default strings; some of these strings are now duplicated on 
each side of the if statement.

Bicycle has an implied public interface that includes spares, size, and all 
the individual parts. The size method still works, spares generally works, but the 
parts methods are now unreliable. It’s impossible to predict, for any specific instance 
of Bicycle, whether a specific part has been initialized. Objects holding onto an 
instance of Bicycle may, for example, be tempted to check style before sending it 
tape_color or rear_shock.

The code wasn’t great to begin with; this change did nothing to improve it.
The initial Bicycle class was imperfect, but its imperfections were hidden—

encapsulated within the class. These new flaws have broader consequences. Bicycle 
now has more than one responsibility, contains things that might change for different 
reasons, and cannot be reused as is.

This pattern of coding will lead to grief but is not without value. It vividly illus-
trates an antipattern that, once noticed, suggests a better design.

This code contains an if statement that checks an attribute that holds the 
category of self to determine what message to send to self. This should bring back 
memories of a pattern discussed in the previous chapter on duck typing, where you 
saw an if statement that checked the class of an object to determine what message 
to send to that object.

In both of these patterns, an object decides what message to send based on a 
category of the receiver. You can think of the class of an object as merely a specific 
case of an attribute that holds the category of self; considered this way, these patterns 
are the same. In each case, if the sender could talk, it would be saying, “I know who 
you are, and because of that, I know what you do.” This knowledge is a dependency 
that raises the cost of change.

Be on the lookout for this pattern. While sometimes innocent and occasionally 
defensible, its presence might be exposing a costly flaw in your design. Chapter 5, 
“Reducing Costs with Duck Typing,” used this pattern to discover a missing duck 
type; here the pattern indicates a missing subtype, better known as a subclass.

6.2.3 Finding the Embedded Types
The if statement in the spares method above switches on a variable named style, 
but it would have been just as natural to call that variable type or category. 
Variables with these kinds of names are your cue to notice the underlying pattern. 
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Type and category are words perilously similar to those you would use when describ-
ing a class. After all, what is a class if not a category or type?

The style variable effectively divides instances of Bicycle into two different 
kinds of things. These two things share a great deal of behavior but differ along the 
style dimension. Some of Bicycle’s behavior applies to all bicycles, some only to 
road bikes, and some only to mountain bikes. This single class contains several differ-
ent, but related, types.

This is the exact problem that inheritance solves: that of highly related types that 
share common behavior but differ along some dimension.

6.2.4 Choosing Inheritance
Before proceeding to the next example, it’s worth examining inheritance in more 
detail. Inheritance may seem like a mysterious art but, like most design ideas, it’s sim-
ple when looked at from the right perspective.

It goes without saying that objects receive messages. No matter how complicated 
the code, the receiving object ultimately handles any message in one of two ways. It 
either responds directly or it passes the message on to some other object for a response.

Inheritance provides a way to define two objects as having a relationship such 
that when the first receives a message that it does not understand, it automatically 
forwards, or delegates, the message to the second. It’s as simple as that.

The word inheritance suggests a biological family tree where a few progenitors sit 
at the top and descendants branch off below. This family tree image is, however, a bit 
misleading. In many parts of the biological world, it’s common for descendants to have 
two ancestors. You, for example, quite likely have two parents. Languages that allow 
objects to have multiple parents are described as having multiple inheritance, and the 
designers of these languages face interesting challenges. When an object with multi-
ple parents receives a message that it does not understand, to which parent ought it 
forward that message? If more than one of its parents implements the message, which 
implementation has priority? As you might guess, things get complicated quickly.

Many object-oriented languages sidestep these complications by providing single 
inheritance, whereby a subclass is allowed only one parent superclass. Ruby does 
this; it has single inheritance. A superclass may have many subclasses, but each sub-
class is permitted only one superclass.

Message forwarding via classical inheritance takes place between classes. Because 
duck types cut across classes, they do not use classical inheritance to share common 
behavior. Duck types share code via Ruby modules (more on modules in the next chapter).

Even if you have never explicitly created a class hierarchy of your own, you use 
inheritance. When you define a new class but do not specify its superclass, Ruby 
automatically sets your new class’s superclass to Object. Every class you create is, by 
definition, a subclass of something.
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You also already benefit from automatic delegation of messages to superclasses. 
When an object receives a message it does not understand, Ruby automatically for-
wards that message up the superclass chain in search of a matching method imple-
mentation. A simple example is illustrated in Figure 6.3, which shows how Ruby 
objects respond to the nil? message. 

Remember that in Ruby, nil is an instance of class NilClass; it’s an object like 
any other. Ruby contains two implementations of nil?, one in NilClass and the 
other in Object. The implementation in NilClass unconditionally returns true, the 
one in Object, false.

When you send nil? to an instance of NilClass, it, obviously, answers true. 
When you send nil? to anything else, the message travels up the hierarchy from one 
superclass to the next until it reaches Object, where it invokes the implementation 
that answers false. Thus, nil reports that it is nil, and all other objects report that 
they are not. This elegantly simple solution illustrates the power and usefulness of 
inheritance.

The fact that unknown messages get delegated up the superclass hierarchy 
implies that subclasses are everything their superclasses are, plus more. An instance 
of String is a String, but it’s also an Object. Every String is assumed to con-
tain Object’s entire public interface and must respond appropriately to any message 
defined in that interface. Subclasses are thus specializations of their superclasses.

The current Bicycle example embeds multiple types inside the class. It’s time to 
abandon this code and revert to the original version of Bicycle. Perhaps mountain 
bikes are a specialization of Bicycle; perhaps this design problem can be solved 
using inheritance.

String and all other
classes

NilClass

When an instance of NilClass
receives the nil? message, its
implementation returns true.

When instances of other classes receive
the nil? message, the message
automatically travels up the superclass
hierarchy to Object, whose
implementation returns false.

nil? -> true

Object

nil? -> false

Figure 6.3 NilClass answers true to nil?, string (and all others) are false
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6.2.5 Drawing Inheritance Relationships
Just as you used UML sequence diagrams to communicate message passing in 
Chapter 4, “Creating Flexible Interfaces,” you can use UML class diagrams to illustrate 
class relationships.

Figure 6.4 contains a class diagram. The boxes represent classes. The connecting 
line indicates that the classes are related. The hollow triangle means that the relation-
ship is inheritance. The pointed end of the triangle is attached to the box containing 
the superclass. Thus, the figure shows Bicycle as a superclass of MountainBike. 

6.3 Misapplying Inheritance
Under the premise that the journey is more useful than the destination, and that 
experiencing common mistakes by proxy is less painful than experiencing them in 
person, this next section continues to show code that is unworthy of emulation. The 
code illustrates common difficulties encountered by novices. If you are practiced at 
using inheritance and are comfortable with these techniques, feel free to skim. How-
ever, if you are new to inheritance, or you find that all of your attempts go awry, then 
follow along carefully.

The following is a first attempt at a MountainBike subclass. This new subclass 
is a direct descendent of the original Bicycle class defined in Listing 6.1. The sub-
class implements two methods, initialize and spares. Both of these methods 
are already implemented in Bicycle; therefore, they are said to be overridden by 
MountainBike.

Bicycle

MountainBike

Figure 6.4 MountainBike is a subclass of bicycle
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In the following code, each of the overridden methods sends super.

Listing 6.3

 1 class MountainBike < Bicycle
 2   attr_reader :front_shock, :rear_shock
 3 
 4   def initialize(**opts)
 5     @front_shock = opts[:front_shock]
 6     @rear_shock  = opts[:rear_shock]
 7     super
 8   end
 9 
10   def spares
11     super.merge(front_shock: front_shock)
12   end
13 end

Sending super in any method passes that message up the superclass chain. If 
you omit arguments, Ruby automatically includes those used to invoke the calling 
method. Thus, the send of super in MountainBike’s initialize method (line 7 
above) invokes the initialize method of Bicycle with opts as an argument.

Jamming the new MountainBike class directly under the existing Bicycle 
class was blindly optimistic, and, predictably, running the code exposes several flaws. 
Instances of MountainBike have some behavior that just doesn’t make sense. The 
following example shows what happens if you ask a MountainBike for its size and 
spares. It reports its size correctly but says that it has skinny tires and implies that it 
needs handlebar tape, both of which are incorrect.

Listing 6.4

 1 mountain_bike = MountainBike.new(
 2                   size:        'S',
 3                   front_shock: 'Manitou',
 4                   rear_shock:  'Fox')
 5 
 6 puts mountain_bike.size
 7 # => S
 8 
 9 puts mountain_bike.spares
10 # => {:chain        =>"11-speed",
11 #     :tire_size    =>"23",         <- wrong!
12 #     :tape_color   =>nil,          <- not applicable!
13 #     :front_shock  =>"Manitou"}
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It comes as no surprise that instances of MountainBike contain a confusing 
mishmash of road and mountain bike behavior. The Bicycle class is a concrete 
class that was not written to be subclassed. It combines behavior that is gen-
eral to all bicycles with behavior that is specific to road bikes. When you slam 
 MountainBike under Bicycle, you inherit all of this behavior—the general and 
the specific, whether it applies or not.

Figure 6.5 takes serious liberties with class diagrams to illustrate this idea. 
It shows road bike behavior embedded inside of Bicycle. The way this code is 
arranged causes MountainBike to inherit behavior that it does not want or need. 

The Bicycle class contains behavior that is appropriate for both a peer 
and a parent of MountainBike. Some of the behavior in Bicycle is correct for 
 MountainBike, some is wrong, and some doesn’t even apply. As written, Bicycle 
should not act as the superclass of MountainBike.

Because design is evolutionary, this situation arises all the time. The problem 
here started with the names of these classes.

6.4 Finding the Abstraction
In the beginning, there was one idea, a bicycle, and it was modeled as a single class, 
Bicycle. The original designer chose a generic name for an object that was actually 
slightly more specialized. The existing Bicycle class doesn’t represent just any kind 
of bicycle, it represents a specific kind—a road bike.

This naming choice is perfectly appropriate in an application where every 
 Bicycle is a road bike. When there’s only one kind of bike, choosing RoadBike for 
the class name is unnecessary, perhaps even overly specific. Even if you suspect that 
you will someday have mountain bikes, Bicycle is a fine choice for the first class 
name and is sufficient unto the day.

Bicycle

MountainBike

RoadBike

Figure 6.5 Bicycle combines general bicycle behavior with specific road bike behavior
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However, now that MountainBike exists, Bicycle’s name is misleading. These 
two class names imply inheritance; you immediately expect MountainBike to be a 
specialization of Bicycle. It’s natural to write code that creates MountainBike as a 
subclass of Bicycle. This is the right structure, the class names are correct, but the 
code in Bicycle is now very wrong.

Subclasses are specializations of their superclasses. A MountainBike should be 
everything a Bicycle is, plus more. Any object that expects a Bicycle should be 
able to interact with a MountainBike in blissful ignorance of its actual class.

These are the rules of inheritance; break them at your peril. For inheritance to 
work, two things must always be true. First, the objects that you are modeling must 
truly have a generalization–specialization relationship. Second, you must use the cor-
rect coding techniques.

It makes perfect sense to model mountain bike as a specialization of bicycle; the 
relationship is correct. However, the code above is a mess and, if propagated, will 
lead to disaster. The current Bicycle class intermingles general bicycle code with 
specific road bike code. It’s time to separate these two things, to move the road bike 
code out of Bicycle and into a separate RoadBike subclass.

6.4.1 Creating an Abstract Superclass
Figure 6.6 shows a new class diagram where Bicycle is the superclass of both 
MountainBike and RoadBike. This is your goal; it’s the inheritance structure you 
intend to create. Bicycle will contain the common behavior, and MountainBike 
and RoadBike will add specializations. Bicycle’s public interface should include 
spares and size, and the interfaces of its subclasses will add their individual parts. 

Bicycle now represents an abstract class. Chapter 3, “Managing Dependencies,” 
defined abstract as being disassociated from any specific instance, and that definition 
still holds true. This new version of Bicycle will not define a complete bike, just the 

Bicycle

MountainBike RoadBike

Figure 6.6 Bicycle as the superclass of MountainBike and RoadBike
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bits that all bicycles share. You can expect to create instances of MountainBike and 
RoadBike, but Bicycle is not a class to which you would ever send the new mes-
sage. It wouldn’t make sense; Bicycle no longer represents a whole bike.

Some object-oriented programming languages have syntax that allows you 
to explicitly declare classes as abstract. Java, for example, has the abstract key-
word. The Java compiler itself prevents creation of instances of classes to which this 
 keyword has been applied. Ruby, in line with its trusting nature, contains no such 
keyword and enforces no such restriction. Only good sense prevents other program-
mers from creating instances of Bicycle; in real life, this works remarkably well.

Abstract classes exist to be subclassed. This is their sole purpose. They provide a 
common repository for behavior that is shared across a set of subclasses—subclasses 
that in turn supply specializations.

It almost never makes sense to create an abstract superclass with only one sub-
class. Even though the original Bicycle class contains general and specific behavior 
and it’s possible to imagine modeling it as two classes from the very beginning, do 
not. Regardless of how strongly you anticipate having other kinds of bikes, that day 
may never come. Until you have a specific requirement that forces you to deal with 
other bikes, the current Bicycle class is good enough.

Even though you now have a requirement for two kinds of bikes, this still may 
not be the right moment to commit to inheritance. Creating a hierarchy has costs; the 
best way to minimize these costs is to maximize your chance of getting the abstrac-
tion right before allowing subclasses to depend on it. While the two bikes you know 
about supply a fair amount of information about the common abstraction, three bikes 
would supply a great deal more. If you could put this decision off until FastFeet 
asked for a third kind of bike, your odds of finding the right abstraction would 
improve dramatically.

A decision to put off the creation of the Bicycle hierarchy commits you to writ-
ing MountainBike and RoadBike classes that duplicate a great deal of code. A deci-
sion to proceed with the hierarchy accepts the risk that you may not yet have enough 
information to identify the correct abstraction. Your choice about whether to wait or 
to proceed hinges on how soon you expect a third bike to appear versus how much 
you expect the duplication to cost. If a third bike is imminent, it may be best to dupli-
cate the code and wait for better information. However, if the duplicated code would 
need to change every day, it may be cheaper to go ahead and create the hierarchy. 
You should wait, if you can, but don’t fear to move forward based on two concrete 
cases if this seems best.

For now, assume you have good reason to create a Bicycle hierarchy even though 
you only know about two bikes. The first step in creating the new hierarchy is to make a 
class structure that mirrors Figure 6.6. Ignoring the rightness of the code for a moment, 
the simplest way to make this change is to rename Bicycle to RoadBike and to create 
a new, mostly empty Bicycle class. The following example does just that.
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Listing 6.5

 1 class Bicycle
 2   # This class is empty except for initialize.
 3   # Code has been moved to RoadBike.
 4   def initialize(**opts)
 5   end
 6 end
 7 
 8 class RoadBike < Bicycle
 9   # Now a subclass of Bicycle.
10   # Contains all code from the old Bicycle class.
11 end
12 
13 class MountainBike < Bicycle
14   # Still a subclass of Bicycle.
15   # Code has not changed.
16 end

The new RoadBike class is defined as a subclass of Bicycle. The existing 
MountainBike class already subclassed Bicycle. Its code did not change, but its 
behavior certainly has because its superclass is now empty. Code that MountainBike
depends on has been removed from its parent and placed in a peer.

This code rearrangement merely moved the problem, as illustrated in Figure 6.7. 
Now, instead of containing too much behavior, Bicycle contains too little. The com-
mon behavior needed by all bicycles is stuck down inside of RoadBike and is there-
fore inaccessible to MountainBike. 

1
2 
3 
4 
5 
6
7
8
9 

10 
11
12
13
14 
15 
16

Bicycle

MountainBike
RoadBike

Bicycle

Figure 6.7 Now RoadBike contains all the common behavior
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This rearrangement improves your lot because it’s easier to promote code up to a 
superclass than to demote it down to a subclass. The reasons for this are not yet obvi-
ous but will become so as the example proceeds.

As the code now exists, RoadBike still contains everything it needs and thus 
it still works, but MountainBike is seriously broken. As an example, here’s what 
happens if you create instances of each subclass and ask them for size. RoadBike
returns the correct response, MountainBike just blows up.

Listing 6.6

 1 road_bike = RoadBike.new(
 2               size:       'M',
 3               tape_color: 'red')
 4 
 5 puts road_bike.size
 6 # => M
 7 
 8 mountain_bike = MountainBike.new(
 9                   size:        'S',
10                   front_shock: 'Manitou',
11                   rear_shock:  'Fox')
12 
13 puts mountain_bike.size
14  # => undefined method `size' for 

#<MountainBike:0x00007fd68d947288>

It’s obvious why this error occurs; neither MountainBike nor any of its super-
classes implements size.

The next few iterations concentrate on achieving the new class structure by 
moving common behavior into Bicycle and using that behavior effectively in the 
subclasses.

6.4.2 Promoting Abstract Behavior
The size and spares methods are common to all bicycles. This behavior belongs in 
Bicycle’s public interface. Both methods are currently stuck down in RoadBike; the 
task here is to move them up to Bicycle so the behavior can be shared. Because the 
code dealing with size is simplest, it’s the most natural place to start.

Promoting size behavior to the superclass requires three changes, as shown in 
the example below. The attribute reader and initialization code move from RoadBike 
to Bicycle (lines 2 and 5), and RoadBike’s initialize method adds a send of 
super (line 14).
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Listing 6.7

 1 class Bicycle
 2   attr_reader :size       # <- promoted from RoadBike
 3 
 4   def initialize(**opts)
 5     @size = opts[:size]  # <- promoted from RoadBike
 6   end
 7 end
 8 
 9 class RoadBike < Bicycle
10   attr_reader :tape_color
11 
12   def initialize(**opts)
13     @tape_color = opts[:tape_color]
14     super               # <- RoadBike MUST send `super`
15   end
16   # ...
17 end

RoadBike now inherits the size method from Bicycle. When a RoadBike 
receives size, Ruby itself delegates the message up the superclass chain, searching 
for an implementation and finding the one in Bicycle. This message delegation hap-
pens automatically because RoadBike is a subclass of Bicycle.

Sharing the initialization code that sets the @size variable, however, requires a 
bit more from you. This variable is set in Bicycle’s initialize method, a method 
that RoadBike also implements, or overrides.

When RoadBike overrides initialize, it provides a receiver for this message, 
one that perfectly satisfies Ruby and prevents the message’s automatic delegation to 
Bicycle. If both initialize methods need to be run, RoadBike is now obligated 
to do the delegation itself; it must send super to explicitly pass this message on to 
Bicycle, as it did in line 14 above.

Before this change, RoadBike responded correctly to size, but MountainBike
did not. The behavior they share in common in now defined in Bicycle, their com-
mon superclass. The magic of inheritance is such that both now respond correctly to 
size, as shown below.

Listing 6.8

 1 road_bike = RoadBike.new(
 2               size:       'M',
 3               tape_color: 'red')
 4 
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 5 mountain_bike = MountainBike.new(
 6                   size:         'S',
 7                   front_shock:  'Manitou',
 8                   rear_shock:   'Fox')
 9 
10 puts road_bike.size
11 # => M
12 
13 puts mountain_bike.size
14 # => S

The alert reader will notice the code that handles bicycle size has been moved 
twice. It was in the original Bicycle class, got moved down to RoadBike, and now 
has been promoted back up to Bicycle. The code has not changed; it has just been 
repeatedly moved.

You might be tempted to skip the middleman and just leave this bit of code in 
Bicycle to begin with, but this push-everything-down-and-then-pull-some-things-up 
strategy is an important part of this refactoring. Many of the difficulties of inherit-
ance are caused by a failure to rigorously separate the concrete from the abstract. 
Bicycle’s original code intermingled the two. If you begin this refactoring with that 
first version of Bicycle, attempting to isolate the concrete code and push it down to 
RoadBike, any failure on your part will leave dangerous remnants of concreteness 
in the superclass. However, if you start by moving every bit of the Bicycle code to 
RoadBike, you can then carefully identify and promote the abstract parts without 
fear of leaving concrete artifacts.

When deciding between refactoring strategies, indeed, when deciding between 
design strategies in general, it’s useful to ask the question, “What will happen if I’m 
wrong?” In this case, if you create an empty superclass and push the abstract bits of 
code up into it, the worst that can happen is that you will fail to find and promote the 
entire abstraction.

This “promotion” failure creates a simple problem, one that is easily found and 
easily fixed. When a bit of the abstraction gets left behind, the oversight becomes 
visible as soon as another subclass needs the same behavior. In order to give all sub-
classes access to the behavior, you’ll be forced to either duplicate the code (in each 
subclass) or promote it (to the common superclass). Because even the most junior 
programmers have been taught not to duplicate code, this problem gets noticed no 
matter who works on the application in the future. The natural course of events is 
such that the abstraction gets identified and promoted, and the code improves. Pro-
motion failures thus have low consequences.

However, if you attempt this refactoring from the opposite direction, trying to 
convert an existing class from concrete to abstract by pushing just the concrete parts 
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down into a new subclass, you might accidentally leave remnants of concrete behavior 
behind. By definition, this leftover concrete behavior does not apply to every possible 
new subclass. Subclasses thus begin to violate the basic rule of inheritance; they are 
not truly specializations of their superclasses. The hierarchy becomes untrustworthy.

Untrustworthy hierarchies force objects that interact with them to know their 
quirks. Inexperienced programmers do not understand and cannot fix a faulty hierar-
chy; when asked to use one they will embed knowledge of its quirks into their own 
code, often by explicitly checking the classes of objects. Knowledge of the structure 
of the hierarchy leaks into the rest of the application, creating dependencies that 
raise the cost of change. This is not a problem you want to leave behind. The conse-
quences of a demotion failure can be widespread and severe.

The general rule for refactoring into a new inheritance hierarchy is to arrange 
code so that you can promote abstractions rather than demote concretions.

In light of this discussion, the question posed a few paragraphs ago might more 
usefully be phrased: “What will happen when I’m wrong?” Every decision you make 
includes two costs: one to implement it and another to change it when you discover 
that you were wrong. Taking both costs into account when choosing among alterna-
tives motivates you to make conservative choices that minimize the cost of change.

With this in mind, turn your attention to spares.

6.4.3 Separating Abstract from Concrete
RoadBike and MountainBike both implement a version of spares. RoadBike’s 
definition (repeated below) is the original one that was copied from the concrete 
Bicycle class. It is self-contained and thus still works.

Listing 6.9

 1 class RoadBike < Bicycle
 2   # ...
 3   def spares
 4     { chain:      '11-speed',
5       tire_size:  '23',
6       tape_color: tape_color }
 7   end
 8 end

The spares definition in MountainBike (also repeated below) is left over from 
the first attempt at subclassing. This method sends super, expecting a superclass to 
also implement spares.

1 
2 
3 
4 
5 
6 
7
8 



124 Chapter 6. Acquiring Behavior through Inheritance

Listing 6.10

1 class MountainBike < Bicycle
2   # ...
3   def spares
4     super.merge(front_shock: front_shock)
5   end
6 end

Bicycle, however, does not yet implement the spares method, so sending 
spares to a MountainBike results in the following NoMethodError exception:

Listing 6.11

 1 puts mountain_bike.spares
 2  # => super: no superclass method `spares' for 

#<MountainBike:0x00007f8eaf1474a0>

Fixing this problem obviously requires adding a spares method to Bicycle, 
but doing so is not as simple as promoting the existing code from RoadBike.

RoadBike’s spares implementation knows far too much. The chain and tire_
size attributes are common to all bicycles, but tape_color should be known only 
to RoadBikes. The hard-coded chain and tire_size values are not the correct 
defaults for every possible subclass. This method has many problems and cannot be 
promoted as is.

It mixes a bunch of different things. When this awkward mix was hidden inside 
a single method of a single class, it was survivable, even (depending on your toler-
ance) ignorable, but now that you would like to share only part of this behavior, 
you must untangle the mess and separate the abstract parts from the concrete parts. 
The abstractions will be promoted up to Bicycle; the concrete parts will remain in 
RoadBike.

Put away thoughts of the overall spares method for a moment and concentrate 
on promoting just the pieces that all bicycles share, chain and tire_size. They are 
attributes, like size, and should be represented by accessors and setters instead of 
hard-coded values. Here are the requirements:

• Bicycles have a chain and a tire size.

• All bicycles share the same default for chain.

• Subclasses provide their own default for tire size.

• Concrete instances of subclasses are permitted to ignore defaults and supply 
instance-specific values.
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The code for similar things should follow a similar pattern. Here’s new code that 
handles size, chain, and tire_size in a similar way.

Listing 6.12

 1 class Bicycle
 2   attr_reader :size
 3 
 4   def initialize(**opts)
 5     @size       = opts[:size]
6     @chain      = opts[:chain]
 7     @tire_size  = opts[:tire_size]
 8   end
 9 end

RoadBike and MountainBike inherit the attr_reader definitions in  Bicycle, 
and both send super in their initialize methods. All bikes now understand size, 
chain, and tire_size, and each may supply subclass-specific values for these 
attributes. The first and last requirements listed above have been met.

Despite the buildup, there’s nothing special about this code. Good sense suggests 
that it should have been written like this in the beginning; it’s high time this version 
appeared. It is inheritable by subclasses, certainly, but nothing about the code sug-
gests that it expects to be inherited.

Meeting the two requirements that deal with defaults, however, adds something 
interesting.

6.4.4 Using the Template Method Pattern
This next change alters Bicycle’s initialize method to send messages to get 
defaults. There are two new messages, default_chain and default_tire_size, 
sent on lines 6 and 7 below.

While wrapping the defaults in methods is good practice in general, these new 
message sends serve a dual purpose. Bicycle’s main goal in sending these messages 
is to give subclasses an opportunity to contribute specializations by overriding them.

This technique of defining a basic structure in the superclass and sending 
messages to acquire subclass-specific contributions is known as the template 
method pattern.

In the following code, MountainBike and RoadBike take advantage of only 
one of these opportunities for specialization. Both implement default_tire_size, 
but neither implements default_chain. Each subclass thus supplies its own default 
for tire size but inherits the common default for chain.
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Listing 6.13

 1 class Bicycle
 2   attr_reader :size, :chain, :tire_size
 3 
 4   def initialize(**opts)
 5     @size       = opts[:size]
 6     @chain      = opts[:chain]      || default_chain
 7     @tire_size  = opts[:tire_size]  || default_tire_size
 8   end
 9 
10   def default_chain         # <- common default
11     "11-speed"
12   end
13   # ...
14 end
15 
16 class RoadBike < Bicycle
17   # ...
18   def default_tire_size     # <- subclass default
19     "23"
20   end
21 end
22 
23 class MountainBike < Bicycle
24   # ...
25   def default_tire_size     # <- subclass default
26     "2.1"
27   end
28 end

Bicycle now provides structure, a common algorithm if you will, for its sub-
classes. Where it permits them to influence the algorithm, it sends messages. Sub-
classes contribute to the algorithm by implementing matching methods.

All bicycles now share the same default for chain but use different defaults for 
tire size, as shown below:

Listing 6.14

 1 road_bike = RoadBike.new(
 2               size:       'M',
 3               tape_color: 'red')
 4 
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 5 puts road_bike.tire_size      # => 23
 6 puts road_bike.chain          # => 11-speed
 7 
 8 mountain_bike = MountainBike.new(
 9                   size:         'S',
10                   front_shock:  'Manitou',
11                   rear_shock:   'Fox')
12 
13 puts mountain_bike.tire_size  # => 2.1
14 puts mountain_bike.chain      # => 11-speed

It’s too early to celebrate this success, however, because there’s still something 
wrong with the code. It contains a booby trap, awaiting the unwary.

6.4.5 Implementing Every Template Method
Bicycle’s initialize method sends default_tire_size, but Bicycle itself 
does not implement it. This omission can cause problems downstream. Imagine that 
FastFeet adds another new bicycle type, the recumbent. Recumbents are low, long 
bicycles that place the rider in a laid-back, reclining position; these bikes are fast and 
easy on the rider’s back and neck.

What happens if some programmer innocently creates a new RecumbentBike 
subclass but neglects to supply a default_tire_size implementation? He encoun-
ters the following error.

Listing 6.15

 1 class RecumbentBike < Bicycle
 2   def default_chain
 3     '10-speed'
 4   end
 5 end
 6 
 7 bent = RecumbentBike.new(size: "L")
 8  # => undefined local variable or method 

`default_tire_size' for #<RecumbentBike:0x00007fbe8a126678 
@size="L", @chain="10-speed">

The original designer of the hierarchy rarely encounters this problem. She wrote 
Bicycle; she understands the requirements that subclasses must meet. The existing 
code works. These errors occur in the future, when the application is being changed 
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to meet a new requirement, and is encountered by other programmers, ones who 
understand far less about what’s going on.

The root of the problem is that Bicycle imposes a requirement upon its 
subclasses that is not obvious from a glance at the code. As Bicycle is written, 
subclasses must implement default_tire_size. Innocent and well-meaning sub-
classes like RecumbentBike may fail because they do not fulfill requirements of 
which they are unaware.

A world of potential hurt can be assuaged, in advance, by following one simple 
rule. Any class that uses the template method pattern must supply an implementation 
for every message it sends, even if the only reasonable implementation in the sending 
class looks like this:

Listing 6.16

 1 class Bicycle
 2   # ...
 3   def default_tire_size
 4     raise NotImplementedError
5   end
6 end

Explicitly stating that subclasses are required to implement a message provides 
useful documentation for those who can be relied upon to read it and useful error 
messages for those who cannot.

Once Bicycle provides this implementation of default_tire_size, creating 
a new RecumbentBike fails with the following error.

Listing 6.17

 1 bent = RecumbentBike.new(size: "L")
 2 # => NotImplementedError

While it is perfectly acceptable to merely raise this error and rely on the stack 
trace to track down its source, you may also explicitly supply additional information, 
as shown in line 5 below.

Listing 6.18

 1 class Bicycle
 2   # ...
 3   def default_tire_size
 4     raise NotImplementedError,
 5           "#{self.class} should have implemented..."
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6   end
7 end

This additional information makes the problem inescapably clear. As run-
ning this code shows, this RecumbentBike needs access to an implementation of 
default_tire_size.

Listing 6.19

1 bent = RecumbentBike.new(size: "L")
 2 # => RecumbentBike should have implemented...
 3 # => .../some_file.rb:15:in `default_tire_size'

Whether encountered two minutes or two months after the RecumbentBike 
class was written, this error is unambiguous and easily corrected.

Creating code that fails with reasonable error messages takes minor effort in the 
present but provides value forever. Each error message is a small thing, but small 
things accumulate to produce big effects, and it is this attention to detail that marks 
you as a serious programmer. Always document template method requirements by 
implementing matching methods that raise useful errors.

6.5 Managing Coupling between 
Superclasses and Subclasses
Bicycle now contains most of the abstract bicycle behavior. It has code to manage 
overall bike size, chain, and tire size, and its structure invites subclasses to supply 
common defaults for these attributes. The superclass is almost complete; it’s missing 
only an implementation of spares.

This spares superclass implementation can be written in a number of ways; the 
alternatives vary in how tightly they couple the subclasses and superclasses together. 
Managing coupling is important; tightly coupled classes stick together and may be 
impossible to change independently.

This section shows two different implementations of spares—an easy, obvious 
one and another that is slightly more sophisticated but also more robust.

6.5.1 Understanding Coupling
This first implementation of spares is simplest to write but produces the most tightly 
coupled classes.
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Remember that RoadBike’s current implementation looks like this:

Listing 6.20

1 class RoadBike < Bicycle
2   # ...
3   def spares
4     { chain:      '11-speed',
5       tire_size:  '23',
6       tape_color: tape_color }
 7   end
 8 end

This method is a mishmash of different things, and the last attempt at promoting 
it took a detour to clean up the code. That detour extracted the hard-coded values 
for chain and tire into variables and messages and promoted just those parts up to 
Bicycle. The methods that deal with chain and tire size are now available in the 
superclass.

MountainBike’s current spares implementation looks like this:

Listing 6.21

 1 class MountainBike < Bicycle
 2   # ...
 3   def spares
 4     super.merge(front_shock: front_shock)
 5   end
 6 end

MountainBike’s spares method sends super; it expects one of its superclasses 
to implement spares. MountainBike merges its own spare parts hash into the 
result returned by super, clearly expecting that result to also be a hash.

Given that Bicycle can now send messages to get chain and tire size and that 
its spares implementation ought to return a hash, adding the following spares 
method meets MountainBike’s needs.

Listing 6.22

 1 class Bicycle
 2   # ...
 3   def spares
 4     { tire_size: tire_size,
 5       chain:     chain }
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6   end
7 end

Once this method is placed in Bicycle, all of MountainBike works. Bringing 
RoadBike along is merely a matter of changing its spares implementation to mir-
ror MountainBike’s, that is, replacing the code for chain and tire size with a send to 
super and adding the road bike specializations to the resulting hash.

Assuming this final change to MountainBike has been made, the following list-
ing shows all of the code written so far and completes the first implementation of this 
hierarchy.

Notice that the code follows a discernible pattern. Every template method sent by 
Bicycle is implemented in Bicycle itself, and MountainBike and RoadBike both 
send super in their initialize and spares methods.

Listing 6.23

 1 class Bicycle
 2   attr_reader :size, :chain, :tire_size
 3 
 4   def initialize(**opts)
 5     @size       = opts[:size]
 6     @chain      = opts[:chain]      || default_chain
 7     @tire_size  = opts[:tire_size]  || default_tire_size
 8   end
 9 
10   def spares
11     { tire_size: tire_size,
12       chain:     chain }
13   end
14 
15   def default_chain
16     "11-speed"
17   end
18 
19   def default_tire_size
20     raise NotImplementedError
21   end
22 end
23 
24 class RoadBike < Bicycle
25   attr_reader :tape_color
26 
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27   def initialize(**opts)
28     @tape_color = opts[:tape_color]
29     super
30   end
31 
32   def spares
33     super.merge(tape_color: tape_color)
34   end
35 
36   def default_tire_size
37     "23"
38   end
39 end
40 
41 class MountainBike < Bicycle
42   attr_reader :front_shock, :rear_shock
43 
44   def initialize(**opts)
45     @front_shock = opts[:front_shock]
46     @rear_shock  = opts[:rear_shock]
47     super
48   end
49 
50   def spares
51     super.merge(front_shock: front_shock)
52   end
53 
54   def default_tire_size
55     "2.1"
56   end
57 end

This class hierarchy works, and you might be tempted to stop right here. How-
ever, just because it works doesn’t guarantee that it’s good enough. It still contains a 
booby trap worth removing.

Notice that the MountainBike and RoadBike subclasses follow a similar pat-
tern. They each know things about themselves (their spare parts specializations) and 
things about their superclass (that it implements spares to return a hash and that it 
responds to initialize).

Knowing things about other classes, as always, creates dependencies, and 
dependencies couple objects together. The dependencies in the code above are also 
the booby traps; both are created by the sends of super in the subclasses.
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Here’s an illustration of the trap. If someone creates a new subclass and forgets 
to send super in its initialize method, he encounters this problem:

Listing 6.24

 1 class RecumbentBike < Bicycle
 2   attr_reader :flag
 3 
 4   def initialize(**opts)
 5     @flag = opts[:flag]   # forgot to send `super`
 6   end
 7 
 8   def spares
 9     super.merge(flag: flag)
10   end
11 
12   def default_chain
13     '10-speed'
14   end
15 
16   def default_tire_size
17     '28'
18   end
19 end
20 
21 bent = RecumbentBike.new(flag: 'tall and orange')
22 puts bent.spares
23 # => {:tire_size=>nil,     <- didn't get initialized
24 # =>  :chain=>nil,
25 # =>  :flag=>"tall and orange"}

When RecumbentBike fails to send super during initialize, it misses out on 
the common initialization provided by Bicycle and does not get a valid size, chain, 
or tire size. This error can manifest at a time and place far distant from its cause, mak-
ing it very hard to debug.

A similarly devilish problem occurs if RecumbentBike forgets to send super in 
its spares method. Nothing blows up; instead the spares hash is just wrong, and 
this wrongness may not become apparent until a Mechanic is standing by the road 
with a broken bike, searching the spare parts bin in vain.

Any programmer can forget to send super and therefore cause these errors, but 
the primary culprits (and the primary victims) are programmers who don’t know the 
code well but are tasked, in the future, with creating new subclasses of Bicycle.
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The pattern of code in this hierarchy requires that subclasses not only know 
what they do but also how they are supposed to interact with their superclass. It 
makes sense that subclasses know the specializations they contribute (they are obvi-
ously the only classes who can know them), but forcing a subclass to know how to 
interact with its abstract superclass causes many problems.

It pushes knowledge of the algorithm down into the subclasses, forcing each to 
explicitly send super to participate. It causes duplication of code across subclasses, 
requiring that all send super in exactly the same places. And it raises the chance 
that future programmers will create errors when writing new subclasses, because 
programmers can be relied upon to include the correct specializations but can easily 
forget to send super.

When a subclass sends super, it’s effectively declaring that it knows the 
 algorithm; it depends on this knowledge. If the algorithm changes, then the sub-
classes may break even if their own specializations are not otherwise affected.

6.5.2 Decoupling Subclasses Using Hook Messages
All of these problems can be avoided with one final refactoring. Instead of allowing 
subclasses to know the algorithm and requiring that they send super, superclasses 
can instead send hook messages, ones that exist solely to provide subclasses a place 
to contribute information by implementing matching methods. This strategy removes 
knowledge of the algorithm from the subclass and returns control to the superclass.

In the following example, this technique is used to give subclasses a way 
to contribute to initialization. Bicycle’s initialize method now sends post_
initialize and, as always, implements the matching method, one that in this 
case does nothing.

RoadBike supplies its own specialized initialization by overriding post_
initialize, as shown in line 20 below:

Listing 6.25

 1 class Bicycle
 2   attr_reader :size, :chain, :tire_size
 3 
 4   def initialize(**opts)
 5     @size       = opts[:size]
 6     @chain      = opts[:chain]      || default_chain
 7     @tire_size  = opts[:tire_size]  || default_tire_size
 8 
 9     post_initialize(opts)             # Bicycle both sends
10   end
11 

1
 2 
 3
4

 5 
 6 
7

 8
 9 
10 
11



1356.5 Managing Coupling between Superclasses and Subclasses 

12   def post_initialize(opts)           # and implements this
13   end
14   # ...
15 end
16 
17 class RoadBike < Bicycle
18   attr_reader :tape_color
19 
20   def post_initialize(opts)           # RoadBike can
21     @tape_color = opts[:tape_color]   # optionally
22   end                                 # override it
23 end

This change doesn’t just remove the send of super from RoadBike’s 
 initialize method, it removes the initialize method altogether. RoadBike no 
longer controls initialization; it instead contributes specializations to a larger, abstract 
algorithm. That algorithm is defined in the abstract superclass Bicycle, which in 
turn is responsible for sending post_initialize.

RoadBike is still responsible for what initialization it needs but is no longer 
responsible for when its initialization occurs. This change allows RoadBike to know 
less about Bicycle, reducing the coupling between them and making each more 
flexible in the face of an uncertain future. RoadBike doesn’t know when its post_
initialize method will be called, and it doesn’t care what object actually sends the 
message. Bicycle (or any other object) could send this message at any time; there is 
no requirement that it be sent during object initialization.

Putting control of the timing in the superclass means the algorithm can change 
without forcing changes upon the subclasses.

This same technique can be used to remove the send of super from the spares 
method. Instead of forcing RoadBike to know that Bicycle implements spares 
and that Bicycle’s implementation returns a hash, you can loosen coupling by 
implementing a hook that gives control back to Bicycle.

The following example changes Bicycle’s spares method to send local_
spares. Bicycle provides a default local_spares implementation that returns an 
empty hash. RoadBike takes advantage of this hook and overrides local_spares to 
contribute its own specific spare parts.

Listing 6.26

 1 class Bicycle
 2   # ...
 3   def spares
 4     { tire_size: tire_size,
 5       chain:     chain }.merge(local_spares)
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 6   end
 7 
 8   # hook for subclasses to override
 9   def local_spares
10     {}
11   end
12 end
13 
14 class RoadBike < Bicycle
15   # ...
16   def local_spares
17     { tape_color: tape_color }
18   end
19 end

RoadBike’s new implementation of local_spares replaces its former imple-
mentation of spares. This change preserves the specialization supplied by 
RoadBike but reduces its coupling to Bicycle. RoadBike no longer has to know 
that Bicycle implements a spares method; it merely expects that its own imple-
mentation of local_spares will be called, by some object, at some time.

After making similar changes to MountainBike, the final hierarchy looks 
like this:

Listing 6.27

 1 class Bicycle
 2   attr_reader :size, :chain, :tire_size
 3 
 4   def initialize(**opts)
 5     @size       = opts[:size]
 6     @chain      = opts[:chain]      || default_chain
 7     @tire_size  = opts[:tire_size]  || default_tire_size
 8     post_initialize(opts)
 9   end
10 
11   def spares
12     { tire_size: tire_size,
13       chain:     chain }.merge(local_spares)
14   end
15 
16   def default_tire_size
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17     raise NotImplementedError
18   end
19 
20   # subclasses may override
21   def post_initialize(opts)
22   end
23 
24   def local_spares
25     {}
26   end
27 
28   def default_chain
29     "11-speed"
30   end
31 end
32 
33 class RoadBike < Bicycle
34   attr_reader :tape_color
35 
36   def post_initialize(opts)
37     @tape_color = opts[:tape_color]
38   end
39 
40   def local_spares
41     { tape_color: tape_color }
42   end
43 
44   def default_tire_size
45     "23"
46   end
47 end
48 
49 class MountainBike < Bicycle
50   attr_reader :front_shock, :rear_shock
51 
52   def post_initialize(opts)
53     @front_shock = opts[:front_shock]
54     @rear_shock  = opts[:rear_shock]
55   end
56 
57   def local_spares
58     { front_shock: front_shock }
59   end
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60 
61   def default_tire_size
62     "2.1"
63   end
64 end
65 
66 road_bike =
67   RoadBike.new(
68     size:       'M',
69     tape_color: 'red')
70 
71 puts road_bike.tire_size      # => 23
72 puts road_bike.chain          # => 11-speed
73 puts road_bike.spares
74  # => {:tire_size=>"23", :chain=>"11-speed", 

:tape_color=>"red"}
75 
76 mountain_bike =
77   MountainBike.new(
78     size:         'S',
79     front_shock:  'Manitou',
80     rear_shock:   'Fox')
81 
82 puts mountain_bike.tire_size  # => 2.1
83 puts mountain_bike.chain      # => 11-speed
84 puts mountain_bike.spares
85  # => {:tire_size=>"2.1", :chain=>"11-speed", 

:front_shock=>"Manitou"}

RoadBike and MountainBike are more readable now that they contain only 
specializations. It’s clear at a glance what they do, and it’s clear that they are speciali-
zations of Bicycle.

New subclasses need only implement the template methods. This final example 
illustrates how simple it is to create a new subclass, even for someone unfamiliar with 
the application. Here is class RecumbentBike, a new specialization of Bicycle:

Listing 6.28

 1 class RecumbentBike < Bicycle
 2   attr_reader :flag
 3 
 4   def post_initialize(opts)
 5     @flag = opts[:flag]

1
2 
3
4 
5 

60
61 
62 
63 
64
65
66 
67 
68 
69 
70
71
72
73
74

75
76 
77
78 
79 
80 
81
82
83
84
85



1396.6 Summary

 6   end
 7 
 8   def local_spares
 9     { flag: flag }
10   end
11 
12   def default_chain
13     '10-speed'
14   end
15 
16   def default_tire_size
17     '28'
18   end
19 end
20 
21 bent =
22   RecumbentBike.new(
23     size: "M",
24     flag: 'tall and orange')
25 
26 puts bent.spares
27  # => {:tire_size=>"28", :chain=>"10-speed", :flag=>"tall 

and orange"}

The code in RecumbentBike is transparently obvious and is so regular and pre-
dictable that it might have come off of an assembly line. It illustrates the strength and 
value of inheritance; when the hierarchy is correct, anyone can successfully create a 
new subclass.

6.6 Summary
Inheritance solves the problem of related types that share a great deal of common 
behavior but differ across some dimension. It allows you to isolate shared code and 
implement common algorithms in an abstract class, while also providing a structure 
that permits subclasses to contribute specializations.

The best way to create an abstract superclass is by pushing code up from con-
crete subclasses. Identifying the correct abstraction is easiest if you have access to at 
least three existing concrete classes. This chapter’s simple example relied on just two, 
but in the real world, you are often better served to wait for the additional informa-
tion that three cases supply.
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Abstract superclasses use the template method pattern to invite inheritors to sup-
ply specializations, and they use hook methods to allow these inheritors to contrib-
ute these specializations without being forced to send super. Hook methods allow 
subclasses to contribute specializations without knowing the abstract algorithm. They 
remove the need for subclasses to send super and therefore reduce the coupling 
between layers of the hierarchy and increase its tolerance for change.

Well-designed inheritance hierarchies are easy to extend with new subclasses, 
even for programmers who know very little about the application. This ease of exten-
sion is inheritance’s greatest strength. When your problem is one of needing numer-
ous specializations of a stable, common abstraction, inheritance can be an extremely 
low-cost solution.



Chapter 7
Sharing Role Behavior 
with Modules

The previous chapter ended on a high note, with code that looked so promising you 
may be wondering where it’s been all your life. However, before you decide to use 
classical inheritance to solve every imaginable design problem, consider this: What 
will happen when FastFeet develops a need for recumbent mountain bikes?

If the solution to this new design problem feels elusive, that’s perfectly under-
standable. Creation of a recumbent mountain bike subclass requires combining the 
qualities of two existing subclasses, something that inheritance cannot readily accom-
modate. Even more distressing is the fact that this failure illustrates just one of several 
ways in which inheritance can go wrong.

To reap benefits from using inheritance you must understand not only how to 
write inheritable code but also when it makes sense to do so. Use of classical inher-
itance is always optional; every problem that it solves can be solved another way. 
Because no design technique is free, creating the most cost-effective application 
requires making informed tradeoffs between the relative costs and likely benefits of 
alternatives.

This chapter explores an alternative that uses the techniques of inheritance to 
share a role. It begins with an example that uses a Ruby module to define a common 
role and then proceeds to give practical advice about how to write all inheritable 
code.
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7.1 Understanding Roles
Some problems require sharing behavior among otherwise unrelated objects. This 
common behavior is orthogonal to class; it’s a role an object plays. Many of the roles 
needed by an application will be obvious at design time, but it’s also common to dis-
cover unanticipated roles as you write the code.

When formerly unrelated objects begin to play a common role, they enter into 
a relationship with the objects for whom they play the role. These relationships are 
not as visible as those created by the subclass/superclass requirements of classical 
inheritance but they exist nonetheless. Using a role creates dependencies among 
the objects involved and these dependencies introduce risks that you must take into 
account when deciding among design options.

This section unearths a hidden role and creates code to share its behavior among 
all players, while at the same time minimizing the dependencies thereby incurred.

7.1.1 Finding Roles
The Preparer duck type from Chapter 5, “Reducing Costs with Duck Typing,” 
is a role. Objects that implement Preparer’s interface play this role. Mechanic, 
TripCoordinator, and Driver each implement prepare_trip; therefore, other 
objects can interact with them as if they are Preparers without concern for their 
underlying class.

The existence of a Preparer role suggests that there’s also a parallel 
Preparable role (these things often come in pairs). The Trip class acts as a 
Preparable in the Chapter 5 example; it implements the Preparable interface. 
This interface includes all of the messages that any Preparer might expect to send 
to a Preparable, that is, the methods bicycles, customers, and vehicle. The 
Preparable role is not terribly obvious because Trip is its only player but it’s 
important to recognize that it exists. Chapter 9, “Designing Cost-Effective Tests,” 
suggests techniques for testing and documenting the Preparable role so as to 
 distinguish it from the Trip class.

Although the Preparer role has multiple players, it is so simple that it is entirely 
defined by its interface. To play this role, all an object need do is implement its own 
personal version of prepare_trip. Objects that act as Preparers have only this 
interface in common. They share the method signature but no other code.

Preparer and Preparable are perfectly legitimate duck types. It’s far more 
common, however, to discover more sophisticated roles, ones where the role requires 
not only specific message signatures but also specific behavior. When a role needs 
shared behavior, you’re faced with the problem of organizing the shared code. Ideally 
this code would be defined in a single place but be usable by any object that wished 
to act as the duck type and play the role.
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Many object-oriented languages provide a way to define a named group of meth-
ods that are independent of class and can be mixed in to any object. In Ruby, these 
mix-ins are called modules. Methods can be defined in a module and then the module 
can be added to any object. Modules thus provide a perfect way to allow objects of 
different classes to play a common role using a single set of code.

When an object includes a module, the methods defined therein become avail-
able via automatic delegation. If this sounds like classical inheritance, it also looks 
like it, at least from the point of view of the including object. From that object’s 
point of view, messages arrive, it doesn’t understand them, they get automatically 
routed somewhere else, the correct method implementation is magically found, it is 
executed, and the response is returned.

Once you start putting code into modules and adding modules to objects, you 
expand the set of messages to which an object can respond and enter a new realm 
of design complexity. An object that directly implements few methods might still 
have a very large response set. The total set of messages to which an object can 
respond includes

• Those it implements

• Those implemented in all objects above it in the hierarchy

• Those implemented in any module that has been added to it

• Those implemented in all modules added to any object above it in the hierarchy

If this seems like a frighteningly large and potentially confusing response set, 
you have a clear grasp of the problem. Acquiring an understanding of the behavior of 
a deeply nested hierarchy is at best intimidating, at worst, impossible.

7.1.2 Organizing Responsibilities
Now that you have a sufficiently somber view of the possibilities, it’s time to look 
at a manageable example. Just as with classical inheritance, before you can choose 
whether to create a duck type and put shared behavior into a module, you have to 
know how to do it correctly. Fortunately, the classical inheritance example in Chapter 6, 
“Acquiring Behavior through Inheritance,” is about to pay off; this example builds on 
those techniques and is significantly shorter.

Consider the problem of scheduling a trip. Trips occur at specific points in time 
and involve bicycles, mechanics, and motor vehicles. Bikes, mechanics, and vehicles 
are real things in the physical world that can’t be in two places at once. FastFeet 
needs a way to arrange all of these objects on a schedule so that it can determine, for 
any point in time, which objects are available and which are already committed.
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Determining if an unscheduled bike, mechanic, or vehicle is available to par-
ticipate in a trip is not as simple as looking to see if it’s idle throughout the interval 
during which the trip is scheduled. These real-world things need a bit of down-
time between trips, they cannot finish a trip on one day and start another the next. 
Bicycles and motor vehicles must undergo maintenance, and mechanics need a rest 
from being nice to customers and a chance to do their laundry.

The requirements are that bicycles have a minimum of one day between trips, 
vehicles a minimum of three days, and mechanics, four days.

The code to schedule these objects can be written in many ways, and, as has 
been true throughout the book, this example will evolve. It begins with some rather 
alarming code and works its way to a satisfactory solution, all in the interest of expos-
ing likely antipatterns.

Assume that a Schedule class exists. Its interface already includes these 
three methods:

Listing 7.1

 1 class Schedule
 2   def scheduled?(schedulable, starting, ending)
 3     # ...
 4   end
 5 
 6   def add(target, starting, ending)
 7     # ...
 8   end
 9 
10   def remove(target, starting, ending)
11     # ...
12   end
13 end

Each of the above methods takes three arguments: the target object and the 
start and end dates for the period of interest. The Schedule is responsible for 
knowing if its incoming target argument is already scheduled and for adding and 
removing targets from the schedule. These responsibilities rightly belong here in 
the Schedule itself.

These methods are fine, but unfortunately there’s a gap in this code. It is true 
that knowing if an object is scheduled during some interval is all the information 
needed to prevent over-scheduling an already busy object. However, knowing that a 
object is not scheduled during an interval isn’t enough information to know if it can 
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be scheduled during that same interval. To properly determine if an object can be 
scheduled, some object, somewhere, must take lead time into account.

Figure 7.1 shows an implementation where the Schedule itself takes responsi-
bility for knowing the correct lead time. The schedulable? method knows all the 
possible values and it checks the class of its incoming target argument to decide 
which lead time to use. 

You’ve seen the pattern of checking class to know what message to send; here 
the Schedule checks class to know what value to use. In both cases Schedule 
knows too much. This knowledge doesn’t belong in Schedule, it belongs in the 
classes whose names Schedule is checking.

This implementation cries out for a simple and obvious improvement, one sug-
gested by the pattern of the code. Instead of knowing details about other classes, the 
Schedule should send them messages.

instigating
object

the
Schedule

instigating
object

the
Schedule

The ‘target’ argument
contains an instance of
Bicycle, Vehicle or Mechanic.

schedulable?(target, starting, ending)

!scheduled?(target, starting − lead_days, ending)

lead_days = 1

lead_days = 4

lead_days = 3

[target.class==Bicycle]

[target.class==Mechanic]

[target.class==Vehicle]

alt

Figure 7.1 Schedule knows the lead time for other objects
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7.1.3 Removing Unnecessary Dependencies
The fact that the Schedule checks many class names to determine what value to 
place in one variable suggests that the variable name should be turned into a mes-
sage, which in turn should be sent to each incoming object.

Discovering the Schedulable Duck Type
Figure 7.2 shows a sequence diagram for new code that removes the check on class 
from the schedulable? method and alters the method to instead send the lead_
days message to its incoming target argument. This change replaces an if state-
ment that checks the class of an object with a message sent to that same object. It 
simplifies the code and pushes responsibility for knowing the correct number of lead 
days into the last object that could possibly know the correct answer, which is exactly 
where this responsibility belongs. 

A close look at Figure 7.2 reveals something interesting. Notice that this dia-
gram contains a box labeled “the target.” The boxes on sequence diagrams are meant 
to represent objects and are commonly named after classes, as in “the Schedule” or 
“a Bicycle.” In Figure 7.2, the Schedule intends to send lead_days to its target, but 
target could be an instance of any of a number of classes. Because target’s class is 
unknown, it’s not obvious how to label the box for the receiver of this message.

The easiest way to draw the diagram is to sidestep this issue by labeling the box 
after the name of the variable and sending the lead_days message to that “target” 
without being precise about its class. The Schedule clearly does not care about 
target’s class, instead it merely expects it to respond to a specific message. This 
message-based expectation transcends class and exposes a role, one played by all 
targets and made explicitly visible by the sequence diagram.

instigating
object

the
target

the
Schedule

instigating
object

the
target

the
Schedule

schedulable?(target, starting, ending)

lead_days

!scheduled?(target, starting  lead_days, ending)

Figure 7.2 Schedule expects targets to know their own lead time
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The Schedule expects its target to behave like something that understands 
lead_days, that is, like something that is “schedulable.” You have discovered a 
duck type.

Right now this new duck type is shaped much like the Preparer duck type 
from Chapter 5; it consists only of this interface. Schedulables must implement 
lead_days but currently have no other code in common.

Letting Objects Speak for Themselves
Discovering and using this duck type improves the code by removing the Schedule’s 
dependency on specific class names, which makes the application more flexible and 
easier to maintain. However, Figure 7.2 still contains unnecessary dependencies that 
should be removed.

It’s easiest to illustrate these dependencies with an extreme example. Imag-
ine a StringUtils class that implements utility methods for managing strings. 
You can ask StringUtils if a string is empty by sending StringUtils.
empty?(some_string).

If you have written much object-oriented code you will find this idea ridiculous. 
Using a separate class to manage strings is patently redundant; strings are objects, 
they have their own behavior, they manage themselves. Requiring that other objects 
know about a third party, StringUtils, to get behavior from a string complicates 
the code by adding an unnecessary dependency.

This specific example illustrates the general idea that objects should manage 
themselves; they should contain their own behavior. If your interest is in object B, 
you should not be forced to know about object A if your only use of it is to find 
things out about B.

The sequence diagram in Figure 7.2 violates this rule. The instigator is trying to 
ascertain if the target object is schedulable. Unfortunately, it doesn’t ask this ques-
tion of target itself, it instead asks a third party, Schedule. Asking Schedule if a 
target is schedulable is just like asking StringUtils if a string is empty. It forces the 
instigator to know about and thus depend upon the Schedule, even though its only 
real interest is in the target.

Just as strings respond to empty? and can speak for themselves, targets should 
respond to schedulable?. The schedulable? method should be added to the 
interface of the Schedulable role.

7.1.4 Writing the Concrete Code
As it currently stands, the Schedulable role contains only an interface. Adding the 
schedulable? method to this role requires writing some code and it’s not immedi-
ately obvious where this code should reside. You are faced with two decisions: You 
must decide what the code should do and where the code should live.
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The simplest way to get started is to separate the two decisions. Pick an arbitrary 
concrete class (for example, Bicycle) and implement the schedulable? method 
directly in that class. Once you have a version that works for Bicycle, you can 
refactor your way to a code arrangement that allows all Schedulables to share the 
behavior.

Figure 7.3 shows a sequence diagram where this new code is in Bicycle. Bicy-
cle now responds to messages about its own “schedulability.” 

Before this change, every instigating object had to know about and thus had a 
dependency on the Schedule. This change allows bicycles to speak for themselves, 
freeing instigating objects to interact with them without the aid of a third party.

The code to implement this sequence diagram is straightforward. Here’s a very 
simple Schedule. This is clearly not a production-worthy implementation, but it pro-
vides a good enough stand-in for the rest of the example.

Listing 7.2

1 class Schedule
2   def scheduled?(schedulable, starting, ending)
3     puts "This #{schedulable.class} is " +
 4          "available #{starting} - #{ending}"
 5     false
 6   end
 7 end

This next example shows Bicycle’s implementation of schedulable?. 
 Bicycle knows its own scheduling lead time (defined on line 23 and referenced on 
line 13 below), and delegates scheduled? to the Schedule itself.
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Figure 7.3 Bicycle classes know if they are schedulable



1497.1 Understanding Roles

Listing 7.3

 1 class Bicycle
 2   attr_reader :schedule, :size, :chain, :tire_size
 3 
 4   # Inject the Schedule and provide a default
 5   def initialize(**opts)
 6     @schedule = opts[:schedule] || Schedule.new
 7     # ...
 8   end
 9 
10   # Return true if this bicycle is available
11   # during this (now Bicycle specific) interval.
12   def schedulable?(starting, ending)
13     !scheduled?(starting - lead_days, ending)
14   end
15 
16   # Return the schedule's answer
17   def scheduled?(starting, ending)
18     schedule.scheduled?(self, starting, ending)
19   end
20 
21   # Return the number of lead_days before a bicycle
22   # can be scheduled.
23   def lead_days
24     1
25   end
26   # ...
27 end
28 
29 require 'date'
30 starting = Date.parse("2019/09/04")
31 ending   = Date.parse("2019/09/10")
32 
33 b = Bicycle.new
34 puts b.schedulable?(starting, ending)
35 # => This Bicycle is available 2019-09-03 - 2019-09-10
36 # => true

Running the code (lines 29–34) confirms that Bicycle has correctly adjusted the 
starting date to include the bicycle-specific lead days.
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This code hides knowledge of who the Schedule is and what the Schedule
does inside of Bicycle. Objects holding onto a Bicycle no longer need know 
about the existence or behavior of the Schedule.

7.1.5 Extracting the Abstraction
The code above solves the first part of current problem in that it decides what the 
schedulable? method should do, but Bicycle is not the only kind of thing that 
is “schedulable.” Mechanic and Vehicle also play this role and therefore need this 
behavior. It’s time to rearrange the code so that it can be shared among objects of 
different classes.

The following example shows a new Schedulable module, which contains an 
abstraction extracted from the Bicycle class above. The schedulable? (line 8) and 
scheduled? (line 12) methods are exact copies of the ones formerly implemented in 
Bicycle.

Listing 7.4

 1 module Schedulable
 2   attr_writer :schedule
 3 
 4   def schedule
 5     @schedule ||= Schedule.new
 6   end
 7 
 8   def schedulable?(starting, ending)
 9     !scheduled?(starting - lead_days, ending)
10   end
11 
12   def scheduled?(starting, ending)
13     schedule.scheduled?(self, starting, ending)
14   end
15 
16   # includers may override
17   def lead_days
18     0
19   end
20 end

Two things have changed from the code as it previously existed in Bicycle. 
First, a schedule method (line 4) has been added. This method returns an instance 
of the overall Schedule.
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Back in Figure 7.2 the instigating object depended on the Schedule, which 
meant there might be many places in the application that needed knowledge of 
the Schedule. In the next iteration, Figure 7.3, this dependency was transferred 
to  Bicycle, reducing its reach into the application. Now, in the code above, the 
dependency on Schedule has been removed from Bicycle and moved into the 
Schedulable module, isolating it even further.

The second change is to the lead_days method (line 17). Bicycle’s former 
implementation returned a bicycle-specific number; the module’s implementation 
now returns a more generic default of zero days.

Even if there were no reasonable application default for lead days, the Schedu-
lable module must still implement the lead_days method. The rules for modules 
are the same as for classical inheritance. If a module sends a message, it must provide 
an implementation, even if that implementation merely raises an error indicating that 
users of the module must implement the method.

Including this new module in the original Bicycle class, as shown in the exam-
ple below, adds the module’s methods to Bicycle’s response set. The lead_days 
method is a hook that follows the template method pattern. Bicycle overrides this 
hook (line 4) to provide a specialization.

Running the code reveals that Bicycle retains the same behavior as when it 
directly implemented this role.

Listing 7.5

 1 class Bicycle
 2   include Schedulable
 3 
 4   def lead_days
 5     1
 6   end
 7   # ...
 8 end
 9 
10 require 'date'
11 starting = Date.parse("2019/09/04")
12 ending   = Date.parse("2019/09/10")
13 
14 b = Bicycle.new
15 puts b.schedulable?(starting, ending)
16 # => This Bicycle is available 2019-09-03 - 2019-09-10
17 # => true
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Moving the methods to the Schedulable module, including the module and 
overriding lead_days, allows Bicycle to continue to behave correctly. Additionally, 
now that you have created this module other objects can make use of it to become 
Schedulable themselves. They can play this role without duplicating the code.

The pattern of messages has changed from that of sending schedulable? to a 
Bicycle to sending schedulable? to a Schedulable. You are now committed to 
the duck type, and the sequence diagram shown in Figure 7.3 can be altered to look 
like the one in Figure 7.4. 

Once you include this module in all of the classes that can be scheduled, the 
pattern of code becomes strongly reminiscent of inheritance. The following example 
shows Vehicle and Mechanic including the Schedulable module and responding 
to the schedulable? message.

Listing 7.6

 1 class Vehicle
 2   include Schedulable
 3 
 4   def lead_days
 5     3
 6   end
 7   # ...
 8 end
 9 
10 class Mechanic
11   include Schedulable
12 
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13   def lead_days
14     4
15   end
16   # ...
17 end
18 
19 v = Vehicle.new
20 puts v.schedulable?(starting, ending)
21 # => This Vehicle is available 2019-09-01 - 2019-09-10
22 # => true
23 
24 
25 m = Mechanic.new
26 puts m.schedulable?(starting, ending)
27 # => This Mechanic is available 2019-08-31 - 2019-09-10
28 # => true

The code in Schedulable is the abstraction and it uses the template method pat-
tern to invite objects to provide specializations to the algorithm it supplies. Schedu-
lables override lead_days to supply those specializations. When schedulable?
arrives at any Schedulable, the message is automatically delegated to the method 
defined in the module.

This may not fit the strict definition of classical inheritance, but in terms of how 
the code should be written and how the messages are resolved, it certainly acts like it. 
The coding techniques are the same because method lookup follows the same path.

This chapter has been careful to maintain a distinction between classical inherit-
ance and sharing code via modules. This is-a versus behaves-like-a difference defi-
nitely matters, and each choice has distinct consequences. However, the coding 
techniques for these two things are very similar and this similarity exists because 
both techniques rely on automatic message delegation.

7.1.6 Looking Up Methods
Understanding the similarities between classical inheritance and module inclusion is 
easier if you understand how object-oriented languages, in general, and Ruby, in par-
ticular, find the method implementation that matches a message send.

A Gross Oversimplification
When an object receives a message, the OO language first looks in that object’s class 
for a matching method implementation. This makes perfect sense; method definitions 
would otherwise need to be duplicated within every instance of every class. Storing 
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the methods known to an object inside of its class means that all instances of a class 
can share the same set of method definitions, definitions that need then exist in only 
one place.

Throughout this book there has been little concern with explicitly stating whether 
the object under discussion is an instance of a class or the class itself, expecting that 
the intent will be clear from the context and that you are comfortable with the notion 
that classes themselves are objects in their own right. Describing how method lookup 
works is going to require a bit more precision.

As stated above, the search for a method begins in the class of the receiving 
object. If this class does not implement the message, the search proceeds to its super-
class. From here on, only superclasses matter: the search proceeds up the superclass 
chain, looking in one superclass after another, until it reaches the top of the hierarchy.

For the purposes of this discussion, class Object sits at the top of the hierarchy. 
Please note that the specifics of method lookup in Ruby will turn out to be more 
involved, but this is a reasonable first model. 

In Figure 7.5, the spares message is sent to an instance of MountainBike. 
The OO language first looks for a matching spares method in the MountainBike 
class. Upon failing to find a method spares in that class, the search proceeds to 
MountainBike’s superclass, Bicycle.

Because Bicycle implements spares, this example’s search stops here. How-
ever, in the case where no superclass implementation exists, the search proceeds 
from one superclass to the next until it reaches the top of the hierarchy and searches 
in Object. If all attempts to find a suitable method fail, you might expect the search 
to stop, but many languages make a second attempt to resolve the message.

Object

Bicycle ??? spares

spares

superclass

superclass

class

Mountain
Bike

a
mountain

bike

??? spares

Figure 7.5 Generalization of method lookup
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Ruby gives the original receiver a second chance by sending it a new message, 
method_missing, and passing :spares as an argument. Attempts to resolve this 
new message restart the search along the same path, except now the search is for 
method_missing rather than spares.

A More Accurate Explanation
The previous section explains only how methods are looked up for classical inherit-
ance. This next section expands the explanation to encompass methods defined in a 
Ruby module. Figure 7.6 adds the Schedulable module to the method lookup path. 

The object hierarchy in Figure 7.6 looks much like the one from Figure 7.5. It dif-
fers only in that Figure 7.6 shows the Schedulable module highlighted between the 
Bicycle and Object classes.

When Bicycle includes Schedulable, all of the methods defined in the mod-
ule become part of Bicycle’s response set. The module’s methods go into the 
method lookup path directly above methods defined in Bicycle. Including this mod-
ule doesn’t change Bicycle’s superclass (that’s still Object), but as far as method 
lookup is concerned, it may as well have. Any message received by an instance of 
MountainBike now stands a chance of being satisfied by a method defined in the 
Schedulable module.

This has enormous implications. If Bicycle implements a method that is also 
defined in Schedulable, Bicycle’s implementation overrides Schedulable’s. 

Object

Schedulable

Bicycle

schedulable?

superclass

included
modules

superclass

class

Mountain
Bike

a
mountain

bike

Figure 7.6 More accurate explanation of method lookup
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If Schedulable sends methods that it does not implement, instances of MountainBike 
may encounter confusing failures.

Figure 7.6 shows the schedulable? message being sent to an instance of 
MountainBike. To resolve this message, Ruby first looks for a matching method in 
the MountainBike class. The search then proceeds along the method lookup path, 
which now contains modules as well as superclasses. An implementation of schedu-
lable? is eventually found in Schedulable, which lies in the lookup path between 
Bicycle and Object.

A Very Nearly Complete Explanation
Now that you’ve seen how modules fit into the method lookup path, it’s time to com-
plicate the picture further.

It’s entirely possible for a hierarchy to contain a long chain of superclasses, each 
of which includes many modules. When a single class includes several different mod-
ules, the modules are placed in the method lookup path in reverse order of module 
inclusion. Thus, the methods of the last included module are encountered first in the 
lookup path.

This discussion has, until now, been about including modules into classes via 
Ruby’s include keyword. As you have already seen, including a module into a class 
adds the module’s methods to the response set for all instances of that class. For 
example, in Figure 7.6, the Schedulable module was included into the Bicycle 
class, and, as a result, instances of MountainBike gain access to the methods defined 
therein.

However, it is also possible to add a module’s methods to a single object, using 
Ruby’s extend keyword. Because extend adds the module’s behavior directly to 
an object, extending a class with a module creates class methods in that class and 
extending an instance of a class with a module creates instance methods in that 
instance. These two things are exactly the same; classes are, after all, just plain old 
objects, and extend behaves the same for all.

Finally, any object can also have ad hoc methods added directly to its own per-
sonal “Singleton class.” These ad hoc methods are unique to this specific object.

Each of these alternatives adds to an object’s response set by placing method defi-
nitions in specific and unambiguous places along the method lookup path. Figure 7.7 
illustrates the complete list of possibilities. 

Before continuing, here’s a word of warning. Figure 7.7 is accurate enough to 
guide the behavior of most designers, but it is not the complete story. For most appli-
cation code, it is perfectly adequate to behave as if class Object is the top of the 
hierarchy but, depending on your version of Ruby, this may not be technically true. 
If you are writing code for which you think this issue might matter, make sure you 
understand the object hierarchy of the Ruby in question.
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7.1.7 Inheriting Role Behavior
Now that you’ve seen how to define a role’s shared code in a module and how a 
module’s code gets inserted into the method lookup path, you are equipped to write 
some truly frightening code. Imagine the possibilities. You can write modules that 
include other modules. You can write modules that override the methods defined in 
other modules. You can create deeply nested class inheritance hierarchies and then 
include these various modules at different levels of the hierarchy.

You can write code that is impossible to understand, debug, or extend.
This is powerful stuff, and dangerous in untutored hands. However, because this 

very same power is what allows you to create simple structures of related objects that 
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elegantly fulfill the needs of your application, your task is not to avoid these techniques 
but to learn to use them for the right reasons, in the right places, in the correct way.

This first step along this path is to write properly inheritable code.

7.2 Writing Inheritable Code
The usefulness and maintainability of inheritance hierarchies and modules is in direct 
proportion to the quality of the code. More so than with other design strategies, shar-
ing inherited behavior requires very specific coding techniques, which are covered in 
the following sections.

7.2.1 Recognize the Antipatterns
There are two antipatterns that indicate that your code might benefit from inheritance.

First, an object that uses a variable with a name like type or category to deter-
mine what message to send to self contains two highly related but slightly differ-
ent types. This is a maintenance nightmare; the code must change every time a new 
type is added. Code like this can be rearranged to use classical inheritance by putting 
the common code in an abstract superclass and creating subclasses for the different 
types. This rearrangement allows you to create new subtypes by adding new sub-
classes. These subclasses extend the hierarchy without changing the existing code.

Second, when a sending object checks the class of a receiving object to deter-
mine what message to send, you have overlooked a duck type. This is another main-
tenance nightmare; the code must change every time you introduce a new class of 
receiver. In this situation, all of the possible receiving objects play a common role. 
This role should be codified as a duck type, and receivers should implement the duck 
type’s interface. Once they do, the original object can send one single message to 
every receiver, confident that because each receiver plays the role, it will understand 
the common message.

In addition to sharing an interface, duck types might also share behavior. When 
they do, place the shared code in a module and include that module in each class or 
object that plays the role.

7.2.2 Insist on the Abstraction
All of the code in an abstract superclass should apply to every class that inherits it. 
Superclasses should not contain code that applies to some, but not all, subclasses. This 
restriction also applies to modules: The code in a module must apply to all who use it.

Faulty abstractions cause inheriting objects to contain incorrect behavior; 
attempts to work around this erroneous behavior will cause your code to decay. 
When interacting with these awkward objects, programmers are forced to know their 
quirks and dependencies that are better avoided.

Subclasses that override a method to raise an exception like “does not imple-
ment” are a symptom of this problem. While it is true that expediency pays for all and 
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that it is sometimes most cost effective to arrange code in just this way, you should be 
reluctant to do so. When subclasses override a method to declare that they do not do 
that thing, they come perilously close to declaring that they are not that thing. Noth-
ing good can come of this.

If you cannot correctly identify the abstraction, there may not be one, and if 
no common abstraction exists, then inheritance is not the solution to your design 
problem.

7.2.3 Honor the Contract
Subclasses agree to a contract; they promise to be substitutable for their superclasses. 
Substitutability is possible only when objects behave as expected, and subclasses are 
expected to conform to their superclass’s interface. They must respond to every mes-
sage in that interface, taking the same kinds of inputs and returning the same kinds 
of outputs. They are not permitted to do anything that forces others to check their 
type in order to know how to treat them or what to expect of them.

Where superclasses place restrictions on input arguments and return values, sub-
classes can indulge in a slight bit of freedom without violating their contract. Sub-
classes may accept input parameters that have broader restrictions and may return 
results that have narrower restrictions, all while remaining perfectly substitutable for 
their superclasses.

Subclasses that fail to honor their contract are difficult to use. They’re “special” 
and cannot be freely substituted for their superclasses. These subclasses are declaring 
that they are not really a kind-of their superclass and cast doubt on the correctness of 
the entire hierarchy.

Liskov Substitution Principle (LSP)
When you honor the contract, you are following the Liskov Substitution Prin-
ciple, which is named for its creator, Barbara Liskov, and supplies the “L” in 
the SOLID design principles.

Her principle states:

• Let q(x) be a property provable about objects x of type T. Then q(y) 
should be true for objects y of type S where S is a subtype of T.

Mathematicians will instantly comprehend this statement; everyone else 
should understand it to say that in order for a type system to be sane, sub-
types must be substitutable for their supertypes.

Following this principle creates applications where a subclass can be 
used anywhere its superclass would do and where objects that include mod-
ules can be trusted to interchangeably play the module’s role.
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7.2.4 Use the Template Method Pattern
The fundamental coding technique for creating inheritable code is the template 
method pattern. This pattern is what allows you to separate the abstract from the 
concrete. The abstract code defines the algorithms and the concrete inheritors of that 
abstraction contribute specializations by overriding these template methods.

The template methods represent the parts of the algorithm that vary, and creat-
ing them forces you to make explicit decisions about what varies and what does not.

7.2.5 Preemptively Decouple Classes
Avoid writing code that requires its inheritors to send super; instead use hook 
messages to allow subclasses to participate while absolving them of responsibility 
for knowing the abstract algorithm. Inheritance, by its very nature, adds powerful 
dependencies on the structure and arrangement of code. Writing code that requires 
subclasses to send super adds an additional dependency; avoid this if you can.

Hook methods solve the problem of sending super, but, unfortunately, only 
for adjacent levels of the hierarchy. For example, in Chapter 6, Bicycle sent hook 
method local_spares that MountainBike overrode to provide specializations. 
This hook method serves its purpose admirably, but the original problem reoccurs if 
you add another level to the hierarchy by creating subclass MonsterMountainBike 
under MountainBike. In order to combine its own spare parts with those of its par-
ent, MonsterMountainBike would be forced to override local_spares, and within 
it, send super.

7.2.6 Create Shallow Hierarchies
The limitations of hook methods are just one of the many reasons to create shallow 
hierarchies.

Every hierarchy can be thought of a pyramid that has both depth and breadth. 
An object’s depth is the number of superclasses between it and the top. Its breadth 
is the number of its direct subclasses. A hierarchy’s shape is defined by its overall 
breadth and depth, and it is this shape that determines ease of use, maintenance, and 
extension. Figure 7.8 illustrates a few of the possible variations of shape. 

Shallow, narrow hierarchies are easy to understand. Shallow, wide hierarchies 
are slightly more complicated. Deep, narrow hierarchies are a bit more challenging 
and unfortunately have a natural tendency to get wider, strictly as a side effect of 
their depth. Deep, wide hierarchies are difficult to understand, costly to maintain, and 
should be avoided.

The problem with deep hierarchies is that they define a very long search path for 
message resolution and provide numerous opportunities for objects in that path to 
add behavior as the message passes by. Because objects depend on everything above 
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them, a deep hierarchy has a large set of built-in dependencies, each of which might 
someday change.

Another problem with deep hierarchies is that programmers tend to be familiar 
with just the classes at their tops and bottoms; that is, they tend to understand only 
the behavior implemented at the boundaries of the search path. The classes in the 
middle get short shrift. Changes to these vaguely understood middle classes stand a 
greater chance of introducing errors.

7.3 Summary
When objects that play a common role need to share behavior, they do so via a Ruby 
module. The code defined in a module can be added to any object, be it an instance 
of a class, a class itself, or another module.

When a class includes a module, the methods in that module get put into the 
same lookup path as methods acquired via inheritance. Because module methods and 
inherited methods interleave in the lookup path, the coding techniques for modules 
mirror those of inheritance. Modules, therefore, should use the template method pat-
tern to invite those that include them to supply specializations and should imple-
ment hook methods to avoid forcing includers to send super (and thus know the 
algorithm).

When an object acquires behavior that was defined elsewhere, regardless of 
whether this elsewhere is a superclass or an included module, the acquiring object 
makes a commitment to honoring an implied contract. This contract is defined by the 
Liskov Substitution Principle, which in mathematical terms says that a subtype should 
be substitutable for its supertype, and in Ruby terms, this means that an object should 
act like what it claims to be.

Shallow, Narrow Shallow, Wide

Deep, Narrow Deep, Wide

Figure 7.8 Hierarchies come in different shapes



Chapter 8
Combining Objects 
with Composition

Composition is the act of combining distinct parts into a complex whole such that 
the whole becomes more than the sum of its parts. Music, for example, is composed.

You may not think of your software as music, but the analogy is apt. The musical 
score of Beethoven’s Fifth Symphony is a long list of distinct and independent notes. 
You need hear them only once to understand that while it contains the notes, it is not 
the notes. It is something more.

You can create software this same way, by using object-oriented composition to 
combine simple, independent objects into larger, more complex wholes. In compo-
sition, the larger object is connected to its parts via a has-a relationship. A bicycle 
has parts. Bicycle is the containing object, the parts are contained within a bicycle. 
Inherent in the definition of composition is the idea that not only does a bicycle have 
parts, but it communicates with them via an interface. Part is a role, and bicycles are 
happy to collaborate with any object that plays the role.

This chapter teaches the techniques of OO composition. It starts with an exam-
ple, moves on to a discussion of the relative strengths and weakness of composition 
and inheritance, and then concludes with recommendations about how to choose 
between alternative design techniques.

8.1 Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, “Acquiring Behavior 
through Inheritance,” ended. If that code is no longer fresh in your mind, it’s worth 
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flipping back to Listing 6.27 to refresh your memory. This section takes that example and 
moves it through several refactorings, gradually replacing inheritance with composition.

8.1.1 Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy 
and you’d like to convert it to use composition. The first step is to ignore the existing 
code and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This 
spares message should return a list of spare parts. Bicycles have parts, the bicycle–
parts relationship quite naturally feels like composition. If you created an object to hold 
all of a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsi-
ble for holding a list of the bike’s parts and for knowing which of those parts needs 
spares. Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends 
the spares message to its Parts object. 

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is 
to have-a Parts. The class diagram in Figure 8.2 illustrates this relationship. 

This diagram shows the Bicycle and Parts classes connected by a line. 
The line attaches to Bicycle with a black diamond; this black diamond indicates 
composition, it means that a Bicycle is composed of Parts. The Parts side of the 
line has the number “1.” This means there’s just one Parts object per Bicycle.

It’s easy to convert the existing Bicycle class to this new design. Remove 
unneeded code, add a parts variable to hold the Parts object, and delegate spares 
to parts. Also, now that Bicycle is no longer an abstract superclass which takes 
many possible arguments, change its initialize method to specify the exact keywords 
it accepts. Here’s the new Bicycle class.

a Bicycle the Parts

a Bicycle the Parts

spares

Figure 8.1 Bicycle asks Parts for spares

Bicycle Parts
1

Figure 8.2 Bicycle has a Parts
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Listing 8.1

 1 class Bicycle
 2   attr_reader :size, :parts
 3 
 4   def initialize(size:, parts:)
 5     @size       = size
 6     @parts      = parts
 7   end
 8 
 9   def spares
10     parts.spares
11   end
12 end

Bicycle is now responsible for three things: knowing its size, holding onto its 
Parts, and answering its spares.

8.1.2 Creating a Parts Hierarchy
That was easy, but only because there wasn’t much bicycle-related behavior in the 
Bicycle class to begin with; most of the code in Bicycle dealt with parts. You still 
need the parts behavior that you just removed from Bicycle, and the simplest way 
to get this code working again is to fling that code into a new hierarchy of Parts, as 
shown here:

Listing 8.2

 1 class Parts
 2   attr_reader :chain, :tire_size
 3 
 4   def initialize(**opts)
 5     @chain      = opts[:chain]     || default_chain
 6     @tire_size  = opts[:tire_size] || default_tire_size
 7     post_initialize(opts)
 8   end
 9 
10   def spares
11     { chain:     chain,
12       tire_size: tire_size }.merge(local_spares)
13   end
14 
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15   def default_tire_size
16     raise NotImplementedError
17   end
18 
19   # subclasses may override
20   def post_initialize(opts)
21     nil
22   end
23 
24   def local_spares
25     {}
26   end
27 
28   def default_chain
29     "11-speed"
30   end
31 end
32 
33 class RoadBikeParts < Parts
34   attr_reader :tape_color
35 
36   def post_initialize(**opts)
37     @tape_color = opts[:tape_color]
38   end
39 
40   def local_spares
41     { tape_color: tape_color }
42   end
43 
44   def default_tire_size
45     "23"
46   end
47 end
48 
49 class MountainBikeParts < Parts
50   attr_reader :front_shock, :rear_shock
51 
52   def post_initialize(**opts)
53     @front_shock = opts[:front_shock]
54     @rear_shock  = opts[:rear_shock]
55   end
56 
57   def local_spares
58     { front_shock: front_shock }

15 
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59   end
60 
61   def default_tire_size
62     "2.1"
63   end
64 end

This code is a near exact copy of the Bicycle hierarchy from Chapter 6; the 
differences are that the classes have been renamed and the size variable has been 
removed.

The class diagram in Figure 8.3 illustrates this transition. There is now an 
abstract Parts class. Bicycle is composed of Parts. Parts has two subclasses, 
 RoadBikeParts and MountainBikeParts. 

After this refactoring, everything still works. As you can see below, regardless of 
whether it has RoadBikeParts or MountainBikeParts, a bicycle can still correctly 
answer its size and spares.
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Listing 8.3

 1 road_bike =
 2   Bicycle.new(
 3     size: "L",
 4     parts: RoadBikeParts.new(tape_color: "red"))
 5 
 6 puts road_bike.size
 7 # => L
 8 
 9 puts road_bike.spares
10  # => {:chain=>"11-speed", :tire_size=>"23", :tape_color=>"red"}
11 
12 mountain_bike =
13   Bicycle.new(
14     size:  "L",
15     parts: MountainBikeParts.new(
16             front_shock: 'Manitou',
17             rear_shock: "Fox")
18     )
19 
20 puts mountain_bike.size
21 # => L
22 
23 puts mountain_bike.spares
24  # => {:chain=>"11-speed", :tire_size=>"2.1", :front_shock=>"Manitou"}
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This wasn’t a big change, and it isn’t much of an improvement. However, this 
refactoring did reveal one useful thing: it made it blindingly obvious just how little 
Bicycle-specific code there was to begin with. Most of the code above deals with 
individual parts; the Parts hierarchy now cries out for another refactoring.

8.2 Composing the Parts Object
By definition, a parts list contains a list of individual parts. It’s time to add a class 
to represent a single part. The class name for an individual part clearly ought to be 
Part, but introducing a Part class when you already have a Parts class makes con-
versation a challenge. It is confusing to use the word parts to refer to a collection of 
Part objects, when that same word already refers to a single Parts object. However, 
the previous phrase illustrates a technique that sidesteps the communication prob-
lem; when discussing Part and Parts, you can follow the class name with the word 
object and pluralize object as necessary.

You can also avoid the communication problem from the beginning by choosing 
different class names, but other names might not be as expressive and may well intro-
duce communication problems of their own. This Parts/Part situation is common 
enough that it’s worth dealing with head-on. Choosing these class names requires a 
precision of communication that’s a worthy goal in itself.

Thus, there’s a Parts object, and it may contain many Part objects—simple as that.

8.2.1 Creating a Part
Figure 8.4 shows a new sequence diagram that illustrates the conversation between 
Bicycle and its Parts object and between a Parts object and its Part objects. 
Bicycle sends spares to Parts, and then the Parts object sends needs_spare to 
each Part. 

Changing the design in this way requires creating a new Part object. The 
Parts object is now composed of Part objects, as illustrated by the class diagram in 
 Figure 8.5. The “1..*” on the line near Part indicates that a Parts will have one or 
more Part objects. 

MountainBikeParts

RoadBikeParts

Parts
1

Bicycle

Figure 8.3 Hierarchy of Parts
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a Bicycle

spares

needs_spare

the Parts a Part

a Bicycle the Parts a Part

Figure 8.4 Bicycle sends spares to Parts, Parts sends needs_spare to each Part

Bicycle Parts
1

Part
1..*

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects

Introducing this new Part class simplifies the existing Parts class, which now 
becomes a simple wrapper around an array of Part objects. Parts can filter its list 
of Part objects and return the ones that need spares. The code below shows three 
classes: the existing Bicycle class, the updated Parts class, and the newly intro-
duced Part class.

Listing 8.4

 1 class Bicycle
 2   attr_reader :size, :parts
 3 
 4   def initialize(size:, parts:)
 5     @size       = size
 6     @parts      = parts
 7   end
 8 
 9   def spares
10     parts.spares
11   end
12 end
13 
14 class Parts
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15   attr_reader :parts
16 
17   def initialize(parts)
18     @parts = parts
19   end
20 
21   def spares
22     parts.select {|part| part.needs_spare}
23   end
24 end
25 
26 class Part
27   attr_reader :name, :description, :needs_spare
28 
29   def initialize(name:, description:, needs_spare: true)
30     @name         = name
31     @description  = description
32     @needs_spare  = needs_spare
33   end
34 end

Now that these three classes exist, you can create individual Part objects. The 
following code creates a number of different parts and saves each in an instance 
variable.

Listing 8.5

 1 chain =
 2   Part.new(name: "chain", description: "11-speed")
 3 
 4 road_tire =
 5   Part.new(name: "tire_size", description: "23")
 6 
 7 tape =
 8   Part.new(name: "tape_color", description: "red")
 9 
10 mountain_tire =
11   Part.new(name: "tire_size", description: "2.1")
12 
13 rear_shock =
14    Part.new(name: "rear_shock", description: "Fox", 

  needs_spare: false)
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15 
16 front_shock =
17   Part.new( name: "front_shock", description: "Manitou")

Individual Part objects can be grouped together into a Parts. The code below 
combines the road bike Part objects into a road bike–suitable Parts.

Listing 8.6

1 road_bike_parts =
2   Parts.new([chain, road_tire, tape])

Of course, you can skip this intermediate step and simply construct the Parts
object on the fly when creating a Bicycle, as shown in lines 4–6 and 28–31 below.

Listing 8.7

 1 road_bike =
 2   Bicycle.new(
 3     size:  "L",
 4     parts: Parts.new([chain,
 5                       road_tire,
 6                       tape]))
 7 
 8 puts road_bike.size
 9 # => L
10 
11 puts road_bike.spares.inspect
12 # => [#<Part:0x007fbd04a174d0
13 #         @name="chain",
14 #         @description="11-speed",
15 #         @needs_spare=true>,
16 #     #<Part:0x007fbd04a17390
17 #         @name="tire_size",
18 #         @description="23",
19 #         @needs_spare=true>,
20 #     #<Part:0x007fbd04a171b0
21 #         @name="tape_color",
22 #         @description="red",
23 #         @needs_spare=true>]
24 
25 mountain_bike =
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26   Bicycle.new(
27     size:  "L",
28     parts: Parts.new([chain,
29                       mountain_tire,
30                       front_shock,
31                       rear_shock]))
32 
33 puts mountain_bike.size
34 # => L
35 
36 puts mountain_bike.spares.inspect
37 # => [#<Part:0x007fbd04a174d0
38 #       @name="chain",
39 #       @description="11-speed",
40 #       @needs_spare=true>,
41 #     #<Part:0x007fbd04a17070
42 #       @name="tire_size",
43 #       @description="2.1",
44 #       @needs_spare=true>,
45 #     #<Part:0x00007fc8ac124590
46 #       @name="front_shock",
47 #       @description="Manitou",
48 #       @needs_spare=true>]

As you can see, this new code arrangement works just fine, and it behaves 
almost exactly like the old Bicycle hierarchy. There is one difference: Bicycle’s 
old spares method returned a hash, but this new spares method returns an array 
of Part objects.

While it may be tempting to think of these objects as instances of Part, 
composition tells you to think of them as objects that play the Part role. They don’t 
have to be a kind-of the Part class, they just have to act like one; that is, they must 
respond to name, description, and needs_spare.

8.2.2 Making the Parts Object More Like an Array
This code works, but there’s definitely room for improvement. Step back for a minute 
and think about the parts and spares methods of Bicycle. These messages feel 
like they ought to return the same sort of thing, yet the objects that come back don’t 
behave in the same way. Look at what happens when you ask each for its size.

In line 1 below, spares is happy to report that its size is 3. However, asking this 
same question of parts doesn’t turn out so well, as you can see from lines 4 and 5.
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Listing 8.8

1 puts mountain_bike.spares.size
 2 # => 3
 3 
 4 puts mountain_bike.parts.size
5 # => undefined method 'size' for #<Parts:0x00007ff5600dea00>

Line 1 works because spares returns an array of Part objects, and Array under-
stands size. Line 4 fails because parts returns instance of Parts, which does not.

Failures like this will chase you around for as long as you own this code. These 
two things both seem like arrays. You will inevitably treat them as if they are, despite 
the fact that exactly one-half of the time, the result will be like stepping on the pro-
verbial rake in the yard. The Parts object does not behave like an array, and all 
attempts to treat it as one will fail.

You can fix the proximate problem by adding a size method to Parts. This is 
a simple matter of implementing a method to delegate size to the actual array, as 
shown here:

Listing 8.9

1   def size
2     parts.size
3   end

However, this change starts the Parts class down a slippery slope. Do this, and 
it won’t be long before you’ll want Parts to respond to each, and then sort, and 
then everything else in Array. This never ends; the more array-like you make Parts, 
the more like an array you’ll expect it to be.

Perhaps Parts is an Array, albeit one with a bit of extra behavior. You could 
make it one; the next example shows a new version of the Parts class, now as a 
subclass of Array.

Listing 8.10

 1 class Parts < Array
 2   def spares
 3     select {|part| part.needs_spare}
 4   end
 5 end
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The above code is a very straightforward expression of the idea that Parts is a 
specialization of Array; in a perfect object-oriented language this solution would be 
exactly correct. Unfortunately, the Ruby language has not quite achieved perfection 
and this design contains a hidden flaw.

This next example illustrates the problem. When Parts subclasses Array, it 
inherits all of Array’s behavior. This behavior includes methods like +, which adds 
two arrays together and returns a third. Lines 3 and 4 below show + combining two 
existing instances of Parts and saving the result into the combo_parts variable.

This appears to work; combo_parts now contains the correct number of parts 
(line 12). However, something is clearly not right. As line 16 shows, combo_parts 
cannot answer its spares.

The root cause of the problem is revealed by lines 6–8. Although the objects that 
got +’d together were instances of Parts, the object that + returned was an instance 
of Array, and Array does not understand spares.

Listing 8.11

 1 #  Parts inherits '+' from Array, so you can
 2 #    add two Parts together.
 3 combo_parts =
 4   (mountain_bike.parts + road_bike.parts)
 5 
 6 puts mountain_bike.parts.class  # => Parts
 7 puts road_bike.parts.class      # => Parts
 8 puts combo_parts.class          # => Array
 9 
10 # '+' definitely combines the Parts
11 puts combo_parts.size
12 # => 7
13 
14 # but the object that '+' returns
15 #   does not understand 'spares'
16 puts combo_parts.spares
17 # => undefined method `spares' for #<Array:0x007f97ef23f828>

It turns out that there are many methods in Array that return new arrays, and 
unfortunately these methods return new instances of the Array class, not new 
instances of your subclass. The Parts class is still misleading, and you have just 
swapped one problem for another. Where once you were disappointed to find that 
Parts did not implement size, now you might be surprised to find that adding two 
Parts together returns a result that does not understand spares.
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You’ve seen three different implementations of Parts. The first answers only the 
spares and parts messages; it does not act like an array, it merely contains one. The 
second Parts implementation adds size, a minor improvement that just returns the 
size of its internal array. The most recent Parts implementation subclasses Array 
and therefore gives the appearance of fully behaving like an array, but as the example 
above shows, an instance of Parts still displays unexpected behavior.

It has become clear that there is no perfect solution; it’s therefore time to make a 
difficult decision. Even though it cannot respond to size, the original Parts imple-
mentation may be good enough; if so, you can accept its lack of array-like behavior 
and revert to that version. If you need size and size alone, it may be best to add 
just this one method and so settle for the second implementation. If you can toler-
ate the possibility of confusing errors or you know with absolute certainty that you’ll 
never encounter them, it might make sense to subclass Array and walk quietly away.

Somewhere in the middle ground between complexity and usability lies the fol-
lowing solution. The Parts class below delegates size and each to its @parts array 
and includes Enumerable to get common traversal and searching methods. This ver-
sion of Parts does not have all of the behavior of Array, but at least everything that 
it claims to do actually works.

Listing 8.12

 1 require 'forwardable'
 2 class Parts
 3   extend Forwardable
 4   def_delegators :@parts, :size, :each
 5   include Enumerable
 6 
 7   def initialize(parts)
 8     @parts = parts
 9   end
10 
11   def spares
12     select {|part| part.needs_spare}
13   end
14 end

This Parts class doesn’t understand + (as shown in lines 19 and 20 below), but 
because Parts now responds to size, each, and all of Enumerable, and oblig-
ingly raises errors when you mistakenly treat it like an actual Array, it may be 
good enough. The following example proves that spares and parts can now both 
respond to size.
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Listing 8.13

 1 road_bike =
 2   Bicycle.new(
 3     size:  "L",
 4     parts: Parts.new([chain,
 5                       road_tire,
 6                       tape]))
 7 
 8 mountain_bike =
 9   Bicycle.new(
10     size:  "L",
11     parts: Parts.new([chain,
12                       mountain_tire,
13                       front_shock,
14                       rear_shock]))
15 
16 puts mountain_bike.spares.size   # => 3
17 puts mountain_bike.parts.size    # => 4
18 
19 puts mountain_bike.parts + road_bike.parts
20 # => undefined method '+' for #<Parts:0x007fc1d59fe040>

You again have a workable version of the Bicycle, Parts, and Part classes. It’s 
time to reevaluate the design.

8.3 Manufacturing Parts
Look back at lines 11–14 above. The Part objects held in the chain, mountain_tire, 
and other variables were created so long ago that you may already have forgotten 
them. Think about the body of knowledge that these four lines represent. Somewhere 
in your application, some object had to know how to create these Part objects. And 
here, on lines 11–14, this place has to know that these four specific objects go with 
mountain bikes.

This is a lot of knowledge, and it can easily leak all over your application. This 
leakage is both unfortunate and unnecessary. Although there are lots of different 
individual parts, there are only a few valid combinations of parts. Everything would 
be easier if you could describe the different bikes and then use your descriptions to 
magically manufacture the correct Parts object for any bike.

It’s easy to describe the combination of parts that make up a specific bike. The code 
below does this with a simple two-dimensional array, where each row contains three 
possible columns. The first column contains the part name ('chain', 'tire_size', 
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etc.); the second, the part description ('11-speed', '23', etc.); and the third 
(which is optional), a Boolean that indicates whether this part needs a spare. Only 
'rear_shock' on line 10 below puts a value in this third column; the other parts 
would like to default to true, as they require spares.

Listing 8.14

 1 road_config =
 2   [['chain',        '11-speed'],
 3    ['tire_size',    '23'],
 4    ['tape_color',   'red']]
 5 
 6 mountain_config =
 7   [['chain',        '11-speed'],
 8    ['tire_size',    '2.1'],
 9    ['front_shock',  'Manitou'],
10    ['rear_shock',   'Fox', false]]

Unlike a hash, this simple two-dimensional array provides no structural informa-
tion. However, you understand how this structure is organized, and you can encode 
your knowledge into a new object that manufactures Parts.

8.3.1 Creating the PartsFactory
As discussed in Chapter 3, “Managing Dependencies,” an object that manufactures 
other objects is a factory. Your past experience in other languages may predispose 
you to flinch when you hear this word, but think of this as an opportunity to reclaim 
it. The word factory does not mean difficult, or contrived, or overly complicated; it’s 
merely the word OO designers use to concisely communicate the idea of an object 
that creates other objects. Ruby factories are simple, so there’s no reason to avoid this 
intention-revealing word.

The code below shows a new PartsFactory module. Its job is to take an array 
like one of those listed above and manufacture a Parts object. Along the way it may 
well create Part objects, but this action is private. Its public responsibility is to create 
an instance of Parts.

This first version of PartsFactory takes three arguments, a config, the names 
of the classes to be used for Part, and Parts. Line 6 below creates a new instance 
of Parts, initializing it with an array of Part objects built from the information in 
the config.
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Listing 8.15

 1 module PartsFactory
 2   def self.build(config:,
 3                 part_class: Part,
 4                 parts_class: Parts)
 5 
 6    parts_class.new(
 7      config.collect {|part_config|
 8        part_class.new(
 9          name:         part_config[0],
10          description:  part_config[1],
11          needs_spare:  part_config.fetch(2, true))})
12   end
13 end

This factory knows the structure of the config array. In lines 9–11 above, it 
expects name to be in the first column, description to be in the second, and 
needs_spare to be in the third.

Putting knowledge of config’s structure in the factory has two consequences. 
First, the config can be expressed very tersely. Because PartsFactory understands 
config’s internal structure, config can be specified as an array rather than a hash. 
Second, once you commit to keeping config in an array, you should always create 
new Parts objects using the factory. To create new Parts via any other mechanism 
requires duplicating the knowledge that is encoded in lines 9–11 above.

Now that PartsFactory exists, you can use the configuration arrays defined 
above to easily create new Parts, as shown here:

Listing 8.16

 1 puts PartsFactory.build(config: road_config).inspect
 2 # => #<Parts:0x007fb903932718 @parts=[
 3 #       #<Part:0x007fb9039328a8
 4 #         @name="chain",
 5 #         @description="11-speed",
 6 #         @needs_spare=true>,
 7 #       #<Part:0x007fb903932808
 8 #         @name="tire_size",
 9 #         etc...
10 
11 puts PartsFactory.build(config: mountain_config).inspect
12 # => #<Parts:0x007fb903931f98 @parts=[
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13 #       #<Part:0x007fb9039321c8
14 #         @name="chain",
15 #         @description="11-speed",
16 #         @needs_spare=true>,
17 #       #<Part:0x007fb903932150
18 #         @name="tire_size",
19 #         etc...

PartsFactory, combined with the new configuration arrays, isolates all 
the knowledge needed to create a valid Parts. This information was previously 
dispersed throughout the application but now it is contained in this one class and 
these two arrays.

8.3.2 Leveraging the PartsFactory
Now that the PartsFactory is up and running, have another look at the Part class 
(repeated below). Part is simple. Not only that, the only even slightly complicated 
idea is that needs_spare should default to true (shown in the initialize method 
on line 4 below). This bit of knowledge about the domain has been duplicated in 
PartsFactory. Therefore, if PartsFactory were used to create every Part, this 
defaulting code could be removed from Part’s initialize method.

Listing 8.17

 1 class Part
 2   attr_reader :name, :description, :needs_spare
 3 
 4   def initialize(name:, description:, needs_spare: true)
5     @name         = name
6     @description  = description
7     @needs_spare  = needs_spare
8   end
9 end

Once you remove the code that defaults need_spare to true, there’s almost 
nothing left in Part. The remaining Part class can then be replaced with a simple 
OpenStruct.

Ruby’s OpenStruct class is a lot like the Struct class that you’ve already seen: 
It provides a convenient way to bundle a number of attributes into an object. The dif-
ference between the two is that Struct takes position order initialization arguments 
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while OpenStruct takes a hash for its initialization and then derives attributes from 
the hash.

There are good reasons to remove the Part class; this simplifies the code and 
you may never again need anything as complicated as what you currently have. You 
can remove all trace of Part by deleting the class and then changing PartsFactory
to use OpenStruct to create an object that plays the Part role. The following code 
shows a new version of PartFactory where part creation has been refactored into a 
method of its own (line 9).

Listing 8.18

 1 require 'ostruct'
 2 module PartsFactory
 3   def self.build(config:, parts_class: Parts)
 4     parts_class.new(
 5       config.collect {|part_config|
 6         create_part(part_config)})
 7   end
 8 
 9   def self.create_part(part_config)
10     OpenStruct.new(
11       name:        part_config[0],
12       description: part_config[1],
13       needs_spare: part_config.fetch(2, true))
14   end
15 end

Line 13 above is now the only place in the application that defaults needs_spare
to true, so PartsFactory must be solely responsible for manufacturing Parts.

This new version of PartsFactory works. As shown below, it returns a Parts
that contains an array of OpenStruct objects, each of which plays the Part role.

Listing 8.19

 1 mountain_bike =
 2   Bicycle.new(
 3     size: 'L',
 4     parts: PartsFactory.build(config: mountain_config))
 5 
 6 puts mountain_bike.spares.class
 7 # => Array
 8 
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 9 puts mountain_bike.spares
10 # => #<OpenStruct
11 # =>     name="chain",
12 # =>     description="11-speed",
13 # =>     needs_spare=true>
14 # => #<OpenStruct
15 # =>     name="tire_size",
16 # =>     description="2.1",
17 # =>     needs_spare=true>
18 # => #<OpenStruct
19 # =>     name="front_shock",
20 # =>     description="Manitou",
21 # =>     needs_spare=true>

8.4 The Composed Bicycle
The following code shows that Bicycle now uses composition. It shows 
Bicycle, Parts, and PartsFactory and the configuration arrays for road and 
mountain bikes.

Bicycle has-a Parts, which in turn has-a collection of Part objects. Parts 
and Part may exist as classes, but the objects in which they are contained think of 
them as roles. Parts is a class that plays the Parts role; it implements spares. The 
role of Part is played by an OpenStruct, which implements name, description, 
and needs_spare.

The following 54 lines of code completely replace the 66-line inheritance hierar-
chy from Chapter 6.

Listing 8.20

 1 class Bicycle
 2   attr_reader :size, :parts
 3 
 4   def initialize(size:, parts:)
 5     @size       = size
 6     @parts      = parts
 7   end
 8 
 9   def spares
10     parts.spares
11   end
12 end
13 
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14 require 'forwardable'
15 class Parts
16   extend Forwardable
17   def_delegators :@parts, :size, :each
18   include Enumerable
19 
20   def initialize(parts)
21     @parts = parts
22   end
23 
24   def spares
25     select {|part| part.needs_spare}
26   end
27 end
28 
29 require 'ostruct'
30 module PartsFactory
31   def self.build(config:, parts_class: Parts)
32     parts_class.new(
33       config.collect {|part_config|
34         create_part(part_config)})
35   end
36 
37   def self.create_part(part_config)
38     OpenStruct.new(
39       name:        part_config[0],
40       description: part_config[1],
41       needs_spare: part_config.fetch(2, true))
42   end
43 end
44 
45 road_config =
46   [['chain',        '11-speed'],
47    ['tire_size',    '23'],
48    ['tape_color',   'red']]
49 
50 mountain_config =
51   [['chain',        '11-speed'],
52    ['tire_size',    '2.1'],
53    ['front_shock',  'Manitou'],
54    ['rear_shock',   'Fox', false]]
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This new code works much like the prior Bicycle hierarchy. The only differ-
ence is that the spares message now returns an array of Part-like objects instead of 
a hash, as you can see on lines 6–18 and 25–37 below.

Listing 8.21

 1 road_bike = 
 2   Bicycle.new(
 3     size: 'L',
 4     parts: PartsFactory.build(config: road_config))
 5   
 6 puts road_bike.spares
 7 # => #<OpenStruct
 8 # =>     name="chain",
 9 # =>     description="11-speed",
10 # =>     needs_spare=true>
11 # => #<OpenStruct 
12 # =>     name="tire_size",
13 # =>     description="23",
14 # =>     needs_spare=true>
15 # => #<OpenStruct
16 # =>     name="tape_color",
17 # =>     description="red",
18 # =>     needs_spare=true>
19 
20 mountain_bike = 
21   Bicycle.new( 
22     size: 'L', 
23     parts: PartsFactory.build(config: mountain_config)) 
24  
25 puts mountain_bike.spares 
26 # => #<OpenStruct
27 # =>     name="chain",
28 # =>     description="11-speed",
29 # =>     needs_spare=true>
30 # => #<OpenStruct
31 # =>     name="tire_size",
32 # =>     description="2.1",
33 # =>     needs_spare=true>
34 # => #<OpenStruct
35 # =>     name="front_shock",
36 # =>     description="Manitou",
37 # =>     needs_spare=true>
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Now that these new classes exist, it’s very easy to create a new kind of bike.
Adding support for recumbent bikes took 19 new lines of code in Chapter 6. This 

task can now be accomplished with 3 lines of configuration (lines 2–4 below).

Listing 8.22

 1 recumbent_config =
 2   [['chain',        '9-speed'],
 3    ['tire_size',    '28'],
 4    ['flag',         'tall and orange']]
 5 
 6 recumbent_bike =
 7   Bicycle.new(
 8     size: 'L',
 9     parts: PartsFactory.build(config: recumbent_config))
10 
11 puts recumbent_bike.spares
12 # => #<OpenStruct
13 # =>     name="chain",
14 # =>     description="9-speed",
15 # =>     needs_spare=true>
16 # => #<OpenStruct
17 # =>     name="tire_size",
18 # =>     description="28",
19 # =>     needs_spare=true>
20 # => #<OpenStruct
21 # =>     name="flag",
22 # =>     description="tall and orange",
23 # =>     needs_spare=true>

As shown above, you can now create a new bike by simply describing its parts.

Aggregation: A Special Kind of Composition
You already know the term delegation; delegation is when one object 
receives a message and merely forwards it to another. Delegation creates 
dependencies; the receiving object must recognize the message and know 
where to send it.

Composition often involves delegation but the term means something 
more. A composed object is made up of parts with which it expects to inter-
act via well-defined interfaces.

Composition describes a has-a relationship. Meals have appetizers, 
universities have departments, bicycles have parts. Meals, universities, and 
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bicycles are composed objects. Appetizers, departments, and parts are roles. 
The composed object depends on the interface of the role.

Because meals interact with appetizers using an interface, new objects 
that wish to act as appetizers need only implement this interface. Unantici-
pated appetizers fit seamlessly and interchangeably into existing meals.

The term composition can be a bit confusing because it gets used for 
two slightly different concepts. The definition above is for the broadest use 
of the term. In most cases when you see composition, it will indicate nothing 
more than this general has-a relationship between two objects.

However, as formally defined, it means something a bit more specific; it 
indicates a has-a relationship where the contained object has no life inde-
pendent of its container. When composition is used in this stricter sense, 
you know not only that meals have appetizers but also that once the meal is 
eaten the appetizer is also gone.

This leaves a gap in the definition that is filled by the term aggrega-
tion. Aggregation is exactly like composition except that the contained object 
has an independent life. Universities have departments, which in turn have 
professors. If your application manages many universities and knows about 
thousands of professors, it’s quite reasonable to expect that although a 
department completely disappears when its university goes defunct, its pro-
fessors continue to exist.

The university–department relationship is one of composition (in its 
strictest sense) and the department–professor relationship is aggregation. 
Destroying a department does not destroy its professors; they have an exist-
ence and life of their own.

This distinction between composition and aggregation may have little 
practical effect on your code. Now that you are familiar with both terms, 
you can use composition to refer to both kinds of relationships and be more 
explicit only if the need arises.

8.5 Deciding between Inheritance and Composition
Remember that classical inheritance is a code arrangement technique. Behavior is dis-
persed among objects and these objects are organized into class relationships such that 
automatic delegation of messages invokes the correct behavior. Think of it this way: for 
the cost of arranging objects in a hierarchy, you get message delegation for free.

Composition is an alternative that reverses these costs and benefits. In composi-
tion, the relationship between objects is not codified in the class hierarchy; instead 
objects stand alone and as a result must explicitly know about and delegate messages 
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to one another. Composition allows objects to have structural independence, but at 
the cost of explicit message delegation.

Now that you’ve seen examples of inheritance and composition you can begin 
to think about when to use them. The general rule is that, faced with a problem that 
composition can solve, you should be biased toward doing so. If you cannot explicitly 
defend inheritance as a better solution, use composition. Composition contains far 
fewer built-in dependencies than inheritance; it is very often the best choice.

Inheritance is a better solution when its use provides high rewards for low risk. 
This section examines the costs and benefits of inheritance versus composition and 
provides guidelines for choosing the best relationship.

8.5.1 Accepting the Consequences of Inheritance
Making wise choices about using inheritance requires a clear understanding of its 
costs and benefits.

Benefits of Inheritance
Chapter 2, “Designing Classes with a Single Responsibility,” outlined four goals for 
code: it should be transparent, reasonable, usable, and exemplary. Inheritance, when 
correctly applied, excels at the second, third, and fourth goals.

Methods defined near the top of inheritance hierarchies have widespread influ-
ence because the height of the hierarchy acts as a lever that multiplies their effects. 
Changes made to these methods ripple down the inheritance tree. Correctly modeled 
hierarchies are thus extremely reasonable; big changes in behavior can be achieved 
via small changes in code.

Use of inheritance results in code that can be described as open–closed; hierar-
chies are open for extension while remaining closed for modification. Adding a new 
subclass to an existing hierarchy requires no changes to existing code. Hierarchies 
are thus usable; you can easily create new subclasses to accommodate new variants.

Correctly written hierarchies are easy to extend. The hierarchy embodies the 
abstraction and every new subclass plugs in a few concrete differences. The existing 
pattern is easy to follow and replicating it will be the natural choice of any program-
mer charged with creating new subclasses. Hierarchies are therefore exemplary; by 
their nature they provide guidance for writing the code to extend them.

You need look no further than the source of object-oriented languages them-
selves to see the value of organizing code using inheritance. In Ruby, the Numeric 
class provides an excellent example. Integer and Float are modeled as subclasses 
of Numeric; this is-a relationship is exactly right. Integers and floats are fundamen-
tally numbers. Allowing these two classes to share a common abstraction is the most 
parsimonious way to organize code.
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Costs of Inheritance
Concerns about the use of inheritance fall into two different areas. The first fear is 
that you might be fooled into choosing inheritance to solve the wrong kind of prob-
lem. If you make this mistake, a day will come when you need to add behavior but 
find there’s no easy way do so. Because the model is incorrect, the new behavior 
won’t fit; in this case you’ll be forced to duplicate or restructure code.

Second, even when inheritance makes sense for the problem, you might be writ-
ing code that will be used by others for purposes you did not anticipate. These other 
programmers want the behavior you have created but may not be able to tolerate the 
dependencies that inheritance demands.

The previous section on the benefits of inheritance was careful to qualify its 
assertions as applying only to a “correctly modeled hierarchy.” Imagine reasonable, 
usable, and exemplary as two-sided coins. The benefit side represents the wonderful 
gains that inheritance provides. If you apply inheritance to a problem for which it is 
not suited, you effectively flip these coins over and encounter a parallel detriment.

The flip side of the reasonable coin is the very high cost of making changes near 
the top of an incorrectly modeled hierarchy. In this case, the leveraging effect works 
to your disadvantage; small changes break everything.

The opposing side of the usable coin is the impossibility of adding behavior when 
new subclasses represent a mixture of types. The Bicycle hierarchy in Chapter 6 
failed when the need for recumbent mountain bikes appeared. This hierarchy already 
contains subclasses for MountainBike and RecumbentBike; combining the quali-
ties of these two classes into a single object is not possible in the hierarchy as it 
currently exists. You cannot reuse existing behavior without changing it.

The other side of the exemplary coin is the chaos that ensues when novice pro-
grammers attempt to extend incorrectly modeled hierarchies. These inadequate hier-
archies should not be extended, they need to be refactored, but novices do not have 
the skills to do so. Novices are forced to duplicate existing code or to add dependen-
cies on class names, both of which serve to exacerbate existing design problems.

Inheritance, therefore, is a place where the question “What will happen when I’m 
wrong?” assumes special importance. Inheritance by definition comes with a deeply 
embedded set of dependencies. Subclasses depend on the methods defined in their 
superclasses and on the automatic delegation of messages to those superclasses. This 
is classical inheritance’s greatest strength and biggest weakness; subclasses are bound, 
irrevocably and by design, to the classes above them in the hierarchy. These built-in 
dependencies amplify the effects of modifications made to superclasses. Enormous, 
broad-reaching changes of behavior can be achieved with very small changes in code.

This is true, for better or for worse, whether you come to regret it or not.
Finally, your consideration of the use of inheritance should be tempered by your 

expectations about the population who will use your code. If you are writing code for 
an in-house application in a domain with which you are intimately familiar, you may 
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be able to predict the future well enough to be confident that your design problem is 
one for which inheritance is a cost-effective solution. As you write code for a wider 
audience, your ability to anticipate needs necessarily decreases and the suitability of 
requiring inheritance as part of the interface goes down.

Avoid writing frameworks that require users of your code to subclass your objects 
in order to gain your behavior. Their application’s objects may already be arranged in 
a hierarchy; inheriting from your framework may not be possible.

8.5.2 Accepting the Consequences of Composition
Objects built using composition differ from those built using inheritance in two basic 
ways. Composed objects do not depend on the structure of the class hierarchy, and 
they delegate their own messages. These differences confer a different set of costs 
and benefits.

Benefits of Composition
When using composition, the natural tendency is to create many small objects that 
contain straightforward responsibilities that are accessible through clearly defined 
interfaces. These well-composed objects excel when measured against several of 
Chapter 2’s goals for code.

These small objects have a single responsibility and specify their own behavior. 
They are transparent; it’s easy to understand the code and it’s clear what will happen 
if it changes. Also, the composed object’s independence from the hierarchy means 
that it inherits very little code and so is generally immune from suffering side effects 
as a result of changes to classes above it in the hierarchy.

Because composed objects deal with their parts via an interface, adding a new 
kind of part is a simple matter of plugging in a new object that honors the interface. 
From the point of view of the composed object, adding a new variant of an existing 
part is reasonable and requires no changes to its code.

By their very nature, objects that participate in composition are small, structurally 
independent, and have well-defined interfaces. This allows their seamless transition 
into pluggable, interchangeable components. Well-composed objects are therefore 
easily usable in new and unexpected contexts.

At its best, composition results in applications built of simple, pluggable objects 
that are easy to extend and have a high tolerance for change.

Costs of Composition
Composition’s strengths, as with most things in life, contribute to its weaknesses.

A composed object relies on its many parts. Even if each part is small and easily 
understood, the combined operation of the whole may be less than obvious. While 
every individual part may indeed be transparent, the whole may not be.
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The benefits of structural independence are gained at the cost of automatic mes-
sage delegation. The composed object must explicitly know which messages to del-
egate and to whom. Identical delegation code many be needed by many different 
objects; composition provides no way to share this code.

As these costs and benefits illustrate, composition is excellent at prescribing rules 
for assembling an object made of parts but doesn’t provide as much help for the 
problem of arranging code for a collection of parts that are very nearly identical.

8.5.3 Choosing Relationships
Classical inheritance (Chapter 6), behavior sharing via modules (Chapter 7, “Sharing 
Role Behavior with Modules”), and composition are each the perfect solution for the 
problem they solve. The trick to lowering your application costs is to apply each tech-
nique to the right problem.

Some of the grand masters of object-oriented design have given advice about 
using inheritance and composition.

• “Inheritance is specialization.” —Bertrand Meyer, Touch of Class: Learning to 
Program Well with Objects and Contracts

• “Inheritance is best suited to adding functionally to existing classes when you 
will use most of the old code and add relatively small amounts of new code.” 
—Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software

• “Use composition when the behavior is more than the sum of its parts.” —para-
phrase of Grady Booch, Object-Oriented Analysis and Design

Use Inheritance for is-a Relationships
When you select inheritance over composition, you are placing a bet that the ben-
efits thereby accrued will outweigh the costs. Some bets are more likely to pay off 
than others. Small sets of real-world objects that fall naturally into static, transpar-
ently obvious specialization hierarchies are candidates to be modeled using classical 
inheritance.

Imagine a game where players race bicycles. Players assemble their bikes by 
“buying” parts. One of the parts they can buy is a shock. The game provides six 
nearly identical shocks; each differs slightly in cost and behavior.

All of these shocks are, well, shocks. Their “shock-ness” is at the core of their 
identity. Shocks exist in no more atomic category. Variants of shocks are far more 
alike than they are different. The most accurate and descriptive statement that you 
can make about any one of the variants is that it is-a shock.
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Inheritance is perfect for this problem. Shocks can be modeled as a shallow nar-
row hierarchy. The hierarchy’s small size makes it understandable, intention reveal-
ing, and easily extendable. Because these objects meet the criteria for successful use 
of inheritance, the risk of being wrong is low, but in the unlikely event that you are 
wrong, the cost of changing your mind is also low. You can achieve the benefits of 
inheritance while exposing yourself to few of its risks.

In terms of this chapter’s example, each different shock plays the role of Part. 
It inherits common shock behavior and the Part role from its abstract Shock super-
class. The PartsFactory currently assumes that every part can be represented by 
the Part OpenStruct, but you could easily extend the part configuration array to 
supply the class name for a specific shock. Because you already think of Part as an 
interface, it’s easy to plug in a new kind of part, even if this part uses inheritance to 
get some of its behavior.

If requirements change such that there is an explosion in the kinds of shocks, 
reassess this design decision. Perhaps it still holds, perhaps not. If modeling a bevy of 
new shocks requires dramatically expanding the hierarchy, or if the new shocks don’t 
conveniently fit into the existing code, reconsider alternatives at that time.

Use Duck Types for behaves-like-a Relationships
Some problems require many different objects to play a common role. In addition 
to their core responsibilities, objects might play roles like schedulable, preparable, 
printable, or persistable.

There are two key ways to recognize the existence of a role. First, although an 
object plays it, the role is not the object’s main responsibility. A bicycle behaves-like-a 
schedulable but it is-a bicycle. Second, the need is widespread; many otherwise unre-
lated objects share a desire to play the same role.

The most illuminating way to think about roles is from the outside, from the 
point of view of a holder of a role player rather than that of a player of a role. 
The holder of a schedulable expects it to implement Schedulable’s interface and 
to honor Schedulable’s contract. All schedulables are alike in that they must meet 
these expectations.

Your design task is to recognize that a role exists, define the interface of its 
duck type and provide an implementation of that interface for every possible player. 
Some roles consist only of their interface, but others share common behavior. Define 
the common behavior in a Ruby module to allow objects to play the role without 
 duplicating the code.

Use Composition for has-a Relationships
Many objects contain numerous parts but are more than the sums of those parts. 
Bicycles have-a Parts, but the bike itself is something more. It has behavior 
that is separate from and in addition to the behavior of its parts. Given the current 
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requirements of the bicycle example, the most cost-effective way to model the 
Bicycle object is via composition.

This is-a versus has-a distinction is at the core of deciding between inheritance 
and composition. The more parts an object has, the more likely it is that it should be 
modeled with composition. The deeper you drill down into individual parts, the more 
likely it is that you’ll discover a specific part that has a few specialized variants and is 
thus a reasonable candidate for inheritance. For every problem, assess the costs and 
benefits of alternative design techniques and use your judgment and experience to 
make the best choice.

8.6 Summary
Composition allows you to combine small parts to create more complex objects such 
that the whole becomes more than the sum of its parts. Composed objects tend to 
consist of simple, discrete entities that can easily be rearranged into new combina-
tions. These simple objects are easy to understand, reuse, and test, but because they 
combine into a more complicated whole, the operation of the bigger application may 
not be as easy to understand as that of the individual parts.

Composition, classical inheritance, and behavior sharing via modules are compet-
ing techniques for arranging code. Each has different costs and benefits; these differ-
ences predispose them to be better at solving slightly different problems.

These techniques are tools, nothing more, and you’ll become a better designer if 
you practice each of them. Learning to use them properly is a matter of experience 
and judgment, and one of the best ways to gain experience is to learn from your own 
mistakes. The key to improving your design skills is to attempt these techniques, 
accept your errors cheerfully, remain detached from past design decisions, and refac-
tor mercilessly.

As you gain experience, you’ll get better at choosing the correct technique the 
first time, your costs will go down, and your applications will improve.



Chapter 9
Designing Cost-Effective 
Tests

Writing changeable code is an art whose practice relies on three different skills.
First, you must understand object-oriented design. Poorly designed code is natu-

rally difficult to change. From a practical point of view, changeability is the only 
design metric that matters; code that’s easy to change is well-designed. Because you 
have read this far, it’s only fair to assume that your efforts will pay off and that you 
have acquired a foundation from which to begin the practice of designing changeable 
code.

Second, you must be skilled at refactoring code. Not in the casual sense of 
“go into the application and fling some things around,” but in the real, grown-up, 
bullet-proof sense defined by Martin Fowler in Refactoring: Improving the Design of 
Existing Code:

Refactoring is the process of changing a software system in such 
a way that it does not alter the external behavior of the code yet 
improves the internal structure.

Notice the phrase does not alter the external behavior of the code. Refactoring, 
as formally defined, does not add new behavior, it improves existing structure. It’s a 
precise process that alters code via tiny, crab-like steps and carefully, incrementally, 
and unerringly transforms one design into another.

Good design preserves maximum flexibility at minimum cost by putting off deci-
sions at every opportunity, deferring commitments until more specific requirements 
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arrive. When that day comes, refactoring is how you morph the current code struc-
ture into one that will accommodate the new requirements. New features will be 
added only after you have successfully refactored the code.

If your refactoring skills are weak, improve them. The need for ongoing refactor-
ing is an outgrowth of good design; your design efforts will pay full dividends only 
when you can refactor with ease.

Finally, the art of writing changeable code requires the ability to write high-value 
tests. Tests give you confidence to refactor constantly. Efficient tests prove that altered 
code continues to behave correctly without raising overall costs. Good tests weather 
code refactorings with aplomb; they are written such that changes to the code do not 
force rewrites of the tests.

Writing tests that can perform this trick is a matter of design and is the topic of 
this chapter.

An understanding of object-oriented design, good refactoring skills, and the abil-
ity to write efficient tests form a three-legged stool upon which changeable code 
rests. Well-designed code is easy to change, refactoring is how you change from one 
design to the next, and tests free you to refactor with impunity.

9.1 Intentional Testing
The most common arguments for having tests are that they reduce bugs and provide 
documentation, and that writing tests first improves application design.

These benefits, however valid, are proxies for a deeper goal. The true purpose of 
testing, just like the true purpose of design, is to reduce costs. If writing, maintaining, 
and running tests consumes more time than would otherwise be needed to fix bugs, 
write documentation, and design applications, then tests are clearly not worth writ-
ing, and no rational person would argue otherwise.

It is common for programmers who are new to testing to find themselves in the 
unhappy state where the tests they write do cost more than the value those tests 
provide and who therefore want to argue about the worth of tests. These are pro-
grammers who believed themselves highly productive in their former test-not lives 
but who have crashed into the test-first wall and stumbled to a halt. Their attempts 
at test-first programming result in less output, and their desire to regain productivity 
drives them to revert to old habits and forgo writing tests.

The solution to the problem of costly tests, however, is not to stop testing but 
instead to get better at it. Getting good value from tests requires clarity of intention 
and knowing what, when, and how to test.

9.1.1 Knowing Your Intentions
Testing has many potential benefits, some obvious, others more obscure. A thorough 
understanding of these benefits will increase your motivation to achieve them.
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Finding Bugs
Finding faults, or bugs, early in the development process yields big dividends. Not 
only is it easier to find and fix a bug nearer in time to its creation, but getting the 
code right earlier rather than later can have unexpected positive effects on the result-
ing design. Knowing that you can (or can’t) do something early on may cause you to 
choose alternatives in the present that alter the design options available in the future. 
Also, as code accumulates, embedded bugs acquire dependencies. Fixing these bugs 
late in the process may necessitate changing a lot of dependent code. Fixing bugs 
early always lowers costs.

Supplying Documentation
Tests provide the only reliable documentation of design. The story they tell remains 
true long after paper documents become obsolete and human memory fails. Write 
your tests as if you expect your future self to have amnesia. Remember that you will 
forget; write tests that remind you of the story once you have.

Deferring Design Decisions
Tests allow you to safely defer design decisions. As your design skills improve you 
will begin to write applications that are sprinkled with places where you know the 
design needs something but you don’t yet have enough information to know exactly 
what. These are the places where you are awaiting additional information, valiantly 
resisting the forces that compel you to commit to a specific design.

These “pending” decision points are often coded as slightly embarrassing, 
extremely concrete hacks hidden behind totally presentable interfaces. This situa-
tion occurs when you are aware of just one concrete case in the present but you 
fully expect new cases to arrive in the near future. You know that at some point you 
will be better served by code that handles these many concrete cases as a single 
abstraction, but right now you don’t have enough information to anticipate what that 
abstraction will be.

When your tests depend on interfaces, you can refactor the underlying code 
with reckless abandon. The tests verify the continued good behavior of the interface 
and changes to the underlying code do not force rewrites of the tests. Intentionally 
depending on interfaces allows you to use tests to put off design decisions safely and 
without penalty.

Supporting Abstractions
When more information finally arrives and you make the next design decision, you’ll 
change the code in ways that increase its level of abstraction. Herein lies another of 
the benefits of tests on design.



196 Chapter 9. Designing Cost-Effective Tests

Good design naturally progresses toward small independent objects that rely 
on abstractions. The behavior of a well-designed application gradually becomes the 
result of interactions among these abstractions. Abstractions are wonderfully flex-
ible design components but the improvements they provide come at one slight cost: 
While each individual abstraction might be easy to understand, there is no single 
place in the code that makes obvious the behavior of the whole.

As the code base expands and the number of abstractions grows, tests become 
increasingly necessary. There is a level of design abstraction where it is almost impos-
sible to safely make any change unless the code has tests. Tests are your record of the 
interface of every abstraction and as such they are the wall at your back. They let you 
put off design decisions and create abstractions to any useful depth.

Exposing Design Flaws
The next benefit of tests is that they expose design flaws in the underlying code. If a 
test requires painful setup, the code expects too much context. If testing one object 
drags a bunch of others into the mix, the code has too many dependencies. If the test 
is hard to write, other objects will find the code difficult to reuse.

Tests are the canary in the coal mine; when the design is bad, testing is hard.
The inverse, however, is not guaranteed to be true. Costly tests do not necessarily 

mean that the application is poorly designed. It is quite technically possible to write 
bad tests for well-designed code. Therefore, for tests to lower your costs, both the 
underlying application and the tests must be well-designed.

Your goal is to gain all of the benefits of testing for the least cost possible. The 
best way to achieve this goal is to write loosely coupled tests about only the things 
that matter.

9.1.2 Knowing What to Test
Most programmers write too many tests. This is not always obvious because in many 
cases the cost of these unnecessary tests is so high that the programmers involved 
have given up testing altogether. It’s not that they don’t have tests. They have a big 
but out-of-date test suite; it just never runs. One simple way to get better value from 
tests is to write fewer of them. The safest way to accomplish this is to test everything 
just once and in the proper place.

Removing duplication from testing lowers the cost of changing tests in reac-
tion to application changes, and putting tests in the right place guarantees they’ll be 
forced to change only when absolutely necessary. Distilling your tests to their essence 
requires having a very clear idea about what you intend to test, one that can be 
derived from design principles you already know.
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Think of an object-oriented application as a series of messages passing between 
a set of black boxes. Dealing with every object as a black box puts constraints on 
what others are permitted to know and limits the public knowledge about any object 
to the messages that pierce its boundaries.

Well-designed objects have boundaries that are very strong. Each is like the space 
capsule shown in Figure 9.1. Nothing on the outside can see in, nothing on the inside 
can see out, and only a few explicitly agreed upon messages can pass through the 
predefined airlocks. 

This willful ignorance of the internals of every other object is at the core of 
design. Dealing with objects as if they are only and exactly the messages to which 
they respond lets you design a changeable application, and it is your understand-
ing of the importance of this perspective that allows you to create tests that provide 
maximum benefit at minimum cost.

The design principles you are enforcing in your application apply to your tests as 
well. Each test is merely another application object that needs to use an existing class. 
The more the test gets coupled to that class, the more entangled the two become and 
the more vulnerable the test is to unnecessarily being forced to change.

Not only should you limit couplings, but the few you allow should be to stable 
things. The most stable thing about any object is its public interface; it logically fol-
lows that the tests you write should be for messages that are defined in public inter-
faces. The most costly and least useful tests are those that blast holes in an object’s 
containment walls by coupling to unstable internal details. These overeager tests 
prove nothing about the overall correctness of an application but nonetheless raise 
costs because they break with every refactoring of underlying class.

Tests should concentrate on the incoming or outgoing messages that cross an 
object’s boundaries. The incoming messages make up the public interface of the 
receiving object. The outgoing messages, by definition, are incoming into other 
objects and so are part of some other object’s interface, as illustrated in Figure 9.2. 

A) Received
from others

C) Sent
to others

B) Sent to self

Object under
Test

Origins of Messages

depended upon by others no dependents

Figure 9.1 Objects under test are like space capsules—messages breach their boundaries
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In Figure 9.2, messages that are incoming into Foo make up Foo’s public 
interface. Foo is responsible for testing its own interface and it does so by making 
assertions about the results that these messages return. Tests that make assertions 
about the values that messages return are tests of state. Such tests commonly assert 
that the results returned by a message equal an expected value.

Figure 9.2 also shows Foo sending messages to Bar. A message sent by Foo to 
Bar is outgoing from Foo but incoming to Bar. This message is part of Bar’s public 
interface, and all tests of state should thus be confined to Bar. Foo need not, and 
should not, test these outgoing messages for state. The general rule is that objects 
should make assertions about state only for messages in their own public interfaces. 
Following this rule confines tests of message return values to a single place and 
removes unnecessary duplication, which DRYs out tests and lowers maintenance 
costs.

The fact that you need not test outgoing messages for state does not mean outgo-
ing messages need no tests at all. There are two flavors of outgoing messages, and 
one of them requires a different kind of test.

Some outgoing messages have no side effects and thus matter only to their send-
ers. The sender surely cares about the result it gets back (why else send the mes-
sage?), but no other part of the application cares if the message gets sent. Outgoing 
messages like this are known as queries and they need not be tested by the send-
ing object. Query messages are part of the public interface of their receiver, which 
already implements every necessary test of state.

However, many outgoing messages do have side effects (a file gets written, a 
database record is saved, an action is taken by an observer) upon which your applica-
tion depends. These messages are commands and it is the responsibility of the send-
ing object to prove that they are properly sent. Proving that a message gets sent is 
a test of behavior, not state, and involves assertions about the number of times, and 
with what arguments, the message is sent.

Here, then, are the guidelines for what to test: Incoming messages should be 
tested for the state they return. Outgoing command messages should be tested to 
ensure they get sent. Outgoing query messages should not be tested.

As long as your application’s objects deal with one another strictly via public 
interfaces, your tests need know nothing more. When you test this minimal set of 
messages, no change in the private behavior of any object can affect any test. When 
you test outgoing command messages only to prove they get sent, your loosely 

Incoming IncomingOutgoing

Foo Bar

Figure 9.2 One object’s outgoing message is another’s incoming
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coupled tests can tolerate application changes without being forced to change in 
turn. As long as the public interfaces remain stable, you can write tests once and they 
will keep you safe forever.

9.1.3 Knowing When to Test
You should write tests first, whenever it makes sense to do so.

Unfortunately, judging when it makes sense to do so can be a challenge for nov-
ice designers, rendering this advice less than helpful. Novices often write code that 
is far too coupled; they combine unrelated responsibilities and bind many depend-
encies into every object. Their applications are tightly woven tapestries of entangled 
code where no object lives in isolation. It is very hard to retroactively test these appli-
cations because tests are reuse and this code can’t be reused.

Writing tests first forces a modicum of reusability to be built into an object from 
its inception; it would otherwise be impossible to write tests at all. Therefore, novice 
designers are best served by writing test-first code. Their lack of design skills may 
make this bafflingly difficult, but if they persevere, they will at least have testable 
code, something that may not otherwise be true.

Be warned, however, that writing tests first is no substitute for and does not 
guarantee a well-designed application. The reusability that results from test-first is an 
improvement over nothing at all but the resulting application can still fall far short of 
good design. Well-intentioned novices often write expensive, duplicative tests around 
messy, tightly coupled code. It is an unfortunate truth that the most complex code is 
usually written by the least qualified person. This does not reflect an innate complex-
ity of the underlying task, rather it demonstrates a lack of experience on the part of 
the programmer. Novice programmers don’t yet have the skills to write simple code.

The overcomplicated applications these novices produce should be viewed as 
triumphs of perseverance; it’s a miracle these applications work at all. The code is 
hard. The applications are difficult to change and every refactoring breaks all the 
tests. This high cost of change can easily start a downward productivity spiral that is 
discouraging for all concerned. Changes cascade throughout the application, and the 
maintenance cost of tests makes them seem costly relative to their worth.

If you are a novice and in this situation, it’s important to sustain faith in the 
value of tests. Done at the correct time and in the right amounts, testing, and writing 
code test-first, will lower your overall costs. Gaining these benefits requires applying 
object-oriented design principles everywhere, both to the code of your application 
and to the code in your tests. Your newfound knowledge of design already makes it 
easier to write testable code. Most of the remainder of this chapter illustrates how to 
apply these design principles during the construction of tests. Because well-designed 
applications are easy to change, and well-designed tests may very well avoid change 
altogether, these overall design improvements pay off dramatically.
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Experienced designers garner subtler improvements from testing-first. It’s not 
that they can’t benefit from it or that they’ll never discover something unexpected 
by following its dictates; rather, the gains accrued from forced reuse are ones they 
already have. These programmers already write loosely coupled, reusable code; tests 
add value in other ways.

It is not unheard of for experienced designers to “spike” a problem, that is, to do 
experiments where they just write code. These experiments are exploratory, for prob-
lems about whose solution they are uncertain. Once clarity is gained and a design 
suggests itself, these programmers then revert to test-first for production code.

Your overall goal is to create well-designed applications that have acceptable 
test coverage. The best way to reach this goal varies according to the strengths and 
 experience of the programmer.

This license to use your own judgment is not permission to skip testing. 
 Poorly-designed code without tests is just legacy code that can’t be tested. Don’t 
overestimate your strengths and use an inflated self-view as an excuse to avoid tests. 
While it sometimes makes sense to write a bit of code the old-fashioned way, you 
should err on the side of test-first.

9.1.4 Knowing How to Test
Anyone can create a new Ruby testing framework and sometimes it seems that every-
one has. The next shiny new framework may contain a feature that you just can’t live 
without; if you understand the costs and benefits, feel free to choose any framework 
that suits you.

However, there are many good reasons to stay within the testing mainstream. 
The frameworks with the most use have the best support. They are speedily updated 
to ensure compatibility with new releases of Ruby (and of Rails) and so present no 
obstacle to keeping current. Their large user base biases them toward maintaining 
backward compatibility; it’s unlikely they’ll change in such a way as to force a rewrite 
of all your tests. And because they are widely adopted, it’s easy to find programmers 
who have experience using them.

As of this writing, the mainstream frameworks are Minitest, from Ryan Davis and 
seattle.rb, and RSpec, from the rspec team. These frameworks have different philoso-
phies and while you may naturally lean towards one or the other, both are excellent 
choices.

Not only must you choose a framework, you must grapple with alternative styles 
of testing: Test-Driven Development (TDD) and Behavior-Driven Development (BDD). 
Here the decision is not so clear-cut. TDD and BDD may appear to be in opposition, 
but they are best viewed as on a continuum like Figure 9.3, where your values and 
experience dictate the choice of where to stand. 
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Both styles create code by writing tests first. BDD takes an outside-in approach, 
creating objects at the boundary of an application and working its way inward, 
mocking as necessary to supply as-yet-unwritten objects. TDD takes an inside-out 
approach, usually starting with tests of domain objects and then reusing these newly 
created domain objects in the tests of adjacent layers of code.

Past experience or inclination may render one style more suitable for you than 
the other, but both are completely acceptable. Each has costs and benefits, some of 
which will be explored in the next sections on writing tests.

When testing, it’s useful to think of your application’s objects as divided into two 
major categories. The first category contains the object that you’re testing, referred to 
from now on as the object under test. The second category contains everything else.

Your tests must obviously know things about the first category, that is, about the 
object under test, but they should remain as ignorant as possible about the second. 
Pretend that the rest of the application is opaque, that the only information available 
during the test is that which can be gained from looking at the object under test.

Once you dial your testing focus down to the specific object under test, you’ll 
need to choose a testing point of view. Your tests could stand completely inside of the 
object under test, with effective access to all of its internals. This is a bad idea, how-
ever, because it allows knowledge that should be private to the object to leak into 
the tests, increasing coupling between them and raising the likelihood that changes 
to code will require changes in tests. It’s better for tests to assume a viewpoint that 
sights along the edges of the object under test, where they can know only about mes-
sages that come and go.

Minitest Framework
By the time you read this chapter, Minitest may have changed. Perfect stran-
gers may well have improved this software and given you those improve-
ments free of charge; such is the life of the open source developer. Regardless 
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1

2

2

3
3

Figure 9.3 BDD and TDD should be viewed as on a continuum
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of how Minitest may have evolved, the principles illustrated below hold true. 
Don’t get distracted by changes in syntax; concentrate on understanding the 
underlying goals of the tests. Once you understand these goals, you can 
achieve them via any testing framework.

9.2 Testing Incoming Messages
Incoming messages make up an object’s public interface, the face it presents to the 
world. These messages need tests because other application objects depend on their 
signatures and on the results they return.

These first tests use code from the examples in Chapter 3, “Managing Depend-
encies.” Following is a reminder of those Wheel and Gear classes, as they were 
when entangled together. Gear creates an instance of the Wheel class deep inside its 
gear_inches method, on line 24 below.

 

Note
Example Code
The remainder of this chapter contains tests for code that 
appeared previously in this book. These code samples served 
earlier to explain the principles of object-oriented design; 
here they will illustrate how to test different components 
of design. The following tests don’t cover every line of code 
you’ve seen, but they do test every concept you’ve learned.

Also, in an attempt to accurately reflect code you might 
see in the wild, examples in this chapter sometimes use key-
word and other times use positional arguments. This has no 
effect on the tests other than the minor accommodations in 
syntax.

 

Listing 9.1

 1 class Wheel
 2   attr_reader :rim, :tire
 3   def initialize(rim, tire)
 4     @rim  = rim
 5     @tire = tire
 6   end
 7 
 8   def diameter

1
 2 
 3 
 4 
 5 
 6 
7

 8 
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 9     rim + (tire * 2)
10   end
11   # ...
12 end
13 
14 class Gear
15   attr_reader :chainring, :cog, :rim, :tire
16   def initialize(chainring:, cog:, rim:, tire:)
17     @chainring = chainring
18     @cog       = cog
19     @rim       = rim
20     @tire      = tire
21   end
22 
23   def gear_inches
24     ratio * Wheel.new(rim, tire).diameter
25   end
26 
27   def ratio
28     chainring / cog.to_f
29   end
30   # ...
31 end

Table 9.1 shows the messages (other than those that return simple attributes) 
that cross these object’s boundaries. Wheel responds to one incoming message, 
diameter (which in turn is sent by, or outgoing from, Gear) and Gear respond to 
two incoming messages, gear_inches and ratio. 

The opening paragraph of this section stated that every incoming message is part 
of an object’s public interface and so must be tested. Now it’s time to add a slight 
caveat to this rule.

 9 
10 
11 
12
13
14
15 
16 
17 
18 
19 
20 
21 
22
23 
24 
25 
26
27 
28 
29 
30 
31

Table 9.1 Incoming and Outgoing Messages by Object

Object Incoming Messages Outgoing 
Messages

Has Dependents?

Wheel diameter Yes

Gear diameter No

Gear gear_inches Yes

Gear ratio Yes
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9.2.1 Deleting Unused Interfaces
Incoming messages ought to have dependents. As you can see from Table 9.1, this is 
true for diameter, gear_inches, and ratio where they are incoming messages. 
Some object other than the original implementer depends on each of these messages.

If you draw this table for the object under test and find a purported incoming 
message that does not have dependents, you should view that message with great 
suspicion. What purpose is served by implementing a message that no one sends? 
It’s not really incoming at all, it’s a speculative implementation that reeks of guessing 
about the future and clearly anticipates requirements that do not exist.

Do not test an incoming message that has no dependents; delete it. Your applica-
tion is improved by ruthlessly eliminating code that is not actively being used. Such 
code is negative cash flow, it adds testing and maintenance burdens but provides no 
value. Deleting unused code saves money right now, if you do not do so you must 
test it.

Overcome any reluctance that you feel; practicing this pruning will teach you 
its value. Until such time as you are completely convinced of the rightness of this 
strategy, you may console yourself with the knowledge that in extremity you can 
recover deleted code from version control. Regardless of whether you do it with joy 
or in pain, delete the code. Unused code costs more to keep than to recover.

9.2.2 Proving the Public Interface
Incoming messages are tested by making assertions about the value, or state, that 
their invocation returns. The first requirement for testing an incoming message is to 
prove that it returns the correct value in every possible situation.

The following code shows a test of Wheel’s diameter method. Line 3 creates an 
instance of Wheel and line 5 asserts that this Wheel has a diameter of 29.

Listing 9.2

1 class WheelTest < Minitest::Test
 2   def test_calculates_diameter
 3     wheel = Wheel.new(26, 1.5)
 4 
 5     assert_in_delta(29,
 6                     wheel.diameter,
 7                     0.01)
 8   end
 9 end

The above test produces the following output.

1 
2 
3 
4 
5 
6 
7 
8 
9 
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Listing 9.3

1  WheelTest
2    PASS (0.00s)  test_calculates_diameter
3  Finished in 0.00014s
4  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

This test is extremely simple, and it invokes very little code. Wheel has no hid-
den dependencies, so no other application objects get created as a side effect of run-
ning this test. Wheel’s design allows you to test it independently of every other class 
in your application.

Testing Gear is a bit more interesting. Gear requires a few more arguments than 
Wheel, but even so, the overall structure of these two tests is very similar. In the 
gear_inches test below, line 3 creates a new instance of Gear and line 9 makes 
assertions about the method’s results.

Listing 9.4

 1 class GearTest < Minitest::Test
 2   def test_calculates_gear_inches
 3     gear =  Gear.new(
 4               chainring: 52,
 5               cog:       11,
 6               rim:       26,
 7               tire:      1.5)
 8 
 9     assert_in_delta(137.1,
10                     gear.gear_inches,
11                     0.01)
12   end
13 end

That test produces this output:

Listing 9.5

 1  GearTest
 2    PASS (0.00s)  test_calculates_gear_inches
 3  Finished in 0.00012s
 4  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

1 
2
3 
4 
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This new gear_inches test looks a lot like Wheel’s diameter test but don’t 
be fooled by appearances. This test has entanglements that the diameter test did 
not have. Gear’s implementation of gear_inches unconditionally creates and uses 
another object, Wheel. Gear and Wheel are coupled in the code and in the tests, 
though it’s not obvious here.

The fact that Gear’s gear_inches method creates and uses another object 
affects how long this test runs and how likely it is to suffer unintended conse-
quences as a result of changes to unrelated parts of the application. The coupling that 
creates this problem, however, is hidden inside of Gear and so totally invisible in this 
test. The test’s purpose is to prove that gear_inches returns the right result and it 
certainly fulfills that requirement, but the way the underlying code is structured adds 
hidden risk.

If Wheels are expensive to create, the Gear test pays that cost even though it has 
no interest in Wheel. If Gear is correct but Wheel is broken, the Gear test might fail 
in a misleading way, at a place far distant from the code you’re trying to test.

Tests run fastest when they execute the least code, and when the volume of 
external code that a test invokes is directly related to your design. An application 
constructed of tightly coupled, dependent-laden objects is like a tapestry where pull-
ing on one thread drags the entire rug along. When tightly coupled objects are tested, 
a test of one object runs code in many others. If the code were such that Wheel were 
also coupled to other objects, this problem is magnified; running the Gear test would 
then create a large network of objects, any of which might break in a maddeningly 
confusing way.

These problems are manifested in, but are not unique to, the tests. Because tests 
are the first reuse of code, this problem is but a harbinger of things to come for your 
application as a whole.

9.2.3 Isolating the Object under Test
Gear is a simple object but attempts to test its gear_inches method have already 
unearthed hidden complexity. The goal of this test is ensure that gear inches are cal-
culated correctly but it turns out that running gear_inches relies on code in objects 
other than Gear.

This exposes a broader design problem; when you can’t test Gear in isolation, 
it bodes ill for the future. This difficulty in isolating Gear for testing reveals that it 
is bound to a specific context, one that imposes limitations that will interfere with 
reuse.

Chapter 3 broke this binding by removing the creation of Wheel from Gear. 
Here’s a copy of the code that made that transition; Gear now expects to be injected 
with an object that understands diameter.
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Listing 9.6

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel
 3   def initialize(chainring:, cog:, wheel:)
 4     @chainring = chainring
 5     @cog       = cog
 6     @wheel     = wheel
 7   end
 8 
 9   def gear_inches
10     # The object in the 'wheel' variable
11     # plays the 'Diameterizable' role.
12     ratio * wheel.diameter
13   end
14 
15   def ratio
16     chainring / cog.to_f
17   end
18 end

This transition of code is paralleled by a transition of thought. Gear no longer 
cares about the class of the injected object; it merely expects that it implements 
diameter. The diameter method is part of the public interface of a role, one that 
might reasonably be named Diameterizable.

Now that Gear is decoupled from Wheel, you must inject an instance of 
Diameterizable during every Gear creation. However, because Wheel is the only 
application class that plays this role, your runtime options are severely limited. In 
real life, as the code currently exists, every Gear that you create will of necessity be 
injected with an instance of Wheel.

As circular as this sounds, injecting a Wheel into Gear is not the same as inject-
ing a Diameterizable. The application code looks exactly the same, granted, but 
its logical meaning differs. The difference is not in the characters that you type but in 
your thoughts about what they mean. Freeing your imagination from an attachment 
to the class of the incoming object opens design and testing possibilities that are 
otherwise unavailable. Thinking of the injected object as an instance of its role gives 
you more choices about what kind of Diameterizable to inject into Gear during 
your tests.

One possible Diameterizable is, obviously, Wheel, because it clearly imple-
ments the correct interface. The next example makes this very prosaic choice; it 
updates the existing test to accommodate the changes to the code by injecting an 
instance of Wheel (line 6) during the test.

1
2 
3 
4 
5 
6 
7 
8
9 

10 
11 
12 
13 
14
15 
16 
17 
18



208 Chapter 9. Designing Cost-Effective Tests

Listing 9.7

 1 class GearTest < Minitest::Test
 2   def test_calculates_gear_inches
 3     gear =  Gear.new(
 4               chainring: 52,
 5               cog:       11,
 6               wheel:     Wheel.new(26, 1.5))
 7 
 8     assert_in_delta(137.1,
 9                     gear.gear_inches,
10                     0.01)
11   end
12 end

That test passes, as you can see below:

Listing 9.8

 1  GearTest
 2    PASS (0.00s)  test_calculates_gear_inches
 3  Finished in 0.00015s
 4  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Using a Wheel for the injected Diameterizable results in test code that exactly 
mirrors the application. It is now obvious, both in the application and in the tests, 
that Gear is using Wheel. The invisible coupling between these classes has been 
publicly exposed.

This test is fast enough, but this adequate speed is quite by accident. It’s not that 
the gear_inches test has been carefully isolated and thus decoupled from other 
code; it’s just that all the code coupled to this test runs quickly as well.

Notice also that it’s not obvious here (or anywhere else for that matter) that Wheel 
is playing the Diameterizable role. The role is virtual; it’s all in your head. Nothing 
about the code guides future maintainers to think of Wheel as a Diameterizable.

However, despite the invisibility of the role and this coupling to Wheel, structur-
ing the test in this way has one very real advantage, as the next section shows.

9.2.4 Injecting Dependencies Using Classes
When the code in your test uses the same collaborating objects as the code in your 
application, your tests always break when they should. The value of this cannot be 
underestimated.
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Here’s a simple example. Imagine that Diameterizable’s public interface 
changes. Another programmer goes into the Wheel class and changes the diameter
method’s name to width, as shown in line 8 below.

Listing 9.9

 1 class Wheel
 2   attr_reader :rim, :tire
 3   def initialize(rim, tire)
 4     @rim       = rim
 5     @tire      = tire
 6   end
 7 
 8   def width   # <---- used to be 'diameter'
 9     rim + (tire * 2)
10   end
11   # ...
12 end

Imagine further that this programmer failed to update the name of the sent mes-
sage in Gear. Gear still sends diameter in its gear_inches method, as you can see 
in this reminder of Gear’s current code:

Listing 9.10

 1 class Gear
 2   # ...
 3   def gear_inches
 4     ratio * wheel.diameter  # <--- obsolete
 5   end
 6 end

Because the Gear test injects an instance of Wheel and Wheel implements 
width but Gear sends diameter, the test now fails:

Listing 9.11

 1  GearTest
 2    ERROR (0.00s)  test_calculates_gear_inches
 3      NoMethodError: 
 4        undefined method 'diameter' for 
 5          #<Wheel:0x00007ff74010f448 @rim=26, @tire=1.5>
 6  Finished in 0.00064s
 7  1 tests, 0 assertions, 0 failures, 1 errors, 0 skips
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This failure is unsurprising; it is exactly what should happen when two concrete 
objects collaborate and the receiver of a message changes but its sender does not. 
Wheel has changed and as a result Gear needs to change. This test fails as it should.

The test is simple and the failure obvious because the code is so concrete, but 
like all concretions, it works only for this specific case. Here, for this code, the test 
above is good enough, but there are other situations in which you are better served 
to locate and test the abstraction.

A more extreme example illuminates the problem. If there are hundreds of 
Diameterizables, how do you decide which is most intention revealing to inject 
during the test? What if Diameterizables are extremely costly. How do you avoid 
running lots of unnecessary, time-consuming code? Common sense suggests that if 
Wheel is the only Diameterizable and it is fast enough, the test should just inject a 
Wheel, but what if your options are broader?

9.2.5 Injecting Dependencies as Roles
The Wheel class and the Diameterizable role are so closely aligned that it’s hard to 
see them as separate concepts, but understanding what happened in the previous test 
requires making a distinction. Gear and Wheel both have relationships with a third 
thing, the Diameterizable role. As you can see in Figure 9.4, Diameterizable is 
depended on by Gear and implemented by Wheel. 

This role is an abstraction of the idea that disparate objects can have diameters. 
As with all abstractions, it is reasonable to expect this abstract role to be more stable 
than the concretion from which it came. However, in the specific case above, the 
opposite is true.

Wheel Gear

Is injected
into

Behaves
like
a

Diameterizable

#diameter

Figure 9.4 Gear depends upon Diameterizable; Wheel implements it
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There are two places in the code where an object depends on knowledge of 
Diameterizable. First, Gear thinks that it knows Diameterizable’s interface; that 
is, it believes it can send diameter to the injected object. Second, the code that cre-
ated the object to be injected believes that Wheel implements this interface; that is, 
it expects Wheel to implement diameter. Now that Diameterizable has changed, 
there’s a problem. Wheel has been updated to implement the new interface, but 
unfortunately Gear still expects the old one.

The whole point of dependency injection is that it allows you to substitute differ-
ent concrete classes without changing existing code. You can assemble new behavior 
by creating new objects that play existing roles and injecting these objects where those 
roles are expected. Object-oriented design tells you to inject dependencies because it 
believes that specific concrete classes will vary more than these roles, or conversely, 
roles will be more stable than the classes from which they were abstracted.

Unfortunately, the opposite just happened. In this example, it was not the class 
of the injected object that changed, it was the interface of the role. It is still correct to 
inject a Wheel but now incorrect to send that Wheel the diameter message.

When a role has a single player, that one concrete player and the abstract role 
are so closely aligned that the boundaries between them are easily blurred, and 
it is a practical fact that sometimes this blurring doesn’t matter. In this case, Wheel 
is the only player of Diameterizable, and you don’t currently expect to have 
others. If Wheels are cheap, injecting an actual Wheel has little negative effect on 
your tests.

When the application code can only be written one way, mirroring that arrange-
ment is often the most effective way to write tests. Doing so permits tests to cor-
rectly fail regardless of whether the concretion (the name of the Wheel class) or the 
abstraction (the interface to the diameter method) changes.

However, this is not always true. Sometimes there are forces at work that drive 
you to wish to forgo the use of Wheel in your tests. If your application contains many 
different Diameterizables, you might want to create an idealized one so your tests 
clearly convey the idea of this role. If all Diameterizables are expensive, you may 
want to fake a cheap one to make your tests run faster. If you are doing BDD, your 
application might not yet contain any object that plays this role; you may be forced to 
manufacture something just to write the test.

Creating Test Doubles
This next example explores the idea of creating a fake object, or test double, to play 
the Diameterizable role. For this test, assume Diameterizable’s interface has 
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reverted to the original diameter method and that diameter is again correctly 
implemented by Wheel and sent by Gear. Line 2 below creates a fake, Diameter-
Double. Line 13 injects this fake into Gear.

Listing 9.12

 1 # Create a player of the 'Diameterizable' role
 2 class DiameterDouble
 3   def diameter
 4     10
 5   end
 6 end
 7 
 8 class GearTest < Minitest::Test
 9   def test_calculates_gear_inches
10     gear =  Gear.new(
11               chainring: 52,
12               cog:       11,
13               wheel:     DiameterDouble.new)
14 
15     assert_in_delta(47.27,
16                     gear.gear_inches,
17                     0.01)
18   end
19 end

A test double is a stylized instance of a role player that is used exclusively for 
testing. Doubles like this are very easy to make; nothing hinders you from creating 
one for every possible situation. Each variation is like an artist’s sketch. It emphasizes 
a single interesting feature and allows the underlying object’s other details to recede 
into the background.

This double stubs diameter, that is, it implements a version of diameter that 
returns a canned answer. DiameterDouble is quite limited, but that’s the whole 
point. The fact that it always returns 10 for diameter is perfect. This stubbed return 
value provides a dependable foundation on which to construct the test.

Many test frameworks have built-in ways to create doubles and to stub return val-
ues. These specialized mechanisms can be handy, but for simple test doubles it’s fine 
to use plain old Ruby objects, as does the example above.

DiameterDouble is not a mock. It’s easy to slip into the habit of using the word 
mock to describe this double, but mocks are something else entirely and will be cov-
ered later in this chapter in the section “Testing Outgoing Messages.”
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Injecting this double decouples the Gear test from the Wheel class. It no longer 
matters if Wheel is slow because DiameterDouble is always fast. This test works just 
fine, as running it shows:

Listing 9.13

 1  GearTest
 2    PASS (0.00s)  test_calculates_gear_inches
3  Finished in 0.00015s
4  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

This test uses a test double and is therefore simple, fast, isolated, and intention 
revealing; what could possibly go wrong?

Living the Dream
Imagine now that the code undergoes the same alterations as before: Diameterizable’s 
interface changes from diameter to width and Wheel gets updated but Gear does not. 
This change once again breaks the application. Remember that the previous Gear test 
(which injected a Wheel instead of using a double) noticed this problem right away and 
began to fail with an undefined method 'diameter' error.

Now that you’re injecting DiameterDouble, however, here’s what happens 
when you re-run the test:

Listing 9.14

 1  GearTest
 2    PASS (0.00s)  test_calculates_gear_inches
 3  Finished in 0.00015s
 4  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The test continues to pass even though the application is definitely broken. This 
application cannot possibly work; Gear sends diameter but Wheel implements 
width.

You have created an alternate universe, one in which tests cheerfully report that 
all is well despite the fact that the application is manifestly incorrect. The possibil-
ity of creating this universe is what causes some to warn that stubbing and mocking 
make for brittle tests. However, as is always true, the fault here is with the program-
mer, not the tool. Writing better code requires understanding the root cause of this 
problem, which in turn necessitates a closer look at its components.

The application contains a Diameterizable role. This role originally had one 
player, Wheel. When GearTest created DiameterDouble, it introduced a second 
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player of the role. When the interface of a role changes, all players of the role must 
adopt the new interface. It’s easy, however, to overlook role players that were con-
structed specifically for tests and that is exactly what happened here. Wheel got 
updated with the new interface, but DiameterDouble did not.

Using Tests to Document Roles
It’s no wonder this problem occurs; the role is nearly invisible. There’s no place in the 
application where you can point your finger and say, “This defines Diameterizable.” 
When remembering that the role even exists is a challenge, forgetting that test doubles 
play it is inevitable.

One way to raise the role’s visibility is to assert that Wheel plays it. Line 6 below 
does just this; it documents the role and proves that Wheel correctly implements its 
interface.

Listing 9.15

 1 class WheelTest < Minitest::Test
 2   def setup
 3     @wheel = Wheel.new(26, 1.5)
 4   end
 5 
 6   def test_implements_the_diameterizable_interface
 7     assert_respond_to(@wheel, :diameter)
 8   end
 9 
10   def test_calculates_diameter
11     assert_in_delta(29,
12                     @wheel.diameter,
13                     0.01)
14   end
15 end

Running the test above produces the following output.

Listing 9.16

 1  WheelTest
 2    PASS (0.00s)  test_calculates_diameter
 3     PASS (0.00s)  test_implements_the_diameterizable_interface
 4  Finished in 0.00018s
 5  2 tests, 2 assertions, 0 failures, 0 errors, 0 skips
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The implements_the_diameterizable_interface test introduces the idea 
of tests for roles but is not a completely satisfactory solution. It is, in fact, woefully 
incomplete. First, it cannot be shared with other Diameterizables. Other players 
of this role would have to duplicate this test. Next, it does nothing to help with the 
“living the dream” problem from the Gear test. Wheel’s assertion that it plays this 
role does not prevent Gear’s DiameterDouble from becoming obsolete and allow-
ing the gear_inches test to erroneously pass.

Fortunately, the problem of documenting and testing roles has a simple solution, 
one that will be thoroughly covered in the subsequent section “Testing Duck Types.” 
For now it’s enough to recognize that roles need tests of their own.

The goal of this section was to prove public interfaces by testing incoming mes-
sages. Wheel was cheap to test. The original Gear test was more expensive because 
it depended on a hidden coupling to Wheel. Replacing that coupling with an injected 
dependency on Diameterizable isolated the object under test but created a 
dilemma about whether to inject a real or a fake object.

This choice between injecting real or fake objects has far-reaching consequences. 
Injecting the same objects at test time as are used at runtime ensures that tests break 
correctly but may lead to long running tests. Alternatively, injecting doubles can 
speed tests but leaves them vulnerable to constructing a fantasy world where tests 
work but the application fails.

Notice that the act of testing did not, by itself, force an improvement in design. 
Nothing about testing made you remove the coupling and inject the dependency. 
While it’s true that the outside-in approach of BDD provides more guidance than 
does TDD, neither practice prevents a naïve designer from writing Wheel and then 
embedding the creation of a Wheel deep inside of Gear. This coupling doesn’t make 
tests impossible—it just raises costs. Reducing the coupling is up to you and relies on 
your understanding of the principles of design.

9.3 Testing Private Methods
Sometimes the object under test sends messages to itself. Messages sent to self 
invoke methods that are defined in the receiver’s private interface. These private mes-
sages are like proverbial trees falling in empty forests; they do not exist, at least as far 
as the rest of your application is concerned. Because sends of private methods cannot 
be seen from outside of the black box of the object under test, in the pristine world 
of idealized design they need not be tested.

However, the real world is not so neat, and this simple rule does not completely 
suffice. Dealing with private methods requires judgment and flexibility.
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9.3.1 Ignoring Private Methods during Tests
There are many excellent reasons to omit tests of private methods.

First, such tests are redundant. Private methods are hidden inside the object 
under test, and their results cannot be seen by others. These private methods are 
invoked by public methods that already have tests. A bug in a private method can 
certainly break the overall application but this failure will always be exposed by an 
existing test. Testing private methods is never necessary.

Second, private methods are unstable. Tests of private methods are therefore cou-
pled to application code that is likely to change. When the application changes, the 
tests will be forced to change in turn. It’s easy to create a situation where precious 
time is spent performing ongoing maintenance on unnecessary tests.

Finally, testing private methods can mislead others into using them. Tests pro-
vide documentation about the object under test. They tell a story about how it 
expects to interact with the world at large. Including private methods in this story 
distracts the readers from its main purpose and encourages them to break encapsu-
lation and to depend on these methods. Your tests should hide private methods, not 
expose them.

9.3.2 Removing Private Methods from the Class under Test
One way to sidestep this entire problem is to avoid private methods altogether. If you 
have no private methods, you need not be concerned for their tests.

An object with many private methods exudes the design smell of having too 
many responsibilities. If your object has so many private methods that you dare not 
leave them untested, consider extracting the methods into new object. The extracted 
methods form the core of the responsibilities of the new object and so make up its 
public interface, which is (theoretically) stable and thus safe to depend upon.

This strategy is a good one, but unfortunately is only truly helpful if the new 
interface is indeed stable. Sometimes the new interface is not, and it is at this point 
that theory and practice part ways. This new public interface will be exactly as stable 
(or as unstable) as was the original private interface. Methods don’t magically become 
more reliable just because they got moved. It is costly to couple to unstable meth-
ods—regardless of whether they are portrayed as public or private.

9.3.3 Choosing to Test a Private Method
Times of great uncertainty call for drastic measures. It is therefore occasionally defen-
sible to fling a bit of smelly code into place and hide the mess until better informa-
tion arrives. Hiding messes is easily done; just wrap the offending code in a private 
method.
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If you create a mess and never fix it, your costs will eventually go up, but in the 
short term, for the right problem, having enough confidence to write embarrassing 
code can save money. When your intention is to defer a design decision, do the sim-
plest thing that solves today’s problem. Isolate the code behind the best interface you 
can conceive and hunker down and wait for more information.

Applying this strategy can result in private methods that are wildly unstable. 
Once you’ve made this leap it’s reasonable to consider compounding your sins by 
testing these unstable methods. The application code is ugly and will undergo fre-
quent change; the risk of breaking something is ever-present. These tests are costly 
and will likely be forced to change in lock-step with the underlying code, but every 
other option for keeping things running may be more expensive.

These tests of private methods aren’t necessary in order to know that a change 
broke something; the public interface tests still serve that purpose admirably. Tests of 
private methods produce error messages that directly pinpoint the failing parts of pri-
vate code. These more specific errors are tight couplings that increase maintenance 
costs, but they make it easier to understand the effects of changes, and so they take 
some of the pain out of refactoring complex private code.

Reducing the barriers to refactoring is important, because refactor you will. 
That’s the whole point. The mess is temporary, you intend to refactor out of it. As 
more design information arrives, these private methods will improve. Once the fog 
clears and a design reveals itself, the methods will become more stable. As stability 
improves, the cost of maintaining and the need for tests will go down. Eventually it 
will be possible to extract the private methods into a separate class and safely expose 
them to the world.

The rules of thumb for testing private methods are: Never write them, and if you 
do, never ever test them, unless of course it makes sense to do so. Therefore, be biased 
against writing these tests but do not fear to do so if this would improve your lot.

9.4 Testing Outgoing Messages
Outgoing messages, as you know from the “What to Test” section, are either queries 
or commands. Query messages matter only to the object that sends them, while com-
mand messages have effects that are visible to other objects in your application.

9.4.1 Ignoring Query Messages
Messages that have no side effects are known as query messages. Here’s a simple 
example, where Gear’s gear_inches method sends diameter.
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Listing 9.17

1 class Gear
2   # ...
3   def gear_inches
4     ratio * wheel.diameter
5   end
6 end

Nothing in the application other than the gear_inches method cares that 
diameter gets sent. The diameter method has no side effects, running it leaves no 
visible trace, and no other objects depend on its execution.

In the same way that tests should ignore messages sent to self, they also should 
ignore outgoing query messages. The consequences of sending diameter are hid-
den inside of Gear. Because the overall application does not need this message to be 
sent, your tests need not care.

Gear’s gear_inches method depends on the result that diameter returns, but 
tests to prove the correctness of diameter belong in Wheel, not here in Gear. It 
is redundant for Gear to duplicate those tests; maintenance costs will increase if it 
does. Gear’s only responsibility is to prove that gear_inches works correctly, and it 
can do this by simply testing that gear_inches always returns appropriate results.

9.4.2 Proving Command Messages
Sometimes, however, it does matter that a message gets sent; other parts of your appli-
cation depend on something that happens as a result. In this case, the object under 
test is responsible for sending the message and your tests must prove it does so.

Illustrating this problem requires a new example. Imagine a game where play-
ers race virtual bicycles. These bicycles, obviously, have gears. The Gear class is now 
responsible for letting the application know when a player changes gears so the 
application can update the bicycle’s behavior.

In the following code, Gear meets this new requirement by adding an observer. 
When a player shifts gears, the set_cog or set_chainring methods execute. These 
methods save the new value and then invoke Gear’s changed method (line 20). This 
method then sends changed to observer, passing along the current chainring and cog.

Listing 9.18

 1 class Gear
 2   attr_reader :chainring, :cog, :wheel, :observer
 3   def initialize(chainring:, cog:, wheel:, observer:)
 4     # ...
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 5     @observer  = observer
 6   end
 7 
 8   # ...
 9 
10   def set_cog(new_cog)
11     @cog = new_cog
12     changed
13   end
14 
15   def set_chainring(new_chainring)
16     @chainring = new_chainring
17     changed
18   end
19 
20   def changed
21     observer.changed(chainring, cog)
22   end
23 end

Gear has a new responsibility; it must notify observer when cogs or chainrings 
change. This new responsibility is just as important as its previous obligation to cal-
culate gear inches. When a player changes gears the application will be correct only 
if Gear sends changed to observer. Your tests should prove this message gets sent.

Not only should they prove it, but they also should do so without making asser-
tions about the result that observer’s changed method returns. Just as Wheel’s tests 
claimed sole responsibility for making assertions about the results of its own diame-
ter method, observer’s tests are responsible for making assertions about the results 
of its changed method. The responsibility for testing a message’s return value lies 
with its receiver. Doing so anywhere else duplicates tests and raises costs.

To avoid duplication, you need a way to prove that Gear sends changed to 
observer that does not force you to rely on checking what comes back when it 
does. Fortunately, this is easy; you need a mock. Mocks are tests of behavior, as 
opposed to tests of state. Instead of making assertions about what a message returns, 
mocks define an expectation that a message will get sent.

The test below proves that Gear fulfills its responsibilities and it does so without 
binding itself to details about how observer behaves. The test creates a mock (line 3) 
that it injects in place of the observer (line 8). Each test method tells the mock to expect 
to receive the changed message (lines 12 and 18) and then verifies that it did so (lines 
14 and 20).
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Listing 9.19

 1 class GearTest < Minitest::Test
 2   def setup
 3     @observer = Minitest::Mock.new
 4     @gear     = Gear.new(
 5                   chainring: 52,
 6                   cog:       11,
 7                   wheel:     DiameterDouble.new,
 8                   observer:  @observer)
 9   end
10 
11   def test_notifies_observers_when_cogs_change
12     @observer.expect(:changed, true, [52, 27])
13     @gear.set_cog(27)
14     @observer.verify
15   end
16 
17   def test_notifies_observers_when_chainrings_change
18     @observer.expect(:changed, true, [42, 11])
19     @gear.set_chainring(42)
20     @observer.verify
21   end
22 end

Running the test shows that the observers do indeed get notified:

Listing 9.20

 1  GearTest
 2       PASS (0.00s)  test_notifies_observers_when_chainrings_change
 3    PASS (0.00s)  test_notifies_observers_when_cogs_change
 4  Finished in 0.00020s
 5  2 tests, 0 assertions, 0 failures, 0 errors, 0 skips

This is the classic usage pattern for a mock. In the notifies_observers_
when_cogs_change test above, line 12 tells the mock what message to expect, 
line 13 triggers the behavior that should cause this expectation to be met, and then 
line 14 asks the mock to verify that it indeed was. The test passes only if sending 
set_cog to gear does something that causes observer to receive changed with 
the given arguments.
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Notice that all the mock did with the message was remember that it received it. 
If the object under test depends on the result it gets back when observer receives 
changed, the mock can be configured to return an appropriate value. This return 
value, however, is beside the point. Mocks are meant to prove messages get sent, they 
return results only when necessary to allow tests to run.

The fact that Gear works just fine even after you mock observer’s changed
method such that it does absolutely nothing proves that Gear doesn’t care what that 
method actually does. Gear’s only responsibility is to send the message; this test 
should restrict itself to proving Gear does so.

In a well-designed application, testing outgoing messages is simple. If you have 
proactively injected dependencies, you can easily substitute mocks. Setting expecta-
tions on these mocks allows you to prove that the object under test fulfills its respon-
sibilities without duplicating assertions that belong elsewhere.

9.5 Testing Duck Types
The Testing Incoming Messages section in this chapter wandered into the territory of 
testing roles, but while it introduced the issue, it did not provide a satisfactory resolu-
tion. It’s time to return to that topic and examine how to test duck types. This section 
shows how to create tests that role players can share and then returns to the original 
problem and uses shareable tests to prevent test doubles from becoming obsolete.

9.5.1 Testing Roles
The code for this first example comes from the Preparer duck type of Chapter 5, 
“Reducing Costs with Duck Typing.” These first few code samples repeat part of the 
lesson from Chapter 5; feel free to skim down to the first test if you have a clear 
memory of the problem.

Here’s a reminder of the original Mechanic, TripCoordinator, and Driver 
classes:

Listing 9.21

 1 class Mechanic
 2   def prepare_bicycles(bicycles)
 3     bicycles.each {|bicycle| prepare_bicycle(bicycle)}
 4   end
 5 
 6   def prepare_bicycle(bicycle)
 7     # ...
 8   end
 9 end
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10 
11 class TripCoordinator
12   def buy_food(customers)
13     # ...
14   end
15 end
16 
17 class Driver
18   def gas_up(vehicle)
19     # ...
20   end
21 
22   def fill_water_tank(vehicle)
23     # ...
24   end
25 end

Each of these classes has a reasonable public interface, yet when Trip used 
these interfaces to prepare a trip it was forced to check the class of each object to 
determine which message to send, as shown here:

Listing 9.22

 1 class Trip
 2   attr_reader :bicycles, :customers, :vehicle
 3 
 4   def prepare(preparers)
 5     preparers.each {|preparer|
 6       case preparer
 7       when Mechanic
 8         preparer.prepare_bicycles(bicycles)
 9       when TripCoordinator
10         preparer.buy_food(customers)
11       when Driver
12         preparer.gas_up(vehicle)
13         preparer.fill_water_tank(vehicle)
14       end
15     }
16   end
17 end
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The case statement above couples prepare to three existing concrete classes. 
Imagine trying to test the prepare method or the consequences of adding a new 
kind of preparer into this mix. This method is painful to test and expensive to 
maintain.

If you come upon code that uses this antipattern but does not have tests, con-
sider refactoring to a better design before writing them. It’s always dangerous to 
make changes in the absence of tests, but this teetering pile of code is so fragile that 
refactoring it first might well be the most cost-effective strategy. The refactoring that 
fixes this problem is simple and makes all subsequent change easier.

The first part of the refactoring is to decide on Preparer’s interface and to 
implement that interface in every player of the role. If the public interface of Preparer 
is prepare_trip, the following changes allow Mechanic, TripCoordinator, and 
Driver to play the role:

Listing 9.23

 1 class Mechanic
 2   def prepare_trip(trip)
 3     trip.bicycles.each {|bicycle|
 4       prepare_bicycle(bicycle)}
 5   end
 6   # ...
 7 end
 8 
 9 class TripCoordinator
10   def prepare_trip(trip)
11     buy_food(trip.customers)
12   end
13   # ...
14 end
15 
16 class Driver
17   def prepare_trip(trip)
18     vehicle = trip.vehicle
19     gas_up(vehicle)
20     fill_water_tank(vehicle)
21   end
22   # ...
23 end
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Now that Preparers exist, Trip’s prepare method can be vastly simpli-
fied. The following refactoring alters Trip’s prepare method to collaborate with 
Preparers instead of sending unique messages to each specific class:

Listing 9.24

1 class Trip
2   attr_reader :bicycles, :customers, :vehicle
3 
4   def prepare(preparers)
5     preparers.each {|preparer|
 6       preparer.prepare_trip(self)}
 7   end
 8   # ...
 9 end

Having done these refactorings, you are positioned to write tests. The above code 
contains a collaboration between Preparers and a Trip, which can now be thought 
of as a Preparable. Your tests should document the existence of the Preparer role, 
prove that each of its players behaves correctly, and show that Trip interacts with 
them appropriately.

Because several different classes act as Preparers, the role’s test should be writ-
ten once and shared by every player. Minitest is a low ceremony testing framework, 
and it supports sharing tests in the simplest possible way, via Ruby modules.

Here’s a module that tests and documents the Preparer interface:

Listing 9.25

1 module PreparerInterfaceTest
2   def test_implements_the_preparer_interface
3     assert_respond_to(@object, :prepare_trip)
4   end
5 end

This module proves that @object responds to prepare_trip. The test below 
uses this module to prove that Mechanic is a Preparer. It includes the module (line 2) 
and provides a Mechanic during setup via the @object variable (line 5).

Listing 9.26

 1 class MechanicTest < Minitest::Test
 2   include PreparerInterfaceTest
 3 
 4   def setup
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5     @mechanic = @object = Mechanic.new
 6   end
 7 
 8   # other tests which rely on @mechanic
 9 end

The TripCoordinator and Driver tests follow this same pattern. They also 
include the module (lines 2 and 10 below) and initialize @object in their setup 
methods (lines 5 and 13).

Listing 9.27

 1 class TripCoordinatorTest < Minitest::Test
 2   include PreparerInterfaceTest
 3 
 4   def setup
 5     @trip_coordinator = @object = TripCoordinator.new
 6   end
 7 end
 8 
 9 class DriverTest < Minitest::Test
10   include PreparerInterfaceTest
11 
12   def setup
13     @driver = @object = Driver.new
14   end
15 end

Running these three tests produces a satisfying result:

Listing 9.28

 1  MechanicTest
 2    PASS (0.00s)  test_implements_the_preparer_interface
 3  Finished in 0.00014s
 4  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips
 5 
 6  TripCoordinatorTest
 7    PASS (0.00s)  test_implements_the_preparer_interface
 8  Finished in 0.00012s
 9  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips
10 
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11  DriverTest
12    PASS (0.00s)  test_implements_the_preparer_interface
13  Finished in 0.00014s
14  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Defining the PreparerInterfaceTest as a module allows you to write the test 
once and then reuse it in every object that plays the role. The module serves as a test 
and as documentation. It raises the visibility of the role and makes it easy to prove 
that any newly created Preparer successfully fulfills its obligations.

The test_implements_the_preparer_interface method tests an incoming 
message and as such belongs with the receiving object’s tests, which is why the mod-
ule gets included in the tests of Mechanic, TripCoordinator, and Driver. Incom-
ing messages, however, go hand-in-hand with outgoing messages and you must test 
both sides of this equation. You have proven that all receivers correctly implement 
prepare_trip; now you must also prove that Trip correctly sends it.

As you know, proving that an outgoing message gets sent is done by setting 
expectations on a mock. The following test creates a mock (line 4), tells it to expect 
prepare_trip (line 7), triggers Trip’s prepare method (line 9), and then verifies 
that the mock received the proper message (line 10).

Listing 9.29

 1 class TripTest < Minitest::Test
 2 
 3   def test_requests_trip_preparation
 4     preparer = Minitest::Mock.new
 5     trip     = Trip.new([], [], [])
 6 
 7     preparer.expect(:prepare_trip, nil, [trip])
 8 
 9     trip.prepare([preparer])
10     preparer.verify
11   end
12 end

The test_requests_trip_preparation test lives directly in TripTest. Trip
is the only Preparable in the application so there’s no other object with which to 
share this test. If other Preparables arise the test should be extracted into a module 
and shared among Preparables at that time.
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Running this test proves that Trip collaborates with Preparers using the cor-
rect interface:

Listing 9.30

1  TripTest
2    PASS (0.00s)  test_requests_trip_preparation
3  Finished in 0.00016s
4  1 tests, 0 assertions, 0 failures, 0 errors, 0 skips

This completes the tests of the Preparer role. It’s now possible to return to the 
problem of brittleness when using doubles to play roles in tests.

9.5.2 Using Role Tests to Validate Doubles
Now that you know how to write reusable tests that prove an object correctly plays a 
role, you can use this technique to reduce the brittleness caused by stubbing.

The earlier section, “Testing Incoming Messages,” introduced the “living the 
dream” problem. The final test in that section contained a misleading false positive, in 
which a test that should have failed but instead passed because of a test double that 
stubbed an obsolete method. Here’s a reminder of the code:

Listing 9.31

 1 class DiameterDouble
 2   def diameter    # <- Wrong implementation of
 3     10            # <- Diameterizable API
 4   end
 5 end
 6 
 7 class GearTest < Minitest::Test
 8   def test_calculates_gear_inches
 9     gear =  Gear.new(
10               chainring: 52,
11               cog:       11,
12               wheel:     DiameterDouble.new)
13 
14     assert_in_delta(47.27,
15                     gear.gear_inches,
16                     0.01)
17   end
18 end
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Here’s the faultily passing test.

Listing 9.32

1  GearTest
2    PASS (0.00s)  test_calculates_gear_inches
3  Finished in 0.00015s
4  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The problem with this test is that DiameterDouble purports to play the 
Diameterizable role but it does so incorrectly. Now that Diameterizable’s inter-
face has changed, DiameterDouble is out of date. This obsolete double enables the 
test to bumble along in the mistaken belief that Gear works correctly, when in actual 
fact GearTest only works when combined with its similarly confused test double. 
The application is broken but you cannot tell it by running this test.

You last saw WheelTest in the “Using Tests to Document Roles” section, where it 
was attempting to counter this problem by raising the visibility of Diameterizable’s 
interface. Here’s an example where line 6 proves that Wheel acts like a Diameteriz-
able that implements width:

Listing 9.33

 1 class WheelTest < Minitest::Test
 2   def setup
 3     @wheel = @object = Wheel.new(26, 1.5)
 4   end
 5 
 6   def test_implements_the_diameterizable_interface
 7     assert_respond_to(@wheel, :width)
 8   end
 9 
10   def test_calculates_diameter
11     # ...
12   end
13 end

With this test, you now hold all the pieces needed to solve the brittleness prob-
lem. You know how to share tests among players of a role, you recognize that you 
have two players of the Diameterizable role, and you have a test that any object 
can use to prove that it correctly plays the role.

The first step in solving the problem is to extract test_implements_the_
diameterizable_interface from Wheel into a module of its own:
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Listing 9.34

1 module DiameterizableInterfaceTest
 2   def test_implements_the_diameterizable_interface
3     assert_respond_to(@object, :width)
 4   end
 5 end

Once this module exists, reintroducing the extracted behavior back into Wheel-
Test is a simple matter of including the module (line 2) and initializing @object
with a Wheel (line 5):

Listing 9.35

 1 class WheelTest < Minitest::Test
 2   include DiameterizableInterfaceTest
 3 
 4   def setup
 5     @wheel = @object = Wheel.new(26, 1.5)
 6   end
 7 
 8   def test_calculates_diameter
 9     # ...
10   end
11 end

At this point WheelTest works just as it did before the extraction, as you can see 
by running the test:

Listing 9.36

 1  WheelTest
 2    PASS (0.00s)   test_calculates_diameter
 3      PASS (0.00s)  test_implements_the_diameterizable_interface
4  Finished in 0.00018s
5  2 tests, 2 assertions, 0 failures, 0 errors, 0 skips

It’s gratifying that the WheelTest still passes, but this refactoring serves a 
broader purpose than that of merely rearranging the code. Now that you have an 
independent module that proves that a Diameterizable behaves correctly, you can 
use the module to prevent test doubles from silently becoming obsolete.
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The GearTest below has been updated to use this new module. Lines 9 through 
15 define a new test class, DiameterDoubleTest. DiameterDoubleTest is not 
about Gear per se; its purpose is to prevent test brittleness by ensuring the ongoing 
soundness of the double.

Listing 9.37

 1 class DiameterDouble
 2   def diameter
 3     10
 4   end
 5 end
 6 
 7 # Prove the test double honors the interface this
 8 #   test expects.
 9 class DiameterDoubleTest < MiniTest::Unit::TestCase
10   include DiameterizableInterfaceTest
11 
12   def setup
13     @object = DiameterDouble.new
14   end
15 end
16 
17 class GearTest < MiniTest::Unit::TestCase
18   def test_calculates_gear_inches
19     gear =  Gear.new(
20               chainring: 52,
21               cog:       11,
22               wheel:     DiameterDouble.new)
23 
24     assert_in_delta(47.27,
25                     gear.gear_inches,
26                     0.01)
27   end
28 end

The fact that DiameterDouble and Gear are both incorrect has been allowing 
previous versions of this test to pass. Now that the double is being tested to ensure it 
honestly plays its role, running the test finally produces an error:
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Listing 9.38

 1  DiameterDoubleTest
 2    FAIL (0.00s)  
 3      test_implements_the_diameterizable_interface
 4    Minitest::Assertion:  
 5      Expected  
 6        #<DiameterDouble:0x00007ff9e29fe500> 
 7        (DiameterDouble)  
 8    to respond to #width.  
 9    9_55.rb:50:in 
10      'test_implements_the_diameterizable_interface'
11    # . . .
12  Finished in 0.00022s
13  1 tests, 1 assertions, 1 failures, 0 errors, 0 skips
14 
15  GearTest
16    PASS (0.00s)  test_calculates_gear_inches
17  Finished in 0.00010s
18  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The GearTest still passes erroneously, but that’s no longer a problem because 
DiameterDoubleTest now informs you that DiameterDouble is wrong. This fail-
ure causes you to correct DiameterDouble to implement width, as shown on line 2 
below:

Listing 9.39

 1 class DiameterDouble
 2   def width
 3     10
 4   end
 5 end

After this change, re-running the test produces the desired failure in GearTest:

Listing 9.40

 1  DiameterDoubleTest
 2    PASS (0.00s)  
 3      test_implements_the_diameterizable_interface
 4  Finished in 0.00013s
 5  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips
 6 
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 7  GearTest
 8    ERROR (0.00s)  test_calculates_gear_inches
 9      NoMethodError: undefined method 'diameter' for  
10        #<DiameterDouble:0x00007fe4a2041760> 
11      9_60.rb:31:in 'gear_inches' 
12   # . . .
13  Finished in 0.00061s
14  1 tests, 0 assertions, 0 failures, 1 errors, 0 skips

Now that DiameterDoubleTest passes, GearTest fails. This failure points 
directly to the offending line of code in Gear. The tests finally tell you to change 
Gear’s gear_inches method to send width instead of diameter, as in this example:

Listing 9.41

 1 class Gear
 2   # ...
 3   def gear_inches
 4     ratio * wheel.width   # 'width' instead of 'diameter'
 5   end
 6 end

Once you make this final change, the application is correct and the tests pass:

Listing 9.42

 1  DiameterDoubleTest
 2    PASS (0.00s)  
 3      test_implements_the_diameterizable_interface
 4  Finished in 0.00013s
 5  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips
 6 
 7  GearTest
 8    PASS (0.00s)  test_calculates_gear_inches
 9  Finished in 0.00015s
10  1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Not only does this test pass, but it will continue to pass (or fail) appropriately, 
no matter what happens to the Diameterizable interface. When you treat test dou-
bles as you would any other role player and test them to prove their correctness, you 
avoid test brittleness and can stub without fear of consequence.
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The desire to test duck types creates a need for shareable tests for roles, and 
once you acquire this role-based perspective, you can use it to your advantage in 
many situations. From the point of view of the object under test, every other object 
is a role, and dealing with objects as if they are representatives of the roles they play 
loosens coupling and increases flexibility, both in your application and in your tests.

Having to write your own role tests is the price you pay for the benefits of 
dynamic typing. In statically typed languages you can lean on the complier to enforce 
the interfaces of roles, but in dynamically typed languages, roles are virtual. If you 
fear that human communication will be insufficient to keep all players of a role in 
sync, write these tests.

9.6 Testing Inherited Code
You’ve finally arrived at the last challenge, testing inherited code. This section is 
much like the previous ones in that it recapitulates a previously seen example and 
then proceeds to test it. The example used here is the final Bicycle hierarchy from 
Chapter 6, “Acquiring Behavior through Inheritance.” Even though that hierarchy 
eventually proved unsuitable for inheritance, the underlying code is fine and serves 
admirably as a basis for these tests.

9.6.1 Specifying the Inherited Interface
Here’s the Bicycle class as you last saw it in Listing 6.27.

Listing 9.43

 1 class Bicycle
 2   attr_reader :size, :chain, :tire_size
 3 
 4   def initialize(**opts)
 5     @size       = opts[:size]
 6     @chain      = opts[:chain]      || default_chain
 7     @tire_size  = opts[:tire_size]  || default_tire_size
 8     post_initialize(opts)
 9   end
10 
11   def spares
12     {tire_size: tire_size,
13      chain:     chain}.merge(local_spares)
14   end
15 
16   def default_tire_size
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17     raise NotImplementedError
18   end
19 
20   # subclasses may override
21   def post_initialize(opts)
22   end
23 
24   def local_spares
25     {}
26   end
27 
28   def default_chain
29     "11-speed"
30   end
31 end

Here is the code for RoadBike, one of Bicycle’s subclasses:

Listing 9.44

 1 class RoadBike < Bicycle
 2   attr_reader :tape_color
 3 
 4   def post_initialize(opts)
 5     @tape_color = opts[:tape_color]
 6   end
 7 
 8   def local_spares
 9     { tape_color: tape_color }
10   end
11 
12   def default_tire_size
13     "23"
14   end
15 end

The first goal of testing is to prove that all objects in this hierarchy honor their 
contract. The Liskov Substitution Principle declares that subtypes should be substitut-
able for their supertypes. Violations of Liskov result in unreliable objects that don’t 
behave as expected. The easiest way to prove that every object in the hierarchy obeys 
Liskov is to write a shared test for the common contract and include this test in every 
object.
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The contract is embodied in a shared interface. The following test articulates the 
interface and therefore defines what it means to be a Bicycle:

Listing 9.45

 1 module BicycleInterfaceTest
 2   def test_responds_to_default_tire_size
 3     assert_respond_to(@object, :default_tire_size)
 4   end
 5 
 6   def test_responds_to_default_chain
 7     assert_respond_to(@object, :default_chain)
 8   end
 9 
10   def test_responds_to_chain
11     assert_respond_to(@object, :chain)
12   end
13 
14   def test_responds_to_size
15     assert_respond_to(@object, :size)
16   end
17 
18   def test_responds_to_tire_size
19     assert_respond_to(@object, :tire_size)
20   end
21 
22   def test_responds_to_spares
23     assert_respond_to(@object, :spares)
24   end
25 end

Any object that passes the BicycleInterfaceTest can be trusted to act like a 
Bicycle. All of the classes in the Bicycle hierarchy must respond to this interface 
and should be able to pass this test. The following example includes this interface 
test in the abstract superclass BicycleTest (line 2), and in the concrete subclass 
RoadBikeTest (line 10):

Listing 9.46

 1 class BicycleTest < Minitest::Test
 2   include BicycleInterfaceTest
 3 
 4   def setup
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 5     @bike = @object = Bicycle.new({tire_size: 0})
 6   end
 7 end
 8 
 9 class RoadBikeTest < MiniTest::Test
10   include BicycleInterfaceTest
11 
12   def setup
13     @bike = @object = RoadBike.new
14   end
15 end

Running the test tells a story:

Listing 9.47

 1  BicycleTest
 2    PASS (0.00s)  test_responds_to_chain
 3    PASS (0.00s)  test_responds_to_default_chain
 4    PASS (0.00s)  test_responds_to_default_tire_size
 5    PASS (0.00s)  test_responds_to_size
 6    PASS (0.00s)  test_responds_to_spares
 7    PASS (0.00s)  test_responds_to_tire_size
 8  Finished in 0.00029s
 9  6 tests, 6 assertions, 0 failures, 0 errors, 0 skips
10 
11  RoadBikeTest
12    PASS (0.00s)  test_responds_to_chain
13    PASS (0.00s)  test_responds_to_default_chain
14    PASS (0.00s)  test_responds_to_default_tire_size
15    PASS (0.00s)  test_responds_to_size
16    PASS (0.00s)  test_responds_to_spares
17    PASS (0.00s)  test_responds_to_tire_size
18  Finished in 0.00021s
19  6 tests, 6 assertions, 0 failures, 0 errors, 0 skips

The BicycleInterfaceTest will work for every kind of Bicycle and can be 
easily included in any new subclass. It documents the interface and prevents acciden-
tal regressions.

9.6.2 Specifying Subclass Responsibilities
Not only do all Bicycles share a common interface, the abstract Bicycle super-
class imposes requirements upon its subclasses.
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Confirming Subclass Behavior
Because there are many subclasses, they should share a common test to prove that 
each meets the requirements. Here’s a test that documents the requirements for 
subclasses:

Listing 9.48

 1 module BicycleSubclassTest
 2   def test_responds_to_post_initialize
 3     assert_respond_to(@object, :post_initialize)
 4   end
 5 
 6   def test_responds_to_local_spares
 7     assert_respond_to(@object, :local_spares)
 8   end
 9 
10   def test_responds_to_default_tire_size
11     assert_respond_to(@object, :default_tire_size)
12   end
13 end

This test codifies the requirements for subclasses of Bicycle. It doesn’t force 
subclasses to implement these methods; in fact, any subclass is free to inherit post_
initialize and local_spares. This test just proves that a subclass does noth-
ing so crazy that it causes these messages to fail. The only method that must be 
implemented by subclasses is default_tire_size. The superclass implementation 
of default_tire_size raises an error; this test will fail unless the subclass imple-
ments its own specialized version.

RoadBike acts like a Bicycle, so its test already includes the BicycleInter-
faceTest. The test below has been changed to include the new BicycleSub-
classTest; RoadBike should also act like a subclass of Bicycle.

Listing 9.49

 1 class RoadBikeTest < MiniTest::Test
 2   include BicycleInterfaceTest
 3   include BicycleSubclassTest
 4 
 5   def setup
 6     @bike = @object = RoadBike.new
 7   end
 8 end
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Running this modified test tells an enhanced story:

Listing 9.50

 1  RoadBikeTest
 2    PASS (0.00s)  test_responds_to_chain
 3    PASS (0.00s)  test_responds_to_default_chain
 4    PASS (0.00s)  test_responds_to_default_tire_size
 5    PASS (0.00s)  test_responds_to_local_spares
 6    PASS (0.00s)  test_responds_to_post_initialize
 7    PASS (0.00s)  test_responds_to_size
 8    PASS (0.00s)  test_responds_to_spares
 9    PASS (0.00s)  test_responds_to_tire_size
10  Finished in 0.00024s
11  8 tests, 8 assertions, 0 failures, 0 errors, 0 skips

Every subclass of Bicycle can share these same two modules, because every 
subclass should act both like a Bicycle and like a subclass of Bicycle. Even 
though it’s been a while since you’ve seen the MountainBike subclass, you can 
surely appreciate the ability to ensure that MountainBikes are good citizens by sim-
ply adding these two modules to its test, as shown here:

Listing 9.51

 1 class MountainBikeTest < MiniTest::Test
2   include BicycleInterfaceTest
 3   include BicycleSubclassTest
4 
5   def setup
6     @bike = @object = MountainBike.new
 7   end
 8 end

Here’s the result of running that test.

Listing 9.52

 1  MountainBikeTest
 2    PASS (0.00s)  test_responds_to_chain
 3    PASS (0.00s)  test_responds_to_default_chain
 4    PASS (0.00s)  test_responds_to_default_tire_size
 5    PASS (0.00s)  test_responds_to_local_spares
 6    PASS (0.00s)  test_responds_to_post_initialize

1 
2 
3 
4 
5 
6 
7 

 8 
 9 
10 
11 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
 3 
4
 5 
 6 



2399.6 Testing Inherited Code

 7    PASS (0.00s)  test_responds_to_size
 8    PASS (0.00s)  test_responds_to_spares
 9    PASS (0.00s)  test_responds_to_tire_size
10  Finished in 0.00024s
11  8 tests, 8 assertions, 0 failures, 0 errors, 0 skips

The BicycleInterfaceTest and the BicycleSubclassTest, combined, take 
all of the pain out of testing the common behavior of subclasses. These tests give 
you confidence that subclasses aren’t drifting away from the standard, and they allow 
novices to create new subclasses in complete safety. Newly arrived programmers 
don’t have to scour the superclasses to unearth requirements, they can just include 
these tests when they write new subclasses.

Confirming Superclass Enforcement
The Bicycle class should raise an error if a subclass does not implement default_
tire_size. Even though this requirement applies to subclasses, the actual enforce-
ment behavior is in Bicycle. This test is therefore placed directly in BicycleTest, 
as shown on line 8 below:

Listing 9.53

 1 class BicycleTest < Minitest::Test
 2   include BicycleInterfaceTest
 3 
 4   def setup
 5     @bike = @object = Bicycle.new({tire_size: 0})
 6   end
 7 
 8   def test_forces_subclasses_to_implement_default_tire_size
 9      assert_raises(NotImplementedError) {@bike.default_tire_size}
10   end
11 end

Notice that line 5 of BicycleTest supplies a tire size, albeit an odd one, at 
Bicycle creation time. If you look back at Bicycle’s initialize method you’ll 
see why. The initialize method expects to either receive an input value for tire_
size or to be able retrieve one by subsequently sending the default_tire_size 
message. If you remove the tire_size argument from line 5, this test dies in its 
setup method while creating a Bicycle. Without this argument, Bicycle can’t suc-
cessfully get through object initialization.
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The tire_size argument is necessary because Bicycle is an abstract class 
that does not expect to receive the new message. Bicycle doesn’t have a nice, 
friendly creation protocol. It doesn’t need one because the actual application never 
creates instances of Bicycle. However, the fact that the application doesn’t cre-
ate new Bicycles doesn’t mean this never happens. It surely does. Line 5 of the 
BicycleTest above clearly creates a new instance of this abstract class.

This problem is ubiquitous when testing abstract classes. The BicycleTest
needs an object on which to run tests and the most obvious candidate is an instance 
of Bicycle. However, creating a new instance of an abstract class can range from dif-
ficult to impossible. This test is fortunate in that Bicycle’s creation protocol allows 
the test to create a concrete Bicycle instance by passing tire_size, but creating a 
testable object is not always this easy, and you may find it necessary to employ a more 
sophisticated strategy. Fortunately, there’s an easy way to overcome this general prob-
lem that will be covered below in the section “Testing Abstract Superclass Behavior.”

For now, supplying the tire_size argument works just fine. Running 
BicycleTest now produces output that looks more like that of an abstract superclass:

Listing 9.54

 1  BicycleTest
 2     PASS (0.00s)  test_forces_subclasses_to_implement_

  default_tire_size
 3    PASS (0.00s)  test_responds_to_chain
 4    PASS (0.00s)  test_responds_to_default_chain
 5    PASS (0.00s)  test_responds_to_default_tire_size
 6    PASS (0.00s)  test_responds_to_size
 7    PASS (0.00s)  test_responds_to_spares
 8    PASS (0.00s)  test_responds_to_tire_size
 9  Finished in 0.00032s
10  7 tests, 7 assertions, 0 failures, 0 errors, 0 skips

9.6.3 Testing Unique Behavior
The inheritance tests have so far concentrated on testing common qualities. Most of the 
resulting tests were shareable and ended up being placed in modules (BicycleInter-
faceTest and BicycleSubclassTest), although one test (forces_subclasses_
to_implement_default_tire_size) did get placed directly into BicycleTest.

Now that you have dispensed with the common behavior, two gaps remain. There 
are as yet no tests for specializations, neither for the ones provided by the concrete 
subclasses nor for those defined in the abstract superclass. The following section 
concentrates on the first; it tests specializations supplied by individual subclasses. 
The section after moves the focus upward in the hierarchy and tests behavior that is 
unique to Bicycle.
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Testing Concrete Subclass Behavior
Now is the time to renew your commitment to writing the absolute minimum number 
of tests. Look back at the RoadBike class. The shared modules already prove most of 
its behavior. The only thing left to test are the specializations that RoadBike supplies.

It’s important to test these specializations without embedding knowledge of the 
superclass into the test. For example, RoadBike implements local_spares and also 
responds to spares. The RoadBikeTest should ensure that local_spares works 
while maintaining deliberate ignorance about the existence of the spares method. 
The shared BicycleInterfaceTest already proves that RoadBike responds cor-
rectly to spares; it is redundant and ultimately limiting to reference that method 
directly in this test.

The local_spares method, however, is clearly RoadBike’s responsibility. Line 9 
below tests this specialization directly in RoadBikeTest:

Listing 9.55

 1 class RoadBikeTest < MiniTest::Test
 2   include BicycleInterfaceTest
 3   include BicycleSubclassTest
 4 
 5   def setup
 6     @bike = @object = RoadBike.new(tape_color: 'red')
 7   end
 8 
 9   def test_puts_tape_color_in_local_spares
10     assert_equal 'red', @bike.local_spares[:tape_color]
11   end
12 end

Running RoadBikeTest now shows that it meets its common responsibilities 
and also supplies its own specializations:

Listing 9.56

 1  RoadBikeTest
 2    PASS (0.00s)  test_puts_tape_color_in_local_spares
 3    PASS (0.00s)  test_responds_to_chain
 4    PASS (0.00s)  test_responds_to_default_chain
 5    PASS (0.00s)  test_responds_to_default_tire_size
 6    PASS (0.00s)  test_responds_to_local_spares
 7    PASS (0.00s)  test_responds_to_post_initialize
 8    PASS (0.00s)  test_responds_to_size
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 9    PASS (0.00s)  test_responds_to_spares
10    PASS (0.00s)  test_responds_to_tire_size
11  Finished in 0.00028s
12  9 tests, 9 assertions, 0 failures, 0 errors, 0 skips

Testing Abstract Superclass Behavior
Now that you have tested the subclass specializations, it’s time to step back and finish 
testing the superclass. Moving your focus up the hierarchy to Bicycle reintroduces 
a previously encountered problem; Bicycle is an abstract superclass. Creating an 
instance of Bicycle not only is hard, but the instance might not have all the behav-
ior you need to make the test run.

Fortunately, your design skills provide a solution. Because Bicycle used tem-
plate methods to acquire concrete specializations, you can stub the behavior that 
would normally be supplied by subclasses. Even better, because you understand the 
Liskov Substitution Principle, you can easily manufacture a testable instance of Bicy-
cle by creating a new subclass for use solely by this test.

The test below follows just such a strategy. Line 1 defines a new class, Bike-
Double, as a subclass of Bicycle. The test creates an instance of this class (line 16) 
and uses it to prove that Bicycle correctly includes the subclass’s local_spares 
contribution in spares (line 25).

It remains convenient to sometimes create an instance of the abstract Bicycle 
class, even though this requires passing the tire_size argument, as on line 15. This 
instance of Bicycle continues to be used in the test on line 21 to prove that the 
abstract class forces subclasses to implement default_tire_size.

These two kinds of Bicycle coexist peacefully in the test, as shown here:

Listing 9.57

 1 class BikeDouble < Bicycle
 2   def default_tire_size
 3     0
 4   end
 5 
 6   def local_spares
 7     { saddle: 'painful' }
 8   end
 9 end
10 
11 class BicycleTest < Minitest::Test
12   include BicycleInterfaceTest
13 
14   def setup
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15     @bike = @object = Bicycle.new({tire_size: 0})
16     @double = BikeDouble.new
17   end
18 
19   def test_forces_subclasses_to_implement_default_tire_size
20     assert_raises(NotImplementedError) {
21       @bike.default_tire_size}
22   end
23 
24   def test_includes_local_spares_in_spares
25     assert_equal @double.spares,
26                  { tire_size: 0,
27                    chain:     '11-speed',
28                    saddle:    'painful' }
29   end
30 end

The idea of creating a subclass to supply stubs can be helpful in many situations. 
As long as your new subclass does not violate Liskov, you can use this technique in 
any test you like.

Running BicycleTest now proves that it includes subclass contributions on the 
spares list:

Listing 9.58

 1  BicycleTest
 2     PASS (0.00s)  test_forces_subclasses_to_implement_

  default_tire_size
 3    PASS (0.00s)  test_includes_local_spares_in_spares
 4    PASS (0.00s)  test_responds_to_chain
 5    PASS (0.00s)  test_responds_to_default_chain
 6    PASS (0.00s)  test_responds_to_default_tire_size
 7    PASS (0.00s)  test_responds_to_size
 8    PASS (0.00s)  test_responds_to_spares
 9    PASS (0.00s)  test_responds_to_tire_size
10  Finished in 0.00027s
11  8 tests, 8 assertions, 0 failures, 0 errors, 0 skips

One last point: If you fear that BikeDouble will become obsolete and permit 
BicycleTest to pass when it should fail, the solution is close at hand. There is 
already a common BicycleSubclassTest. Just as you used the Diameterizable 
InterfaceTest to guarantee DiameterDouble’s continued good behavior, you can 
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use BicycleSubclassTest to ensure the ongoing correctness of BikeDouble. Add 
the following code to BicycleTest:

Listing 9.59

1 class BikeDoubleTest < Minitest::Test
2   include BicycleSubclassTest
3 
4   def setup
5     @object = BikeDouble.new
6   end
7 end

After you make this change, running BicycleTest produces this additional 
output:

Listing 9.60

 1  BikeDoubleTest
 2    PASS (0.00s)  test_responds_to_default_tire_size
 3    PASS (0.00s)  test_responds_to_local_spares
 4    PASS (0.00s)  test_responds_to_post_initialize
 5  Finished in 0.00015s
 6  3 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Carefully written inheritance hierarchies are easy to test. Write one shareable 
test for the overall interface and another for the subclass responsibilities. Diligently 
isolate responsibilities. Be especially careful when testing subclass specializations to 
prevent knowledge of the superclass from leaking down into the subclass’s test.

Testing abstract superclasses can be challenging; use the Liskov Substitution 
Principle to your advantage. If you leverage Liskov and create new subclasses that are 
used exclusively for testing, consider requiring these subclasses to pass your subclass 
responsibility test to ensure they don’t accidentally become obsolete.

9.7 Summary
Tests are indispensable. Well-designed applications are highly abstract and under con-
stant pressure to evolve; without tests these applications can be neither understood 
nor safely changed. The best tests are loosely coupled to the underlying code and test 
everything once and in the proper place. They add value without increasing costs.

A well-designed application with a carefully crafted test suite is a joy to behold 
and a pleasure to extend. It can adapt to every new circumstance and meet any unex-
pected need.
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Afterword

Responsibilities, dependencies, interfaces, ducks, inheritance, behavior sharing, 
composition, and testing—you’ve learned it all. You’ve immersed yourself in a world 
of objects, and if this book has achieved its goal, you think differently about objects 
now than when you first began.

Chapter 1, “Object-Oriented Design,” stated that object-oriented design is about 
managing dependencies; that statement is still true, but it’s just one truth about design. 
A deeper truth is that there is a way in which all objects are identical, regardless of 
whether they represent entire applications, major subsystems, individual classes, or 
simple methods. A single object never stands alone; applications consist of objects 
that are related to one another. Like a key and its lock, a hand and its glove, or a call 
and its response, objects are defined not by what they do but by the messages that 
pass between them. Object-oriented design is fractal; the central problem is to define 
an extensible way for objects to communicate, and at every level of magnification this 
problem looks the same.

This book is full of rules about how to write code—rules for managing 
dependencies and creating interfaces. Now that you know these rules, you can bend 
them to your own purposes. The tensions inherent in design mean that these rules 
are meant to be broken; learning to break them well is a designer’s greatest strength.

The tenets of design are tools, and with practice they will come naturally into 
your hand, allowing you to create changeable applications that serve their purpose 
and bring you joy. Your applications will not be perfect, but do not be discouraged. 
Perfection is elusive, perhaps even unreachable; this should not impede your desire 
to achieve it. Persist. Practice. Experiment. Imagine. Do your best work, and all else 
will follow.
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Spike a problem, 200
Static typing

duck types, subverting with, 
100–101

vs. dynamic typing, 102–103
String class, 12
String data type, 11–12
String objects, 11–12
Struct class

adding new methods, 32–35
OpenStruct class vs., 

179–181
wrapping data structures, 

28–29
Stubbing

brittleness caused by, 213
solving brittleness  problem, 

227–233
Styles, testing, 200–201
Subclasses

concrete behavior of,  testing, 
241–242

coupling between super-
classes and, 129–134

decoupling using hook 
messages, 134–139

inheritable code, writing, 
158–159

inheritance relationships 
and, 106

responsibilities of, 
specifying, 236–240

rules of inheritance, 117
shared behavior across set 

of, 118
in single inheritance, 112
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as specializations of their 
superclasses, 113, 117

template method pattern 
and, 125–127

Superclasses
abstract behavior,  promoting 

to, 120–123
abstract, creating, 117–120
automatic delegation of mes-

sages to, 106, 113
confirming enforcement of, 

239–240
coupling between subclasses 

and, 129–134
inheritable code, writing, 

158–159
looking up methods, 

154–157
misapplying inheritance, 

114–116
rules of inheritance, 117
single inheritance and, 112
subclasses as  specializations 

of, 113, 117
template method pattern 

and, 125–127

T
Technical debt, 10, 80
Template method pattern

coupling between subclasses/
superclasses, 131–134

decoupling subclasses with 
hook  messages, 
138–139

defined, 125
error messages for failed 

code, 127–129
inheritable code, writing, 

159

sharing code via modules 
and, 151–153

summary, 140
using, 125–127

Test-Driven Development 
(TDD), 200–201

Test-to-code over-coupling, 41
Testing

abstractions, supporting, 
195–196

bugs, finding, 195
cost-effective, designing, 

193–244
design decisions,  deferring, 

195
design flaws, exposing, 196
duck types, 221–233
incoming messages, 202–215
inherited code, 233–244
intentional testing, 194–202
knowing how to test, 

200–202
knowing what to test, 

196–199
knowing when to test, 

199–200
knowing your intentions, 

194–196
outgoing messages, 217–221
over-coupling, 41
overview of, 193–194
summary, 244
test doubles, creating, 

211–214
Thomas, Dave, 4
Time interval that matters, 10
Touch of Class: Learning to 

Program Well with 
Objects and Contracts 
(Meyer), 189

TRUE (Transparent, Reason-
able, Usable, and Exem-
plary) code, 16–17, 23

Trust
of other objects, 70–72
of your ducks, 97–98

Type declarations, dynamic 
typing and, 102

Type variable, 111–112, 158
Types. See also Duck typing

embedding multiple, 
109–111

finding embedded, 111–112

U
Unified Modeling  Language 

(UML) class  diagrams, 
66–70, 114

Updating class, for 
 composition, 164–165

V
Variables, defining, 11
Violations, Law of Demeter 

(LoD), 40–41, 81–83
Virtual class, 63
Vlissides, John, 6, 189

W
What to test, knowing, 

196–199
“What” vs. “how,”  importance 

of, 70–72
When to test, knowing, 

199–200
Wilkerson, Brian, 22
Wirfs-Brock, Rebecca, 22
Within-class types, 86
Wrapper method, 25, 82
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